
IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 1

High-Speed Modular Multipliers for
Isogeny-Based Post-Quantum Cryptography

Jing Tian, Student Member, IEEE , Zhe Liu, Senior Member, IEEE , Jun Lin, Senior Member, IEEE ,
Zhongfeng Wang, Fellow, IEEE , and Binjing Li

Abstract—As one of the post-quantum protocol candidates, the supersingular isogeny key encapsulation (SIKE) protocol delivers
promising public and secret key sizes over other candidates. Nevertheless, the considerable computations form the bottleneck and limit
its practical applications. The modular multiplication operations occupy a large proportion of the overall computations required by the
SIKE protocol. The VLSI implementation of the high-speed modular multiplier remains a big challenge. In this paper, we propose three
improved modular multiplication algorithms based on an unconventional radix for this protocol, all of which cost about 20% fewer
computations than the prior art. Besides, a multi-precision scheme is also introduced for the proposed algorithms to improve the
scalability in hardware implementation, resulting in three new algorithms. We then present very efficient high-speed modular multiplier
architectures for the six algorithms. It is shown that these new architectures can be highly optimized and extensively pipelined to obtain
high throughput thanks to the adopted overlapping processing scheme. The FPGA implementation results show the proposed
multipliers without the multi-precision scheme all achieve about 60 times higher throughput than the state-of-the-art design (the FFM2
multiplier), and those with the multi-precision scheme all acquire almost 10 times higher throughput than this work. Meanwhile, each of
the multi-precision based designs has almost the same resource consumptions as the FFM2 does.

Index Terms—Modular multiplication, supersingular isogeny Diffie-Hellman (SIDH) key exchange, post-quantum cryptography (PQC),
FPGA, VLSI.

F

1 INTRODUCTION

Recent improvements in quantum system control make
it seem feasible to finally build a powerful quantum com-
puter in the near future [1]. Many companies like IBM,
Google, and Intel have enthusiastically joined this field. A
company named IonQ reported in December 2018 that its
machine could be built as large as 160 qubits [2]. These
achievements have actually brought to the flurry of re-
search in public-key cryptography since most of the popular
public-key ciphers, such as the RSA [3] and ECC [4] schemes
based on the difficulty of factoring integers or the discrete
logarithm problem, can be solved by Shor’s algorithm [5]
with quantum computers. Meanwhile, they have also ac-
celerated the development in post-quantum cryptography
(PQC) protocols. For example, the call for proposals for PQC
standards hosted by the National Institute of Standards and
Technology (NIST) [6] is driven by this demand.

The supersingular isogeny key encapsulation (SIKE) pro-
tocol [7] has won the second round of fierce competitions
and been one of the 26 candidates in April 2019 after sub-
mitted to the NIST in November 2017. The possible reason
is that it is the only one which is similar to the classical
ECC having very small public and secret keys and owning
perfect forward secrecy. The core structure of SIKE is the
supersingular isogeny Diffie-Hellman (SIDH) key exchange
protocol, packaged by the key encapsulation mechanism [8]

• J. Tian, J. Lin, Z. Wang, and B. Li are with Nanjing University, China.
Email: jingtian@smail.nju.edu.cn, {jlin, zfwang}@nju.edu.cn, banxi-
abaisu@163.com

• Z. Liu is with Nanjing University of Aeronautics and Astronautics,
China.
Email: zhe.liu@nuaa.edu.cn

Date of the manuscript: August 9, 2019.

to defend against various side-channel attacks [9]. The
SIDH was first introduced by Jao and De Feo in 2011 to
resist quantum attack based on the difficulty of finding
isogenies between supersingular elliptic curves [10]. The
zero-knowledge identification scheme was proposed based
on this protocol in [11]. Jao and Soukharev presented the
undeniable signatures based on the SIDH in [12]. In [13],
Azarderakhsh et al. provided a key compression method
which brings in about twice of reduction in sizes of public
information without an impact on security. However, the
computations of these algorithms are still huge and make
them encounter difficulties in practical applications.

To alleviate this problem, many researchers have focused
on speed-up for the SIDH key exchange on hardware,
like on FPGA [14], [15], [16] or on ARM [17], [18], [19].
Through breaking down the computations, the modular
multiplication is one of the fundamental operations, which
is the main concerned issue in these designs. The first FPGA
implementation for SIDH key exchange was proposed by
Koziel et al. in [14] by parallelizing the modular multipliers
based on the high-radix Montgomery multiplication algo-
rithm [20]. They further sped up this protocol by adding
more modular multipliers in [15]. In [16], Liu et al. pre-
sented two fast modular multipliers, the FFM1 and FFM2,
for SIDH based on an unconventional radix inspired by
the efficient finite field multiplication (EFFM) algorithm
proposed in [21]. Additionally, the SIDH is implemented on
ARM-embedded systems as well. In [17], Seo et al. proposed
a unified ARM/NEON multi-precision modular multipli-
cation architecture based on the specialized Montgomery
reduction and integrated it to the SIDH library [22] to
accelerate the original ARM design. Jalali et al. implemented

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 2

the optimized field arithmetic operations on ARM for SIKE
in [18] and commutative SIDH (CSIDH) protocols in [19],
respectively. Indeed, much progress has been made to speed
up the SIKE protocol and make it more practical. But, these
implementations for this PQC candidate still suffer more
than one order of magnitude slower speed than those for
most of the other candidates.

Notice that the smooth isogeny modulus for SIDH 1

has the form of p = f · axby ± 1, where a and b are
small primes, x and y are positive integers, and f is a
small cofactor to make p prime. To simplify the modular
operations, especially for the modular multiplication, the
parameter a is usually set to 2. The form of p then becomes
f · 2xby ± 1. The EFFM in [21] uses the p with the form of
2 · 2xby − 1 = 2R2 − 1, where x and y must be even, and
R = 2x/2by/2, the input numbers of which are transformed
into quadratic polynomials based on the unconventional
radix R and about half of the multiplications can be reduced
for the reduction operation based on R at the cost of some
additions. The FFM1 in [16] reduces the coefficients of EFFM
from three to two by using an extra mapping function for the
input and output, which could efficiently discard the pre-
computing constant without any increase in complexity. The
FFM2 in [16] extends the searching scope of the prime with
the form of f ·2xby±1 at the expense of more computations.
It should be pointed out that a good prime could more pos-
sibly be found with a larger searching scope, which could
also help increase the efficiency of the algorithm. Therefore,
it is important to develop efficient modular multiplication
algorithms with loose constraints for the prime.

In this paper, we propose three new modular multipli-
cation algorithms for different forms of prime based on an
unconventional radix adopted in [16], [21], [23], and all of
them have lower computational complexity than previous
algorithms. We aim to extend the previous prime used
in [21] into prime with form of f ·2xby±1 where f ∈ {1, 2},
x and y are even. The prime can be split into three form-
s: 2 · 2xby − 1, 2 · 2xby + 1, and 2xby + 1. Accordingly,
the corresponding new algorithms are named as IFFM−,
IFFMo+, and IFFMe+. We set x and y to even, and use
R = 2x/2by/2 as the unconventional radix for the proposed
algorithms. For the IFFM− algorithm, the usage of the radix
is almost the same as before, which has been preliminarily
presented in our conference paper [24]. For the IFFMo+

and IFFMe+, we use the radix R = 2x/2by/2 to reduce the
complexity for the first time by expanding the range of the
constant coefficient of a quadratic polynomial. A detailed
discussion can be found in Section 3.2. The reduction and
multiplication of the proposed algorithms are optimized to
reduce the computational complexity by about 20%. Mean-
while, we also develop their multi-precision based versions
with a clever interleaving scheme and present three other
new algorithms to improve the scalability and reduce the
resource consumption in hardware implementation.

Moreover, we have devised new architectures for the
proposed algorithms with fully parallelizing and overlap-
ping schedules which enable to utmostly reduce the re-
quired clock cycles and highly optimize each sub-module.

1. The SIKE has the same form of modulus; we mainly refer to the
SIDH in the following discussion.

We have also coded the proposed architectures with the
Verilog language and implemented them on FPGA. The
implementation results show that the designs without the
multi-precision scheme have about 60 times faster through-
put than the state-of-the-art design by introducing a rel-
atively small portion of extra hardware resources. When
applying the multi-precision scheme, these designs achieve
significant reductions on total resource consumptions at
the cost of slower throughput compared to their original
versions while still being much better than prior arts.

2 BACKGROUND

The multiplication for cryptography is based on finite fields,
called modular multiplication, requiring the modular reduc-
tion after the multiplication operation. In the following we
will first introduce the Montgomery reduction, the Barrett
reduction, and the efficient Barrett reduction for the SIDH.
Then, several efficient modular multiplications for SIDH
will be presented.

2.1 Modular Reduction Algorithms
2.1.1 Montgomery Reduction
The main idea of the Montgomery reduction [25] is to
replace the ordinary modulus by a power of two so that
the modular reduction operation is inexpensive to handle in
hardware implementation. The detailed process is shown in
Alg. 1. The modulus p is an arbitrary number, which is less

Algorithm 1: The Montgomery reduction [25].

Input: 0 ≤ c < Rp, where R = 2N and 2N−1 < p < 2N ;
precompute p′ = (−p−1) mod R.

1: t = ((c mod R)p′) mod R
2: r = (c+ t · p)/R
3: if r ≥ p then
4: r = r − p
5: end if

Output: r = cR−1 mod p.

than R (equal to 2N). The term (−p−1) mod R is precom-
puted and saved. As integers moduloR is very easy, we will
not take this kind of computations into consideration in the
following counting. It can be found that the complexity is
only related to the bit width of the modulus p. This algorith-
m totally requires two N ×N multiplications, one 2N +2N
and one N + N adders. Note that the output remainder is
not c mod p but cR−1 mod p. Luckily, if the operands are
converted into Montgomery presentations by multiplying
R, all of the arithmetic operations can be normally used.
when an algorithm contains many modular multiplications
and divisions, this conversion overhead becomes negligible.
Therefore, the Montgomery reduction is usually used for the
SIDH in conventional designs [14], [15].

2.1.2 Barrett Reduction
Another hardware-friendly modular reduction algorith-

m is the Barrett reduction, proposed by Paul Barrett in
1986 [26]. The key idea is also to transfer the complex
division to an easier one by introducing an extra parameter.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 3

Algorithm 2: The Barrett reduction [26].

Input: 0 ≤ c < 2α; 2N−1 < p < 2N ;
precompute λ = b2α/pc.

1: q = b c·λ2α c
2: r = c− q · p
3: if r ≥ p then
4: r = r − p, q = q + 1
5: end if

Output: q = bc/pc, r = c mod p.

The flow is described in Alg. 2. It should be noticed that
the complexity is changed with the input width α. When
α = 2N , this algorithm costs one 2N × (N + 1) and one
N × (N + 1) multiplications, and one 2N + 2N and one
N + N adders. The complexity of multiplication is almost
1.5 times of the Montgomery reduction’s. The benefit is that
this algorithm can directly compute the quotient and the
remainder.

2.1.3 Efficient Barrett Reduction for SIDH
As introduced above, the form of modulus for SIDH is
f ·axby±1. In [21], the authors have constrained the values of
f and a to 2, respectively. Meanwhile, x and y must be even.
Therefore, the unconventional radix R has the form of 2xby

(x and y are arbitrary positive integers here). The Barrett
reduction is used for such kind of moduli. Intuitively, the
modulus R can be split into two parts — 2x and by , and
the reduction can be computed in two steps as introduced
in [21]. This algorithm is summarized in Alg. 3. Obviously,

Algorithm 3: The Barrett reduction (BR) for modulus
R = 2xby [21].

Input: c ∈ N+, 0 ≤ c < 2α; R′ = R/2x = by ;
precompute λ = b 2

α

R c.
1: t = bc/2N1c, s = c mod 2N1

2: q = b t·λ
2α−N1

c
3: r = t− q ·R′
4: r = r � N1 + s
5: if r ≥ R then
6: r = r −R, q = q + 1
7: end if

Output: q, r.

the main cost is for modulo by . Assume that N1 = x,
N2 = dlog2(by)e, and N1 ≈ N2 ≈ N/2. When α = 2N , this
algorithm costs one 3N/2× (N +1) and one N/2× (N +1)
multiplications, and one 3N/2 + 3N/2 and one N + N
adders. Clearly, this reduction algorithm is more efficient
than the other two algorithms.

2.2 Efficient Modular Multiplications for SIDH
2.2.1 EFFM

The modular multiplication named EFFM algorithm
proposed in [21] is generalized in Alg. 4. It works in an
interleaved way with an unconventional radix to compute
the multiplication and reduction. It is a kind of simplifica-
tions for the normal modular multiplication by reducing the

Algorithm 4: The EFFM modular multiplication pro-
posed in [21].

Input: A = a2R
2 + a1R+ a0, B = b2R

2 + b1R+ b0;
p = 2 · 22xb2y − 1 = 2R2 − 1;
2N−1 < p < 2N , R < 2N/2.
1) The first tentative computing:
Common items:

1: t1 = a2b1 + a1b2, t2 = a2b0 + a1b1 + a0b2
Results:

2: c2 = t2 mod 2, c1 = b t12 c+ a1b0 + a0b1,
c0 = (2−2 mod p)a2b2 + a0b0 + (t1 mod 2)R2 + b t22 c
2) The second tentative computing:
Reduction:

3: [q0, r0] = BR(c0, R)
4: [q1, r1] = BR(c1 + q0, R)

Common item:
5: t = q1 + c2

Results:
6: c2 = t mod 2, c1 = r1, c0 = b t2c+ r0

3) Post processing:
Normalization:

7: while c0 ≥ R do
8: c0 = c0 −R
9: c1 = c1 + 1

10: if c1 ≥ R then
11: c0 = c2 + c0, c1 = R− 1, c2 = (∼ c2)
12: end if
13: end while
Output: C = A×B mod p = c2R

2 + c1R+ c0.

modulus p to R, where p = 2 · 22xb2y − 1 and R = 2xby .
The input A, which is a field element in Fp, is expressed as
in quadratic polynomial as:

A = a2R
2 + a1R+ a0 (1)

in which a2 ∈ {0, 1} and 0 ≤ a1, a0 < R. We divide
the process of this algorithm into three steps: 1) the first
tentative computing; 2) the second tentative computing; and
3) post processing. In the first step, the higher order (larger
than two orders) terms are reduced and merged with the
lower order terms according to the rules deduced in [21].
The second step is to further reduce the coefficients by
adopting two BR functions as presented in Alg. 3. The data
width α of the BR function is about equal to N (half of that
of the original input) and N1 ≈ N2 ≈ N/4. In the post
processing step, the while loop could be executed at most
once as introduced in [21]. Since adding or multiplying one
number by a single-bit number is very easy, these kinds of
operations are not taken into account in this paper. Thus,
this algorithm takes four N/2×N/2, two 3N/4×(N/2+1),
and twoN/4×(N/2+1) multiplications, and sixN/2+N/2,
two 3N/4+3N/4, threeN/2+N , and threeN+N additions.

2.2.2 FFM1

Recently, the authors in [16] have proposed the FFM1 al-
gorithm to remove the coefficients a2 and b2 of the inputs

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 4

of Alg. 4. Taking input A for example, they have used the
following formula:

ai =

{
ai, a2 = 0

R− ai − 1, a2 = 1
, i = {1, 0}, (2)

based on the fact that

AB ≡ (p−A)(p−B) ≡ p− (p−A)B mod p (3)

and

p−A = 2R2 − 1− (a2R
2 + a1R+ a0) (4)

= (1− a2)R2 + (R− a1 − 1)R+ (R− a0 − 1).

The transformation in Eq. (2) is also needed for the output
and a2 is replaced by a2 ⊕ b2. This modification can remove
the precomputing parameter (2−2 mod p). The complexity
of multiplications is the same as the EFFM, and it takes ten
N/2+N/2, two 3N/4+3N/4, oneN/2+N , and twoN+N
additions. As the transformation for the inputs and output
requires more extra additions, the complexity reduction is
limited.

2.2.3 FFM2
The FFM2 algorithm is another efficient modular algorithm
proposed in [16], to extend the searching space of the
modulus pwith the form of f ·2xby±1 (x and y are arbitrary
positive integers here) at a cost of more multiplications. It
costs oneN×N , one 3N/2×(N+1), and oneN/2×(N+1)
multiplications, and two N + N and one 3N/2 + 3N/2
additions.

3 PROPOSED MODULAR MULTIPLICATION ALGO-
RITHMS

According to the analysis above, the complexity of mod-
ular multiplication algorithms in [21] and [16] is mainly
dominated by the multiplications used in the first tentative
computing and the two BR functions. We will detail our
improvements from the two aspects in the following. Mean-
while, we will extend the searching space of the modulus
with a form of p = f · 22xb2y ± 1.

3.1 Improved Barrett Reduction
The improved Barrett reduction (IBR) is presented as shown
in Alg. 5. We assume α = 2N and N1 ≈ N2 ≈ N/2, the
same as in Section 2.1.3 for the BR algorithm. A simple
improvement is to move the combination step to the end,
which reduces the size of the subtraction in Step 6 of Alg. 3
from N + N to N2 + N2. The other improvement is that
the subtraction and multiplication operations in Step 3 of
Alg. 3 are simplified (shown in Steps 3-4 of Alg. 5). Since the
tentative remainder r is smaller than 2N2+1, the difference
value of the (N − 1) MSBs of t and those of q ·R is no more
than one, which can be made out by their (N2 + 1)-th bits.
Accordingly, we can reduce the sizes of the subtraction and
multiplication from 3

2N + 3
2N and 3

2N × (N +1) to N
2 + N

2
and (N2 +1)× N

2 , respectively. If their (N2 +1)-th MSBs are
not equal, the remainder r would be adjusted by adding the
parameter 2N2 . Therefore, the IBR algorithm only requires
one 3N/2×(N+1) and oneN/2×(N/2+1) multiplications,

and three N/2 +N/2 additions. When compared to the BR
algorithm, the complexities of multiplication and addition
are reduced by about 12.5% and about 40%, respectively.

Algorithm 5: The improved BR (IBR) for hardware
efficiency.

Input: c ∈ N+, 0 ≤ c < 2α; R′ = R/2x = by ;
precompute λ = b2α/Rc.

1: t = bc/2N1c, s = c mod 2N1

2: q = b t·λ
2α−N1

c
3: t1 = ((q mod 2N2+1) ·R′)mod 2N2+1, t = t mod 2N2+1

4: r = (t mod 2N2)− (t1 mod 2N2)
5: if b t

2N2
c 6= b t1

2N2
c then

6: r = r + 2N2

7: end if
8: if r ≥ R′ then
9: r = r −R′, q = q + 1

10: end if
11: r = r � N1 + s
Output: q, r.

As the output r is expected to have the range of [0, R),
this function will not obtain the required results if the input
integer c is a negative number. To deal with this problem,
we first take the absolute value to the IBR function, and then
correct the remainder withR−r and the quotient with−(q+
1) when c is negative. This modified reduction algorithm is
defined as IBR+.

3.2 Modular Multiplication Algorithms with Modulus
p = 2xby ± 1

Based on the introduction in [21], [23], and [16], the uncon-
ventional radix for modular multiplication of SIDH shows
more efficiency than conventional methods. This concept is
first proposed in [21] for the smooth isogeny prime modulus
p with the form p = 2 · 2xby − 1 where x and y must be
even. In this section, we will extend this prime with the form
p = 2xby±1 for an even y. For convenience, we reformulate
the prime as p = f · 22xb2y ± 1 where f = 1 or 2 to make
the transformation hold. Here, we propose two algorithms
for p = f · 22xb2y +1 with unconventional radix for the first
time. There are two issues required to be solved for this kind
of modulus p: 1) how to construct an unconventional radix;
2) how to reduce the coefficients with such a modulus.

For the first issue, we still keep the field elements in
Fp with the form of quadratic polynomials based on the
unconventional radix of R = 2xby as Eq. (1). This form
is a one-to-one mapping for the modulus p with minus
sign, where all elements in Fp are exactly expressed and
the operation p − A is still in this field. Back to the original
motivation, the target is to replace the large modulus p with
a small modulus R, not to construct an onto mapping. Thus,
we try to build a mapping which may not be so exact but
can involve all elements in Fp. With this clue, we find that if
we extend the range of the coefficient of the constant term to
R+1, saying 0 ≤ a0 ≤ R+1, this goal will be achieved. We
only need to add this constraint for c0 in the post-processing
step and most of the processing steps are almost the same as
the EFFM or FFM1. Note that in some cases two polynomials

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 5

would equal the same value in Fp, which however do not
affect the calculations and the final results.

For the second issue, we review that the basic idea of
EFFM [21] is firstly to resolve the quadratic or higher-order
product terms modulo p and then to reduce the coefficients
by modulo or subtracting R. We suppose that the quadratic
and higher-order product terms are combined as tR2. The
formula tR2 modulo p = f ·R2 ± 1 can be computed as

tR2 mod p (5)

≡ ((tR2 mod (fR2))∓ b tR
2

fR2
c) mod p

= (((t mod f) ·R2)∓ b t
f
c) mod p.

When p = 2 ·R2−1, the plus sign is taken and this equation
is equivalent to the deduced equation in [21]. For p = f ·
R2 + 1, this equation can also be used.

Since the modulus p is prime, we have three forms for p:
1) p = 2·22xb2y−1; 2) p = 2·22xb2y+1; and 3) p = 22xb2y+1.
For the three different p forms, we apply the proposed
IBR (IBR+) function and obtain three different modular
multiplication algorithms named as IFFM−, IFFMo+, and
IFFMe+, respectively. We will discuss more details in the
following.

3.2.1 IFFM− for Modulus p = 2 · 22xb2y − 1

For p = 2R2 − 1, the optimization methods have been fully
discussed in [21] and [16]. Equation 5 for this modulus turns
into

tR2 mod p ≡ (((t mod 2) ·R2) + b t
2
c) mod p. (6)

In the proposed IFFM−, besides applying the IBR function,
we also use the mapping function proposed in [16] as shown
in Eq. (2). Meanwhile, the number of multiplications is
further reduced by using the formula:

a1b0 + a0b1 = (a1 + a0)(b1 + b0)− a0b0 − a1b1. (7)

The proposed algorithm is shown in Alg. 6. The post proc
function is given in Alg. 8, where the range of the input
co0 is deduced shown in Section 7.1. Therefore, the proposed
IFFM− only needs twoN/2×N/2, one (N/2+1)×(N/2+1),
two 3N/4×N/2, and two N/4×N/4 multiplications, and
six N/4 + N/4, ten N/2 + N/2, one N/2 + N , and three
N +N additions.

3.2.2 IFFMo+ for Modulus p = 2 · 22xb2y + 1

For p = 2R2 + 1, it means that f is set to 2 and the minus
sign is adopted. Thus Eq. (5) becomes

tR2 mod p ≡ (((t mod 2) ·R2)− b t
2
c) mod p. (8)

The IFFMo+ is very similar to the IFFM−. We will mainly
analyze the different operations of this algorithm. Firstly, the
negation operation, p−A, will be

p−A = 2R2 + 1− (a2R
2 + a1R+ a0) (9)

= (1− a2)R2 + (R− a1 − 1)R+ (R− a0 + 1),

which is still a standard expression. Therefore, for a1, the
map function is R− a1 − 1, and we define map+ function as

Algorithm 6: The proposed IFFM− for p = 2R2 − 1.

Input: A = a2R
2 + a1R+ a0, B = b2R

2 + b1R+ b0,
a2, b2 ∈ {0, 1}, a1, a0, b1, b0 ∈ [0, R− 1];
2N−1 < p < 2N , R < 2N/2.
1) The first tentative computing:
Mapping:

1: for i = {1, 0} do
2: ai = map(ai, a2), bi = map(bi, b2)
3: end for

Multiplication items:
4: m1 = a1b1, m2 = a0b0, m3 = (a1 + a0)(b1 + b0)

Results:
5: c2 = m1 mod 2, c1 = m3 −m1 −m2, c0 = m2 + bm1

2 c
2) The second tentative computing:
Reduction:

6: [q0, r0] = IBR(c0, R)
7: [q1, r1] = IBR(c1 + q0, R)

Common item:
8: t = q1 + c2

Results:
9: co2 = t mod 2, co1 = r1, co0 = b t2c+ r0

3) Post processing:
10: [c2, c1, c0] = post proc(co2, c

o
1, c

o
0)

Demapping:
11: t = a2 ⊕ b2
12: c2 = c2 ⊕ t, c1 = map(c1, t), c0 = map(c0, t)
Output: C = A×B mod p = c2R

2 + c1R+ c0.

R− a0+1 for a0. And it is the same for b1 and b0. Secondly,
when updating the constant term c0, the subtraction should
be taken, including Steps 5 and 9 in Alg. 6. Thirdly, the
IBR function is replaced by the IBR+ function. Finally, the
post proc function shown in Alg. 8 is updated differently
according to the range of co0 deduced in Section 7.2. The
complexity of this algorithm is almost the same as that of
the IFFM−, with two extra N/2 +N/2 additions.

3.2.3 IFFMe+ for Modulus p = 22xb2y + 1

For the IFFMe+ algorithm, f is equal to 1, so Eq. (5) becomes

tR2 mod p = −t mod p. (10)

Meanwhile, for modulus p = R2 + 1, the coefficient of the
quadratic term is equal to zero. Therefore, multiplying two
elements A,B ∈ Fp turns into

A×B mod p (11)
≡ (a1R+ a0)× (b1R+ b0)

≡ ((a0 + a1)(b0 + b1)− a0b0 − a1b1)R+ a0b0 − a1b1.

It can be seen that there is no need to transform the inputs
and output with Eq. (2), which can efficiently reduce the
addition operations. The detailed process is shown in Alg. 7.
c0 in Step 8 has a range of [−2R,R], the proof for which
is attached in Section 7.3. Thus at most two additions are
required to correct the final results. The number of multipli-
cations is also the same as those of the other two algorithms.
This algorithm totally costs sixN/4+N/4, sevenN/2+N/2,
one N/2 +N , and three N +N additions.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 6

Algorithm 7: The proposed IFFMe+ for p = R2 + 1.

Input: A = a1R+ a0, B = b1R+ b0, a1, b1 ∈ [0, R− 1],
a0, b0 ∈ [0, R+ 1]; p = 22xb2y + 1 = R2 + 1;
2N−1 < p < 2N , R < 2N/2.
1) The first tentative computing:
Multiplication items:

1: m1 = a1b1, m2 = a0b0, m3 = (a1 + a0)(b1 + b0)
Results:

2: c1 = m3 −m1 −m2, c0 = m2 −m1

2) The second tentative computing:
Reduction:

3: [q0, r0] = IBR+(c0, R)
4: [q1, r1] = IBR+(c1 + q0, R)

Results:
5: co1 = r1, co0 = r0 − q1

3) Post processing:
6: [c1, c0] = post proc(co1, c

o
0)

Output: C = A×B mod p = c1R+ c0.

Algorithm 8: The post proc function for the proposed
algorithms.

For IFFM−:
Input : co2 ∈ {0, 1}, 0 ≤ co1 < R, 0 ≤ co0 ≤ 2R− 2.

if c0 ≥ R then
c0 = co0 −R, c1 = co1 + 1
if c1 == R then

c0 = co2 + c0, c1 = 0, c2 = (∼ co2)

Output: c2 ∈ {0, 1}, 0 ≤ c1 < R, 0 ≤ c0 < R.
———————————————————————-
For IFFMo+:
Input : co2 ∈ {0, 1}, 0 ≤ co1 < R, −R ≤ co0 ≤ R.

if c0 < 0 then
c0 = co0 +R, c1 = co1 − 1
if c1 == −1 then

c2 = (∼ co2), c1 = R− 1, c0 = c0 + c2

Output: c2 ∈ {0, 1}, 0 ≤ c1 < R, 0 ≤ c0 < R+ 2.
———————————————————————-
For IFFMe+:
Input : 0 ≤ co1 < R, −2R ≤ co0 ≤ R.

if c0 < 0 then
c0 = co0 +R, c1 = co1 − 1
if c1 == −1 then

c1 = R− 1, c0 = c0 + 1

if c0 < 0 then
c0 = c0 +R, c1 = c1 − 1
if c1 == −1 then

c1 = R− 1, c0 = c0 + 1

Output: 0 ≤ c1 < R, 0 ≤ c0 < R+ 2.

3.3 Complexity Analysis and Comparison
Assume that the data width of the input field elements A
and B is N and the modulus p satisfies 2N−1 < p < 2N . We
have normalized the numbers of additions and multiplica-
tions to those of N+N additions and N×N multiplications
for the previous and the proposed modular multiplication
algorithms as listed in Table 1. The Montgomery and Barrett
reduction algorithms associated with the multiplication part
are abbreviated as MontM and BarM modular multiplica-
tion algorithms, respectively. Since N is usually as large
as several hundred for public-key cryptosystems, the data
width N + 1 is approximated to N . The N +N/2 addition,
which can be split as one N/2 + N/2 and one N/2 + 1
additions, is approximately computed as one N/2 + N/2
addition. It can be seen that the proposed algorithms have
the fewest number of multiplications. Note that the perfor-
mance is mainly constrained by the computation of multi-
plications in these algorithms. Obviously, we have achieved
nearly 20% reduction in computations compared to the
state-of-the-art algorithms.

3.4 Multi-Precision Scheme for Proposed Algorithms
In order to improve the scalability in hardware design, we
apply a multi-precision scheme to the proposed algorithms.
Assume a number A with multi-precision format in radix of
2k as

A =
n−1∑
j=0

Aj · (2k)j , (12)

where Aj is the j-th k-bit digit of A and n is the number of
partition. To reduce the data width used in each iteration,
the interleaving of multiplication and reduction is adopted
as follows:

AB mod p = (...((0 · 2k +An−1B mod p) · 2k (13)
+An−2B mod p) · 2k + ...+A1B mod p) · 2k

+A0B mod p.

It can be observed that a recursive equation can be conclud-
ed as

C(j) = C(j+1) · 2k +AjB mod p, (14)

where C(n) = 0, C(j) are the intermediate values for
0 < j < n, and C(0) is the final result. In our pro-
posed algorithms, we can transfer the modulus p to R.
We represent the coefficients a0, a1 of the field element A
with the form of Eq. (12). For the quadratic polynomial, a0
and a1 are the results after mapping. Take the IFFMe+ as
an example. The recursive process starts from Step 1 and
finishes at Step 5 in Alg. 7. The post-processing step can
be finally executed after the iterative process to reduce the
computation consumption. If n > 1, the post-processing
can be further simplified. The multi-precision based IFFMe+

(Multi-IFFMe+) algorithm is shown in Alg. 9 as an example.
This scheme can be also applied to other proposed algo-
rithms in the same way.

4 HARDWARE ARCHITECTURE

4.1 Top-Level Architecture
The top-level architecture is shown in Fig. 1, where all the
proposed algorithms are covered, and the variables and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 7

TABLE 1
Estimations of the Normalized Numbers of N +N Additions and N ×N Multiplications for Different Algorithms

Algorithms MontM [25] BarM [26] EFFM [21] FFM1 [16] FFM2 [16] IFFM− IFFMo+ IFFMe+

moduli family generic generic 2 · 22xb2y − 1 2 · 22xb2y − 1 f · 2xby ± 1 2 · 22xb2y − 1 2 · 22xb2y + 1 22xb2y + 1
Norm.

(N +N) 3 3 9 9 3.5 10 11 8.5

Norm.
(N ×N) 3 4 2 2 3 1.625 1.625 1.625

Algorithm 9: The proposed multi-precision based
IFFMe+ modular multiplication algorithm.

Input: A = a1R+ a0 =
n−1∑
j=0

a1,j · (2k)j ·R+
n−1∑
j=0

a0,j · (2k)j ,

B = b1R+ b0.
1) The first tentative computing:

1: c1 = 0, c0 = 0.
2: for j = n− 1 to 0 do
3: Multiplication items:

m1 = a1,jb1, m2 = a0,jb0,
m3 = (a1,j + a0,j)(b1 + b0)
Results:

4: c1 = (m3 −m1 −m2) + c1 · 2k
5: c0 = (m2 −m1) + c0 · 2k

2) The second tentative computing:
Reduction:

6: [q0, r0] = IBR+(c0, R)
7: [q1, r1] = IBR+(c1 + q0, R)

Results:
8: c1 = r1, c0 = r0 − q1
9: end for

3) Post processing:
10: [c1, c0] = post proc(c1, c0)
Output: C = A×B mod p = c1R+ c0.

M
ap

M
ap

Mul

Mul

Mul

IBR

-

-

ܽ0

1ܾ

ܾ0

ܿ2
0 ܿ1

0ܿ0
0

1ݎ
0 1ݍ

0ݎ0 0ݍ

1ݍ

ܿ2
1

ܿ1
1

ܿ0
1 Post_

Paral

>>1

ܿ2
2

ܿ1
2

ܿ0
2

IBR

P
o
st
_

P
ro
c

D
em

ap

FeedB

ܽ1

1ݎ

ܿ2

ܿ1
ܿ0

-

݉2

݉3

݉1

: f = 2

: n > 1, multi-precision : n = 1

M
em

o
ry

ܽ2
ܽ1
ܽ0

ܾ0
ܾ1
ܾ2

: ൌ ࢌ ∙ ࢟࢞ : ൌ ࢟࢞

Fig. 1. The top-level architecture for the proposed algorithms including
the IFFM−, IFFMo+, IFFMe+, Multi-IFFM−, Multi-IFFMo+, and Multi-
IFFMe+.

data flow are labeled. The connecting lines and diagrams
of common parts are shown in black. The parts in shaded
area are used for the algorithms with f = 2, including
the IFFM−, IFFMo+, and their multi-precision based algo-
rithms. The subtracters in the green dotted box are adopted
for the algorithms with p = f · 2xby + 1. When f = 1,

M
ap

M
ap

Mul

Mul

Mul

IBR

ܽ0

1ܾ

ܾ0

ܿ2
0 ܿ1

0ܿ0
0

1ݎ
0 1ݍ

0ݎ0 0ݍ

1ݍ

ܿ2
1

ܿ1
1

ܿ0
1 Post_

Paral

>>1

ܿ2
2

ܿ1
2

ܿ0
2

IBR

P
o
st
_

P
ro
c

D
em

ap

ܽ1

1ݎ

ܿ2

ܿ1
ܿ0

݉2

݉3

݉1

ܽ2
ܽ1
ܽ0

ܾ0
ܾ1
ܾ2

Fig. 2. The proposed top-level architecture for the IFFM−.

Mul

Mul

Mul

IBR+

ܿ1
0ܿ0

0

1ݎ
0 1ݍ

0ݎ0 0ݍ

1ݍ
ܿ1
1

ܿ0
1 Post_

Paral

IBR+

Post_
Proc

FeedB

 1ܿ1ݎ
ܿ0

݉2

݉3

݉1

M
em

o
ryܽ1

ܽ0

ܾ0
ܾ1

Fig. 3. The proposed top-level architecture for the Multi-IFFMe+.

the green dotted line is connected. Modules in light gray,
including the Memory, FeedB, and two adders, are used for
multi-precision based designs. Totally, this figure covers six
designs: the IFFM−, IFFMo+, IFFMe+, Multi-IFFM−, Multi-
IFFMo+, and Multi-IFFMe+ modular multipliers.

To make Fig. 1 easier to read, we split it and give two of
them as examples shown in Figs. 2 and 3. Fig. 2 shows the
top-level architecture for the IFFM− algorithm, which is a
completely feed-forward design. The red dashed lines illus-
trate the inserted pipeline stages to increase the clock speed,
which would not increase the average required cycles due to
the adopted overlapping processing schedule. Fig. 3 exhibits
the top-level architecture for the Multi-IFFMe+ algorithm,
which is iteratively processed. In these designs with the
multi-precision scheme, the data width of each module can
be easily adjusted by the parameter n to make a tradeoff
between the speed and the resource consumption. Since the
input coefficients cannot be pushed into the computation
modules at one time, the memory is necessary to save them,
and it is also used to buffer the other groups of inputs to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 8

accelerate the design. More details for scheduling will be
introduced at the end of this section.

From the top-level architectures, we can see that besides
the explicit adders, seven submodules are used: 1) Map; 2)
Mul; 3) IBR/IBR+; 4) Post Paral; 5) Post Proc; 6) Demap; and
7) FeedB. They will be detailed in the following. Since the
modules except the FeedB module for the multi-precision
based algorithms are almost the same as their originals, they
will not separately be discussed below for brevity.

4.2 Proposed Submodules
4.2.1 Mapping & Demapping Modules
The mapping and demapping are used for the IFFM− and
IFFMo+ algorithms with f = 2 to transfer the three co-
efficients into two coefficients and vice versa, respectively.
As the subtraction operation is implemented by using the
addition operation with two’s complement format of the
minuend in hardware, we can reformulate Eq. (2) for a2 = 1
part to reduce the complexity:

api = R− ai − 1 = R+ (ai)comp − 1

= R+ ((ai)inv + 1)− 1

= R+ (ai)inv, i = {1, 0}, a2 = 1, (15)

where the indexes comp and inv denote the two’s and ones’
complements of ai, respectively. For map+ function, the
constant addend is replaced by R+2. By using this method,
the critical path can be effectively reduced. The proposed
architecture of the map module is presented in Fig. 4(a),
where the constant R in blue is for map function and the
R + 2 in green is for map+ function. The demap module is

1

0

0

1

ܽ2

ܽ1

ܽ0

ܽ1

ܽ0

R: IFFM- R+2: IFFMo+

(a)

0

1

0

1

0

1

ܿ2

ܿ1

ܿ0

ܿ2
2

ܿ1
2

ܿ0
2

ܽ2
ܾ2

(b)

Fig. 4. The map and demap modules.

to make the final results back to normal. The architecture of
this module shown in Fig. 4(b) is almost the same as that
of the map module except the control signals and one more
output for c2.

4.2.2 IBR/IBR+ & Post Processing Modules
The IBR module is to implement the reduction using the
method presented as Alg. 5. The architecture is shown in
Fig. 5, where the data widths of the data flow are marked
and the parameter α is assumed as 2N . After the positive
integer c is input, its N1 LSBs are saved in cL and the other
2N − N1 bits are saved in cH and sent into the following
steps (Step 1 of Alg. 5). Firstly, cH is multiplied by the
constant parameter λ using a constant multiplier cMul 0 and
the tentative quotient q0 is obtained by taking the N + 1

cMul 0 cMul 1
′ܴ ߣ

ܴ′
-

-
0

0

1

1
2N

N1

2N-N1

N

N+1

ܮܿ

ܪܿ
 0ݍ

N2+1

N20ݍ
ܮ ܿܽ

ܮܪܿ
N2

0ݍ 1ݍ
N+1

N+1

0ݎ
N2+1

1ݎ
N2

1

N2

ܪݎ

ܮݎ

N

1ܰ 2ܰ ൌ ܰ,
1ܰ ൎ 2ܰ

Note:

N2+1

N2+1

N2+1

Fig. 5. The IBR module.

MSBs of the product (Step 2 of Alg. 5). Then, the N2 + 1
LSBs of q0 is multiplied by the parameter R′ in the second
constant multiplier cMul 1 and theN2+1 LSBs of the output
is denoted as ca (Step 3 of Alg. 5). Thirdly, the N2 + 1 LSBs
of cH is subtracted by ca to get the tentative remainder r0. It
should be pointed out that this subtraction has covered the
computations from Step 4 to Step 7 of Alg. 5, as these steps
are exactly the definition of two’s complement. Fourthly, the
quotient q and the partial remainder rH are selected from
the corresponding tentative values and their corrections
based on whether r0 is larger than R′ (Steps 8 to 10 of Alg.
5). Note that the comparator is omitted and the sign bit of
r0 is used as the control signal. At last, the final remainder r
is obtained by directly assembling rL and rH together. For
the IBR+ function, two multiplexers controlled by the sign
bit of c and two adders are needed for the output of the IBR
module.

0ݍ
1ݎ
0

1ݍ
0

1ݍ

 0ݍ1ݎ

1ݎ
0

1ݍ
0

 1ݍ

 1ݎ

IFFM- IFFMo+
IFFMe+

: sign bit“ ”

1x

01

00

01

00

1x

1xx

001

01x

000

1xx

001

01x

000

Fig. 6. The Post Paral module.

As introduced in [21], the two IBR functions can be pro-
cessed in parallel with some extra computations to reduce
the whole latency. We follow this idea and further develop
it for our proposed algorithms. For the IFFM−, as q0 + r01
ranges in [0, 52R− 4], subtracting R is needed at most twice
for r1. For the IFFMo+ and IFFMe+, the ranges of q0+r01 are
[−R2 , 2R + 1] and [−R + 1, 2R + 1], respectively. Note that
though they are different, the required operations, one ad-
dition and two subtractions, are the same. The architectures
for the three algorithms are presented in Fig. 6. To reduce
the data path, we arrange the adders in parallel as much as
possible. It can be seen that the comparators are thoroughly
removed by using the sign bits to select the right answer.
The critical path is only two adders and two multiplexers for
IFFM−, and two adders and three multiplexers for IFFMo+

and IFFMe+.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 9

4.2.3 Post Processing Module
This module is to satisfy the constraints of the output for
the proposed algorithms. According to Alg. 8 for post proc
functions, the corresponding architectures can be devised as
shown in Fig. 7. The data paths are optimized by paralleliz-
ing the adders and precomputing the constant parameters.
The critical paths are two adders and one multiplexer for the
IFFM−, two adders and two multiplexers for the IFFMo+,
and one adder and four multiplexers for the IFFMe+.

= ܿ2
1

ܿ1
1

ܿ0
1

ܿ2
2

ܿ1
2

ܿ0
2

1 0

-

1

0

0

1

1

0

IFFM-

ܿ0
1

ܿ1
1

ܿ0
2

ܿ1
2

1

0

0

1

0

1

x0

01

11

0x

10

11

0x

10

11

ܿ0
1

ܿ1
1

ܿ0
2

ܿ1
2

1

0

01

01

x0

01

11

0x

10

11

0x

10

11

1
ܿ2
2

0

ܿ2
1

IFFMo+ IFFMe+

1
ܿ2
2

0

ܿ2
1

ܿ1
1

ܿ0
1 ܿ0

2

ܿ1
2

0x

10

11

11

0x

10

: sign bit“ ”

: sign bit“ ”

Fig. 7. The Post Proc module.

4.2.4 Multipliers
Multipliers occupy the most hardware resources and they
are usually located in the critical path. Since a constant
multiplier consumes much fewer resources and has a short-
er critical path than a normal multiplier under the same
conditions, we design them separately in our work, but
the basic optimization ideas are identical. If we multiply
two integers directly, the critical path will be too long to
be accepted because of the large input data width. Two
strategies are adopted for multipliers in our designs: multi-
precision and Karatsuba decomposition. Both of them can
efficiently reduce the data width of a multiplier. Theoreti-
cally, the Karatsuba decomposition can unlimitedly reduce
the complexity of multipliers. However, the other overheads
usually quickly increase along with the growing orders.
The number of orders of such decomposition is specifically
designed for each multiplier, usually three or four orders
used in our following designs. We have carefully devised
them and made a good tradeoff between speed and resource
consumption.

4.2.5 FeedB Module for Multi-Precision Based Algorithms
According to Steps 4 and 5 of Alg. 9, two k-bit left shifters
are required for the outputs of last iteration. Therefore, for
the Multi-IFFMe+, the FeedB module is composed of two
k-bit left shifters. For the Multi-IFFM− and Multi-IFFMo+,

the FeedB modules are a little different from that of the
Multi-IFFMe+ as three instead of two inputs are put into
this module. We can deduce the formulas as:

c2 = ((m1 mod 2) + c2 · 2k) mod 2 = m1 mod 2,

c1 = (m3 −m1 −m2) + c1 · 2k,

c0 = (m2 ± b
m1

2
c) + c0 · 2k ±

c2
2
· 2k

= (m2 ± b
m1

2
c) + (2c0 ± c2) · 2k−1,

where the plus sign is for Multi-IFFM− and minus sign for
Multi-IFFMo+. It can be seen from the bold term that the
FeedB module for them is made up of one 1-bit left shifter,
one adder, and one (k − 1)-bit left shifter, and one k-bit left
shifter.

4.3 Processing Schedule
For high-speed applications, we should increase the clock
frequency and reduce the required clock cycles (CCs). The
parallel processing and pipelining are both adopted in our
designs to increase the speed. Many efforts have been made
to optimize the data path of each module as shown above.
Several pipeline stages are inserted such that the proposed
designs can achieve a reasonable clock frequency. To further
enhance the throughput, the overlapping scheme is also
used to make the hardware resources fully utilized. Assum-
ing the number of pipeline stages ism,m pairs of inputs can
simultaneously be computed in mn CCs. Figure 8 illustrates
the proposed processing schedule, in which Aji denotes the
j-th input A’s i-th digit for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Though the latency for one pair of inputs is mn CCs, the
average cost cycles for it is only n CCs. The throughput can
be computed as:

throughput =
m ·N · fclk

mn
=
N · fclk

n
, (16)

where fclk is the clock frequency and N is the output data
width.

5 IMPLEMENTATION RESULTS

To compare with conventional implementations, the pro-
posed designs are coded with RTL and implemented on
FPGA. Since the complexity of IFFMo+ is almost the same
as that of IFFM−, the implementations are mainly fo-
cused on the IFFM− and IFFMe+, and their multi-precision
versions. The adopted SIDH-friendly prime moduli are
p771 = 2 · 23863242 − 1 provided in [11] for IFFM− and
p752 = 23945154 + 1 in [23] for IFFMe+, targeting the
128-bit post-quantum security level. We will show more
implementation details for them in the following.

5.1 FPGA Implementation
The Xilinx Vivado 2016.4 EDA platform is adopted. Since
the FFM1 and FFM2 in [16] are tested on the Kintex-7
xc7k325tffg900-2 board, we implement the multi-precision
based algorithms on this board for a fair comparison. Con-
strained by the resource limitation, the algorithms without
the multi-precision scheme are not implemented on this de-
vice. We select the Virtex-7 xc7vx690tffg1157-3 board, which

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 10

 11ܣ 12ܣ... 1݉ܣ 21ܣ 22ܣ... 2݉ܣ 1݊ܣ 2݊ܣ... ...݉݊ܣ 1ܣ
݉1 1ܣ...

݉2 1ܣ
2݉

1ܤ 2ܤ... ݉ܤ 1ܤ 1݉ܤ 2݉ܤ... 2ܤ2݉ܤ ݉ܤ 1ܤ 2ܤ ݉ܤ

...

2ܣ
݉1 2ܣ...

݉2 2ܣ
2݉

1݉ܤ 2݉ܤ... 2݉ܤ

...

...

...

...

1݉݊ܣ 2݉݊ܣ... 2݉݊ܣ

1݉ܤ 2݉ܤ... 2݉ܤ

...

...

...

1ܥ... 2ܥ ݉ܥ 1ܥ 2ܥ ݉ܥ

Computing 1st m pairs of inputs

1ܥ 2ܥ ݉ܥ

...

m CCs m CCs m CCs m CCs m CCs m CCs

Iteration 1 Iteration 2 Iteration n Iteration 1 Iteration 2 Iteration n

Computing 2nd m pairs of inputs

...

...

CLK

Input A

Input B

Output C

Fig. 8. The proposed processing schedule.

TABLE 2
Comparisons of Modular Multipliers for 128-bit Post-Quantum Security Level Implementing on FPGA

Algorithms EFFM [21] FFM1 [16] FFM2 [16] Multi-IFFM− IFFM− Multi-IFFMe+ IFFMe+

Prime1 p771 p771 p771 p771 p771 p752 p752
Platform2 Virtex-6 Kintex-7 Kintex-7 Kintex-7/Virtex-7 Virtex-7 Kintex-7/Virtex-7 Virtex-7

FFs 11,924 9,675 11,635 12,902 38,976 9,882 25,055
LUTs 12,790 16,627 33,051 25,743 63,173 27,131/27,132 67,293
DSPs - 122 529 210 729 216 549

BRAMs - - - 302 574 290 561
fclk (MHz) 31 55 25 57/56 60 61/62 52

CCs 236 64 28 7 1 8 1
Time (ns) 7,613 1,164 1,120 122/124 17 131/128 19

Throughput
(Mb/s) 101 663 688 6,278/6,168 46,260 5,734/5,828 39,104

1 p771 = 2 · 23863242 − 1 and p752 = 23945154 + 1.
2 The device type of Virtex-6 is xc6vcx240t-2ff784 and it contains 301,440 FFs, 150,720 LUTs, 416 BRAMs, and 768 DSPs.

The device type of Kintex-7 is xc7k325tffg900-2 and it contains 407,600 FFs, 203,800 LUTs, 445 BRAMs, and 840 DSPs.
The device type of Virtex-7 is xc7vx690tffg1157-3 and it contains 866,400 FFs, 433,200 LUTs, 1,470 BRAMs, and 3,600

DSPs.

TABLE 3
Calculation of Inserted Pipeline Stages m, Iterations n, and

Latency for the Proposed Algorithms on FPGA

Algorithms Multi-
IFFM− IFFM− Multi-

IFFMe+ IFFMe+

FPGA
m 10 18 11 17
n 7 1 8 1

Latency 70 18 88 17

is used by Koziel et al. for SIDH protocol implementation
in [14] and [15], and implement all the proposed algorithms
on it for comparisons. Table 3 shows the numbers of inserted
pipelines, iterations, and the total latency of the proposed
designs on FPGA. The comparisons with prior arts are
provided in Table 2. Note that the Multi-IFFM− and Multi-
IFFMe+ implemented on the Kintex-7 consume almost as
many resources as on the Virtex-7 FPGA boards. Besides,
the clock frequencies on the two boards are also with a
very small difference though the resource proportions by
using the Kintex-7 are larger than those by using the Virtex-
7. Since our multipliers require much fewer CCs and have
higher clock frequency than the conventional ones, it is clear
that each of the proposed designs consumes much less time
than the prior art. We also provide the throughput based on
Eq. (16) in this table. We can see that our designs without
and with the multi-precision scheme achieve more than 60
times and about 10 times faster throughput than the state-of-
the-art FFM2 design, respectively. However, the introduced
extra hardware resources are relatively small. For example,
compared to the best design FFM2, the multi-precision

based designs consume some extra BRAMs but fewer FFs,
LUTs, and DSPs, and meanwhile for the designs without
the multi-precision scheme, except the extra BRAMs, the
increasing ratio in other resources is only about 2-3 times,
far smaller than the increase in speed.

6 CONCLUSION

In this paper, we have proposed three low-complexity mod-
ular multiplication algorithms called IFFM−, IFFMo+, and
IFFMe+, and their corresponding multi-precision versions
for the SIKE protocol. Six new architectures were presented
based on these algorithms. By incorporating the smart for-
mula transformation, novel architectural optimization, and
maximum overlapping processing, the proposed designs
demonstrate significant advantages over conventional ones.
We believe these achievements will greatly contribute to the
practicability of this protocol.

7 APPENDIX
DEDUCTION FOR THE RANGE OF co0 FOR PROPOSED
ALGORITHMS

7.1 For the IFFM−

The deduction is based on the assumption that the input
numbers A and B are the field elements in Fp, where
p = 2R2 − 1. According to Alg. 6, after mapping, the
coefficients of A and B are still in the normal range. After
the first tentative computing in Step 5, we can compute the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 11

ranges of the coefficients of C with the upper and lower
limits as:

c2 ∈ {0, 1}, 0 ≤ c1 ≤ 2(R− 1)2, 0 ≤ c0 ≤
3

2
(R− 1)2.

With the first IBR function, c0 is decomposed as q0 and
r0 in Step 6, whose ranges are [0, 32R − 3] and [0, R − 1],
respectively, and thus we have

0 ≤ c1 + q0 ≤ 2R2 − 5

2
R− 1 = 2R2 − 3R+ (

1

2
R− 1).

After the second IBR function in Step 7, we have

0 ≤ q1 ≤ 2R− 3, 0 ≤ r1 ≤ R− 1.

Since t ranges in [0, 2R − 2], the term b t2c has the range of
[0, R − 1]. Therefore, we can deduce the range of co0 for the
IFFM− as [0, 2R− 2].

7.2 For the IFFMo+

Similar to the IFFM−, we can begin our deduction after the
mapping. The first tentative results have the ranges as:

c2 ∈ {0, 1}, 0 ≤ c1 ≤ 2(R2−1), − (R− 1)2

2
≤ c0 ≤ (R+1)2.

By using the first IBR+ function, r0 is in [0, R − 1] and
q0 is in [−R2 , R + 2]. Note that these arithmetic operations
aforementioned are monotonous so we can directly operate
the maximum and minimum values to obtain the upper and
lower limits. But for the formula c1 + q0, the monotonicity
is broken by the subtraction and the assumptions for the
coefficients of A and B are not the same when computing
the two variables’ upper and lower limits. When calculat-
ing the lower limit of this formula, we should take the
minimums of c1 and q0 into consideration. The lower limit
of q0 is achieved by assuming a0 or b0 equal to zero and
a1 = b1 = R − 1. When a0 = b0 = 0, the lower limit of
c1 can also be obtained. So we can get the lower limit for
c1 + q0 as −R2 when a0 = b0 = 0 and a1 = b1 = R − 1.
However, the upper limit of q0 is achieved by setting a0 and
b0 to R+ 1 and a1 or b1 to zero, while that of c1 is obtained
when a0 = b0 = R + 1 and a1 = b1 = R − 1. Since the q0
is the quotient of c0 divided by R, obviously, satisfying the
assumptions for c1 can obtain the largest value of c1 + q0.
Hence, the upper limit of c1 + q0 is 2R2 + R

2 + 1. After
computing by the second IBR+ function, we have

−1 ≤ q1 ≤ 2R, 0 ≤ r1 ≤ R− 1.

Then the formula b q1+c02 c ranges in [−1, R]. Therefore, we
can obtain the range of co0 for the IFFMo+ as [−R,R].

7.3 For the IFFMe+

The IFFMe+ does not need the mapping and demapping
process. We can refer to the deduction for the IFFMo+. In
Step 2 of Alg. 7, we have the constraints as:

c2 ∈ {0, 1}, 0 ≤ c1 ≤ 2(R2−1), −(R− 1)2 ≤ c0 ≤ (R+1)2.

In Step 3, the ranges for q0 and r0 are

−R+ 1 ≤ q0 ≤ R+ 2, 0 ≤ r0 ≤ R− 1.

According to the analysis above, the range of c1+q0 becomes
[−R+1, 2R2 +2]. After the second IBR+ function in Step 4,
we obtain

−1 ≤ q1 ≤ 2R, 0 ≤ r1 ≤ R− 1.

Therefore, we can have the range of co0 for the IFFMe+ as
[−2R,R].

REFERENCES

[1] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and M. Troy-
er, “Hybrid quantum-classical approach to correlated materials,”
Physical Review X, vol. 6, no. 3, p. 031045, 2016.

[2] R. F. Mandelbaum, “This could be the best quantum comput-
er yet,” https://gizmodo.com/this-could-be-the-best-quantum-computer-
yet-1831085617.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications
of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[4] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference
on the theory and application of cryptographic techniques. Springer,
1985, pp. 417–426.

[5] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM review,
vol. 41, no. 2, pp. 303–332, 1999.

[6] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta,
R. Perlner, and D. Smith-Tone, Report on post-quantum cryptography.
US Department of Commerce, National Institute of Standards and
Technology, 2016.

[7] R. Azarderakhsh, M. Campagna, C. Costello, L. Feo, B. Hess,
A. Jalali, D. Jao, B. Koziel, B. LaMacchia, P. Longa et al., “Su-
persingular isogeny key encapsulation,” Submission to the NIST
Post-Quantum Standardization project, https://sike.org/, 2019.

[8] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis
of the fujisaki-okamoto transformation,” in Theory of Cryptography
Conference. Springer, 2017, pp. 341–371.

[9] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti, “On the security of
supersingular isogeny cryptosystems,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2016, pp. 63–91.

[10] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies,” in International Work-
shop on Post-Quantum Cryptography. Springer, 2011, pp. 19–34.

[11] L. De Feo, D. Jao, and J. Plût, “Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies,” Journal of
Mathematical Cryptology, vol. 8, no. 3, pp. 209–247, 2014.

[12] D. Jao and V. Soukharev, “Isogeny-based quantum-resistant un-
deniable signatures,” in International Workshop on Post-Quantum
Cryptography. Springer, 2014, pp. 160–179.

[13] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi,
“Key compression for isogeny-based cryptosystems,” in Proceed-
ings of the 3rd ACM International Workshop on ASIA Public-Key
Cryptography. ACM, 2016, pp. 1–10.

[14] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-
quantum cryptography on FPGA based on isogenies on elliptic
curves,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 1, pp. 86–99, 2017.

[15] B. Koziel, R. Azarderakhsh, and M. M. Kermani, “A high-
performance and scalable hardware architecture for isogeny-based
cryptography,” IEEE Transactions on Computers, vol. 67, no. 11, pp.
1594–1609, 2018.

[16] W. Liu, J. Ni, Z. Liu, C. Liu, and M. O’Neill, “Optimized modular
multiplication for supersingular isogeny Diffie-Hellman,” IEEE
Transactions on Computers, pp. 1–1, 2019.

[17] H. Seo, Z. Liu, P. Longa, and Z. Hu, “SIDH on ARM: faster modu-
lar multiplications for faster post-quantum supersingular isogeny
key exchange,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 1–20, 2018.

[18] A. Jalali, R. Azarderakhsh, and M. M. Kermani, “NEON SIKE:
supersingular isogeny key encapsulation on ARMv7,” in Inter-
national Conference on Security, Privacy, and Applied Cryptography
Engineering. Springer, 2018, pp. 37–51.

[19] A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Towards
optimized and constant-time CSIDH on embedded devices,” in
International Workshop on Constructive Side-Channel Analysis and
Secure Design. Springer, 2019, pp. 215–231.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, AUGUST 2016 12

[20] T. Blum and C. Paar, “High-radix Montgomery modular exponen-
tiation on reconfigurable hardware,” IEEE transactions on comput-
ers, vol. 50, no. 7, pp. 759–764, 2001.

[21] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Ef-
ficient finite field multiplication for isogeny based post quantum
cryptography,” in International Workshop on the Arithmetic of Finite
Fields. Springer, 2016, pp. 193–207.

[22] C. Costello, P. Longa, and M. Naehrig, “SIDH/SIKE library,”
https://github.com/Microsoft/PQCrypto-SIDH, 2016-2019.

[23] J. Bos and S. Friedberger, “Arithmetic considerations for isogeny
based cryptography,” IEEE Transactions on Computers, 2018.

[24] J. Tian, J. Lin, and Z. Wang, “Ultra-fast modular multiplication
implementation for isogeny-based post-quantum cryptography,”
in 2019 IEEE Workshop on Signal Processing Systems (SiPS), accepted
to be published.

[25] P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of computation, vol. 44, no. 170, pp. 519–521,
1985.

[26] P. Barrett, “Implementing the Rivest Shamir and Adleman public
key encryption algorithm on a standard digital signal processor,”
in Conference on the Theory and Application of Cryptographic Tech-
niques. Springer, 1986, pp. 311–323.

Jing Tian received her B.S. degree in microelec-
tronics from Nanjing University, Nanjing, China,
in 2015. She is currently working toward the M.S.
and Ph.D. integrated degree with information
and communication engineering from Nanjing
University. Her research interests include VLSI
design for digital signal processing and crypto-
graphic engineering.

Zhe Liu received the Ph.D. degree from the
Laboratory of Algorithmics, Cryptology and Se-
curity (LACS), University of Luxembourg, Lux-
embourg. He is a professor with Nanjing Univer-
sity of Aeronautics and Astronautics, China. His
Ph.D. thesis has received the prestigious FNR
Awards 2016 Outstanding Ph.D. Thesis Award
for his contributions in cryptographic engineering
on IoT devices. He is the recipient of ACM China
SIGSAC Rising Star Award and Honorable Men-
tions for ACM China Rising Star Award in 2017.

His research interests include computer arithmetic and cryptographic
engineering. He has co-authored more than 70 research peer-reviewed
journal and conference papers. He is a senior member of the IEEE.

Jun Lin received the B.S. degree in physics and
the M.S. degree in microelectronics from Nanjing
University, Nanjing, China, in 2007 and 2010,
respectively, and the Ph.D. degree in electrical
engineering from the Lehigh University, Bethle-
hem, in 2015. From 2010 to 2011, he was an
ASIC design engineer with AMD. During sum-
mer 2013, he was an intern with Qualcomm Re-
search, Bridgewater, NJ. In June 2015, he joined
the school of electronic science and engineering
of Nanjing University, where he is an associate

professor. He is a member of the Design and Implementation of Signal
Processing Systems (DISPS) Technical Committee of the IEEE Signal
Processing Society.

His current research interests include low-power high-speed VLSI
design, specifically VLSI design for digital signal processing and cryp-
tography. He was a co-recipient of the Merit Student Paper Award at the
IEEE Asia Pacific Conference on Circuits and Systems in 2008. He was
a recipient of the 2014 IEEE Circuits & Systems Society (CAS) student
travel award.

1

Dr. Zhongfeng Wang

Zhongfeng Wang received both B.E. and M.S. degrees from Tsinghua University, Beijing, China.
He obtained the Ph.D. degree from the Department of Electrical and Computer Engineering at the
University of Minnesota, Minneapolis in Aug. 2000. He is currently working with Broadcom as
an Associate Technical Director. From 2003 to 2007, he was an assistant professor in the School
of EECSat Oregon State University, Corvallis.Even earlier, he was working for National
Semiconductor Corporation.

Dr. Wangis a world-recognized expert on VLSI for Forward Error Correction Codes. He has
published over one hundred technical papers, edited one book (“VLSI”) and filed tens ofU.S.
patent applications and disclosures. He was the recipient of the IEEE Circuits and Systems (CAS)
Society VLSI Transactions Best Paper Award in 2007. In the current record (2007-present), he
has had five papers ranked among top twentymost downloaded manuscripts in IEEE Trans. on
VLSI Systems.During his tenure at Broadcom, he has contributed significantly on 10Gbps and
beyond high-speed networking products. Additionally, he hasmade critical contributions in
defining FEC coding schemes for 100Gbps and 400Gbps Ethernet standards. So far, his technical
proposals have been adopted by manynetworkingstandard specs.

Since 2004, Dr. Wanghas served as Associate Editorfor the IEEE Trans. on Circuits and Systems
I (TCAS-I), TCAS-II, and IEEE Trans. on VLSI Systems for many terms. He has also served as
technical program committee member, session chair, track chair, and review committee member
for many IEEE and ACM conferences.In 2013, he served in the Best Paper Award selection
committee for the IEEE Circuits and System Society. His current research interests are in the area
ofVLSI for High-Speed Signal Processing Systems. He is a Fellow of IEEE.

Zhongfeng Wang received both B.E. and M.S.
degrees from Tsinghua University, Beijing, Chi-
na. He obtained the Ph.D. degree from the De-
partment of Electrical and Computer Engineer-
ing at the University of Minnesota, Minneapolis
in Aug. 2000. He recently joined Nanjing Uni-
versity as a distinguished professor after serving
Broadcom Corp. as a leading VLSI architect for
nearly nine years. From 2003 to 2007, he was
an assistant professor in the School of EECS at
Oregon State University, Corvallis. Even earlier,

he was working for National Semiconductor Corporation.
Dr. Wang is a world-recognized expert on VLSI for Forward Error

Correction Codes. He has published over one hundred technical papers,
edited one book (“VLSI”) and filed tens of U.S. patent applications and
disclosures. He was the recipient of the IEEE Circuits and Systems
(CAS) Society VLSI Transactions Best Paper Award in 2007. In the
current record (2007-present), he has had five papers ranked among
top twenty most downloaded manuscripts in IEEE Trans. on VLSI Sys-
tems. During his tenure at Broadcom, he has contributed significantly
on 10Gbps and beyond high-speed networking products. Additionally,
he has made critical contributions in defining FEC coding schemes
for 100Gbps and 400Gbps Ethernet standards. So far, his technical
proposals have been adopted by many networking standard specs.

Since 2004, Dr. Wang has served as Associate Editor for the IEEE
Trans. on Circuits and Systems I (TCAS-I), TCAS-II, and IEEE Trans. on
VLSI Systems for many terms. He has also served as technical program
committee member, session chair, track chair, and review committee
member for many IEEE and ACM conferences. In 2013, he served in
the Best Paper Award selection committee for the IEEE Circuits and
System Society. His current research interests are in the area of VLSI
for High-Speed Signal Processing Systems. He is a Fellow of IEEE.

Binjing Li received the B.S. degree in electronic
information science and technology from Nan-
jing University, Nanjing, China, in 2019, where
she is currently pursuing the M.S. degree in in-
tegrated circuit engineering. Her research inter-
ests include VLSI design and efficient hardware
architectures.

