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Abstract. Tweakable block ciphers are increasingly becoming a common
primitive to build new resilient modes as well as a concept for multiple
dedicated designs. While regular block ciphers define a family of per-
mutations indexed by a secret key, tweakable ones define a family of
permutations indexed by both a secret key and a public tweak. In this
work we formalize and study a generic framework for building such a
tweakable block cipher based on regular block ciphers, the iterated tweak-
able FX construction, which includes many such previous constructions of
tweakable block ciphers. Then we describe a cryptanalysis from which we
can derive a provable security upper-bound for all constructions following
this tweakable iterated FX strategy. Concretely, the cryptanalysis of r
rounds of our generic construction based on n-bit block ciphers with k-bit
keys requires O(271 ")) online and offline queries. For r = 2 rounds
this interestingly matches the proof of the particular case of XHX2 by Lee
and Lee (ASTACRYPT 2018) thus proving for the first time its tightness.
In turn, the XHX and XHX2 proofs show that our generic cryptanalysis is
information theoretically optimal for 1 and 2 rounds.

1 Introduction

Tweakable block ciphers have been the focus of many recent works in the field
of symmetric cryptography as it provides a very interesting flexibility compared
to regular block ciphers. Formally, a block cipher is defined as a family of
permutations indexed by a secret key, thus an n-bit block cipher E indexed by a
k-bit key is an application F : {0,1}" x {0,1}"™ — {0, 1}". Whereas a tweakable
block cipher is a family of permutations indexed by both a secret key and a public
tweak, thus an n-bit tweakable block cipher E indexed by a #-bit secret key and
a 7-bit public tweak is an application E : {0,1}* x {0,1}7 x {0,1}" — {0, 1}™.
They have been formalized by Liskov, Rivest and Wagner [LRWTI].

On the other hand, regular block ciphers benefit from a longer history of
research which gave birth to many designs and implementations notably including
the DES [DESTT] and the AES [AES01]. Therefore a natural question is: how can
we build a tweakable block cipher out of regular block ciphers? In fact this line of
study inspired new modes of operations like OCB [RBBKO01] and PMAC [BR02]



that benefits from a relatively easy two-step proof: first we show that the main
construction is secure when used along with a tweakable block cipher then we
construct such tweakable block cipher with a regular block cipher to fully describe
the mode. A first approach can be to append a tweak with the secret key such
that the concatenation becomes the effective key to the regular block cipher.
Given security under related key attacks this can work but at the cost of security:
the size of the secret key will have to be reduced to make space for the tweak.

To go around this limitation Liskov et al. described two constructions LRW1 and
LRW2 [LRW11]. In particular LRW2 is somehow remindful of the FX construction
that adds an n-bit key before the input and another after the output of the
underlying block cipher. The FX construction has been proposed by Killian and
Rogaway [KR96] in a different context: they investigated DESX, an easy solution
to protect DES against an exhaustive key search. FX consists in adding one
n-bit subkey before and another one after the block cipher. With such strategy
they proved that the time complexity of the best generic cryptanalysis goes
from O(27) to O(25t"/D) where D is the data or online query complexity.
The FX construction has since been notably used in PRINCE [BCG™12] and
PRIDE |[ADK™14]. We can naturally iterate 7 rounds of the FX construction
which requires to have r k-bit subkeys along with (r + 1) n-bit subkeys. Then
the idea to build a tweakable block cipher is to blend the tweak and the master
key together in a predefined key schedule to obtain all the required subkeys for
the computation.

1.1 Notations

First we formally describe the r-round tweakable iterated FX construction
(Figure [2) on which our results apply. Let Eq 2 ,(u,-) be r block ciphers with
k-bit key u and n-bit input and output. Let k& be the &-bit master key of the
tweakable block cipher construction. Let ¢ be a tweak of arbitrary length. Let
7i(k,t) be the subkey for the i*" block cipher of length x-bit for 1 < i < r and
Ai(k,t) the n-bit subkeys to XOR in the state for 0 < ¢ < r. For example the
r = 2-round tweakable FX construction (Figure [1)) Ej(,m) is described as:

Ey(t,m) = By(72(k,t), B1 (71 (k,t),m & Ao(k, 1)) & M (k, 1)) @ Na(k, 1)

We will focus on generic key recovery attacks. The goal of the cryptanalysis of
Ey (t,m) is to recover k by doing offline queries to F1 2, (-, -) and online queries
to Ex(-,-). We don’t count the number of calls to the  and A functions generating
the subkeys as queries because we don’t assume any security property for them.
In fact it is common for the subkeys to assume some almost uniformity, almost
universality or almost XOR~universality property with respect to the tweak (See
Definition . This makes the analysis proper for most of the constructions we cite
except for F[2] by Mennink [Menl5] which can be seen as a 1-round tweakable
FX where the subkey functions reuse the block cipher itself.



Definition 1. Let 6 > 0 and a function X : I x T — Y for non-empty sets
K, T,).

— Ak, t) is said to be §-almost uniform if for anyt € T and any y € Y,
Pr (k< K: Ak, t) =y) <6 .
— Ak, t) is said to be d-almost universal (AU) if for any distinctt and t' € T,
Pr(k <5 K : Ak, t) = A(k,t") <6 .

— Ak, t) is said to be §-almost XOR-universal (AXU) if for any distinct t and
t'eT and anyy € ),

Pr (k< K: Ak, t) Ak, t') =y) <6 .

While our results do not depend on the repartition of the tweak space, having
arbitrary long tweaks is justified by the XTX transformation of Minematsu and
Iwata [MI15]. Indeed XTX transforms a tweakable block cipher with a tweak
of limited length to one with a tweak of arbitrary length without, in our case,
affecting the general iterated tweakable FX structure as it simply affects the
subkey functions.

Ao(k,t) () A1 (k,t) (t) A2(k, t)
| | J
m S, Ey & Es D—Ex (t,m)

Fig. 1. 2-Round Tweakable FX.

1.2 Previous Works

In the same paper where they formalize the concept of tweakable block ciphers,
Liskov, Rivest and Wagner proposed two constructions often known as LRW1 and
LRW2 [LRW11]. LRW1 consists in adding the tweak between two calls of the block
cipher while LRW2 evaluates a keyed universal hash function on the tweak and adds
it twice: before the input and after the output of the block cipher. These modes
are described as Ey(t,m) = Ex(t @ E(m)) and Ej(t,m) = Ex(m & h(t)) @ h(t)
respectively with the requirement that h be an almost XOR-universal function.
They also provide security proofs roughly up to 2"/2 for both schemes. Matching
attacks on LRW1 and LRW2 are trivial as they both allow for an easy distinguisher
after the first collision at the birthday bound. Other constructions of tweakable



block cipher related to LRW2 include XE and XEX by Rogaway [Rog04] and used
in the OCB mode of operation.

In the quest for optimal security Mennink proposed the constructions F (1]
and F[2] [Men5]. The latter reaches a provable security of 2" queries which
is the optimal security in the standard model for regular block ciphers. Other
works tried to build a tweakable block cipher based solely on public permutations
in the style of Even-Mansour [EM93]. Such tweakable block ciphers includes
TEM [CLS15] and XPX [Menl6] that are also subject to a tight birthday bound
security of @O(2"/2). Then Jha, List, Minematsu, Mishra and Nandi described a
framework called XHX [JLMT17] and proved its security up to 2(**+%)/2, They also
describe generalised XHX, GXHX. In particular this means that a provable security
beyond 2" is reachable but in the ideal cipher model where rekeying is possible.
This framework uses a single-round FX framework where all 3 subkeys are derived
from a universal hash function on the secret master key and an arbitrarily long
tweak.

So far, with the exception of GXHX, the proofs of all schemes cited can be
shown to be tight. However, things become more involved when trying to iterate
those constructions. Landecker et al. [LST12] proposed to iterate two independent
evaluations of LRW2 and proved a security up to 22"/3 queries. An attack on
cascaded LRW2 (or CLRW2) has been later proposed by Mennink [Menl8] in query
complexity O(2"/%) not completely closing the gap. Then, recently, Lee and
Lee proposed XHX2 [LL18|] by iterating two independent rounds of XHX. They
managed to prove a query security lower bound of min{2§("+"), 2”*”/2} and left
the tightness of this bound as an open question which we will be able to answer
positively in this work.

On the other hand, a generic cryptanalysis of the r-round iterated FX con-
struction has already been made with the original attack by Gazi [Gazl3| in
query complexity 0(2%’“”‘). Obviously this attack can be used against our
tweakable version when we fix the tweak to a single value. As it is written, the
attack starts by querying all the code books of the secret cipher that makes
the maximum possible 2™ calls. However this natural limitation of regular block
ciphers has no ground in the presence of tweaks. Much like one can have security
proofs beyond 2" calls, one could attack a tweakable cipher using more than 2"
tweak /plaintext /ciphertext triples.

1.3 Results

Our generic iterated tweakable FX framework is pertinent to all cited construc-
tions as shown in Table [I} Using a single-round FX to blend in the tweak is the
most common approach and may be considered as well understood. However
there seem to be additional security to be gained in iterating those constructions.
Some works [LST12] [LL1§| tend to do and prove just that. The focus on 2 rounds
is justified by the fact that we don’t know of any constructions based on block
ciphers using more than 2 rounds and the single-round ones mostly have already
well understood matching attacks. However we believe it is also interesting to



Table 1. Some previously proposed schemes and description of how it fits in our
iterated tweakable FX generic framework.
Multiplications (x) are over the finite field GF(2").

Ref Scheme r Subkey functions

[LRWT1I] LRw2 1 Xo(k,t) = )q(k7 t) a uniform and AXU function.
t) =

7 (k,
[Menl5] E[1] 1 Xo(k,t)=M(k,t) =t x k nk,t) =tk
F[2] 1 Mok, t) = Ai(k,t) = F1(2 x k,t) yi(k,t) =t Dk

ﬂm XPX 1 x=0so0 E1(-,m) =P(m) t=1tn || t12 Ht21 ||t22
)\o(k,t) = t11k@t12P(k) )\1(/6,75) = tg1k€9t22p(k)
LM™17] XHX 1 ~i(k,t) a uniform and AU function
/\o(k,t) = A1 (k, t) a uniform and AXU function
[LRWII] LRWL1 2 Ao(k,t) = Xa(k,t) =0 Mk t) =t
71(k7t) = 72(k7t) =k
LSTI2] CLRW2 2 Ao(k,t) and A2(k,t) two uniform and AXU functions.
Ak, t) = Ao(k,t) ® Xa(k, 1) Y1(k,t) = v2(k,t) = k
[CLI8]  xHX2 2 ~1(k,t) and y2(k,t) two uniform and AU functions.
Xo(k,t) and A2(k,t) two uniform and AXU functions.
Ak, t) = Xo(k,t) @ Xa(k,t)

know what kind of security bounds we might hope to achieve by iterating even
further.

So in this paper we ask ourselves what is the best security bound attainable
when using the iterated FX paradigm for building tweakable block ciphers
from regular block ciphers. To do this we improve on the attack described by
Gazi [Gaz13] to apply it in the tweakable block cipher setting.

First we show an information theoretic attack for » = 2 rounds when x < 2n
with offline and online query complexity of:

Q=025 k/n) .

Note that @ = O(23("+)) under the reasonable assumption that the size of the
master secret key is linear with respect to the state size, that is, & = O(n).

The recent construction XHX2 by Lee and Lee [LLI8] is a particular case of
our setting where A1 (k,t) = Ao(k, t) ® A2(k,t). Their provable security bound is
25 (n+r) whenever < 2n and therefore matches our attack. Thus our results
prove the tightness of their bound and their bound proves the optimality of the
attack.

We then extend the attack to multiple rounds of the same construction. This
gives an attack on r rounds when xk < rn with query complexity:

Q= 0T i)

Again note that Q = O(2771 (%)) under the assumption that & = O(n).



Table 2. Some previously proposed schemes with their known asymptotic bounds.

Ref Scheme r Proof Known Attack Our Generic Attack
[CRWTi] LRw2 1 27/2 on/2 93 (n+r)

Menis) F[1] 1 23" 2" 2" (as k = n)
[Men16] XPX 1 2m/2 on/? 2"/2 (as k = 0)
LM *17] xHX 1 23(+r) 93(ntw) ok (ntr)
[ILMFi7lexax 1 22"t pone od (n4r)

[Menl5| E[2] 120 2n N.A.

[LRW1I] LRwi 2 27/2 on/2 92 (n+r)

[LST12] cLRw2 2 22%/3  23n/4 23 (ntn)

[LLI8  xHX2 2 23 pone 9% (n+r)

2 Cryptanalysis of 2-Round Tweakable FX

In this section we give an algorithm to extract the master key of a 2-round
tweakable FX construction, Algorithm [1} then we show how it works by deriving
the constants used and thus deriving the total query complexity.

2.1 The Algorithm

This cryptanalysis of Algorithm [I]is a key recovery attack and follows the idea
of the original cryptanalysis by Gazi [Gazl3|: we want just enough data to
construct contradictory paths for each wrong key. First we do all the required
offline computations under all possible k-bit key. Input values are the sets Sy
and Sy which can be chosen randomly and the input/output pairs under the
key j are stored in £;; and L;, for E; and Ey respectively. Then we store all
observable tweak/plaintext /ciphertext triples in £y. We don’t need to choose the
set Sp of inputs to the tweakable block cipher as the attack works in the known
plaintext setting. At last we can test all the k-bit keys; potential master keys k
only using the stored values by reconstructing the paths round by round.

Indeed sets A and B reconstruct the paths under the current key guess and
the condition V(¢,m,b) € B : (t,m,b® y5(k,t)) € Lo is checking whether there
is a contradictory path (if not satisfied) or not (if satisfied). The additional
condition |B| > v is simply here to ensure a good reduction.

For completeness we provide Algorithm [2]to show how to construct the sets A
and B. To construct A is to apply Algorithm [2{ with inputs So, L., (x4),1, Ao (K, t).
It is basically looking over all elements of the first set and checking if a shifted
version of a value exists somewhere in the second set then, if found, it records
the starting and ending values.

The constants v and @ are derived in Section and the algorithm already
ensures that the total query complexity is of magnitude . Indeed once we
construct the sets £;; and Ly we will have all the necessary queries to perform



Algorithm 1 Cryptanalysis of 2-round tweakable FX construction.

Input: &,n,k < 2n, E, E1, E2, 71,72, Ao, A1, Az
Output: k : the master key of E
v+ Rk/n
Q +— 95 (ntr) . v > Constants derived in Section
Randomly sample S; C {0,1}" with |S1]| = Q/2" = 9 ¥ Jv .
Randomly sample Sz C {0,1}" with |Sa| = Q/2 = 255" /v .
for all j € {0,1}" do
L1+ {(m, E1 (5, m)) :m € 51}
L2+ {(m, Es (5, m)) tm € 5’2} > Offline Queries Sets
end for

Let So C {0,1}" x {0,1}" with |So| = @ be an observable tweak/message set.
Lo+ {(t,m,E(t,m)) 2 (t,m) € So} > Online Queries Set

for all k € {0,1}" do
A {(t, m, a) : (t,m) € So, (M ® Ao(k,t),a) € l:m(k,t),l}
B« {(t, m, b) :(t,m,a) € A, (a® M(k,t),b) € £72(k,t)72} > by Algorithm
if |B| > v and Y(t,m,b) € B : (t,m,b® X2(k,t)) € Lo then
return k
end if
end for
return () > No proper key in the set

the attack. Since |£; ;| = |S;| = Q/2" and there are 2* different possible subkeys
then the total number of queries to F; and F5 is @. Then we also construct Ly
so the number of online queries will also be |Lg| = |So| = Q.

2.2 Deriving The Constants

The Query Complexity. To derive the constant @ used in Algorithm [I] we first
focus on what happens when we guess the correct master key k. In that case
we want to make sure that |B| > v happens with good probability as the other
constraint is always true by construction of the scheme.

First let’s look at the set A:

A~ {(ta m, a) : (tﬂm) € SOa (m@ AO(kvt)7a) € ‘C'n(k,t),l}

By construction there are Q) values (¢,m) € Sy and, as S is chosen randomly and
independently, there is a |S1|/2™ probability that (m®Ag(k,t)) € Sy for each (t,m)
observed and thus that there exists an a such that (m @ A\o(k,1),a) € Ly, (1)1-
Therefore in expectation we have |A| = Q2/2"F~.

We do the same reasoning for B:

B« {(t,m,b) :(t,m,a) € A, (a® M (k,t),b) € ;C,m(k’t),g}



Algorithm 2 Set construction.
Input: S§1,8:,¢
Output: Ss + {(6,83) (e, 81) €81, (s1 D4, s3) € 82}
S3 @
for all (e,s1) € Si do
if Js3: (s1 @ ¢, s3) € Sz then
S3 «+ S3 U {(6, 83)}
end if
end for
return Ss

to find that in expectation |B| = Q3 /22n+2%,
With some regularity assumptions, if |B| = v in expectation then |B| > v
with constant probability. Therefore we put:

Q3/22n+2n —y = Q _ 2§(n+n) . \3/;

The Number of Paths. The constant () was derived so that we don’t have false
negatives, that is, we succeed with good probability when we guess the good key
k. Now we derive the constant v so that we don’t have any false positive that
means the test fails with good probability for all the wrong guesses of k.

First notice that the fact that |B| = v in expectation is true for all guesses of k,
good or wrong. If |B| < v then the test fails as it should. If |B| > v then we need
to look at the second condition that is V(t,m,b) € B : (t,m,b® A3(k,t)) € Lo. If
the guess is wrong then for a given (t,m,b) € B we have (b ® A3(k,t)) = E(t,m)
with a 27" probability. Since |B| > v then the second condition is satisfied with
probability (27™)” = 27", The test must fail for all the wrong guesses and there
are 2% — 1 such wrong guesses so all the tests should fail at least with constant
probability when:

2827 <] = k—v-n<0 = v>§&/n

thus we take v = &/n.

2.3 Constraints

For all of this to work there are some constraints that need to be spelled out.
First we require that:

1 <|S;]

e— 1<2iv 3. Yy
<— k < 2n+log(v)

which limits to possible size of x to a multiple of the state size n. Very few block
ciphers admit a key larger than 2n so this is not a strong limitation in practice.



We also need to have diverse tweakable subkeys. Indeed so far we did not
require that the functions v;(k,t) depends on ¢ which means that the tweak can
be put, or not, at any stage of the construction but we still require that the tweak
changes something. Therefore we can deduce such requirement:

Yk € {0,1}F Y(t,m) € So V(t',m') € Sy :
t#£t = Ji:yi(k,t) # ik, t") OR Ni(k,t) # \i(k,t")

which means that for every pairs of two different observed tweaks at least one of
the respective implied subkeys must be different. This condition mostly ensure
that this is a reasonable tweakable block cipher construction. Indeed in the
case where two tweaks imply the exact same subkeys then one can quickly
realise that it gets the same permutation for two different tweaks which is a
near zero probability event for a perfect tweakable block cipher and hence it’s a
distinguisher.

3 Cryptanalysis of r-Round Tweakable FX

Starting from the attack of Section [2] we show how to generalise it to attack
r > 1 rounds of the same construction in Q = Q271 "+%) . U/ /n) query
complexity. The strategy is the same, we begin by doing all the necessary queries
before reconstructing paths round by round to finally check whether there is a
contradictory path or not. This is Algorithm

/\oT,t) o (kt) i (k,t) (ke t) Ao (k, t) o (kt) Ar (K, t)
| \ | |

m

By Ey —&b—— - — E. *’@—’Ek(t,m)

Fig. 2. r-Round Tweakable FX.

3.1 Constants and Complexity

The Query Complexity. We derive the constant @) used in Algorithm 3 in the
same way as we did for the 2-round version. First we focus on what happens
when we guess the correct master key k. In that case we want to make sure that
|B] > v happens with good probability as contradictory paths cannot exist under
the correct key.

Let’s look at the set Aj;:

Ap +— {(t,m,a) :(t,m) € So, (m D Xo(k,t),a) € Lw(k,t),l}



Algorithm 3 Cryptanalysis of r-round tweakable FX construction.

Input: &,n,x < rn, E, E1, Es, s B 1, 25 s ey Aoy Ay Az, s A
Output: k : the master key of F

1: v+ i&/n

2 Q « 27T () v

3: for alli € {1,...,r} do

4: Randomly sample S; C {0,1}" with |S;| = Q/2" = 27T TRy

5: end for

6: for all j € {0,1}" do

T for alli € {1,...,r7} do

8: Lji {(m, E;(4, m)) tm € Si} > Offline Queries Sets
9: end for

10: end for

11: Let So C {0,1}" x {0,1}" with |So| = Q be an observable tweak/message set.
12: Lo + {(t,m,E(t,m)) : (t,m) € So} > Online Queries Set

13: for all k € {0,1}" do

14: Ap +— {(t7 m, a) 1 (t,m) € So, (m ® Xo(k,t),a) € Ewl(k,t),l}

15: for alli € {2,...,r} do

16: A +— {(t, m, a) c(t,mya) € Ai—1, (a® Ni—1(k,t),a) € ‘C'yi(k,t),i}

17: end for > by Algorithm [2]
18: if |A,| > vand V(t,m,a) € A : (t,m,a® A\ (k,t)) € Lo then

19: return £

20: end if

21: end for

22: return () > No proper key in the set

By construction there are @ values (¢, m) € Sy and, as Sy is chosen randomly and
independently, there is a |.S1|/2" probability that Ja : (m @ Ao(k,1),a) € L., (k)1
for all observed tweak/message pairs (¢, m). Therefore, in expectation, we have
|A1‘ — Q2/2n+n_

Then we can easily prove by induction that |A;| = Q*T1/2"+%) as it is true
for |A;| and |A; 1| = |Ai| - |Sip1]/2". Thus we get |A,| = Q"+ /2r(nts),

With some regularity assumptions, if in expectation |A,| = v then |A,| > v
with constant probability. Therefore we put:

Q7-+1/27.(n+5) —v = Q= 97 (ntn) | N0

The Number of Paths. The constant () was derived so that we avoid false negative
when we guess the good key k. Now we derive the constant v to avoid false
positives.

If |A,] < v then the test fails as it should. If |A.| > v then the second
condition is satisfied with probability (27")¥ = 27%"™. The test must fail for
all the 2% — 1 wrong guesses so all the tests should fail at least with constant

10



probability when:
2F. 27" <] = k—v-n<0 = v>§&/n

thus we take v = & /n.
For all of this to work there are again some constraints. First we require that:

1 <S4
<~ k <rn+log(v)

which limits to possible size of k to a multiple of the state size n.
Then we have the condition that the tweak changes something:

Vk € {0,1}7 VY(t,m) € So V(t',m') € Sy :
t£t = Ji:yi(k,t) # ik, t') OR Ni(k,t) # \i(k,t")

Notice that this condition prevents the known matching attack on XHX. Indeed,
as for XHX r = 1 and A\¢g = A1, a collision on the full subkeys is expected after
trying O(2("+%)/2) different tweaks. Our attack has the same complexity and
also work on the generalised setting GXHX that doesn’t enforce A\g = A;. This
shows that the security cannot improve even if a collision on the full subkeys is
made hard by, for example, choosing many different subkey functions or by using
a mode of operation that limits the amount of different observable tweaks.

3.2 Discussion

Using Tweakable Block Ciphers. If instead of regular block ciphers we use
tweakable block ciphers then it is not trivial to adapt this attack. Indeed we use
the fact that the master key and the tweak must be blended before computation
and not separately plugged in a tweakable block cipher. Such construction of a
tweakable block cipher based on another tweakable block cipher could be used
to increase security and/or the size of the tweak in a way that the original FX
construction builds a stronger block cipher from another block cipher. However
on the cryptanalysis side what can always be done is to fix a single tweak and
n+n) or

r—1

apply the original attack by Gazi [Gazl3| in query complexity O(27+
0271 (")) when k < o

Weaker Constructions. This attack is generic given any reasonable key schedule
represented by the A and 7 functions. However they are particular cases where
better attacks are possible. In particular the cascaded LRW2 construction is a
2-round tweakable FX construction where the key in the block cipher does not
vary with the tweaks (71 and 2 don’t depend on t). This construction permits
an attack in (’)(23%) by Mennink [Menl8] using only two different tweaks which
beats our generic attack as soon as k > %.

11



Tweak-rekeying. In fact our generic attack being a key recovery attack it will
require at least 2" calls to the underlying block cipher. As soon as k > n this
implies a complexity above 2". Mennink [Men17] showed that provable 2™ security
is unattainable in the standard block cipher model used for the proofs of schemes
without tweak-rekeying. Therefore our generic attack can only hope to be tight
for schemes that use tweak-rekeying and thus that are proved in the ideal block
cipher model.

Key recovery and distinguisher. The fact that the complexity of this cryptanalysis
depends on the size of the master key, even if a little, makes it hardly comparable
to distinguishers that are independent of the master key size. Instead of waiting
for some bad event to occur we collect just enough information to completely
determine the master key. In the case of XHX the known distinguisher has the
same asymptotic complexity but the widely different approaches make them hard
to combine: a bad event for the known distinguisher gives no information on the
master key. However for XHX2, and generally for r > 2 rounds of the tweakable
FX construction proved in the ideal cipher model, it may well be the case that a
key recovery approach is more relevant than looking for a suitable bad event for
a distinguisher.

Towards Simplicity. The attack on generic 2-round tweakable FX is also tight
since Lee and Lee could prove with XHX2 [LL18|] that we can reach this level of
security even when A\q(k,t) = Ao(k,t) @ Aa(k, t) with some conditions on those
functions. Moreover the previously known matching attack on XHX |[JLM™17]
exploited the fact that Ag(k,t) = A1 (k,t) but our generic attack shows that it
cannot be made more secure without this simplification. Another way to say it is
that enforcing Ag(k,t) = A1 (k,t) does not affect the provable security bound.

Using this iterated tweakable FX paradigm, one can therefore wonder how
much it is possible to simplify the subkey functions while maintaining an optimal
provable security with respect to the generic security upper bound shown in this
work.
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