Towards Secret-Free Security

Ulrich Rithrmair

LMU Miinchen
80333 Miinchen, Germany
ruehrmair @ilo.de

Abstract—While digital secret keys appear indispensable in
modern cryptography and security, they also routinely constitute
a main attack point of the resulting hardware systems. Some
recent approaches have tried to overcome this problem by simply
avoiding keys and secrets in vulnerable systems. To start with,
physical unclonable functions (PUFs) have demonstrated how
“classical keys”, i.e., permanently stored digital secret keys, can
be evaded, realizing security devices that might be called ‘classi-
cally key-free”. Still, most PUFs induce certain types of physical
secrets deep in the hardware, whose disclosure to adversaries
breaks security as well. Examples include the manufacturing
variations that determine the power-up states of SRAM PUFs,
or the signal runtimes of Arbiter PUFs, both of which have been
extracted from PUF-hardware in practice, breaking security.
A second generation of physical security primitives, such a
SIMPLs/PPUFs and Unique Objects, recently has shown promise
to overcome this issue, however. Perhaps counterintuitively, they
would enable completely “secret-free” hardware, where adver-
saries might inspect every bit and atom, and learn any information
present in any form in the hardware, without being able to break
security. This concept paper takes this situation as starting point,
and categorizes, formalizes, and surveys the currently emerging
areas of key-free and, more importantly, secret-free security. Our
treatment puts keys, secrets, and their respective avoidance into
the center of the currently emerging physical security methods.
It so aims to lay the foundations for future, secret-free security
hardware, which would be innately and provably immune against
any physical probing and key extraction.

I. INTRODUCTION

A. Motivation and Overview

At the latest since the introduction of Kerckhoffs’ principle
in the 19th century [32], the notion of cryptographic security
has always been intimately tied to the concept of a secret
key. Many traditional tasks, such as identification, message
authentication, or decryption, were considered possible solely
under the assumption that the executing party had permanently
stored a digital number in her hardware that was, and re-
mained, unknown to adversaries. Such a number classically
was referred to as a “secret key”.

It is not too difficult to see that in a purely Turing ma-
chine based view of computer security, such keys are indeed
indispensable: If Alice is modeled as Turing machine, and if
she wants to identify herself unambiguously to others, some
“part” of her Turing program or tape must be unknown to im-
personators. This part automatically constitutes a secret key of
the identification scheme, then. Following similar arguments,
the presence of secret keys in computer hardware seemed
inevitable, and was accepted as a sheer necessity over decades.

Unfortunately, such a purely mathematically oriented view
of matters brings along some well-known implementation
issues: Effectively safeguarding keys in real-world devices
still constitutes a major problem in computer and hardware
security. Both malware attacks and physical extraction have
proven highly efficient over the years [1]. The problem is
exacerbated by the increasing level of mobility and connec-
tivity of today’s devices, their lightweight and often resource-
constrained nature, and the complexity of operating systems
and concurrently running programs and apps. This arguably
turns permanently stored, digital secret keys into one of the
Achilles heels of modern security hardware.

The above situation motivated the introduction of physical
unclonable functions (PUFs) over a decade ago [40], [20].
Their central idea is to replace classical digital keys by com-
plex physical structures, whose individual challenge-response
behavior depends on unique and unclonable manufacturing
variations. In this fashion, PUFs can individualize and identify
hardware without non-volatile memory or permanent digital
keys on board [20], [41], [29], and can also be employed in
various advanced cryptographic protocols [49], [7]. They thus
realize some initial, mild forms of key-free security. However,
standard silicon PUFs cannot completely evade any sort of
“secrets” in hardware yet: For example, the power-up states
of SRAM PUFs [29], [23], or the individual runtime delays in
Arbiter PUFs [20], still must remain “secret”, i.e., unknown
to adversaries, for maintaining security. This has enabled a
range of effective attacks in practice [55], [39], [26], [63],
[57], which target and extract exactly these secrets.

A second class of physical security primitives, including so-
called Unique Objects (UNOs) [51] and SIMPLs/PPUFs [46],
[4], which has gone partly unnoticed by the broader public,
recently shows promise to complete the endeavor originally
started out by PUFs, however. Implemented successfully, they
could realize hardware security in a surprisingly strong ad-
versarial attack model: Even if the adversary was allowed to
inspect the hardware bit by bit and atom by atom, and allowed
to learn any information that is present in the hardware in any
form at any time during a scheme’s execution, security would
still be maintained. Such hardware is not just key-free, but
might be called secret-free for obvious reasons. Being innately
immune against any forms of key extraction, it could lead to a
disruptive and groundbreaking change in the field — resolving
the battle between key extractors and key protectors in a rather
unexpected manner, namely by simply removing any secrets,
and thus any targets, from vulnerable hardware.

B. Related Work

Key-free and secret-free security (in our sense) cannot be
achieved in a purely mathematical or Turing machine setting,
as observed above. All related works thus stem from the wider
area of “physical cryptography”, which utilizes inherently
physical phenomena for cryptographic and security purposes.
The first well-known physical security primitive by which
key-free, but usually no secret-free security can be achieved,
are clearly classical PUFs [35], [41], [20] (see also [36],
[51], [53], [27] and references therein). Follow-up works on
SIMPL Systems (SIMPLs) [46] and Public PUFs (PPUFs)
[4], judging from today’s perspective, implicitly showed us
how PUFs could be made secret-free. Early publications on
SIMPLs/PPUFs did not make this aspect fully explicit, though,
and demonstrably did not put it in their center; their focus lay
on the public key functionality of the introduced SIMPL/PPUF
primitives [46], [4].

Already before the advent of PUFs, a side strand of physical
security research developed concepts that could be regarded as
early, ad-hoc forms of secret-free UNOs in our terminology.
These approaches date back to the late 1960s [34], and have
resurfaced independently again in the 1980s [3], [22], 1990s
[59], [44], [45], [58], [66], [11], [24], and 2000s [10], [15],
[68], [25], [8], [12], [60]. It seems some of these methods went
mostly unnoticed by the larger security community, though.

Finally, the use of physical assumptions in theoretical cryp-
tography has a long tradition, including quantum [5], noise-
based [38], DNA-based [13], [33], or relativistic cryptography
[31]. Their motivation lies in replacing the standard, unproven
computational complexity assumptions of mathematical cryp-
tography by other, independent physical hypotheses.

None of the abovementioned publications explicitly makes
the fundamental distinction between keys and secrets that un-
derlies our paper, though. The historically first works in which
the concept of secret-free security fully and unambiguously
expressed (without using exactly this terminology) seem to
be [47], [48] in 2011 and 2012 !. The first formal definition
of a secret-free primitive (in this case a secret-free SIMPL)
apparently appeared in 2012 [48] 2. The only two other, later
sources known to us are [27] and [28].

C. Our Contributions

The above situation makes our work the arguably first
survey and concept paper that puts keys, secrets, and the
possibility to avoid both, in its very center. To our knowledge,
we develop the first definition of secrets, the first taxon-
omy of different keys and secrets in hardware, and the first
definition of key-free and secret-free hardware. Furthermore,
we develop the first coherent definitional framework for the
three currently known secret-free primitives of Complex PUFs,
SIMPLs/PPUFs, and UNOs. In doing so, we introduce the new
notion of Complex PUFs as a gentle link between the key-free

I'See abstract and page 2 of [47], as well as abstract and page 2/3 of [48].
2Specifically, the string X used in Specification 1 on pages 4/5 of [48],
which is known to attackers, is an early predecessor of our concept of internal
information Inlnp, Inlng, Inlng used in the upcoming Definitions 9, 12, 15.

world of PUFs, and the secret-free world beyond. Furthermore,
we introduce the concept of internal information of hardware
and physical objects. Providing any internal information of
any involved hardware to attackers, while still requiring that
security should be upheld, turns out to be a generic technique
for defining secret-free security that we develop in this paper.

Finally, as far as we know, we are the first to categorize
existing security schemes with respect to our new taxonomy
of keys and secrets. The results of our classification, which
are summarized in Table I on page 17, illustrate the historic
transition from key-free to secret-free security, serving as
compact starting point for future research. Overall, to the best
of our knowledge, this turns our work into the first concept
paper and comprehensive survey of key-free and, perhaps more
importantly, secret-free security.

D. Organization of This Paper

This manuscript is structured as follows: Section II pro-
vides a formal definition of secrets, a taxonomy of keys and
secrets, and definitions of key-free and secret-free hardware.
Section III discusses the complementary concept of isolation
in hardware. Section IV analyzes the keys, secrets and isola-
tion assumptions in typical Weak and Strong PUF scenarios.
Sections V to VII in sequence detail three central secret-
free security primitives: Complex PUFs, SIMPLs/PPUFs, and
UNOs. Section VIII describes possible extensions of secret-
free techniques. Table I on page 17 provides a compact
overview of some of our main results.

II. A DEFINITIONAL FRAMEWORK FOR SECRET-FREE
SECURITY

A. Hardware Secrets

We will define some of our core concepts in this and the
next subsections. As a preparatory step, it will be useful to
stipulate the standard security schemes considered throughout
the entire paper.

Definition 1 (Standard Security Schemes). Let S be a security
scheme that fulfills the following properties:

e S involves a finite number of parties P1, ..., Pn.

o S is implemented by a finite number of hardware systems
Hi, ..., Hy (with k > m).

o S consists of an initial set-up phase, which is termed
Ro for consistency reasons, and a subsequent execution
phase with n sequential runs Ry,... R,.

Under these prerequisites, we will call S a standard security
scheme in this paper.

The above requirements imposed on standard security
schemes are very mild, meaning that Definion 1 is hardly
restrictive. The next definition now will now tell us something
about secrets.

Definition 2 (Hardware Secrets). Let S be a standard security
scheme. Then we call a piece of information s a (hardware)
secret with respect to S if

e S is physically represented in arbitrary form (for
example as content of volatile or non-volatile
memory, physical properties of circuit components,
physical characteristics of transient signals,
including signal timing, shape or strength, internal
physical states, structures, or configurations, etc.)
in some hardware system H; during some run R; of S
(where R; may also be the set-up phase Rg),

o and disclosure of s at the end of R; allows adversaries to
break some of the expected security features of at least
one of the runs Ry, ..., R,.

We then also say that s is a secret in H; (with respect to S),
or that H; contains the secret s (during R;).

Let us briefly discuss the features of Definition 2, famil-
iarizing us with its central ideas. First of all, the concept of
a “secret” obviously only makes sense in relation to a given
security scheme S and its expected security properties. No
piece of information is a secret just by itself, but only becomes
one in a given context. The definition takes this into account,
defining secrets s relative to schemes S.

Secondly, in order to achieve full generality, Definition 2
must leave the realm of the Turing formalism: As PUFs and
other physical security primitives tell us, secrets need not
always be binary numbers stored in digital memory! This
prevents the standard application of the Turing machine in
Definition 2, while leaving open which other formalism should
be employed instead. The utilization of physical Turing ma-
chines, as carried out in [50], would be exact and rigorous, but
also cumbersome, creating involved language and expressions.
The best actual remedy seems the precisest possible use of
everyday language, as employed in the definition. This holds
in particular with hindsight to the question what it means that
some information is “physically represented” in a hardware
system. We comment that this approach does have some
tradition also in theoretical computer science; compare, for
example, the Church-Turing thesis [69], which is necessarily
formulated in everyday language, and also others. Whilst there
are alternative options, our approach has the advantage of
creating a rigorous, yet easily accessible framework.

Thirdly, it may seem surprising that the definition uses
a mild form of time line, stipulating that adversaries are
only given a secret s after the execution of a certain run
R;, not during it. The reason is relatively straightforward:
Consider for illustration a standard symmetric identification
scheme [1], where verifier and prover hold the same key K.
In each run, the verifier will send a fresh, random nonce N
to the prover, whose hardware computes PRFx(N) for a fixed
pseudo-random function PRF, and returns this value to the
verifier. Now, if the value PRFk(N), which is computed by
and thus contained in the prover’s hardware during each run,
was given to an adversary immediately during this very run,
impersonation would become straightforward: The adversary
could simply pass on PRFk(N) to the verifier, achieving
successful impersonation. A definitional framework that allows
adversaries to learn potential secrets right during a run R;

would therefore formally turn PRFy(N) into a “secret” of
the identification scheme. While intuitively, and in any natural
understanding of the term “secret”, it should not be considered
as such. Definition 2 prevents this by stipulating that the
attacker shall only learn potential secrets after the end of
the respective run R;. In effect, this ensures that a secret is
something deeper than just a response that is merely passed
on or redirected. It must be a value that has a more profound
impact, either backwards on the security of already completed
runs, or on the future security of yet unstarted runs, in which
new randomness is used.

B. A Taxonomy of Keys and Secrets

Recent physical security approaches, including PUFs, have
demonstrated that there are different “classes” or “types”
of secrets in hardware. This motivates the development of a
taxonomy of keys and secrets below.

Definition 3 (A Taxonomy of Keys and Secrets). Let s be a
secret in a hardware system H,; with respect to some standard
security scheme S. Then we call s a:

(i) Non-volatile digital secret, or classical key, if it is
present in non-volatile digital memory of H, at least
once during S.

Volatile digital secret, or volatile Kkey, if it is present in
volatile digital memory of H; at least once during S.
Transient digital secret if it is present as the digital
values of some transient digital signals in H; at least
once during S.

Digital secret if is a classical key, volatile key, or a
transient digital secret.

(v) Physical secret if it is not a digital secret, i.e., if it is
never present as classical key, volatile key, or transient
digital secret during S.

Non-volatile physical secret if it is a physical secret that
remains present in H; if the power and other energy
supplies for H; are disabled.

Volatile physical secret if it is a physical secret that is
lost once the power and other energy supplies for H,;
are disabled.

(ii)
(iii)

(iv)

(vi)

(vii)

Let us quickly unveil the inner systematics of our definition.
It mainly distinguishes keys and secrets along the following
two dimensions: (i) Are they digital or physical? (ii) Are
they volatile or non-volatile? We comment that this distinction
implicitly introduces some “hierarchy among secrets” with
respect to their resilience against physical attacks. To start
with, digital secrets are usually more vulnerable than physical
secrets, as information present in digital form is typically
easier to extract than arbitrary analog characteristics. Further-
more, any non-volatile keys or secrets are commonly simpler
to obtain for adversaries than their volatile counterparts: They
remain present even if the power supply has been turned off, or
in case the attacked hardware has been (partly) disassembled.
In addition, non-volatile memory also usually shows stronger
data remanence effects. Finally, extracting transient digital

signals is commonly more difficult than adversarial read-out
of digital memory.

In sum, this establishes some mild hierarchy amongst se-
crets, ranging from the most vulnerable secrets (i) to the most
attack resilient ones (vii). While this hierarchy is by no means
strict or binding, it does provide first guidelines for assessing
the resilience of a given piece of hardware against probing and
extraction attacks. Finally, our taxonomy stipulates standard
secret keys (in non-volatile or volatile memory) as special
cases of secrets; every such key is a secret, but not vice versa.
This makes the notion of a secret a natural generalization of
the known concept of a secret key.

C. Secret-Free Hardware and its Advantages

Whenever there are keys or secrets in hardware, adversaries
will throw their wit and forces at extracting these. Just to name
one example, even the non-classical keys and physical secrets
in PUF-hardware have been extracted successfully in the past
in practice [1], [39], [26], [63], [55], [57] (see also Section IV).
This suggests the development of completely “key-free” and,
more importantly, “secret-free” hardware. Solid definition of
these two concepts will be the topic of this brief section.

Definition 4 (Key-Free and Secret-Free Hardware). Let S be
a standard security scheme. A single hardware system H; of
S is called

o classically key-free if it contains no classical keys,
o key-free if it contains no classical and no volatile keys,
o secret-free if it contain no secrets at all,

all with respect to S.

Let us clearly work out the seminal advantages of key-
free and secret-free security systems here in order to gain
some momentum for the rest of the paper. To start with,
(classically) key-free hardware obviously promises less vul-
nerability against standard invasive adversarial probing, as no
secrets are present in (volatile or non-volatile) digital memory.
Instead, transient digital signals or physical secrets have to be
extracted by attackers, i.e., deeper levels of the circuit need to
be accessed, or running signals need to be measured. At the
same time, recent PUF-research has shown that attacks on such
deeper levels are hard, but not impossible [55], [39], [26], [57],
[63]. This means that key-free systems may improve attack
resilience, but often cannot evade physical attacks completely.

Secret-free hardware takes this approach one step further:
Even adversaries who can access any information that is
present in hardware in any form during a security scheme, and
may inspect every bit and every atom of the system, cannot
break security. Secret-free hardware hence possesses provable,
innate immunity against any type of adversarial probing or
key-extraction, including malware.

Finally, we would like to highlight one other novelty of
secret-free systems: They does not require any confidentiality
in their set-up phases. The set-up can thus be accomplished
under the eyes of the public, or in the presence of cryp-
tographic adversaries, should this be necessary. This opens
up new possibilities, for example in the context of nuclear

weapons inspections, where set-ups for sensors and other
monitoring equipment may need to be conducted in potentially
hostile environments [43]. One concrete, practical example for
a security scheme with non-confidential set-up phase in this
context is Scheme 13.

III. A GLIMPSE AT ISOLATION ASSUMPTIONS

Every key and secret in hardware necessarily comes with
an associated isolation assumption: The hypothesis that it
will remain isolated and inaccessible to attackers. This holds
both in terms of illegitimately reading as well as unautho-
rizedly (over-)writing or altering this key/secret. Following
this insight, one could immediately formulate an associated
isolation assumption for each of the secrets of Definition
2. However, simply mirroring the different types of secrets
into equivalent isolation assumptions would not bring about
additional value for our classification; it would merely portray
the same facts and circumstances with yet other words. We
therefore limit ourselves to one specific isolation characteristic
that is orthogonal and independent of our previous discussion:
So-called activatable isolation.

Definition 5 (Activatable Isolation). Let s be a secret in
hardware H; with respect to some standard security scheme
S. We say S assumes activatable isolation for s in H; if:

e In the fabrication of H;, or in the set-up phase of S,
the secret s can be obtained/read from, or written into,
H; by certain third parties (e.g., by the manufacturers or
owners of H;).

o After the fabrication or set-up phase, it is assumed that
no parties other than H; itself can obtain/read or write
any parts of s from or into H,;.

Activatable isolation is a widespread and popular approach
in many symmetric, secret-key based systems [1]. A standard
implementation is triggering some irreversible physical change
in the hardware, for example burning fuses [1]. Still, from a
conceptual perspective, it is a significant assumption to make:
Recall that the permanent isolation of keys and secrets can
already be difficult to realize; but supposing that it can be dis-
continuously “switched on” or “activated” irreversibly is yet
a stronger hypothesis. The problem here is that schemes with
activatable isolation must not only deal with standard attacks,
but also with adversaries who try to revert or circumvent the
activated isolation mechanisms.

Avoiding activatable isolation is impossible in purely clas-
sical, digital, symmetric key based approaches: Either the key
must be written into hardware H; from the “outside”, e.g.,
during the fabrication process by the manufacturer, while it
must be non-writable by external parties ever after. Or, if #;
generates the symmetric key internally, it must be made known
to external parties (and hence obtained/read from ;) at least
once, while external parties will not have access afterwards. In
opposition to this, several physical primitives, including Strong
PUFs, Complex PUFs, SIMPLs/PPUFs, and UNOs, can avoid
activatable isolation. This is detailed over the next sections,
and summarized at a glance in Table I on page 17.

IV. KEYS, SECRETS, AND ISOLATION ASSUMPTIONS IN
STANDARD PUFs

This section debuts our novel taxonomy and concepts at
work: We will analyze the various keys, secrets, and isolation
assumptions that arise from the use of typical Weak and
Strong PUFs [53] in security schemes. Definition 2 implies
that for a well-founded analysis, we need to pick a specific
security scheme S first. Our benchmark scheme chosen here
and throughout most of this paper is the remote identification
of provers to verifiers over digital channels. As our discussion
demonstrates, common silicon PUFs are able to realize certain
forms of key-free, but no secret-free security in this application
yet.

A. SRAM PUFs

Let us start by analyzing the keys, secrets, and isolation
assumptions that result from the use of SRAM PUFs [29],
[23], which are the most widespread Weak PUF [53] design, in
symmetric identification. In the following scheme, we assume
that an SRAM PUF is contained in the prover’s hardware Hp.

Scheme 6: SYMMETRIC IDENTIFICATION WITH SRAM
PUFs [23], [29]

Set-Up Phase (also called Rp):

1) The prover’s hardware Hp measures the noisy power-up
states of kK SRAM cells of the SRAM PUF.

2) Hp derives a stable secret key K and error-correcting
helper data HD from these power-up states. The helper
data HD is stored permanently in Hp.

3) Hp gives K to the verifier's hardware Hy, where it is
stored permanently.

4) The functionality of Hp,in which the secret key K may
be given out to external parties like Hy during the set-up
phase, is irreversibly disabled.

Execution/Identification Phase (Run R;, with 1 < i < n):

1) The verifier’s hardware Hy remotely sends a fresh
random nonce N; to the prover’s hardware Hp.

2) Hp derives the key K from the power-up states of its
SRAM PUFs, using the helper data HD. It computes
the value PRFk(N;) for some pseudorandom function
PRF, and sends it remotely to the verifier’s hardware.

3) The verifier’s hardware checks the correctness of the
received function value, using K. It accepts the identifi-
cation if and only if the value is correct.

Applying our novel framework, we can identify the follow-
ing keys, secrets, and isolation assumptions in Scheme 6:

o The prover’s hardware Hp is classically key-free, but
contains volatile keys, namely the power-up states of the
k SRAM cells. If Hp is a fully digital system, it will
also necessarily contain transient digital secrets: Firstly,
the signals that communicate the noisy SRAM power-
up states to the error correction mechanism within Hp.
Secondly, the signals that transfer the error-corrected key
K to the circuitry within Hp that computes PRFk(N;).

Thirdly, there will usually be further transient digital
secrets in the circuitry computing PRFg (N;), their exact
nature depending on the choice of PRF and its imple-
mentation. Finally, Hp also contains non-volatile physical
secrets, namely the physical manufacturing variations that
determine the power-up states of the SRAM cells.

o The verifier’s hardware Hy contains a non-volatile digital
secret, or classical key, namely K. Hy is hence not even
classically key-free.

e The scheme assumes activatable isolation in Hp.

Our analysis illustrates that in symmetric identification
schemes, SRAM PUFs do evade classical keys in the prover’s
hardware. This feature provably cannot be achieved via stan-
dard, purely digital methods alone; it this constitutes a signif-
icant achievement of PUF-technology. On the other hand, the
prover’s hardware still contains volatile keys, transient digital
secrets, and non-volatile physical secrets, and activatable iso-
lation has to be assumed. Furthermore, the verifier’s hardware
must still store classical keys.

B. XOR Arbiter PUFs

Will common silicon Strong PUFs fare better? To start
with, their large number of challenge-response pairs (CRPs),
together with their unpredictable responses [53], allows a
different type of identification protocol. In the upcoming
Scheme 7 [41], the Strong PUF itself essentially functions as a
pseudo-random function. Its CRPs can be sent in the clear over
the digital communication channel, without deriving internal
secret keys first. In order to concretize our analysis, we will
assume that an XOR Arbiter PUF [62], [55], probably the
most popular silicon Strong PUF [53] design, is contained in
the prover’s hardware Hp. The following, resulting scheme
employs a security parameter A, and has an envisaged number
of n later runs.

Scheme 7: CRP-BASED IDENTIFICATION WITH
XOR ARBITER PUFs [41]

Set-Up Phase (also called Ry):

1) The verifier’s hardware Hy chooses A - n random chal-
lenges C1,...,Chp.

2) Hy applies these challenges Cf1,...,C\., to the XOR
Arbiter PUF via its digital challenge-response interface.
The corresponding responses R, ..., Ry., are collected
via the same interface.

3) Hy permanently stores the so created CRP-List
(C1,R1), .oy (Crpy Ran)-

Execution/Identification Phase (Run R;, with 1 < i < n):
1) The verifier’s hardware Hy randomly selects A new
CRPs (C{,R}), ..., (Ci, RY) from the CRP-List.
2) Hy sends Cf,...,C% to the prover’s hardware Hp.
3) Hp applies these challenges to the XOR Arbiter PUF,
and sends the obtained responses Ri, ..., Rf\ to Hy.
4) Hy checks if the received responses Ri,. .., R match
the pre-recorded responses R, ..., R} from the CRP-
List. It accepts the identification if and only if they

match within a certain, previously specified error margin
(for example on the number of incorrect responses, or
on the number of allowed bitflips per response).

5) The CRPs (Ci, RY), ..., (C%, R%) are removed from
the CRP-List.

Scheme 7 induces the following keys, secrets, and isolation

assumptions:

o The prover’s hardware Hp is classically key-free, but
contains volatile keys: Namely the digital content of the
latches which act as “arbiter elements” at the end of the
single Arbiter PUFs within the larger XOR Arbiter PUF
construction. Once many of these values are known to
adversaries, machine learning of the single Arbiter PUFs,
and subsequent prediction of the complete XOR Arbiter
PUF, becomes possible [55]. For the same reason, the
digital signals that enter the final XOR gate are transient
digital secrets. Closely following Definitions 2 and 3,
in its set-up phase (but not during its runs!), Hp also
contains another transient digital secret, namely the CRPs
(C1,R1), ..., (Cx.pn,Rx.p) that are collected via the
digital challenge-response interface of the XOR Arbiter
PUF to create the CRP-List. The reason is that knowing
these CRPs after the set-up Rp, but before the runs R;,
allows impersonation. Finally, Hp contains non-volatile
physical secrets: The manufacturing variations that cause
the runtime delays in the XOR Arbiter PUF.

o The verifier’s hardware Hy contains a non-volatile digital
secret, or classical key, namely the CRP-List. Hy is
hence not even classically key-free.

o Scheme 7 does not assume activatable isolation in Hp.

This implies that if Strong PUFs are implemented by XOR

Arbiter PUFs and comparable designs, and used in CRP-based
identification, they induce a similar key and secret landscape
as Weak PUFs in symmetric identification. While they can
advantageously avoid activatable isolation at the prover, they
are not able to realize secret-free security yet.

V. SECRET-FREE SECURITY I: COMPLEX PUFS
A. Basic Idea and Definitions

The perhaps easiest route to secret-free security is the novel
concept of a Complex PUF introduced in this paper. Loosely
speaking, Complex PUFs are a special sub-class of Strong
PUFs [53], i.e., they must possess a large and practically
inexhaustible CRP-space, a publicly accessible challenge-
response interface, and responses that are difficult to predict
numerically, even if many other challenge-response pairs are
known [53]. On top of this, an (€, tadypre)-Complex PUF shall
have the following additional property: Even if the adver-
sary knows the complete internal manufacturing variations
and randomness of an (e, tadvpre)-Complex PUF P, and has
some feasible time for preparatory calculations, he cannot
numerically predict the correct response R; to a randomly
chosen challenge C; with a probability better than € and within
time t after C; has been presented to him.

This leads to the following two complementary definitions.

Definition 8 (Internal Information of Hardware). Let H be
a piece of hardware. Then the internal information of H,
termed Inlny, is a bitstring that describes the general design
and architecture of H, its memory content (if there is any),
its random manufacturing variations, and any other physical
variations resulting from intended individualization steps, such
as burning fuses, or writing any physical patterns/keys into H.

Definition 9 ((¢, tadqvpre)-Complex PUFs). Let P be a PUF
with internal information Inlnp. P is called an (e, tagypre)-
Complex PUF with respect to an adversary A if A has a
probability of at most € to win the following, two-phase game:

FastPredGame(P, .A, Inlnp, tAvare):

Phase 1: Preparation. A is given the binary string Inlnp and
physical access to P for one year. Throughout this period,
A may conduct physical measurements on P (including de-
termination of CRPs), carry out computations, and fabricate
physical systems (including special simulation devices and
attempted physical clones of P), only being limited by his own
technological capabilities and equipment. At the end of Phase
1, A’s physical access to P is ceased.

Phase 2: Response Prediction. A challenge C; is drawn uni-
formly from the challenge space of P, and is given to A.
Within time tagvpre, A must output a “response prediction”
R;. He wins the game if this prediction is correct, i.e., if

Thereby the probability € is taken over A’s random actions
during FastPredGame.

Definition 9 partly follows earlier, game-based definitions
on PUFs [56], [2], trying to strike a balance between rigor and
accessibility. To start with, it uses concrete parameters instead
of asymptotic concepts like polynomial time or negligible
probabilities. This has the advantage of avoiding certain formal
issues in PUF definitions [56], and also enables treating single
PUFs (instead of infinite PUF families [56]). Furthermore, it
allows a concrete (instead of merely asymptotic) analysis of
PUF security properties, as in Section V-B).

Its security game FastPredGame closely mimics the situa-
tion of adversaries in Complex PUF schemes, such as Scheme
10: Their task usually is to predict responses of the Complex
PUF quickly in order to break security, as captured in Phase
2 of the game. Prior to this, the adversary commonly has
substantial time for preparing his attack in practice, explaining
the game’s Phase 1. This game-based approach also allows
us to exactly specify which information is available to the
adversary in his attack. Only providing A with all internal
information Inlnp, while still requiring security to be upheld,
makes Complex PUFs a secret-free security concept.

The chosen length of Phase 1 of one year is to some extent
arbitrary, but is motivated by the effort of certain modeling
attacks on PUFs [55]; if anything, it slightly overestimates
the adversary’s possibilities, leading to a stronger security
notion. Choosing a concrete length of Phase 1 (instead of
assigning another parameter fppase1) also keeps the definition

simpler, and allows concrete security analyses of Complex
PUF candidates (see Section V-B).

Finally, Definition 9 is formulated relative to an adversary
A, and his individual technological capabilities and equipment.
This relative definitional approach will later lead to statements
of the form “if a certain PUF is (€, tadvpre)-Complex with
respect to an adversary A, also Scheme X is secure with
respect to the same adversary A ” (see, for example, Sections
V to Sections VII). Such relative formulations of security
appear perfectly acceptable, though, and are also standard
within traditional, reductionist cryptography [21].

B. Implementation

From a general viewpoint, the existence of Complex PUFs
is motivated by the fact that the simulation of complex
physical systems can be laborious, sometimes even practically
infeasible [17]. A concrete implementation candidate is the
optical PUF of Pappu et al. [41]. Since Complex PUFs are a
new concept of this paper, we cannot refer to the literature for
a full analysis of their properties, but conduct it ourselves in
the sequel.

Let us start by deducing a realistic value of faq4ypre. Pappu
et al. estimate that given the entire internal structure of their
optical PUF (sizes and positions of scattering centers, etc.), in
the most extreme case still up to 1026 computational operations
are necessary in order to numerically predict responses with
full exactness [41]. If true, this means that the numeric com-
putation of optical PUF responses may not even be practically
possible at all in certain cases, and that taqypre in practice
is certainly much larger than 10 sec, say. A guaranteed time
margin of 10 sec already suffices for many typical protocols in
practice (see Scheme 10), however. While being aware that this
may strongly underestimate their computational complexity,
we thus for now and for our targeted application in identifica-
tion protocols set taqvpre = 10 sec. Recall in this context also
that taqvpre is a lower bound for the response prediction time.

Let us next derive an adequate value for the parameter e.
Under the assumption that the 2400-bit keys derived from
the multi-bit raw responses of Pappu et al.’s optical PUF are
bitwise independent and all equally hard to predict (compare
[40], [41]), the probability of simply randomly guessing a
response correctly would be as low as 272400 (ie., consid-
erably smaller than the standard guessing probability 1/2 for
silicon PUFs with single-bit outputs). Direct random guessing
of the response of the optical PUF hence is no viable strategy.
Also no machine learning or other numerical approaches for
deriving new, unknown responses from given CRPs are known
in the case of Pappu et al.’s optical PUF. The above probability
of 272400 hence cannot be improved by such known methods
either.

The best adversarial approach for correctly predicting the
optical PUF response to a randomly chosen challenge C; in
Phase 2 of the security experiment of Definition 9 hence seems
to collect as many CRPs as possible in Phase 1, and to hope
that C; then lies within this set of already known CRPs. How
large can this fraction of known CRP realistically become in

Phase 1?7 Pappu et al. estimate the number of decorrelated and
independent CRPs of their optical PUF to be on the order of
2.37 - 100 [40], [41]. It seems reasonable to assume that at
most on the order of 10> CRPs overall can be measured per
second by adversaries with access to the optical PUF, due to
the mechanical re-positioning of the laser, and the frequency
and data transfer limits of the CCD camera. This means that
after one year of continuous CRP-measurements, a realistic
adversary A still will only have obtained a fraction of 13.3%
of all CRPs. We hence estimate ¢ on the order of 13.3%.
Finally, it is important to stress that following the arguments
of Pappu et al. [40], [41], their optical PUF remains physically
unclonable, even if all of its internal structure is known to
adversaries. This is due to the current limitations of three-
dimensional manufacturing techniques: They cannot position
the scatterers in three dimension with the required precision
far below the wavelength of the Also its simulation complexity
remains high even in this case [40], [41]. This guarantees the
aspired secret-freeness.

Assuming the correctness of the analysis in [40], [41], our
above derivation illustrates that Pappu et al.’s optical PUFs can
be regarded as (13.3%, 10 sec)-Complex PUFs with respect to
realistic adversaries 4.

Silicon candidates for Complex PUFs are much harder to
identify. They include certain analog Strong PUFs [16], [14].
Furthermore, any so-called SIMPL Systems [46] or Public
PUFs [4] could theoretically directly serve as Complex PUF,
too (see Section VI), not utilizing their response verifiability.
Arbiter PUFs and their variants are no Complex PUFs for rea-
sonably large values of tadvpre, as their simulation complexity
is simply too low: Once the runtimes in their components
are known, simulating their outputs merely requires simple
numeric addition of these runtimes.

C. An Example Scheme

Which effect do Complex PUFs have on the presence of
keys and secrets in hardware? Again, we employ identifica-
tion as our benachmark example, assuming that the prover’s
hardware Hp carries an optical Complex PUF. The following
scheme has security parameter A and n envisaged future runs.

Scheme 10: CRP-BASED IDENTIFICATION WITH
(€, tadvpre)-COMPLEX OPTICAL PUFs

Set-Up Phase (also called Rp):

1) The verifier’s hardware Hy chooses A - n random chal-
lenges C1,...,Ch.p.

2) Hy applies these challenges Cy,...,C\., to the
(€, tadvpre)-complex optical PUF, and collects the cor-
responding responses R1, ..., Rx.n.

3) The resulting CRP-List (Cy, Ry), ..
stored permanently in Hy.

Execution Phase (Run R;, with 1 < i < n)

1) The verifier’s hardware Hy randomly selects A new
CRPs (C{, R}), ..., (Ci, RY) from the CRP-List.
2) Hy sends Cf,...,C% to the prover’s hardware Hp.

) (C/\‘na R)vn) is

3) Hp applies these challenges to the optical PUF, and
determines the corresponding responses, which we call
Ry, ... Ry. Hp sends Ri,... R} to Hy.

4) Hy measures the time period ¢* that has passed between
sending Cf,...,C} and receiving RY,. .., RS.

5) Hy then applies the following decision rule: If the
responses R, ..., Ry were sent fast enough, i.e., if

t* < tadvpres

and if all sent responses R; were correct, i.e., if
Ri =R} forall j=1,...)

then Hy accepts tl_le identiﬁca_tion? otherwise not.
6) The CRPs (C}, R}), ..., (C%, R}) are removed from
the CRP-List.

Let us start our discussion by the straightforward comment
that error-tolerance can be achieved easily by relaxing the
decision rule of Hy: For example, a previously fixed number
of incorrect responses R; may be allowed. Or, each sent
response R’ may be permitted to differ from the pre-recorded
value R} in a fraction of bits.

Regarding the security of Scheme 10, the following heuristic
analysis holds. Let us call the (symmetric and unidirectional)
communication and processing latency between verifier and
prover ti 4, and the prover’s time for measuring a response of
the employed Complex PUF fpeas. Then it is not too difficult
to see that Scheme 10 works securely as long as

tAvare Z 2- tLat + A tMeas~ (1)

The rationale behind Equation 1 lies in comparing an
adversary A who is closely located to the verifier, and who has
latency | 5+ ~ 0 in the most extreme case, to a remote, honest
prover. A can use the full response time of this prover, which is
around 2 -t 4t + A - tMeas, for his fraudulent numeric simulation
of the \ responses R}, ..., R}. He can thereby parallelize his
simulation task to A computers, while the honest prover needs
to measure the A responses in sequence. This leads to the
necessary and sufficient condition of Equation 1.

When applying Pappu et al.’s optical PUFs in Scheme 10
over the internet, one can estimate fagypre = 10 sec, tMeas =
0.1 sec, and t 5+ < 1 sec. Given the estimated value of ¢ =
13.3% from earlier, and a target cheating probability of smaller
than 27190 this means that users have to choose the security
parameter A = 35. Equation 1 is then fulfilled, and Scheme
10 is secure, for these values.

D. Keys, Secrets, and Isolation Assumptions

The last sections plausibilized the existence and also secure
applicability of Complex PUFs in remote identification. Let
us now return to our main topic: Which keys, secrets, and
isolation assumptions do they induce in Scheme 10?

e The prover’s hardware Hp does not contain any secrets
during the entire execution phase, that is, during any of
the runs Ry, ..., R,. It merely contains volatile physical
secrets in the set-up phase: Namely the physical, analog

optical challenges C;, which are externally applied to the
PUF by the verifier’s hardware Hy during the set-up, and
the resulting physical, analog responses R;. (Recall that
the CRPs in Scheme 10 are not collected via a digital
CRP-interface, which is a peculiarity of optical PUFs).

e The verifier’s hardware Hy contains classical keys,
namely the CRP-List.

e No activatable isolation is assumed in Hp.

In other words, Scheme 10 for the first time in this paper
implements a secret-free prover during the execution phase!
As observed already in Section I, this is impossible to realize
in a purely mathematical or Turing-machine based scenario. It
constitutes a first major achievement of physical cryptography
in our opinion.

VI. SECRET-FREE SECURITY II: SIMPLS

A. Basic Idea and Definitions

Can both verifier and prover become secret-free in identi-
fication schemes? If yes, the verifier must merely use some
public information (not a secret CRP-List!) for checking the
prover’s responses. This leads to the concept of a SIMPL Sys-
tem (or SIMPL) [46], which independently has been suggested
under the name Public PUF (or PPUF) [4].3

Loosely speaking, SIMPLs/PPUFs are PUFs that allow the
numerical verification of the correctness of CRPs via some
public, non-secret verification algorithm. At the same time,
knowledge of this algorithm should not enable adversaries
to generate correct CRPs at will and with arbitrary speeds:
Otherwise, straightforward attacks become possible, such as
impersonation in CRP-based identification (see Scheme 13).
This means that a comparable asymmetry as in public key
cryptography is immanent in SIMPLs/PPUFs, whence they
may truly be regarded as an asymmetric or public key variant
of PUFs [46], [4].

The upcoming definition clarifies their basic functionality.

Definition 11 (SIMPLs/PPUFs). A SIMPL/PPUF S is a PUF
that possesses an associated, public verification algorithm
Vers. Given an input of the form (C;, R;), Vers shall produce
the following output:

o 1, if R; is the correct response R; of S to challenge C;.
o 0, otherwise.

Furthermore, S is said to have:

3SIMPLs and PPUFs are fully equivalent concepts, that have been in-
troduced by independent groups around the same time. The first publicly
available, timestamped document indeed used the term SIMPL system [61].
Also, the identification application that we describe in this paper has first
been put forward in the context of SIMPLs [46], and so has the observation
that quick verification instead of slow simulation might be a better suited
implementation approach [46]. Finally, the fact that these structures may be
entirely secret-free also has first been observed in the SIMPL-related literature
[47], [48]. On the other hand, the name Public PUF [4] seems to some extent
more intuitive. Furthermore, a strong share of implementation candidates have
been published in the literature strand on Public PUFs (see, e.g., [42] and
references therein). Exclusively picking one name over the other would thus
seem unfair towards either of the involved groups. We will therefore use the
fair and suggestive hybrid expression SIMPL/PPUF in this paper.

o Verification time tye, for a party P if P can run Vers on
any inputs (C;, R;) within time tye,.

o Measurement time tpeas for a party P if P can physically
measure the correct response R; of S to any challenge
C; within time tyeas.

We comment that most existing works on SIMPLs/PPUFs
do not postulate a verification algorithm, but an explicit
simulation algorithm for their responses [46], [4]. However,
as our discussion following Scheme 13 shows, such purely
simulation-based approaches necessarily lead to some effi-
ciency vs. security issues. Merely postulating a verification
instead of simulation algorithm also creates a more general
definition, since simulatability implies verifiability, but not
vice versa. This motivates and explains our choice.

The security features of SIMPLs/PPUFs are detailed next.

Definition 12 ((¢,tadvpre)-SIMPLs/PPUFs). Let S be a
SIMPL/PPUF with internal information Inlns and verification
algorithm Vers. S is called an (€, tadvpre)-SIMPL/PPUF with
respect to an adversary A if A has a probability of at most €
to win the following, two-phase game:

FastPredGame(S, A, Inlng, Vers, tadvpre):

Phase 1: Preparation. A is given the binary strings Inlng and
Vers and physical access to S for one year. Throughout this
period, A may conduct physical measurements on S (including
determination of CRPs), carry out computations, and fabricate
physical systems (including special simulation devices and
attempted physical clones of S), only being limited by his own
technological capabilities and equipment. At the end of Phase
1, A’s physical access to S is ceased.

Phase 2: Response Prediction. A challenge C; is drawn uni-
Sformly from the challenge space of S, and is given to A. Within
time tadupre, A must output a “response prediction” Ri. He
wins the game if this prediction is correct, i.e., if

R =R;.

Thereby the probability € is taken over A’s random actions
during FastPredGame.

Definitions 9 and 12 follow the same technical approach;
please compare our explanatory discussion in Section V-A.
Again, the secret-free nature of SIMPLs/PPUFs is captured by
giving all internal information Inlns and Vers to the adversary,
while requiring that security still is upheld. The definitions
imply that any (e, tadvpre)-SIMPLs/PPUFs is a (e, tagvpre)-
Complex PUFs for the same adversary .A — but not vice versa.

B. Implementation

From a fundamental viewpoint, the existence of SIM-
PLs/PPUFs is supported by the fact that most physical systems
are Turing simulatable, but not necessarily efficiently (let alone
in real-time), as pointed out early by Feynman [17]. Still, their
implementation is an act of balance: Simulation complexity
cannot simply be maximized, as in the case of Complex PUFs.
Instead, it must be finetuned to be large enough to prevent

quick simulation, while still allowing response verification (or
slow simulation, see below) in practice.

Recent research has yielded around a dozen SIMPL/PPUF
implementation candidates, including [42], [47], [48], [4],
[46], [28], [37] and references therein. Almost all pursue
the following conceptual approach: A SIMPL/PPUF S is
fabricated, and its relevant manufacturing variations are char-
acterized, either by direct physical probing, or by numerical
analysis of many CRPs. This results in a simulation algorithm
Sims, by which correct responses can be simulated numer-
ically. The verification algorithm Verg of Definitions 11 on
input (C;, R;) then just needs to simulate the correct response
by use of Sims, and to compare it to its input R;. If S is
sufficiently complex, response simulation will be possible, but
laborious and slow, and the security features of Definition 12
will be met for reasonable values of faqypre- This approach
could be termed Simulation-Based (SB) SIMPLs/PPUFs.

Conceptually, there is an alternative strategy [46], [48],
which we like to call Quickly Verifiable (QV) SIMPLs/PPUFs.
Its idea is to exploit the fact that if cleverly designed, the
SIMPL/PPUF might allow some rapidly computable predicate
for response correctness, allowing a fast algorithm Verg that
does not involve full response simulation from scratch. This
approach has first been suggested in [46], [48] and continued
in [28]. It is arguably harder to implement, but offers important
efficiency vs. security advantages (see Section VI-C).

We owe readers two illustrating (but not necessarily practi-
cal) didactic examples, which they may keep throughout the
rest of the paper for their own intuition. SB SIMPLs/PPUFs
could be envisioned as optical PUFs whose complexity (i.e.,
number of scattering elements) has been gradually reduced
to a regime where the optical PUF can be characterized and
simulated, but where such simulation is still inevitably time-
consuming [46].

QV SIMPLs/PPUFs, on the other hand, might be imagined
as complex physical systems guided by differential equations
(DEs) [61], [28]. The challenge C; could be applied by
modifying the side/boundary conditions of the physical system
and of its resulting DEs. The physical response R; should
ideally constitute some solution to these DEs. By simply
inserting a candidate responses R; into the DE, R; could be
checked for correctness quickly, then; but computing a correct
response from scratch might be much harder. Arbiter PUFs
are no SIMPLs/PPUFs, as their internal simulation complexity
is too low (see Section V-B). Recommended starting points
for further reading on SIMPL/PPUF implementation are [42],
[28], [47].

C. An Example Scheme

Let us now detail the use of SIMPLs/PPUFs in our bench-
mark application of identification [46].

Scheme 13: CRP-BASED IDENTIFICATION WITH
(€, tadvpre)-SIMPLS/PPUFs [46]

Set-Up Phase (also called Ry):
1) The SIMPL/PPUF S is fabricated, and Vers is derived.

2) Vers is permanently stored in Hy.

Execution Phase (Run R;, with 1 <i < n)

1) The verifier’s hardware /y randomly selects A\ chal-
lenges C1, ..., C).

2) Hy sends C1q,...,C) to the prover’s hardware Hp.

3) Hp applies these challenges to the SIMPL/PPUF, and
determines the corresponding responses, which we call
Ri,...,Rx. Hp sends R1,... R, to Hy.

4) Hy measures the time period ¢* that has passed between
sending C1,...,Cy and receiving Ry, ..., Ry.

5) Hy then applies the following decision rule: If the
responses Ri,..., R\ were sent fast enough, i.e., if

t* < tadvpre,
and if all sent responses Rj were correct, i.e., if
Vers(Cj,R;) =1 forall j=1,... A,
then Hy accepts the identification, otherwise not.

As in Scheme 10, some level of error tolerance can be
achieved by appropriately relaxing the decision rule of Hy.
Analogously to the discussion following Scheme 10,
Scheme 13 is secure against an adversary .4 as long as
tadvPre = 2 - TLat + A IMeas; (2)
and if an (e, tadvpre)-SIMPL/PPUF with respect to A is used.
Pre-simulating the used A CRPs prior to a protocol run
R; is possible for verifiers [4], [28], but has its limits: First
of all, it requires knowledge that an identification with a
specific SIMPL/PPUF is upcoming. Secondly, it unwantedly
induces new secrets in the verifier’s hardware, namely the pre-
computed and stored CRPs, making the scheme no longer
secret-free.

D. Keys, Secrets, and Isolation Assumptions

Let us now return to our main topic, namely the keys,
secrets, and isolation assumptions in Scheme 13:

o The prover’s hardware Hp is secret-free.
o Also the verifier’s hardware Hy is secret-free.
e No activatable isolation is assumed in Hp.

From a secret-related perspective, SIMPLs/PPUFs could
thus be seen as a direct extension of standard public key
cryptography: While the latter removes secrets from verifiers
in identification, SIMPLs/PPUFs counterintuituvely remove
them from both parties! Some thinking shows that a mini-
mal requirement for any successful identification is that the
verifier holds some possibly public, but at least authenticated
information on the prover. SIMPLs/PPUFs are the first and
only known primitive that enables remote identification in this
minimal, secret-free setting.

VII. SECRET-FREE SECURITY III: UNOs

A. Basic Idea and Definitions

Consider a small piece of paper (0.01 mm?, say), which

is scanned by some electron microscope, producing a high-
resolution image P of its properties and structure. Even if P
was known to adversaries, they could not fabricate a second
piece of paper which, when being measured by the same
electron microscope, would have the same properties P as the
original. Our piece of paper hence must be considered secret-
free and unclonable with respect to external measurement
by the microscope. The above phenomenon seems like an
interesting security property, which is not yet captured directly
by one of our earlier notions. This motivates the introduction
of the complementary concept of a Unique Object (UNO) [51].

Definition 14 (Standard Measurement Apparatuses). A Stan-
dard Measurement Apparatus (SMA) is a physical device M,
which takes as input a physical object O, and outputs a
binary string Propm(0), called the properties of O (upon
measurement with M), while leaving O unaltered. M shall
be mass-producible, i.e., an arbitrary number of specimens
M’,M” ... shall be manufacturable that possesses the same
input-output behavior.

Given these preparations, we can now define unique objects.

Definition 15 (Unique Objects). Let M be a SMA with internal
information Inlny, O be a physical object with internal
information Inlng and properties Propm(O), and let A be an
adversary. O is called a unique object (UNO) with unique
properties Propm(O) with respect to A and M if it is infeasible
for A to win the following game:

CloneGame(O, M, A, Propp(O), Inlng, Inlny, M’):

A is given O, a specimen M’ of the mass-producible SMA M,
Propm(O), Inlng and Inlny. Within one year, A must output
two physical objects O1 and O, thereby only being limited in
his actions by his technological capabilities and equipment.
A wins the game if

Propm(O) = Propm(01) = Propm(02).

We stress that the original object O may be destroyed
or altered in the above CloneGame in order to make the
definition most general: One of the objects O; and O, may
be, but need not be equal to O. Definition 15 follows the
same technical approach as Definitions 9 and 11, creating a
coherent definitional framework for all secret-free primitives
of in this paper. As before, providing all relevant information
Propm(0), Inlng and Inlny to adversaries, while still requiring
security to be maintained, captures the secret-free character of
the considered primitive, in this case UNOs.

One interesting feature of UNOs is that adversaries are
forced to generate real, physical objects in order to break their
security properties. In all earlier definitions, it was already
sufficient for attacks if adversaries could numerically output
a certain response correctly (and/or fast enough). This means
that UNOs for the first time enforce real, physical cloning

10

in security breaks. This can substantially enhance resilience
against attacks, especially against adversaries with limited
access to fabrication equipment, such as standard consumers.

Conceptually, the price to be paid is the presence of
a trusted, external, mass-producible measurement apparatus,
which can physically measures the UNO on site. Remote
protocols between provers and verifiers are not intended in a
UNO-context. Still, on-site measurements allow application to
two societally extremely relevant problems: The unforgeable
tagging of valuable items (see Section VII-C) and digital rights
management (see Section VIII-D).

B. Implementation

From a theoretical perspective, the existence of UNOs is
motivated by the fundamental asymmetry between measuring
and fabricating a physical object with a given precision.
Measuring is both more accurate and more cost effective, in
2D as well as in 3D [40]. We stress again that no other known
primitive exploits this asymmetry more directly than UNOs,
since their attack model in Definition 15 forces the adversary
to physically clone the UNO itself (compare Section VII-A).

Without using the term UNO (and mostly without develop-
ing an implementation-independent, conceptual theory behind
it), a large number of researchers seems to have proposed and
re-invented the basic idea of UNOs ad hoc and independently.
The thread starts as early as in the late 1960s [34], continues in
the 1980s [3], [22] and 1990s [59], [44], [45], [58], [66], [11],
[24], just to surface again in the 2000s [10], [15], [68], [25],
[8], [12], [60]. This line of research arguably marks the birth of
what we call now “physical cryptography”. Paper as employed
physical medium plays a predominant role, being complex
and stable, but still a commodity, everyday structure. Different
measurement methods have been proposed to extract its unique
features, including lasers [8], [60] and ordinary scanners [12].
Other implementation suggestions include optical fibers [10],
as well as radio wave [15] and magnetic [34], [66], [11] UNOs.

Again, we would like to propose two didactic, conceptual
UNO-examples to readers, which they can hold in their minds
throughout this section. The first one is the abovementioned,
tiny paper surface (or any other suited disordered surface),
when being scanned with a high-resolution microscope. The
second is again related to Pappu et al.’s optical PUF, establish-
ing a common thread within our discussion: Assume now that
the number of scattering centers is reduced extremely strongly,
so that only 25 scattering particles are contained in the
structure, and that there are no further relevant manufacturing
variations, say. The 3D position of each single scattering
particle can then be determined with single digit nm accuracy
in less than one second [6], while positioning the 25 particles
with the same accuracy in 3D is currently impossible [6].
Unclonability hence is upheld, even if all information about
the structure is known, making it a UNO. At the same time, it
is not complex enough to serve as Strong PUF, Complex PUF,
or SIMPL/PPUF, differentiating these concepts from UNOs.

Finally, let us argue why XOR Arbiter PUFs by Definition
15 are no UNOs: First of all, they contain secrets, namely

their runtime delays. Secondly, a fixed, small set of their CRPs
cannot serve serve as unique properties (UPs): Recall that an
adversary know the target UPs in his attack, and that XOR
Arbiter PUFs have a digital challenge-response interface. He
can hence produce an effective clone with the same interface,
that simply stores all few target CRPs of the XOR Arbiter PUF
(i.e., all its UPs), and digitally outputs them whenever needed
over this interface. Similar considerations apply to SRAM
PUFs. This illustrates again how secret-free UNOs with an
external, analog measurement apparatus differ from secret-
containing PUFs with integrated, digital challenge-response
interfaces.

C. An Example Scheme and Its Properties

UNOs can be applied to the efficient, unforgeable “tag-
ging” or “labeling” of items of value, including passports,
bankcards, banknotes, pharmaceuticals, security-critical com-
ponents, consumer products, and the like. This constitutes an
extremely relevant scientific problem: In 2013, the value of
counterfeit and pirated goods was estimated between $923 Bil-
lion and $1.13 Trillion [64], with associated wider economic
and social costs of $737 to $898 Billion [64], and employment
losses of 2 to 2.6 million jobs [64]. Similar figures have been
reported by the OECD [65] or Interpol [15].

The tagging scheme below assumes three basic parties or
entities: (i) The item (of value) with an attached, UNO-based
tag. (ii) The manufacturer of the items of value, or some other
trusted third party, who can generate digital signatures that
certify the tags. To this end, it holds a secret signing key
SK. (iii) The testing device, which verifies the tags and items
for their validity by direct physical inspection. To this end, it
possesses the public verification key PK corresponding to SK,
and an inbuilt measurement apparatus M. Comparing this to
our earlier, remote identification schemes, the items of value
plus tags constitute some equivalent of the provers, the testing
devices some analog to the verifiers. Scheme 16 could hence
also be interpreted as on-site identification (see Table I).

Scheme 16: ON-SITE IDENTIFICATION OR UNFORGE-
ABLE ITEM TAGS WITH UNOSs [22], [15], [51]

Set-Up Phase (also called Rp):

1) A UNO O is fabricated, and its unique properties
Propm(O) are determined by a specimen M’ of the mass-
manufacturable SMA M.

2) Using his signing key SK, which is stored permanently
in non-volatile digital memory, the manufacturer creates
a digital signature DigSigsk (Propm(0O)).

3) The UNO O is attached to the item of value. Jointly
with it, Propm(O) and DigSigsk (Propm(O)) are stored
permanently on the item of value, for example via
a 2D barcode. Taken together, O, Propym(O) and
DigSigsk (Propm(O)) constitute the rag.

Execution Phase (Run R;, with 1 < i < n)

1) The item with its tag are presented to a testing device.
The latter holds the public verification key PK corre-

sponding to SK in non-volatile memory, and possesses
its own specimen M” of the mass-manufacturable SMA
M.

Using PK and M"”, the testing device applies the follow-
ing decision rule: If

DigSigsk (Propm(0))
is valid, and if for the object O on the item it holds that
3)

then the testing device accepts the tag, otherwise not.

2)

Propm(O) = Propm(0O),

Scheme 16 possess some intriguing upsides: Firstly, it
conveniently allows an offline verification of tags, without an
online channel to a central authority. This preserves privacy of
verifiers, and maintains non-traceability of tagged items, such
as banknotes. The item of value itself thereby acts as a store-
and-forward channel, carrying the binary unique properties
and digital signature, together with the physical object O.
Secondly, the scheme is particularly useful in the context
of offshore fabrication and illegitimate overproduction [1]:
The company headquarters or intellectual property holder can
provide their digital signatures remotely for tagging all items.
Distrusted fabrication sites will then not possess their own
signing keys, but can be kept secret-free instead! Finally, the
tag’s digital signature can furthermore certify some additional,
item-related information, such as biometric features of a
passport owner, monetary value of banknotes, or consumer
product data.

We remark that in order to be practical, the scheme ideally
requires UNOs with unique properties Propm (O) of the length
of a few kilobytes, and also with reasonably small measure-
ment times. Alternatively, hashed values of Propy(O) can be
signed and contained in the tags, and compared in Equation 3.
As before, some small error-tolerance and deviation may be
allowed in this process, possibly using helper data [41].

D. Keys, Secrets, and General Perspective

Having motivated the existence of UNOs, and detailed their
implementation and applications, let us now return to the keys,
secrets, and isolation assumptions they induce in Scheme 16.

e The item of value and the tag are secret-free.

e The testing device is secret-free.

o The manufacturer contains classical keys.

e No activatable isolation is assumed in the item of value

and the tag.

This establishes another identification-type scheme with
secret-free features! One particular asset of its key- and
secret-structure is that the two widespread components of the
system — the items/tags and the testing devices, which may
exist in millions or even billions of samples — are secret-
free. They hence do not require intricate protection, but may
remain inexpensive. The manufacturer, on the other hand,
does contain a secret, but may act like a trusted central
authority, who creates his signatures from a remote, well-
protected environment when being given Propy(O).

12

Compared to SIMPLs/PPUFs, UNOs require an extra
trusted, external measurement apparatus on site. But on the up-
side, they are far simpler to implement: Often non-electronic,
cost-effective everyday media (such as paper) can be used.
This promises particularly easy mass-market applicability.

VIII. SECRET-FREE SECURITY IV: EXTENSIONS

The previous sections all focused on (remote or on-site)
identification schemes, establishing a joint, common bench-
mark for our comparative analyses. This should not hide the
significant number of other applications in which secret-free
security can already be achieved today. This section will sketch
several of these, providing pointers to the literature, and will
also briefly touch upon limits and open questions.

A. Secret-Free Message Authentication

To start with, a full protocol for secret-free message au-
thentication based on SIMPLs/PPUFs has been given in [46],
[48]; it bears some similarities with Scheme 13. The protocol
could theoretically be adapted to run with Complex PUFs, then
merely achieving secret-free provers in the execution phase.
Both protocols are interactive message authentication schemes:
The verifier has to communicate with the prover online in
order to test the authenticity of a message, and the entire
protocol needs to be completed within a certain time frame. As
earlier, this time frame is related to the adversarial prediction
time tagvpre Of the employed Complex PUF or SIMPL/PPUF
(compare Schemes 10 and 13).

B. Secret-Free Tamper Detection

One of the earliest envisioned applications of PUFs has been
tamper detection [41], [19]: To this end, optical PUFs (or other
PUFs whose CRPs are sensitive to violations of their structural
integrity) encapsulate a piece of vulnerable hardware. By
measuring CRPs of this PUF-capsule from the inside, and by
employing them in a similar protocol as Scheme 7, capsule
integrity and non-tamperedness of the inner hardware may be
checked remotely. By using Complex PUFs or SIMPLs/PPUFs
as capsules, this approach can be accomplished with a secret-
free prover during the execution phase (Complex PUFs), or
even with secret-free provers and verifiers (SIMPLs/PPUFs);
compare Schemes 10 and 13.

C. Virtual Proofs of Reality and Secret-Free Sensing

Under the assumption that Complex PUFs or SIM-
PLs/PPUFs can be made reliably dependent in their responses
on certain environmental variables, such as temperature, hu-
midity, pressure, etc., their CRPs can “prove” the actual value
of these variables to remotely located parties. To this end,
protocols similar to Schemes 10 and 13 can be employed,
in which each response is also a function of the desired
environmental variable. This is the principle of so-called
Virtual Proofs (VPs) of Reality [54]. VPs can be made partly
(or completely) secret-free by using suitable, environment-
dependent Complex PUFs (or SIMPLs/PPUFs). Partly secret-
free VPs of the destruction of a physical object, and of the spa-
tial distance of two objects, have already been demonstrated

in experiment by optical Complex PUFs [54], and so have
key-free temperature sensors based on electrical PUFs [54].
Similar techniques could enable key-free or secret-free nuclear
weapons inspections and disarmament verification [43].

D. Secret-Free Digital Rights Management

Storage media like CDs/DVDs also possess unique prop-
erties on a sub-digital, analog level [25], [68], even if they
store exactly the same digital content. This allows their use as
UNOs, and their application to the digital rights management
problem. By a very small modification of Scheme 16, the
digital content on CDs/DVDs can then be certified, again using
digital signatures [25], [68]. Customary CD/DVD-readers can
serve as widespread, inexpensive, but highly accurate mea-
surement devices. Both CDs/DVDs and readers are secret-free
in this approach, contrary to existing techniques [1].

E. Secret-Free Encryption and Digital Signatures?

Is secret-free encryption in our sense possible? Two basic
obstacles exist. First of all, encryption requires long-term
security against adversaries. This means that the employed
Complex PUFs or SIMPLs/PPUFs would need extremely large
tadvpre> While currently, their implementation can sometimes
already be challenging for medium values of taqypre. Secondly,
the encryption hardware necessarily needs to receive the
plaintext as input, which constitutes a secret in any encryption
scheme. At least while this input is given to the hardware, it
hence cannot be secret-free. Reduced forms of secret-freeness
might still be achievable, for example encryption hardware that
does not contain any keys or digital secrets. Similar arguments
apply to the long-term security of secret-free digital signatures,
turning both into an interesting future research activity.

IX. SUMMARY AND FUTURE WORK

In this conceptual and survey paper, we discussed the
avoidance of keys and secrets in cryptography and security.
Loosely speaking, a secret in our sense is any information that
is present in arbitrary form in hardware, and whose disclosure
to adversaries breaks security. Secret keys, in turn, are a special
subclass of secrets, namely those that are present in volatile
or non-volatile digital memory. Given the latest generation
of physical security primitives, the design of not just key-
free, but of completely secret-free hardware has become a
realistic possibility. This concept paper and survey took up
the stimulus resulting from this situation, trying to lay the
foundations for future secret-free hardware. Among others, the
latter would be innately immune against adversarial probing
and key extraction attempts.

From a fundamental perspective, the two basic phenomena
that enable the realization of secret-free hardware are the
fabrication complexity and simulation complexity of physical
systems: Even if the entire internal structure of a given
physical hardware system (i.e., all its internal “secrets”) are
known, it may still be infeasible to clone it, and/or to emulate
its input-output behavior in real-time. The role of these two
assumptions is comparable to the infamous computational

13

complexity assumptions in classical cryptography. But they
enable a qualitatively new security feature: Namely removing
all secrets from hardware.

Motivated by the described situation, this paper is to our
knowledge the first to announce, survey, and categorize the
fields of key-free and, more importantly, secret-free security.
We defined the core concepts of a secret, secret-free hardware,
isolation assumptions in hardware, and a taxonomy of keys
and secrets. Applying our novel framework, we classified a
large number of existing schemes with respect to their exact
keys, secrets, and isolation assumptions. Table I on page 17
shows our findings: It illustrates that standard, silicon PUFs
can achieve initial forms of key-free, but no secret-free security
yet. But three other physical primitives known as Complex
PUFs, SIMPLs/PPUFs, and UNOs actually can!

We unfolded these three primitives in detail, including their
implementations and protocol uses. Within this process, we
developed the first coherent definitional framework for said
three primitives, introducing the concept of internal informa-
tion of hardware and physical objects. Providing any internal
information of any involved hardware to attackers, while still
requiring that security should be upheld, turned out to be a
generic technique for defining secret-free security. In addition,
we suggested the new concept of a Complex PUF, which
acts as gentle link between the key-free world of PUFs and
the secret-free world beyond. Finally, Section VIII showed
that the reach of secret-free methods also encompasses secret-
free message authentication, tamper detection, sensing, and
digital rights management. This demonstrates two aspects:
Firstly, that secret-free security has become a viable possibility
already; secondly, that it is not limited to pure identification
applications.

A host of research opportunities, perhaps even some re-
search program, evolves from the presented material. On
the conceptual and theory side, formulating and proving the
security of secret-free schemes in advanced models, such as
the universal composition framework, seems very interesting.
Investigating necessary conditions for secret-free security, for-
mally showing statements like “secret-free provers in secure
remote identification imply the existence of Complex PUFs”,
would be intriguing, too. So would be the application of our
generic framework of keys, secrets, and isolation assumptions
to other security methods and paradigms. Finally, identifying
further secret-free primitives would be fascinating — or,
alternatively, proving that none exist!

Secondly, on the practical side, the optimized design, imple-
mentation, and commercial deployment of the presented con-
cepts in hardware represents a major and long-term endeavour.
Just to name three examples: The development of CMOS-
compatible Complex PUFs or SIMPLs/PPUFs; of secret-free
sensors for various physical variables beyond the known VPs
of temperature [54]; or of UNOs/unforgeable item tags that
can be measured at high security levels by consumer smart
phones; all represent seminal, but nevertheless realistic goals.
We hope that the work in this paper can inspire and foster
such future research activities.

[1]

[2

—

[4]

[5]

[6

—

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]
[24]
[25]

[26]

REFERENCES

R. J. Anderson: Security Engineering: A guide to building dependable
distributed systems. Wiley, 2010.

F. Armknecht, R. Maes, A.R. Sadeghi, FEX. Standaert, C. Wachsmann:
A formalization of the security features of physical functions. IEEE
Symposium on Security & Privacy, 2011.

D.W. Bauder: An anti-counterfeiting concept for currency systems.
Sandia Na- tional Labs, Albuquerque, NM, Tech. Rep. PTK-11990,
1983.

N. Beckmann, M. Potkonjak: Hardware-based public-key cryptography
with pub- lic physically unclonable functions. Information Hiding 2009,
pp. 206-220, 2009.

C.H. Bennett, G. Brassard: Quantum cryptography: Public-key distribu-
tion and coin tossing. In: Proceedings of IEEE International Conference
on Computers, Systems and Signal Processing, Bangalore, India, pp.
175-179, 1984.

B. van den Broek, B. Ashcroft, T. H. Oosterkamp, J. van Noort: Parallel
nanometric 3D tracking of intracellular gold nanorods using multifocal
two-photon microscopy. Nano Letters, 13(3), 980-986, 2013.

C. Brzuska, M. Fischlin, H. Schroder, S. Katzenbeisser: Physical Un-
clonable Functions in the Universal Composition Framework. CRYPTO
2011.

J. Buchanan, R. Cowburn, A. Jausovec, D. Petit, P. Seem, G. Xiong,
D. Atkinson, K. Fenton, D. Allwood, and M. Bryan: Forgery: Finger-
printing documents and packaging. Nature, vol. 436, no. 7050, p. 475,
2005.

Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, U. Rithrmair: The
Bistable Ring PUF: A New Architecture for Strong Physical Unclonable
Functions. HOST 2011.

Y. Chen, M. K. Mihcak, D. Kirovski: Certifying authenticity via fiber-
infused paper. SIGecom Exchanges 5(3): 29-37 (2005)

M.C. Chu, L.L. Cheng, L.M. Cheng: A novel magnetic card protection
system. European Convention on Security and Detection, pp. 207-211,
1995.

W. Clarkson, T. Weyrich, A. Finkelstein, N. Heninger, J. Halderman,
E. Felten: Fingerprinting blank paper using commodity scanners. IEEE
Symposium on Security and Privacy (Oakland’09), pp. 301-314, 2009.
C.T. Clelland, V. Risca, C. Bancroft: Hiding messages in DNA microdots.
Nature 399.6736, pp. 533-534, 1999.

G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber, U.
Schlichtmann, P. Lugli, U. Rithrmair: Application of Mismatched Cellu-
lar Nonlinear Networks for Physical Cryptography. IEEE Workshop on
Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1-6,
2010.

G. Delean, D. Kirovski: RF-DNA: Radio-Frequency Certificates of
Authenticity. CHES 2007: 346-363

S. Deyati, B.J. Muldrey, A.D. Singh, A. Chatterjee: Challenge engineer-
ing and design of analog push pull amplifier based physically unclonable
function for hardware security. IEEE Asian Test Symposium (ATS), pp.
127-132, 2015.

R.P. Feynman: Simulating physics with computers. International Journal
of Theoretical Physics 21.6-7, pp. 467-488, 1982.

S. L. Garfinkel, A. Juels, R. Pappu. RFID privacy: An overview of
problems and proposed solutions. IEEE Security & Privacy 3.3: 34-43,
2005.

B. Gassend, Physical Random Functions, MSc Thesis, MIT, 2003.

B. Gassend, D. E. Clarke, M. van Dijk, S. Devadas: Silicon physical
random functions. ACM Conference on Computer and Communications
Security 2002, pp. 148-160, 2002

O. Goldreich: Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge University Press, 2009.

R.N. Goldman: Non-counterfeitable document system. US-Patent
4,423415. Publication date: 1983. Priority date: 1980. See
https://patents.google.com/patent/US4423415A

J. Guajardo, S. S. Kumar, G. J. Schrijen, P. Tuyls: FPGA Intrinsic PUFs
and Their Use for IP Protection. CHES 2007: 63-80

T. Haist, H.J. Tiziani: Optical detection of random features for high
security applications. Optics Communication 147, pp. 173-179, 1998.
G. Hammouri, A. Dana, B. Sunar: CDs have fingerprints too. CHES
2009: 348-362.

C. Helfmeier, C. Boit, D. Nedospasov, J.-P. Seifert: Cloning Physically
Unclonable Functions. HOST 2013: 1-6

14

(27]

(28]

[29]

[30]

[31]
(32]
(33]

[34]

[35]

(36]

[37]

(38]

[39]
[40]
[41]
[42]

[43]

[44]
[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

C. Herder, M.D. Yu, F. Koushanfar, S. Devadas: Physical unclonable
functions and applications: A tutorial. Proceedings of the IEEE 102(8),
pp. 1126-1141, 2014.

C.H. Herder: Towards security without secrets. PhD Thesis, Mas-
sachusetts Institute of Technology (MIT), 2016.

D. E. Holcomb, W. P. Burleson, K. Fu: Power-Up SRAM State as an
Identifying Fingerprint and Source of True Random Numbers. IEEE
Trans. Computers 58(9): 1198-1210, 2009.

C. Jaeger, M. Algasinger, U. Riithrmair, G. Csaba, M. Stutzmann:
Random pn-junctions for physical cryptography. Applied Physics Letters
96(17), 172103, 2010.

A. Kent: Unconditionally secure bit commitment by transmitting mea-
surement outcomes. Physical review letters 109.13, 130501, 2012.

A. Kerckhoffs: La cryptographie militaire. Journal des sciences mili-
taires, Vol. IX, pp. 5-38, 1883.

A. Leier, C. Richter, W. Banzhaf, H. Rauhe: Cryptography with DNA
binary strands. Biosystems 57(1), pp. 13-22, 2000.

G. Lindstrom, G. Schullstrom: Verifiable identification document. US-
Patent 3,636,318. Publication date: 1972. Priority date: 1968. See
https://patents.google.com/patent/US3636318A

K. Lofstrom, W.R. Daasch, D. Taylor: IC identification circuit using
device mismatch. ISSCC 2000, pp. 372-373, 2000.

R. Maes, 1. Verbauwhede: Physically unclonable functions: A study on
the state of the art and future research directions. In: Towards Hardware-
Intrinsic Security. pp. 3-37, Springer, 2010.

M. Majzoobi, F. Koushanfar: Time-bounded authentication of FPGAs.
IEEE Transactions on Information Forensics and Security 6.3, p. 1123-
1135, 2011.

U.M. Maurer: Secret key agreement by public discussion from common
information. IEEE transactions on information theory 39.3, pp. 733-742,
1993.

D. Nedospasov, J.-P. Seifert, C. Helfmeier, C. Boit: Invasive PUF
Analysis. FDTC 2013: 30-38

R. Pappu: Physical One-Way Functions. PhD Thesis, Massachusetts
Institute of Technology, 2001.

R. Pappu, B. Recht, J. Taylor, N. Gershenfeld: Physical One-Way
Functions, Science, vol. 297, pp. 2026-2030, 20 September 2002.

M. Potkonjak, V. Goudar: Public physical unclonable functions. Pro-
ceedings of the IEEE 102.8 (2014): 1142-1156.

S. Philippe, M. Kiitt, M. McKeown, U. Riihrmair, A. Glaser: The
Application of Virtual Proofs of Reality to Nuclear Safeguards and Arms
Control Verification. In 57th Annual INMM Meeting, 2016.

R.L. van Renesse: 3DAS: a 3-dimensional-structure authentication sys-
tem. European Convention on Security and Detection, pp. 45-49, 1995.
R.L. van Renesse: Optical document security. Boston: Artech House,
1998.

U. Rithrmair: SIMPL Systems: On a Public Key Variant of Physical Un-
clonable Functions. IACR Cryptology ePrint Archive, Report 2009/255,
2009.

U. Rithrmair: SIMPL Systems, Or: Can we build cryptographic hardware
without secret key information? SOFSEM 2011. Lecture Notes in
Computer Science, Vol. 6543, Springer, 2011.

U. Rithrmair: SIMPL Systems as a Keyless Cryptographic and Security
Primitive. In: D. Naccache (Editor), Cryptography and Security: From
Theory to Applications. Lecture Notes in Computer Science, Vol. 6805,
Springer, 2012.

U. Rithrmair: Oblivious Transfer based on Physical Unclonable Func-
tions. TRUST 2010.

U. Rithrmair: Physical Turing Machines and the Formalization of
Physical Cryptography. Cryptology ePrint Archive, Report 2011/188,
2011.

U. Rithrmair, S. Devadas, F. Koushanfar: Security based on Physical
Unclonability and Disorder. In M. Tehranipoor and C. Wang (Editors):
Introduction to Hardware Security and Trust. Springer, 2011

U. Rithrmair, M. van Dijk: Practical Security Analysis of PUF-Based
Two-Player Protocols. pp. 251-267, CHES 2012.

U. Riihrmair, D. E. Holcomb: PUFs at a Glance. DATE 2014.

U. Rithrmair, J.L. Martinez-Hurtado, X. Xu, C. Kraeh, C. Hilgers, D.
Kononchuk, J.J. Finley, and W.P. Burleson: Virtual Proofs of Reality
and their Physical Implementation. IEEE Symposium on Security and
Privacy, pp. 70-85, 2015.

U. Riihrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, J. Schmidhuber:
Modeling Attacks on Physical Unclonable Functions. ACM Conference
on Computer and Communications Security, 2010.

[56] U. Riithrmair, J. Solter, F. Sehnke: On the Foundations of Physical
Unclonable Functions. IACR Cryptology ePrint Archive, 2009.

U. Rithrmair, X. Xu, J. Solter, A. Mahmoud, M. Majzoobi, F. Koushan-
far, W. P. Burleson: Efficient Power and Timing Side Channels for
Physical Unclonable Functions. CHES 2014: 476-492

J.R. Smith, A.V. Sutherland: Microstructure based indicia. Proceedings
of the Second Workshop on Automatic Identification Advanced Tech-
nologies, 1999.

G.J. Simmmons: Identification of data, devices, documents and individu-
als. Annual International Carnahan Conference on Security Technology,
pp. 197-218, 1991.

A. Sharma, L. Subramanian, E. A. Brewer: PaperSpeckle: microscopic
fingerprinting of paper. Proceedings of the 18th ACM conference on
Computer and communications security (CCS’18), 2011.

M. Stutzmann, G. Csaba, P. Lugli, J.J. Finley, C. Jirauschek, C. Jaeger,
U. Rithrmair: Towards Electrical, Integrated Implementations of SIMPL
Systems. European Patent Application EP2230794 A3. Priority date:
March 16, 2009. See https://patents.google.com/patent/EP2230794A3
G.E. Suh, S. Devadas: Physical unclonable functions for device authen-
tication and secret key generation. Design Automation Conference, pp.
9-14, 2007.

S. Tajik, E. Dietz, S. Frohmann, J.-P. Seifert, D. Nedospasov, C.
Helfmeier, C. Boit, H. Dittrich: Physical Characterization of Arbiter
PUFs. CHES 2014: 493-509

The Economic Impacts of Counterfeiting and Piracy — Executive Sum-
mary. International Chamber of Commerce BASCAP and INTA Frontier
Reports, 2017. Download from https://iccwbo.org/publication/economic-
impacts- counterfeiting-piracy-report-prepared-bascap-inta/

Trade in Counterfeit and Pirated Goods: Mapping the Economic Impact.
Organisation for Economic Co-operation and Development (OECD),
2016. See also: http://www.oecd.org/gov/risk/trade-in-counterfeit-and-
pirated-goods-9789264252653-en.htm

A.W. Vaidya: Keeping card data secure at low cost. European Conven-
tion on Security and Detection, pp. 212-215, 1995.

A. Vijayakumar, S. Kundu: A novel modeling attack resistant PUF
design based on non-linear voltage transfer characteristics. DATE 2015:
653-658

D. Vijaywargi, D. Lewis, D. Kirovski: Optical DNA. Financial Cryptog-
raphy 2009: 222-229

A.C.C. Yao: Classical physics and the Church-Turing Thesis. Journal
of the ACM (JACM) 50.1, pp. 100-105, 2005.

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

15

APPENDIX
A. Table of Our Main Results

Table I on page 17 overviews at one glance some of the main
findings of this paper. It illustrates the stepwise transition from
standard schemes, that contain classical keys and employ ac-
tivatable isolation, to the most advanced physical approaches,
which are completely secret-free and do not require activatable
isolation. Many of the described features provable cannot be
achieved in a purely mathematical, Turing machine based
setting. Further explanations are given in the caption of the
table.

B. Idealized Weak PUFs in Symmetric Identification

To which degree are the keys and secrets of Scheme 6
caused by the considered implementation example of SRAM
PUFs, and to which extent are they inherent to the Weak PUF
concept itself? In order to address this question, let us define
an abstract, standardized version of plain, silicon Weak PUFs
with optimal properties (an Idealized Weak PUF, for short) as
follows:

Definition 17 (Idealized Weak PUFs). An Idealized Weak
PUF P is assumed to be a “black box” with a digital
response interface. When triggered with some fixed stimulus
S, it converts its internal manufacturing variations ManVp
into a single, fixed, multi-bit digital response R, which is
being output over this interface. We suppose that R has
perfect entropy, is perfectly stable and noise-free, and is a
sole function of ManVp, ie.:

R = F(ManVp).

Furthermore, F' is assumed to be efficiently computable and
publicly known, also to adversaries. Apart from its internal
manufacturing variations and randomness, an Idealized Weak
PUF is supposed to contain no further secrets.

Let us now assume that such an Idealized Weak PUF was
employed in Scheme 6 instead of an SRAM PUF. Due to its
perfect entropy and stability, it can be directly used as secret
key K, making error correction superfluous. But otherwise,
Scheme 6 runs exactly the same, also with Idealized Weak
PUFs, inducing the following keys, secrets, and isolation
assumptions:

(1) The prover’s hardware Hp now is not just classically
key-free (as in the case of SRAM PUFs), but even key-
free. But if Hp is a fully digital system, it will contain
various transient digital secrets: Firstly, the signals that
communicate R = K over the digital response interface
of the Idealized Weak PUF. Secondly, the digital secrets
that transfer K to the circuitry within Hp that computes
PRFk(N;). Thirdly, there will usually be further transient
digital secrets in the circuitry computing PRF (N;) itself,
their exact nature depending on the choice of PRF and
its implementation. Finally, p also contains physical
secrets, namely the physical manufacturing variations
ManVp from which R can be computed. (This assumes

that F' can be efficiently computed, as stipulated in
Definition 17).

(i1) The verifier’s hardware Hy contains a non-volatile digital
secret, or classical key, namely K. Hy is hence not even
classically key-free.

(iii) The scheme again assumes activatable isolation in Hp.

The only notable enhancement from replacing SRAM PUFs
by Idealized Weak PUFs therefore concerns the prover’s
hardware: It is now key-free instead of merely classically key-
free. All other keys, secrets, and isolation assumptions remain
the same as in the case of SRAM PUFs (compare Section

IV-A). This suggests two implications: Firstly, current silicon

practice in Weak PUF implementation is relatively close to

optimal, at least from the conceptual perspective of keys,
secrets, and isolation assumptions. Secondly, no completely
secret-free hardware can be achieved by plain, silicon Weak

PUFs, not even by idealized ones. Yet more powerful concepts

are required to this end, as discussed in Sections V to VIIIL.

Finally, let us comment in passing that Idealized Weak

PUFs are not merely theoretical or far-fetched. Certain existing

implementations, that are not based on volatile memory cells,

could be regarded as first steps towards their realization. This
includes, among others, transistor-based [35] and diode-based

[30] Weak PUFs, to which we refer interested readers for

further reading.

C. Idealized Strong PUFs in CRP-based ldentification

Similar to Appendix B, we ask in this section: Are the keys
and secrets in Scheme 7 mainly caused by the considered
example implementation of XOR Arbiter PUFs? Or are they
inherent to the Strong PUF concept itself? Once again, defin-
ing an idealized version of plain, silicon Strong PUFs turns
out helpful.

Definition 18 (Idealized Strong PUFs). An Idealized Strong
PUF P is assumed to be a “black box” with a digital
challenge-response interface. Whenever a digital challenge
C; is applied via the interface, the Idealized Strong PUF
generates a perfectly stable, noise-free digital response R;,
which solely is a function of the internal manufacturing
variations ManVp and the challenge C;:

Ri = F(Maan, Cl)

Furthermore, F is assumed to be efficiently computable and
publicly known, also to adversaries. The challenge-response
pairs of the Idealized Strong PUF shall constitute a pseudo-
random function that is computationally secure against exis-
tential forgery [1], [21]. Apart from its internal manufacturing
variations, the ldealized Strong PUF is supposed to contain
no further secrets.

Let us now suppose that such an Idealized Strong PUF is
employed in the CRP-based identification of Scheme 7 instead
of an XOR Arbiter PUF. The scheme then essentially remains
the same, even though the implicit error correction no longer
is necessary: Recall that Idealized Strong PUFs are perfectly
stable by Definition 18.

16

If carried out with Idealized Strong PUFs instead of XOR
Arbiter PUFs, Scheme 7 overall induces the following keys,
secrets and isolation assumptions:

(i) The prover’s hardware Hp is key-free throughout the
entire scheme, and also free of digital secrets in the
execution phase. In the set-up phase, Hp will contain
transient digital secrets (namely the digital responses R;
that are being output by the Idealized Strong PUF’s
digital interface: Knowing them will allow adversaries
impersonation attacks in any later run). Furthermore,
‘Hp contains physical secrets, namely the manufacturing
variations ManVp (we stress that this assumes that F’ is
efficiently computable, as stipulated in Definition 18).
The verifier’s hardware Hy contains a non-volatile digital
secret, or classical key, namely the CRP-List. Hy is
hence not even classically key-free.

(iii) No activatable isolation in Hp is assumed.

(ii)

Our analysis reveals the significant potential gains from
replacing XOR Arbiter PUFs by Idealized Strong PUFs:
Classical and volatile keys are avoided in Hp, and even digital
secrets are evaded during the execution phase. Given these
advancements, our findings suggest that current silicon Strong
PUF designs are not optimal from a perspective of keys and
secrets yet. This motivates future research on novel Strong
PUF designs. At the same time, however, our discussion also
shows that even Idealized Strong PUFs cannot achieve secret-
free security. This once more confirms that new, more powerful
approaches are required to this end, as the ones detailed in
Sections V to VIIIL.

Finally, our comparison of Idealized Weak and Strong PUFs
in Appendices B and C illustrates some of the theoretical
advantages of the Strong PUF over the Weak PUF concept:
Strong PUFs, at least conceptually, possess a demonstrably
better potential to avoid digital secrets and isolation assump-
tions. This fact is also subsumed at a glance in Table I, which
illustrates the steady transition from key-free to secret-free
security.

Keys & Secrets

Keys & Secrets

Isolation Assumptions

Security Scheme Primitive/Method at Verifier at Prover at Prover
(or Testing Device, resp.) (or Item and Tag, resp.) (or Item and Tag, resp.)
Remote Identification Symmetric Classical Classical Activatable
(via standard approach [1]) Cryptography Keys Keys Isolation
Remote Identification Asymmetric Public Keys. Classical Activatable
(via standard approach [1]) Cryptography Secret-Free Keys Isolation
Volatile Keys,
Remote Identification SRAM PUFs and Classical Transient Digital Secrets, Activatable
(via Scheme 6) Symmetric Cryptography Keys Non-Volatile Physical Secrets. Isolation
Classically Key-Free
Volatile Keys,
Remote Identification XOR Arbiter Classical Transient Digital Secrets, No Activatable
(via Scheme 7) PUFs Keys Non-Volatile Physical Secrets. Isolation
Classically Key-Free
Volatile Keys,
Virtual Proof of Temperature XOR Bistable Ring Classical Transient Digital Secrets, No Activatable
(via Protocol 1 of [54]) PUFs Keys Non-Volatile Physical Secrets. Isolation
Classically Key-Free
Remote Identification Idealized Weak PUFs and Classical Tran51el'1t Dlglta.l Secrets, Activatable
. . Non-Volatile Physical Secrets. .
(via Scheme 6 and App. B) Symmetric Cryptography Keys Isolation
Key-Free
Transient Digital Secrets
Remote Identification Idealized Classical (merely in Set-Up Phase), No Activatable
(via Scheme 7 and App. C) Strong PUFs Keys Non-Volatile Physical Secrets. Isolation
Key-Free
Volatile Physical Secrets
Remote Identification Optical Classical (merely in Set-Up Phase). No Activatable
(via Scheme 10) Complex PUFs Keys Secret-Free Isolation
(in all of Execution Phase)
Volatile Physical Secrets
Virtual Proof of Distance Optical Classical (merely in Set-Up Phase). No Activatable
(via Protocol 2 of [54]) Complex PUFs Keys Secret-Free Isolation

(in all of Execution Phase)

Remote Identification SIMPLs/ Secret-Free Secret-Free No Activatable
(via Scheme 13) PPUFs Isolation
On-Site Identification/ .
Unforgeable Item Tagging UNOs Secret-Free Secret-Free No Activatable

(via Scheme 16)

Isolation

TABLE I

Keys, secrets, and isolation assumptions in provers and verifiers when various physical primitives are used for remote identification (and item tagging).
The table emphasizes the steady transition from classically key-free over key-free to finally secret-free security. Any secret-free hardware by definition is
key-free, and any key-free hardware by definition is classically key-free, but not vice versa (Definitions 3 and 4), making secret-free the strongest feature.
For completion, the employed isolation assumptions are listed in the rightmost column. Activatable isolation is a common, but rather strong assumption,

whence schemes without it are preferable. Finally, we emphasize once more that that the presence of secrets in vulnerable hardware is not just an academic

observation: All keys and secrets of the table have been extracted by different, dedicated attacks in the past in practice [1], [55], [39], [26], [63], [57].

This strongly motivates future research on secret-free hardware.

17

