
On the Local Leakage Resilience of
Linear Secret Sharing Schemes*

Fabrice Benhamouda† Akshay Degwekar‡ Yuval Ishai§ Tal Rabin¶

Jan 6, 2021

Abstract

We consider the following basic question: to what extent are standard secret sharing schemes
and protocols for secure multiparty computation that build on them resilient to leakage? We
focus on a simple local leakage model, where the adversary can apply an arbitrary function of
a bounded output length to the secret state of each party, but cannot otherwise learn joint
information about the states.

We show that additive secret sharing schemes and high-threshold instances of Shamir’s
secret sharing scheme are secure under local leakage attacks when the underlying field is of a
large prime order and the number of parties is sufficiently large. This should be contrasted with
the fact that any linear secret sharing scheme over a small characteristic field is clearly insecure
under local leakage attacks, regardless of the number of parties. Our results are obtained via
tools from Fourier analysis and additive combinatorics.

We present two types of applications of the above results and techniques. As a positive ap-
plication, we show that the “GMW protocol” for honest-but-curious parties, when implemented
using shared products of random field elements (so-called “Beaver Triples”), is resilient in the
local leakage model for sufficiently many parties and over certain fields. This holds even when
the adversary has full access to a constant fraction of the views. As a negative application, we
rule out multiparty variants of the share conversion scheme used in the 2-party homomorphic
secret sharing scheme of Boyle et al. (Crypto 2016).

*An extended abstract of this paper appeared in [BDIR18].
†Algorand Foundation. Email: fabrice.benhamouda@normalesup.org. Research done while at IBM Research and

supported by the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under
Contract No. W911NF-15-C-0236.

‡Two Sigma Investments, LP. Email: akshayd@twosigma.com. The views expressed herein are solely the views of the
author(s) and are not necessarily the views of Two Sigma Investments, LP or any of its affiliates. They are not intended
to provide, and should not be relied upon for, investment advice. This work was done when the author was a graduate
student at MIT and a summer intern at IBM Research. Research supported in part by NSF Grants CNS-1413920 and
CNS-1350619, and by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Research Office
under contracts W911NF-15-C-0226 and W911NF-15-C-0236.

§Technion. Email: yuvali@cs.technion.ac.il. Research supported in part by ERC grant 742754, ISF grant 1709/14,
and NSF-BSF grant 2015782, and a grant from the Ministry of Science and Technology, Israel and Department of Science
and Technology, Government of India.

¶Algorand Foundation. Email: tal@algorand.foundation. Research done while at IBM Research and supported
by the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under Contract No.
W911NF-15-C-0236.



Contents

1 Introduction 1
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Publication Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Overview of the Techniques 6
2.1 Leakage Resilience of Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Application to Leakage Resilience of MPC protocols . . . . . . . . . . . . . . . . . . . 11
2.3 On Local Share Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Additive Combinatorics Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Preliminaries 15
3.1 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Linear Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 On Leakage Resilience of Secret Sharing Schemes 19
4.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Leakage Resilience of Additive and Shamir’s Secret Sharing Schemes . . . . . . . . . 20

4.2.1 Main Technical Theorem: Leakage Resilience of Linear Codes . . . . . . . . . 20
4.2.2 Local Leakage Resilience of Additive and Shamir’s Secret Sharing Schemes . 21
4.2.3 Example Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Proofs of Theorems 4.5, 4.6, and 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Proof of Theorem 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Warm-Up: Proof of Theorem 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Leakage Resilience of GMW with preprocessing 36
5.1 Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 GMW with Shared Product Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Proof of Private-Outputs Local Leakage Resilience (Theorem 5.5) . . . . . . . . . . . 40
5.4 Proof of Public-Outputs Local Leakage Resilience (Theorem 5.6) . . . . . . . . . . . . 42

6 On the Impossibility of Local Share Conversion 43
6.1 More Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 On Additive Secret Sharing: Proof of Theorem 6.5 . . . . . . . . . . . . . . . . . . . . 46
6.3 On Shamir’s Secret Sharing: Proof of Theorem 6.6 . . . . . . . . . . . . . . . . . . . . 48
6.4 Proof of Lemma 6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4.1 Gowers’ Uniformity Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.2 Proof of Lemma 6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A Proofs of Useful Bounds 58

i



1 Introduction

The recent attacks of Meltdown and Spectre [KGG+18, LSG+18] have brought back to the forefront
the question of side-channel leakage and its effects. Starting with the early works of Kocher
et al. [Koc96, KJJ99], side-channel attacks have demonstrated vulnerabilities in cryptographic
primitives. Moreover, there are often inherent tradeoffs between efficiency and leakage resilience,
where optimizations increase the susceptibility to side-channel attacks.

A large body of work on the theory of leakage-resilient cryptography (cf. [BBR88, BBCM95,
Riv97, DSS01, CDH+00, MR04, DP08, AGV09]) studies the possibility of constructing crypto-
graphic schemes that remain secure in the presence of partial leakage of the internal state. One
prominent direction of investigation has been designing leakage-resilient cryptographic protocols
for general computations [ISW03, FRR+10, DF12, Rot12, GR15, GIM+16].

The starting point for most of these works is the observation that some standard cryptographic
schemes are vulnerable to very simple types of leakage. Moreover, analyzing the leakage resilience
of others seems difficult. This motivates the design of new cryptographic schemes that deliver
strong provable leakage resilience guarantees.

In this work, we forgo designing special-purpose leakage-resilient schemes and focus on studying
the properties of existing common designs. We want to understand:

To what extent are standard cryptographic schemes leakage resilient?

We restrict our attention to linear secret sharing schemes and secure multiparty computation (MPC)
protocols that build on them. In particular, we would like to understand the leakage resilience
properties of the most commonly used secret sharing schemes, like additive secret sharing and
Shamir’s scheme, as well as simple MPC protocols that rely on them.

Analyzing existing schemes has a big advantage, as it can potentially allow us to enjoy their
design benefits while at the same time enjoying a strong leakage-resilience guarantee. Indeed,
classical secret sharing schemes and MPC protocols have useful properties which the specially
designed leakage-resilient schemes are not known to achieve. For instance, linear secret sharing
schemes can be manipulated via additive (and sometimes multiplicative) homomorphism, and
standard MPC protocols can offer resilience to faults and to a large number of fully corrupted
servers. Finally, classical schemes are typically more efficient than special-purpose leakage-resilient
schemes.

Local Leakage. We study leakage resilience under a simple and natural model of local leakage
attacks. To motivate the model, consider servers sharing some secret data and possibly performing
some computation on their shares. The local leakage model has the following three properties:
(1) The attacker can leak information about each server’s state locally, independently of the other
servers’ states; this is justified by physical separation. (2) Only a few bits of information can be leaked
about the internal state of each server; this is justified by the limited precision of measurements
of physical quantities such as time or power. (3) The leakage is adversarial, in the sense that the
adversary can decide what function of the secret state to leak. This is due to the fact that the
adversary may have permission to legally execute programs on the server or have other forms of
influence that can somewhat control the environment.

The local leakage model we consider is closely related to other models that were considered
in the literature under the names “only computation leaks” (OCL) [MR04, BDL14, GR15, DLZ15],

1



“intrusion resilience” [DP07], or “bounded communication leakage” [GIM+16]. These alternative
models are typically more general in that they allow the leakage to be adaptive, or computable by
an interactive protocol, whereas the leakage model we consider is non-adaptive.

Despite its apparent simplicity, our local leakage model can be quite powerful and enable
very damaging attacks. In particular, in any linear secret sharing scheme over a field F2𝑘 of
characteristic 2, an adversary can learn a bit of the secret by leaking just one bit from each share.
Surprisingly, in the case of Shamir’s scheme, full recovery of a multi-bit secret is possible, in
some settings, by leaking only one bit from each share [GW17]. Some of the most efficient
implementations of MPC protocols (such as the ones in [DPSZ12, KOS16, AFL+16]) are based on
secret sharing schemes over F2𝑘 and are thus susceptible to such an attack.

As mentioned earlier, most prior works on leakage-resilient cryptography (see Section 1.2
below) design special-purpose leakage-resilient schemes. These works have left open the question
of analyzing (variants of) standard schemes and protocols. Such an analysis is motivated by the
hope to obtain better efficiency and additional security features.

1.1 Our Results

We obtain three kinds of results. First, we analyze the local leakage resilience of linear secret
sharing schemes. Then, we apply these results to prove the leakage resilience of some natural
MPC protocols. Finally, we present a somewhat unexpected application of these techniques to rule
out the existence of certain local share conversion schemes. Our results are based on Fourier analysis
techniques developed in the context of additive combinatorics. See Section 1.2 for details. We now
give a more detailed overview of these results.

Leakage resilience of linear secret sharing schemes. In a linear secret sharing scheme over a
finite field F, the secret is an element 𝑠 ∈ F and the share obtained by each party consists of one or
more linear combinations of 𝑠 and some random field elements. Two commonly used linear secret
sharing schemes are the additive scheme, where the shares are random field elements that add up
to the secret, and Shamir’s scheme, where the shares are evaluations of a random degree-bounded
polynomial whose free coefficient is equal to the secret.

We consider a scenario where 𝑛 parties hold a linear secret sharing of either 𝑠0 or 𝑠1 specified
by the adversary A. (Due to linearity, we can assume without loss of generality that 𝑠0 = 0 and
𝑠1 = 1.) The adversary can also specify arbitrary leakage functions that output from each party’s
share 𝑚 bits of leakage. The adversary’s goal is to determine if the secret shared is 𝑠0 or 𝑠1. In this
setting, we prove the following theorems.

Theorem 1.1 (Informally, Additive Secret Sharing). Additive secret sharing scheme over F𝑝 is local
leakage resilient even when up to log2(𝑝) − 1 bits (namely, all but one bit) are leaked from every share.
Concretely, the adversary’s distinguishing advantage, in distinguishing between any two secrets, is at most
𝑝 · 2−Ω(𝑛/𝑝2) where 𝑛 is the number of parties. In particular, when 𝑝 is fixed and 𝑛 tends to infinity, the
advantage is 2−Ω(𝑛).

For a more precise statement see Corollaries 4.8, 4.10, and 4.11. There are many other parameter
settings possible, for example if 𝑝 > 𝑛, then additive secret sharing is leakage resilient when
(log 𝑝)/4 bits are leaked from each share. The adversary’s advantage degrades as 2−Ω(

√
𝑛). In

contrast to the theorem above, if the additive secret sharing were over F2𝑘 , the adversary could

2



distinguish between the two secrets by just leaking the least significant bit of each share and adding
those up to reveal the least significant bit of the secret.

We show the following result for Shamir’s secret sharing.

Theorem 1.2 (Informally, Shamir’s Secret Sharing). Let 𝑝 > 𝑛 be a prime, where 𝑛 is the number of
parties. Then, (𝑛, 𝑡)-Shamir’s secret sharing1 over F𝑝 is local leakage resilient for the following parameters:

1. 𝑡 = 𝛼𝑛 for some constant 𝛼 < 1 when a constant number of bits are leaked from each share. The
adversary’s advantage degrades as 2−Ω(𝑛). When 1 bit is leaked, 𝛼 = 0.92 suffices.

2. 𝑡 = 𝑛 − 𝑛1/4 when a quarter of the bits ((log 𝑝)/4 of log 𝑝) are leaked from every share, where
𝑛 < 𝑝 ≤ 2𝑛. The adversary’s advantage degrades as 2−Ω(

√
𝑛).

For a more precise statement see Corollaries 4.9, 4.12, and 4.13.
Shamir’s secret sharing is typically used with threshold 𝑡 = 𝑛/2 or 𝑡 = 𝑛/3, in which case the

above result is not applicable. While we cannot prove local leakage resilience, we do not know of
attacks in this parameter regime. We conjecture the following:

Conjecture 1.3 (Shamir’s Secret Sharing). For large enough 𝑛, (𝑛, 𝑡 = 𝛼𝑛)-Shamir’s secret sharing is
1-bit local leakage resilient for any constant 𝛼 > 0.

Observe that proving the conjecture for a specific constant 𝛼 immediately implies the conjecture
for any constant 𝛼′ > 𝛼. This follows from the fact that (𝑛, 𝛼𝑛)-Shamir’s shares can be locally
converted to random (𝑛, 𝛼′𝑛)-Shamir’s shares for 𝛼′ > 𝛼.2

Application to leakage-resilient MPC. We use the leakage resilience of linear secret sharing
schemes to show that the honest-but-curious variant of the GMW [GMW87] protocol with a “Beaver
Triples” setup [Bea91] (that we call GMW with shared product preprocessing) is local leakage
resilient.

For the MPC setting, we modify the leakage model as follows to allow for a stronger adversary.
The adversary A is allowed to corrupt a fraction of the parties, see their shares and views of the
entire protocol execution. In addition, A specifies local leakage functions for the non-corrupted
parties and receives the corresponding leakage on their individual views.

The honest-but-curious GMW protocol with shared product preprocessing works as follows.
The parties wish to evaluate an arithmetic circuit 𝐶 on an input 𝑥. The parties receive random
shares of the input 𝑥 under a linear secret sharing scheme and random shares of Beaver triples
under the same scheme.3 The protocol proceeds gate by gate where the parties maintain a secret
sharing of the value at each gate. For input, addition and inverse (−1) gates, parties locally
manipulate their existing shares to generate the shares for these gates. For multiplication gates,
where we multiply 𝑧1 and 𝑧2 to get 𝑧, the parties first construct 𝑧1 − 𝑎 and 𝑧2 − 𝑏 by broadcasting
the differences of the shares of the inputs and of the shares of 𝑎 and 𝑏 from a fresh Beaver triple
(𝑎, 𝑏, 𝑎𝑏). Then the parties can locally construct a secret sharing of 𝑧 = 𝑧1 · 𝑧2 by using the following
relation:

𝑧 = (𝑧1 − 𝑎)(𝑧2 − 𝑏) + 𝑎(𝑧2 − 𝑏) + 𝑏(𝑧1 − 𝑎) + 𝑎𝑏 .

1In the whole paper, a (𝑛, 𝑡)-Shamir’s secret sharing scheme or Shamir’s secret sharing scheme with (reconstruction)
threshold 𝑡 uses polynomials of degree 𝑡 − 1, so that the secret cannot be recovered from a collusion of less 𝑡 parties.
The secret can be recovered from the shares of 𝑡 parties.

2This can be done by locally adding shares of an arbitrary (𝑛, 𝛼′𝑛)-Shamir’s sharing of 0 to the given (𝑛, 𝛼𝑛)-Shamir’s
shares for 𝛼′ > 𝛼.

3A Beaver triple consists of (𝑎, 𝑏, 𝑎𝑏)where 𝑎, 𝑏 are randomly chosen field elements.

3



We show that when the underlying secret sharing scheme is local leakage resilient, this protocol
can also tolerate local leakage. We can prove leakage resilience in a simulation-based definition.
See Section 5 for details. Informally, when the additive secret sharing scheme is used, we show the
following.

Theorem 1.4 (Informally, Leakage Resilience of GMW). For any prime 𝑝, the GMW protocol with
shared product preprocessing and additive secret sharing over F𝑝 is local leakage resilient. The adversary
can corrupt 𝑛/2 parties, learn their entire state and, then locally leak a constant number of bits each from all
the uncorrupted parties. The adversary’s distinguishing advantage for this attack is 2−Ω(𝑛).

On the impossibility of local share conversion. In the problem of local share conversion [CDI05,
BIKO12], 𝑛 parties hold a share of a secret 𝑠 under a secret sharing scheme L. Their goal is to
locally, without interaction, convert their shares to shares of a related secret 𝑠′ under a different
secret sharing scheme L′ such that (𝑠, 𝑠′) satisfy a pre-specified relation 𝑅. We assume 𝑅 is
not trivial in the sense that it is not permissible to map shares of every secret 𝑠 to shares of a
fixed constant. Local share conversion has been used to design protocols for Private Information
Retrieval [BIKO12]. More recently, different kinds of local share conversion were used to construct
Homomorphic Secret Sharing (HSS) schemes [BGI16, DHRW16, FGJI17]. Using techniques similar
to the ones for leakage resilience, we rule out certain nontrivial instances of local share conversion.
We first state our results and then discuss their relevance to constructions of HSS schemes.

Theorem 1.5 (Informally, Impossibility of Local Share Conversion). Three-party additive secret sharing
over F𝑝 , for any prime 𝑝 > 2, cannot be converted to additive secret sharing over F2, with constant success
probability (> 5/6), for any non-trivial relation 𝑅 on the secrets.

The proof of this result uses a Fourier analysis technique similar to the analysis of the Blum-
Luby-Rubinfeld linearity test [BLR93]. We also show a similar impossibility result for Shamir’s
secret sharing. This result relies crucially on a technique by Green and Tao [GT10]. We elaborate
more in Section 2. See Theorems 6.5 and 6.6 for the precise general statements.

Relevance to HSS Schemes. At the heart of the DDH-based 2-party HSS scheme of Boyle et
al. [BGI16] and its Paillier-based variant of Fazio et al. [FGJI17] is an efficient local share conversion
algorithm of the following special form. The two parties hold shares 𝑔𝑥 and 𝑔𝑦 respectively of
𝑏 ∈ {0, 1}, such that 𝑔𝑏 = 𝑔𝑥 · 𝑔𝑦 . The conversion algorithm enables them to locally compute
additive shares of the bit 𝑏 over the integersZ, with small (inverse polynomial) failure probability.
Note that this implies similar conversion to additive sharing overF2. One approach to constructing
3-party HSS schemes would be to generalize this local share conversion scheme to 3 parties, i.e.,
servers holding random 𝑔𝑥 , 𝑔𝑦 and 𝑔𝑧 respectively, such that 𝑔𝑏 = 𝑔𝑥 · 𝑔𝑦 · 𝑔𝑧 , can locally convert
these shares to additive shares of the bit 𝑏 over integers. We rule out this approach by showing
that even when given the exponents 𝑥, 𝑦 and 𝑧 in the clear (i.e. 𝑥 + 𝑦 + 𝑧 = 𝑏 over F𝑝), locally
computing additive shares of 𝑏 overF2 (or the integers) with small failure probability is impossible.
A similar share conversion from (noisy) additive sharing over F𝑝 to additive sharing over F2 was
used by Dodis et al. [DHRW16] (and recently by Boyle et al. [BKS19]) to obtain an LWE-based
construction of 2-party HSS and spooky encryption. However, in this case there is an alternative
route of reducing the multiparty case to the 2-party case. Our negative result only rules out a direct
generalization of the 2-party solution to the multi-party case.

4



1.2 Related Work

Our work was inspired by the surprising result of Guruswami and Wootters [GW17] mentioned
above. This work turned attention to the fact that some natural linear secret sharing schemes
miserably fail to offer local leakage resilience over fields of characteristic 2, in that leaking only one
bit from each share is sufficient to fully recover a multi-bit secret.

The traditional “leakage” model considered in multiparty cryptography allows the adversary
to fully corrupt up to 𝑡 parties and learn their entire secret state. This 𝑡-bounded leakage model mo-
tivated secret sharing schemes designed to protect information [Sha79, Bla79] and secure multiparty
computation (MPC) protocols designed to protect computation [Yao86, GMW87, BGW88, CCD88].
The same leakage model was also considered at the hardware level, where parties are replaced
by atomic gates [ISW03]. The 𝑡-bounded leakage considered in all these works is quite different
from the local leakage model we consider: we allow partial leakage from every secret state, whereas
the 𝑡-bounded model allows full leakage from up to 𝑡 secret states. While resilience to 𝑡-bounded
leakage was shown to imply resilience to certain kinds of “noisy leakage” [FRR+10, DDF14] or
“low-complexity leakage” [BIVW16], it clearly does not imply local leakage resilience in general.
Indeed, additive secret sharing over F2𝑘 is highly secure in the 𝑡-bounded model and yet is totally
insecure in the local leakage model.

The literature on leakage-resilient cryptography is extensive, thus we discuss a few of the most
relevant works. Secret sharing schemes that offer local leakage resilience were first constructed
by Dziembowski and Pietrzak [DP07]. Their scheme involved an interactive reconstruction pro-
cedure, which was needed for allowing the reconstruction to access only small part of the shares.
Simpler constructions (without the latter efficiency feature) were proposed by Davì et al. [DDV10].
In particular, they presented a simple two-party scheme based on any two-source extractor, such
as the inner-product extractor. For stronger or more general constructions of leakage-resilient
secret sharing schemes, see the recent works of Goyal and Kumar [GK18], Srinivasan and Va-
sudevan [SV18], and Kumar et al. [KMS18] and references therein. All the above works design
specialized (and non-linear) secret sharing schemes that have strong leakage-resilience properties.
In contrast, we are interested in exploring the leakage resilience of standard (linear) schemes.

Subsequent to our work, Nielsen and Simkin [NS19] studied the question of leakage resilience
of Shamir’s secret sharing, and more generally information theoretic secret sharing schemes. They
show that, in the local leakage model, when the total number of bits leaked exceeds total entropy
of all the shares jointly, the secret is revealed. In our results, the total entropy of the shares is
significantly higher than the total bits leaked. Closing this gap and showing either better leakage
resilience or better attacks remains an open question.

We turn to survey some relevant works on leakage-resilient MPC. Boyle et al. [BGK11] consider
the problem of leakage-resilient coin-tossing and reduce it to a certain kind of leakage-resilient
verifiable secret sharing. Here too, a new construction of (nonlinear) secret sharing is developed
in order to achieve these results.

Goldwasser and Rothblum [GR15] give a general transformation that takes any algorithm
and creates a related algorithm that computes the same function and can tolerate leakage. This
approach can be viewed as a special-purpose MPC protocol for a constant number of parties that
offers local leakage resilience (and beyond) [BDL14]. However, this construction is quite involved
and offers poor concrete leakage resilience and efficiency overhead.

Most relevant to our MPC-related results is the recent work of Goyal et al. [GIM+16] on leakage-

5



resilient secure two-party computation (see also [GIW17]). This work analyzes the resilience of
a GMW-style protocol under a similar (in fact, more general) type of leakage to the local leakage
model we consider. One key difference is that the protocol from [GIM+16] modifies the underlying
circuit (incurring a considerable overhead) whereas we apply the GMW protocol to the original
circuit. Also, our approach applies to a large number of parties of which a large fraction can be
entirely corrupted, whereas the construction in [GIM+16] is restricted to the two-party setting.

Our results use techniques developed in the context of additive combinatorics. See Tao and
Vu [TV06] for an exposition on Fourier analysis methods used in additive combinatorics. The
works most relevant to ours are works by Green and Tao [GT10] and follow-ups by Gowers and
Wolf [GW10, GW11a, GW11b]. The relation of these works and their techniques to ours is discussed
in Section 2.4.

1.3 Publication Note

An abridged version of this paper appeared in the proceedings of Crypto 2018 [BDIR18]. The
current version provides better security bounds using new ideas to bound the sum of Fourier
coefficients appearing in the analysis. In particular, while the local leakage resilience of Shamir’s
secret sharing was only proved for threshold 𝑡 = 𝑛 − 𝑂(log 𝑛) in [BDIR18], here we show local
leakage resilience for threshold 𝑡 = Θ(𝑛) (for constant-size leakage, when the number of parties 𝑛

goes to infinity). In addition, the current version includes all the security proofs, improves several
notations, fixes some minor mistakes, and discusses additional related works.

2 Overview of the Techniques

2.1 Leakage Resilience of Secret Sharing Schemes

Very simple local leakage attacks exist for linear secret sharing schemes over small characteristic
fields. These attacks stem from the existence of small additive subgroups in these fields. This
gives rise to the hope that linear schemes over fields of prime order, that lack such subgroups, are
leakage resilient. We start by considering the simpler case of additive secret sharing.

Additive secret sharing. We define AddSh(𝑠) to be a function that outputs random shares
𝑠(1) , ..., 𝑠(𝑛) such that

∑
𝑠(𝑖) = 𝑠.

Let 𝝉 = 𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛) be some leakage functions. We want to show that for all secrets
𝑠0 , 𝑠1 ∈ F, the leakage distributions are statistically close. That is,{

𝝉(s) : s← AddSh(𝑠0)
}
≈

{
𝝉(s) : s← AddSh(𝑠1)

}
,

where 𝝉(s) = 𝜏(1)(𝑠(1)), . . . , 𝜏(𝑛)(𝑠(𝑛)) is the total leakage the adversary sees on the shares s =

𝑠(1) , 𝑠(2) , . . . , 𝑠(𝑛).
We know that there is a local leakage attack on F2𝑘 : simply leak the least significant bit (lsb)

from all the parties and add the outputs to reconstruct the lsb of the secret. What enables the
attack on F2𝑘 while F𝑝 is unaffected?

To understand this difference, it is instructive to start with an example. Let us consider additive
secret sharing over F2𝑘 for 3 parties. We know that,

lsb(𝑠) = lsb(𝑠(1)) + lsb(𝑠(2)) + lsb(𝑠(3)) .

6



This attack works becauseF2𝑘 has many subgroups that are closed under addition. Let𝐴0 = lsb−1(0)
and 𝐴1 = lsb−1(1). The set 𝐴0 is an additive subgroup of F2𝑘 and 𝐴1 is a coset of 𝐴0. Furthermore,
the lsb function is a homomorphism from F2𝑘 to the quotient group4 F2𝑘⧸𝐴0. The lsb leakage tells
us which coset each share 𝑠(𝑗) is in. Then by adding these leakages, we can infer whether 𝑠 ∈ 𝐴0 or
𝑠 ∈ 𝐴1 (i.e., to which coset it belongs).

Let us consider the analogous situation over F𝑝 for a prime 𝑝. The group F𝑝 does not have any
subgroups. In fact, it has an opposite kind of expansion property: that adding any two sets results
in a larger set.

Theorem 2.1 (Cauchy-Davenport Inequality). Let 𝐴, 𝐵 ⊆ F𝑝 . Let 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}.
Then,

|𝐴 + 𝐵| ≥ min(𝑝, |𝐴| + |𝐵| − 1) .

So, if we secret shared a random secret over F𝑝 and got back leakage output indicating that
𝑠(1) ∈ 𝐵1, 𝑠(2) ∈ 𝐵2, and 𝑠(3) ∈ 𝐵3, we can infer that 𝑠 ∈ 𝐵1 + 𝐵2 + 𝐵3. But because of this expansion
property, the set 𝐵1 + 𝐵2 + 𝐵3 is a lot larger than the sets 𝐵𝑖’s individually. This is in contrast to the
F2𝑘 case where e.g. 𝐴0 + 𝐴1 was the same size as 𝐴0.

This gives an idea of why the lsb attack does not work. Some information is lost because of
expansion. This is not sufficient for us though. What we need to show is stronger. We want to show
that even given the leakage, the secret is almost completely hidden. This is a more “distributional”
statement.

We model it as follows: Let us say that we have 𝑛 parties where party 𝑗 holds the share 𝑠(𝑗).
The adversary A has specified leakage functions 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 and received back the leakage
ℓ = ℓ1 , ℓ2 , . . . , ℓ𝑛 where ℓ 𝑗 = 𝜏(𝑗)(𝑠(𝑗)): the leakage on the 𝑗-th share. We want to show that even
conditioned on this leakage, the probability that the secret was 𝑠0 vs 𝑠1 is close to a half. That is,
we want to show the following:

Pr
s←AddSh(𝑠0)

[𝝉(s) = ℓ] ≈ Pr
s←AddSh(𝑠1)

[𝝉(s) = ℓ] . (1)

Below, we will sketch an argument showing that leaking from the additive shares of 0 is statistically
close to leaking from a vector of uniformly random elements. This argument is not specific to
additive secret sharing, but applies to any linear secret sharing scheme. If 𝑈 is the uniform
distribution over F𝑛

𝑝 ,
Pr

s←AddSh(0)
[𝝉(s) = ℓ] ≈ Pr

u←𝑈
[𝝉(u) = ℓ] . (2)

This argument is not specific to 0 and shows that additive secret sharing is local leakage resilient.
More precisely, Eq. (2) implies Eq. (1) by a simple hybrid argument as shares of any other secret 𝑠 are
simply shares of 0 with the secret 𝑠 added to the first party’s share. That is, let e1 = (1, 0, 0, . . . , 0),

{s + 𝑠 · e1 : s← AddSh(0)} ≡ {y : y← AddSh(𝑠)} .

We want to understand the probability of getting a particular value of leakage under both the
uniform distribution and the additive shares of 0. To understand this probability better, let us

4To recall, in the quotient group F2𝑘⧸𝐴0, the elements are the cosets 𝐴0 , 𝐴1. The sum of two cosets is the coset
formed by the sum of elements of the first coset with elements of the second coset. Concretely, we have 𝐴0 + 𝐴0 = 𝐴0,
𝐴0 + 𝐴1 = 𝐴1, and 𝐴1 + 𝐴1 = 𝐴0.

7



consider the following operator:

Λ( 𝑓1 , 𝑓2 , . . . , 𝑓𝑛) = E
s←AddSh(0)

[
𝑓1(𝑠(1)) · 𝑓2(𝑠(2)) · · · 𝑓𝑛(𝑠(𝑛))

]
.

By picking the functions 𝑓𝑗’s appropriately, we can model the probability of getting a particular
value of leakage under the secret sharing. Define 1ℓ 𝑗 : F𝑝 → {0, 1} as follows: 1ℓ 𝑗 (𝑠) = 1 if the
output of the leakage function 𝜏(𝑗) on input 𝑠 is ℓ 𝑗 , i.e., 𝜏(𝑗)(𝑠) = ℓ 𝑗 and, 0 otherwise. Notice that we
can write the probability of leakage output being ℓ in terms of the operator Λ as follows,

Pr
s←AddSh(0)

[𝝉(s) = ℓ] = Λ(1ℓ1 , 1ℓ2 , . . . , 1ℓ𝑛 ) .

The probability of the leakage being ℓ on the uniform distribution is simply a product of the
expectations:

Pr
u←𝑈
[𝝉(u) = ℓ] = E

u←𝑈
[1ℓ(u)] = E

u←𝑈

[
1ℓ1(𝑢(1)) · 1ℓ2(𝑢(2)) · · · 1ℓ𝑛 (𝑢(𝑛))

]
where 1ℓ(u) = 1ℓ1(𝑢(1)) · 1ℓ2(𝑢(2)) · · · 1ℓ𝑛 (𝑢(𝑛)). So, we want to show:

Λ(1ℓ1 , 1ℓ2 , . . . , 1ℓ𝑛 ) = E
u←𝑈
[1ℓ(u)] + 𝜀 .

We bound the difference |Λ(1ℓ) − Eu←𝑈[1ℓ(u)]| using Fourier analysis. There are two steps to this
proof:

Step 1. Poisson Summation Formula. Using the Poisson summation formula for the Λ operator to
get a representation in the Fourier basis: the Fourier spectrum of Λ takes a form highly
similar to the definition of Λ. This translates the problem of bounding the statistical distance
to bounding Fourier coefficients.

Step 2. Bounding Fourier Coefficients over F𝑝 . The first step is generic and independent of the
underlying field. In the second step we leverage the fact that the underlying field is F𝑝 , a
field with no non-trivial additive subgroups, to bound the Fourier coefficients of the leakage
functions.

Step 1. Fourier Representation using the Poisson Summation Formula. For Λ defined over a
linear code 𝐶:

Λ( 𝑓1 , 𝑓2 , . . . , 𝑓𝑛) = E
s←𝐶

[
𝑓1(𝑠(1)) · 𝑓2(𝑠(2)) · · · 𝑓𝑛(𝑠(𝑛))

]
,

Λ can be equivalently represented on the dual code𝐶⊥ (see Poisson summation formula Lemma 4.16)
as,

=
∑
®𝛼∈𝐶⊥

�̂�1(𝛼1) · �̂�2(𝛼2) · · · �̂�𝑛(𝛼𝑛) ,

with the ‘Fourier coefficients’ �̂� (𝛼) = E𝑥←F𝑝 [ 𝑓 (𝑥) · 𝜔𝛼𝑥] where 𝜔 = exp(2𝜋𝑖/𝑝) is a root of unity.
Observe that as 1̂ℓ (0) = E𝑥[1ℓ (𝑥)],

E
u←𝑈
[1ℓ(u)] = 1̂ℓ 𝑗 (0) · 1̂ℓ 𝑗 (0) · · · 1̂ℓ𝑛 (0)

Hence, the error term we have to bound is the following:

Λ(1ℓ) − E
u←𝑈
[1ℓ(u)] =

∑
®𝛼∈𝐶⊥\{®0}

1̂ℓ1(𝛼1) · 1̂ℓ2(𝛼2) · · · 1̂ℓ𝑛 (𝛼𝑛) . (3)

8



Step 2. Bounding Fourier Coefficients. Now we want to show that these Fourier coefficients
1̂ℓ𝑖 (𝛼𝑖) are small over F𝑝 . It is instructive to observe how the presence of subgroups (over F2𝑘 ) and
the lack thereof (over F𝑝) manifests itself. Over F2𝑘 because of the non-trivial subgroups, these
non-zero Fourier coefficients can be large and hence the error term is not small. On the other
hand, over F𝑝 , we can show that each non-zero Fourier coefficient is strictly smaller than the zero-th
coefficient and noticeably so. This lets us bound the error term. First we elaborate on the large
Fourier coefficient over F2𝑘 and we some intuition for bounds on F𝑝 .

Large coefficients overF2𝑘 . Each Fourier basis function overF2𝑘 is indexed by a vector ®𝛼 ∈ {0, 1}𝑘

and the Fourier coefficient for ®𝛼 is given by �̂� ( ®𝛼) = E®𝑥←F2𝑘

[
𝑓 (®𝑥)(−1)⟨®𝛼,®𝑥⟩

]
.5 Over F2𝑘 , non-zero

Fourier coefficients can be as large as the zero-th coefficient, which is always the largest for binary
valued functions.

To use the running example, in the case of the lsb function, let 𝜏(𝑗) = lsb and consider the 1lsb=1
to be the function which returns 1 if the lsb is 1 and 0 otherwise. So, 1lsb=1 is 1 on the set 𝐴1
and 0 on 𝐴0. The non-zero Fourier coefficient indexed by ®𝑒𝑘 = (0, 0, . . . 0, 1) ∈ {0, 1}𝑘 is as large
as the zero-th Fourier coefficient since: 1̂lsb=1(®0) = E®𝑥

[
1lsb=1(®𝑥)

]
= 0.5 as half of the inputs satisfy

lsb = 1, and also, 1̂lsb=1(®𝑒𝑘) = E®𝑥
[
1lsb=1(®𝑥) · (−1)𝑥𝑘

]
= E®𝑥

[
1lsb=1(®𝑥) · (−1)

]
= −0.5 because when

1lsb=1(𝑥) = 1, then 𝑥𝑘 = 1 and 1lsb=1(®𝑥) · (−1)𝑥𝑘 = −1. So, these two Fourier coefficients are equally
large in magnitude. Hence the error term can be quite large.

Bounding Fourier Coefficients on F𝑝 . Back to the prime order setting (i.e., the setting on which
we focus), we want to bound 1̂ℓ 𝑗 (𝛼) for non-zero 𝛼 ∈ F𝑝 . For now, let us consider a single leakage
function 𝜏 : F𝑝 → {0, 1}𝑚 . Observe that 𝜏 partitions F𝑝 in to 2𝑚 sets 𝐴1 , 𝐴2 , . . . , 𝐴2𝑚 where each
𝐴ℓ = 1−1

ℓ
(1) =

{
𝑥 ∈ F𝑝 : 𝜏(𝑥) = ℓ

}
. For simplicity, assume that each set 𝐴𝑖 is approximately of size

𝑝/2𝑚 (actually, this is the hardest case). We want to understand,

1̂ℓ (𝛼) = E
𝑦←F𝑝
[1ℓ (𝑦) · 𝜔𝛼𝑦] =

∑
𝑎∈𝐴ℓ

𝜔𝛼𝑎

𝑝
.

1̂ℓ (0) =
∑

𝑎∈𝐴ℓ
𝜔0·𝑎 = |𝐴ℓ |/𝑝 > |1̂ℓ (𝛼)| for all 𝛼 ≠ 0. Sums of the form

∑
𝑏∈𝐵 𝜔

𝑏 are maximized when
the set 𝐵 is an interval (see Lemma 3.11 for the formal statement and Fig. 1a for an illustration).
Leveraging this, we can show that there is a constant 𝑐𝑚 < 1 such that,

max
𝛼≠0
|1̂ℓ (𝛼)| ≤ 𝑐𝑚 · |𝐴ℓ |/𝑝 .

As written, the equation above is only true for sets of size 𝑝/2𝑚 but arguments based on convexity
allow us to plug this back into Eq. (3) and show that,

SD(𝝉(𝐶), 𝝉(𝑈)) ≤ 1
2 ·

��𝐶⊥�� · 𝑐𝑡𝑚 ,
where SD denotes the statistical distance between the two distributions, 𝝉(𝐶) =

{
𝝉(s) : s← 𝐶

}
,

𝝉(𝑈) =
{
𝝉(s) : s← 𝑈

}
(with 𝑈 being the uniform distribution over F𝑛

𝑝 ), and 𝑡 is the minimum
distance of the dual code 𝐶⊥. Formally, the theorem is stated in Theorem 4.5. The factor |𝐶⊥ |
comes from summing over all dual codewords after using the triangle inequality.

5We abuse notation and sometimes consider elements of F2𝑘 as vectors in F𝑘2 .

9



1
4
∑

𝑎∈𝐴 𝜔𝑎

𝐴 = {0, 1, 2, 3}

1
4
∑

𝑏∈𝐵 𝜔
𝑏

𝐵 = {4, 5, 8, 10}

0 1

𝑖

(a) Fourier Sums are maximized for intervals.
(The scaling by 4 of the sums is for convenience.)

𝐴 = {0, 1, 2, 3}

0 1/3
1
9

𝑖/3

(b) Fourier Coefficients for 𝐴 = {0, 1, 2, 3} over F13.

Figure 1: Illustrations of Fourier Sums and Coefficients

Parameter Setting. When applied to the code 𝐶 = AddSh(0), we have |𝐶⊥ | = 𝑝 and 𝑡 = 𝑛, and this
implies that additive secret sharing is leakage resilient, proving Theorem 1.1. We can also apply
the result to Reed Solomon Codes, the codes underlying (𝑛, 𝑡)-Shamir’s secret sharing. In this case,
|𝐶⊥ | = 𝑝𝑛−𝑡+1 and hence this proof shows that Shamir Secret sharing is local leakage-resilient only
when 𝑛 − 𝑡 = 𝑂(𝑛/log 𝑝) because we need 𝑐𝑡𝑚 ≪ 𝑝𝑛−𝑡 . Furthermore, this bound has a peculiar
character that it becomes worse as the prime used increases.6 This is unnatural.

Stronger Bound by Improving the Dependence on 𝑝 using Cauchy-Schwarz. Till now, we
have utilized the fact that the largest non-zero Fourier coefficient is bounded away from the zero-
th Fourier coefficient. To improve our bound, we next utilize another fact about Fourier coefficients:
most non-zero Fourier coefficients are a lot smaller than the largest one. For an illustration of this
fact, see Fig. 1b. In particular, Parseval’s identity (Theorem 3.9(a)) implies that for any set 𝐴,

∥1̂𝐴∥22 =
∑
𝛼∈F𝑝
|1̂𝐴(𝛼)|2 = E

𝑦←F𝑝

[
1𝐴(𝑦)2

]
=
|𝐴|
𝑝

Hence, an “average” non-zero Fourier coefficient is of size approximately
√
|𝐴|/𝑝, a size lot smaller

than 𝑐𝑚 |𝐴|/𝑝, the maximum possible. We want to leverage this fact. And the way to do so is
Cauchy-Schwarz inequality. We describe the idea in the case of additive secret sharing. In the
general case, the manipulations are more involved. In the case of additive secret sharing, the dual
code 𝐶⊥ = 𝜶 : 𝛼 ∈ F𝑝 . Roughly speaking, we can bound the sum from Eq. (3) as,∑

𝛼∈F𝑝\{0}

���1̂ℓ1(𝛼) · 1̂ℓ2(𝛼) · · · 1̂ℓ𝑛 (𝛼)
��� ≤ ∥1̂ℓ1 ∥2 · ∥1̂ℓ2 ∥2 ·max

𝛼≠0
|1̂ℓ3(𝛼)| · · ·max

𝛼≠0
|1̂ℓ𝑛 (𝛼)| .

6While the constant 𝑐𝑚 has a some dependence on 𝑝, it decreases as 𝑝 increases, it is dwarfed by the 𝑝𝑛−𝑡 term.

10



This allows us to derive a sharper bound on the error, showing that for additive secret sharing
SD(𝝉(𝐶), 𝝉(𝑈)) ≤ 1

2 · 2𝑚 · 𝑐𝑡−2
𝑚 . And for general MDS codes, we can show a similar result that: For

an [𝑛, 𝑡 − 1, 𝑛 − 𝑡 + 2] code 𝐶 (i.e., 𝐶 is a linear subspace of F𝑛
𝑝 of dimension 𝑡 − 1 and such that the

Hamming weight of any non-zero vector of 𝐶 is at least 𝑛 − 𝑡 + 2),

SD(𝝉(𝐶), 𝝉(𝑈)) ≲ 1
2 · 2

5𝑚(𝑛−𝑡) · 𝑐𝑡𝑚 .

This bound has two desirable properties: first of all, it does not become worse as the prime
increases, and secondly, it allows us to show that Shamir’s secret sharing is leakage resilient when
𝑡 = 𝑐𝑛 for some constant 𝑐. For more precise statements and parameters see Sections 4.2.1 and 4.2.3.

2.2 Application to Leakage Resilience of MPC protocols

Given the leakage resilience of additive secret sharing over F𝑝 , we can show that the following
honest-but-curious variant of the GMW protocol [GMW87] (GMW with shared product preprocess-
ing) using Beaver Triples [Bea91] is leakage resilient. The protocol is described in Fig. 2. Recall
that in our leakage model, the adversary A is allowed to corrupt a fraction of the parties, see their
views of the entire protocol execution and then specify leakage functions 𝜏(𝑗) for the non-corrupted
parties and receive this leakage on their individual views.

We consider two settings, the first being with private outputs where the adversary does not
see the output of the non-corrupted parties and the second with public outputs where the parties
broadcast their output shares at the end to reconstruct the final output and the adversary sees
them.

In both models, we show that the adversary’s view (i.e., the views of the corrupted parties
and the leakage on all the uncorrupted parties’ views) can be simulated by a simulator which gets
nothing (in the private-outputs setting) or gets all the shares of the output (in the public-outputs
setting).

To prove the result, we need two ingredients: (a) the leakage resilience of additive secret sharing
over F𝑝 and, (b) a lemma formalizing the following intuition: In the GMW protocol, each party learns
a share of a secret sharing of the value at each gate in the circuit and nothing more. The first ingredient we
have shown above, and we now describe the second. In Lemmas 5.8 and 5.9, we formally state and
prove this intuition in both the private-outputs and public-outputs setting and here we provide an
informal statement.

Lemma 2.2 (Informal). On an input ®𝑥, let 𝑧𝑔 denote the value at multiplication gate 𝑔 ∈ 𝐺×. The joint
view of any subset Θ of the parties, view(Θ), can be simulated given their shares of the inputs and of the
values at each multiplication gate:

view(Θ)(𝑥) ≡ Sim(®𝑥(Θ) , (𝑧(Θ)𝑔 )𝑔∈𝐺×) .

Given the lemma, proving local leakage resilience in the private-outputs setting is a hybrid
argument. Because of the lemma, the adversary can leak from party 𝑗 a function of ®𝑥(𝑗) and
(𝑧(𝑗)𝑔 )𝑔∈𝐺× . The simulator LeakSim, not knowing the input ®𝑥, picks random values ®𝑥′, (𝑧𝑔′)𝑔∈𝐺×
instead, secret shares them and then leaks from these values according to the leakage functions
𝜏(𝑗) specified by A.

Then we show that these two distributions are close to each other. If the local leakage can
distinguish between the two distributions, then we can use them to construct leakage functions

11



GMW Protocol with Shared Product Preprocessing

Setup: Given an arithmetic circuit 𝐶 over field F computing 𝑓 . 𝐶 has gates from the basis
B = {+,×,−1} where the −1 gate negates the input. We also have input gates that read a field
element from the input.

Input Encoding: On input ®𝑥, randomly secret share ®𝑥 using additive secret sharing, i.e.,
®𝑥(1) , ®𝑥(2) , . . . , ®𝑥(𝑛) ← AddSh(®𝑥). Party 𝑗 gets ®𝑥(𝑗).

Randomness: Let 𝐺× be the set of multiplication gates in 𝐶. For each multiplication gate 𝑔 in
𝐺×, generate a Beaver triple: a𝑔 ← AddSh(𝑎𝑔), b𝑔 ← AddSh(𝑏𝑔) and (ab)𝑔 ← AddSh(𝑎𝑔 · 𝑏𝑔) for
𝑎𝑔 , 𝑏𝑔 ← F.

Protocol Π: Party 𝑗 receives an input ®𝑥(𝑗) and randomness (𝑎(𝑗)𝑔 , 𝑏
(𝑗)
𝑔 , (𝑎𝑏)(𝑗)𝑔 )𝑔∈𝐺× . The parties

traverse the gates in the circuit 𝐶 in a predetermined order where every gate is traversed only
after its input gates. Let z𝑔 denote the secret sharing of the value 𝑧𝑔 at gate 𝑔. For each gate, the
parties do the following:

1. If gate 𝑔 is not a multiplication gate, the parties locally generate:

z𝑔 =


x𝑖 if 𝑔 is an input gate reading 𝑥𝑖

−z𝑔1 if 𝑔 is a −1 gate with input 𝑔1

z𝑔1 + z𝑔2 if 𝑔 is a + gate with inputs 𝑔1 and 𝑔2

2. If 𝑔 is a multiplication gate, with inputs 𝑔1 and 𝑔2, then the parties do the following:
(a) Locally compute a′𝑔 = z𝑔1 − a𝑔 and b′𝑔 = z𝑔2 − b𝑔 and broadcast these values.
(b) Receive the corresponding values from other parties.
(c) Locally compute 𝑧𝑔1 − 𝑎𝑔 and 𝑧𝑔2 − 𝑏𝑔 by adding all the values received.
(d) Locally compute z𝑔 = (𝑧𝑔1 − 𝑎𝑔)(𝑧𝑔2 − 𝑏𝑔) · 1 + (𝑧𝑔1 − 𝑎𝑔) · b𝑔 + a𝑔 · (𝑧𝑔2 − 𝑏𝑔) + (ab)𝑔

where 1 a fixed secret sharing of the value 1.

Figure 2: GMW Protocol with Shared Product Preprocessing

that violate the local leakage resilience of a single instance of the underlying secret sharing scheme.
Because of the homomorphic properties of the secret sharing schemes, this transformation is
lossless and does not degrade with circuit size as a hybrid argument would.

The proof in the public-outputs setting has a subtlety that the adversary sees not only the local
leakage from the uncorrupted parties, but also their final outputs. In this case, we first observe
that the final output is a fixed linear function of the circuit values 𝑧𝑔 of the multiplication gates and
of the input values 𝑥𝑖 . Using this observation, the simulator picks the shares of the multiplication
gates conditioned on the output values seen. And we can show a similar reduction to the local
leakage resilience of the underlying secret sharing scheme. This proves Theorem 1.4.

2.3 On Local Share Conversion

In this section, we sketch the techniques used to show Theorem 1.5: that three-party additive secret
sharing over F𝑝 , for any prime 𝑝 > 2, cannot be converted to additive secret sharing over F2, even
with a small error, for any non-trivial relation 𝑅 on the secrets.

12



Our results on impossibility of local share conversion are derived by viewing the output of the
share conversion schemes as leakage on the original shares, where the adversary instead of being
able to do arbitrary computation, can only add the leakage outputs over F2.

Impossibility of Share Conversion of Additive Secret Sharing from F𝑝 to F2. We start with the
impossibility of local share conversion of additive secret sharings from F𝑝 to F2 for any non-trivial
relation 𝑅 on the secrets.7 The analysis is inspired by Fourier analysis reinterpretations of linearity
testing [BLR93] and group homomorphism testing [BCLR08].

Assume that 𝑔1 , 𝑔2 , 𝑔3 : F𝑝 → F2 form a 3-party local share conversion scheme for additive
secret sharing for some relation 𝑅 where shares of 0 in F𝑝 have to be mapped to shares of 0 in F2
and shares of 1 in F𝑝 have to be mapped to shares of 1 in F2 (with high probability, say 99%).8 That
is, if 𝑥1 + 𝑥2 + 𝑥3 = 𝑏, then 𝑔1(𝑥1) + 𝑔2(𝑥2) + 𝑔3(𝑥3) = 𝑏 for 𝑏 ∈ {0, 1}. It is convenient for us to define
the real-valued analogues 𝐺𝑖(𝑥) = (−1)𝑔𝑖(𝑥). At the heart of this proof is the following operator:

Λ(𝐺1 , 𝐺2 , 𝐺3) = E
x←AddSh(0)

[𝐺1(𝑥1) · 𝐺2(𝑥2) · 𝐺3(𝑥3)] .

The first observation is that if shares of 0 over F𝑝 are mapped to shares of 0 over F2 with high
probability (say 99%), then the value of this operator is quite high as,

Λ(𝐺1 , 𝐺2 , 𝐺3) = 1 − 2 · Pr
x←AddSh(0)

[𝑔1(𝑥1) + 𝑔2(𝑥2) + 𝑔3(𝑥3) ≠ 0] ≥ 0.98 .

The crux of the argument is an ‘inverse theorem’ style lemma (Lemma 6.9) which characterizes
functions 𝐺1’s that result in a large value for Λ. Lemma 6.9 shows that if Λ(𝐺1 , 𝐺2 , 𝐺3) is high,
then each of the functions 𝐺1 , 𝐺2 and 𝐺3 are ‘almost’ constant functions, i.e., for most 𝑥’s, 𝐺𝑖(𝑥) is
the same fixed value. Given this lemma, the impossibility result follows. Because the functions
𝐺𝑖’s (and hence 𝑔𝑖’s) are almost always constant, even given secret shares of 1 as input, they would
still output shares of 0 as output.

To complete the proof, we need to argue that 𝐺1 is an almost constant function. This proof has
two parts: the first part which is generic to any field F is to show that if Λ is large, then 𝐺1 has a
large Fourier coefficient. In the second part, we show that if 𝐺1 has a large Fourier coefficient, then
𝐺1 is an almost constant function. This part is specific to F𝑝 .

To show the first part, we rewrite Λ(𝐺1 , 𝐺2 , 𝐺3) over the Fourier basis (using Lemma 4.16) to
get

Λ(𝐺1 , 𝐺2 , 𝐺3) =
∑
𝑎∈F𝑝

𝐺1(𝑎) · 𝐺2(𝑎) · 𝐺3(𝑎)

this follows from Lemma 4.16 as the dual code of additive shares of 0 is the code generated by the
all-ones vector. We can now use Cauchy-Schwarz inequality with the fact that

∑
𝑎 |𝐺𝑖(𝑎)|2 = 1 to

get that,

≤
���𝐺1

���
∞
· (

∑
𝑎

|𝐺2(𝑎)|2) · (
∑
𝑎

|𝐺3(𝑎)|2) ≤
���𝐺1

���
∞
.

7A relation is trivial if no matter what secret is shared, a constant output by the conversion scheme would satisfy
correctness. Or put another way, in a non-trivial relation 𝑅, there exist 𝑠0 and 𝑠1 such that 𝑠0 has to be mapped to 0 and
𝑠1 has to be mapped to 1 by the relation 𝑅.

8We consider more general case in Section 6 which also tolerates a higher error probability of 1/6.

13



This implies that |𝐺1 |∞ is large. Now we show the second part, which is specific to F𝑝 . We need to
show that 𝐺1 is almost constant function. We want to show that if some Fourier coefficient of 𝐺1
is large (larger than 2

3 ), then it has to be the zero-th coefficient. The zero-th coefficient measures
the bias of 𝐺1: if the coefficient is small, then 𝐺1 is close to balanced, and if this coefficient is
large, then 𝐺1 is an almost constant function. Although proving this for all primes is somewhat
tedious (see Lemma 6.7), the intuition is easy to grasp. Let 𝑝 = 3 and 𝜔 = exp(2𝜋𝑖/3) be a root of
unity. A non-zero Fourier coefficient of 𝐺1 takes the following form: 𝐺1(𝑎) = E𝑥∈F3[𝐺1(𝑥) · 𝜔𝑎𝑥] for
𝑎 ≠ 0. Because 𝐺1 takes values in {−1, 1} and 𝜔𝑎𝑥 takes all values

{
1, 𝜔, 𝜔2}, these two functions

cannot be too correlated. And hence the Fourier coefficient cannot be too large: |𝐺1(𝑎)| ≤ 2/3. This
completes the proof.

The Impossibility of Share Conversion from Shamir’s Secret Sharing from F𝑝 to Additive
Sharing onF2. We now briefly discuss the techniques used to prove the result on local conversion
of (𝑛, 𝑡)-Shamir’s secret sharing over F𝑝 , for (𝑛 + 3)/2 ≤ 𝑡 ≤ 𝑛. Again consider a relation 𝑅 where
Shamir’s shares of 0 over F𝑝 have to be mapped to additive shares of 0 over F2 and Shamir’s
shares of 1 have to be mapped to additive shares of 1 over F2. Let 𝑔1 , 𝑔2 , . . . , 𝑔𝑛 be the local share
conversion functions used. We want to follow a similar strategy: first show that the corresponding
function 𝐺𝑖 = (−1)𝑔𝑖 has a large Fourier coefficient. Then, similar to the additive secret sharing
proof, show that if 𝐺𝑖 has a large Fourier coefficient, then 𝐺𝑖 is ‘almost constant’ and hence derive
a contradiction.

In the first part, we want to use the fact that Shamir’s shares of 0 over F𝑝 are converted to
additive shares of 0 over F2 to infer that 𝐺1 (say) has a large Fourier coefficient. This is proved in
Lemma 6.10. The proof is a specialized case of the work of Green and Tao [GT10]. In the proof,
the value of an appropriately defined operator Λ:

Λ(𝐺1 , 𝐺2 , . . . , 𝐺𝑛) = E
s←ShaSh𝑝,𝑛,𝑡 (𝑠)

[𝐺1(𝑠1) · 𝐺2(𝑠2) · · ·𝐺𝑛(𝑠𝑛)] ,

(where s← ShaSh𝑝,𝑛,𝑡(𝑠) is a random (𝑛, 𝑡)-Shamir’s secret sharing of 𝑠) is bound by the “Gowers’
Uniformity Norm” (the𝑈2 norm) of the function𝐺1. Then using a connection between the𝑈2 norm
and Fourier bias, we can derive that 𝐺1 has a large Fourier coefficient. For details see Section 6.

2.4 Additive Combinatorics Context

We provide some context for these techniques. Such Λ style operators have been studied quite a bit
in number theory. They can be used to represent many fascinating questions about the distribution
of prime numbers. To give some examples, What is the density of three-term arithmetic progressions
in primes? is a question about the operator Λ = E𝑥,𝑑[1𝑃(𝑥) · 1𝑃(𝑥 + 𝑑) · 1𝑃(𝑥 + 2𝑑)] where 1𝑃 is 1
if 𝑥 is a prime and 0 otherwise. Also, the twin primes conjecture can be framed in terms of the
operator Λ = E𝑥[1𝑃(𝑥) · 1𝑃(𝑥 + 2)]. Green and Tao [GT10] and subsequent works by Wolf and
Gowers [GW10, GW11a, GW11b] tried to understand the following question: let 𝐿1 , 𝐿2 , . . . , 𝐿𝑚 be
linear equations from F𝑛 to F. Can we bound the following expectation:

Λ( 𝑓1 , 𝑓2 , . . . , 𝑓𝑚) = E
®𝑥←F𝑛

[
𝑓1(𝐿1(®𝑥)) · 𝑓2(𝐿2(®𝑥)) · · · 𝑓𝑚(𝐿𝑚(®𝑥))

]
?

This is a very general question. And roughly speaking, they give the following answer. These works
define two measures of complexity (termed as Cauchy-Schwarz Complexity and True Complexity

14



respectively) and show that if a system of linear equations has complexity 𝑘, then,9

Λ( 𝑓1 , 𝑓2 , . . . , 𝑓𝑚) < 𝐶 ·min
𝑖
∥ 𝑓𝑖 ∥𝑈 𝑘 ,

where ∥ 𝑓𝑖 ∥𝑈 𝑘 is the 𝑘-th order Gowers’ Uniformity Norm [Gow01]. This method of bounding Λ

by the Gowers’ norm has been very influential in number theory. This method is what we use to
prove the results on Shamir’s secret sharing. We first bound an appropriately defined operator Λ
by the Gowers’ 𝑈2 norm and then exploit a connection between the 𝑈2 and Fourier analysis. Such
a technique does not suffice to give desired results in the case of leakage resilience of (𝑛, 𝑡 = 𝛼𝑛)-
Shamir’s secret sharing for two reasons (for some constant 𝛼 > 0). The first reason is that the
constant 𝐶 derived from this method is often extremely large and has an exponential dependence
on the number of equations 𝑚. Also the second reason is that in our setting, the functions 𝑓𝑖’s are
chosen by the adversary. So, showing that ∥ 𝑓𝑖 ∥𝑈 𝑘 is small is either very challenging or just not true
for some adversarially chosen functions 𝑓𝑖’s. On the other hand, we do not know how to translate
this into an local leakage attack on Shamir’s secret sharing either and hence a strong win-win result
eludes us.

3 Preliminaries

We denote by C the field of complex numbers, by SD the statistical distance (or total variation
distance), and by ≡ the equality of distributions. For a vector space F𝑛

𝑝 , we define 𝑈 = 𝑈𝑛 to be
the uniform distribution over F𝑛

𝑝 . For any finite set 𝑆, 𝑥 ← 𝑆 denotes the fact of sampling an
independent element 𝑥 uniformly from 𝑆. For any positive integer 𝑛, the set [𝑛] is the integer
interval {1, . . . , 𝑛}. As we are using extensively codes, we use the conventions of coding theory:
vectors are always row vectors.

3.1 Linear Codes

Secret sharing schemes are closely related to linear codes, that we define next.

Definition 3.1 (Linear Code). A subset 𝐶 ⊆ F𝑛 is an [𝑛, 𝑘, 𝑑] linear code over fieldF if 𝐶 is a subspace of
F𝑛 of dimension 𝑘 such that: for all ®𝑥 ∈ 𝐶 \ {®0}, HammingDistance(®𝑥) ≥ 𝑑 (i.e., the minimum Hamming
distance between two elements of the code is at least 𝑑). A code is called Maximum Distance Separable

(MDS) if 𝑛 − 𝑘 + 1 = 𝑑. The dual code of the code 𝐶 is defined as 𝐶⊥ =
{
®𝑦 ∈ F𝑛 : ∀®𝑥 ∈ 𝐶,

〈
®𝑥, ®𝑦

〉
= 0

}
.

A generator matrix for an [𝑛, 𝑘, 𝑑] linear code is a matrix 𝐺 ∈ F𝑘×𝑛
𝑝 such that its rows form a basis 𝐶,

or in other words: 𝐶 =

{
®𝑦 ∈ F𝑛

𝑝 : ∃®𝑥 ∈ F𝑘
𝑝 , ®𝑦 = ®𝑥 · 𝐺

}
. A parity check matrix 𝐻 of 𝐶 is a generator

matrix of the dual code 𝐶⊥.

Proposition 3.2. The dual code 𝐶⊥ of an [𝑛, 𝑘, 𝑑] MDS code 𝐶 is itself an MDS code with parameters
[𝑛, 𝑛 − 𝑘, 𝑘 + 1].

Example 3.3 (Generalized Reed Solomon Code). An [𝑛, 𝑘, 𝑛− 𝑘+1] generalized Reed Solomon code
over F such that |F| > 𝑛 interprets a message ®𝑚 ∈ F𝑘 as 𝑝(𝑥) = 𝑚1+𝑚2𝑥+· · ·+𝑚𝑘𝑥

𝑘−1 and encodes

9Both complexity measures do not assign complexity to all possible linear forms. To give an example, the linear form
(𝐿1(𝑥) = 𝑥, 𝐿2(𝑥) = 𝑥 + 2), which corresponds to the twin primes conjecture, is not assigned a complexity value and the
twin primes conjecture is still open.

15



it as (𝑢1𝑝(𝛼1), 𝑢2𝑝(𝛼2), . . . , 𝑢𝑛𝑝(𝛼𝑛)) where 𝐴 = {𝛼1 , 𝛼2 . . . , 𝛼𝑛} ⊆ F is a fixed set of 𝑛 distinct
evaluation points and 𝑢1 , . . . , 𝑢𝑛 ∈ F𝑝 are non-zero coefficients. Generalized Reed Solomon codes
are MDS.

Moreover, the dual code of such a code 𝐶 is itself a [𝑛, 𝑛 − 𝑘, 𝑘 + 1] generalized Reed Solomon
code 𝐶′ overFwith the same evaluation points and the coefficients 𝑣𝑖 = 𝑢−1

𝑖
·∏𝑗≠𝑖 (𝛼𝑖 − 𝛼 𝑗)−1 for 𝑖 ∈

[𝑛−𝑘]. Indeed given messages 𝑝(𝑥) = 𝑚1+𝑚2𝑥+· · ·+𝑚𝑘𝑥
𝑘−1 and 𝑞(𝑥) = 𝑚′1+𝑚

′
2𝑥+· · ·+𝑚′𝑛−𝑘𝑥

𝑛−𝑘−1,
the inner product of the corresponding codewords for 𝐶 and 𝐶′ is:

𝑛∑
𝑖=1

𝑢𝑖𝑣𝑖𝑝(𝛼1)𝑞(𝛼1) =
𝑛∑
𝑖=1

1∏
𝑗≠𝑖 (𝛼𝑖 − 𝛼 𝑗)

𝑝(𝛼1)𝑞(𝛼1) ,

which is the Lagrange interpolation of the coefficient 𝑥𝑛−1 of 𝑝(𝑥)𝑞(𝑥), namely 0. This proves that
𝐶′ is the dual code of 𝐶.

3.2 Linear Secret Sharing Schemes

We recall the definition of (threshold) secret sharing schemes.

Definition 3.4 (Secret Sharing Scheme). An (𝑛, 𝑡)-secret sharing scheme over field F is defined by
a pair (Share, Rec) where Share is a randomized mapping of an input 𝑠 ∈ F to shares for each party
s = (𝑠(1) , 𝑠(2) , . . . , 𝑠(𝑛)) and the reconstruction algorithm Rec is a function mapping a set 𝐴 ⊆ [𝑛] and the
corresponding shares s(𝐴) =

(
𝑠(𝑗)

)
𝑗∈𝐴

to a secret 𝑠 ∈ F, such that the following properties hold:

1. Reconstruction. Rec(𝐴, s(𝐴)) outputs the secret 𝑠 for all sets 𝐴 ⊆ [𝑛] where |𝐴| ≥ 𝑡.
2. Security. For any set 𝐴 such that |𝐴| < 𝑡, the joint distribution of shares received by the subset of

parties 𝐴, s(𝐴) =
(
𝑠(𝑗)

)
𝑗∈𝐴

where s← Share(𝑠), is independent of the secret 𝑠.

We extend secret sharing schemes to handle vectors of secrets naturally as follows. If (Share, Rec)
is a secret sharing scheme and if ®𝑠 ∈ F𝑘 is a vector of 𝑘 secrets, we define:

®s = (®𝑠(1) , . . . , ®𝑠(𝑛)) ← Share(®𝑠) where ∀𝑖 ∈ [𝑘], (𝑠(1)
𝑖
, . . . , 𝑠

(𝑛)
𝑖
) ← Share(𝑠𝑖)

®𝑠 = (𝑠1 , . . . , 𝑠𝑘) = Rec(𝐴, ®s(𝐴)) where ∀𝑖 ∈ [𝑘], 𝑠𝑖 = Rec(𝐴, s(𝐴)
𝑖
)

where ®𝑠(𝑗) = (𝑠(𝑗)1 , . . . , 𝑠
(𝑗)
𝑛 ) and s(𝐴)

𝑖
=

(
𝑠
(𝑗)
𝑖

)
𝑗∈𝐴

.

An important particular case of secret sharing scheme are linear secret sharing schemes. Actu-
ally all the schemes we consider in this paper are linear.

Definition 3.5. An (𝑛, 𝑡)-secret sharing scheme (Share, Rec) over a finite field F is linear if

1. the codomain of Share is the vector space (Fℓ )𝑛 , for some positive integer ℓ (i.e., each share is a vector
of ℓ field elements),

2. for any 𝑠 ∈ F, Share(𝑠) is uniformly distributed over an affine subspace of (Fℓ )𝑛 ,
3. for any 𝜆0 ,𝜆1 , 𝑠0 , 𝑠1 ∈ F:{

𝜆0s0 + 𝜆1s1 : s0 ← Share(𝑠0)
s1 ← Share(𝑠1)

}
≡ Share(𝜆0𝑠0 + 𝜆1𝑠1) .

16



Let us now recall the two classical linear secret sharing schemes we are using.
Example 3.6 (Additive Secret Sharing (AddSh𝑛 , AddRec𝑛)). The additive secret sharing scheme
(AddSh𝑛 , AddRec𝑛) for 𝑛 parties over a field F is a linear (𝑛, 𝑛)-secret sharing scheme defined as
follows. Shares AddSh𝑛(𝑠) = s of a secret 𝑠 ∈ F are generated as follows: (𝑠(1) , . . . , 𝑠(𝑛−1)) ← F𝑛−1,
and 𝑠(𝑛) = 𝑠 − (𝑠(1) + · · · + 𝑠(𝑛−1)). The reconstruction of 𝑠 from s is done as follows: AddRec𝑛(s) =
𝑠(1) + · · · + 𝑠(𝑛).
Example 3.7 (Shamir’s Secret Sharing (ShaSh𝑛,𝑡 , ShaRec𝑛,𝑡)). The Shamir’s secret sharing scheme
(ShaSh𝑛,𝑡 , ShaRec𝑛,𝑡) of 𝑛 parties and threshold 𝑡 over a fieldF (with |F| > 𝑛) is a linear (𝑛, 𝑡)-secret
sharing scheme defined as follows. Let 𝛼1 , . . . , 𝛼𝑛 ∈ F \ {0} be 𝑛 distinct arbitrary non-zero field
elements. Shares ShaSh𝑛,𝑡(𝑠) = s of a secret 𝑠 ∈ F are generated as follows: generate a uniformly
random polynomial 𝑃 of degree at most 𝑡 − 1 over F with constant coefficient 𝑠 (i.e., 𝑃(0) = 𝑠),
the share 𝑠(𝑗) is 𝑠(𝑗) = 𝑃(𝛼 𝑗). Given shares 𝑠(𝐴) with 𝐴 ⊆ [𝑛] and |𝐴| ≥ 𝑡, the reconstruction
works as follows: it computes the Lagrange coefficients 𝜆 𝑗 =

∏
𝑖∈𝐴\{ 𝑗}(𝛼𝑖/(𝛼𝑖 − 𝛼 𝑗)) and output

ShaRec𝑛,𝑡(𝐴, 𝑠(𝐴)) = ∑
𝑗∈𝐴 𝜆 𝑗𝑠

(𝑗) ∈ F.

3.3 Fourier Analysis

In this section, we present the notion of Fourier coefficients of a function and some of its properties.
Most of the calculations needed about Fourier coefficients are deferred to the corresponding
sections for the ease of readability. For an excellent survey on how Fourier Analytic methods are
used in Additive Combinatorics, see [Gre07].

LetG be any finite Abelian group. A character is a homomorphism 𝜒 : G→ C from the group
G toC, i.e., 𝜒(𝑎+𝑏) = 𝜒(𝑎) ·𝜒(𝑏) for all 𝑎, 𝑏 ∈ G. For any finite Abelian groupG, the set of characters
Ĝ is a group (under the operation point-wise product) isomorphic to G. The reader should note
that while we define Fourier coefficients in generality, we would be primarily use Fourier analysis
on the groups F𝑝 for some prime 𝑝.

Definition 3.8 (Fourier Coefficients). For functions 𝑓 : G → C, the Fourier basis is composed of the
group Ĝ of characters 𝜒 : G → C. We define the Fourier coefficient �̂� (𝜒) corresponding to a character 𝜒
as

�̂� (𝜒) = E
𝑥←G
[ 𝑓 (𝑥) · 𝜒(𝑥)] ∈ C .

As we will use Fourier analysis on the additive group F𝑝 , we describe the Fourier characters
over F𝑝 . Let 𝜔 = exp(2𝜋𝑖/𝑝) be a primitive 𝑝-th root of unity. Then, the characters for F𝑝 are given
by 𝜒𝛼(𝑥) = 𝜔𝛼·𝑥 where 𝛼 ∈ F𝑝 . We sometimes abuse notation and write �̂� (𝛼) instead of 𝑓 (𝜒𝛼).

We follow the “standard” notation in additive combinatorics. In this notation, when working
on the group G, the Haar measure is used which assigns the weight |G|−1 to every 𝑥 ∈ G and when
working on Ĝ, the counting measure is used which assigns the weight 1 to every 𝛼 ∈ Ĝ. Using these
measures generally eliminates the need for normalization. So, when we talk about norms, these
will always be taken with respect to the underlying measure. That is,

∥ 𝑓 ∥1 = E
𝑥
[| 𝑓 (𝑥)|] whereas ∥ �̂� ∥2 =

(∑
𝛼

| �̂� (𝛼)|2
)1/2

.

We note that the Fourier Transform has the following properties. These follow easily from the
orthogonality relation on the characters:

∑
𝑥∈F𝑝 𝜔

𝑎·𝑥 is 𝑝 when 𝑎 = 0 and 0 otherwise.

17



Theorem 3.9. Let 𝑓 , 𝑔 : G→ C be two functions. Let Ĝ denote the group of characters ofG. The following
hold:

(a) (Parseval’s identity) We have,

E
𝑥←G

[
𝑓 (𝑥) · 𝑔(𝑥)

]
=

∑
𝜒∈Ĝ

�̂� (𝜒) · �̂�(𝜒) .

In particular, ∥ 𝑓 ∥2 = ∥ �̂� ∥2 where ∥ 𝑓 ∥22 = E𝑥←G

[
| 𝑓 (𝑥)|2

]
and ∥ �̂� ∥

2
2 =

∑
𝜒∈Ĝ

��� �̂� (𝜒)���2.

(b) (Fourier Inversion Formula) For any 𝑥 ∈ G, 𝑓 (𝑥) = ∑
𝜒∈Ĝ �̂� (𝜒) · 𝜒(𝑥).

Finally, we introduce the notion of bias. A function is biased if it is highly correlated with some
Fourier character.

Definition 3.10 (Bias). For a function 𝑓 : G→ C, the bias of 𝑓 is defined as,

bias( 𝑓 ) = ∥ �̂� ∥∞ = max
𝜒∈Ĝ
| �̂� (𝜒)| .

We need a calculation on certain sums of roots of unity. Let 𝐴 be a subset of Z𝑘 . And let
𝛾 = 𝑒 𝑖·2𝜋/𝑘 . We want to bound sums of the form 𝜸𝐴 =

∑
𝑥∈𝐴 𝛾𝑥 . We state and prove the Lemma

below. We will use the lemma to show that non-trivial Fourier coefficients of certain functions
have to be smaller than the trivial one.

Lemma 3.11. Let 𝑘 be a positive integer. Let 𝜁𝑘 : [0, 𝑘] → R≥0 be defined as 𝜁𝑘(𝑥) = sin(𝑥𝜋/𝑘)
sin(𝜋/𝑘) with

𝜁𝑘(0) = 0. Let 𝐴 ⊆ Z𝑘 of size 𝑡. Let 𝐴★ = {0, 1, . . . , 𝑡 − 1}. Then

|𝜸𝐴 | ≤ |𝜸𝐴★ | = sin(𝜋𝑡/𝑘)
sin(𝜋/𝑘) = 𝜁𝑘(𝑡) .

We will show that the sum is maximized when 𝐴 is an interval. The proof of the claim is an
extremal argument. If an element does not lie in the direction of the sum, we can remove it and
add something in the direction to increase the norm.

Proof. First, the fact that 𝜸𝐴★
= 𝜁𝑘(𝑡) is derived using a basic trigonometry calculation:���𝜸𝐴★

��� = ����� 𝑡−1∑
𝑖=0

𝛾𝑖

����� =
��𝛾𝑡 − 1

��
|𝛾 − 1| =

2 sin(𝜋𝑡/𝑘)
2 sin(𝜋/𝑘) ,

where the last equality follows from the fact that the angle between 𝛾𝑡 and −1 is (𝜋 − 2𝑡𝜋/𝑘) and
hence,

��𝛾𝑡 − 1
�� = 2 cos((𝜋 − 2𝑡𝜋/𝑘)/2) = 2 sin(𝜋𝑡/𝑘).

Let us now show that the sum is indeed maximum when 𝐴 = 𝐴★. An interval [𝑎, 𝑏) over Z𝑝

consists of the elements {𝑎 mod 𝑞, 𝑎 + 1 mod 𝑞, . . . , 𝑏 − 1 mod 𝑞}. Note that the intervals [𝑎, 𝑏)
and [𝑏, 𝑎) are distinct. Observe that for any two intervals 𝐴, 𝐵 of the same size, 𝜸𝐴 = 𝛾𝑘 · 𝜸𝐵 for
some 𝑘 ∈ Z𝑝 , hence 𝜸𝐴 and 𝜸𝐵 have the same magnitude.

Let 𝐴 ⊆ Z𝑝 of size 𝑡, such that 𝜸𝐴 is maximum. We want to prove that |𝜸𝐴 | = |𝜸𝐴★ |. The cases
when 𝑡 = 0 or 𝑝 are vacuously true. If 𝐴 is an interval, i.e., a set of the form above, we are done.
Else, we want to show that there exists an interval 𝐴′ of same size, such that |𝜸𝐴 | ≤ |𝜸𝐴′ |.

18



Let 𝜉 = 𝜸𝐴 =
∑

𝑎∈𝐴 𝜔𝑎 . We have |𝜉| ≥
��𝜸𝐴★�� > 0. We consider the interval 𝐴′ = [𝑎′, 𝑎′ + 𝑡)

consisting of all the roots of unity most ‘aligned’ with 𝜉. That is, 𝑎′ is chosen as:

𝑎′ ∈ argmax
𝑎′∈Z𝑝 ,𝐴

′=[𝑎′,𝑎′+𝑡)
𝜸𝐴′ ◦ 𝜉 ,

where ◦ is the complex dot product.10 Equivalently, the interval 𝐴′ = [𝑎, 𝑎 + 𝑡) is the interval of
size 𝑡 such that, for all 𝑎 ∈ 𝐴′ and 𝑏 ∈ {0, 1 . . . , 𝑘 − 1} \ 𝐴′, 𝛾𝑎 ◦ 𝜉 ≥ 𝛾𝑏 ◦ 𝜉.

Let us now show that |𝜸𝐴 | ≤ |𝜸𝐴′ |. For that, let 𝐵 ⊆ Z𝑘 be a set of size 𝑡 such that |𝜉| = |𝜸𝐴 | =
|𝜸𝐵 | and the size of the intersection of 𝐴′ and 𝐵 is maximum. Let us prove that 𝐵 = 𝐴′, which will
conclude the proof.

Pick 𝑎 ∈ 𝐴′ \ 𝐵 and 𝑏 ∈ 𝐵 \ 𝐴′. Consider the set 𝐵′ = (𝐵 \ {𝑏}) ∪ {𝑎}. We remark that
the intersection of 𝐴′ and 𝐵′ is larger than the intersection of 𝐴′ and 𝐵. Let us now prove that
|𝜸𝐵′ | ≥ |𝜸𝐵 |, which is a contradiction (𝐵 was not the set of size 𝑡 with the largest sum and the largest
interesection with 𝐴′). Observe that 𝜸𝐵′ = 𝜉 − 𝛾𝑏 + 𝛾𝑎 . And as 𝜉 ◦ 𝛾𝑎 ≥ 𝜉 ◦ 𝛾𝑏 , 𝜉 ◦ (𝛾𝑎 − 𝛾𝑏) ≥ 0.
Hence, cos𝜃 ≥ 0 where 𝜃 is the angle between 𝜉 and (𝛾𝑎 − 𝛾𝑏). This implies that 𝜃 ∈ [−𝜋/2,𝜋/2]
and hence |𝜉 − 𝛾𝑏 + 𝛾𝑎 | = |𝜉 + (𝛾𝑎 − 𝛾𝑏)| ≥ |𝜉|.

And the result follows. □

4 On Leakage Resilience of Secret Sharing Schemes

4.1 Definitions and Basic Properties

We consider a model of leakage where the adversary can first choose a subset of Θ ⊆ [𝑛] parties
and get their full shares and then leak 𝑚 bits each from all the shares of all the (other) parties.
Formally, what is learned by the adversary on a sharing s is the following:

LeakΘ,𝝉 = (s(Θ) , (𝜏(𝑖)(s(Θ) , 𝑠(𝑖)))𝑖∈[𝑛]) , (4)

where 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) is a family of 𝑛 leakage functions that output 𝑚 bits and s(Θ) =(
𝑠(𝑗)

)
𝑗∈Θ

are the complete shares of the parties corrupted. The adversary can choose the functions

𝝉 arbitrarily.

Definition 4.1 (Local Leakage Resilient). Let Θ be a subset of [𝑛]. A secret sharing scheme (Share, Rec)
is said to be (Θ, 𝑚, 𝜀)-local leakage resilient (or (Θ, 𝑚, 𝜀)-LL resilient for short) if for every leakage
function family 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) where 𝜏(𝑗) has an 𝑚-bit output, and for every pair of secrets 𝑠0 , 𝑠1,

SD
({

LeakΘ,𝝉(s) : s← Share(𝑠0)
}
,
{
LeakΘ,𝝉(s) : s← Share(𝑠1)

})
≤ 𝜀 .

A secret sharing scheme (Share, Rec) is said to be (𝜃, 𝑚, 𝜀)-LL resilient if it is (Θ, 𝑚, 𝜀)-LL resilient for
any subset Θ ⊆ [𝑛] of size at most 𝜃.

Remark 4.2. We remark that we can consider an equivalent definition where for each distribution
D of leakage function family 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)):

SD
({

LeakΘ,𝝉(s) : s← Share(𝑠0)
𝝉← D

}
,

{
LeakΘ,𝝉(s) : s← Share(𝑠1)

𝝉← D

})
≤ 𝜀 .

10𝑧1 ◦ 𝑧2 = 𝑥1𝑥2 + 𝑦1𝑦2 where 𝑧𝑏 = 𝑥𝑏 + 𝑖 · 𝑦𝑏 is the dot product of 𝑧1 and 𝑧2. Equivalently, 𝑧1 ◦ 𝑧2 = |𝑧1 | |𝑧2 | cos𝜃
where 𝜃 is the angle between 𝑧1 and 𝑧2.

19



Observe that a (𝑛, 𝑡)-secret sharing scheme is (𝑡 , 0, 0)-Local Leakage resilient: that is, complete
access to the shares of 𝑡 parties and no information about the others.

Note that in the leakage model, the adversary is not allowed to adaptively choose the leakage
functions. As discussed in the introduction, this is a very meaningful and well-motivated leak-
age model. Next, we demonstrate some attacks in this model. In particular, we formalize the
observation that linear secret sharing schemes over small characteristic fields are not local leakage
resilient.
Example 4.3 (Attack on Schemes Over Small Characteristic Fields). Over fields of small characteristic
like F2𝑘 that have many additive subgroups, secret sharing schemes with linear reconstruction are
not local leakage resilient even for 1-bit leakage. We give some examples of such attacks. They
are not hard to generalize. Let 𝑠 ∈ F2𝑘 be the secret that is shared among 𝑛-parties as shares
(𝑠(1) , 𝑠(2) , . . . , 𝑠(𝑛)). Consider the following attacks:

• Additive Secret Sharing. The adversary can locally leak the least significant bit of each share
𝑠(𝑗). Adding them up, the adversary can reconstruct the least significant bit of 𝑠.

• Shamir’s Secret Sharing. For a similar attack, observe that 𝑠 = 𝜆1𝑠
(1)+𝜆2𝑠

(2)+· · ·+𝜆𝑛𝑠
(𝑛)where

𝜆 𝑗’s are fixed Lagrange coefficients. So to attack the scheme, the adversary locally multiplies
the share 𝑠(𝑗) with 𝜆 𝑗 and leaks the least significant bit. This again reveals the least significant
bit of 𝑠. The recent work of Guruswami and Wootters [GW17] shows how such leakage can
be used to even completely reconstruct 𝑠, in some settings.

Example 4.4 (Attack on Few Parties). If the number of parties 𝑛 is a constant, then the additive
secret sharing over F𝑝 is not LL-resilient. The adversary can distinguish between secrets < 𝑝/2 and
> 𝑝/2 by local leakage. The adversary locally leaks 𝜏(𝑗)(𝑠(𝑗)) = 1 if the share 𝑠(𝑗) < 𝑝/(2𝑛) (seeing
the share as integer in {0, . . . , 𝑝 − 1}). If all the leakages output 1, the adversary can conclude that
the secret 𝑠 = 𝑠(1) + · · · + 𝑠(𝑛) < 𝑝/2. On the other hand, if the secret is larger than 𝑝/2, then all the
leakage outputs will never be 1 simultaneously. In the < 𝑝/2 case, the probability of all the secrets
being < 𝑝/2𝑛 is about (1/2𝑛)𝑛 , a constant. Similar attacks can also be performed on Shamir’s secret
sharing. We stress that this is not the most effective attack, but it is an attack nonetheless. This
attack is similar to the one in [KP10, Footnote 8].

4.2 Leakage Resilience of Additive and Shamir’s Secret Sharing Schemes

We are now in a position to state the main technical result of this section. That, no family of local
leakage functions can distinguish between shares picked from a ‘good’ linear code and uniformly
random shares. We then apply these results to get local leakage resilience for additive and Shamir’s
secret sharing schemes.

4.2.1 Main Technical Theorem: Leakage Resilience of Linear Codes

We describe two versions of our bounds: they differ in their dependence on the underlying prime
𝑝. The first bound has tighter constants but a worse dependence on the prime while the latter
bound, the bound on the distinguishing advantage does not degrade with increasing primes.

Theorem 4.5. Let 𝐶 ⊆ F𝑛
𝑝 be any [𝑛, 𝑡 − 1, 𝑛 − 𝑡 + 2] linear code. Let 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) be any

family of leakage functions where 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 . Let 𝑐𝑚 =
2𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) < 1 (when 2𝑚 < 𝑝). Then,

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤ 1
2 · 𝑝

𝑛−𝑡+1 · 𝑐𝑡𝑚 ,

20



where 𝑈𝑛 is the uniform distribution on F𝑛
𝑝 and:

𝝉(𝐶) =
{(
𝜏(𝑖)(𝑥𝑖)

)
𝑖∈[𝑛]

: ®𝑥 ← 𝐶
}

and 𝝉(𝑈𝑛) =
{(
𝜏(𝑖)(𝑥𝑖)

)
𝑖∈[𝑛]

: ®𝑥 ← 𝑈𝑛

}
.

The bound above is not tight. In particular, the 𝑝𝑛−𝑡+1 factor leads to an unnatural situation
where our bounds become worse as the prime increases. To give some intuition about what
parameters it can support, if a bit is leaked from each share, i.e., 𝑚 = 1, then 𝑐𝑚 is a constant and
hence the statistical distance is bound as 𝑒(𝑛−𝑡+1)·log 𝑝 · 𝑐𝑡𝑚 then we can set 𝑛 − 𝑡 ≈ 𝑂(𝑛/log 𝑝) and
the distance is negligible. But we cannot set 𝑛 − 𝑡 = Ω(𝑛).

Next, we describe stronger bounds removing this dependence in 𝑝: the 𝑝𝑛−𝑡+1 dependence is
replaced by a (2𝑂(𝑚))(𝑛−𝑡) style term. This gives the “natural interpretation” in that our bounds get
stronger as the prime 𝑝 increases, since the 𝑐𝑚 term decreases as 𝑝 increases. The key idea behind
this proof is using Cauchy-Schwarz inequality to reduce the number of terms we need to bound.
The constant here is not very optimized, but it suffices.

Theorem 4.6. Let 𝐶 ⊆ F𝑛
𝑝 be any [𝑛, 𝑡 − 1, 𝑛 − 𝑡 + 2] linear code. Let 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) be

any family of leakage functions where 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 . Let 𝑐′𝑚 =
2𝑚 sin(𝜋/2𝑚+𝜋/24𝑚)

𝑝 sin(𝜋/𝑝) for 𝑚 > 1 and
𝑐′1 = 𝑐1 = 2

𝑝 sin(𝜋/𝑝) . Then,

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤
1
2 · 2

(5𝑚+1)·(𝑛−𝑡)+𝑚 · (𝑐′𝑚)2𝑡−𝑛−2 ,

where 𝑈𝑛 is the uniform distribution on F𝑛
𝑝 .

In the case of additive secret sharing, we can improve the constants more, and the proof serves
as an instructive warmup for the proof of Theorem 4.6. We state the bound below.

Theorem 4.7. [Additive Secret Sharing] Let 𝐶 ⊆ F𝑛
𝑝 be the code generated by AddSh(0). Let 𝝉 =

(𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) be any family of leakage functions where 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 . Let 𝑐𝑚 =
2𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) < 1

(when 2𝑚 < 𝑝). Then,
SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤ 1

2 · 2
𝑚 · 𝑐𝑛−2

𝑚

where 𝑈𝑛 is the uniform distribution on F𝑛
𝑝 .

We remark that a slightly weaker version of Theorem 4.7 above can be obtained by invoking
Theorem 4.6 on the [𝑛, 𝑛 − 1, 2] code 𝐶 generated by AddSh(0) (𝑡 = 𝑛). More precisely we would
get:

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤ 2𝑚−1 · (𝑐′𝑚)𝑛−2 ,

which is almost the same bound except 𝑐𝑚 is replaced by the slightly larger constant 𝑐′𝑚 .

4.2.2 Local Leakage Resilience of Additive and Shamir’s Secret Sharing Schemes

Additive Secret Sharing. We observe that Theorems 4.5 to 4.7 yield the following two corollaries
for additive secret sharing and Shamir’s secret sharing. We first prove the corollaries assuming
Theorems 4.5 to 4.7 and then prove these theorems next. We describe example parameter settings
in Section 4.2.3.
Let 𝑐𝑚 and 𝑐′𝑚 be defined as follows: For 2𝑚 < 𝑝,

𝑐𝑚 =
2𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) and 𝑐′𝑚 =

2𝑚 sin(𝜋/2𝑚 + 𝜋/24𝑚)
𝑝 sin(𝜋/𝑝) .

21



Corollary 4.8 (Leakage Resilience of Additive Secret Sharing). The additive secret sharing AddSh𝑛 for
𝑛 parties is (𝜃, 𝑚, 𝜀)-LL resilient where:

𝜀 = 𝑝 · 𝑐𝑛−𝜃𝑚 or 𝜀 = 2𝑚 · 𝑐𝑛−𝜃−2
𝑚 .

Proof. This corollary follows from Theorems 4.5 and 4.7 the following claim after remarking that,
when 𝜃 parties reveal their share, an additive secret sharing with 𝑛 parties becomes a random
additive secret sharing with 𝑛 − 𝜃 parties.

Claim 4.8.1. Let 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) be any family of 𝑚-bit output leakage functions. Let 𝑐𝑚 =
2𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) < 1 (when 2𝑚 < 𝑝). Then for all secrets 𝑠0 , 𝑠1 ∈ F𝑝 ,

SD(𝝉(AddSh𝑛(𝑠0)), 𝝉(AddSh𝑛(𝑠1))) ≤ 𝑝 · 𝑐𝑛𝑚 ,

Proof. The proof is a simple hybrid argument. Let 𝐶 be the support of AddSh(0). Note that 𝐶 is an
[𝑛, 𝑛 − 1, 2] linear code and AddSh(0) is uniformly distributed on 𝐶. Also note that the distribution
AddSh(𝑠) is a coset of AddSh(0), i.e., AddSh(𝑠) can be obtained by first sampling x← AddSh(0) and
then adding a fixed vector 𝑠 · e = (𝑠, 0, 0, . . . , 0) to x. So, for any secret 𝑠,

SD(𝝉(AddSh(𝑠)), 𝝉(𝑈𝑛)) = SD(𝝉(AddSh(0) + 𝑠e), 𝝉(𝑈𝑛))
= SD(𝝉′(AddSh(0)), 𝝉′(𝑈𝑛 − 𝑠e))

where 𝜏′(1)(𝑥) = 𝜏(1)(𝑥 + 𝑠) and 𝜏′(𝑗) = 𝜏(𝑗) for 𝑗 > 1.
= SD(𝝉′(AddSh(0)), 𝝉′(𝑈𝑛)) .

Using triangle inequality, we can complete the proof:

SD(𝝉(AddSh(𝑠0)), 𝝉(AddSh(𝑠1)))
≤ SD(𝝉(AddSh(𝑠0)), 𝝉(𝑈𝑛)) + SD(𝝉(𝑈𝑛), 𝝉(AddSh(𝑠1)))
≤ 𝑝 · 𝑐𝑛𝑚 or 2𝑚 · 𝑐𝑛−2

𝑚 ,

where the last line follows from either Theorem 4.5 or Theorem 4.7. □

This concludes the proof of Corollary 4.8. □

Shamir’s Secret Sharing. Next we argue the corresponding statement for Shamir’s secret sharing.

Corollary 4.9 (Leakage Resilience of Shamir’s secret sharing). The (𝑛, 𝑡)-Shamir’s secret sharing
scheme ShaSh𝑛,𝑡 is (𝜃, 𝑚, 𝜀)-LL resilient where:

𝜀 = 𝑝𝑛−𝑡+1 · 𝑐𝑡−𝜃𝑚 or 𝜀 = 2(5𝑚+1)(𝑛−𝑡)+𝑚 · (𝑐′𝑚)2𝑡−𝑛−𝜃−2 .

Proof. This corollary follows from the following lemma after remarking that, when 𝜃 parties reveal
their share, a Shamir’s secret sharing ShaSh𝑛,𝑡(𝑠) on the remaining 𝑛 − 𝜃 parties is an still an MDS
code, up to an additive shift. We prove this claim first and then finish the proof.

Claim 4.9.1. For Shamir’s secret sharing scheme ShaSh𝑛,𝑡 of 𝑛 parties and threshold 𝑡 over a field F (with
|F| > 𝑛), let Θ ⊆ [𝑛] be a set of 𝜃 < 𝑡 parties. Consider the following experiment where for a given secret 𝑠,
𝑛 shares s = ShaSh𝑛,𝑡(𝑠) are generated and the shares for parties in Θ leaked. Let the leaked values be x(Θ).

22



Let ShaSh𝑛,𝑡(𝑠)|s(Θ)=x(Θ) be the distribution on shares conditioned on the revealed values s(Θ) being x(Θ).
Then, there exists an [𝑛 − 𝜃, 𝑡 − 1− 𝜃, 𝑛 − 𝑡 + 2]MDS code 𝐶 ⊆ F𝑛−𝜃 and a shift vector b ∈ F𝑛 such that,

ShaSh𝑛,𝑡(𝑠)|s(Θ)=x(Θ) ≡
{
(y(Θ) |0(Θ)) + b : y← 𝐶

}
,

where (y(Θ) |0(Θ)) denotes a vector where the positions in Θ are 0 while the positions in Θ are filled by y.

Given the claim, the proof follows. The adversary sees s(Θ) for the 𝜃 parties corrupted. Then,
the adversary specifies leakage functions 𝝉(Θ) = (𝜏(𝑖))

𝑖∈Θ be any family of 𝑚-bit output leakage
functions. We bound SD

(
𝝉Θ(ShaSh𝑛,𝑡(𝑠)(Θ)), 𝝉(𝑈𝑛)

)
and use the triangle inequality to complete

the proof and lose a factor of 2 as above. Observe that,

SD
(
𝝉(Θ)(ShaSh𝑛,𝑡(𝑠)(Θ)), 𝝉(𝑈𝑛)

)
= SD

(
𝝉(Θ)(𝐶 + b(Θ)), 𝝉(𝑈𝑛)

)
≤ 1

2 · 𝑝
𝑛−𝑡+1 · 𝑐𝑡−𝜃𝑚 or 1

2 · 2
(5𝑚+1)(𝑛−𝑡)+𝑚 · (𝑐′𝑚)2𝑡−𝑛−𝜃−2 ,

where the equality follows from Claim 4.9.1 and the inequality follows from Theorems 4.5 and 4.6.
Next, we prove the claim to finish the proof.

Proof of Claim 4.9.1. The proof follows from considering alternate ways of sampling the conditional
distribution.

ShaSh𝑛,𝑡(𝑠)|s(Θ)=x(Θ) ≡ ShaSh𝑛,𝑡(0)|s(Θ)=x(Θ)−𝑠1(Θ) + 𝑠1 ,

where 1 ∈ F𝑛 is the vector 1 = (1, . . . , 1). This follows because ShaSh𝑛,𝑡(𝑠) ≡ ShaSh𝑛,𝑡(0) + 𝑠1.
For the next transformation, pick a polynomial 𝑝 of degree at most 𝜃 − 1 < 𝑡 such that 𝑝 when
evaluated at points in Θ evaluates to x(Θ). Let p denote the evaluation of 𝑝 at the evaluation points
of Shamir’s secret sharing. Then,

≡ ShaSh𝑛,𝑡(0)|s(Θ)=0 + p + (𝑠 − 𝑝(0)) · 1 .

The last equivalence follows from observing that 𝑝 is a polynomial of degree ≤ 𝑡−1 and a Shamir’s
sharing is obtained from a random degree-(𝑡−1) polynomial. Hence an element of the right-hand-
side distribution is a Shamir’s sharing of 𝑠. Note that ShaSh𝑛,𝑡(0)|s(Θ)=0 has a clean characterization
as follows: sample a random polynomial 𝑞 of degree 𝑡 − 𝜃 − 1 such that 𝑞(0) = 0, consider the
augmented polynomial 𝑞′(𝑥) = 𝑞 ·∏𝑖∈Θ(𝑥−𝛼𝑖) of degree 𝑡−1 where 𝐴 = {𝛼1 , 𝛼2 , . . . , 𝛼𝑛} is the set
of evaluation points for Shamir’s secret sharing scheme. Finally the codeword is the evaluations
of 𝑞′ on 𝐴. This characterization allows us to see that ShaSh𝑛,𝑡(0)|s(Θ)=0 is an [𝑛, 𝑡 − 𝜃 − 1, 𝑛 − 𝑡 + 2]
code.

Now we are done. Consider 𝐶 to be the restriction of ShaSh𝑛,𝑡(0)|s(Θ)=0 to Θ and the shift
b = p + (𝑠 − 𝑝(0)) · 1. Code 𝐶 is an [𝑛 − 𝜃, 𝑡 − 𝜃 − 1, 𝑛 − 𝑡 + 2] code because all the points excluded
are 0 and hence do not affect the distance. This completes the argument. □

□

4.2.3 Example Parameter Settings

Let us now simplify the bounds for some specific parameter settings. All the statements in this
section assumes that the parameters 𝑛, 𝑝, 𝑚, 𝜃, 𝜀 are functions of some implicit parameter 𝜆 ∈ N.

23



Additive Secret Sharing. The following corollary shows that for additive secret sharings, if a
constant number of bits is leaked per share (𝑚 = 𝑂(1)), as long as the prime order 𝑝 is larger than
2𝑚 (i.e., not all the bits are leaked), if 𝑛 − 𝜃 goes to infinity, the adversary advantage goes to 0
exponentially fast in 𝑛 − 𝜃.

Corollary 4.10 (Additive Secret Sharing with Constant-Size Leakage). If 𝑚 = 𝑂(1), 𝑝 > 2𝑚 , the
additive secret sharing AddSh𝑛 for 𝑛 parties is (𝜃, 𝑚, 𝜀)-LL resilient where 𝜀 = 2−Ω(𝑛−𝜃).

Proof. Since 𝑐𝑚 < 1 as soon as 𝑝 > 2𝑚 , there exists a constant 𝑐 > 0 such that 𝑐𝑚 ≤ 2−𝑐 for all
the values of the implicit parameter 𝜆 ∈ N. Corollary 4.8 implies that the additive secret sharing
AddSh𝑛 is (𝜃, 𝑚, 𝜀)-LL resilient when:

𝜀 = 2𝑚 · 𝑐𝑛−𝜃−2
𝑚 ≤ 2𝑚−𝑐(𝑛−𝜃−2) = 2−Ω(𝑛−𝜃) .

□

The following corollary shows in particular that for additive secret sharings, if all-but-one bit
is leaked per share (𝑚 = ⌊log2 𝑝 − 1⌋), and 𝑛 − 𝜃 = Ω(𝑝2 log 𝑝), the scheme is 𝜀 = 1/3-LL resilient.

Corollary 4.11 (Additive Secret Sharing with All-but-One Bit of Leakage). Let 𝜂 > 0 be a constant.
If 𝑝 goes to infinity, 𝜃 < 𝑛 − 2, and 𝑚 = ⌊log2 𝑝 −𝜂⌋, then the additive secret sharing AddSh𝑛 for 𝑛 parties
is (𝜃, 𝑚, 𝜀)-LL resilient where 𝜀 = 2𝑚−Ω(𝑛−𝜃)/𝑝2 .

The corollary is actually stronger than the informal statement above, as it holds even if “less
than a bit” is not leaked (more precisely if the remaining min-entropy of each share is 𝜂).

Proof. We have:

𝑐𝑚 =
2𝑚/𝜋 · sin(𝜋/2𝑚)
𝑝/𝜋 · sin(𝜋/𝑝)

=

2𝑚
𝜋 ·

(
𝜋
2𝑚 − 𝜋3

6·23𝑚 + 𝑂
(

1
25𝑚

))
𝑝

𝜋 ·
(
𝜋
𝑝 − 𝜋3

6·𝑝3 + 𝑂
(

1
𝑝5

))
=

(
1 − 𝜋2

6 · 22𝑚 + 𝑂

(
1

24𝑚

))
·
(
1 + 𝜋2

6 · 𝑝2 + 𝑂

(
1
𝑝4

))
≤ 1 − 𝜋2

6𝑝2 · (2
2𝜂 − 1) + 𝑂

(
1
𝑝4

)
,

where the inequality comes from the fact that 2𝑚 ≤ 𝑝/2𝜂. We denote by 𝑐 the constant 𝑐 =

𝜋2(22𝜂 − 1)/(6 log 2) > 0, where log corresponds to the natural logarithm (while log2 corresponds
to the logarithm in base 2). From the inequality log(1 + 𝑥) ≤ 𝑥 for 𝑥 > −1, we have:

log2 𝑐𝑚 ≤ −
𝑐

𝑝2 + 𝑂

(
1
𝑝4

)
. (5)

Finally, Corollary 4.8 implies that the additive secret sharing AddSh𝑛 is (𝜃, 𝑚, 𝜀)-LL resilient when:

𝜀 = 2𝑚 · 𝑐𝑛−𝜃−2
𝑚 ≤ 2𝑚−(𝑛−𝜃−2)·𝑐/𝑝2+𝑂((𝑛−𝜃)/𝑝4) ,

24



where the inequality comes Eq. (5). When the implicit parameter 𝜆 is large enough, 𝑝 is small
enough and the term 𝑂((𝑛 − 𝜃)/𝑝4) in the inequality above is less than (𝑛 − 𝜃 − 2) · 𝑐/(2𝑝2). Thus,
for large enough implicit parameter:

𝜀 ≤ 2𝑚−(𝑛−𝜃−2)·𝑐/(2𝑝2) .

This concludes the proof. □

Shamir’s Secret Sharing. The following corollary shows that for Shamir’s secret sharings, if a
constant number of bits is leaked per share (𝑚 = 𝑂(1)) and a constant number of shares are
completely leaked (𝜃 = 𝑂(1)), there exists 𝛼 < 1, such that if 𝑡 ≥ 𝛼𝑛 and if 𝑛 goes to infinity, the
adversary advantage goes to 0 exponentially fast in 𝑛.

Corollary 4.12 (Shamir’s Secret Sharing with Constant-Size Leakage). If 𝑚 = 𝑂(1), 𝜃 = 𝑂(1), and
𝑛 goes to infinity, there exists 𝛼 < 1, such that the Shamir’s secret sharing scheme ShaSh𝑛,𝑡 for 𝑛 parties
and threshold 𝑡 ≥ 𝛼𝑛 is (𝜃, 𝑚, 𝜀)-LL resilient where 𝜀 = 2−Ω(𝑛).

Proof. When the implicit parameter 𝜆 ∈ N is large enough, 𝑝 > 𝑛 is large, and 𝑐′𝑚 ≤ 2−𝑐 for
some constant 𝑐 > 0. Corollary 4.9 implies that the Shamir secret sharing ShaSh𝑛,𝑡 is (𝜃, 𝑚, 𝜀)-LL
resilient where:

𝜀 = 2(5𝑚+1)(𝑛−𝑡)+𝑚 · (𝑐′𝑚)2𝑡−𝑛−𝜃−2 (6)

≤ 2(5𝑚+1)(𝑛−𝑡)+𝑚−𝑐(2𝑡−𝑛−𝜃−2) (7)

≤ 2(5𝑚+1+𝑐)𝑛−(5𝑚+1+2𝑐)𝑡+𝑚+𝑐𝜃+2𝑐 . (8)

Hence choosing 𝛼 > (5𝑚 + 1 + 𝑐)/(5𝑚 + 1 + 2𝑐) but still 𝛼 < 1, if 𝑡 ≥ 𝛼𝑛, we have:

𝜀 ≤ 2((5𝑚+1+𝑐)−𝛼(5𝑚+1+2𝑐))𝑛+𝑚+𝑐𝜃+2𝑐 ≤ 2−Ω(𝑛) ,

because ((5𝑚 + 1 + 𝑐) − 𝛼(5𝑚 + 1 + 2𝑐)) is a negative constant and 𝑚 + 𝑐𝜃 = 𝑂(1). □

Corollary 4.13 (Shamir’s Secret Sharing with Constant-Fraction Leakage). Let 𝜃 = 𝑂(1). For
sufficiently large 𝑛, for 𝑛 < 𝑝 ≤ 2𝑛 and 𝑚 = ⌊(log 𝑝)/4⌋, the Shamir’s secret sharing scheme ShaSh𝑛,𝑡 for
𝑛 parties and threshold 𝑡 > 𝑛 − 𝑛1/4 is (𝜃, 𝑚, 𝜀)-LL resilient where 𝜀 = 2−Ω(

√
𝑛).

The proof relies on the following bound for 𝑐𝑚 proved in Appendix A:

Proposition 4.14. Let 𝑚 ≥ 1 and 𝑝 ≥ 2 be two integers. Let 𝑐𝑚 =
2𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) . We have:

log 𝑐𝑚 ≤ −
1

22𝑚+1 +
4
𝑝2 .

Proof of Corollary 4.13. Corollary 4.9 implies that Shamir’s secret sharing is leakage resilient where
𝜀 = 𝑝𝑛−𝑡+1 · 𝑐𝑡−𝜃𝑚 . Hence by Proposition 4.14, for 𝑚 = ⌊(log 𝑝)/4⌋, we get that log 𝑐𝑚 ≤ − 1

2(log 𝑝)/2+1 +
4
𝑝2 < − 1

3√𝑝 for large enough 𝑛 < 𝑝. We have:

𝜀 = 𝑝𝑛−𝑡+1 · 𝑐𝑡−𝜃𝑚 ≤ 𝑒
log 𝑝·(𝑛−𝑡+1)−(𝑡−𝜃) 1

3√𝑝 ≤ 𝑒
log 𝑝

𝑛1/4 −
𝑡−𝜃
3√𝑝 .

To complete the proof, observe that, log 𝑝

𝑛1/4 − 𝑡−𝜃
3√𝑝 <

log 𝑝

𝑛1/4 −
3𝑛/4
3√𝑝 < −

√
𝑛/16 for large enough 𝑛 as

√
𝑝 < 2

√
𝑛, log 𝑝

𝑛1/4 <
√
𝑛

16 and 𝜃 = 𝑂(1). Hence, 𝜀 ≤ 2−
√
𝑛/16 as desired. □

25



4.3 Proofs of Theorems 4.5, 4.6, and 4.7

The proofs of all three statements follow a very similar outline. We describe the common parts of
the proof and then specialize the proofs as required. For a linear code 𝐶 and leakage functions
𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) our overarching goal is to bound the statistical distance SD(𝝉(𝐶), 𝝉(𝑈𝑛)).
The first part of the proof common to all the theorems is to write this statistical distance in a
Fourier representation. The second part, which is specialized, uses different methods to bound
this statistical distance.

Lemma 4.15. Let 𝐶 ⊆ F𝑛
𝑝 be any [𝑛, 𝑡−1, 𝑛− 𝑡+2] linear code. Let 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) be any family

of leakage functions where 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 . We abuse notation and define 1ℓ 𝑗 (𝑥) = 1 if 𝜏(𝑗)(𝑥) = ℓ 𝑗 and
0 otherwise. We then have

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) =
1
2

∑
®ℓ∈{0,1}𝑚×𝑛

���� ∑
®𝛼∈𝐶⊥\{®0}

∏
𝑗

1̂ℓ 𝑗 (𝛼 𝑗)
���� .

Before proving the lemma, we want to briefly describe how the proofs of Theorems 4.5 to 4.7
follow. The three theorems apply different bounds for the Fourier expression above. Theorem 4.5
has the simplest proof, which consists of bounding each of the terms 1̂ℓ 𝑗 (𝛼 𝑗) and then invoking
convexity. But the proof yields a dependence on the number of terms (𝑝𝑛−𝑡) which is undesirable.
This can be improved by using Cauchy-Schwarz inequality. This is done in Theorem 4.7 and
Theorem 4.6. The case of additive secret sharing (Theorem 4.7) serves as a warm-up for the more
intricate proof of Theorem 4.6. We start by proving Lemma 4.15.

Recall that 𝜔 = exp(2𝜋𝑖/𝑝) is a primitive 𝑝-th root of unity.

Proof of Lemma 4.15. We start by proving the Poisson Summation Formula for linear codes 𝐶. It
shows that the expectation of product of functions over a code can be represented as a sum of
products over the dual code. Then we show how this can prove the lemma.

Lemma 4.16 (Poisson Summation Formula). Let 𝑝 > 2 be a prime. Let 𝐶 ⊆ F𝑛
𝑝 be a linear code with

dual code is 𝐶⊥. Let 𝑓1 , 𝑓2 , . . . , 𝑓𝑛 : F𝑝 → C be functions. Let Λ be defined as follows:

Λ( 𝑓1 , 𝑓2 , . . . , 𝑓𝑛) = E
®𝑥←𝐶
[ 𝑓1(𝑥1) · 𝑓2(𝑥2) · · · 𝑓𝑛(𝑥𝑛)] ,

where ®𝑥 = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛). Then, the following holds:

Λ( 𝑓1 , 𝑓2 , . . . , 𝑓𝑛) =
∑
®𝛼∈𝐶⊥

�̂�1(𝛼1) · �̂�2(𝛼2) · · · �̂�𝑛(𝛼𝑛) ,

where ®𝛼 = (𝛼1 , 𝛼2 , . . . , 𝛼𝑛) ∈ F𝑛
𝑝 .

Proof of Poisson Summation Formula (Lemma 4.16). The proof is a calculation that uses the fact that
for any fixed ®𝛼, the inner product

〈
®𝑥, ®𝛼

〉
, where ®𝑥 ← 𝐶, is always 0 when ®𝛼 ∈ 𝐶⊥ and uniformly

26



random otherwise.

E
®𝑥←𝐶

[∏
𝑖

𝑓𝑖(𝑥𝑖)
]
= E
®𝑥←𝐶


∏
𝑖

∑
𝛼𝑖∈F𝑝

�̂�𝑖(𝛼𝑖)𝜒𝛼𝑖
(𝑥𝑖)


= E
®𝑥←𝐶


∑
®𝛼∈F𝑛𝑝

∏
𝑖

�̂�𝑖(𝛼𝑖)𝜒𝛼𝑖
(𝑥𝑖)


= E
®𝑥←𝐶


∑
®𝛼∈F𝑛𝑝

(∏
𝑖

�̂�𝑖(𝛼𝑖)
)
𝜔−⟨®𝑥, ®𝛼⟩


=

∑
®𝛼∈F𝑛𝑝

(∏
𝑖

�̂�𝑖(𝛼𝑖)
)
· E
®𝑥←𝐶

[
𝜔−⟨®𝑥, ®𝛼⟩

]
=

∑
®𝛼∈𝐶⊥

∏
𝑖

�̂�𝑖(𝛼𝑖) ,

where the first equality follows from the Fourier Inversion Formula (Theorem 3.9(b)), the third
equality follows because 𝜒𝛼𝑖

(𝑥) = 𝜔𝛼𝑖 ·𝑥 and the last equality follows because E®𝑥←𝐶

[
𝜔−⟨®𝑥, ®𝛼⟩

]
= 1 if

®𝛼 ∈ 𝐶⊥ and 0 otherwise. □

Equipped with Lemma 4.16, we now prove Lemma 4.15. This proof primarily specializes the
Poisson Summation formula to the specific case of leakage functions. Note that given any output
leakage value ®ℓ = (ℓ1 , . . . , ℓ𝑛),

Pr
®𝑥←𝐶

[
𝝉(®𝑥) = ®ℓ

]
= E
®𝑥←𝐶
[1ℓ1(𝑥1) · 1ℓ2(𝑥2) · · · 1ℓ𝑛 (𝑥𝑛)] .

This is simply saying that 1ℓ𝑖 (𝑥𝑖) indicates whether the leakage from the share 𝑥𝑖 is the correspond-
ing value ℓ𝑖 . Hence, we have:

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) =
1
2

∑
®ℓ

������ E®𝑥←𝐶


∏
𝑗

1ℓ 𝑗 (𝑥 𝑗)
 − E

®𝑥←𝑈𝑛


∏
𝑗

1ℓ 𝑗 (𝑥 𝑗)

������

=
1
2

∑
®ℓ

������ ∑®𝛼∈𝐶⊥
∏
𝑗

1̂ℓ 𝑗 (𝛼 𝑗) − E
®𝑥←𝑈𝑛


∏
𝑗

1ℓ 𝑗 (𝑥 𝑗)

������

=
1
2

∑
®ℓ

��������
∑

®𝛼∈𝐶⊥\
{
®0
}
∏
𝑗

1̂ℓ 𝑗 (𝛼 𝑗)

�������� ,

where the second equality follows from Poisson Summation (Lemma 4.16), the third equality

follows from the fact thatE®𝑥←𝑈𝑛

[∏
𝑗 1ℓ 𝑗 (𝑥 𝑗)

]
=

∏
𝑗

(
|
(
𝜏(𝑗)

)−1
(ℓ 𝑗)|/𝑝

)
=

∏
𝑗 1̂ℓ 𝑗 (0). This completes the

proof of Lemma 4.15. □

27



4.3.1 Proof of Theorem 4.5

We recall Theorem 4.5 below.

Theorem 4.5. Let 𝐶 ⊆ F𝑛
𝑝 be any [𝑛, 𝑡 − 1, 𝑛 − 𝑡 + 2] linear code. Let 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) be any

family of leakage functions where 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 . Let 𝑐𝑚 =
2𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) < 1 (when 2𝑚 < 𝑝). Then,

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤ 1
2 · 𝑝

𝑛−𝑡+1 · 𝑐𝑡𝑚 ,

where 𝑈𝑛 is the uniform distribution on F𝑛
𝑝 and:

𝝉(𝐶) =
{(
𝜏(𝑖)(𝑥𝑖)

)
𝑖∈[𝑛]

: ®𝑥 ← 𝐶
}

and 𝝉(𝑈𝑛) =
{(
𝜏(𝑖)(𝑥𝑖)

)
𝑖∈[𝑛]

: ®𝑥 ← 𝑈𝑛

}
.

In Lemma 4.15, we represented the statistical distance SD(𝝉(𝐶), 𝝉(𝑈𝑛)) in terms of Fourier
coefficients of some characteristic functions of the leakage. Next, in Lemma 4.17, we show bounds
on these Fourier coefficients, which then allows us to complete the proof of Theorem 4.5.

Lemma 4.17. Let 𝑚 be some positive real number such that 2𝑚 is an integer. Let 𝑐𝑚 =
2𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) . For any

sets 𝐴1 , 𝐴2 , . . . , 𝐴2𝑚 ⊆ F𝑝 , such that
∑2𝑚

𝑖=1 |𝐴𝑖 | = 𝑝, we have:
2𝑚∑
𝑖=1

���1̂𝐴𝑖
(𝛼)

��� ≤ 𝑐𝑚 if 𝛼 ≠ 0 ,

2𝑚∑
𝑖=1

���1̂𝐴𝑖
(𝛼)

��� = 1 if 𝛼 = 0 ,

where 1𝐴 : F𝑝 → {0, 1} is the characteristic function of the set 𝐴 ⊆ F𝑝 (i.e., 1𝐴(𝑥) = 1 if 𝑥 ∈ 𝐴 and 0
otherwise).

Proof. This proof relies on Lemma 3.11 and uses concavity to argue about partitions. The case
𝛼 = 0 follows directly from the following fact:

1̂𝐴(0) = E
𝑥

[
1𝐴(𝑥) · 𝜔0·𝑥] = |𝐴|/𝑝 .

Let us now focus on the case 𝛼 ≠ 0. Recall that 𝜁𝑘(𝑥) = sin(𝑥𝜋/𝑘)
sin(𝜋/𝑘) . Let 𝑡𝑖 = |𝐴𝑖 |. As 𝛼 ≠ 0, observe

that 1̂𝐴(𝛼) = E𝑥[1𝐴(𝑥) · 𝜔𝛼𝑥] = 𝑝−1 · 𝝎𝛼𝐴, where 𝜔 = exp(2𝜋𝑖𝑝 ) and 𝛼𝐴 = {𝛼𝑥 : 𝑥 ∈ 𝐴} has the
same size as 𝐴. We have:

𝑝
∑
𝑖

���1̂𝐴𝑖
(𝛼)

��� = ∑
𝑖

��𝝎𝛼𝐴𝑖
�� ≤∑

𝑖

𝜁𝑝(𝑡𝑖) =
1

sin(𝜋/𝑝)
∑
𝑖

sin(𝜋𝑡𝑖/𝑝)

≤ 1
sin(𝜋/𝑝) · 2

𝑚 · sin(𝜋/2𝑚) = 𝑝 · 2
𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) = 𝑝 · 𝑐𝑚

where the first inequality follows from Lemma 3.11, the second inequality follows from the concav-
ity of the sin(·) function between [0,𝜋] and hence the function is maximized when all 𝑡𝑖 = 𝑝/2𝑚 . □

28



Completing the Proof. At this point, given Lemmas 4.15 and 4.17 we can complete the proof of
Theorem 4.5.

Proof of Theorem 4.5. We recall that we abuse notation and define 1ℓ 𝑗 (𝑥) = 1𝜏−1(ℓ 𝑗). We can express
the statistical distance as follows:

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) =
1
2

∑
®ℓ

��������
∑

®𝛼∈𝐶⊥\
{
®0
}
∏
𝑗

1̂ℓ 𝑗 (𝛼 𝑗)

��������
≤ 1

2

∑
®ℓ

∑
®𝛼∈𝐶⊥\

{
®0
}
∏
𝑗

���1̂ℓ 𝑗 (𝛼 𝑗)
���

=
1
2

∑
®𝛼∈𝐶⊥\

{
®0
}
∏
𝑗

©«
∑
ℓ 𝑗

���1̂ℓ 𝑗 (𝛼 𝑗)
���ª®¬ ,

where the first equality comes from Lemma 4.15 and the first inequality follows from the triangle
inequality. To complete the proof, we bound

∑
ℓ 𝑗

���1̂ℓ 𝑗 (𝛼 𝑗)
��� using Lemma 4.17 and get:

≤ 1
2

∑
®𝛼∈𝐶⊥\

{
®0
} 𝑐HW( ®𝛼)

𝑚 ≤ 1
2

∑
®𝛼∈𝐶⊥\

{
®0
} 𝑐𝑡𝑚 ≤ 1

2 |𝐶
⊥ | · 𝑐𝑡𝑚 ,

where HW(·) denotes the Hamming weight. The last inequality follows from the fact that the dual
code 𝐶⊥ has minimum distance 𝑡, as 𝐶 is a [𝑛, 𝑡 − 1, 𝑛 − 𝑡 + 2] linear code and is thus MDS. We
conclude by remarking that |𝐶⊥ | = 𝑝𝑛−𝑡+1.

□

4.3.2 Warm-Up: Proof of Theorem 4.7

Next, we prove stronger bounds on additive secret sharing (Theorem 4.7). This serves as a warm-up
to the general result (Theorem 4.6). We start by recalling Theorem 4.7.

Theorem 4.7. [Additive Secret Sharing] Let 𝐶 ⊆ F𝑛
𝑝 be the code generated by AddSh(0). Let 𝝉 =

(𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) be any family of leakage functions where 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 . Let 𝑐𝑚 =
2𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) < 1

(when 2𝑚 < 𝑝). Then,
SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤ 1

2 · 2
𝑚 · 𝑐𝑛−2

𝑚

where 𝑈𝑛 is the uniform distribution on F𝑛
𝑝 .

For the proof, we need a bound on Fourier coefficients. Hence, we start by stating and proving
the following corollary of Lemma 4.17.

Lemma 4.18. Let 𝑚 be some positive real such that 2𝑚 is an integer. Let 𝑐𝑚 =
2𝑚 sin(𝜋/2𝑚)
𝑝 sin(𝜋/𝑝) . For any sets

𝐴1 , 𝐴2 , . . . , 𝐴2𝑚 ⊆ F𝑝 , such that
∑2𝑚

𝑖=1 |𝐴𝑖 | = 𝑝, we have:

2𝑚∑
𝑖=1

max
𝛼≠0

���1̂𝐴𝑖
(𝛼)

��� ≤ 𝑐𝑚 .

29



Proof. We remark that for 𝛼 ≠ 0: 1̂𝐴(𝛼) = 𝑝−1 · 𝝎𝛼𝐴. Hence, for any 𝑖 ∈ [2𝑚], there exists 𝛼𝑖 such
that:

max
𝛼≠0

���1̂𝐴𝑖
(𝛼)

��� = ���1̂𝐴𝑖
(𝛼𝑖)

��� = 𝑝−1 · 𝝎𝛼𝑖𝐴 =

����1𝛼𝑖𝐴𝑖
(1)

��� .

We conclude using Lemma 4.17 on 𝛼 = 1 and the sets 𝛼1𝐴, . . . , 𝛼2𝑚𝐴2𝑚 . □

Proof of Theorem 4.7. We recall that we abuse notation and define 1ℓ 𝑗 (𝑥) = 1𝜏−1(ℓ 𝑗). We can express
the statistical distance as follows thanks to Lemma 4.15:

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) =
1
2

∑
®ℓ

���� ∑
®𝛼∈𝐶⊥\

{
®0
}
∏
𝑗

1̂ℓ 𝑗 (𝛼 𝑗)
����

As the dual code of 𝐶 is the linear code generated by ®1 (the all-ones vector), we get that the sum is
equivalently,

=
1
2

∑
®ℓ

�����∑
𝛼≠0

1̂ℓ1(𝛼) · 1̂ℓ2(𝛼) · · · 1̂ℓ𝑛 (𝛼)
�����

Now, we use Cauchy-Shwarz to get that,

≤ 1
2

∑
®ℓ

1̂ℓ1


2
·
1̂ℓ2


2
·max

𝛼≠0

���1̂ℓ3(𝛼)
��� · · ·max

𝛼≠0

���1̂ℓ𝑛 (𝛼)���
=

1
2

(∑
ℓ1

1̂ℓ1


2

)
·
(∑

ℓ2

1̂ℓ2


2

)
·
(∑

ℓ3

max
𝛼≠0

���1̂ℓ (𝛼)���) · · · (∑
ℓ𝑛

max
𝛼≠0

���1̂ℓ𝑛 (𝛼)���) .

To complete the proof we use the following claim.

Claim 4.18.1. For any 𝑗 ∈ [𝑛], ∑ℓ 𝑗∈{0,1}𝑚
1̂ℓ 𝑗


2
≤ 2𝑚/2.

Proof. We have
1̂ℓ 𝑗


2
=

1ℓ 𝑗


2 =

√
Pr𝛼←F𝑝

[
1ℓ 𝑗 (𝛼) = 1

]
. Furthermore the events [1ℓ 𝑗 (𝛼) = 1] are

pairwise disjoints for ℓ 𝑗 ∈ {0, 1}𝑚 , and
∑

ℓ 𝑗∈{0,1}𝑚 Pr𝛼←F𝑝
[
1ℓ 𝑗 (𝛼) = 1

]
= 1. Thus:∑

ℓ 𝑗∈{0,1}𝑚

1̂ℓ 𝑗


2
=

∑
ℓ 𝑗∈{0,1}𝑚

√
Pr
𝛼

[
1ℓ 𝑗 (𝛼) = 1

]
≤ 2𝑚 ·

√√
1

2𝑚 ·
∑

ℓ 𝑗∈{0,1}𝑚
Pr

𝛼←F𝑝

[
1ℓ 𝑗 (𝛼) = 1

]
= 2𝑚/2 ,

where the inequality comes from the concavity of 𝑥 ↦→
√
𝑥. □

To complete the proof, observe that
∑

ℓ 𝑗
max𝛼≠0

���1̂ℓ 𝑗 (𝛼)��� ≤ 𝑐𝑚 by Lemma 4.18. This implies:

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤
1
2 · 2

𝑚/2 · 2𝑚/2 · 𝑐𝑛−2
𝑚 .

□

30



4.3.3 Proof of Theorem 4.6

We turn towards proving Theorem 4.6. The strategy again is to use Cauchy-Schwarz. Now we
need a significantly more delicate variant of Lemma 4.18. We start by recalling the theorem.

Theorem 4.6. Let 𝐶 ⊆ F𝑛
𝑝 be any [𝑛, 𝑡 − 1, 𝑛 − 𝑡 + 2] linear code. Let 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) be

any family of leakage functions where 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 . Let 𝑐′𝑚 =
2𝑚 sin(𝜋/2𝑚+𝜋/24𝑚)

𝑝 sin(𝜋/𝑝) for 𝑚 > 1 and
𝑐′1 = 𝑐1 = 2

𝑝 sin(𝜋/𝑝) . Then,

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤
1
2 · 2

(5𝑚+1)·(𝑛−𝑡)+𝑚 · (𝑐′𝑚)2𝑡−𝑛−2 ,

where 𝑈𝑛 is the uniform distribution on F𝑛
𝑝 .

Let us now prove Theorem 4.6. We start by a lemma that uses the Cauchy-Schwarz inequality
to get rid of the sum over all codewords in 𝐶⊥ in the proof of Theorem 4.5 and hence remove the
dependence on 𝑝, at the expense of a factor 2𝑚·(𝑛−𝑡+1)−1 and a more complicated expression involving
some maximum over all codewords in 𝐶⊥. Then, we will show a bound on that expression. We
begin by describing a property of all MDS Codes.

Proposition 4.19. An [𝑛, 𝑘, 𝑑] linear code 𝐶 is an MDS code if and only if every set of 𝑛 − 𝑘 columns of
its parity check matrix 𝐻 ∈ F(𝑛−𝑘)×𝑛𝑝 are linearly independent.

Proof. The code 𝐶 exactly consists of all codewords ®𝑥 such that 𝐻 ®𝑥 = 0. If there exists a set of 𝑛 − 𝑘
columns of 𝐻 that are not linearly independent, then there exists a vector ®𝑣 of Hamming weight at
most 𝑛 − 𝑘 such that 𝐻®𝑣 = 0. Thus the minimum distance 𝑑 of 𝐶 is at most 𝑛 − 𝑘 and 𝐶 is not MDS.

Conversely, if 𝐶 is not an MDS code, it contains a vector ®𝑣 of Hamming weight at most 𝑛 − 𝑘

and the set of (at most 𝑛 − 𝑘) columns of 𝐻 corresponding to the non-zero coefficients of ®𝑣 are not
linearly independent. □

Lemma 4.20. Let 𝐶 be an [𝑛, 𝑡 − 1, 𝑛 − 𝑡 + 2] linear MDS code with parity check matrix 𝐻. Partition the
indices of the columns of 𝐻 into [𝑛] = 𝐼1 ∪ 𝐼2 ∪ 𝐼3 where 𝐼1 , 𝐼2 have size 𝑛 − 𝑡 + 1 each. Let { ®ℎ⊺

𝑗
}
𝑗∈[𝑛]

be

the family of the columns of 𝐻. Let 𝑚 be a positive integer. Let 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) be any family of
leakage functions where 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 . We abuse notation and define 1ℓ 𝑗 (𝑥) = 1 if 𝜏(𝑗)(𝑥) = ℓ 𝑗 and 0
otherwise. We then have:

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤
1
2 · 2

𝑚·(𝑛−𝑡+1) ·
∑
{ℓ 𝑗} 𝑗∈𝐼3

max
®𝛽∈F𝑛−𝑡+1

𝑝 \{®0}

∏
𝑗∈𝐼3

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)��� ,

where {ℓ 𝑗} 𝑗∈𝐼3 ∈ {0, 1}
2𝑡−𝑛−2.

The core of the proof is the following lemma which aims at bounding the Fourier expression∑
{ℓ 𝑗} 𝑗∈𝐼3

max
®𝛽∈F𝑛−𝑡+1

𝑝 \{®0}

∏
𝑗∈𝐼3

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)��� .

31



Lemma 4.21. Let 𝐷 ⊆ F𝑘
𝑝 be any code of distance at least 𝑑. Let 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑘)) be any family of

leakage functions where 𝜏(𝑗) : F𝑝 → {0, 1}𝑚 . We abuse notation and define 1ℓ 𝑗 (𝑥) = 1 if 𝜏(𝑗)(𝑥) = ℓ 𝑗 and 0
otherwise. Let 𝑐′𝑚 =

2𝑚 sin(𝜋/2𝑚+𝜋/24𝑚)
𝑝 sin(𝜋/𝑝) for 𝑚 > 1, and 𝑐′1 = 𝑐1 = 2

𝑝 sin(𝜋/𝑝) . We then have:

∑
®ℓ∈({0,1}𝑚)𝑘

max
®𝛼∈𝐷

𝑘∏
𝑗=1

���1̂ℓ 𝑗 (𝛼 𝑗)
��� ≤ 2(4𝑚+1)·(𝑘−𝑑) · 𝑐′𝑘𝑚 .

We first finish the proof of Theorem 4.6 assuming Lemmas 4.20 and 4.21 and then prove the
lemmas.

Proof of Theorem 4.6. Let 𝑘 = |𝐼3 | = 2𝑡 − 𝑛 − 2. Let 𝐷 = {{𝑥 𝑗} 𝑗∈𝐼3 : ®𝑥 ∈ 𝐶⊥} ⊆ F𝑘
𝑝 . As 𝐶⊥ is an

[𝑛, 𝑛 − 𝑡 + 1, 𝑡] code, 𝐷 is a [𝑘, 𝑘′, 𝑑] code, such that 𝑘′ ≤ 𝑛 − 𝑡 + 1 and 𝑑 ≥ 𝑡 − (𝑛 − 𝑘) code (hence,
𝑘 − 𝑑 ≤ 𝑛 − 𝑡). We then use Lemma 4.20 followed by Lemma 4.21 to get:

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤
1
2 · 2

𝑚·(𝑛−𝑡+1) ·
∑
{ℓ 𝑗} 𝑗∈𝐼3

max
®𝛽∈F𝑛−𝑡+1

𝑝

∏
𝑗∈𝐼3

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)���
≤ 1

2 · 2
𝑚·(𝑛−𝑡+1) · 2(4𝑚+1)·(𝑘−𝑑) · 𝑐′𝑘𝑚 ≤

1
2 · 2

(5𝑚+1)·(𝑛−𝑡)+𝑚 · 𝑐′𝑘𝑚 .

This concludes the proof of Theorem 4.6. □

Next we prove the two lemmas. The first one is applying Cauchy-Schwarz on subsets of
coordinates 𝐼1 and 𝐼2 and the second bounds Fourier coefficients.

Proof of Lemma 4.20. By Lemma 4.15, we can express the statistical distance as follows:

SD(𝝉(𝐶), 𝝉(𝑈𝑛))

=
1
2

∑
®ℓ

��������
∑

®𝛼∈𝐶⊥\
{
®0
}
∏
𝑗

1̂ℓ 𝑗 (𝛼 𝑗)

��������
=

1
2

∑
®ℓ

�������
∑

®𝛽∈F𝑛−𝑡+1
𝑝 \{®0}

∏
𝑗

1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)

�������
=

1
2

∑
®ℓ

�������
∑

®𝛽∈F𝑛−𝑡+1
𝑝 \{®0}

©«
∏
𝑗∈𝐼1

1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)
ª®¬ · ©«

∏
𝑗∈𝐼2∪𝐼3

1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)
ª®¬
�������

≤ 1
2

∑
®ℓ

√√√√√√ ∑
®𝛽∈F𝑛−𝑡+1

𝑝 \{®0}

������∏𝑗∈𝐼1 1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)

������
2

·

√√√√√√ ∑
®𝛽∈F𝑛−𝑡+1

𝑝 \{®0}

������ ∏
𝑗∈𝐼2∪𝐼3

1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)

������
2

≤ 1
2

∑
®ℓ

√√√ ∑
®𝛽∈F𝑛−𝑡+1

𝑝 \{®0}

∏
𝑗∈𝐼1

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)���2 ·√√√ ∑
®𝛽∈F𝑛−𝑡+1

𝑝 \{®0}

∏
𝑗∈𝐼2

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)���2 · max
®𝛽∈F𝑛−𝑡+1

𝑝

∏
𝑗∈𝐼3

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)��� ,

32



where the first inequality comes from the Cauchy-Schwarz inequality.
Since { ®ℎ⊺

𝑗
}
𝑗∈𝐼1

is a basis of F(𝑛+𝑡−1)×1
𝑝 from Proposition 4.19, the function ®𝛽 ∈ F𝑛−𝑡+1

𝑝 ↦→

{⟨®𝛽, ®ℎ 𝑗⟩} 𝑗∈𝐼1 ∈ F
𝑛−𝑡+1
𝑝 is bĳective. We can then write∑

®𝛽∈F𝑛−𝑡+1
𝑝 \{®0}

∏
𝑗∈𝐼1

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)���2 =
∑

{ ®𝛼 𝑗} 𝑗∈𝐼1∈F
𝑛−𝑡+1
𝑝

∏
𝑗∈𝐼1

���1̂ℓ 𝑗 (𝛼 𝑗)
���2 =

∏
𝑗∈𝐼1

∑
𝛼∈F𝑝

���1̂ℓ 𝑗 (𝛼)���2 =
∏
𝑗∈𝐼1

1̂ℓ 𝑗
2

2
.

The same holds when 𝐼1 is replaced by 𝐼2 and we thus have:

SD(𝝉(𝐶), 𝝉(𝑈𝑛)) ≤
1
2

∑
®ℓ

∏
𝑗∈𝐼1∪𝐼2

1̂ℓ 𝑗


2
· max
®𝛽∈F𝑛−𝑡+1

𝑝 \{®0}

∏
𝑗∈𝐼3

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)���
=

1
2
©«

∏
𝑗∈𝐼1∪𝐼2

∑
ℓ 𝑗

1̂ℓ 𝑗


2

ª®¬ ·
∑
{ℓ 𝑗} 𝑗∈𝐼3

max
®𝛽∈F𝑛−𝑡+1

𝑝 \{®0}

∏
𝑗∈𝐼3

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)���
≤ 1

2 · 2
|𝐼1∪𝐼2 |·𝑚/2 ·

∑
{ℓ 𝑗} 𝑗∈𝐼3

max
®𝛽∈F𝑛−𝑡+1

𝑝 \{®0}

∏
𝑗∈𝐼3

���1̂ℓ 𝑗 (⟨®𝛽, ®ℎ 𝑗⟩)��� ,

where the last inequality comes from Claim 4.18.1 and where |𝐼1 ∪ 𝐼2 | is the cardinal of 𝐼1 ∪ 𝐼2. We
conclude by using the fact that |𝐼1 ∪ 𝐼2 | = 2 · (𝑛 − 𝑡 + 1). □

We now prove Lemma 4.21.

Proof of Lemma 4.21. We want to bound:

𝜂 =
∑

®ℓ∈({0,1}𝑚)𝑘
max
®𝛼∈𝐷\{®0}

𝑘∏
𝑗=1

���1̂ℓ 𝑗 (𝛼 𝑗)
��� .

When all the non-zero vectors ®𝛼 ∈ 𝐷 have no zero coefficients, bounding 𝜂 is easy, as we can write
𝜂 ≤ ∏𝑘

𝑗=1
∑

ℓ 𝑗
max𝛼 𝑗≠0

���1̂ℓ 𝑗 (𝛼 𝑗)
��� and proceed as before using Lemma 4.18 as in Theorem 4.7. The

issue is that when this is not the case, each term of the sum might be maximized by a vector ®𝛼
with different positions of the 0 coefficients. When 𝛼 𝑗 = 0,

∑
ℓ 𝑗∈{0,1}𝑚 1̂ℓ 𝑗 (0) = 1, hence bounding 𝜂

requires a more careful analysis.
To handle this, we introduce a different bound for |1̂ℓ 𝑗 (𝛼 𝑗)|, one that allows us to control for this

issue of the positions of the zero coefficients being different for different terms. We introduce the
bound 𝜉 below. The key difference between 𝜉 and 𝜁 is that 𝜉 is bounded below. This allows us to
bound the multiplicative gap between the case when 𝛼 = 0 and otherwise.

Lemma 4.22. Let 𝜉𝑝(𝑥) = max(𝜁𝑝(𝑥)/𝑝, 2−(4𝑚+1)). Then 𝜉 has the following properties:
1. Bounds non-zero Fourier coefficients. For every set 𝐴 of size 𝑡 and 𝛼 ≠ 0,

|1̂𝐴(𝛼)| ≤ 𝜉𝑝(𝑡) .

2. Bounds zero Fourier coefficients multiplicatively. For every set 𝐴 of size 𝑡,

|1̂𝐴(0)| ≤ 24𝑚+1 · 𝜉𝑝(𝑡) .

33



3. 𝜉𝑝 is bounded over partitions. Let 𝐴1 , 𝐴2 , . . . 𝐴2𝑚 be any partition of Z𝑝 . Then,∑
𝑖

𝜉(|𝐴𝑖 |) ≤ 𝑐′𝑚 .

where 𝑐′𝑚 =
2𝑚 sin(𝜋/2𝑚+𝜋/24𝑚)

𝑝 sin(𝜋/𝑝) for 𝑚 > 1, and 𝑐′1 = 𝑐1 = 2
𝑝 sin(𝜋/𝑝) .

We first prove Lemma 4.21 assuming Lemma 4.22 and then prove Lemma 4.22. The following
calculation proves Lemma 4.21. The key idea in this calculation is that due to the definition of 𝜉,
the max over codewords reduces to counting how many zeros the codeword has, and this is 𝑘 − 𝑑.
We need some notation: let us set 𝑡ℓ 𝑗 , 𝑗 = |𝜏−1

𝑗
(ℓ 𝑗)| and indicator 10(𝛼 𝑗) equal to 1 when 𝛼 𝑗 = 0 and 0

otherwise. ∑
®ℓ∈({0,1}𝑚)𝑘

max
®𝛼∈𝐷\{®0}

𝑘∏
𝑗=1

���1̂ℓ 𝑗 (𝛼 𝑗)
��� ≤ ∑
®ℓ∈({0,1}𝑚)𝑘

max
®𝛼∈𝐷\{®0}

𝑘∏
𝑗=1

𝜉(𝑡ℓ 𝑗 , 𝑗) · (24𝑚+1)10(𝛼 𝑗)

=
∑

®ℓ∈({0,1}𝑚)𝑘

𝑘∏
𝑗=1

𝜉(𝑡ℓ 𝑗 , 𝑗) · max
®𝛼∈𝐷\{®0}

𝑘∏
𝑗=1
(24𝑚+1)10(𝛼 𝑗)

≤
∑

®ℓ∈({0,1}𝑚)𝑘
2(4𝑚+1)·(𝑘−𝑑) ·

𝑘∏
𝑗=1

𝜉(𝑡ℓ 𝑗 , 𝑗)

= 2(4𝑚+1)·(𝑘−𝑑) ·
𝑘∏
𝑗=1

∑
ℓ 𝑗∈{0,1}𝑚

𝜉(𝑡ℓ 𝑗 , 𝑗)

≤ 2(4𝑚+1)·(𝑘−𝑑) ·
𝑘∏
𝑗=1

𝑐′𝑚

≤ 2(4𝑚+1)·(𝑘−𝑑) · 𝑐′𝑘𝑚 ,

where the first inequality follows from using Lemma 4.22 parts (1, 2) with 𝛼 ≠ 0 and 𝛼 = 0
respectively; the first equality is a rearrangement; the second inequality follows from observing
that 𝐷 is a code with distance at least 𝑑 and hence can only have at most 𝑘 − 𝑑 zeros; the second
equality is a rearrangement; and the third inequality follows from Lemma 4.22 part (3) with the
partition,

{
𝜏−1
𝑗
(ℓ 𝑗)

}
ℓ 𝑗∈{0,1}𝑚

. □

We now prove Lemma 4.22.

Proof of Lemma 4.22. We prove the three parts in the three claims below. The first two claims
follow from the definition easily while the last claim requires a computation similar to Lemma 4.17
involving concavity.

Claim 4.22.1 (Part 1). Bounds non-zero Fourier coefficients. For every set 𝐴 of size 𝑡 and 𝛼 ≠ 0,

|1̂𝐴(𝛼)| ≤ 𝜉𝑝(𝑡) .

From Lemmas 3.11 and 4.17, we know that |1̂𝐴(𝛼)| = |𝝎𝛼𝐴 |/𝑝 ≤ 𝜁𝑝(𝑡)/𝑝. The claim follows as,
𝜉𝑝(𝑡) = max(𝜁𝑝(𝑡)/𝑝, 2−4𝑚+1).

34



Claim 4.22.2 (Part 2). Bounds zero Fourier coefficients. For every set 𝐴 of size 𝑡 and 𝛼 ≠ 0,

|1̂𝐴(0)| ≤ 24𝑚+1 · 𝜉𝑝(𝑡) .

This follows from the observation that 24𝑚+1 · 𝜉𝑝(𝑡) ≥ 1 as 𝜉𝑝(𝑡) ≥ 2−4𝑚−1 and that |1̂𝐴(0)| ≤ 1.

Claim 4.22.3. 𝜉𝑝 is bounded over partitions. Let 𝐴1 , 𝐴2 , . . . , 𝐴2𝑚 be any partition of Z𝑝 . Then,∑
𝑖

𝜉(|𝐴𝑖 |) ≤ 𝑐′𝑚

Proof. This claim is a consequence of the concavity of the sine function. We start by proving the
𝑚 = 1 case and then prove the rest.

.

Case I. 𝑚 = 1. The two sets 𝐴1 , 𝐴2 partition Z𝑝 . Let 𝑡 = |𝐴1 | and |𝐴2 | = 𝑝 − 𝑡. As 𝑡 ≤ 𝑝/2 or
𝑝−𝑡 ≤ 𝑝/2, we assume without loss of generality that 𝑡 ≤ 𝑝/2. Then, we have that: 𝜁𝑝(𝑡) = 𝜁𝑝(𝑝−𝑡).
As 𝜉𝑝(𝑡) = max(𝜁𝑝(𝑡)/𝑝, 2−4𝑚−1), 𝜉𝑝(𝑡) = 𝜉𝑝(𝑝 − 𝑡) and we have the following two cases:

1. If 𝜉𝑝(𝑡) = 𝜁𝑝(𝑡)/𝑝, then, 𝜉𝑝(𝑡) + 𝜉𝑝(𝑝 − 𝑡) = 2𝜁𝑝(𝑡)/𝑝 ≤ 2𝜁𝑝(𝑝/2)/𝑝 = 2 sin(𝜋/2)
𝑝 sin(𝜋/𝑝) = 𝑐1 as sine is

monotonic between [0,𝜋/2].

2. Otherwise, 𝜉𝑝(𝑡) = 2−4𝑚−1 = 2−5, then 𝜉𝑝(𝑡) + 𝜉𝑝(𝑝 − 𝑡) = 2 · 2−5 ≤ 2/𝜋 ≤ 2
𝑝 sin(𝜋/𝑝) = 𝑐1. The

last inequality comes from the fact that sin(𝜋/𝑝) ≤ 𝜋/𝑝.

Case II. 𝑚 > 1. We start by observing that 𝜁𝑝(𝑝/24𝑚)/𝑝 =
sin(𝜋/24𝑚)
𝑝 sin(𝜋/𝑝) ≥ 2−(4𝑚+1). The inequality

comes from sin(𝜋/𝑝) ≤ 𝜋/𝑝 ≤ 4/𝑝 and sin(𝜋/24𝑚) ≥ (2/𝜋) · (𝜋/24𝑚). Hence for 𝑡 ≤ 𝑝/2,

𝜉𝑝(𝑡) = max(2−(4𝑚+1) , 𝜁𝑝(𝑡)/𝑝) ≤ max(𝜁𝑝(𝑝/24𝑚)/𝑝, 𝜁𝑝(𝑡)/𝑝) = 𝜁𝑝(max(𝑡 , 𝑝/24𝑚))/𝑝 . (9)

We are now in a position to complete the proof. Let 𝑡𝑖 = min(|𝐴𝑖 |, 𝑝 − |𝐴𝑖 |) where |𝐴𝑖 | is the
size of set 𝐴𝑖 . Then, ∑

𝑖

𝜉(|𝐴𝑖 |) =
∑
𝑖

𝜉(𝑡𝑖)

≤
∑
𝑖

𝜁𝑝(max(𝑡𝑖 , 𝑝/24𝑚))/𝑝

=
∑
𝑖

sin(𝜋 ·max(𝑡𝑖 , 𝑝/24𝑚)/𝑝)
𝑝 sin(𝜋/𝑝)

=
1

𝑝 sin(𝜋/𝑝) ·
∑
𝑖

sin(𝜋 ·max(𝑡𝑖 , 𝑝/24𝑚)/𝑝)

≤ 2𝑚

𝑝 sin(𝜋/𝑝) · sin

(
𝜋
2𝑚

∑
𝑖

max(𝑡𝑖 , 𝑝/24𝑚)
𝑝

)
≤ 2𝑚

𝑝 sin(𝜋/𝑝) · sin
( 𝜋
2𝑚 +

𝜋

24𝑚

)
= 𝑐′𝑚 ,

where the first inequality was described above, the second inequality comes from the concavity
of the sine function in [0,𝜋], the third inequality comes from the fact that

∑
𝑖 max(𝑡𝑖 , 𝑝/24𝑚) ≤∑

𝑖(𝑡𝑖 + 𝑝/24𝑚) ≤ 𝑝 + 2𝑚 · 𝑝/24𝑚 . □

35



This concludes the proof of Lemma 4.22 and hence Lemma 4.21. □

5 Leakage Resilience of GMW with preprocessing

In this section, we describe an application of the results on leakage resilience of secret sharing to
MPC protocols. Here too, our goal is to show that natural MPC protocols that are based on linear
secret sharing achieve local leakage resilience. Concretely, we show that a variant of the GMW
protocol [GMW87] with preprocessing is leakage resilient. We start by defining the notion of MPC
protocols with input preprocessing. Then describe our security definitions and our results.

We consider arithmetic circuits over a field F over a basis B = {+,×,−1} where the −1 gate
negates the input. For convenience, we have input gates that read a field element from the input.
The following definition of an MPC protocol is adapted from [GIM+16] (Definition 3).

Definition 5.1 (𝑛-party protocol with encoded input and output). An 𝑛-party protocol for 𝑓 : F𝑛in →
F𝑛out is defined by Π = (𝐼 ,R,M, 𝑂), where:

• Input Encoder. 𝐼 : F𝑛in → (F�̂�in)𝑛 is a randomized input encoder circuit, which maps an input ®𝑥
for 𝑓 to a tuple of protocol inputs ®x = (®𝑥(1) , ®𝑥(2) , . . . , ®𝑥(𝑛)) one for each party.

• Randomness. R = (𝑅(1) , 𝑅(2) , . . . , 𝑅(𝑛)) are distributions over F𝑛𝑟 that capture the random inputs
of the parties. They are assumed to be correlated due to preprocessing.

• M = (𝑀(1) , 𝑀(2) , . . . , 𝑀(𝑛)) are deterministic next message functions where 𝑀(𝑗) determines the
next message sent by party 𝑗 as a function of its input ®𝑥(𝑗), random input 𝑟(𝑗), and the sequence of
messages received in the previous rounds. Messages are sent in rounds where each party sends a
message to possibly every other party. After a predetermined number of rounds, the function 𝑀(𝑗)

returns a local output ®𝑦(𝑗) ∈ F�̂�out for party 𝑗.
• 𝑂 : (F�̂�out)𝑛 → F𝑛out is a deterministic output decoder circuit, which maps a tuple of protocol

outputs ®y = ( ®𝑦(1) , . . . , ®𝑦(𝑛)) to an output ®𝑦 of 𝑓 .
For ®𝑥 ∈ F𝑛in , we denote by Π(®𝑥) the output of Π on input ®𝑥, namely the result of applying the input

encoder 𝐼 to ®𝑥, interacting as specified by R,M, and applying the output decoder 𝑂 to the vector of protocol
outputs. We say that Π correctly computes 𝑓 : F𝑛in → F𝑛out if for every input ®𝑥 ∈ F𝑛in , we have
Pr

[
Π(®𝑥) = 𝑓 (®𝑥)

]
= 1.

We denote by view(®𝑥) the joint distribution (view(1)(®𝑥), . . . , view(𝑛)(®𝑥)) obtained by running Π on
input ®𝑥, where view(𝑗) includes the encoded input ®𝑥(𝑗), the random input 𝑟(𝑗) (sampled from 𝑅(𝑗)), and the
sequence of messages received by party 𝑗. (The messages sent by party 𝑗 as well as its output ®𝑦(𝑗) are uniquely
determined by view(𝑗).)

We denote by out(®𝑥) the joint distribution of the outputs ®y.

5.1 Security Definitions

The definition we consider uses the simulation paradigm. We only consider an honest-but-curious
definition, albeit one where the adversary can leak information from the views of the uncorrupted
parties. We consider two security notions: private-outputs local leakage resilience and public-
outputs local leakage resilience.

In the private-outputs case, the adversary does not learn the local outputs ®𝑦(𝑗) of non-corrupted
parties nor the output ®𝑦 = Π(®𝑥). This would model the setting where a client wants to delegate
some computation 𝑓 (®𝑥) to some leaky parties: the client secret-shares ®𝑥 into ®x, sends each share

36



®𝑥(𝑗) to the party 𝑗, the parties run the protocol Π, and each party 𝑗 sends back its output share ®𝑦(𝑗)
to the client.

In the public-outputs case, the adversary learns all the local outputs ®y of all the parties (and
in particular learns the output ®𝑦 = 𝑂(®y) = Π(®𝑥)). This models a setting where at the end of the
computation, the parties would broadcast their local outputs ®𝑦(𝑗) to jointly reconstruct the output ®𝑦.

Definition 5.2 (Private-Outputs Local Leakage Resilient Protocol). We say thatΠ is (Θ, 𝑚, 𝜀)-private-

outputs local leakage resilient for 𝑓 (or (Θ, 𝑚, 𝜀)-priv-LL-resilient for short) if Π correctly computes 𝑓 ,
and the following security requirement holds. For any family of local leakage functions 𝝉 = (𝜏(1) , 𝜏(2) , . . . ,
𝜏(𝑛)) where 𝜏(𝑗) is a function that outputs 𝑚 bits, there exists a simulator LeakSimΘ,®𝝉 such that, for any
input ®𝑥 ∈ F𝑛in , we have

SD
(
LeakΘ,®𝝉(view(®𝑥)), LeakSimΘ,®𝝉()

)
≤ 𝜀.

We say that Π is (𝜃, 𝑚, 𝜀)-priv-LL-resilient if Π is (Θ, 𝑚, 𝜀)-LL-resilient for all subsets Θ ⊆ [𝑛] of at most
size 𝜃.

We recall that Leak is defined in Eq. (4) on page 19.

Definition 5.3 (Public-Outputs Local Leakage Resilient Protocol). We say that Π is (Θ, 𝑚, 𝜀)-public-

outputs local leakage resilient for 𝑓 (or (Θ, 𝑚, 𝜀)-pub-LL-resilient for short) if Π correctly computes 𝑓 ,
and the following security requirement holds. For any family of local leakage functions 𝝉 = (𝜏(1) , 𝜏(2) , . . . ,
𝜏(𝑛)) where 𝜏(𝑗) is a function that outputs 𝑚 bits, there exists a simulator LeakSimΘ,®𝝉 such that, for any
input ®𝑥 ∈ F𝑛in , we have

SD
(
(out(®𝑥), LeakΘ,®𝝉(view(®𝑥))), LeakSimΘ,®𝝉( 𝑓 (®𝑥))

)
≤ 𝜀.

We say that Π is (𝜃, 𝑚, 𝜀)-pub-LL-resilient if Π is (Θ, 𝑚, 𝜀)-pub-LL-resilient for all subsets Θ ⊆ [𝑛] of at
most size 𝜃.

Both definitions model a protocol executed in the presence of a real-world adversary A that
may corrupt a subset Θ of the parties. The adversary learns the entire view of corrupted parties
(and in the second case, also the output of all parties). As we consider semi-honest corruptions,
the adversary can only observe their views but does not modify the messages they send. The
adversary also leaks independently 𝑚 bits from each party.

Note that the classical notion of security against semi-honest adversaries corrupting at most 𝜃
parties is equivalent to (𝜃, 0, 𝜀)-priv-LL-resilient.

5.2 GMW with Shared Product Preprocessing

Notation. Let 𝑓 be a function computed by a given circuit 𝐶. Let 𝐺 be the set of all gates in 𝐶 and
𝐺× be the set of multiplication gates in 𝐶. For any input ®𝑥, let 𝑧𝑔 denote the value at gate 𝑔 ∈ 𝐺 in
the circuit 𝐶 when the input is ®𝑥.

In Fig. 3, we describe a variant of the GMW [GMW87] protocol based on the ideas of Beaver
triples [Bea91] that we call GMW with shared product preprocessing. The protocol works with
any linear secret sharing. We show that if the underlying linear secret sharing is local leakage
resilient, then the protocol is pub-LL-resilient and priv-LL-resilient.

Let us first prove correctness.

Proposition 5.4 (Correctness). The protocol Π in Fig. 3 on any input ®𝑥 correctly computes 𝑓 (®𝑥).

37



GMW with Shared Product Preprocessing for computing 𝑓 with circuit 𝐶 on field F
Parameters: 𝑛 the number of parties. (Share, Rec) a secret sharing scheme for 𝑛 parties. 1 an
arbitary sharing of 1.

Input Encoder 𝐼(®𝑥):
1. Sample ®x← Share(®𝑥).
2. Output ®x.

Output Decoder 𝐼(®y):
1. Output ®𝑦 = Rec(®y)

Randomness 𝑅(𝐶):
1. For each multiplication gate 𝑔 in 𝐶,

(a) Generate 𝑎𝑔 , 𝑏𝑔 ← F.
(b) Generate a𝑔 ← Share(𝑎𝑔), b𝑔 ← Share(𝑏𝑔), and (ab)𝑔 ← Share(𝑎𝑔 · 𝑏𝑔).
(c) Append to 𝑟(𝑗) the tuple (𝑎(𝑗)𝑔 , 𝑏

(𝑗)
𝑔 , (𝑎𝑏)(𝑗)𝑔 ).

2. Output r = (𝑟(1) , 𝑟(2) , . . . , 𝑟(𝑛)).
Protocol run by Party 𝑗 (defining 𝑀(𝑗))

1. Set state(𝑗) = (𝑛, 𝐶, ®𝑥(𝑗)).
2. Iterate over gates in 𝐶 in fixed topological order such that for every gate, its input gates are

visited before the gate. And run the subprotocol “Process Gate” below.
3. Output 𝑧(𝑗)𝑔out : the share of the output gate 𝑔out.

Process Gate 𝑔:
1. If gate 𝑔 is (a) an input gate with input 𝑥𝑖 , or, (b) a (−1) gate with input from gate 𝑔′, or, (c)

a + gate with inputs 𝑔1 , 𝑔2, then, set 𝑧(𝑗)𝑔 as follows:

𝑧
(𝑗)
𝑔 =


𝑥
(𝑗)
𝑖

if 𝑔 is an input gate
−𝑧(𝑗)𝑔′ if 𝑔 is a −1 gate
𝑧
(𝑗)
𝑔1 + 𝑧

(𝑗)
𝑔2 if 𝑔 is a + gate

and append 𝑧
(𝑗)
𝑔 to the list state(𝑗).

2. If 𝑔 is a × gate, with input gates 𝑔1 and 𝑔2, then do the following:
(a) Compute 𝑎

′(𝑗)
𝑔 = 𝑧

(𝑗)
𝑔1 − 𝑎

(𝑗)
𝑔 and 𝑏

′(𝑗)
𝑔 = 𝑧

(𝑗)
𝑔2 − 𝑏

(𝑗)
𝑔 and broadcast these values.

(b) Receive the corresponding values from other parties.
(c) Compute 𝑧𝑔1 − 𝑎𝑔 and 𝑧𝑔2 − 𝑏𝑔 from all the values received, using the reconstruction

algorithm Rec.
(d) Compute 𝑧

(𝑗)
𝑔 = (𝑧𝑔1 − 𝑎𝑔)(𝑧𝑔2 − 𝑏𝑔) · 1(𝑗) + (𝑧𝑔1 − 𝑎𝑔) · 𝑏

(𝑗)
𝑔 + 𝑎

(𝑗)
𝑔 · (𝑧𝑔2 − 𝑏𝑔) + (𝑎𝑏)

(𝑗)
𝑔 , where

1(𝑗) is the 𝑗-th share of an arbitrary sharing 1 of 1.
(e) Append 𝑧

(𝑗)
𝑔 and (𝑎(𝑗)𝑔 , 𝑏

(𝑗)
𝑔 , (𝑎𝑏)(𝑗)𝑔 ) to state(𝑗).

Figure 3: GMW Protocol with Shared Product Preprocessing

38



Proof. To prove correctness, we show that at every gate 𝑔, the parties maintain a linear secret
sharing of the value 𝑧𝑔 . This is easy to verify for the addition, −1 and input gates. We will only do
the verification for the multiplication case.

Consider any multiplication gate 𝑔 with input gates 𝑔1 , 𝑔2. Assume that the parties have a
valid secret sharing z𝑔1 and z𝑔2 of values 𝑧𝑔1 and 𝑧𝑔2 respectively. Pick any valid Beaver triple
(a𝑔 , b𝑔 , (ab)𝑔). We need to show that z𝑔 as computed is a valid secret sharing of 𝑧𝑔 = 𝑧𝑔1𝑧𝑔2 . We
remark that:

z𝑔 = (𝑧𝑔1 − 𝑎𝑔)(𝑧𝑔2 − 𝑏𝑔) · 1 + (𝑧𝑔1 − 𝑎𝑔) · b𝑔 + a𝑔 · (𝑧𝑔2 − 𝑏𝑔) + (ab)𝑔 .

By linearity z𝑔 is a secret sharing of:

(𝑧𝑔1 − 𝑎𝑔)(𝑧𝑔2 − 𝑏𝑔) · 1 + (𝑧𝑔1 − 𝑎𝑔) · 𝑏𝑔 + 𝑎𝑔 · (𝑧𝑔2 − 𝑏𝑔) + 𝑎𝑔𝑏𝑔 = 𝑧𝑔1𝑧𝑔2 . (10)

This concludes the proof.
□

We have the following security theorems.

Theorem 5.5. If the linear secret sharing scheme (Share, Rec) is (Θ, 𝑚, 𝜀)-LL-resilient then the protocol
Π in Fig. 3 is (Θ, 𝑚, 𝜀)-priv-LL-resilient.

Theorem 5.6. If the linear secret sharing scheme (Share, Rec) is (Θ, 𝑚, 𝜀)-LL-resilient then the protocol
Π in Fig. 3 is (Θ, 𝑚, 𝜀)-pub-LL-resilient.

Since an (𝑛, 𝑡)-secret sharing scheme is (𝑡 , 0, 0)-LL-resilient, when instantiated with an (𝑛, 𝑡)-
secret sharing scheme, the protocol is (𝑡 , 0, 0)-priv-LL resilient and thus secure against a semi-
honest adversary corrupting up to 𝑡 parties.

Before we prove Theorems 5.5 and 5.6, let us state the following lemma.

Lemma 5.7 (Parallel Composition of LL-Resilience). If (Share, Rec) is a (Θ, 𝑚, 𝜀)-LL-resilient linear
secret sharing scheme, then for any leakage function family 𝝉 = (𝜏(1) , 𝜏(2) , . . . , 𝜏(𝑛)) where 𝜏(𝑗) has an 𝑚-bit
output, and for any ®𝑦, ®𝑦′ ∈ F𝑘 :

SD
({

LeakΘ,𝝉(®y) : ®y← Share( ®𝑦)
}
,
{
LeakΘ,𝝉(®y′) : ®y′← Share( ®𝑦′)

})
≤ 𝜀.

Note that the bound on statistical distance does not degrade with the size of the vectors.

Note that this lemma allows us to avoid using a union bound in our theorems and hence avoid
losing a factor of the number of multiplication gates.

Proof. This proof is a reduction showing that if local leakage can distinguish between ®𝑦 and ®𝑦′ then
we can use this to also break the local leakage resilience of the underlying linear secret sharing
scheme and distinguish between any two secrets 𝑠 ≠ 𝑠′. The proof follows from the observation
that given shared randomness, the parties can locally, without interaction convert shares of 𝑠 and 𝑠′

to random shares of vectors ®𝑦 and ®𝑦′ respectively. This holds for any linear secret sharing scheme.
For contradiction, assume that there exist ®𝑦, ®𝑦′ and 𝑚-bit leakage functions 𝝉 such that

SD(LeakΘ,𝝉(®y), LeakΘ,𝝉(®y′)) > 𝜀.

39



Consider any two secrets 𝑠 ≠ 𝑠′ ∈ F. We will show that the scheme Share, Rec is not local leakage
resilient for these two secrets.

As 𝑠 ≠ 𝑠′, for every 𝑖, there exist constants 𝜆𝑖 ,1 ,𝜆𝑖 ,0 ∈ F such that 𝜆𝑖 ,1 · 𝑠 + 𝜆𝑖 ,0 = 𝑦𝑖 and
𝜆𝑖 ,1 · 𝑠′+𝜆𝑖 ,0 = 𝑦′

𝑖
. So, to do a local share conversion, the parties given share x of either 𝑠 or 𝑠′ do the

following: Set y𝑖 = 𝜆𝑖 ,1 · x+𝝀𝒊 ,0 where 𝝀𝒊 ,0 ← Share(𝜆𝑖 ,0) generated using the shared randomness.
That is, party 𝑗 locally computes the share: 𝑧(𝑗)

𝑖
= 𝜆𝑖 ,1𝑥

(𝑗) + 𝜆(𝑗)
𝑖 ,0 where 𝑥(𝑗) is the input share given

to party 𝑗 and 𝜆
(𝑗)
𝑖 ,0 is the share of 𝜆𝑖 ,0 generated using common randomness.

Because of the linearity of the secret sharing scheme, The distribution ®z locally generated by the
parties is identical to the distribution of fresh shares ®y← Share( ®𝑦) if the input x was a sharing of
𝑠 or is identical to ®y′← Share( ®𝑦′) if the underlying secret encoded was 𝑠′. So, using this reduction
gives a local leakage attack to distinguish between the shares of 𝑠 and 𝑠′ and hence a contradiction.

□

5.3 Proof of Private-Outputs Local Leakage Resilience (Theorem 5.5)

To prove the private-outputs local leakage resilience (Theorem 5.5), we first start with a lemma that
characterizes what information the parties see, both individually and jointly. Informally, we show
that, when the protocol evaluates the circuit 𝐶 on input ®𝑥, the view of each party (or any subset of
parties) can be simulated given a set of common random values and the party’s share in a sharing
of each output of a multiplication gate. Then, the leakage resilience of the secret sharing scheme
allows us to replace the secret sharings used by the simulator by secret sharings of any arbitrary
value.

Lemma 5.8. There exists simulator S such that for every input ®𝑥, the following two distributions are
identical.

view(®𝑥) ≡


(
S(𝑗 , ®𝑥(𝑗) , (𝑧(𝑗)𝑔 , a′𝑔 , b′𝑔)𝑔∈𝐺×)

)
𝑗∈[𝑛]

:

®x← Share(®𝑥)
(z𝑔 ← Share(𝑧𝑔))𝑔∈𝐺×
(𝑎′𝑔 , 𝑏′𝑔 ← F)𝑔∈𝐺×
(a′𝑔 ← Share(𝑎′𝑔))𝑔∈𝐺×
(b′𝑔 ← Share(𝑏′𝑔))𝑔∈𝐺×


.

Assuming Lemma 5.8, the proof of Theorem 5.5 (private-outputs-LL-resilience of Π) is imme-
diate.

Proof of Theorem 5.5. Correctness comes from Proposition 5.4, while LL-resilience follows directly
by combining Lemma 5.8 with Lemma 5.7: the simulator LeakSim() samples secret sharings
®x← Share(0) and

(
z𝑔 ← Share(0)

)
𝑔∈𝐺× , as well as

(
a′𝑔 , b′𝑔 ← Share(𝑎′𝑔 , 𝑏′𝑔)

)
𝑔∈𝐺×

(with 𝑎𝑔 , 𝑏𝑔 ← F)

and returns
LeakΘ,𝝉

((
S(𝑗 , ®𝑥(𝑗) , (𝑧(𝑗)𝑔 , a′𝑔 , b′𝑔)𝑔∈𝐺×)

)
𝑗∈[𝑛]

)
.

□

Proof of Lemma 5.8. We describe the simulator and show perfect simulation. Each party’s view
is described by the internal state state and the messages received. Roughly speaking, for a
multiplication gate 𝑔 with inputs 𝑔1 and 𝑔2, the common vectors a′𝑔 and b′𝑔 correspond to the

40



values z𝑔1 − a and z𝑔2 − b that are publicly broadcast. Given these values and the party’s shares of
𝑧𝑔1 and 𝑧𝑔2 , the simulator can construct the Beaver triple via a simple computation. The simulator
proceeds gate by gate reconstructing the views of each party. We describe the simulator in Fig. 4.

Simulator S
(
𝑗 , ®𝑥(𝑗) , (𝑧(𝑗)𝑔 , a′𝑔 , b′𝑔)𝑔∈𝐺×

)
:

1. Set state(𝑗) = (𝑛, 𝐶, ®𝑥(𝑗)).
2. Iterate over the gates of 𝐶 in the same order as the protocol. On each gate, do the following:

(a) If gate 𝑔 is (a) an input gate with input 𝑥𝑖 , or, (b) a (−1) gate with input from gate 𝑔′,
or, (c) a + gate with inputs 𝑔1 , 𝑔2, then, set 𝑧(𝑗)𝑔 as follows:

𝑧
(𝑗)
𝑔 =


𝑥
(𝑗)
𝑖

if 𝑔 is an input gate
−𝑧(𝑗)𝑔′ if 𝑔 is a −1 gate
𝑧
(𝑗)
𝑔1 + 𝑧

(𝑗)
𝑔2 if 𝑔 is a + gate

(b) If 𝑔 is a × gate, with input gates 𝑔1 and 𝑔2, then do the following:
i. Set broadcast message to be (𝑎′(𝑗)𝑔 , 𝑏

′(𝑗)
𝑔 ).

ii. Set received messages to be (𝑎′(𝑗
′)

𝑔 , 𝑏
′(𝑗′)
𝑔 )𝑗′≠𝑗 .

iii. Set Beaver triple as: 𝑎(𝑗)𝑔 = 𝑧
(𝑗)
𝑔1 − 𝑎

′(𝑗)
𝑔 , 𝑏

(𝑗)
𝑔 = 𝑧

(𝑗)
𝑔2 −𝑏

′(𝑗)
𝑔 , and (𝑎𝑏)(𝑗)𝑔 = 𝑧

(𝑗)
𝑔 −(

∑
𝑗′ 𝑎
′(𝑗′)
𝑔 ) ·

(∑𝑗′ 𝑏
′(𝑗′)
𝑔 ) · 1(𝑗) − (

∑
𝑗′ 𝑎
′(𝑗′)
𝑔 ) · 𝑏

(𝑗)
𝑔 − 𝑎

(𝑗)
𝑔 · (

∑
𝑗′ 𝑏
′(𝑗′)
𝑔 ).

Figure 4: Simulator for Lemma 5.8

We now have to show that the simulator perfectly simulates the view of all 𝑛-parties in the
protocol Π. We will show that for every possible communication

(
a′𝑔 , b′𝑔

)
𝑔∈𝐺×

and wire-label

sharing obtained in the protocol, there exists a unique set of valid Beaver triples that give rise
to this communication and state pattern and vice versa. This proof proceeds by induction. Let
state =

(
state(𝑗)

)
𝑗∈[𝑛]

be the joint distributions of the states of the parties in the protocol. As the

base case, observe that before any gate is processed, the state in both the simulator and the actual
parties is identical. For each party, it consists of the description of the circuit and the secret shares
of the input.

Inductive Step. In the induction step, let us observe the joint state state after one more gate is
processed. We naturally have two cases: if the gate is not a multiplication gate and if the gate is a
multiplication gate.

Case 1. Not a Multiplication Gate. In this case, there is no interaction and each party simply
appends the value 𝑧

(𝑗)
𝑔 to their state. As this process is deterministic and both the protocol and the

simulator use identical procedures to generate the value, if the distribution of state was identical
before processing this gate, it stays identical afterwards.

Case 2. Multiplication Gate. In this case, the simulator is processing a multiplication gate 𝑔

with inputs 𝑔1 and 𝑔2. In this case, we need to show that the input shares, the communication,
the Beaver triple and the output share are consistently distributed in the actual protocol and the

41



simulation. We remark that in the real world, we have:

a′𝑔 = z𝑔1 − a𝑔 b′𝑔 = z𝑔2 − b𝑔

z𝑔 = 𝑎′𝑔𝑏
′
𝑔 · 1 + 𝑎′𝑔 · b𝑔 + a𝑔 · 𝑏′𝑔 + (ab)𝑔

where a𝑔 , b𝑔 , and (ab)𝑔 are independent secret sharings of the values 𝑎𝑔 , 𝑏𝑔 , 𝑎𝑔𝑏𝑔 . Thus, by the
linearity property of the secret sharing, a′𝑔 , b′𝑔 , and z𝑔 are independent secret sharings of the values
𝑎′𝑔 = 𝑧𝑔1 − 𝑎𝑔 , 𝑏′𝑔 = 𝑧𝑔2 − 𝑏𝑔 , and 𝑧𝑔 = 𝑧𝑔1𝑧𝑔2 (see Eq. (10) for this latter value). Furthermore, as 𝑎𝑔
and 𝑏𝑔 are independently and uniformly random, so are 𝑎′𝑔 and 𝑏′𝑔 .

We conclude by remarking that the simulation sets:

a𝑔 = z𝑔1 − a′𝑔 b𝑔 = z𝑔2 − b′𝑔
(ab)𝑔 = −𝑎′𝑔𝑏′𝑔 · 1 − 𝑎′𝑔 · b𝑔 − a𝑔 · 𝑏′𝑔 + z𝑔

and these three equations are equivalent to the ones above for the real world.
□

5.4 Proof of Public-Outputs Local Leakage Resilience (Theorem 5.6)

To prove the public-outputs local leakage resilience (Theorem 5.6), we extend Lemma 5.8 to take
into account the output shares.

Lemma 5.9. There exists a simulator S′ such that for every input ®𝑥, the following two distributions are
identical:

(out(®𝑥), view(®𝑥))

≡


(
®y,

(
S′(𝑗 , ®y, ®𝑥(𝑗) , (𝑧(𝑗)𝑔 , a′𝑔 , b′𝑔)𝑔∈𝐺×)

)
𝑗∈[𝑛]

)
:

®𝑦 = 𝑓 (®𝑥); ®y← Share( ®𝑦)
®x← Share(®𝑥)

(z𝑔 ← Share(𝑧𝑔))𝑔∈𝐺×
(𝑎′𝑔 , 𝑏′𝑔 ← F)𝑔∈𝐺×
(a′𝑔 ← Share(𝑎′𝑔))𝑔∈𝐺×
(b′𝑔 ← Share(𝑏′𝑔))𝑔∈𝐺×


.

Assuming Lemma 5.9, the proof of Theorem 5.5 (pub-LL-resilience of Π) is immediate.

Proof of Theorem 5.5. Correctness comes from Proposition 5.4, while LL-resilience follows directly
by combining Lemma 5.9 with Lemma 5.7: the simulator LeakSim( ®𝑦) samples secret sharings
®y ← Share( ®𝑦), ®x ← Share(0), and

(
z𝑔 ← Share(0)

)
𝑔∈𝐺× , as well as

(
a′𝑔 , b′𝑔 ← Share(𝑎′𝑔 , 𝑏′𝑔)

)
𝑔∈𝐺×

(with 𝑎𝑔 , 𝑏𝑔 ← F) and returns

®y, LeakΘ,𝝉

((
S′(𝑗 , ®y, ®𝑥(𝑗) , (𝑧(𝑗)𝑔 , a′𝑔 , b′𝑔)𝑔∈𝐺×)

)
𝑗∈[𝑛]

)
.

□

42



Proof of Lemma 5.9. We start by remarking that if each output 𝑦𝑖 is an output 𝑧𝑔𝑖 of a × gate 𝑔𝑖 (and
all the outputs correspond to distinct gates), then the simulator S′ is straightforward: it just runs
the simulator S from Lemma 5.8 where 𝑧

(𝑗)
𝑔𝑖 is replaced by 𝑦

(𝑗)
𝑖

(and the inputs z𝑔𝑖 are not used by
S′), i.e.:

S′
(
𝑗 , ®y, ®𝑥(𝑗) , (𝑧(𝑗)𝑔 , a′𝑔 , b′𝑔)𝑔∈𝐺×

)
= S

(
𝑗 , ®𝑥(𝑗) , (𝑧′(𝑗)𝑔 , a′𝑔 , b′𝑔)𝑔∈𝐺×

)
with

𝑧
′(𝑗)
𝑔 =

{
𝑦
(𝑗)
𝑖

if 𝑔 = 𝑔𝑖 for some 𝑖 ,

𝑧
(𝑗)
𝑔 otherwise.

However, in general the outputs 𝑦𝑖 can be any linear combination inputs 𝑥𝑖 or output of × gate
𝑧𝑔 (𝑔 ∈ 𝐺×). More formally, we can write ®𝑦 = Φ(®𝑥,

(
𝑧𝑔

)
𝑔∈𝐺×), where Φ is a linear map. In a real

execution of Π, we also have for all 𝑗 ∈ [𝑛]: ®𝑦(𝑗) = Φ(®𝑥(𝑗) , (𝑧(𝑗)𝑔 )𝑔∈𝐺×). Using Gaussian elimination,
we can show that there exists a subset 𝐴 ⊆ [𝑛in], a subset 𝐵 ⊆ 𝐺×, and a linear application Ψ such
that, for all 𝑗 ∈ [𝑛]: (

(𝑥(𝑗)
𝑖
)
𝑖∈𝐴 , (𝑧

(𝑗)
𝑔 )𝑔∈𝐵

)
= Ψ

(
®𝑦(𝑗) , (𝑥(𝑗)

𝑖
)
𝑖∈�̄� , (𝑧

(𝑗)
𝑔 )𝑔∈�̄�

)
,

where �̄� = [𝑛in] \𝐴 and �̄� = [𝑛in] \ 𝐵 (the elements
(
𝑥
(𝑗)
𝑖

)
𝑖∈𝐴

and
(
𝑧
(𝑗)
𝑔

)
𝑔∈𝐵

correspond to the pivots

of the system). We can then define S′ as follows:

S′
(
𝑗 , ®y, ®𝑥(𝑗) , (𝑧(𝑗)𝑔 , a′𝑔 , b′𝑔)𝑔∈𝐺×

)
= S

(
𝑗 , ®𝑥′(𝑗) , (𝑧′(𝑗)𝑔 , a′𝑔 , b′𝑔)𝑔∈𝐺×

)
with (

(𝑥′(𝑗)
𝑖
)
𝑖∈𝐴 , (𝑧

′(𝑗)
𝑔 )𝑔∈𝐵

)
= Ψ

(
®𝑦(𝑗) , (𝑥(𝑗)

𝑖
)
𝑖∈�̄� , (𝑧

(𝑗)
𝑔 )𝑔∈�̄�

)
,(

(𝑥′(𝑗)
𝑖
)
𝑖∈�̄� , (𝑧

′(𝑗)
𝑔 )𝑔∈�̄�

)
=

(
(𝑥(𝑗)

𝑖
)
𝑖∈�̄� , (𝑧

(𝑗)
𝑔 )𝑔∈�̄�

)
.

This concludes the proof. (We remark that the simulator S′ does not use 𝑥
(𝑗)
𝑖

for 𝑖 ∈ 𝐴, not 𝑧(𝑗)𝑔 for
𝑔 ∈ 𝐵, but instead derive these values from ®y, 𝑥(𝑗)

𝑖
for 𝑖 ∈ 𝐴, and 𝑧

(𝑗)
𝑔 for 𝑔 ∈ 𝐵.) □

6 On the Impossibility of Local Share Conversion

We start by defining Local Share Conversion. This section has two differences in notation. First, as
we will only be dealing with singleton secrets and not vectors, we will use the subscript notation
to avoid clutter. That is, when we say s = (𝑠1 , 𝑠2 , . . . , 𝑠𝑛) we mean that 𝑠𝑖 is held by party 𝑖. The
second change is that because our results concern share conversion on schemes on F𝑝 and F2, we
will be careful about the ambient field of the secret sharing scheme and write it explicitly, e.g.,
AddSh𝑝 instead of AddSh as earlier.

Definition 6.1 (Local Share Conversion, adapted from [BIKO12]). Consider two 𝑛-party secret sharing
schemesL = (ShareL , RecL) andL′ = (ShareL′ , RecL′) be over the domains of secretsF andF′ respectively,
and let 𝑅 ⊆ F× F′ be a relation such that for every secret 𝑠 ∈ F, there exists at least one secret 𝑠′ ∈ F′ such
that (𝑠, 𝑠′) ∈ 𝑅.

43



We say that L is locally convertible to L′, with error probability 𝜖, with respect to 𝑅 if there exist local
conversion functions 𝑔1 , 𝑔2 , . . . , 𝑔𝑘 : F→ F′ such that, for every 𝑠 ∈ F,

Pr
s←ShareL(𝑠)

[(𝑔1(𝑠1), 𝑔2(𝑠2), . . . , 𝑔𝑛(𝑠𝑛)) ∈ ShareL′(𝑠′) where (𝑠, 𝑠′) ∈ 𝑅] > 1 − 𝜖 ,

where s = (𝑠1 , 𝑠2 , . . . , 𝑠𝑛) is a random secret share of 𝑠 and (𝑔1(𝑠1), 𝑔2(𝑠2), . . . , 𝑔𝑛(𝑠𝑛)) ∈ ShareL′(𝑠′)
indicates that (𝑔1(𝑠1), 𝑔2(𝑠2), . . . , 𝑔𝑛(𝑠𝑛)) is a valid, not necessarily random, secret sharing of 𝑠′ under L′.

Note that the definition given is weaker than the definition in [BIKO12] in the sense that we
allow the share conversion scheme to be correct “only with high probability” and not “always
correct.” Because our results are impossibility results on local share conversion, ruling out the
aforementioned definition only makes our results stronger. To state our impossibility results, we
first define the notion of a non-trivial relation. Roughly speaking, a relation is trivial if it would
no matter what secret is shared, it would be acceptable to output a fixed value by each party. We
focus on local share conversion problems where the players have to convert secret sharing schemes
over F𝑝 to schemes over F2.

Definition 6.2. A relation 𝑅 ⊆ F𝑝 × F2 is non-trivial if it satisfies the following:
1. Zero gets mapped to zero. That is, (0, 0) ∈ 𝑅 and (0, 1) ∉ 𝑅.
2. Some non-zero element does not get mapped to zero. That is, there exists 𝑎 ∈ F𝑝 such that (𝑎, 0) ∉ 𝑅

and (𝑎, 1) ∈ 𝑅.

Note that, in this definition, the requirement that 0 gets mapped to 0 is just for convenience. It
would suffice to say that there exists an 𝑎 that has to be mapped to 0 and 𝑏 that has to be mapped
to 1. We begin by noting that non-trivial share-conversion schemes from F2𝑛 to F2 for 𝑛-parties for
all 𝑛 ≥ 2; and from F𝑝 to F2 for two parties.
Example 6.3 (Non-Trivial Two-Party Share Conversion). Consider a non-trivial relation 𝑅 where 0
and 1 have to be mapped to themselves and all other inputs can be arbitrarily mapped. Then the
following scheme is a local share conversion from the additive secret sharing AddSh𝑝 over F𝑝 to
the additive secret sharing AddSh2 over F2: 𝑔1(𝑥) on input 𝑥 ∈ F𝑝 views 𝑥 as an integer between 0
to 𝑝 − 1 and outputs 𝑥 mod 2. The function 𝑔2 is defined as 𝑔2(𝑥) = 𝑔1(−𝑥).

This local share conversion scheme works because when sharing 0, the two shares are 𝑥 and
−𝑥. Hence the output would be the same. On the other hand, when sharing 1, the two shares are
𝑥 and −(𝑥 + 1). Hence, with high probability, the outputs will be different from each other.

Local share-conversion schemes exist for a variety of non-trivial relations over F2𝑛 for additive
secret sharing. This is enabled by the fact that F2𝑛 as an additive group has many subgroups.
Example 6.4 (Share Conversion over F2𝑛 ). Let 𝑓 : F2𝑛 → F2 be an F2-linear function (looking at F2𝑛

as a vector space over F2), i.e., 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦). Consider the relation 𝑅 where 𝑎 has to be
mapped to 𝑓 (𝑎) for every 𝑎. The following share conversion scheme exists for 𝑅: 𝑔𝑖(𝑥) outputs
𝑓 (𝑥). As 𝑓 is linear,

∑
𝑖 𝑔𝑖(𝑠𝑖) =

∑
𝑖 𝑓 (𝑠𝑖) = 𝑓 (𝑠)where s is an additive secret sharing of 𝑠.

The example can also be generalized to Shamir’s secret sharing over F2𝑛 .
We now state our results.

On Additive Secret Sharing. We show that any three-party Additive Secret Sharing over F𝑝 for
any prime 𝑝 > 2 is not locally convertible to an additive secret sharing over F2 for any non-trivial
relation 𝑅.

44



Theorem 6.5. Let 𝑛 ≥ 3. For any non-trivial relation𝑅 and for any local conversion scheme 𝑔1 , 𝑔2 , . . . , 𝑔𝑛 :
F𝑝 → F2, there exists an element 𝑠 ∈ F𝑝 such that,

Pr
s←AddSh𝑝(𝑠)

[
(𝑠,

∑
𝑖

𝑔𝑖(𝑠𝑖)) ∉ 𝑅

]
≥ 1

6 .

As mentioned in the introduction, this result rules out a possible approach to constructing
multiparty Homomorphic Secret Sharing schemes in the spirit Boyle, Gilboa and Ishai [BGI16]
where one first obtains a multiplicative secret sharing of a bit 𝑏 over a DDH group G. That is,
𝑔𝑏 = 𝑔𝑥 · 𝑔𝑦 where the parties hold 𝑥 and 𝑦 respectively and then convert the shares locally to
additive shares of 𝑏 overZ. The generalized approach to constructing 3-party HSS schemes would
also first construct a similar multiplicative sharing of the bit 𝑏, but among 3 parties, and then
transform it to additive shares.

The proof for this impossibility result is reminiscent of the Fourier analysis proofs of the
Blum-Luby-Rubinfeld Linearity test [BLR93, BCLR08].

On Shamir’s Secret Sharing. We can show a similar impossibility result for share conversion
from Shamir’s secret sharing to additive secret sharing as well.

Theorem 6.6. Let 𝑛 ≥ 3. The (𝑛, 𝑡)-Shamir’s secret sharing scheme, for (𝑛 + 3)/2 ≤ 𝑡 ≤ 𝑛, over F𝑝 is
not locally convertible to an additive secret sharing over F2 for any non-trivial relation 𝑅. That is, for any
non-trivial relation 𝑅 and local conversion scheme 𝑔1 , 𝑔2 , . . . , 𝑔𝑛 : F𝑝 → F2, there exists 𝑠 ∈ F𝑝 such that,

Pr
s←ShaSh𝑝(𝑠)

[
(𝑠,

∑
𝑖

𝑔𝑖(𝑠𝑖)) ∉ 𝑅

]
≥ 1

max(6, 𝑛 + 1) .

The key technique in this proof is derived from the breakthrough work of Green and Tao [GT10]
which involves using Gowers’ Uniformity Norm to bound the success probability of the share
conversion scheme.

Outline. To prove both the theorems, we first describe some Fourier analysis properties in Sec-
tion 6.1 and then prove Theorems 6.5 and 6.6 in Sections 6.2 and 6.3 respectively.

6.1 More Fourier Analysis

In the next lemma, we show that any function 𝐹 from F𝑝 to {−1, 1} cannot be too correlated with
any non-zero character. The implication of this lemma is an ‘inverse theorem’ that if the bias of
a function 𝐹 is greater than 2/3, then 𝐹 is highly correlated with the trivial character 𝜒0 which is
always 1.

Lemma 6.7. Let 𝐹 : F𝑝 → {−1, 1} for prime 𝑝 > 2 be a function. Then, |𝐹(𝛼)| ≤ 2
3 , for all 𝛼 ≠ 0.

This proof relies on the fact that the function 𝐹 only takes values in {−1, 1}while every non-zero
character of F𝑝 takes all the values in the set

{
1, 𝜔, 𝜔2 , . . . , 𝜔𝑝−1}. (Recall that 𝜔 = exp(2𝜋𝑖/𝑝) is a

primitive 𝑝-th root of unity.) Hence the character and the function 𝐹 cannot be too correlated.

45



Proof. This proof uses Lemma 3.11. Let 𝛾 = 𝑒 𝑖·𝜋/𝑝 . Then 𝛾𝑝 = −1 and 𝛾2 = 𝜔. Also, 𝐹(𝑥) · 𝜔𝛼𝑥 ∈{
𝛾2𝛼𝑥 , 𝛾2𝛼𝑥+𝑝}. So, we can bound the Fourier coefficient 𝐹(𝛼) as follows:���𝐹(𝛼)��� = ���E

𝑥
[𝐹(𝑥) · 𝜔𝛼𝑥]

��� ≤ max
®𝑧∈{0,1}𝑝

�����1𝑝 ∑
𝑥

𝛾2𝛼𝑥+𝑝·𝑧𝑥

����� ≤ max
𝐴⊆{0,1,...,2𝑝−1}

|𝐴|=𝑝

�����1𝑝 ∑
𝑥∈𝐴

𝛾𝛼𝑥

����� ,

where the first inequality follows from the fact that 𝐹(𝑥) · 𝜔𝛼𝑥 ∈
{
𝛾2𝛼𝑥 , 𝛾2𝛼𝑥+𝑝} and the second

inequality follows from the fact that if 𝑥 ≠ 𝑥′ (mod 𝑝) then the two sets {𝛾2𝛼𝑥 , 𝛾2𝛼𝑥+𝑝} and
{𝛾2𝛼𝑥′ , 𝛾2𝛼𝑥′+𝑝} are disjoint and hence no value repeats in the sum. Lemma 3.11 implies that

this value is bounded by 𝑝−1𝜁2𝑝(𝑝) =
sin(𝜋𝑝/(2𝑝))
𝑝 sin(𝜋/(2𝑝)) =

1
𝑝 sin(𝜋/(2𝑝)) . This value is monotonically

decreasing and is 2/3 for 𝑝 = 3.
□

Lemma 6.8. Let 𝐹 : F𝑝 → {−1, 1} be a function. If |𝐹(0)| > 1 − 𝜖, then for every 𝑎 ∈ F𝑝 ,

Pr
𝑥
[𝐹(𝑥) = 𝐹(𝑥 + 𝑎)] > 1 − 𝜖 .

A balanced function has 𝐹(0) = 0. When this quantity is large, the function has to be very
unbalanced and nearly a constant. The lemma quantifies this.

Proof. Assume that 𝐹(0) > 1 − 𝜖. The other case is analogous. We use the relationship between
𝐹(0) and the expectation to prove the lemma.

1 − 𝜖 < 𝐹(0) = E
𝑥
[𝐹(𝑥)]

= Pr
𝑥
[𝐹(𝑥) = 1] − Pr

𝑥
[𝐹(𝑥) = −1]

= Pr
𝑥
[𝐹(𝑥) = 1] − (1 − Pr

𝑥
[𝐹(𝑥) = 1]) ,

where the first equality follows from the definition of 𝐹(0). Hence, it holds that, Pr𝑥[𝐹(𝑥) = 1] >
1 − 𝜖/2. Next, we use the union bound to prove the lemma:

Pr
𝑥
[𝐹(𝑥) = 𝐹(𝑥 + 𝑎)] ≥ Pr

𝑥
[𝐹(𝑥) = 1 ∧ 𝐹(𝑥 + 𝑎) = 1]

≥ Pr
𝑥
[𝐹(𝑥) = 1] − Pr

𝑥
[𝐹(𝑥 + 𝑎) ≠ 1]

> 1 − 𝜖
2 −

𝜖
2 = 1 − 𝜖 ,

as Pr𝑥[𝐹(𝑥 + 𝑎) ≠ 1] = Pr𝑥[𝐹(𝑥) ≠ 1]. □

6.2 On Additive Secret Sharing: Proof of Theorem 6.5

In this section, we prove Theorem 6.5. We first recall it below.

Theorem 6.5. Let 𝑛 ≥ 3. For any non-trivial relation𝑅 and for any local conversion scheme 𝑔1 , 𝑔2 , . . . , 𝑔𝑛 :
F𝑝 → F2, there exists an element 𝑠 ∈ F𝑝 such that,

Pr
s←AddSh𝑝(𝑠)

[
(𝑠,

∑
𝑖

𝑔𝑖(𝑠𝑖)) ∉ 𝑅

]
≥ 1

6 .

46



The main ingredient of this proof is the following ‘inverse theorem’ style lemma which says
that if the {𝑔𝑖} functions locally convert additive shares of 0 over F𝑝 into additive shares of 0 over
F2, then the function 𝑔1 (or any other 𝑔𝑖) is almost always constant.

Lemma 6.9. Let 𝑛 ≥ 3, 𝜖 ≤ 1/6. Let 𝑔1 , 𝑔2 , . . . , 𝑔𝑛 : F𝑝 → F2 be functions. If,

Pr
s←AddSh𝑝(0)

[∑
𝑖

𝑔𝑖(𝑠𝑖) ≠ 0
]
< 𝜖, (11)

where s = (𝑠1 , . . . , 𝑠𝑛), then for every 𝑎 ∈ F𝑝 ,
Pr

𝑥←F𝑝
[𝑔1(𝑥) = 𝑔1(𝑥 + 𝑎)] > 1 − 2𝜖 . (12)

First, assuming Lemma 6.9 we prove Theorem 6.5. Then we prove Lemma 6.9 itself. To prove
Theorem 6.5, we leverage the fact that 𝑔1 is almost always constant to argue that additive shares of
any element 𝑠 ∈ F𝑝 will also be converted to additive shares of 0; thus deriving a contradiction to
the non-triviality of the relation 𝑅.

Proof of Theorem 6.5 assuming Lemma 6.9. Let 𝜖 = 1/6. Let us assume that the local share conversion
algorithms are correct on shares of zero, i.e.,

Pr
s←AddSh𝑝(0)

[∑
𝑖

𝑔𝑖(𝑠𝑖) ≠ 0
]
< 𝜖 . (13)

As 𝑅 is a non-trivial relation, there exists an 𝑠′ ∈ F𝑝 such that (𝑠′, 0) ∉ 𝑅 and (𝑠′, 1) ∈ 𝑅. To prove
the theorem, it suffices to show that,

Pr
s′←AddSh𝑝(𝑠′)

[∑
𝑖

𝑔𝑖(𝑠′𝑖) = 0
]
> 𝜖 .

Note that the distribution
{
(𝑠1 + 𝑠′, 𝑠2 , . . . , 𝑠𝑛) : (𝑠1 , 𝑠2 , . . . , 𝑠𝑛) ← AddSh𝑝(0)

}
is identically dis-

tributed to AddSh𝑝(𝑠′). Hence,

Pr
s′←AddSh𝑝(𝑠′)

[∑
𝑖

𝑔𝑖(𝑠′𝑖) = 0
]
= Pr

s←AddSh𝑝(0)

[
𝑔1(𝑠1 + 𝑠′) +

𝑛∑
𝑖=2

𝑔𝑖(𝑠𝑖) = 0
]

≥ Pr
s←AddSh𝑝(0)

[
(𝑔1(𝑠1 + 𝑠′) = 𝑔1(𝑠1)) ∧

𝑛∑
𝑖=1

𝑔𝑖(𝑠𝑖) = 0
]

≥ Pr
s←AddSh𝑝(0)

[𝑔1(𝑠1 + 𝑠′) = 𝑔1(𝑠1)] − Pr
s←AddSh𝑝(0)

[∑
𝑖

𝑔𝑖(𝑠𝑖) ≠ 0
]

≥ 1 − 3𝜖 > 𝜖 ,

where the second inequality follows from the union bound, the third inequality from Lemma 6.9
and Eq. (13). This gives us the required contradiction. □

We now prove Lemma 6.9. In the proof of Lemma 6.9, we first represent the success probability
of the share-conversion scheme in terms of the Fourier spectrum of the functions in the share-
conversion scheme. We use this to infer that each of the share-conversion functions has a ‘large’
Fourier coefficient and use that to deduce that this share-conversion function is almost constant.

47



As mentioned earlier, this analysis is reminiscent of the fourier analytic proof of the Blum, Luby,
and Rubinfeld linearity test [BLR93] and group homomorphism testing of Ben-or, Coppersmith,
Luby, and Rubinfeld [BCLR08].

Proof of Lemma 6.9. It would be convenient for us to define real-valued functions 𝐺𝑖 : F𝑝 → R as
𝐺𝑖(𝑥) = (−1)𝑔𝑖(𝑥). Restated in terms of 𝐺𝑖’s, Eq. (11) is equivalent to,

Λ(𝐺1 , 𝐺2 , . . . , 𝐺𝑛) = E
s←AddSh𝑝(0)

[𝐺1(𝑠1) · · ·𝐺𝑛(𝑠𝑛)] > 1 − 2𝜖 .

Using Lemma 4.16, and noting that additive shares of 0 form a linear code with the dual code
generated by the all-ones vector 1, we get that,

1 − 2𝜖 < E
s←AddSh𝑝(0)

[𝐺1(𝑠1) · · ·𝐺𝑛(𝑠𝑛)]

=
∑
𝛼∈F𝑝

𝐺1(𝛼) · 𝐺2(𝛼) · · ·𝐺𝑛(𝛼)

≤ ∥𝐺1∥∞ · ∥𝐺2∥∞ · · · ∥𝐺𝑛−2∥∞ · ∥𝐺𝑛−1∥2 · ∥𝐺𝑛 ∥2
≤ ∥𝐺1∥∞ ,

where the first equality follows from Lemma 4.16, the subsequent inequality follows from the
Cauchy-Schwarz inequality and the final inequality follows from the fact that: for each 𝑖 ∈ [𝑛],
∥𝐺𝑖 ∥2 = ∥𝐺𝑖 ∥2 ≤ 1 and ∥𝐺𝑖 ∥∞ ≤ 1.

This implies that ∥𝐺1∥∞ > 1 − 2𝜖 ≥ 2/3. Lemma 6.7 implies that for any 𝛼 ≠ 0, |𝐺1(𝛼)| ≤ 2/3.
Hence |𝐺1(0)| > 1 − 2𝜖. Combining this with Lemma 6.8 shows that, for all 𝑎 ∈ F𝑝 :

Pr
𝑥
[𝐺1(𝑥) = 𝐺1(𝑥 + 𝑎)] > 1 − 2𝜖 .

This completes the proof as 𝐺1(𝑥) = 𝐺1(𝑥 + 𝑎) ⇐⇒ 𝑔1(𝑥) = 𝑔1(𝑥 + 𝑎). □

Note that this proof breaks down for two parties because using Cauchy-Shwarz does not let us
infer that ∥𝐺1∥∞ is large for either 𝑖’s. This proof does generalize to other settings for example for
share conversion from F𝑝 to F𝑞 for 𝑞 < 𝑝. Though the error bound degrades with an exponential
dependence in 𝑞.

6.3 On Shamir’s Secret Sharing: Proof of Theorem 6.6

In this section, we prove Theorem 6.6. We recall the theorem below.

Theorem 6.6. Let 𝑛 ≥ 3. The (𝑛, 𝑡)-Shamir’s secret sharing scheme, for (𝑛 + 3)/2 ≤ 𝑡 ≤ 𝑛, over F𝑝 is
not locally convertible to an additive secret sharing over F2 for any non-trivial relation 𝑅. That is, for any
non-trivial relation 𝑅 and local conversion scheme 𝑔1 , 𝑔2 , . . . , 𝑔𝑛 : F𝑝 → F2, there exists 𝑠 ∈ F𝑝 such that,

Pr
s←ShaSh𝑝(𝑠)

[
(𝑠,

∑
𝑖

𝑔𝑖(𝑠𝑖)) ∉ 𝑅

]
≥ 1

max(6, 𝑛 + 1) .

This is also a two step proof. The difficult step is proving an inverse theorem and then using it is
relatively simple. The inverse theorem was proved in Green and Tao’s breakthrough work [GT10].
While Green and Tao prove a more general result, we include for convenience, a proof for the
specialized case of Shamir’s secret sharing. We state the inverse theorem below.

48



Lemma 6.10 (Inverse Theorem for Shamir’s Secret Sharing). Let 𝑛, 𝑡 ≥ 3 be two integers, such that
𝑡 ≤ 𝑛 ≤ 2𝑡 − 3. Let 𝜖 ≤ 1/6. Let 𝑔1 , 𝑔2 , . . . , 𝑔𝑛 : F𝑝 → F2 be functions such that,

Pr
s←ShaSh𝑝,𝑛,𝑡 (0)

[∑
𝑖

𝑔𝑖(𝑠𝑖) ≠ 0

]
< 𝜖 , (14)

where s = (𝑠1 , . . . , 𝑠𝑛), then for every 𝑎 ∈ F𝑝 ,

Pr
𝑥←F𝑝
[𝑔1(𝑥) = 𝑔1(𝑥 + 𝑎)] > 1 − 2𝜖 .

We will first prove Theorem 6.6 assuming Lemma 6.10 and then prove the lemma.

Proof of Theorem 6.6. Let 𝜖 = 1/max(6, 𝑛 + 1). Let us assume that the local share conversion algo-
rithms are correct on Shamir’s shares of zero, i.e.,

Pr
s←ShaSh𝑝,𝑛,𝑡 (0)

[∑
𝑖

𝑔𝑖(𝑠𝑖) ≠ 0

]
≤ 𝜖 (15)

As 𝑅 is a non-trivial relation, there exists an 𝑠′ ∈ F𝑝 such that (𝑠′, 0) ∉ 𝑅 and (𝑠′, 1) ∈ 𝑅. To prove
the theorem, it suffices to show that,

Pr
s′←ShaSh𝑝,𝑛,𝑡 (𝑠′)

[∑
𝑖

𝑔𝑖(𝑠′𝑖) = 0

]
> 𝜖 ,

where s′ = (𝑠′1 , . . . , 𝑠′𝑛). Let ®𝑞 = (𝑞1 , 𝑞2 , . . . , 𝑞𝑛) be a secret sharing of 𝑠′ that has the first 𝑡 − 1
shares equal to 0. Such a sharing exists. Because the Shamir’s secret shares of 𝑠′ are a coset of the
Shamir’s secret shares of 0, the distribution

{
s + ®𝑞 : s← ShaSh𝑝,𝑛,𝑡(0)

}
is identically distributed to

ShaSh𝑝,𝑛,𝑡(𝑠′). Hence,

Pr
s′←ShaSh𝑝,𝑛,𝑡 (𝑠′)

[∑
𝑖

𝑔𝑖(𝑠′𝑖) = 0

]
= Pr

s←ShaSh𝑝,𝑛,𝑡 (0)

[
𝑛∑
𝑖

𝑔𝑖(𝑠𝑖 + 𝑞𝑖) = 0

]
≥ Pr

s←ShaSh𝑝,𝑛,𝑡 (0)

[
(∀𝑖 ∈ {𝑡 , . . . , 𝑛}, 𝑔𝑖(𝑠𝑖 + 𝑞𝑖) = 𝑔𝑖(𝑠𝑖)) ∧

(
𝑛∑
𝑖=1

𝑔𝑖(𝑠𝑖) = 0

)]
≥ 1 −

𝑛∑
𝑖=𝑡

Pr
s←ShaSh𝑝,𝑛,𝑡 (0)

[𝑔𝑖(𝑠𝑖 + 𝑞𝑖) ≠ 𝑔𝑖(𝑠𝑖)]

− Pr
s←ShaSh𝑝,𝑛,𝑡 (0)

[∑
𝑖

𝑔𝑖(𝑠𝑖) ≠ 0

]
> 1 − (𝑛 − 𝑡 + 1) · (2𝜖) − 𝜖 = 1 + (−2𝑛 + 2𝑡 − 3) · 𝜖 ≥ 1 + (−2𝑛 + 𝑛) · 𝜖
≥ 𝜖 ,

where the second inequality follows from the union bound, the third inequality follows from
Lemma 6.10 and Eq. (15), and the last inequality follows from the fact that 𝜖 ≤ 1

𝑛+1 . This concludes
the proof. □

49



6.4 Proof of Lemma 6.10

Proving Lemma 6.10 requires some new notions. In particular, the notion of the Gowers’ Uniformity
Norm.

6.4.1 Gowers’ Uniformity Norm

The Gowers’ Uniformity Norm was defined by Gowers in [Gow01] to give an alternate Szemerédi’s
Theorem. This notion has been very influential in additive combinatorics.

Definition 6.11 (Gowers’ 𝑈2 Norm). Let 𝑓 : G → C be a function. The Gowers’ 𝑈2 Norm or the
Uniformity Norm of 𝑓 , denoted by ∥ 𝑓 ∥𝑈2 is defined as follows:

∥ 𝑓 ∥4
𝑈2 = E

𝑥,𝑎,𝑏←G

[
𝑓 (𝑥) · 𝑓 (𝑥 − 𝑎) · 𝑓 (𝑥 − 𝑏) · 𝑓 (𝑥 − 𝑎 − 𝑏)

]
,

We will deal only with real-valued functions and hence usually ignore the conjugates in this
paper. Higher-order analogues of the Gowers’ Norms can be defined analogously, but we do not
need them in the paper.

Before recalling properties of the Gowers’ norms, we define the non-standard operator ∗ as
in [Gre07].11 Let 𝑓 : G→ C and 𝑔 : G→ C be two functions. The function 𝑓 ∗ 𝑔 : G→ C is defined
by:

( 𝑓 ∗ 𝑔)(𝑦) = E
𝑥←G

[
𝑓 (𝑥) · 𝑔(𝑥 − 𝑦)

]
.

We recall the following lemma from [Gow01].

Lemma 6.12. Let 𝑓 : G→ C and 𝑔 : G→ C be two functions. Then we have:�𝑓 ∗ 𝑔 = �̂� · �̂� .

Proof. We have:

(�𝑓 ∗ 𝑔)(𝛼) = E
𝑥,𝑦∈G

[
𝑓 (𝑥) · 𝑔(𝑥 − 𝑦) · 𝜔𝛼𝑦

]
= E

𝑥,𝑦∈G

[
𝑓 (𝑥) · 𝜔𝛼𝑥 · 𝑔(𝑥 − 𝑦) · 𝜔𝛼(𝑥−𝑦)

]
= E

𝑥,𝑧∈G

[
𝑓 (𝑥) · 𝜔𝛼𝑥 · 𝑔(𝑧) · 𝜔𝛼𝑧

]
= �̂� (𝛼) · �̂�(𝛼) .

□

Theorem 6.13 (Properties of the Gowers’ Norms). Let 𝑓 : G→ C be a function.

(a) (Alternate Definition of 𝑈2.) The Gowers’ Norm of a function is alternately defined as:

∥ 𝑓 ∥4
𝑈2 = E

𝑦,𝑦′,𝑧,𝑧′←G

[
𝑓 (𝑦 + 𝑧) · 𝑓 (𝑦 + 𝑧′) · 𝑓 (𝑦′ + 𝑧) · 𝑓 (𝑦′ + 𝑧′)

]
11As in [Gre07], we do not need to use the standard convolution, which is normally defined as 𝑓 ★ 𝑔 : G → C,

( 𝑓 ★ 𝑔)(𝑦) = E𝑥←G[ 𝑓 (𝑥) · 𝑔(𝑦 − 𝑥)].

50



(b) (Connection to Fourier Coefficients.)

∥ 𝑓 ∥4
𝑈2 = ∥ 𝑓 ∗ 𝑓 ∥22 =

�𝑓 ∗ 𝑓 2

2
=

 �̂� 4

4

(c) (Inverse Theorem for 𝑈2 Norm.) If ∥ 𝑓 ∥𝑈2 ≥ 𝛿 and ∥ 𝑓 ∥2 ≤ 1, then,

bias( 𝑓 ) =
 �̂� 

∞
≥ 𝛿2

Proof. These properties are proven for example in the proof of Proposition 1.9 of [Gre07] and
in [Gow01].

Proof of Theorem 6.13(a). If we write 𝑥 = 𝑦+𝑧, 𝑎 = 𝑧−𝑧′, 𝑏 = 𝑦−𝑦′, then: 𝑥 = 𝑦+𝑧, 𝑥− 𝑎 = 𝑦+𝑧′,
𝑥 − 𝑏 = 𝑦′ + 𝑧, 𝑥 − 𝑎 − 𝑏 = 𝑦′ + 𝑧′. Furthermore, if 𝑦, 𝑦′, 𝑧, 𝑧′ are four independent uniform random
variables in G, then 𝑥, 𝑎, 𝑏 are three independent uniform random variables in G.

Proof of Theorem 6.13(b). The first equality of the proposition comes from:

∥ 𝑓 ∥4
𝑈2 = E

𝑦,𝑦′,𝑧,𝑧′←G

[
𝑓 (𝑦 + 𝑧) · 𝑓 (𝑦 + 𝑧′) · 𝑓 (𝑦′ + 𝑧) · 𝑓 (𝑦′ + 𝑧′)

]
= E

𝑧,𝑧′←G

[���� E𝑦←G[ 𝑓 (𝑦 + 𝑧) · 𝑓 (𝑦 + 𝑧′)
] ����2]

= E
𝑧,𝑧′←G

[���� E𝑦←G[ 𝑓 (𝑦) · 𝑓 (𝑦 − 𝑧 + 𝑧′)
] ����2]

= E
𝑧,𝑧′←G

[( 𝑓 ∗ 𝑓 )(𝑧 − 𝑧′)] = ∥ 𝑓 ∗ 𝑓 ∥22 .

The second equality of the proposition comes from Theorem 3.9(a). The third equality of the
proposition comes from: �𝑓 ∗ 𝑓 2

2
=

 �̂� · �̂� 2

2
= E

𝑥←G

[
| �̂� (𝑥)|

2·2]
=

 �̂� 4

4
,

where the first equality comes from Lemma 6.12.

Proof of Theorem 6.13(c). We have:

𝛿4 ≤ ∥ 𝑓 ∥4
𝑈2 =

 �̂� 4

4
≤

 �̂� 2

∞
·
 �̂� 2

2
=

 �̂� 2

∞
· ∥ 𝑓 ∥22 ≤

 �̂� 2

∞
.

□

6.4.2 Proof of Lemma 6.10

We now prove Lemma 6.10. This proof is specialized to the case of Shamir’s sharing from the work
of Green and Tao’s [GT10] which proves a more general result.

Proof of Lemma 6.10. As before, it would be convenient for us to define real-valued functions 𝐺𝑖 :
F𝑝 → R as 𝐺𝑖(𝑥) = (−1)𝑔𝑖(𝑥). Restated in terms of 𝐺𝑖’s, Eq. (14) is equivalent to,

E
s←ShaSh𝑝,𝑛,𝑡 (0)

[∏
𝑖

𝐺𝑖(𝑠𝑖)
]
> 1 − 2𝜖 . (16)

51



Proof Outline.

1. We will consider the linear code generated by ShaSh𝑝,𝑛,𝑡(0) (a generalized Reed-Solomon
Code). We will write the generator matrix of the code in a suitable ‘normalized form.’

2. The Cauchy-Schwartz inequality will enable us to upper-bound the expectation in Eq. (16)
by the Gowers’ norm of the functions 𝐺𝑖’s. Hence implying that 𝐺𝑖’s have a high Gowers’
norm.

3. Finally, invoking the inverse theorem for Gowers’ norm will complete the proof.

Claim 6.13.1. There exists a matrix M ∈ F(𝑡−1)×𝑛
𝑝 such that the linear code generated by ShaSh𝑝,𝑛,𝑡(0) is

generated by M i.e.,
ShaSh𝑝,𝑛,𝑡(0) ≡

{
®𝑦 ·M : ®𝑦 ← F𝑡−1

𝑝

}
,

and M has the following form:

M =

©«

1︷︸︸︷
𝑢1
𝑢2
∗
...

∗

𝑡−2︷     ︸︸     ︷
0 . . . 0
∗ . . . ∗
∗ . . . ∗
...

...

∗ . . . ∗

𝑛−𝑡+1︷     ︸︸     ︷
∗ . . . ∗
0 . . . 0
∗ . . . ∗
...

...

∗ . . . ∗

ª®®®®®®¬
, (17)

where 𝑢1 , 𝑢2 are non-zero elements of F𝑝 , and each “∗” is an element in F𝑝 (not necessarily all equal).

Proof. Let 𝐴 = {𝛼1 , 𝛼2 , . . . , 𝛼𝑛} be the 𝑛 distinct evaluation points used in Shamir’s secret sharing
(0 ∉ 𝐴). Let 𝑞1 and 𝑞2 be the following polynomials:

𝑞1(𝑥) = 𝑥 · (𝑥 − 𝛼2) · (𝑥 − 𝛼2) · · · (𝑥 − 𝛼𝑡−1) ,
𝑞2(𝑥) = 𝑥 · (𝑥 − 𝛼𝑡) · (𝑥 − 𝛼𝑡) · · · (𝑥 − 𝛼𝑛) .

The number of factors (𝑥 − 𝛼𝑖) in 𝑞1 is 𝑛 − 𝑡 + 1 ≤ 2𝑡 − 3− 𝑡 + 1 = 𝑡 − 2. Hence both polynomials 𝑞1
and 𝑞2 have degree at most 𝑡 − 1 and the following vectors are valid Shamir’s secret sharing of 0:

m1 = (𝑞1(𝛼1), 𝑞1(𝛼2), . . . , 𝑞1(𝛼𝑛)) ,
m2 = (𝑞2(𝛼1), 𝑞2(𝛼2), . . . , 𝑞2(𝛼𝑛)) .

Let us write 𝑢1 = 𝑞1(𝛼1) ≠ 0 and 𝑢2 = 𝑞2(𝛼2) ≠ 0. The two vectors m1 and m2 are of the form:

m1 = (𝑢1 , 0, . . . , 0, ∗, . . . , ∗) ,
m2 = (𝑢1 , ∗, . . . , ∗, 0, . . . , 0) .

We conclude the proof by remarking that these two vectors are linearly independent and hence
can be completed into a full basis of ShaSh𝑝,𝑛,𝑡(0). □

Remark 6.14. We remark that the above claim requires 𝑛 ≤ 2𝑡 − 3. If 𝑛 > 2𝑡 − 3, the second row
would need to have 𝑛 − 𝑡 + 1 > 𝑡 − 2 zeros, which is impossible as not all its coefficients are zero:
𝑢2 ≠ 0. (Recall that a Shamir’s secret sharing of 0 has at most 𝑡 − 1 shares equal to 0, unless all the
shares are 0.)

52



Claim 6.14.1 (Cauchy-Schwarz Argument). Let 𝐺1 , 𝐺2 , . . . , 𝐺𝑛 : F𝑝 → C such that ∥𝐺𝑖 ∥∞ ≤ 1 for all
𝑖. Then, ����� E

x←ShaSh𝑝,𝑛,𝑡 (0)

[∏
𝑖

𝐺𝑖(𝑥𝑖)
] ����� ≤ min

𝑖
∥𝐺𝑖 ∥𝑈2 .

Proof. We will prove that the left-hand side is at most ∥𝐺1∥𝑈2 . The other cases are true by symmetry.
Using the matrix M from Claim 6.13.1, we write the left-hand side as:����� E

x←ShaSh𝑝,𝑛,𝑡 (0)

[∏
𝑖

𝐺𝑖(𝑥𝑖)
] ����� =

����� E®𝑦←F𝑡−1
𝑝

[∏
𝑖

𝐺𝑖(
〈
®𝑚(𝑖) , ®𝑦

〉
)
] �����

where ®𝑚(𝑖) is the 𝑖-th column of M. We remark that if we write ®𝑥 = ®𝑦 ·M, then 𝑥𝑖 =
〈
®𝑚(𝑖) , ®𝑦

〉
.

To prove the claim, it is beneficial to separate the variables 𝑦1 and 𝑦2 from the rest. As a
shorthand, we omit the dependence on 𝑦3 , . . . , 𝑦𝑡−1 and write:

ℎ(𝑦1 , 𝑦2) = 𝐺1

(〈
®𝑚(1) , ®𝑦

〉)
,

𝑏1(𝑦1) =
𝑡−1∏
𝑖=2

𝐺𝑖

(〈
®𝑚(𝑖) , ®𝑦

〉)
,

𝑏2(𝑦2) =
𝑛∏
𝑖=𝑡

𝐺𝑖

(〈
®𝑚(𝑖) , ®𝑦

〉)
.

We indeed remark that 𝑏1(𝑦1) and 𝑏2(𝑦2) do not depend on 𝑦2 and 𝑦1 respectively, by definition of
M (see Eq. (17)). Furthermore, we use 𝑏 to indicate that these functions are bounded by 1.

So, our product can be written as follows:

E
x←ShaSh𝑝,𝑛,𝑡 (0)

[∏
𝑖

𝐺𝑖(𝑥𝑖)
]
= E

𝑦3 ,...,𝑦𝑡−1

[
E

𝑦1 ,𝑦2
[ℎ(𝑦1 , 𝑦2) · 𝑏1(𝑦1) · 𝑏2(𝑦2)]

]
.

We now link this product to the Gowers’ norm of the function ℎ via repeated use of Cauchy-Schwarz
inequality. Using Cauchy-Schwarz on 𝑦2, we get:

E
𝑦1 ,𝑦2
[ℎ(𝑦1 , 𝑦2) · 𝑏1(𝑦1) · 𝑏2(𝑦2)] ≤

(
E
𝑦2

[
E
𝑦1
[ℎ(𝑦1 , 𝑦2) · 𝑏1(𝑦1)]2

] ) 1
2
(
E
𝑦2

[
𝑏2(𝑦2)2

] ) 1
2

Boundedness of 𝑏2 implies that E𝑦2

[
𝑏2(𝑦2)2

]
≤ 1. Rearranging the terms, we get that,

≤
(
E

𝑦2 ,𝑦1 ,𝑦
′
1

[
ℎ(𝑦1 , 𝑦2) · ℎ(𝑦′1 , 𝑦2) · 𝑏1(𝑦1) · 𝑏1(𝑦′1)

] ) 1
2

53



Applying Cauchy-Schwarz on 𝑦1 , 𝑦
′
1 along with boundedness, we get that,

≤
(
E

𝑦1 ,𝑦
′
1

[
E
𝑦2

[
ℎ(𝑦1 , 𝑦2) · ℎ(𝑦′1 , 𝑦2)

]2
] ) 1

4
(
E

𝑦1 ,𝑦
′
1

[
𝑏1(𝑦1)2 · 𝑏1(𝑦′1)

2] ) 1
4

≤
(
E

𝑦1 ,𝑦
′
1

[
E
𝑦2

[
ℎ(𝑦1 , 𝑦2) · ℎ(𝑦′1 , 𝑦2)

]2
] ) 1

4

· 1

≤
(
E

𝑦1 ,𝑦
′
1 ,𝑦2 ,𝑦′2

[
ℎ(𝑦1 , 𝑦2) · ℎ(𝑦′1 , 𝑦2) · ℎ(𝑦1 , 𝑦

′
2) · ℎ(𝑦′1 , 𝑦

′
2)
] ) 1

4

= ∥𝐺1∥𝑈2 .

where the last equality follows from the fact that ℎ is real-valued, Theorem 6.13(a) and that 𝐺1 and
ℎ are related to each other by a linear change of variables. Indeed, for every fixed 𝑦3 , . . . , 𝑦𝑡−1, it
holds that ℎ(𝑦1 , 𝑦2) = 𝐺1

(
𝑢1𝑦1 + 𝑢2𝑦2 +

∑𝑡−1
𝑖=3 𝑀𝑖 ,1𝑦𝑖

)
, and 𝑢1 , 𝑢2 ≠ 0. Hence,

E
𝑦1 ,𝑦

′
1 ,𝑦2 ,𝑦′2

[
ℎ(𝑦1 , 𝑦2)ℎ(𝑦′1 , 𝑦2) · ℎ(𝑦1 , 𝑦

′
2) · ℎ(𝑦′1 , 𝑦

′
2)
]
=

E
𝑦1 ,𝑦

′
1 ,𝑦2 ,𝑦′2

[
𝐺1(𝑦1 + 𝑦2) · 𝐺1(𝑦′1 + 𝑦2) · 𝐺1(𝑦1 + 𝑦′2) · 𝐺1(𝑦′1 + 𝑦′2)

]
.

This concludes the proof of Claim 6.14.1. □

We can now prove Lemma 6.10. Claim 6.14.1 and Eq. (16) imply that ∥𝐺1∥𝑈2 > 1 − 𝜖. We need
to relate the Gowers’ Norm to the Fourier bias. Using Theorem 6.13(c), we get that,

bias(𝐺1) ≥ (1 − 𝜖)2 > 1 − 2𝜖.

This implies that
𝐺1


∞

> 1 − 2𝜖 ≥ 2/3, as 𝜖 ≤ 1/6. Lemma 6.7 implies that for any 𝛼 ≠ 0,���𝐺1(𝛼)
��� ≤ 2/3. Hence

���𝐺1(0)
��� > 1 − 2𝜖. Combining this with Lemma 6.8 shows that,

Pr
𝑥
[𝐺1(𝑥) = 𝐺1(𝑥 + 𝑎)] > 1 − 2𝜖 .

This completes the proof of Lemma 6.10 as 𝐺1(𝑥) = 𝐺1(𝑥 + 𝑎) ⇐⇒ 𝑔1(𝑥) = 𝑔1(𝑥 + 𝑎). □

Acknowledgments.

We thank Anat Paskin-Cherniavsky for pointing out an error in an earlier version of Theorem 1.2.
We thank the anonymous reviewers of Crypto 2018 and Journal of Cryptology for their comments
in particular with helping improve the presentation of the proof of Theorem 1.2.

References

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In
CCS, 2016.

54



[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore
bits and cryptography against memory attacks. In TCC, 2009.

[BBCM95] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli M. Maurer. Generalized
privacy amplification. IEEE Trans. Information Theory, 41(6):1915–1923, 1995.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by
public discussion. SIAM J. Comput., 17(2):210–229, 1988.

[BCLR08] Michael Ben-Or, Don Coppersmith, Michael Luby, and Ronitt Rubinfeld. Non-Abelian
Homomorphism Testing, and Distributions close to their Self-Convolutions. Random
Struct. Algorithms, 2008.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local
leakage resilience of linear secret sharing schemes. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I,
volume 10991 of Lecture Notes in Computer Science, pages 531–561. Springer, 2018.

[BDL14] Nir Bitansky, Dana Dachman-Soled, and Huĳia Lin. Leakage-tolerant computation
with input-independent preprocessing. In CRYPTO, 2014.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO, 1991.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the Circuit Size Barrier for Secure
Computation under DDH. In CRYPTO, 2016.

[BGK11] Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai. Leakage-resilient coin tossing.
In Distributed Computing, 2011.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In
STOC, 1988.

[BIKO12] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share Conversion and
Private Information Retrieval. In CCC, 2012.

[BIVW16] Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson. Bounded
indistinguishability and the complexity of recovering secrets. In CRYPTO 2016, Part
III, pages 593–618, 2016.

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices
without FHE. IACR Cryptology ePrint Archive, 2019:129, 2019. To appear in Eurocrypt
2019.

[Bla79] G.R. Blakley. Safeguarding cryptographic keys. In AFIPS National Computer Conference,
1979.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-Testing/Correcting with
Applications to Numerical Problems. J. Comput. Syst. Sci., 1993.

55



[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally
secure protocols (extended abstract). In STOC, 1988.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 453–469. Springer, 2000.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share Conversion, Pseudorandom
Secret-Sharing and Applications to Secure Computation. In TCC 2005, 2005.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models:
From probing attacks to noisy leakage. In EUROCRYPT, 2014.

[DDV10] Francesco Davì, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient storage.
In Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages
121–137. Springer, Heidelberg, September 2010.

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without compu-
tational assumptions. In TCC 2012, pages 230–247, 2012.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In CRYPTO 2016, Part III, pages 93–122, 2016.

[DLZ15] Dana Dachman-Soled, Feng-Hao Liu, and Hong-Sheng Zhou. Leakage-resilient cir-
cuits revisited - optimal number of computing components without leak-free hard-
ware. In EUROCRYPT, 2015.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In
FOCS, 2007.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS,
2008.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In CRYPTO, 2012.

[DSS01] Yevgeniy Dodis, Amit Sahai, and Adam Smith. On perfect and adaptive security in
exposure-resilient cryptography. In International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 301–324. Springer, 2001.

[FGJI17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith III. Ho-
momorphic secret sharing from paillier encryption. In ProvSec 2017, pages 381–399,
2017.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting Circuits from Leakage: the Computationally-Bounded and Noisy Cases. In
EUROCRYPT, 2010.

[GIM+16] Vipul Goyal, Yuval Ishai, Hemanta K. Maji, Amit Sahai, and Alexander A. Sherstov.
Bounded-Communication Leakage Resilience via Parity-Resilient Circuits. In FOCS,
2016.

56



[GIW17] Daniel Genkin, Yuval Ishai, and Mor Weiss. How to construct a leakage-resilient
(stateless) trusted party. In TCC, 2017.

[GK18] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In STOC, 2018.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game or
A Completeness Theorem for Protocols with Honest Majority. In STOC 1987, 1987.

[Gow01] William T Gowers. A new proof of Szemerédi’s theorem. Geometric and Functional
Analysis, 2001.

[GR15] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage.
SICOMP, 2015.

[Gre07] Ben Green. Montréal notes on Quadratic Fourier Analysis. Additive combinatorics, 2007.

[GT10] Benjamin Green and Terence Tao. Linear Equations in Primes. Annals of Mathematics,
2010.

[GW10] William T Gowers and Julia Wolf. The True Complexity of a System of Linear Equa-
tions. Proceedings of the London Mathematical Society, 2010.

[GW11a] William T Gowers and Julia Wolf. Linear Forms and Higher-Degree Uniformity for
Functions On F𝑝

𝑛 . Geometric and Functional Analysis, 2011.

[GW11b] William T Gowers and Julia Wolf. Linear Forms and Quadratic Uniformity for Func-
tions on F𝑝

𝑛 . Mathematika, 2011.

[GW17] Venkatesan Guruswami and Mary Wootters. Repairing reed-solomon codes. IEEE
Trans. Information Theory, 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware
against probing attacks. In CRYPTO, 2003.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
attacks: Exploiting speculative execution. ArXiv e-prints, January 2018.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, 1999.

[KMS18] Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret sharing.
Electronic Colloquium on Computational Complexity (ECCC), 25:200, 2018.

[Koc96] Paul C. Kocher. "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems". In CRYPTO, 1996.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster Malicious Arith-
metic Secure Computation with Oblivious Transfer. In CCS, 2016.

[KP10] Eike Kiltz and Krzysztof Pietrzak. Leakage Resilient ElGamal Encryption. In ASI-
ACRYPT, 2010.

57



[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown.
ArXiv e-prints, 2018.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In TCC, 2004.

[NS19] Jesper Buus Nielsen and Mark Simkin. Lower Bounds for Leakage-Resilient Secret
Sharing. Cryptology ePrint Archive, Report 2019/181, 2019. https://eprint.iacr.

org/2019/181.

[Riv97] Ronald L Rivest. All-or-nothing encryption and the package transform. In International
Workshop on Fast Software Encryption, pages 210–218. Springer, 1997.

[Rot12] Guy N. Rothblum. How to compute under AC0 leakage without secure hardware. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 552–569. Springer, Heidelberg, August 2012.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 1979.

[SV18] Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient secret shar-
ing and applications. IACR Cryptology ePrint Archive, 2018:1154, 2018.

[TV06] Terence Tao and Van H Vu. Additive combinatorics. Cambridge University Press, 2006.

[Yao86] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets (Extended Abstract).
In FOCS, 1986.

A Proofs of Useful Bounds

In this section, we prove Proposition 4.14 and the following related bound.

Proposition A.1. Let 𝑚 ≥ 1 and 𝑝 ≥ 2 be two integers. Let 𝑐′𝑚 =
2𝑚 sin(𝜋/2𝑚+𝜋/24𝑚)

𝑝 sin(𝜋/𝑝) . We have:

log 𝑐′𝑚 ≤ −
1

22𝑚+2 +
4
𝑝2 .

To prove these two propositions, we start by studying the function 𝜂 : R>0 → R defined by:

𝜂(𝑥) = 𝑥

𝜋
sin 𝜋

𝑥
.

Claim A.1.1. For any 𝑥 ≥ 1, we have:

log𝜂(𝑥) ≤ − 1
2𝑥2 .

Proof. We have:

𝜂(𝑥) ≤ 𝑥

𝜋

(
𝜋
𝑥
− 𝜋3

6𝑥3 +
𝜋5

5!𝑥5

)
≤ 1 − 𝜋2

6𝑥2 +
𝜋4

5!𝑥4 ≤ 1 − 1
2𝑥2 .

We conclude using concavity of 𝑢 ↦→ log(1+𝑢), namely the fact that it implies that log(1+𝑢) ≤ 𝑢. □

58

https://eprint.iacr.org/2019/181
https://eprint.iacr.org/2019/181


Claim A.1.2. For any 𝑦 ≥ 2, we have:

log 1
𝜂(𝑦) ≤

4
𝑦2 .

Proof. We have:

𝜂(𝑦) ≥
𝑦

𝜋

(
𝜋
𝑦
− 𝜋3

6𝑦3

)
≥ 1 − 𝜋2

6𝑦2 .

Then:

1
𝜂(𝑦) ≤

1
1 − 𝜋2

6𝑦2

≤ 1 + 𝜋2

3𝑦2

where the last inequality comes from the convexity of 𝑢 ↦→ 1
1−𝑢 and the fact that it implies that

1
1−𝑢 ≤ 4𝑢 − 2(𝑢 − 1

2 ) = 1 + 2𝑢 for 0 ≤ 𝑢 ≤ 1/2 (the curve is below its chord). We conclude using
again the concavity of 𝑢 ↦→ log(1 + 𝑢). □

We can now prove Propositions 4.14 and A.1.

Proof of Proposition 4.14. Using Claims A.1.1 and A.1.2, we have:

log 𝑐𝑚 = log
𝜂(2𝑚)
𝜂(𝑝) = log𝜂(2𝑚) + log 1

𝜂(𝑝) ≤ −
1

22𝑚+1 +
4
𝑝2 .

This concludes the proof. □

Proof of Proposition A.1. Let us start with the case 𝑚 = 1. We conclude as follows:

log 𝑐′1 = log 2𝑚/𝜋 · sin(𝜋/2𝑚 + 𝜋/24𝑚)
𝜂(𝑝) = log(2𝑚/𝜋 · sin(𝜋/2𝑚 +𝜋/24𝑚)) + log 1

𝜂(𝑝) ≤ −
1

22𝑚+1 +
4
𝑝2 ,

where the last inequality comes from Claim A.1.2 and the fact that for 𝑚 = 1, log(2𝑚/𝜋 · sin(𝜋/2𝑚 +
𝜋/24𝑚)) ≈ −0.47.

Let us now suppose that 𝑚 ≥ 2. Let us define:

𝑎 =
1

1
2𝑚 + 1

24𝑚

=
24𝑚

23𝑚 + 1
≤ 2𝑚 .

We have:

log 𝑐′𝑚 = log
(
2𝑚

𝑎
· 𝜂(𝑎)
𝜂(𝑝)

)
= log

(
1 + 1

23𝑚

)
+ log𝜂(𝑎) − log𝜂(𝑝) ≤ 1

23𝑚 −
1

2𝑎2 +
4
𝑝2 ,

where the inequality comes from the concavity of 𝑢 ↦→ log(1 + 𝑢) and Claims A.1.1 and A.1.2. We
conclude by remarking that:

1
23𝑚 −

1
2𝑎2 ≤

1
23𝑚 −

1
2 · 22𝑚 ≤

1
22𝑚+2 −

1
22𝑚+1 =

1
22𝑚+2 ,

where the second inequality comes from the fact that 2𝑚 + 2 ≤ 3𝑚 when 𝑚 ≥ 2. □

59


	Introduction
	Our Results
	Related Work
	Publication Note

	Overview of the Techniques
	Leakage Resilience of Secret Sharing Schemes
	Application to Leakage Resilience of MPC protocols
	On Local Share Conversion
	Additive Combinatorics Context

	Preliminaries
	Linear Codes
	Linear Secret Sharing Schemes
	Fourier Analysis

	On Leakage Resilience of Secret Sharing Schemes
	Definitions and Basic Properties
	Leakage Resilience of Additive and Shamir's Secret Sharing Schemes
	Main Technical Theorem: Leakage Resilience of Linear Codes
	Local Leakage Resilience of Additive and Shamir's Secret Sharing Schemes
	Example Parameter Settings

	Proofs of Theorems 4.5, 4.6, and 4.7
	Proof of Theorem 4.5
	Warm-Up: Proof of Theorem 4.7
	Proof of Theorem 4.6


	Leakage Resilience of GMW with preprocessing
	Security Definitions
	GMW with Shared Product Preprocessing
	Proof of Private-Outputs Local Leakage Resilience (Theorem 5.5)
	Proof of Public-Outputs Local Leakage Resilience (Theorem 5.6)

	On the Impossibility of Local Share Conversion
	More Fourier Analysis
	On Additive Secret Sharing: Proof of Theorem 6.5
	On Shamir's Secret Sharing: Proof of Theorem 6.6
	Proof of Lemma 6.10
	Gowers' Uniformity Norm
	Proof of Lemma 6.10


	Proofs of Useful Bounds

