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Abstract—Security and safety-critical remote applications
such as e-voting, online banking, industrial control systems and
medical devices rely upon user interaction that is typically
performed through web applications. Trusted path to such remote
systems is critical in the presence of an attacker that controls the
computer that the user operates. Such an attacker can observe
and modify any 10 data without being detected by the user or the
server. We investigate the security of previous research proposals
and observe several drawbacks that make them vulnerable to at-
tacks. Based on these observations we identify novel requirements
for secure IO operation in the presence of a compromised host.

As a solution, we propose PROTECTION, a system that
ensures IO integrity using a trusted low-TCB device that sits
between the attacker-controlled host and the 10 devices. PRO-
TECTION intercepts the display signal and user inputs from the
keyboard and mouse, and overlays secure UI on top of the HDMI
frames generated by the untrusted host. The guiding design prin-
ciples of PROTECTION are that (i) integrity of user input and out-
put cannot be considered separately, (ii) all user input modalities
need to be protected simultaneously, and (iii) integrity protection
should not rely on error prone user tasks like checking the pres-
ence of security indicators. By following these guidelines, PRO-
TECTION achieves strong protection for 10 integrity. We also pro-
pose an extension of PROTECTION for 10 confidentiality and im-
plement a plug-and-play prototype and evaluate its performance.

I. INTRODUCTION

Web-based interfaces are very prevalent to remotely
configure safety-critical systems such as remote PLCs [1] or
medical devices [2]], and other security-sensitive applications
such as online payments, e-voting, etc. The high complexity
of modern operating systems, software, and hardware
components has shown that computer systems largely remain
vulnerable to attacks. A compromised computer threatens the
integrity and the confidentiality of any interaction between the
user and a remote server. It can easily alter the data exchanged
between the user and the remote server, trick the user to
perform unintended actions, or observe any sensitive 10 data.

The recent introduction of trusted computing architectures
like Intel’s SGX has enabled secure computations and secure
data storage on otherwise untrusted computing platforms.
However, such architectures do not directly enable secure user
interaction because IO operations are handled by the operating
system. Additionally, the recent microarchitectural attacks
have shown that execution environments inside enclaves, like
the one provided by SGX, can be compromised as well.

Trusted path provides a secure channel between the user
(specifically human interface device - HID) and the end-point,
which is typically a trustworthy application running on the
host. Trusted path ensures that user inputs reach the intended
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application unmodified, and all the outputs presented to the
user are generated by the legitimate application. Trusted
path to the local host is a well-researched area where many
solutions focus on using trusted software components such
as a trusted hypervisor. Zhou et al. [3|] proposed a generic
trusted path on z86 systems with a pure hypervisor-based
design. SGXIO [4] employs both a hypervisor and Intel SGX.
However, hypervisors are hard to deploy, have a large TCB,
and are impractical in real-world scenarios as most of the
existing verified hypervisors offer a minimal set of features.

Trusted external devices are another way to realize
secure IO between a user and a remote server. Transaction
confirmation devices [5], [6] allow the user to review her
input data on a trusted device that is physically separated
from the untrusted host. These approaches suffer from poor
usability, security issues due to user habituation and are
only limited to simple inputs. In Section [[I-B] we provide a
more detailed discussion on the security and the usability of
transaction confirmation devices. Bump in the Ether [7] and
IntegriKey [8]] use external embedded devices to sign input
parameters. However, such solutions do not support output
integrity; hence, the attacker can execute Ul manipulation
attacks to trick the user into providing incorrect inputs.

Fidelius [9] combines the previous ideas of Bump in the
Ether and trusted overlay to protect keyboard inputs from a
compromised browser using external devices and a JavaScript
interpreter that runs inside an SGX enclave. Fidelius maintains
overlays on display, specifically on the input text boxes to
hide sensitive user inputs from the browser. We investigate
the security of Fidelius and discover several issues. Fidelius
imposes a high cognitive load to the users as they need to mon-
itor continuously different security indicators (two LED lights
and the status bar on the screen) to guarantee the integrity
and confidentiality of the input. Furthermore, the attacker can
manipulate labels of the UI elements to trick the user into
providing incorrect input. The lack of mouse support, which
may appear only as functional limitation, exposes Fidelius to
early form submission attacks. The host can emulate a mouse
click on the submit button before the user completes all fields
of a form. This allows the attacker to perform an early form
submission with incomplete input - a violation of input in-
tegrity. Fidelius is also vulnerable to microarchitectural attacks
on SGX enclaves [10] that extract attestation keys and relay
attacks [[11]] that relay all user data to the attacker’s platform.

The drawbacks of the existing systems show that ensuring
the integrity and confidentiality of the IO in the presence
of an untrusted host is a non-trivial problem and requires
a comprehensive solution. All of the previous trusted path



solutions neither protect both input and output simultaneously,
nor do they consider different modalities of input. We discuss
such drawbacks in details, along with some of the relevant
solutions in Section

Our solution. The shortcomings of the existing literature
provide the groundwork of our system named PROTECTION.
PROTECTION is built on the following observations: i) input
integrity is possible only when both input and output integrity
are ensured simultaneously, ii) all the input modalities are
needed to be protected as they influence each other, and
iii) high cognitive load results in user habituation errors.
PROTECTION uses a trusted low-TCB auxiliary device that
we call IOHUB which works as a mediator between all user
IO devices and the untrusted host. Instead of implementing
a separate network interface, the IOHUB uses the host as an
untrusted transport - reducing attack surface.

Integrity. PROTECTION ensures output integrity by sending
an encoded UI to the host that only the IOHUB can overlay
on a small part of the screen. The overlay is possible as the
IOHUB intercepts the display signal between the host and the
monitor. The overlay generated by the IOHUB ensures that the
host can neither observe nor manipulate any output information
on that overlaid part of the screen; hence, it can not trick the
user. IOHUB supports a subset of HTML5 UI elements that
are frequently used in the majority of web applications. The
IOHUB focuses user attention on the overlaid part of the screen
by dimming out the rest (also known as the lightbox technique
which is one of the possible ways to focus user attention)
when the user moves the mouse pointer on the overlaid UI. By
doing so, PROTECTION aids the user to be more attentive to
the security-critical UI on the screen. Note that PROTECTION
does not require any change in the user interaction for IO
integrity. Only the input devices that are connected to the
IOHUB can interact with the overlaid Ul elements, making
them completely isolated from the untrusted host. All the
inputs are signed by the IOHUB and sent to the remote server

Confidentiality. PROTECTION provides 1O confidentiality
as i) all the input to the IOHUB is encrypted and signed,
and ii) the overlay information sent from the remote server is
encrypted and can only be decrypted by the IOHUB. However,
the user needs to perform a small task such as triggering
a secure attention sequence (SAS), or looking for a secret
image, security indicator etc. to distinguish the trusted overlay.

Deployment. IOHUB is a fully plug-and-play device
that is compatible with any host system regardless of their
architecture or OS and does not require the user to install
any software on the host. Note that our realization of
PROTECTION uses an external device. However, the current
system architecture can be modified, e.g., IOHUB can be
integrated into the graphics processor.

Our contributions. We now summarize our contributions:

(i) Identification of IO security requirements: We identify
new requirements for trusted path based on the drawbacks of
the existing literature: i) unless both output and input integrity
are secured simultaneously, it is impossible to achieve any one
of the two, and ii) without protecting the integrity of all the
modalities of inputs, none could be achieved (Section [[I-B].

(i) System for IO integrity: We describe the design of PRO-
TECTION, a system that provides a remote trusted path from
the server to the user, in an attacker-controlled environment.
The design of PROTECTION leverages a small, low-TCB auxil-
iary device that acts as a root-of-trust for the I0. PROTECTION
ensures the integrity of the UI, specifically the integrity of
mouse pointer and keyboard input. PROTECTION is further
designed to avoid user habituation (Sections [[TI] and [[V).

(iii) System for IO confidentiality: We also describe an
extension of PROTECTION that provides IO confidentiality,
where user needs to execute an operation like SAS to identify
the trusted overlay on the display (Section [V).

(iv) Implementation and evaluation: We also implement
a prototype of PROTECTION and evaluate its performance

(Sections and [VIII).

II. PROBLEM STATEMENT

In this section, we motivate our work in the context of en-
suring the integrity and confidentiality of IO data between the
user and the remote servers. We also analyze existing research
works that tackle the relevant problem. We explain how these
works lack a proper solution and report the observations we de-
rive from them. Lastly, we present the required security prop-
erties of PROTECTION that we obtain from the observations.

A. Motivation: Secure 10 with Remote Safety-critical System

A user communicates with a remote server through a
host system that is typically a standard PC (specifically 286
architecture), which gives the host access to the raw IO data
that is exchanged between the user and the remote server. The
host consists of large and complex system software such as the
operating system, device drivers, applications such as browser,
and a diverse set of hardware components that expose the host
to a large attack surface. An adversary that controls the user’s
host can alter user intentions, i.e., it can perform arbitrary
actions on behalf of the user, modify the input parameters,
or show wrong information to the user. Such an adversary
is very powerful and difficult to be detected or prevented
by a remote server. Hence, existing defense standards for
web Ul are ineffective as the browser is untrusted also.
The consequences of such attacks might be severe when
applications that control remote safety-critical systems are
targeted. The attacker can pass the wrong input to a remote
safety-critical system such as a medical device, power plant,
etc., or leak sensitive information such as credentials for
e-banking, candidate preference in the e-voting, etc.

B. Analysis of Existing and Strawman Solutions

There are two broad categories of existing solutions that
address the problem of trusted paths for IO devices in the
presence of a compromised host as illustrated in Figure [T}
A. Solutions where unprotected user interaction first happens
and then a trusted component (transaction confirmation
device) is used to ensure input integrity, and B. Solutions
where a trusted component captures the user’s input/output
and then securely mediates them to the destination. The trusted
component can be a hypervisor, or an external hardware, etc.

A. Transaction confirmation devices. Filyanov et. al [5]
proposed transaction confirmation device that requires the
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Fig. 1: Existing trusted path solutions by their approach.

user to use a separate device to confirm the input parameters.
Systems such as ZTIC [|6] use an external device with display
and smartcard attachment to ensure the integrity of the
user inputs. Android OS also provides a similar mechanism
to confirm protected transactions [12]. However, these
approaches suffer from three significant drawbacks: 1) the risk
of user habituation — users confirming transactions without
looking to the actual data [13]], ii) usability — interacting with
a small device can be cumbersome, and iii) only simple Ul
can be supported — transaction confirmation is not suitable
for complex interaction, rather than simple text-based inputs.

B1. Trusted hypervisor-based solutions. Trusted hypervi-
sors and secure micro-kernels are also alternatives to achieve
Trusted path. Zhou et al. [3|] proposed a generic trusted path on
286 systems in pure hypervisor-based design. SGXIO [4]] com-
bines a TEE and a hypervisor to mitigate the shortcomings of
TEEs like SGX (e.g., OS controls the IO operations). Neverthe-
less, solutions based on hypervisors require a large TCB. For-
mally verified hypervisors offer limited functionalities, there-
fore making them impractical for average users. One can also
argue that a hypervisor that provides a rich set of functionali-
ties has a code size comparable to an actual OS. Also, systems
employing TEEs such as Intel SGX open up new attack sur-
faces that can be exploited by microarchitectural attacks [[10].

B2. External hardware-based solutions. Several existing
works propose a trusted path that utilizes an external trusted
device. IntegriKey [8|] uses a trusted external device that
contains a small program which signs all user inputs and
sends the signed input to the remote server. The device works
as a second factor for input integrity as the remote server
verifies if the signed input matches with the input that is sent
by the browser running on the untrusted host. However, as the
external device is completely oblivious to the display infor-
mation that the untrusted host renders, not only IntegriKey but
also similar systems that do not consider output integrity are
vulnerable to UI manipulation attacks. For example, assume
that the user’s intended input to a textbox is 100. She types the
correct value, but the host maliciously renders 10 on the screen
by not showing the last zero. Thinking that she might have
mistyped, the user types another O that makes the recorded
input from the user 1000. This attack violates input integrity
as the host can now submit 1000 to the remote server as a
valid input, although it does not represent the user’s intention.

— Observation 1: The lack of output integrity — the render
of user inputs on the screen — compromises input integrity.

Fidelius [9]] addresses the problem with output integrity by
rendering overlays using an external trusted device. Fidelius
uses the trusted external device and Intel SGX to create a se-
cure channel between the user IO devices and a remote server.
The device intercepts user keystrokes and does not deliver any
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event to the untrusted host when the user types to secured text
fields. Additionally, Fidelius renders an overlay with the user
inputs on the screen, which is inaccessible by the host. This
way, the untrusted host does not have access to raw inputs
while the user sees them rendered on the screen as usual. A
small, trusted bar on display is also overlaid by the device that
shows the remote server’s identity and the text field that is cur-
rently selected. However, we observe a number of security and
functional issues in Fidelius that we explain in the following.

The overlay contains only the render of the user inputs into
text fields, but the rest of the screen is rendered by the untrusted
host. This allows an attacker to modify the instructions on the
UI, such as changing the unit of the input (typically described
in the label of a text field) that could result in an incorrect
input. This problem could be mitigated if the trusted bar
includes the legitimate labels of the text fields also, although
it would significantly increase the cognitive load to users.

Fidelius already introduces a high cognitive load to
users as they need to monitor multiple security indicators
simultaneously before filling up one text field. Previous
research works [[13]], [[17], [18] have shown that systems that
require users to observe multiple security indicators do not
guarantee security in practice. Also, in specific scenarios,
even the training to properly explain these indicators to users
could be a significant drawback for a real deployment.

— Observation 2: If the protected output is provided out-of-
context, users are more likely not to verify it. Therefore input
integrity can be violated.

Fidelius does not consider the integrity of the mouse
pointer and its interaction with Ul elements which broadens
the attack surface. The lack of mouse support may appear to
be a functional limitation, but it has non trivial security issues.
The OS can arbitrarily trigger a mouse click on the submit
button of a form while the user is typing and therefore send
incomplete data to the server - early form submission attack.
This attack could cause the misconfiguration of a remote
system, as illustrated in Figure 2} Early form submission
may appear to be similar to clickJacking attack, but the
fundamental difference between them is that in clickjacking
the browser and OS are considered to be trusted. An untrusted
OS can simply issue mouse clicks.

Moreover, Fidelius is also vulnerable to clickjacking
attacks where the attacker can spawn a fake mouse pointer



and trick the user into following it while the real mouse
pointer is on a sensitive text field protected by the system. This
allows the attacker to fool the user into providing (possibly
incorrect) input, while the user thinks that she is interacting
with a non-sensitive text field. To prevent such attacks, the
user has to look at the security indicators continuously even
when she is not doing any security-sensitive task, which is
a very strong assumption. Thus, not supporting the mouse
causes the integrity violation of the keyboard input also.

— Observation 3: If not all the modalities of inputs are
secured simultaneously, none of them can be fully secured.

Finally, the design of Fidelius [9] is strictly limited to
text-based fields only. As Fidelius does not provide output
integrity of the forms, it cannot provide confidentiality to
other UI elements such as radio buttons, drop-down menus,
sliders, etc. Microarchitectural attacks on Intel SGX increase
significantly the attack surface of the system also [[10].

B3. System TEE-based solutions. VButton [14] uses ARM
TrustZone (TZ) to securely render UI buttons and receive user
input from them. This is possible on mobile devices, because
the TZ architecture support flags on the system bus that indi-
cate whether an IO device like touchscreen communicates with
a trusted TZ application or the untrusted OS. Such solutions
are infeasible for us because 1) secure communication between
IO peripherals and TEE applications (like SGX enclaves) is
not supported in the x86 architecture — a similar system in
x86 would require changes to the system architecture, TEE
architecture and IO devices, ii) such solutions require TEE-
aware applications and do not work with current browsers. Our
goal is to design a solution that can be deployed on current
the x86 architecture and used with existing popular browsers.

Strawman solution: Capturing screenshot. This strawman
solution uses a trusted device that takes a screenshot when the
user executes an action, e.g., mouse click to submit a form. The
device then signs the snapshot and transmits it to the server
along with the signed input. The remote server verifies the sig-
nature and then uses image/text analysis to extract the informa-
tion from the Ul elements such as labels on buttons or markers
of a slider, etc. Therefore, the server would detect if the host
has manipulated Ul elements when presented to the user.

This method is vulnerable to attacks because it does not
capture the spatiotemporal user context. This implies that the
attacker may show some spacial information on the screen to
influence the user that may not be captured by the snapshot.
Furthermore, taking a full-screen snapshot could also reveal
private information of the user from other applications.
Similarly, taking a snapshot does not guarantee that a specific
Ul has been presented on the screen as the attacker may
render the legitimate Ul shortly before the device captures
the snapshot. One way to mitigate this problem is to capture
a video of user interaction. But such a method requires the
host to send large amounts of data to the server, while the
server should support video processing for different browsers
which is both time and CPU intensive. Lastly, adversarial
machine learning techniques [19]], [20] make the image/text
recognition techniques insecure against advanced adversaries.
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Fig. 3: High-level approach overview of our solution. The IOHUB
connects the trusted 10 devices and the attacker-controlled host.

C. Requirements of Security and Functional Properties

The lack of security properties and features in the existing
solutions provides the necessary security and functional
requirements for a trusted path that provides IO integrity
and confidentiality and is usable. We can now summarize
the observations that we derived from the literature and the
strawman solution (refer to Section [[I-B) as following:

R1. Inter-dependency between input and output. The first
and second observations from the existing solutions show that
the output and input security depend on each other, and they
should be considered together. Otherwise, the attacker can
manipulate the output to influence the user input.

R2. Inter-dependency between all input modalities.
Existing web interfaces allow users to complete forms by
using different modalities for the user input, namely the
keyboard, the mouse, and the touchpad. The third observation
shows that a secure system should protect simultaneously
all user input modalities to achieve input integrity (against
early-form submission and clickjacking).

R3a. No cognitive load for 10 integrity. A system that pro-
tects IO operations should introduce minimal or no cognitive
load to its users for input integrity. The system should guaran-
tee the output integrity of the legitimate information necessary
to complete a form and avoid asking the user to interact with an
external device or monitor security indicators out-of-context.

R3b. User attention for IO confidentiality. Preserving the
confidentiality of user inputs against a compromised host
is a challenging task because the host can trick the user to
reveal her inputs when the system is not active. Therefore,
requiring users to perform a small action, e.g., press a key,
before entering confidential inputs is a valid trade-off between
usability and security.

R4. Small trust assumptions and deployability. Our goal is
to provide the rich set of 10 and security features with minimal
trust assumptions that do not rely on a trusted OS, specialized
hypervisor, or TEEs such as Intel SGX. Preferably, the
solution should be easy to set up for users, i.e., plug-and-play,
and integrate well with the existing infrastructure.

III. SYSTEM OVERVIEW & MAIN TECHNIQUES

In this section, we present an overview of our solution:
PROTECTION. On the high-level, PROTECTION uses the



concept of the bump in the wire (such as bump in the
ether [7]) to provide integrity and confidentiality to the
user 10s between the IO devices and the remote server.
PROTECTION achieves this by utilizing a trusted embedded
device as a mediator between all the IO devices and the
untrusted host. Hence, our approach falls into the category B2
(external HW) in Figure [l We call this trusted intermediary
IOHUB for the rest of this paper.

A. System and Attacker Model

We consider a typical scenario where the user wants to
interact with a trusted remote web server via an attacker-
controlled host. The model is depicted in Figure [3] that shows
the untrusted host, the remote server, and the user IO devices.
We only assume that the monitor, keyboard, mouse (in a word
all the IO devices that we need to protect from the malicious
host) and the IOHUB are trusted. The IOHUB works as a
mediator between all the IO devices and the host. Note that
the IOHUB has no network capability to communicate with
the server directly, rather it relies on the host and uses it as an
untrusted transport. We also assume that the IOHUB comes
with preloaded certificates and keys that allow the IOHUB to
verify the signatures signed by the server and sign data such
as the user input.

There are many possible ways to deploy PROTECTION.
One way is to assume that the IOHUB manufacturer issues
a certificate for each of the deployed IOHUBs . The IOHUB
maintains a whitelist for the remote servers along with their
public certificates. This allows the IOHUB to verify messages
signed by those remote servers. Another assumption could be
that the IOHUB is issued by a service provider who also runs
the remote server.

Attacker model and capabilities. Our attacker model assumes
that the host (OS, installed applications, and hardware) and the
network are attacker-controlled. The attacker can intercept, and
arbitrarily manipulate (such as create, drop, or modify) the user
1O data between the user and the remote server. Furthermore,
we assume that the attacker can not break the physical
security of the IOHUB (more discussion in Section [VI-C).

B. High-level Description of the System

PROTECTION is build upon the required security and
functional properties that are described in Section[[I-C] IOHUB
is active only when the user visits sensitive web applications
that require PROTECTION security. Initially, the remote server
signs and delivers the sensitive Ul elements to the host in
a format that is understandable by IOHUB. Next, the host
transfers the sensitive Ul to IOHUB, and the IOHUB verifies
the signature to prevent manipulations by the host. As seen
in a running example depicted in Figure @] the IOHUB then
renders the Ul with sensitive elements into an overlay on top
of the HDMI frame received from the host. Note that the host
cannot access or modify the overlay generated by the IOHUB.
Also, the overlay covers only a part of the screen, allowing the
other feature-rich content on the webpage to run unmodified.
Therefore, this ensures that sensitive UI elements are presented
to the user as expected by the remote server — output integrity.
For the overlay, we use QR-codes to transfer data from the host
to the device because we avoid using extra software/hardware
for a separate channel, and it is easy to visualize.
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Fig. 4: PROTECTION’s high-level approach shows that the IOHUB
generates Ul overlay to protect 10 integrity and confidentiality. a) The
attacker only sees the non-protected Ul elements, and the protected
form is encrypted and encoded (in our case, the IOHUB could decode
a QR code and decrypt). b) shows the IOHUB generated form overlay
that is hidden from the host. The protected part of the screen provides
integrity and confidentiality of all user IO. c) shows that the IOHUB
dims out (lightbox) the rest of the screen when the user moves her
mouse pointer over the protected region to focus user attention.

When the user interacts (types or moves the pointer) with
the overlay, IOHUB does not forward any event from the key-
board or the mouse to the host. The interaction is maintained
solely by IOHUB, which renders on-screen user inputs and
therefore offers a user experience that is identical to a typical
one as if the IOHUB is not present. The user click on the sub-
mit button triggers the submission procedure, which consists of
the IOHUB signing the user inputs and sending to the server.
Note that the text fields of the form and the submit button are
inside the overlay which is inaccessible by the host, hence the
attacker cannot execute the early form submission or clickjack-
ing attacks. Finally, the server verifies the signature of IOHUB
to guarantee that the host has not altered the data. Therefore,
the IOHUB ensures input integrity for all modalities of input.

For integrity protection, PROTECTION uses well-known
user attention focusing mechanisms. Unlike systems like
Fidelius, these mechanisms do not introduce any cognitive
load to the users as PROTECTION does not rely on multiple
security indicators. Mechanisms such as lightbox aid the user
to distinguish the IOHUB overlay on the screen from the rest.
Thus, the untrusted host cannot trick the user into following
malicious instructions when the user interacts with sensitive
Ul elements. Also, the host cannot observe sensitive data on
the overlay because it does not have access to it. In the case
where confidentiality is required, the user manually triggers
SAS, such as the lightbox by pressing specific keys.

IV. PROTECTION FOR IO INTEGRITY

In this section, we provide the technical details of
PROTECTION integrity protection for 10 devices.

A. TOHUB Overlay of UI Elements

As we explained in the previous sections, both output and
input integrity are necessary to be protected to achieve any
of them. PROTECTION ensures output integrity by isolating a
part of the display that cannot be observed or modified by the
untrusted host. IOHUB intercepts the HDMI frame from the
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Fig. 5: Transformation of UI elements: HTML — encoded specification — IOHUB generated UI overlay. @ The actual webpage and the
corresponding HTML source shows the UI elements that requires integrity protection. @ These Ul elements are transformed into an encoded
UI specification (our PROTECTION prototype uses QR code that encodes a UI specification, e.g., Specification [I) by the PROTECTION JS.
The QR code. @ AThe QR code decoded and overlaid on the HDMI stream by the IOHUB. ® Upon the user’s action on the overlaid
UI elements, the device signs all the input data. ® The IOHUB sends these signed input data them to the remote server. Note that the
intermediate QR code transformation (@) is not visible by the user as it is decoded instantaneously by the device.

Specification 1: Protected UI specification language. The UI speci-
fication shows the JSON formatted UI specification that is generated
from the HTML source provided in the UT illustrated in Figure [5]

1 {"formId": "forml", "formName": "forml",
2 "domain": "secure_site.io",
3 "size": "400%400", "SAS": "ctrl+d:5",
4 "ui": [{"id":"textbox_ 1", "type":"textbox",
5 "label":"Sensitive field 1",
6 "text":"secret data 1",
7 "RE": (A-Z) *. (A-Z) %},
8 {"id":"textbox 2", "type":"textbox",
9 "label":"Sensitive field2 ",
10 "text":"secret data 2"},
11 {"id":"bl", "type":"button",
12 "label":"OK", "trigger":"true"},
13 {"id":"b2", "type":"button",
14 "label":"Cancel", "trigger":"false"}],
15 "signature": "Ox45AB...", "id": "OxOab.."}

host and injects a render of the sensitive Ul on the screen.
The overlay provides output integrity because it restrains
the attacker from drawing on top of it to trick the user into
providing incorrect inputs.

To minimize the TCB, the IOHUB does not run a browser,
i.e., it can not interpret or render HTML, JavaScript, etc.
Instead, the IOHUB comes with a small interpreter routine that
is similar to browser renders engines in functionality, but dras-
tically smaller in size because it only renders a limited number
of HTMLS5 UI elements according to their position, dimension,
and label. The interpreter routine reads a given specification
and renders the respective UL The specification is a simple
JSON file that defines how the content of the overlay should
be rendered, e.g., number of elements, order, types, and labels.

The process of rendering the overlay on the screen has two
phases: (i) convert the existing sensitive form to specification,
and (ii) specification to overlay.

(i) Secure form — Specification. The W3C UI security
policy [21] recommends developers to annotate the security-
critical UI elements of a page to protect them against malicious
JS running on the browser. We use a similar technique by

asking developers to manually annotate the sensitive elements
in the HTML code (as protect=“true” attribute). Then
For every request, the PROTECTION server-side component
parses the HTML source, adds a random identifier (1d) to the
form element, signs it, add the signature to the form and
then delivers it to the user’s browser. The 1d serves as session
identification to prevent the attacker from re-submitting an old
input data from the user. On the client side, PROTECTION JS
parses the tagged HTML source and produces a specification
that could be interpreted by the IOHUB. An example
of a specification is presented in Specification [} In
our implementation, the PROTECTION JS encodes the
specification in a QR code. Figure [5] shows the transformation
between the step @ and @. The step @ is processed by
IOHUB in the next phase and is not visible to the user.

(ii) Specification — Overlay. IOHUB performs the next
phase, which starts with the detection of the encoded
specification (QR-code) in the HDMI frames. Then the
IOHUB validates the signature, renders the overlay according
to the specifications and presents it to the user. The IOHUB
overlay is depicted in @ in Figure |5, which is the final UI
shown to the user. Note that the user does not see the QR
code as it gets decoded and overlaid by the IOHUB on the fly.

IOHUB uses the specification to determine the particular
UI element that the user interacts with. When the user clicks
on a text field, IOHUB allows the user to type input to it. UL
elements in the overlay take inputs only from input devices
(mouse and keyboard). Therefore a malicious host cannot
inject or modify any input of the user.

B. Focusing User Attention

In the previous section, we explain how PROTECTION pro-
vides output integrity for the overlay generated by the IOHUB.
However, the attacker can show fake information to the user
on the untrusted part of the display space that may potentially
influence her inputs. An advanced adversary could craft mali-
cious directions and present to the user as part of the overlay.
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receives the mouse data. fi, fa,... fn are the corresponding HDMI
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To mitigate these attacks, we employ techniques that are
proposed against similar threats in the context of browser-
based security. The goal of these techniques is to focus user
attention to the sensitive Ul elements she is interacting with.
Huang et al. [22]] proposes two main techniques that are shown
to be effective and can easily be adopted by the IOHUB. The
first technique is called Lightbox, and it dims out non-overlaid
part of the screen, which is generated by the untrusted host.
The second technique consists of freezing display frames from
the host when the user enters into the overlaid UL This way,
a malicious host cannot grab the user’s attention by showing
an animation or exploiting other tricks. Lightbox offers more
security guarantees because it blocks the untrusted screen
completely, but is more intrusive to the user. While freezing is
less intrusive but does not remove potential malicious informa-
tion from the screen. Lightbox mitigates the attacks presented
above. The paper shows that the lightbox and freezing are
effective in 98% and 97% of the time (baseline: 69% effec-
tiveness when no protection is provided) respectively, making
them suitable candidates for PROTECTION. For more details of
the user study, refer to Table 2 in [22]. We assume that similar
result should be expected in PROTECTION due to the similarity
of the application space (web applications). IOHUB uses
Lightbox as the default technique, but depending on the spe-
cific form, the developers can select the appropriate technique.

Automated activation. The technique to focus user attention
(dimming out or freezing the non-overlaid part of the screen)
is triggered automatically in specific situations: The user
moves the mouse pointer over the overlaid Ul, or the user
starts typing into a sensitive Ul element. The advantage of the
automated trigger is that the user does not need to remember
to activate the mechanism. Hence the system is resilient from
user habituation and does not require the user to actively
monitor security indicators or perform specific actions. Note
that the automated activation provide security to user 10 data
only when integrity of the data is considered.

C. Continuous Tracking of Mouse Pointer in the HDMI Frame

The triggering of the focusing mechanism poses a
challenging task to PROTECTION because the IOHUB does
not know the exact position of the mouse pointer. We cannot

rely on the compromised host to communicate the pointer
position reliably to IOHUB. Furthermore, the host’s pointer is
not visible when the user interacts with the overlay rendered
by the IOHUB as the IOHUB always draws on top of the
HDMI frames of the host.

IOHUB could employ image analysis over the frame re-
ceived from the host to learn the pointer position. However, we
avoid this method because image analysis is time-consuming
and vulnerable to adversarial images. In our approach, the
IOHUB intercepts mouse events and HDMI frames, so it can
track the pointer based on mouse data and correlate it with
the actual position in the HDMI frame (using shape detection
in a small rectangle). Then, the IOHUB overlays a mouse
pointer that is prominent and easy to follow by the user.

A malicious host can still show a fake pointer to trick
the user into following it, but when the focusing mechanism
is active (the user interacting with sensitive elements), only
the pointer overlaid by IOHUB is visible. This way, the
pointer tracking and the pointer overlay address three major
challenges: 1) both the IOHUB and the user have the same
sense of the pointer position, ii) IOHUB knows precisely
when to trigger the focusing mechanism, and iii) the user can
interact with the overlaid UI seamlessly.

1) Calibration: When the user connects the IOHUB for the
first time after booting up, the IOHUB performs an automated
calibration to find the pointer. The IOHUB simulates the
mouse and pushes the pointer to the top-right corner of the
screen. Then the IOHUB searches the pointer at this position
in the HDMI frames and starts tracking the pointer afterward.
Note, that at any point, if the IOHUB loses track of the mouse
pointer, the calibration process is repeated the first moment
the user visits a website that employs PROTECTION.

2) Pointer detection: The IOHUB ensures pointer integrity
by tracking the mouse movements using the raw data from
the mouse and the HDMI frame. Figure [6] illustrates the
high-level idea:

@ Shows raw mouse data that notify the displacement
events (Ax,Ay) over x and y axis which are fired over time
series t1,...,t,. Note that the initial pointer position is known
to the IOHUB from calibration phase where (z¢,y0)=(0,0).

@ Shows the HDMI frames fi,... f, where the IOHUB
expects the mouse pointer to be found. For efficiency,
the IOHUB only scans a small portion of the HDMI
frames (200 x 200 square pixels) that is enough to cover a
mouse pointer. Since the operating system can treat mouse
movements slightly different according to their algorithm, this
step serves to adjust the position difference.

3) Overlay of the mouse pointer: The IOHUB draws a
mouse pointer overlay on top of the actual mouse pointer. The
host mouse pointer is neither visible on top of the overlay not
it can interact with the IOHUB’s overlay. The overlaid mouse
pointer is visible on top of the overlay, and it offers the same
user experience as the host-rendered mouse pointer.

4) Coping with the disappearing pointer: Many OS
offer a feature where the mouse pointer disappears from the
screen when the user types in a text editor/browser. When the
user moves her mouse, the cursor appears again at the same
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position where it disappeared in the first place. From the
IOHUB’s perspective, it is hard to distinguish between this
case and the attacker deliberately removing the mouse pointer
from the screen. To handle this case, the IOHUB listens to all
the keyboard inputs — the keyboard is also connected to the
IOHUB. Therefore, when the IOHUB gets a keystroke event,
it expects the cursor to disappear from the screen. Then,
IOHUB continues tracking the pointer from the moment that
the mouse sends events - this way, the IOHUB ensures the
consistency of the pointer position.

5) Handling different mouse cursors: The IOHUB is
preloaded with template images of the mouse pointer for
detection. For our PROTECTION prototype implementation,
we use the default cursors provided by the Ubuntu OS. This
allows the IOHUB to identify the cursor when it changes on
the screen, e.g., from pointer to a hand when the user hovers
the pointer over a link on the browser.

6) Handling mouse acceleration: The IOHUB uses the
default mouse acceleration parameters of 1ibinput to cope
with the pointer acceleration. As the IOHUB emulate itself as
a keyboard, at the time of initialization, the IOHUB sends a
command to the host to set the default acceleration. In case,
the host changes the mouse acceleration; the IOHUB will fail
to detect the mouse in the HDMI stream. We consider this
case as a denial of service.

D. Protected User Interaction

When the user finishes providing her input via input
devices (mouse and keyboard), the IOHUB sends these values
(with signature to ensure integrity) to the remote server.
Sending these signed input values to the server requires an
upstream channel from the IOHUB to the server.

Upstream channel. The data from the IOHUB to the remote
server is transmitted using the PROTECTION JavaScript
snippet as a helper. The IOHUB emulates itself as a
composite human interface device (HID) when it is connected
to the host. The IOHUB emulates keystrokes that transmit
encoded data to the PROTECTION JavaScript snippet, which
then forwards them to the remote server.

Sending input data. Figure [/| depicts the user interactions in
a sequence diagram.. The user input transmission procedure
is illustrated in Figure [5| This has two phases: record and
transmit as described in the following:

(i) Record. After the Ul elements are correctly overlaid on
the screen, the users can interact with these Ul elements. The

user interaction with the overlaid Ul element is no different
than a standard UI. The UI specification encodes the behavior
of all generated Ul elements, making the IOHUB aware of
the semantics of the UI objects. E.g., when a user selects
a text box and types on with her keyboard, the TOHUB
intercepts all keystrokes and renders the characters on the
overlay. When user enters input data in the rendered overlay
Ul elements (such as textbox, button, slider, radio button,
etc.), the IOHUB records that in a (key, value) pair where the
key is the identifier of the UI element (id in Specification [I)
and the value is the user provided value. The type of the
Ul elements determines what information to record. For
example, the IOHUB records all keystrokes when a textbox is
selected, the value corresponding to the position of the slider
is recorded when the user interacts with a slider, etc. One
example of the recording of the input data corresponding to
the UI illustrated in Figure [5 and Specification [I] is:

Record=(tb_1,Data_1);(tb_2,Data_2)

(ii) Transmit. In the transmit phase, the IOHUB waits
for the user to select a Ul element which has a trigger
capability, e.g., a submit button on a web-form. A trigger
element can change the state of the overlaid form, e.g., submit
the data of the form to the remote server or reset it. More
details are provided in the implementation of PROTECTION in
Section [VII-AT] When the user clicks the OK button, the device
signs Record with its embedded private key. One such signed
packet is also illustrated in Figure [5} The IOHUB sends the
signed packet to the remote server using the upstream channel.

Upon receiving the signed input data from the IOHUB, the
remote accepts the input if the signature verification is success-
ful. Note, if an input field is annotated as protect="“true”,
the server does not accept any input without the IOHUB signa-
ture. This prevents the attacker-controlled host to submit data.

Changing browser tabs or browsers. The IOHUB supports
multiple browsing tabs across multiple browsers. The UI
specification contains formId and domain that works as
the unique identifier for a specific form served from a specific
web server. The IOHUB can maintain multiple parallel
TLS connection to web servers. Depending on the observed
formId and domain (refer to Specification E]), the device
retrieves the data that is entered by the user. This way even
if the user switches tabs, the IOHUB can still allow editing
the forms across tabs.

Input validation. Input validation, i.e., checking the input
against a recommended input policy (e.g., regular expression)
is one of the most widely used JavaScript functionalities
and it is a critical part of input integrity. The remote server
sends the regular expression in the UI specification (RE in
Specification [I)) that the IOHUB uses to validate the user input.

Fallback for legacy clients. PROTECTION is backward-
compatible with the clients who do not use the IOHUB. This
is achieved by the remote server by showing a QR code briefly
on the screen when the user visits the PROTECTION-enabled
webpage. The IOHUB intercepted the QR code and sends a
signal to the server about its presence. In the absence of the
IOHUB, the remote server does not send the PROTECTION
JS to the host that acts as a communication channel between
the IOHUB and the remote server. Note, that the fallback



Specification 2: HTML page from the remote server that contains
the encrypted Ul specification for IO confidentiality.

1 <form action="/some_action">

2 Text box 1:<br>

3 <input type="text" name="text box 1">

4  <br> text box 2:<br>

5 <input type="text" name="text_box_2">

6 <encrypted_qr><!-encrypted UI specification->
7 O0x4a5c4d... </encrypted gr>

8 <script> [JS outputs QR code that encodes

9 encrypted specification] </script>

0

10 </form>

mechanism is application-specific and the service provider
could decide if the fallback is detrimental to security.

V. PROTECTION FOR IO CONFIDENTIALITY

In the previous sections, we describe how the
PROTECTION JavaScript and the IOHUB together ensure
the integrity of the I0. We now augment the design of
PROTECTION to achieve IO confidentiality alongside the
IO integrity. One of the major components for achieving 10
confidentiality is to establish a secure channel (i.e., a TLS
channel) between the remote server and the IOHUB. TLS
ensures that the untrusted host does not read or modify any
data exchanged between the user and the remote server.

A. 10 Operations

Establishing TLS. The IOHUB and the server create
TLS using the public certificates. The TLS uses the
emulated keystroke streams and HDMI as the upstream and
downstream channels respectively as described in Section [[V]
Implementation details are provided in Section

Output confidentiality. Output confidentiality ensures that
information sent from the remote server and the visual render
of the user’s input is hidden from the host. To enable output
confidentiality, the UI overlay mechanism that is described in
Section [TV-A] is modified slightly. The difference is that the
specification is not generated in the client side, but rather in the
server. A small server-side module that is very similar to PRO-
TECTION JS transforms the Ul elements to the UI specification
(one example is provided in Specification and encrypts
it with the TLS session key. The encrypted specification is
delivered to the client browser inside the <encrypted_qgr>
tag in the HTML file which is then encoded (as a QR-code)
by the PROTECTION JS. The IOHUB decodes the QR code
from the intercepted HDMI frames, decrypts the specification
and renders the overlay accordingly. One example is provided
in the HTML Snippet 2] with the corresponding U illustrated
in Figure [8] This feature of PROTECTION allows the remote
server to send securely private information to the user in
the presence of a compromised host, e.g., bank account
statements, or any other confidential message.

Input Confidentiality. When the user enters her mouse pointer
into the overlaid UI area, the IOHUB stops transmitting any
mouse or keyboard event to the host, making it completely
oblivious of any mouse movement or keystroke during that
time. However, the user can still see her inputs on the screen
as the IOHUB renders the plaintext character on the overlaid
UI elements, therefore making them visible only to the user.

Verified Ul from secure_site.io

Pointer (D Text box 1

information i
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to the host Textbox2 [ ] |, Option 2 8
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o
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Fig. 8: PROTECTION IO confidentiality. The figure shows @
the browser render of the webpage in Specification [2] where the
PROTECTION JavaScript produce the encrypted QR code. @ shows
the UI overlay that is decrypted and decoded by the IOHUB. @
shows the user’s view when the IOHUB overlays the Ul on the
HDMI frame, and the user starts to interact with the UL

Likewise, when the user selects a Ul element, for example,
a radio button that is shown in Figure 8| the IOHUB stores
the selected value in the recorded data. On form submission,
IOHUB encrypts the recorded data with the TLS key and
sends them to the remote server.

B. Focusing User Attention

The IO confidentiality could be viewed as a similar
problem to phishing where providing input to an
attacker-generated UI (or a phishing webpage) leaks
sensitive information. Similar to the phishing protection
mechanisms, IO confidentiality requires the user for additional
attention/operations. Secure Attention Sequence (SAS) is
a sequence of trustworthy actions (such as keystrokes
Ctrl+Alt+Del in Windows) executed by the user. SAS
prevents an untrusted system from triggering an event that
is otherwise sensitive to the user. Note that SAS is a well-
researched topic in the context of UI/UX design. PROTECTION
adapts an off-the-shelf SAS mechanism that provides a visual
aid for the user to distinguish overlaid Ul and the mouse
pointer location. SAS is crucial for IO confidentiality as the
untrusted host can trick the user into inputting her sensitive
information on a forged form. Hence, the user needs to
remember the SAS to distinguish IOHUB generated Uls from
host generated Uls. Note that the automated activation is
insufficient as at any given time, the host can maliciously
emulate the automated activation to trick the user into
providing sensitive information to an illegitimate UL

Note that, SAS is one of a ways to inform the user
securely about the trusted overlay on the screen generated by
the IOHUB. Evaluation of the effectiveness of SAS over other
attention focusing mechanisms is out-of-scope of this paper.
Hence, PROTECTION uses SAS as an example attention
focusing mechanism for confidentiality. In principle, PRO-
TECTION could be integrated with other proposed approaches
such as security indicators, or secret images [23]], [24].



SAS policy. The remote server can set configurable SAS
policy per overlaid UI (i.e., QR code). The SAS policy is
defined in the SAS attribute in the example specification
provided in Specification [T} By default, the overlaid UI is
locked from the user and requires a key press from the user
to unlock the sensitive Ul. This information is overlaid on
the UI to remind the user to execute it. One example policy
could be Ctrl+d:5, which denotes that the user needs to
press key ‘Ctrl+d’ to unlock the UI overlay. Pressing this
key also triggers the IOHUB to black out the HDMI frames
except for the Ul overlay and the mouse pointer overlay for
a specified time (here for 5 seconds).

VI. SECURITY ANALYSIS

A. Integrity

Modifying IO operations. As only the IOHUB can interact
with the overlaid UlI, the attacker can not manipulate the 10
operations with the overlaid UL. Moreover, the attacker cannot
submit arbitrary data to the remote server because the latter
accepts only inputs signed by the IOHUB.

Early form submission. This attack is not possible as the
input devices (both mouse and keyboard) are connected to the
IOHUB and only the IOHUB can interact with the overlaid
UIL. This makes it impossible for the attacker to emulate a
click on the overlaid part of the screen.

Attack on the mouse pointer tracking and overlay.
The attacker may try to defeat the PROTECTION pointer
tracking and overlay mechanism described in Section
by introducing a malicious pointer that is visually more
appealing to the user. Note that the IOHUB overlaid mouse
pointer is prominent and hard to miss. One can visualize it
as an arms race between the attacker and the IOHUB to grab
the user attention. But, we argue that this is a suboptimal
strategy for the attacker as both of the pointers will be visible
on the screen that cause suspicion to the user. Also, when the
real mouse pointer enters the overlaid area, the untrusted part,
including the malicious mouse pointer, will be hidden by the
focusing mechanism. Hence, we can conclude that executing
clickjacking-like attacks is not possible in PROTECTION.

Replay attack. To prevent the replay attack, the remote server
adds a random identifier (1d) in the form specification along-
side the signature. With this identifier, the server keeps track
of the user input. When the server receives a form submission
data, it first checks if the user submitted the same identifier
before. In case of a collision, the server rejects the data.

Not rendering QR code. The host may deny sending the QR
code over the HDMI channel. We consider this to be a denial
of service and does not compromise integrity of the IO data.

Redirection. The attacker could redirect the user to a phishing
website that renders visually identical UI to that of the legiti-
mate website. Redirection attack cannot break the integrity of
the input because a legitimate remote server always requires
the signed input from the user. Without a valid signed specifi-
cation, the IOHUB never renders an overlay or sign any input.

Malicious instruction on the screen. The attacker may
put a malicious instruction/label on the untrusted part of
the screen to influence user inputs. However, when the user

10

starts interacting with the overlaid UI, the default focusing
mechanism (Lightbox) highlights only the secure UI and
hides the rest of the screen.

Replication of Lightbox. The attacker can replicate the
lightbox on any part of the screen. However, this does not
compromise the integrity of the input as the legitimate remote
server only accepts signed input from the IOHUB.

Multiple HIDs. The attacker can emulate multiple HIDs to
avoid the tracking of the mouse pointer. However, this attack
is ineffective as the IOHUB only tracks the mouse pointer
that is connected to it (over USB interface).

BadUSB. BadUSB [25] is out-of-scope of this paper as in
the attacker model (Section [[II-A]), we assume that all the 10
devices that are connected to the IOHUB are trusted.

Mouse acceleration/updates. The attacker can change the
mouse acceleration or provide erratic mouse updates on the
screen. Such manipulations only cause the IOHUB to lose track
of the mouse pointer and stop relaying the mouse signal to the
host altogether. The IOHUB uses the acceleration parameters
from the default 1ibUSB driver to cope with the mouse ac-
celeration. Hence, such manipulation does not affect security.

B. Confidentiality

Redirection. The attacker could redirect the user to a
phishing website that renders visually identical Ul to that
of the legitimate website. Redirection compromises the
confidentiality of user inputs only when the user does not
trigger the SAS mechanism. The IOHUB is only activated
when it detects specifications signed from the whitelisted
(maintained in the memory) servers.

Side-channel leakages. Even though, the IOHUB ensures
that no mouse or keyboard event arrives at the untrusted host
when the user executes some operation over the overlaid Ul,
one can not rule out all side-channel leakages. Depending on
the application, the amount of time that the user spends or
the entry/exit position of the mouse pointer may reveal some
information to the attacker. IOHUB could allow the remote
server to specify additional policies in the specification to
prevent such side-channel attacks, e.g., a minimum amount
of time that the device should not forward any event to the
host after the user enters the overlay. We leave as future work
defining such policies and integrating them on PROTECTION.

Mode Switching. The host could remove the QR code when
the user is typing confidential data in the sensitive form.
Absence of the QR code makes the IOHUB to assume that
the secure session has ended and the IOHUB forwards the
plaintext keystrokes and mouse movement to the host. To
prevent the leakage of the input data, the IOHUB continues to
overlay and operate on the overlay till the user clicks submit
or cancel (or any UI element that has a t rigger capability).
This way, the IOHUB locks the UI from the attacker until the
user finishes her session.

C. Attacks toward IOHUB

In PROTECTION trust model, we assume that the IOHUB
is trusted. However, in real-world, embedded systems are often
vulnerable to attacks as the attacker can use the connection
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Fig. 9: PROTECTION prototype. Figure and shows the
component diagram and a photo of the actual PROTECTION
prototype respectively.

interfaces to reprogram the IOHUB. As the code base of the
IOHUB is small, we assume that the code can be formally
verified to be protected against such attacks. However, we
consider making a security-hardened IOHUB is engineering
intensive and out-of-scope of this paper.

Downgrade attack. The host can block the initial QR code
from the server to the IOHUB. By doing so, the host forces
the server to downgrade the security of the webpage, i.e., not
serving the PROTECTION JS. For integrity, this is not a secu-
rity threat as the server does not accept any input from the host
that is not signed by the IOHUB. Hence, the downgrade attack
works as a denial of service which is out-of-scope of this paper.

VII. PROTECTION PROTOTYPE IMPLEMENTATION

Setup. Here, we describe our prototype implementation of
PROTECTION as an auxiliary device. Figure |9| depicts the
PROTECTION prototype in two parts: Figure % shows the
block diagram of our prototype with various components and
connections, and Figure [0b] shows a photo of the actual proto-
type that highlights all the components described in the block
diagram. The prototype IOHUB is connected to a desktop
computer with 3.40 GHz Intel Core i7-6700 processor with
8 GB RAM running Ubuntu 18.04.2 LTS. The IOHUB uses
off-the-shelf devices and has the following components (we
use the same numbering as shown in Figure 0a] and Figure [Ob):
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(i) Computing component. We use a Raspberry Pi 4 (®)
to implement the computing component that executes all
the IOHUB logic that includes analyzing the HDMI frames,
rendering the overlays, executing the TLS protocol, etc. One
could use an ASIC to further improve the performance and
reduce the code base of the component. The Pi is connected
to the display over HDMI (@) interface. The code base of
the Pi primarily consists of Python and Java.

(ii) Input interceptor. The input interceptor is composed
of an Arduino Due (®) and an Arduino Zero (@) that is
connected to the input device over USB (@) interface. The
input interceptor has a USB out interface that connects to the
host (®) that relays all the user inputs to the host.

(iii) HDMI interceptor. The HDMI interceptor (@) is
implemented using a B101 HDMI to CSI-2 Bridge [26] that
takes the HDMI channel (®) from the host and convert it to
the camera input signal to the Raspberry Pi 4.

A. Implementation of PROTECTION Components

In the following, we provide the implementation details
of the PROTECTION components presented in the previous
sections. Detailed implementation is provided in Appendix [A]

1) OR code generation & UI specification: QR code
generation phase is executed by PROTECTION JS that
transforms the UI elements of a sensitive web form to a
UI specification encoded in a QR code (we use QRCode.js,
a JavaScript library to produce QR codes). Section [[V-A]
provides the high-level concept of generating the QR code
from the webpage UI elements. Ul elements that require
IO integrity protection can be marked by the developers in
the HTML source. As illustrated in Figure [5] the HTML
Ul elements: ‘Sensitive field 1’ and ‘Sensitive
field 2’ have the additional attribute protect="true”.

The PROTECTION JS iterates through the HTML elements
that have the protect attribute enabled and extracts the
information such as the name of the label or the type of
the Ul element. IOHUB uses preloaded size parameters
to specify the size of a text field, button, etc. in case the
size is not explicitly mentioned in the HTML source. One
important attribute for a UI element in the specification is the
trigger. For example, in Specification [T} the OK and the
cancel buttons have an attribute t rigger. This attribute is
Boolean can be either t rue (corresponding to OK) or false
(corresponding to Cancel) value. The value true denotes
that the OK button can submit the values that are provided
by the user. The false attribute denotes that hitting the
cancel button abort the form altogether.

The QR code generation phase is between @ and @
in Figure [5] where the PROTECTION JavaScript snippet
transforms the UI elements to a Ul specification language in
a QR code that can be interpreted by the IOHUB. The Ul
specification corresponding to the HTML source (in Figure [3)
is provided in Specification [T} Note that the specification
is highly flexible, allowing adjustable size for the form,
individual UI elements, gaps between them, etc. This allows
the IOHUB to faithfully recreate the UI that is very close to
the actual form UI that the served by the web severer.
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page that is used to communicate the public certificates of the device
and the remote server.

2) Bitmap generation: The IOHUB reads the QR code
from the HDMI frame and generate the UI overlay bitmap
from it. We have used the piCamera library to intercept
the HDMI frames and generate the UI on top of it. Our
PROTECTION prototype implements the most frequently used
HTML input elements [27]] that are common in sensitive forms.

3) Detection of mouse pointer: Initially, when the
system boots up the IOHUB perform the calibration phase
(see Section to synchronize its coordinates of the
pointer with the host. The detection of the mouse pointer _is
implanted partially on the raspberry pi 4 (® in Figure [9),
while the mouse intercepting is done in the Arduino Due (&
in Figure [9). The Due gathers the raw mouse data (in terms
of displacement measurements (Ax;,Ay;)) and sends them to
the Pi over Serial interface. To guarantee that the IOHUB
and the host interpret displacement events likewise, the Pi
performs an adjustment operation. This operation consists of
the IOHUB detecting the exact position of the host pointer
in the HDMI frame by analyzing a small square of the frame
(200 x 200 px) around its pointer coordinates. Considering
that the IOHUB gets raw HDMI frames and pointer images
are static, we use the lightweight template matching
algorithm of the OpenCV library for the detection.

4) Implementation of the upstream channel: The
upstream channel, i.e., the data from the IOHUB to the remote
server is transmitted using the PROTECTION JavaScript snip-
pet that is served by the remote web server. The PROTECTION
JavaScript snippet uses a hidden text field to accept data
coming from the IOHUB. The IOHUB emulates itself as a
composite human interface device (HID) when it is connected
to the host. The IOHUB emulates keystrokes that transmit
encoded data (base64) to the PROTECTION JavaScript snippet
that is sent to the remote server via XMLHttpRequest call.

5) Establishing TLS: For the 10 confidentiality, the
IOHUB and server create a TLS channel. When the user
opens up a secure webpage, key exchange is the first step that
takes place. We assume that the remote server already has the
IOHUB’s certificate, or some offline registration takes place.
An instance of the key exchange protocol of PROTECTION
is illustrated in Figure [I0] The flow of the key exchange
mechanism is as the following:

@ The server delivers a web page with a QR code that en-
codes the signed public key of the server (server hello in TLS).

@ The device captures every frame until it detects a QR
code. Then, it decodes the QR code and verifies the public
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key and derives the shared secret using Diffie-Hellman
protocol [28]].

@ The device then sends its signed public certificate to the
host, which forwards it to the server.

@ The remote server gets the signed certificate from the
IOHUB, verifies it, and finally derives the shared secret.

VIII. PROTOTYPE EVALUATION

We evaluate the performance of our prototype by
measuring the overheads introduced by PROTECTION to the
system and whether they influence the user’s interaction.
Initially, we measure the default latency introduced by IOHUB
when the user interacts with applications that do not require
protection. Table [[I| provides the relevant latencies. The delay
in forwarding keystrokes is 170 ps and for frames is 21.76 ms.
This allows the IOHUB to achieve the maximum display
frame rate of 47.69 per second (e.g., most of the movies
are shot ands shown in 24-30 fps). However, an optimized
implementation of the technique to encode information in the
HDMI frame would reduce significantly the processing time
of a frame and increase further the frame rate as a result. Note
that the B101 HDMI to CSI board that we use to intercept
HDMLI, has a hardware limit of 25 frames at 1080p resolution.

Our prototype of PROTECTION does not require the
user to install any additional software in her machine to
facilitate the communication between the remote server and
the IOHUB. Instead, the IOHUB communicates with the
remote server by using the host as an untrusted transporter.
Therefore, we start by measuring the delay of sending data
from the device to the host and vice versa:

IOHUB — host. The IOHUB transmits data (encrypted) to
the host by simulating keystrokes. In our system IOHUB
sends the keystrokes in a chunk of 256 bytes of data to the
host. The keystroke has an average latency of 5 ms which is
undetectable by humans.

Host — IOHUB. The host sends data to the device by
encoding them into the HDMI frame. The QR-code is
generated locally in the browser and displayed on the screen.
For a specification of a form with two/four elements QR-code
generation takes 14 ms. The IOHUB detects the QR-code,
decodes it, and creates the overlay. This process takes 6 ms
for the same form considered previously.

Initial Page Load. First time the user visits a web page
that employs PROTECTION, the remote server and the
IOHUB should exchange a cryptographic key to protect
the communication. This step requires only one additional
xmlHttpRequest to the server therefore the delay is
relatively low. Initially, the browser encodes server’s public
key into a QR-code that is decoded by the IOHUB, which
sends the response to the server by simulating the keystrokes.

Frame processing for mouse. IOHUB processes every frame
of the host for pointer detection. This takes 1.76ms, which
does not impact the frame rate.

Keystroke latency. The IOHUB intercepts all wuser’s
keystrokes and forwards them to the host or renders in the
screen. When rendering on the screen, the latency is 170 us.
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TABLE I: Summary of existing trusted path solutions by their trust assumptions, security features, and usability. A lower trust assumption,
a high number of security features and high usability are desired from a trusted path solution. SI and PnP stand for security indicator and
plug and play respectively. The table also categorizes the trust assumptions, IO security features and usability in-terms of the required security

and functional properties that we list in Section [[I-C).

Operation Average time
Detecting mouse pointer (A) 1.76 ms
Detection QR code (B) 14 ms
Decoding QR code + Overlay (C) 6 ms
Effective display latency (A+B+C) 21.76 ms
Mouse latency 250 ps
Keyboard latency 170 ps

TABLE II: IOHUB performance. The table shows the latency
corresponding to a number of PROTECTION prototype operations.

Projects LOC/Binary size
Browser Chromium (Google Chrome) [46] 25,163,547
Mozilla Firefox [47] 20,928,358
JS Engine Chrome V8 [48] 2,009,183
Firefox SpiderMonkey [49] 2,908,550
0s Ubuntu 18.10 (Debian) 1.9 GB
Manjaro Linux 15.0.4 (Arch) 2 GB
HDMI interceptor + overlay 1,911
USB stack 893
TOHus Crypto stack 3,500
RPi tiny core Linux 16 MB

TABLE III: PROTECTION code-base comparison with respect to
some of the open-source browsers, JS engines and OSs.

Cursor latency. Similarly to keystrokes, the IOHUB intercepts
mouse events also. However, the latency of event forwarding
is 250 pus.

Codebase comparison. In Table we provide the code
base and executable binary sizes of IOHUB with respect to
some of the most popular open-source browsers, JavaScript
interpreter engines and OS’s. All of the codes are measured
with the cloc open-source code line counting tool. The table
shows that PROTECTION has significantly lower code base,
resulting in a smaller attack surface.
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IX. RELATED WORKS

In Table[l, we summarize the existing research work based
on their trust assumptions, IO security features, and usability.
Note that it is desirable to have a lower trust assumption,
higher security features, and higher usability. The trust
assumption is further refined into hardware trust assumption
that includes TEE and external trusted hardware, and software
trust assumption, which includes isolated device drivers/APIs
and trusted hypervisor/OS. The IO security features involve
input that includes keyboard, pointer and touch input, and
output that only includes the display. Lastly, the usability
aspect is divided into two, the requirement of security indicator
(SI), and if the solution supports plug-and-play (PnP). PnP
implies that the solution can be integrated into the existing
system without introducing any major changes into them and
supports different architectures and OS out of the box.

Interpreting the table. The top of the table provides the
required security and functional properties that are provided
by PROTECTION. We list these properties in Section [[I-C
The trust assumption requires as minimum assumptions as
possible (property R4). High number of 10 security features
are more desirable because of properties R1 and R2. The last
category that is the usability of a system (in terms of low
cognitive load on the users — R3a and R3b) can be improved
if the security is not dependent on a security indicator, and the
system provides a plug & play solution. Hence the systems
with more entries in this category have better usability.



X. CONCLUSION

PROTECTION provides a remote trusted path in the

presence of an attacker-controlled host. The guiding principles
behind our solutions are that (i) user input and output
integrity cannot be considered separately, (ii) all user input
modalities must be protected simultaneously, and (iii) user
input integrity protection should not rely on user tasks that
are prone to habituation and easily forgotten. By following
these principles, we design a novel system that provide strong
user input integrity protection in the presence of powerful
adversary that controls the entire host platform.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

“X-600m | web enabled i/o controller,” https://www.controlbyweb.com/
x600m.

“Inpen smart insulin delivery system | by companion medical.”
[Online]. Available: https://www.companionmedical.com/

Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, ‘“Building
verifiable trusted path on commodity x86 computers,” in Security and
Privacy (SP), 2012 IEEE Symposium on. IEEE, 2012.

S. Weiser and M. Werner, “Sgxio: generic trusted i/o path for intel
sgx,” in Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy. ACM, 2017.

A. Filyanov, J. M. McCuney, A.-R. Sadeghiz, and M. Winandy,
“Uni-directional trusted path: Transaction confirmation on just one
device,” in Dependable Systems & Networks (DSN), 2011 IEEE/IFIP
41st International Conference on. IEEE, 2011.

T. Weigold and A. Hiltgen, “Secure confirmation of sensitive transaction
data in modern internet banking services,” in 2011 World Congress on
Internet Security (WorldCIS-2011). 1EEE, 2011.

J. M. McCune, A. Perrig, and M. K. Reiter, “Bump in the ether:
A framework for securing sensitive user input,” in Proceedings of
USENIX Annual Technical Conference (USENIX ATC), Jun. 2006.
[Online]. Available: /publications/papers/mccunej_bite.pdf

A. Dhar, D.-Y. Yu, K. Kostiainen, and S. Capkun, “Integrikey: End-
to-end integrity protection of user input,” Cryptology ePrint Archive,
Report 2017/1245, 2017, https://eprint.iacr.org/2017/1245,

S. Eskandarian, J. Cogan, S. Birnbaum, P. C. W. Brandon, D. Franke,
F. Fraser, G. Garcia Jr, E. Gong, H. T. Nguyen, T. K. Sethi et al.,
“Fidelius: Protecting user secrets from compromised browsers,” arXiv
preprint arXiv:1809.04774, 2018.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient out-of-
order execution,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018.

A. Dhar, I. Puddu, K. Kostianen, and S. Capkun, “Proximitee: Hardened
sgx attestation and trusted path through proximity verification,” 2018.

“Android protected confirmation: Taking transaction security to the
next level,” Oct 2018. [Online]. Available: https://android-developers.
googleblog.com/2018/10/android-protected-confirmation.html

B. B. Anderson, A. Vance, C. B. Kirwan, J. L. Jenkins, and D. Eargle,
“From warning to wallpaper: Why the brain habituates to security
warnings and what can be done about it,” Journal of Management
Information Systems, 2016.

W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan,
“Vbutton: Practical attestation of user-driven operations in mobile
apps,” in Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services. ACM, 2018.

K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du,
“Truz-droid: Integrating trustzone with mobile operating system,” 2018.
X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: A
virtualization-based approach to retrofitting protection in commodity
operating systems,” SIGPLAN Not.

14

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

S. Egelman, L. F. Cranor, and J. Hong, “You’ve been warned:
an empirical study of the effectiveness of web browser phishing
warnings,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2008, pp. 1065-1074.

J. Sobey, R. Biddle, P. C. Van Oorschot, and A. S. Patrick, “Exploring
user reactions to new browser cues for extended validation certificates,”
in European Symposium on Research in Computer Security. Springer,
2008.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning models,” arXiv preprint arXiv:1707.08945, 2017.

C. Sitawarin, A. N. Bhagoji, A. Mosenia, P. Mittal, and M. Chiang,
“Rogue signs: Deceiving traffic sign recognition with malicious ads
and logos,” arXiv preprint arXiv:1801.02780, 2018.

[Online]. Available: https://www.w3.org/TR/UISecurity/

L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and C. Jackson,
“Clickjacking: Attacks and defenses,” in Presented as part of the 21st
{USENIX} Security Symposium ({USENIX} Security 12), 2012, pp.
413-428.

J. Lee, L. Bauer, and M. L. Mazurek, “The effectiveness of security
images in internet banking,” IEEE Internet Computing, Jan 2015.

C. Marforio, R. Jayaram Masti, C. Soriente, K. Kostiainen, and
S. Capkun, “Evaluation of personalized security indicators as an
anti-phishing mechanism for smartphone applications,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
ser. CHI 16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://dot.acm.org/10.1145/2858036.2858085

“Badusb - on accessories that turn evil,” 2014.
[Online].  Available:  |https://srlabs.de/wp-content/uploads/2014/07/
SRLabs-BadUSB-BlackHat-v1.pdf

Admin, “B101 hdmi to csi-2 bridge (15 pin fpc),” Dec 2016. [Online].
Available: https://auvidea.eu/b101-hdmi-to-csi-2-bridge- 15-pin-fpc/
[Online]. Available: https://www.w3.org/TR/2012/
WD-html-markup-20121025/

S. Blake-Wilson and A. Menezes, “Authenticated diffe-hellman key
agreement protocols,” in International Workshop on Selected Areas in
Cryptography. Springer, 1998, pp. 339-361.

W. He, D. Akhawe, S. Jain, E. Shi, and D. Song, “Shadowcrypt:
Encrypted web applications for everyone,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 1028-1039.

Z.E. Ye, S. Smith, and D. Anthony, “Trusted paths for browsers,” ACM
Transactions on Information and System Security (TISSEC), 2005.

J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protecting
applications from hostile operating systems,” ACM SIGARCH Computer
Architecture News, 2014.

J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,” in
Security and Privacy (SP), 2010 IEEE Symposium on. 1EEE, 2010.

O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: Secure applications on an untrusted operating system,” in
ACM SIGARCH Computer Architecture News. ACM, 2013.

R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: Making
trust between applications and operating systems configurable,” in
Proceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006.

J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy for
user applications on a per-page basis,” in Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. ACM, 2008.

A. A. Sani, “Schrodintext: Strong protection of sensitive textual content
of mobile applications.” in MobiSys, 2017.

T. Peters, R. Lal, S. Varadarajan, P. Pappachan, and D. Kotz, “Bastion-
sgx: Bluetooth and architectural support for trusted i/o on sgx,” in
Proceedings of the 7th International Workshop on Hardware and Archi-
tectural Support for Security and Privacy, ser. HASP *18. ACM, 2018.

A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level strongly
isolated computing environment for x86 multi-core platforms,”


https://www.controlbyweb.com/x600m
https://www.controlbyweb.com/x600m
https://www.companionmedical.com/
/publications/papers/mccunej_bite.pdf
https://eprint.iacr.org/2017/1245
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://www.w3.org/TR/UISecurity/
http://doi.acm.org/10.1145/2858036.2858085
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://auvidea.eu/b101-hdmi-to-csi-2-bridge-15-pin-fpc/
https://www.w3.org/TR/2012/WD-html-markup-20121025/
https://www.w3.org/TR/2012/WD-html-markup-20121025/

in Proceedings of the 18th ACM conference on Computer and
communications security. ACM, 2011.

[39] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: Transforming
smartphones into secure one-time password tokens,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2015.

D. Liu and L. P. Cox, “Veriui: Attested login for mobile devices,” in
Proceedings of the 15th Workshop on Mobile Computing Systems and
Applications. ACM, 2014, p. 7.

W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure online mobile
advertisement attestation using trustzone,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2015.

W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li, “Building
trusted path on untrusted device drivers for mobile devices,” in Proceed-
ings of 5th Asia-Pacific Workshop on Systems. ACM, 2014, p. 8.

A. Vasudevan, J. McCune, J. Newsome, A. Perrig, and L. Van Doorn,
“Carma: A hardware tamper-resistant isolated execution environment on
commodity x86 platforms,” in Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Security. ACM, 2012.

[40]

[41]

[42]

[43]

[44] A. Brandon and M. Trimarchi, “Trusted display and input using screen
overlays,” in ReConFigurable Computing and FPGAs (ReConFig),

2017 International Conference on. IEEE, 2017.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra:
A virtual machine-based platform for trusted computing,” in ACM
SIGOPS Operating Systems Review. ACM, 2003.

Chromium, ‘“‘chromium/chromium,” Sep 2019. [Online]. Available:
https://github.com/chromium/chromium
Mozilla, “mozilla/gecko-dev,” Sep 2019.
https://github.com/mozilla/gecko-dev

“V8 javascript engine.” [Online].
//[chromium.googlesource.com/v8/v8.git
“Getting  spidermonkey  source code.””  [Online].
https://developer.mozilla.org/en- US/docs/Mozilla/Projects/
SpiderMonkey/Getting_SpiderMonkey_source_code

[Online]. Available:

[45]

[46]

[47] [Online].  Available:

[48] Available: https:

[49] Available:

[50] “picamera.”

release-1.13/

https://picamera.readthedocs.io/en/

APPENDIX
PROOF FOR IO INTEGRITY

In this appendix, we provide a formal proof of the
following property: without protecting both input and output
integrity, none of them can be achieved.

A. Interaction Protocol

To simplify the proof, we model the interaction between
the user, the host, and the remote server as a finite state
automaton (FSA). The interactions between the server (S), the
user () and host (#) are depicted in the FSA in Figure [[1]

OEBONEEGC
(Z,[m]) (I,[m])

Fig. 11: Finite state machine that depicts the interaction between the
user (U£), host (H) and the server (S).

S sends a message m to H. One can assume m to be the
HTML, JavaScript, and other data send from S as a HTTP
response. We denote [m] to be the render of m by the H. As
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Fig. 12: Protocol transcript between the S, U and H that shows one
trace from the FSM depicted in Figure [TT}

H is malicious, it can transform m to m’. Note that the trans-
formation is public knowledge and is deterministic. If m #m’
then given [m] and [m/], S can determine that [m]# [m/]. We
denote the user input to be I, which corresponds to a specific
[m]. In this model, we simplify the user input by assuming that
the U/ only provides an input I only after observing a message
transformation [m]. The user provides both her input I and
transformation [m’] observed by her to #. The interaction loop
between H and U can continue until ¢/ finishes her input. After
every input H hands over new message transformation to ¢/ (ei-
ther result of the input or new message from S or both). Once
the user provides all her inputs, # send the pairs (I,[m’]) to S.

We also define two mappings:
Input () :[m]—=1T
Transform () :m,] —[m'], Jiel:i=¢
Both of them are bijective.

One trace of the protocol transcript is depicted in Figure[T2]
As described in the FSM, S receives traces of message
transformation ([m']1, [m/]a, ... , [m'],) and corresponding
inputs (I1,ls,...,I,). From these traces S could determine of
all the [m’]; are in proper form by verifying if [m]; =[m/];.

Definition A.1. Input integrity Assume that S handed a
message m to H where the proper message transformation
is [m]. The host changes the message transformation to [m/]
where [m'] # [m]. We also define correct ¢ input to be I when
‘H sends a correct message transformation [m] to U. We define
input integrity as the property where the S does not accept
input I’ where I’ # I'from U if the H changes the message
transformation.

Definition A.2. Output integrity Assume that S handed a
message m to H where the proper message transformation
is [m]. Output integrity defines that in all circumstances, U
receives the correct message transformation [m] from .

Verification process. S checks Vi=1...n
[m'];=Transform(m;_1,I;_1)
where Io=¢.

Theorem 1. If U does not send all the transformations till
[m']; corresponding to the input I;, input integrity can not be
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achieved.

Proof: If U does not attach all the transformation till
[m'];, ie., [m']1, [m]a, ..., [m']i—1, [m']; corresponding to
inputs I1,1s,...,1;_1,1;, then the server can not verify all the
transformations corresponding to the input. H could modify
a specific [m],, to influence U input. [

Theorem 2. [f the channel from U and S is not authenticated,
input integrity is not achievable. But the channel from S to
U does not require to be secure as long a U provides the
message transformation [m'|; corresponding to every input I;.

Proof: The proof is trivial. If the channel from U to
S is not authenticated, any input provided by &/ can be
manipulated by H without a trace. Hence input integrity is
not achievable. As long as U/ sends message transformation
along with the input, a manipulated message transformation
bt # would be detectable by S (see Theorem [T). u

Theorem 3. Ensuring output integrity also ensures input in-
tegrity provided there is an authenticated channel from U to S.

Proof: This proof is also trivial. As we describe in the
Definition [A.T] and [A.2] if all the message transform from
[m’]=[m], and H always executes transform () properly,
the input integrity is preserved. As PROTECTION ensures
output integrity and all the input from the user is signed by
the IOHUB, PROTECTION preserves input integrity. [ ]

IMPLEMENTATION DETAILS
B. HID Drivers

We use Arduino prototype development board as the HID
drivers. Figure @] shows an Arduino Due, and a Zero board
where the Due connects to the HIDs via the native USB
port and the Zero relays the HID data to the Raspberry Pi
(RPi). The Due and the Zero boards are connected over I2C
interface. As both Due and Zero only have one native USB
port on each of them, we were forced to use two boards as an
HID interceptor and relay. The Zero relays the HID signals
both to the connected host (over native USB) and to the RPi
(over serial interface). The connection from the Zero to the
host is one way and emulates a composite HID. While the
connection between the Zero and the RPi is bidirectional.
The HID drivers are implemented using the native Arduino
keyboard and mouse library. On the RPi, no HID drivers
were needed as the RPi receives processed HID data from
the Zero (for the pointer: displacement over x and y-axis and
for keyboard, ASCII characters).

C. HDMI Interceptor, Relay and Overlay

The RPi along with the Auvidea B101 HDMI to CSI
bridge, acts as the HDMI interceptor and relay. The B101
board converts HDMI signals from the host as a camera input
(via the CSI interface) to the RPi. This allows the RPi to
access the HDMI frames as a stream of JPEG frames. The
HDMI out of the RPi acts as the relay that connects to the
monitor. On the RPi, we use Picamera API [50] to access the
HDMI frames. The B101 is capable of processing 25 frames
at 1080p resolution. Hence, this is the hardware bottleneck
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Fig. 13: Cursor detection on the HDMI frame. The figure shows
PROTECTION mouse pointer tracking. @ shows the captured HDMI
frame captured by B101 HDMI to CSI bridge. @ shows the cropped
HDMI frame based on the mouse position received by the IOHUB.
@ shows the detected mouse pointer. For testing, we program the
IOHUB to put a rectangle around the pointer. @ shows one of the
pointer templates that we used in our OpenCV routine.

of our implementation. However, the upcoming B112 boar(ﬂ
could solve this performance issue. On the RPi, the overlay
and HDMI out is implemented using Java SWT. Using SWT,
we create a full-screen window that is shown on the monitor.
The SWT class polls the HDMI frames and process them
as individual JPEG images via the BufferedImage class.
This allows the overlays to be drawn on the HDMI images
efficiently. The Java program uses a QR code interpreter to
extract the Ul specification. Based on the UI specification,
it creates the geometrical shapes (corresponding to the Ul
elements) and draw them on the frames. In the current
implementation of the PROTECTION, the UI elements such
as button, text-field, radio button etc. are preloaded in the
IOHUB memory. Note that the current implementation of
IOHUB is based on the RPi. But one could implement such
functionality on an FPGA, reducing the TCB even more.

D. Mouse Pointer Tracking

The pointer tracing is also executed in the aforementioned
Java program using simple object detection technique suppled
by the OpenCV APL Figure [13] shows one screenshot of the
pointer detection. The Figure shows the entire HDMI frame,
the cropped frame of resolution 200 x 200 px (based on the
mouse input data), the detected pointer in the cropped frame
and the cursor template that is used by the object detection
algorithm.

Istill in development: |https://auvidea.eu/showcase/.


https://auvidea.eu/showcase/
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