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Abstract. In CRYPTO 2015, Cogliati et al. have proposed one-round
tweakable Even-Mansour (1-TEM) cipher constructed out of a single n-
bit public permutation π and a uniform and almost XOR-universal hash
function H as (k, t, x) 7→ Hk(t)⊕ π(Hk(t)⊕ x), where t is the tweak, and
x is the n-bit message. Authors have shown that its two-round exten-
sion, which we refer to as 2-TEM, obtained by cascading 2-independent
instances of the construction gives 2n/3-bit security and r-round cascad-
ing gives rn/r+2-bit security. In ASIACRYPT 2015, Cogliati and Seurin
have shown that four-round tweakable Even-Mansour cipher, which we
refer to as 4-TEM, constructed out of four independent n-bit permuta-
tions π1, π2, π3, π4 and two independent n-bit keys k1, k2, defined as

k1 ⊕ t⊕ π4(k2 ⊕ t⊕ π3(k1 ⊕ t⊕ π2(k2 ⊕ t⊕ π1(k1 ⊕ t⊕ x)))),

is secure upto 22n/3 adversarial queries. In this paper, we have shown
that if we replace two independent permutations of 2-TEM (Cogliati et
al., CRYPTO 2015) with a single n-bit public permutation, then the
resultant construction still guarrantees security upto 22n/3 adversarial
queries. Using the results derived therein, we also show that replacing
the permutation (π4, π3) with (π1, π2) in the above equation preserves
security upto 22n/3 adversarial queries.

Keywords: Tweakable Block Cipher, Key Alternating Cipher, Tweakable Even-
Mansour Cipher, H-Coefficient

1 Introduction

Block Cipher and Tweakable Block Cipher. A block cipher is a funda-
mental cryptographic primitive and a workhorse in symmetric key cryptography.
A block cipher E : K ×M → M with key space K and message space M is a
family of permutations over M indexed by key k ∈ K. A tweakable block ci-
pher (TBC) is similar to a block cipher except that it takes an additional public
input parameter t, called tweak. The signature of a tweakable block cipher is
Ẽ : K × T ×M →M with key space K, tweak space T and message space M
such that for each k ∈ K and each tweak t ∈ T , m 7→ Ẽ(k, t,m) is a permutation

? ©This is the full version of the article accepted in IACR-ASIACRYPT 2020.
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over M. A block cipher is different from a tweakable block cipher in the sense
that for each key k, the former is a permutation over M whereas the latter is a
family of permutations over M indexed by t ∈ T . The purpose of introducing
tweak was to bring the inherent variability in the cipher in about the same way a
nonce or an IV brings variability in a block cipher based encryption mode. After
a rigorous formalization of tweakable block ciphers by Liskov, Rivest and Wag-
ner [24], it has recently become one of the fundamental symmetric key primitives
and has been found to be used in multiple applications like message authentica-
tion codes [31, 25, 8], length preserving tweakable enciphering mode [17, 18, 39,
12], online ciphers [36, 1, 19] and various authenticated encryption modes [24,
25, 33]. Offering higher security guarrantee is one of the reasons that various
cryptographic modes of operations are now build on top of a tweakable block
cipher than conventional block ciphers [25, 33, 8].

Before the formalization of TBC by Liskov et al. [24], there were few tweakable
block ciphers which were designed from scratch. For example, block ciphers like
Hasty Pudding cipher [37], Mercy cipher [11], Threefish (which is used in Skein
hash function [14]) natively supports tweaks. Along with the formalization of
the primitive, Liskov et al. [24] also proposed two generic constructions of a
TBC out of a conventional block cipher in a black-box fashion and proved their
birthday bound security, i.e., when the adversary is allowed to make roughly
2n/2 queries to the encryption or decryption oracle, where n is the block size
of the block cipher. Since then, desigining TBC in a black-box mode (i.e., build
from a standard block cipher) has become one of the main avenues of symmetric
key research [35, 28, 4]. Recently, a number of beyond birthday bound secure
constructions build on top of block ciphers have also been emerged [29, 22, 26,
23]. Security of all these constructions have been proven in the standard model
(i.e., assuming that the underlying block cipher is a pseudorandom permutation),
except for constructions proposed in [26, 23] that were analyzed in the ideal
cipher model.

However, in the black box mode of TBC design, where changing the tweak en-
forces to change the key of the underlying block cipher [29], are tend to be
avoided for efficiency reasons, as re-keying a block cipher is often a costly oper-
ation. Hence, most of the existing proposals of designing a TBC out of a block
cipher have the property that changing the tweak should not alter the key of the
block cipher. In this regard, LRW1 and LRW2, proposed by Liskov et al. [24],
are two such examples of birthday bound secure TBC which are build on top
of a conventional block cipher and do not have the re-keying issue. Later on,
Lendecker et al. [22] proposed a beyond birthday bound secure TBC designed
on top of a block cipher by just simply cascading two independent instances of
LRW2 construction. Authors of [22] have shown that cascaded LRW2 (CLRW2) is
secure against any adaptive adversary that makes roughly at most 22n/3 encryp-
tion and decryption queries 1 This line of research was later extended by Lampe

1 Later, a flaw in the security proof was found in the original paper of Lendecker et
al. [22], which was fixed by Procter [34]. However, a different way of fixing the proof
was proposed by Landecker et al. in the revised version of [22].
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and Seurin [21], who showed rn/r + 2-bit security by cascading r-independent
LRW2 instances and they conjectured a tight rn/r + 1-bit security. Later on,
Mennink [27] showed 3n/4-bit tight security bound on CLRW2. However, Men-
nink’s analysis is based on 4-wise independent almost-xor universal (axu) hash
function and each tweak value should occur for at most 2n/4 times. These non-
trivial bottlenecks are lifted in a recent work of Jha and Nandi [20].

TBC design from lower level primitives. There have been several pro-
posals of designing beyond the birthday bound TBC on top of a block cipher [22,
23, 26]. But unfortunately none of the them seem to be truly practical [9]. Thus,
in an another line of work, researchers study how to build TBC from some
lower level primitives like public permutations instead from a conventional block
cipher. This was undertaken by Goldenberg et al. [15], who showed how to in-
corporate tweak in a feistel based cipher. This was later extended to generalized
feistel ciphers by Iwata and Mitsuda [30]. In parallel to feistel based ciphers, a
similar study was undertaken for iterated Even-Mansour (IEM) cipher [3, 6], a
super class of popular SPN based networks. An r-round iterated Even-Mansour
cipher based on a tuple of r independent permutations (π1, . . . , πr) and a tuple
of r + 1 independent keys (k0, . . . , kr) is defined as follows: for x ∈ {0, 1}n,

IEMπ
k (x) = kr ⊕ πr(kr−1 ⊕ πr−1(. . . π2(k1 ⊕ π1(k0 ⊕ x)) . . .)).

Similar to the feistel based designs, it is a natural quest to investigate how to
incorporate tweaks in IEM cipher. In other words, how to mix the tweak and
the key in an IEM cipher. We generally refer to this cipher as Tweakable Even-
Mansour (TEM) cipher.
To address the question of incorporating tweaks in an IEM cipher, Cogliati and
Seurin [10] and independently Farshim and Proecter [13] analyzed the simple
case with n-bit key and n-bit tweak and showed that one can simply xor the
tweak and the key in each round of IEM cipher to get a secure tweakable block
cipher. However, they showed that such an approach gives no security for one
and two rounds. Moreover, they had proved birthday bound security for three
rounds and in fact, due to a result by Bellare and Kohno [2], it can be seen that
xoring an n-bit tweak with an n-bit key in each round of IEM construction does
not give security beyond the birthday bound. Therefore, to achieve beyond the
birthday bound security, we should go for a complex mixing functions of tweak
and key. Even if the function is linear, it should prevent the TBC construction
from being of the form E(k ⊕ t,m) for some block cipher E with n-bit key and
n-bit tweak.

Beyond Birthday Bound TEM. Designing beyond the birthday bound se-
cure TEM was first undertaken by Cogliati et al. [7]. They used almost-xor uni-
versal hash functions as mixing functions of key and tweak as shown in Fig. 1.1.
In particular, the mixing function is of the form Hki(t), where ki the key and t
is the tweak.
Cogliati et al. have shown that one round TEM with non-linear mixing function
gives n/2-bit security and 2-round gives 2n/3-bit security. In general, they also
gave a non-tight asymptotic security bound on r-round TEM with rn/r + 2-bit
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x ⊕

h1(t)

P1 ⊕

h1(t)⊕ h2(t)

P2 ⊕

h2(t)

y

Fig. 1.1. 2-round tweakable Even-Mansour cipher with non-linear tweak and key mix-
ing [7]. h1, h2 are two independent almost-xor universal hash functions.

security. Out of a particular relevance in this paper, we refer to Cogliati et al.’s
2-round TEM with non-linear mixing function as 2-TEM.

However, implementing an axu hash function might be costly [9]. For example
multiplication based hashing [38] is a classic example of an axu hash function
and implementing field multiplication is practically not efficient. Thus, a linear
mixing function of key and tweak is always preferrable over a non-linear one.
Therefore, one would ask for whether it is possible to design a beyond birthday
bound secure TEM with linear mixing function. In this regard, Cogliati and
Seurin (CS) [9] have showed that with 2n-bit keys and an n-bit tweak, one can
realize a beyond the birthday bound secure TEM by simply xoring the key and
the tweak in an alternating fashion in a 4-round IEM cipher (in the way as LED-
128 [16] is designed) as depicted in Fig. 1.2. Again, out of a particular relevance
in this paper, we refer to this construction as 4-TEM.

x ⊕ P1 ⊕ P2 ⊕ yP3 ⊕ P4 ⊕

k1 ⊕ t k2 ⊕ t k1 ⊕ t k2 ⊕ t k1 ⊕ t

Fig. 1.2. 4-round tweakable Even-Mansour cipher with linear tweak and key mixing
function [9]. k1, k2 are two independently sampled n-bit keys, t is an n-bit tweak and
P1, P2, P3, P4 are independent n-bit public random permutations.

CS [9] have shown that 4-TEM gives 2n/3-bit security. However, realizing a
beyond birthday bound secure TEM with n-bit tweak and n-bit key is open till
date.

We would like to mention here that all the existing beyond birthday bound se-
cure TEM constructions use independent permutations. Iterated Even-Mansour
(resp. Tweakable Even-Mansour) cipher stands as a theoretical model for for-
mally arguing the security of SPN based block ciphers (resp. tweakable block
ciphers). However, almost every constructions following SPN paradigm fix a
permutation P and keeps iterating it for multiple times to generate the output.
Thus, the theoretical abstractions for SPN based tweakable block ciphers where
independent round permutations are used, deviates from practical instantiations.
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Hence, it is natural to study the security of the TEM ciphers using a single per-
mutation. In this regard, Chen et al. [5] studied the beyond birthday bound
security of single permutation based two-round iterated Even-Mansour cipher.
Hence, it is natural to investigate whether we can design a single permutation
based TEM cipher that achieves beyond the birthday bound security.

Our Contribution. Inspired from the work of Chen et al. [5], we study the
security of single permutation based 2-TEM cipher. In particular, we study the
security of 2-TEM, as depicted in Fig. 1.1, where P1 = P2 = π, π is an n-bit
public random permutation. We show that single permutation based 2-TEM con-
struction is secure against all adversaries that make roughly 22n/3 queries. As
a second part of the contribution, we have also reduced the number of permu-
tations from four to two in 4-TEM and show that the resulting construction is
secure against any adversaries that make roughly 22n/3 queries. In particular,
we study the beyond birthday bound secrurity of 4-TEM as depicted in Fig. 1.2,
where P1 = P4 = π1 and P2 = P3 = π2, π1 and π2 are two independent n-bit
public random permutations.

x ⊕ π1 ⊕ π2 ⊕ yπ2 ⊕ π1 ⊕

k1 ⊕ t k2 ⊕ t k1 ⊕ t k2 ⊕ t k1 ⊕ t

Fig. 1.3. 4-round tweakable Even-Mansour cipher with linear tweak and key mixing
function. k1, k2 are two independently sampled n-bit keys, t is an n-bit tweak and π1

and π2 are independent n-bit public random permutations.

However, we would like to mention here that for both of our contributions, we
have not reduced the number of independent keys used in the construction, i.e.,
for 2-TEM, we require two independent hash keys and for 4-TEM we require two
independent n-bit keys. A natural open problem is to investigate that whether
one can reduce the number of keys of the construction as well without degrading
the security.

2 Preliminaries

Basic Notations. For a set X , x←$X denotes that x is sampled uniformly at
random from X and is independent to all other random variables defined so far.
For any natural number q, [q] denotes the set {1, . . . , q}. We denote an empty set
as φ. We say two sets X and Y are disjoint if X ∩Y = φ. We denote their union
as X t Y (which we refer to as disjoint union). Let X = (X1, . . . ,Xs) be a finite
collection of finite sets. We say X is a disjoint collection if for each j 6= j′ ∈ [s],
Xj and Xj′ are disjoint. The size of X, denoted as |X| = |X1| + . . . + |Xs|.
For a disjoint collection X = (X1, . . . ,Xs,Xs+1), we write X \ Xs to denote
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the collection (X1, . . . ,Xs). For two disjoint collections X = (X1, . . . ,Xs) and
Y = (Y1, . . . ,Ys′), we say X is inter disjoint with Y if for all j ∈ [s], j′ ∈ [s′], Xj
is disjoint with Yj′ . If X is inter disjoint with Y, then we denote their union as
XtY. Moreover, |XtY| = |X|+|Y|. For a set S and for a finite disjoint collection
of finite sets X = (X1, . . . ,Xs), we write S \X to denote S \ (X1t . . .tXs). For a
tuple x̃ = (x1, x2, . . . , xq), where each xi ∈ S for some finite set S, δx̃(x) denotes
the number of times x ∈ S appears in the tuple x̃.
For any natural number n, {0, 1}n denotes the set of all binary strings of length
n. We denote |{0, 1}n| as N = 2n througout the paper. For integers 1 ≤ b ≤ a,
(a)b denotes a(a−1) . . . (a−b+1), where (a)0 = 1 by convention. We denote the
set of all n-bit permutations π as Pn. Let Z1 = (z1

1 , . . . , z
1
q ) and Z2 = (z2

1 , . . . , z
2
q )

be two finite tuples of length q such that for each i ∈ [q], z1
i , z

2
i ∈ {0, 1}n. We

say an n bit permutation π ∈ Pn maps Z1 to Z2, denoted as Z1
π7→ Z2, if for all

i ∈ [q], π(z1
i ) = z2

i . We say Z1 is permutation compatible to Z2 if there exists at

least one π ∈ Pn such that Z1
π7→ Z2.

For a given tuple of ordered pairs Q = ((x1, y1), . . . , (xq, yq)), where each xi are
pairwise distinct n-bit strings and each yi are pairwise distinct n bit strings,
we define the following two sets: Dom(Q) = {xi ∈ {0, 1}n : (xi, yi) ∈ Q} and
Ran(Q) = {yi ∈ {0, 1}n : (xi, yi) ∈ Q}. Clearly, |Dom(Q)| = |Ran(Q)| = q. We
say that an n-bit permutation π ∈ Pn extends Q, which we denote as π 7→ Q,
if for all i ∈ [q], π(xi) = yi. We say that Q is extendable if there exists at least
one π ∈ Pn such that π 7→ Q. One can naturally generalize this extendable
notion for more than one tuple of ordered pairs. Let Q̃ = (Q1, . . . ,Qs) such
that for each j ∈ [s], Qj is defined as Qj = ((xj1, y

j
1), . . . , (xjqj , y

j
qj )), where each

xji are pairwise distinct n-bit strings and each yji are pairwise distinct n-bit
strings. Now, for each j ∈ [s], we define the following two sets: Dom(Qj) =

{xji : (xji , y
j
i ) ∈ Qj} and Ran(Qj) = {yji : (xji , y

j
i ) ∈ Qj}. Clearly, for each

j ∈ [s], |Dom(Qj)| = |Ran(Qj)| = qj . We say that an n-bit permutation π ∈ Pn
extends Q̃, which we denote as π 7→ Q̃, if for all j ∈ [s], π 7→ Qj . For the sake
of notational simplicity, we will be using the following: if for all j 6= j′ ∈ [s],
Dom(Qj) is disjoint with Dom(Qj′) and Ran(Qj) is disjoint with Ran(Qj′), then
X = (Dom(Q1), . . . ,Dom(Qs)) and Y = (Ran(Q1), . . . ,Ran(Qs)) becomes two
disjoint collection of finite sets and in that case, as an alternative notation of
π 7→ Q̃, we write X

π7→ Y. If S = {s1, . . . , sq} ⊆ {0, 1}n and D = {d1, . . . , dq} ⊆
{0, 1}n are two finite sets of equal cardinality, then we write (S,D) to denote
the sequence of ordered pairs: ((s1, d1), . . . , (sq, dq)).

2.1 A Simple Result on Probability

Having set up the basic notations, in this section, we state two simple yet useful
probability results that we will be frequently using while proving the security of
the construction.

Proposition 1. Let Q̃ = (Q1, . . . ,Qs+1) be an s+ 1 tuple of ordered pairs such
that for j ∈ [s + 1], Qj is defined as Qj = ((xj1, y

j
1), . . . , (xjqj , y

j
qj )). Moreover,
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for each j, j′ ∈ [s+ 1], Dom(Qj) ∩ Dom(Qj′) = φ and Ran(Qj) ∩ Ran(Qj′) = φ.
Therefore, X = (Dom(Q1), . . . ,Dom(Qs+1)) and Y = (Ran(Q1), . . . ,Ran(Qs+1))
be two disjoint collection of finite sets such that for each j ∈ [s+1], |Dom(Qj)| =
|Ran(Qj)| = qj. Then, we have

Pr[π←$Pn : X\Dom(Qs+1)
π7→ Y\Ran(Qs+1) | π 7→ Qs+1] =

1

(N − qs+1)q1+...+qs

.

By setting s = 1 in the above proposition gives the following simple corollary:

Corollary 1. For two sets Q1 and Q2, where Q1 = ((x1
1, y

1
1), . . . , (x1

q1 , y
1
q1))

of cardinality q1 and Q2 = ((x2
1, y

2
1), . . . , (x2

q2 , y
2
q2)) of cardinality q2, such that

Dom(Q1) ∩ Dom(Q2) = φ and Ran(Q1) ∩ Ran(Q2) = φ. Then, we have

Pr[π←$Pn : π 7→ Q1 | π 7→ Q2] =
1

(N − q2)q1
.

2.2 Security Definition

In this section, we recall the security definition of tweakable block ciphers, almost
xor universal hash function and tweakable Even Mansour cipher.

Tweakable Block Ciphers. A tweakable block cipher (TBC) with key space

K, tweak space T and domain X is a mapping Ẽ : K × T × X → X such
that for all key k ∈ K and all tweak t ∈ T , x 7→ Ẽ(k, t, x) is a permutation of
X . We denote TBC(K, T ,X ) the set of all tweakable block ciphers with tweak
space T and message space X . A tweakable permutation with tweak space T
and domain X is a mapping π̃ : T × X → X such that for all tweak t ∈ T ,
x 7→ π̃(t, x) is a permutation of X . We write TP(T , n) denotes the set of all
tweakable permutations with tweak space T and and n-bit messages.

AXU, Universal and Almost Regular Hash Function. Let Kh and X
be two non-empty finite sets and H be a keyed function H : Kh × X → {0, 1}n.
Then, (i) H is said to be an ε-almost xor universal hash function if for any distinct
x, x′ ∈ X and for any ∆ ∈ {0, 1}n,

Pr [kh←$Kh : Hkh(x)⊕ Hkh(x′) = ∆] ≤ ε.

H is said to be an ε-almost regular hash function if for any x ∈ X and for any
∆ ∈ {0, 1}n,

Pr [kh←$Kh : Hkh(x) = ∆] ≤ ε.

Tweakable Even-Mansour. We first fix some integer n, r ≥ 1. Let K and
T be two non-empty finite sets and let Ψ = (Ψ0, . . . ,Ψr) be r + 1-tuple of
functions from K × T to {0, 1}n. Then, an r-round tweakable Even-Mansour
cipher TEM[n, r,Ψ], constructed from a r-tuple of n-bit independent permuta-
tions π = (π1, . . . , πr), specifies a tweakble block cipher, with key space K, tweak
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space T and message space {0, 1}n, denoted as TEMπ that maps a key k, tweak
t and a plaintext x ∈ {0, 1}n to the ciphertext defined as:

TEMπ(k, t, x) = Ψr(k, t)⊕ πr(. . . π2(Ψ1(k, t)⊕ π1(Ψ0(k, t)⊕ x)) . . .). (1)

Note that, 2-TEM is a special class of Eqn. (1) where r = 2, k = (k1, k2)
and Ψ0(k, t) = Hk1(t),Ψ1(k, t) = Hk1(t) ⊕ Hk2(t) and Ψ2(k, t) = Hk2(t), where
H = {Hkh}kh∈Kh is a family of almost-xor universal and almost-regular hash
functions that maps elements from T to {0, 1}n. Similarly, 4-TEM is a special
class of Eqn. (1) where r = 4, k = (k1, k2) and Ψ0(k, t) = k1 ⊕ t,Ψ2(k, t) =
k2 ⊕ t,Ψ3(k, t) = k1 ⊕ t,Ψ4(k, t) = k2 ⊕ t and Ψ5(k, t) = k1 ⊕ t.

Security Definition of TEM. We study the indistinguishability of r-round
tweakable Even-Mansour construction TEM[n, r,H] in the random permutation
model where we consider an adaptive distinghisher A that interacts with a tuple
of r + 1 oracles (Õ,π), where Õ is a tweakable permutations with tweak space
T and message space {0, 1}n and π = (π1, . . . , πr) are n-bit public random per-
mutations. The goal of the distinguisher is to distinguish between the following
two worlds: in the real world it interacts with the oracle (TEMπ

k ,π), where the
key k is sampled uniformly at random from some finite key space K. In the ideal
world, it interacts with (π̃0,π), where π̃0 is uniformly sampled from TP(T , n)
and π is a tuple of n-bit public random permutations independent of π̃0. We
refer TEMπ

k/π̃0 as the construction oracle and π as the primitive oracles. We
assume that A is not only adaptive, but is also bi-directional (i.e., it can make
forward and inverse queries to its oracle). Moreover, A is also allowed to query
the primitive oracles in an interleave fashion with the construction oracle queries.
We define the strong tweakable pseduo-random permutation (stprp) advantage
of TEM[n, r,Ψ] as

Advtsprp
TEM (A)

∆
= | Pr[A(TEMπ

k ,π) ⇒ 1]− Pr[A(π̃0,π) ⇒ 1] |, (2)

where AO ⇒ 1 denotes the event that A outputs 1 after interacting with the
oracle O. The first probability in Eqn. (2) is defined over the randomness of k
and π, whereas the second probability is defined over the randomness of π̃0 and
π. In the rest of the paper we assume that A is computationally unbounded and
hence a deterministic distinguisher. We call such a distinguisher as information
theoretic distinguisher. We also assume that A does not repeat queries and never
makes pointless queries 2. As we study the security analysis of single permutation
variant of 2-TEM and two independent permutations variant of 4-TEM, from now
onwards, we concentrate on only these two constructions.

2.3 H-Coefficient Technique

H-Coefficient technique [32, 6] is an important tool to upper bound the statistical
distance between the answers of two interactive systems and is typically used to

2 Queries whose answer can be deduced from previous query-responses.
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prove the information theoretic pseudo randomness of constructions. We discuss
this result in the light of tweakable Even-Mansour cipher. Let us consider an
information theoretic deterministic distinguisher A with access to the following
tuple of oracles: in the real world it interacts with (TEMπ

k ,π) and in the ideal
world it interacts with (π̃0,π). After this interaction is over, A outputs a decision
bit. The collection of all queries and responses that is made to and from the oracle
during the interaction of A with O, is summarized in a transcript (τc, τp), where
τc is the transcript that summarizes the interaction with construction oracle
and τp summarizes the interaction with primitive oracles. More formally, τc =
{(t1, x1, y1), . . . , (tq, xq, yq)} is the set of all construction queries and responses
and τp = {(u1, v1), . . . , (up, vp)} is the set of all primitive queries and responses,
where A makes q construction queries and p primitive queries. Since A is bi-
directional, A can make either forward construction query (t, x) and receives
response y or can make inverse construction query (t, y) and receives response x.
Similarly, for primitive query A can either make forward query u to its primitive
π and receives response y or can make inverse query v to π−1 and receives
response u. Since, we assume that A never makes pointless queries, none of the
transcripts contain any duplicate elements. We also assume that A repeats tweaks
in the construction query. Hence, we assume that there are µ distinct tweaks
(t1, t2, . . . , tµ) in the set of construction queries and qi denotes the number of
construction queries with i-th tweak such that

µ∑
i=1

qi = q.

We modify the experiment by releasing internal information to A after it has
finished the interaction but has not output yet the decision bit. In the real world,
we reveal the key k which is used in the construction and in the ideal world, we
sample a dummy key k uniformly at random from the keyspace and reveal it to
the distinguisher. In all the following, the complete transcript is (τc, τp,k). Note
that, the modified experiment only makes the distinguisher more powerful and
hence the distinguishing advantage of A in this experiment is no way less than
its distinguishing advantage in the former one.

Let Dre (resp. Did) denotes the random variable representing the real world and
the ideal world transcript respectively. The probability of realizing a transcript
(τc, τp,k) in the ideal (resp. real) world is called ideal (resp. real) interpolation
probability. A transcript (τc, τp,k) is said to be attainable with respect to A if its
ideal interpolation probability is non zero. We denote the set of all such attain-
able transcripts by Θ. Following these notations, we state the main theorem of
H-Coefficient Technique as follows.

Theorem 1 (H-Coefficient Technique). Let Θ = Θg tΘb be some partition
of the set of attainable transcripts. Suppose there exists εratio ≥ 0 such that for
any τ = (τc, τp,k) ∈ Θg,

pre(τ)

pid(τ)

∆
=

Pr[Dre = τ ]

Pr[Did = τ ]
≥ 1− εratio,
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and there exists εbad ≥ 0 such that Pr[Did ∈ Θb] ≤ εbad. Then,

Advtsprp
TEM (A) ≤ εratio + εbad. (3)

Having explained the H-Coefficient technique in the view of our construction,
we now state the following result from [7, 9]

Lemma 1. Let τ = (τc, τp,k) ∈ Θ be an attainable transcript. Let p(τ)
∆
=

Pr[π←$Pn : TEMπ
k 7→ τc | π 7→ τp]. Then, we have

pre(τ)

pid(τ)
= p(τ) ·

µ∏
i=1

(N)qi

Therefore, to apply Theorem 1, for a properly defined good transcript τ , we need

to compare p(τ) and
µ∏
i=1

(N)qi .

2.4 Sum Capture Lemma

In this section, we state an important probabilitstic result, dubbed as sum cap-
ture lemma. In the following, we state two variants of the sum-capture lemma.
The first variant will be used in the security proof of single permutation vari-
ant of 2-TEM and the other variant will be used in the security proof of two
independent permutations variant of 4-TEM.

Sum-Capture Lemma-Variant I. We use the sum capture lemma by Chen et
al. [5]. Informally, the result states that for a random subset S of {0, 1}n of size
q0 and for any two arbitrary subsets A and B of {0, 1}n, the size of the set

µ(S,A,B)
∆
= |{(s, a, b) ∈ S ×A× B : s = a⊕ b}|,

is at most q0|A||B|/N , except with negligible probabilty.

Lemma 2 (Sum-Capture Lemma). Let n, q0 ∈ N such that 9n ≤ q0 ≤ N/2.
Let S be a random subset of {0, 1}n of size q0. Then, for any two subsets A and
B of {0, 1}n, we have

Pr[∃A,B : µ(S,A,B) ≥ q0|A||B|
N

+
2q2

0

√
|A||B|
N

+ 3
√
nq0|A||B|] ≤

2

N
, (4)

where the randomness is defined over the set S.

Sum-Capture Lemma-Variant II. We use the sum capture lemma by Cogliati
et al. [9], which is dubbed as Extended Sum-Capture Lemma [9]. Informally, the
result states that for a fixed automorphism Φ and a probabilistic adversary A,
the size of the set

µ(Q,U ,V)
∆
= |{

(
(t, x, y), u, v

)
∈ Q× U × V : x⊕ u = Φ(y ⊕ v)}|,

is at most q|U||V|/N , except with negligible probabilty, where the set Q =
{(t1, x1, y1), . . . , (tq, xq, yq)} denotes the interaction of A with an uniform random
tweakable permutation π̃.
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Lemma 3 (Extended Sum-Capture Lemma). Let Φ be a fixed automor-
phism and T be a fixed non-empty finite set. Let π̃ be a uniform tweakable ran-
dom permutation in TP(T , n) and A be some probabilistic adversary that makes
two sided adaptive queries to π̃. Let Q = {(t1, x1, y1), . . . , (tq, xq, yq)} be the tran-
script of the interaction of A with π̃ and for any two subsets U ⊆ {0, 1}n,V ⊆
{0, 1}n, let us define

µ(Q,U ,V)
∆
= |{

(
(t, x, y), u, v

)
∈ Q× U × V : x⊕ u = Φ(y ⊕ v)}|.

Then, for 9n ≤ q ≤ N/2, we have

Pr[∃U ,V : µ(Q,U ,V) ≥ q|U||V|
N

+
2q2
√
|U||V|
N

+ 3
√
nq|U||V|] ≤ 2

N
, (5)

where the randomness is defined over the set Q and the random coin of A.

When we apply Lemma 3 in our security analysis, we consider the automorphism
Φ to be an identity function.

3 BBB Security of Single Permutation Variant of 2-TEM

3.1 Security Statement

In this section, we state the security result of single permutation based 2-TEM
cipher. Let H be a family of ε-almost-xor universal and ε-almost-regular hash
functions that maps elements from tweak space T to {0, 1}n. Then, single per-
mutation based 2-TEM is defined as

2-TEMπ
h1,h2

(t, x) = π(π(x⊕ h1(t))⊕ h1(t)⊕ h2(t))⊕ h2(t) = y,

where π ∈ Pn is an n-bit public random permutation, (h1, h2)←$ H2 are two
independently sampled hash functions, t ∈ T is the tweak and x ∈ {0, 1}n
is the plaintext. For convenience, we refer the single permutation based 2-TEM
construction as 2-TEM+. The main result of this section is to prove the following:

Theorem 2. Let A be any adaptive deterministic distinguisher that makes q
many construction queries with µ distinct tweaks and p many primitive queries in
both the forward and the backward directions. Let H be an ε-almost-xor universal
and ε-almost regular hash function that maps elements from tweak space T to
{0, 1}n. Then,

Advtsprp
2-TEM+(A) ≤

(
3qp2

N2
+

2pq2

N2
+

5q3

3N2
+

6p
√
q

N
+

11q3/2

N
+

14q

N2/3
+

38q2

N4/3
+

6q

N

+
4q(p+ 6

√
q + 3q)2

N2
+

24
√
nq

N1/3
+

48
√
q

N1/3

)
.
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In particular, if the almost-xor universal and the almost-regular advantage of
H is roughly 2−n, then one can see that 2-TEM+ is secure roughly upto 22n/3

adversarial queries.

In the rest of the section we prove Theorem 2. Our security proof relies on H-
Coefficient technique. As a result, the first step of our proof would be to identify
bad transcripts and upper bound their probability in the ideal world. Followed by
this, we will show that for a good transcript τ , its real interpolation probability
is very close to its ideal interpolation probability.

3.2 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the ideal
world. For a transcript τ = (τc, τp, k1, k2), we define U = Dom(τp), the domain
of primitive queries and V = Ran(τp), the range of primitive queries. Moreover,
for a pair of keys (k1, k2) and for any t ∈ T , we write h1(t) to denote Hk1(t)
and h2(t) to denote Hk2(t). For a transcript τ = (τc, τp, k1, k2), we associate the
following parameters:

α1
∆
= |{(t, x, y) ∈ τc : x⊕ h1(t) ∈ U}|

α2
∆
= |{(t, x, y) ∈ τc : y ⊕ h2(t) ∈ V }|

β1
∆
= |{(t, x, y) 6= (t′, x′, y′) ∈ τc : x⊕ h1(t) = x′ ⊕ h1(t′)}|

β2
∆
= |{(t, x, y) 6= (t′, x′, y′) ∈ τc : y ⊕ h2(t) = y′ ⊕ h2(t′)}|

Definition 1 (Bad Transcript). An attainable transcript τ ′ = (τc, τp, k1, k2)
is called a bad transcript if any one of the following condition holds:

- B.1: ∃ i ∈ [q], j, j′ ∈ [p] such that xi ⊕ h1(ti) = uj , yi ⊕ h2(ti) = vj′ .
- B.2: ∃ i ∈ [q], j, j′ ∈ [p] such that xi ⊕ h1(ti) = uj , vj ⊕ h1(ti)⊕ h2(ti) = uj′ .
- B.3: ∃ i ∈ [q], j, j′ ∈ [p] such that yi ⊕ h2(ti) = vj , uj ⊕ h1(ti)⊕ h2(ti) = vj′ .
- B.4: ∃ i, i′ ∈ [q], j ∈ [p] such that xi ⊕ h1(ti) = uj , vj ⊕ h1(ti) ⊕ h2(ti) =
xi′ ⊕ h1(ti′).

- B.5: ∃ i, i′ ∈ [q], j ∈ [p] such that yi ⊕ h2(ti) = vj , uj ⊕ h1(ti) ⊕ h2(ti) =
yi′ ⊕ h2(ti′).

- B.6: ∃ i, i′ ∈ [q], j ∈ [p] such that xi ⊕ h1(ti) = uj , yi ⊕ h2(ti) = yi′ ⊕ h2(ti′).
- B.7: ∃ i, i′ ∈ [q], j ∈ [p] such that yi ⊕ h2(ti) = vj , xi ⊕ h1(ti) = xi′ ⊕ h1(ti′).
- B.8: ∃ i, i′ ∈ [q] such that xi ⊕ h1(ti) = xi′ ⊕ h1(ti′), h1(ti) ⊕ h2(ti) =
h1(ti′)⊕ h2(ti′).

- B.9: ∃ i, i′ ∈ [q] such that yi⊕h2(ti) = yi′⊕h2(ti′), h1(ti)⊕h2(ti) = h1(ti′)⊕
h2(ti′).

- B.10: ∃ i, i′, i′′ ∈ [q] such that xi ⊕ h1(ti) = xi′ ⊕ h1(ti′), yi ⊕ h2(ti) =
yi′′ ⊕ h2(ti′′).

- B.11: ∃ i, i′ ∈ [q], j, j′ ∈ [p] such that xi⊕h1(ti) = uj , xi′⊕h1(ti′) = uj′ , vj⊕
h1(ti)⊕ h2(ti) = vj′ ⊕ h1(ti′)⊕ h2(ti′).

- B.12: ∃ i, i′ ∈ [q], j, j′ ∈ [p] such that yi⊕h2(ti) = vj , yi′ ⊕h2(ti′) = vj′ , uj ⊕
h1(ti)⊕ h2(ti) = uj′ ⊕ h1(ti′)⊕ h2(ti′).
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- B.13: D ∆
= |{(ti, xi, yi), (tj , xj , yj), (tk, xk, yk) ∈ τc : yi ⊕ h2(ti) ⊕ h2(tj) =

xk ⊕ h1(tk)⊕ h1(tj)}| ≥ 3q3/N + 3q
√
nq.

- B.14: α1 ≥
√
q

- B.15: α2 ≥
√
q.

- B.16: β1 ≥
√
q ∨ β2 ≥

√
q.

Recall that, we denote Θb (resp. Θg) the set of bad (resp. good) transcripts. We
bound the probability of bad transcripts in the ideal world as follows.

Lemma 4 (Bad Lemma). Let τ = (τc, τp, k1, k2) be any attainable transcript.
Let Did and Θb be defined as above. Then

Pr[Did ∈ Θb] ≤ εbad =
3qp2

N2
+

2pq2

N2
+

3q2

2N2
+

q3

6N2
+

2p
√
q

N
+

q

N
+
q3/2

N
.

Proof. Let τ = (τc, τp, k1, k2) be any attainable transcript. Recall that, in the
ideal world k1 and k2 are drawn uniformly at random from the keyspace. Using
the union bound, we have

Pr[Did ∈ Θb] ≤
( 16∑

i=1,
i 6=4,5,13

Pr[B.i]

)
︸ ︷︷ ︸

A

+ (Pr[B.4] + Pr[B.5] + Pr[B.13])︸ ︷︷ ︸
B

. (6)

We bound part (A) in exactly the similar way as done in [7]. We defer the calcu-
lation of this part in Supplementary Material 8. However, ahead of calculation,
we have

A ≤ 3qp2

N2
+

3q2

2N2
+

q3

6N2
+

2p
√
q

N
+
q + 2

N
+
q3/2

N
. (7)

To bound part (B) in the following, we begin with event B.4 and B.5 as follows:

Bounding B.4 and B.5. We consider the event B.4. For a fixed (ti, xi, yi) 6=
(ti′ , xi′ , yi′) ∈ τc and for a fixed (uj , vj) ∈ τp, one has by the regularity of H and
h1 and h2 are drawn independent to each other,

Pr[h1(ti) = xi ⊕ uj , h2(ti) = vj ⊕ h1(ti)⊕ xi′ ⊕ h1(ti′)] ≤
1

N2
.

By summing over all possible choices of (ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc, (uj , vj) ∈ τp,
we have

Pr[B.4] ≤ pq2

2N2
. (8)

Similarly, for B.5 one obtains,

Pr[B.5] ≤ pq2

2N2
. (9)

Bounding B.13. For bounding B.13, we introduce the following sets: H1 =
{x ⊕ h1(t) : (t, x, y) ∈ τc} and H2 = {y ⊕ h2(t) : (t, x, y) ∈ τc} and H3 =
{h1(t)⊕ h2(t) : (t, x, y) ∈ τc}. Then,

|D| = |{
(
h3, h1, h2)

)
∈ H3 ×H1 ×H2 : h3 = h1 ⊕ h2}|.
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Therefore, to bound the probability of the event B.13, it is enough to bound the
probability of the following event:

E
∆
= |{

(
h3, h2, h1

)
∈ H3 ×H1 ×H2 : h3 = h1 ⊕ h2}| ≥

3q3

N
+ 3q
√
nq.

From Lemma 2, the probability of event E is bounded above by 2/N . Hence,

Pr[B.13] ≤ 2

N
. (10)

From Eqn. (6)-Eqn. (10), the result follows. ut

3.3 Analysis of Good Transcripts

In this section, we state that for a good transcript τ = (τc, τp, k1, k2) such that
τc has µ distinct tweaks, realizing τ is almost as likely in the real world as in the
ideal world. More formally,

Lemma 5 (Good Lemma). Let τ = (τc, τp, k1, k2) ∈ Θg be a good transcript
such that τc has µ distinct tweaks. Let Dre and Did be defined as above. Then,

Pr[Dre = τ ]

Pr[Did = τ ]
≥ 1−

(
4p
√
q

N
+

10q3/2

N
+

14q

N2/3
+

4q(p+ 6
√
q + 3q)2

N2
+

38q2

N4/3
+

5q

N

+
24
√
nq

N1/3
+

48
√
q

N1/3

)
.

Proof of this lemma is the most difficult part of the paper. Hence, we devote the
following seperate section for proving it. Therefore, by applying H-Coefficient
technique (i.e., Theorem 1) with Lemma 4 and Lemma 5, the result follows. ut

4 Proof of Good Lemma

In this section, we prove that for a good transcript τ = (τc, τp, k1, k2), realizing
it in the real world is as likely as realizing it in the ideal world. Note that, we
have shown in Lemma 1 that to compute the ratio of real to ideal interpolation
probability for a good transcript τ , one needs to compare

p(τ)
∆
= Pr[π←$Pn : 2-TEM+π

k1,k2
7→ τc | π 7→ τp]

with (N)q1 · (N)q2 . . . (N)qµ , where recall that µ is the distinct number of tweaks
(t1, . . . , tµ) and qi is the number of times tweak ti appears in the construction
queries τc ∈ τ . Therefore, it is enough to establish a lower bound of p(τ).
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4.1 Establishing Lower bound on p(τ )

First of all, recall that U is the set of all domain points of primitive queries
and V is the set of all range points of it. For a good transcript (τc, τp, k1, k2),
we define the following two sets: I = {xi ⊕ h1(ti) : (ti, xi, yi) ∈ τc} and O =
{yi ⊕ h2(ti) : (ti, xi, yi) ∈ τc}. Since, τ is a good transcript, we can partition
the set of construction queries τc ∈ τ into a finite number of disjoint groups as
follows:

(a) QU
∆
= {(t, x, y) ∈ τc : x⊕ h1(t) ∈ U}, (b) QV

∆
= {(t, x, y) ∈ τc : y ⊕ h2(t) ∈ V }

(c) QX
∆
= {(t, x, y) ∈ τc : δI(x⊕ h1(t)) > 1, x⊕ h1(t) /∈ U}

(d) QY
∆
= {(t, x, y) ∈ τc : δO(y ⊕ h2(t)) > 1, y ⊕ h2(t) /∈ V }

(e) Q0
∆
= {(t, x, y) ∈ τc : δI(x⊕ h1(t)) = δO(y ⊕ h2(t)) = 1, x⊕ h1(t) /∈ U, y ⊕ h2(t) /∈ V }

Having defined the sets, we now claim that the sets are disjoint and ihey exhaust
the entire set of attainable good transcripts.

Proposition 2. Let τ = (τc, τp, k1, k2) ∈ Θg be a good transcript. Then the sets
(QU ,QV ,QX ,QY ,Q0) are pairwise disjoint.

Proof. First of all, according to the definition of the sets, QU ∩ QX = φ,QU ∩
Q0 = φ, QV ∩ QY = φ,QV ∩ Q0 = φ. Moreover, QX ∩ Q0 = φ,QY ∩ Q0 = φ.
Now, QU ∩ QV = φ, othwerise bad condition B.1 would be satisfied. Similarly,
QU ∩ QY = φ (resp. QV ∩ QX = φ), othwerise bad condition B.6 (resp. B.7)
would be satisfied. Moreover, QX ∩QY = φ othwerise bad condition B.10 would
be satisfied. Moreover, it is easy to see that a good transcript τ belongs to exactly
one of these five sets. ut

Note that, since τ is a good transcript, we have,

α1
∆
= |QU | ≤

√
q, α2

∆
= |QV | ≤

√
q.

Let EU denotes the event 2-TEM+π
k1,k2

7→ QU . Similarly, EV denotes the event

2-TEM+π
k1,k2

7→ QU , EX denotes the event 2-TEM+π
k1,k2

7→ QX , EY denotes the

event 2-TEM+π
k1,k2

7→ QY and finally, E0 denotes the event 2-TEM+π
k1,k2

7→ Q0.
Now, it is easy to see that

p(τ) = Pr[EU ∧ EV ∧ EX ∧ EY ∧ E0 | π 7→ τp]

= Pr[EU ∧ EV | π 7→ τp]︸ ︷︷ ︸
p1(τ)

·Pr[EX ∧ EY ∧ E0 | EU ∧ EV ∧ π 7→ τp]︸ ︷︷ ︸
p2(τ)

(11)

Thus, it is enough to establish a good lower bound on p1(τ) and p2(τ) for a good
transcript τ .
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4.2 Lower Bound of p1(τ )

To lower bound p1(τ), we define the following sets:

S1
∆
= {x⊕ h1(t) : (t, x, y) ∈ QU}, S2

∆
= {x⊕ h1(t) : (t, x, y) ∈ QV }

D1
∆
= {y ⊕ h2(t) : (t, x, y) ∈ QU}, D2

∆
= {y ⊕ h2(t) : (t, x, y) ∈ QV }

Note that, |S1| = α1 and |D2| = α2. Moreover, S1 ⊆ U,D2 ⊆ V . Without loss of
generality, let us assume that xi ⊕ h1(ti) = ui for (ti, xi, yi) ∈ QU and similarly,
yi ⊕ h2(ti) = vi for (ti, xi, yi) ∈ QV . Now, we define two additional sets:

X1
∆
= {v1 ⊕ h1(t1)⊕ h2(t1), . . . , vα1

⊕ h1(tα1
)⊕ h2(tα1

)}

X2
∆
= {u1 ⊕ h1(t1)⊕ h2(t1), . . . , uα2

⊕ h1(tα2
)⊕ h2(tα2

)}

In the following we state that every element of D1 is distinct and does not collide
with any primitive query output. Similarly, every element of S2 is distinct and
does not collide with any primitive query input.

Proposition 3. Every element of D1 is distinct and does not collide with any
primitive query output. Similarly, every element of S2 is distinct and does not
collide with any primitive query input.

Proof of this proposition is postponed to Supplementary Material 7. However,
the above result says that |D1| = α1 and |S2| = α2. Now, we have the following
proposition which states that every element of X1 and X2 are istinct and X1 is
pairwise disjoint with S1 and S2. Similarly, every element of X2 is distinct and
pairiwise disjoint with D1 and D2.

Proposition 4. Every element of X1 is distinct and X1 ∩ S1 = φ,X1 ∩ S2 = φ.
Moreover, every element of X2 is distinct and X2 ∩ D1 = φ,X2 ∩ D2 = φ.

We postpone the proof of this proposition to Supplementary Material 7. Now,
from Proposition 3 and Proposition 4, we have |S1| = |X1| = |D1| = α1 and
|S2| = |X2| = |D2| = α2. Also recall that |U | = |V | = p. Now, we consider the
following two sequences:

X1D1
∆
=
(
(vi ⊕ h1(ti)⊕ h2(ti), yi ⊕ h2(ti))i : vi ⊕ h1(ti)⊕ h2(ti) ∈ X1, yi ⊕ h2(ti) ∈ D1

)
.

S2X2
∆
=
(
(xi ⊕ h1(ti), ui ⊕ h1(ti)⊕ h2(ti))i : xi ⊕ h1(ti) ∈ S2, ui ⊕ h1(ti)⊕ h2(ti) ∈ X2

)
.

From Proposition 3 and Proposition 4, it follows that the domain of X1D1 is
disjoint with the domain of S2X2. Moreover, they are individually disjoint with
U . Similarly, the range of X1D1 is disjoint with the range of S2X2. Moreover,
they are individually disjoint with V . Therefore, we have X = (U,X1,S2) and
Y = (V,D1,X2) are disjoint collections. Thus, from Proposition 2 one has,

p1(τ)
∆
= Pr[π←$Pn : X \ U π7→ Y \ V | π 7→ τp] =

1

(N − p)α1+α2

. (12)
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4.3 Lower Bound on p2(τ )

In the last section, we have seen that π has been fixed on α1 + α2 input-output
(apart from p input-output primitive pairs). Moreover, the collection of input
and output sets of π that have been explored in the last section is X = (U,X1,S2)
and Y = (V,D1,X2). Now, to bound p2(τ) for τ , we first define few sets:

S ′1
∆
= {x⊕ h1(t) : (t, x, y) ∈ QX}, S ′2

∆
= {x⊕ h1(t) : (t, x, y) ∈ QY }.

D′1
∆
= {y ⊕ h2(t) : (t, x, y) ∈ QX}, D′2

∆
= {y ⊕ h2(t) : (t, x, y) ∈ QY }.

Let α′1 = |S ′1|, α′2 = |D′1|. Moreover, α′′1 = |S ′2|, α′′2 = |D′2|. Let us enumerate the
set S ′1 and D′2 as follows: S ′1 = {s′1,1, . . . , s′1,α′1} and D′2 = {d′′2,1, . . . , d′′2,α′′2 }. Our

goal is to construct the set P (S ′1), P−1(D′1), P (S ′2) and P−1(D′2), where

P (S ′1)
∆
= {π(x⊕ h1(t)) : x⊕ h1(t) ∈ S ′1}.

P−1(D′1)
∆
= {π−1(y ⊕ h2(t)) : y ⊕ h2(t) ∈ D′1}.

Similarly, the set P (S ′2) and P−1(D′2) are defined. It is to be noted that initially
these sets are undefined as the permutation is not sampled yet. Recall that, β1

refers to the number of input-collding pair of construction queries and β2 refers
to the number of output-colliding pair of construction queries. Therefore, we can
write,

β1 =
∑

x∈{0,1}n:
δI(x)>1

δI(x), β2 =
∑

x∈{0,1}n:
δO(x)>1

δO(x),

where recall that I = {x⊕ h1(t) : (t, x, y) ∈ τc} and O = {y ⊕ h2(t) : (t, x, y) ∈
τc}. Moreover, we have the following bound on α′1.

α′1 ≤
∑

x∈{0,1}n:
δI(x)>1

1 ≤
∑

x∈{0,1}n:
δI(x)>1

δI(x)

2
=
β1

2
≤
√
q

2
.

Similarly, one can derive α′′2 ≤ β2/2 ≤
√
q/2. Now, we consider the elements of

D′1. We claim that each element of D′1 is distinct. This is because if two of them
collides then that would satisfy condition B.10. This gives us the following upper
bound on α′2, which is derived as follows:

α′2 ≤
α′1∑
i=1

δI(s′1,i) ≤
∑

x∈{0,1}n:
δI(x)>1

δI(x) = β1 ≤
√
q.

By a similar reasoning, one can derive α′′1 ≤ β2 ≤
√
q. Moreover, since, each

element of D′1 is distinct, α′1 = |QX |. Similarly, as each element of S ′2 is distinct,
α′′2 = |QY |. Now, to lower bound p2(τ), we need to define two more additional
sets as follows:

U ∆
= {x⊕ h1(t) : (t, x, y) ∈ Q0}, V

∆
= {y ⊕ h2(t) : (t, x, y) ∈ Q0}..
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Since, (QU ,QV ,QX ,QY ,Q0) forms a partition of a good construction query
transcript τc, it is obvious that

q′
∆
= |Q0| = q − (|QU |+ |QV |+ |QX |+ |QY |) = q − (α1 + α2 + α′′1 + α2).

Thus, we have q′ = |U| = |V|. Let us enumerate the set U and V as follows: U =
{ũ1,i,j : 1 ≤ i ≤ µ, 1 ≤ j ≤ q′i} and V = {ṽ2,i,j : 1 ≤ i ≤ µ, 1 ≤ j ≤ q′i}, where
recall that µ is the distinct number of tweaks (t1, . . . , tµ) and q′i is the number
of construction queries (t, x, y) ∈ Q0 with tweak value ti. Besides constructing
P (S ′1), P (S ′2), P−1(D′1) and P−1(D′2), we also construct two additional sets:

P (U)
∆
= {π(x⊕ h1(t)) : (t, x, y) ∈ Q0}.

P−1(V)
∆
= {π−1(y ⊕ h2(t)) : (t, x, y) ∈ Q0}.

Let X+ = (S ′1,S ′2, ,U) and Y+ = (D′1,D′2,V). Now, we state in the following
two propositions that X+ is a disjoint collection and it is inter disjoint with X.
Moreover, Y+ is a disjoint collection and it is inter disjoint with Y. We postpone
the proof of these two propositions in Supplementary Material 7.

Proposition 5. X+ is a disjoint collection and it is inter disjoint with X. More-
over, Y+ is a disjoint collection and it is inter disjoint with Y.

From Proposition 5, X+ is inter disjoint with X and Y+ is inter disjoint with Y.
Thus, we have X++ = X+ t X and Y++ = Y+ tY. It is easy to see that,

∆1
∆
= |X++| = p+ q′ + α1 + α2 + α′1 + α′′1

∆2
∆
= |Y++| = p+ q′ + α1 + α2 + α′2 + α′′2 .

Our Goal: Now, our goal is to construct the set P (S ′1), P (S ′2), P (U) and P−1(D′1),
P−1(D′2) and P−1(V) in such a way so that

1. (S ′1, P (S ′1)) becomes extendable
2. (S ′2, P (S ′2)) becomes extendable
3. (U , P (U)) becomes extendable

Similarly,

1. (P−1(D′1),D′1) becomes extendable
2. (P−1(D′2),D′2) becomes extendable
3. (P−1(V),V) becomes extendable

Note that the elements of P (S ′1) uniquely determines the elements of P−1(D′1),
elements of P−1(D′2) uniquely determines the elements of P (S ′2) and elements
of P (U) uniquely determines the elements of P−1(V). Hence, we sample the ele-
ments of P (S ′1) in such a way so that it preserves the permutation compatibility
between S ′1 and P (S ′1) and between P−1(D′1) and D′1. Similarly, we sample the
elements of P−1(D′2) in such a way so that it preserves the permutation compat-
ibility between D′2 and P−1(D′2) and between S ′2 and P (S ′2). Finally, we sample
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the elements of P (U) in such a way so that it preserves the permutation compat-
ibility between U and P (U) and between V and P−1(V). To this end, we define
the following sets: for each u, v ∈ {0, 1}n,

Xu = {(t, x, y) ∈ τc : x⊕ h1(t) = u}
Yv = {(t, x, y) ∈ τc : y ⊕ h2(t) = v}

Step-I: Construct set P (S ′1) and P−1(D′1). Let N1 be the number of tu-

ple of distinct values (v′1,1, . . . , v
′
1,α′1

) in {0, 1}n \Y++ such that it satisfies the

following two conditions:

• for each i ∈ [α′1] and for each (t, x, y) ∈ Xs′1,i , v
′
1,i ⊕ h1(t)⊕ h2(t) /∈ X++

• for each i ∈ [α′1], for each (t, x, y) ∈ Xs′1,i , for each j < i and for each

(t′, x′, y′) ∈ Xs′1,j , v
′
1,i ⊕ h1(t)⊕ h2(t) 6= v′1,j ⊕ h1(t′)⊕ h2(t′)

Let Z1 be the set of all tuple of distinct values (v′1,1, . . . , v
′
1,α′1

) in {0, 1}n \Y++

that satisfies the above two conditions. Note that, |{0, 1}n \Y++| = (N − (p+
q′+α1 +α2 +α′2 +α′′2)). Moreover, the first condition excludes at most (p+ q′+
α1 + α2 + α′1 + α′′1)|Xs′1,i | values for v′1,i and the last condition excludes at most

|Xs′1,i | · (|Xs′1,1 |+ . . .+ |Xs′1,i−1
|) ≤ α′2 · |Xs′1,i | values for v′1,i. Thus, one has

|Z1| = N1 ≥
α′1−1∏
i=0

(
N −∆2 − i− (∆1 + α′2)|Xs′1,i+1

|
)
. (13)

We set P (S ′1) = {v′1,1, . . . , v′1,α′1} and P−1(D′1) = {v′1,i ⊕ h1(t) ⊕ h2(t) : i ∈
[α′1], (t, x, y) ∈ Xs′1,i}. Note that such assignment makes (S ′1, P (S ′1)) extendable

and (P−1(D′1),D′1) extendable. It is easy to see that P (S ′1) is disjoint with each
set of Y++ and P−1(D′1) is disjoint with each set of X++. Thus, we have, X3+ =

X++tP−1(D′1) and Y3+ = Y++tP (S ′1). Moreover, ∆3
∆
= |X3+| = ∆1 +α′2 and

∆4
∆
= |Y3+| = ∆2 + α′1.

Step-II: Construct set P (S ′2) and P−1(D′2). Let N2 be the number of tu-

ple of distinct values (u′′2,1, . . . , u
′′
2,α′′2

) in {0, 1}n \ X3+ such that it satisfies the

following two conditions:

• for each i ∈ [α′′2 ] and each (t, x, y) ∈ Yd′′2,i , u
′′
2,i ⊕ h1(t)⊕ h2(t) /∈ Y3+

• for each i ∈ [α′′2 ], for each (t, x, y) ∈ Yd′′2,i , for each j < i and for each

(t′, x′, y′) ∈ Yd′′1,j , u
′′
1,i ⊕ h1(t)⊕ h2(t) 6= u′′1,j ⊕ h1(t′)⊕ h2(t′)

Let Z2 be the set of all tuple of distinct values (u′′2,1, . . . , u
′′
2,α′2

) in {0, 1}n \X3+

that satisfies the above two conditions. Note that, |{0, 1}n \X3+| = (N − (∆1 +
α′2)). Moreover, the first condition excludes at most (∆2+α′1)|Yd′′2,i | values for u′′2,i
and the last condition excludes at most |Yd′′2,i |·(|Yd′′2,1 |+. . .+|Yd′′2,i−1

|) ≤ α′′1 ·|Yd′′2,i |
values for u′′2,i. Thus, one has

|Z2| = N2 ≥
α′′2−1∏
i=0

(
N −∆3 − i− (∆4 + α′′1)|Yd′′2,i+1

|
)
. (14)
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We set P−1(D′2) = {u′′2,1, . . . , u′′2,α′′2 } and P (S ′2) = {u′′2,i ⊕ h1(t) ⊕ h2(t) : i ∈
[α′′2 ], (t, x, y) ∈ Yd′′2,i}. Note that such assignment makes (S ′2, P (S ′2)) extendable

and (D′2, P−1(D′2)) extendable.

It is easy to see that P (S ′2) is disjoint with each set of Y3+ and P−1(D′2) is
disjoint with each set of X3+. Thus, we have, X4+ = X3+ tP−1(D′2) and Y4+ =

Y3+ t P (S ′2). Moreover, ∆
∆
= |X4+| = ∆3 + α′′2 = ∆4 + α′′1 = |Y4+|. Let X0 =

X+4 \ U and Y0 = Y+4 \ U . For a fixed choice of elements from Z1 and Z2, we
have,

p̂ = Pr[π←$Pn : X0 \ X
π7→ Y0 \Y | X

π7→ Y] =
1

(N − (p+ α1 + α2))∆′
, (15)

where ∆′ = ∆ − (p + q′ + α1 + α2). Now, we come to the last step in the
construction of sets, i.e., we construct set P (U) and P−1(V.)

Step-III: Construct set P (U) and P−1(V). Recall that q′ = q− (α1 +α2 +

α′′1 + α′2). Let us consider the following parameter:

M =
q′

N1/3

such that q′ − 3M = q′/2, which holds true for n ≥ 9. Let p′ = (p + α1 + α2 +
α′1 +α′2 +α′′1 +α′′2) and q′′ = q′− 2α for some α such that 0 ≤ α ≤M . We know
that (q1 + . . . + qµ) = q. Now, for each i ∈ [µ], we define q′′i and q′i such that
q′′i ≤ q′i ≤ qi and

µ∑
i=1

q′i = q′,

µ∑
i=1

q′′i = q′′, q′′i = q′i − θi, for some θi, 1 ≤ i ≤ µ

Let Z0 be the tuple of distinct values that makes (U , P (U)) extendable and
(P−1(V),V) extendable. Let N0 be the number of such tuples. Then, we have
the following result:

Lemma 6. Let N0, p
′, q′, q′′i , α,M be defined as above. Moreover, µ is the dis-

tinct number of tweaks appearing in the construction query transcript. Then,

N0 ≥
∑

0≤α≤M

(q′)2α

α!
· (1− ε0) ·

µ∏
i=1

(
N − 2p′ − 2q′ − 2α− 2

i−1∑
k=1

q′′k

)
q′′i

,

where ε0 = 4q/N2/3 + 24q2/N4/3 + 24
√
nq/N1/3 + 48

√
q/N1/3. Moreover, P (U)

is disjoint with each set of Y4+, P−1(V) is disjoint with each set of X4+. Even
more, the number of input-ouput pairs on which a random permutation π becomes
fixed to map U to P (U) and P−1(V) to V is 3α+ 2q′′

Note that, the number of way of choosing the tuple looks different than that
of N1 and N2 (which looks alike). This is because, we are allowing collisions
between P (U) and U . In other words, if P (U) ∩ U = φ, then we end up with
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birthday bound term. Due to this enforcement of collision, the counting of the
set Z0 becomes involved and hence we postpone the proof of the lemma in
Supplementary Material 9.

From Lemma 6 and Eqn. (15) and for a fixed choice of elements from Z0,Z1 and
Z2, we have,

p̂2 = Pr[π←$Pn : X0 \ X
π7→ Y0 \Y

∧
π 7→ (U , P (U))

∧
π 7→ (P−1(V),V) | X π7→ Y]

=
1

(N − p− α1 − α2)∆′+3α+2q′′
(16)

From Eqn. (13), Eqn. (14), Eqn. (16) and Lemma 6, we have,

p2(τ) = N0 · N1 · N2 ·
1

(N − p− α1 − α2)∆′+3α+2q′′
, (17)

where ∆′ = ∆− (p+ q′ + α1 + α2).

4.4 Final Step of the Proof

In this section we finalize the proof by combining the results derived in section 4.2
and section 4.3. We once again recall here the following parameters:

∆1 = p+ q′ + α1 + α2 + α′1 + α′′1

∆2 = p+ q′ + α1 + α2 + α′2 + α′′2

∆3 = p+ q′ + α1 + α2 + α′1 + α′′1 + α′2s

∆4 = p+ q′ + α1 + α2 + α′2 + α′′2 + α′1

∆ = p+ q′ + α1 + α2 + α′1 + α′′1 + α′2 + α′′2

Moreover, we would like to recall that α′1 ≤
√
q, α′2 ≤

√
q, α′′1 ≤

√
q and α′′2 ≤

√
q.

Now, from Eqn. (11), Eqn. (12) and Eqn. (17), we have

p(τ) ·
µ∏
i=1

(N)qi = N0 · N1 · N2 ·

µ∏
i=1

(N)qi

(N − p)∆+3α+2q′′−p−q′

=
N1

(N − p)α′1︸ ︷︷ ︸
N1

· N2

(N − p− α′1)α′′2︸ ︷︷ ︸
N2

·
N0 ·

µ∏
i=1

(N)qi

(N − p− α′1 − α′′2)α1+α2+α′′1 +α′2+3α+2q′′︸ ︷︷ ︸
N0

Ahead of the calculation, we have

N1 ≥

(
1−

(
2p
√
q

N
+

3q3/2

N
+

3q

N

))
(18)

N2 ≥

(
1−

(
2p
√
q

N
+

3q3/2

N
+

2q

N

))
(19)

N0 ≥
(

1− 4q3/2

N
− 10q

N2/3
−

4q(p+ 6
√
q + 3q)2

N2
− 14q2

N4/3
− ε0

)
. (20)
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where ε0 = 4q/N2/3+24q2/N4/3+24
√
nq/N1/3+48

√
q/N1/3. Derivation of these

bounds can be found in Supplementary Material 10. Finally, from Eqn. (18),
Eqn. (19) and Eqn. (20), we have

p(τ)

1/
µ∏
i=1

(N)qi

≥
(

1−
(

4p
√
q

N
+

10q3/2

N
+

10q

N2/3
+

4q(p+ 6
√
q + 3q)2

N2
+

14q2

N4/3
+

5q

N

)
︸ ︷︷ ︸

ε1

−ε0
)

Therefore, for a good transcript τ and from Lemma 1 and Lemma 6, we have

pre(τ)

pid(τ)
≥ 1−

(
4p
√
q

N
+

10q3/2

N
+

14q

N2/3
+

4q(p+ 6
√
q + 3q)2

N2
+

38q2

N4/3
+

5q

N

+
24
√
nq

N1/3
+

48
√
q

N1/3

)
.

This proves Lemma 5. ut

5 BBB Security of Two Permutations Variant of 4-TEM

5.1 Security Statement

In this section, we state the security result of two permutation based 4-TEM
construction. Let k1, k2←$ {0, 1}n be two independently chosen random n-bit
keys. Then, the two permutations variant of 4-TEM is defined as

4-TEMπ1,π2

k1,k2
(t, x) = k1 ⊕ t⊕ π1(k2 ⊕ t⊕ π2(k1 ⊕ t⊕ π2(k2 ⊕ t⊕ π1(k1 ⊕ t⊕ x)))),

where π1, π2 ∈ Pn be two independently sampled n-bit public random permu-
tations, k1←$ {0, 1}n, k2←$ {0, 1}n be two independently sampled n-bit key,
t ∈ {0, 1}n is the tweak and x ∈ {0, 1}n is the plaintext. For convenience, we
refer the two permutations based 4-TEM construction as 4-TEM+. The main
result of this section is to prove the following:

Theorem 3. Let A be any adaptive deterministic distinguisher that makes q
many construction queries with µ distinct tweaks and p many primitive queries
in both the forward and the backward directions. Then,

Advtsprp
4-TEM+(A) ≤

(
3qp2

N2
+

31pq2

N2
+

21p
√
q

N
+

31q3/2 + 2p3/2)

N
+

3p
√
nq + 2

N
+

14q

N2/3

+
4q(p+ 6

√
q + 3q)2

N2
+

38q2

N4/3
+

5q

N
+

24
√
nq

N1/3
+

48
√
q

N1/3
+

4q
√
p

N
+

4q3

N2

)
.

5.2 Definition and Probability of Bad Transcripts

For a transcript τ = (τc, τp1 , τp1 , k1, k2), we define U (b) = Dom(τpb) = {u(b) ∈
{0, 1}n : (u(b), v(b)) ∈ τpb}, the domain of primitive queries and V (b) = Ran(τpb) =
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{v(b) ∈ {0, 1}n : (u(b), v(b)) ∈ τpb}, the range of primitive queries for b ∈ {1, 2}.
For a transcript τ = (τc, τp1 , τp1 , k1, k2), we associate the following parameters:

ν1
∆
= |{

(
(t, x, y), (u(1), v(1))

)
∈ τc × τp1 : k1 = x⊕ t⊕ u(1)}|

ν2
∆
= |{

(
(t, x, y), (u(2), v(2))

)
∈ τc × τp2 : k1 = u(2) ⊕ v(2) ⊕ t}|

ν3
∆
= |{

(
(t, x, y), (u(2), v(2))

)
∈ τc × τp2 : k1 ⊕ k2 = x⊕ v(2)}|

ν3
∆
= |{

(
(t, x, y), (u(2), v(2))

)
∈ τc × τp2 : k1 ⊕ k2 = y ⊕ u(2)}|

ν4
∆
= |{

(
(t, x, y), (u(1), v(1))

)
∈ τc × τp1 : k1 = y ⊕ t⊕ u(1)}|

ν5
∆
= |{

(
(t, x, y), (t′, x′, y′), (u(2), v(2))

)
∈ (τc)

2 × τp2 : k1 ⊕ k2 = x⊕ t⊕ v(2) ⊕ t′}|

Moreover, we also have

ν′5
∆
= |{

(
(t, x, y), (t′, x′, y′), (u(2), v(2))

)
∈ (τc)

2 × τp2 : k1 ⊕ k2 = y ⊕ t⊕ u(2) ⊕ t′}|

ν2,3
∆
= |{

(
(t, x, y), (u(2), v(2)), (u′(2), v′(2))

)
∈ τc × (τp2)2 : k1 = u(2) ⊕ v′(2) ⊕ t}|

ν6
∆
= |{

(
(t, x, y), (t′, x′, y′), (u(1), v(1)), (u(2), v(2))

)
∈ (τc)

2 × τp1 × τp2 :

x⊕ k1 ⊕ t = u(1), v(1) ⊕ v(2) ⊕ t⊕ t′ = k1 ⊕ k2}|

ν7
∆
= |{

(
(u(2), v(2)), (u′(2), v′(2))

)
∈ (τp2)2 : (u(2), v(2)) 6= (u′(2), v′(2))

u(2) ⊕ v(2) = u′(2) ⊕ v′(2)}|

Definition 2 (Bad Transcript). An attainable transcript τ ′ = (τc, τp1 , τp2 , k1, k2)
is called a bad transcript if any one of the following condition holds:

- B.1: ∃ i ∈ [q], j, j′ ∈ [p] such that k1 ⊕ ti = xi ⊕ u(1)
j = yi ⊕ v(1)

j′ .

- B.2: ∃ i ∈ [q], j, j′ ∈ [p] such that xi ⊕ k1 ⊕ ti = u
(1)
j , v

(1)
j ⊕ k2 ⊕ ti = u

(2)
j′ .

- B.3: ∃ i ∈ [q], j, j′ ∈ [p] such that yi ⊕ k1 ⊕ ti = v
(1)
j , u

(1)
j ⊕ k2 ⊕ ti = v

(2)
j′ .

- B.4: ν1 ≥
√
q.

- B.5: ν2 ≥
√
q.

- B.6:ν3 ≥
√
q.

- B.7: ν′3 ≥
√
q.

- B.8: ν4 ≥
√
q.

- B.9: ν5 ≥ p
√
q.

- B.10: ν′5 ≥ p
√
q.

- B.11: ν2,3 ≥ p
√
q.

- B.12: ν6 ≥ p
√
q.

- B.13: ν7 ≥
√
p.

Recall that, we denote Θb (resp. Θg) the set of bad (resp. good) transcripts.
Then we have the following result:

Lemma 7 (Bad Lemma). Let τ = (τc, τp1 , τp2 , k1, k2) be any attainable tran-
script. Let Did and Θb be defined as above. Then

Pr[Did ∈ Θb] ≤ εbad =
3qp2

N2
+

3pq2

N2
+

5p
√
q

N
+

2(q3/2 + p3/2)

N
+

3p
√
nq + 2

N
.

Proof of this lemma is deferred to Supplementary Material 11.
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5.3 Analysis of Good Transcripts

In this section, we state that for a good transcript τ = (τc, τp1 , τp2 , k1, k2) such
that τc has µ distinct tweaks, realizing τ is almost as likely in the real world as
in the ideal world. More formally,

Lemma 8 (Good Lemma). Let τ = (τc, τp1 , τp2 , k1, k2) ∈ Θg be a good tran-
script such that τc has µ distinct tweaks. Let Dre and Did be defined as above.
Then,

Pr[Dre = τ ]

Pr[Did = τ ]
≥ 1−

(
16p
√
q

N
+

29q3/2

N
+

14q

N2/3
+

4q(p+ 6
√
q + 3q)2

N2
+

38q2

N4/3
+

5q

N

+
24
√
nq

N1/3
+

48
√
q

N1/3
+

28pq2

N2
+

4q
√
p

N
+

4q3

N2

)
.

By the grace of Lemma 1, we need to compute the following: for a good transcript
τ = (τc, τp1 , τp2 , k1, k2),

p(τ)
∆
= Pr[(π1, π2)←$ (Pn)2 : 4-TEM+π1,π2

k1,k2
7→ τc | π1 7→ τp1 , π2 7→ τp2 ]. (21)

The proof proceeds in two steps: in the first step we will lower bound that
a randomly sampled permutation π1 satisfy some good condition (definition is
given below). Then, assuming π1 is good, we will lower bound over the choice of
π2, 4-TEM+π1,π2

k1,k2
7→ τc. For the second step, we will directly appeal to the result

developed for 2-TEM+ in previous sections.

Definition 3. A permutation π1 ∈ Pn such that π1 7→ τp1 is said to be bad if it
satisfies at least one of the following conditions:

- C.1: ∃ i ∈ [q], j, j′ ∈ [p] such that π1(xi ⊕ k1 ⊕ ti)⊕ k2 ⊕ ti = u
(2)
j , π−1

1 (yi ⊕
k1 ⊕ ti)⊕ k2 ⊕ ti = v

(2)
j′ .

- C.2: ∃ i ∈ [q], j, j′ ∈ [p] such that π1(xi⊕k1⊕ti)⊕k2⊕ti = u
(2)
j , v

(2)
j ⊕k1⊕ti =

u
(2)
j′ .

- C.3: ∃ i ∈ [q], j, j′ ∈ [p] such that π−1
1 (yi ⊕ k1 ⊕ ti) ⊕ k2 ⊕ ti = v

(2)
j , u

(2)
j ⊕

k1 ⊕ ti = v
(2)
j′ .

- C.4: ∃ i, i′ ∈ [q], j ∈ [p] such that π1(xi⊕k1⊕ti)⊕k2⊕ti = u
(2)
j , v

(2)
j ⊕k1⊕ti =

π1(xi′ ⊕ k1 ⊕ ti′)⊕ k2 ⊕ ti′ .
- C.5: ∃ i, i′ ∈ [q], j ∈ [p] such that π1(yi⊕k1⊕ti)⊕k2⊕ti = v

(2)
j , u

(2)
j ⊕k1⊕ti =

π−1
1 (yi′ ⊕ k1 ⊕ ti′)⊕ k2 ⊕ ti′ .

- C.6: ∃ i, i′ ∈ [q], j ∈ [p] such that π1(xi ⊕ k1 ⊕ ti)⊕ k2 ⊕ ti = u
(2)
j , π−1

1 (yi ⊕
k1 ⊕ ti)⊕ ti = π−1

1 (yi′ ⊕ k1 ⊕ ti′)⊕ ti′ .
- C.7: ∃ i, i′ ∈ [q], j ∈ [p] such that π−1

1 (yi ⊕ k1 ⊕ ti)⊕ k2 ⊕ ti = v
(2)
j , π1(xi ⊕

k1 ⊕ ti)⊕ ti = π1(xi′ ⊕ k1 ⊕ ti′)⊕ ti′ .
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- C.8: ∃ i, i′ ∈ [q] such that π1(xi⊕k1⊕ti)⊕ti = π1(xi′⊕k1⊕ti′)⊕ti′ , ti = ti′ .

- C.9: ∃ i, i′ ∈ [q] such that π−1
1 (yi⊕k1⊕ti)⊕ti = π−1

1 (yi′⊕k1⊕ti′)⊕ti′ , ti = ti′ .

- C.10: ∃ i, i′, i′′ ∈ [q] such that π1(xi ⊕ k1 ⊕ ti) ⊕ ti = π1(xi′ ⊕ k1 ⊕ ti′) ⊕
ti′ , π

−1
1 (yi ⊕ k1 ⊕ ti)⊕ ti = π−1

1 (yi′′ ⊕ k1 ⊕ ti′′)⊕ ti′′ .
- C.11: ∃ i, i′ ∈ [q], j, j′ ∈ [p] such that π1(xi⊕k1⊕ti)⊕k2⊕ti = u

(2)
j , pi1(xi′⊕

k1 ⊕ ti′)⊕ k2 ⊕ ti′ = u
(2)
j′ , v

(2)
j ⊕ ti = v

(2)
j′ ⊕ ti′ .

- C.12: ∃ i, i′ ∈ [q], j, j′ ∈ [p] such that π−1
1 (yi⊕k1⊕ti)⊕k2⊕ti = v

(2)
j , π−1

1 (yi′⊕
k1 ⊕ ti′)⊕ k2 ⊕ ti′ = v

(2)
j′ , u

(2)
j ⊕ ti = u

(2)
j′ ⊕ ti′ .

- C.13: D ∆
= |{(ti, xi, yi), (tj , xj , yj), (tk, xk, yk) ∈ τc : π−1

1 (yi ⊕ k1 ⊕ ti)⊕ k2 ⊕
ti ⊕ k1 ⊕ tj = π1(xk ⊕ k1 ⊕ tk)⊕ k2 ⊕ tk ⊕ k1 ⊕ tj}| ≥ 3q3/N + 3q

√
nq.

- C.14: α1
∆
= |{

(
(t, x, y), (u(2), v(2))

)
∈ τc × τp2 : π1(x ⊕ k1 ⊕ t) ⊕ k2 ⊕ t =

u(2)}| ≥ √q.

- C.15: α2
∆
= |{

(
(t, x, y), (u(2), v(2))

)
∈ τc × τp2 : π−1

1 (y ⊕ k1 ⊕ t) ⊕ k2 ⊕ t =

v(2)}| ≥ √q.

- C.16: β1
∆
= |{

(
(t, x, y), (t′, x′, y′)

)
∈ (τc)

2 : (t, x, y) 6= (t′, x′, y′), π1(x ⊕ k1 ⊕
t)⊕ t = π1(x′ ⊕ k1 ⊕ t′)⊕ t′}| ≥

√
q.

- C.17: β2
∆
= |{

(
(t, x, y), (t′, x′, y′)

)
∈ (τc)

2 : (t, x, y) 6= (t′, x′, y′), π−1
1 (y ⊕ k1 ⊕

t)⊕ t = π−1
1 (y′ ⊕ k1 ⊕ t′)⊕ t′}| ≥

√
q.

Let Pb be the set of all permutations π1 such that π1 7→ τp1 and satisfies at least
one of the above events. Let Pg = Pn \ Pb. Then, we have the following lemma

Lemma 9. Let Pb be the set of bad permutations π1 such that π1 7→ τp1 . Then,

Pr[π1←$Pn : π1 ∈ Pb] ≤
28pq2

N2
+

12p
√
q

N
+

19q3/2

N
+

4q
√
p

N
+

4q3

N2
.

We defer the proof of the lemma to Supplementary Material 12. Having stated
the result, we now move to the second step of the proof.

Second Step of the proof. We fix a permutation π1 ∈ Pn that satisfies
π1 7→ τp1 . Then, we define a new query transcript and denote the following:

τ̃c
∆
= {(t, π1(x⊕ t⊕ k1), π−1

1 (y ⊕ t⊕ k1) : (t, x, y) ∈ τc}.

p̃(τ, π1)
∆
= Pr[π2←$Pn : 4-TEM+π2

k1,k2
7→ τ̃c | π2 7→ τp2 ].

Once π1 is fixed, 4-TEM+π1,π2

k1,k2
7→ τc is equivalent to 4-TEM+π2

k1,k2
7→ τ̃c. Therefore,

following Lemma 5 of [9], we have for a good transcript τ ,

Pr[Dre = τ ]

Pr[Did = τ ]
≥
∑
π1∈Pg

p̃(τ, π1)

(N − p)!
µ∏
i=1

1/(N)qi

, (22)
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where recall that qi is the number of construction queries in τc with tweak value
ti. Moreover, note that the query transcripts τ ′ = (τc, τp2) satisfies exactly the
conditions defining a good transcript as per Defn. 1. Moreover, for a good permu-

tation π1, the ratio p̃(τ, π1)/
µ∏
i=1

1/(N)qi is exactly the ratio of the probabilities

to get τ ′ in the real and in the ideal world. Hence, we can apply Lemma 5 to
yield

p̃(τ, π1)
µ∏
i=1

1/(N)qi

≥ 1−
(

4p
√
q

N
+

10q3/2

N
+

14q

N2/3
+

4q(p+ 6
√
q + 3q)2

N2
+

38q2

N4/3
+

5q

N

+
24
√
nq

N1/3
+

48
√
q

N1/3

)
. (23)

Finalizing the proof. Let

ε =
4p
√
q

N
+

10q3/2

N
+

14q

N2/3
+

4q(p+ 6
√
q + 3q)2

N2
+

38q2

N4/3
+

5q

N
+

24
√
nq

N1/3
+

48
√
q

N1/3
.

ε0 =
28pq2

N2
+

12p
√
q

N
+

19q3/2

N
+

4q
√
p

N
+

4q3

N2
.

From Eqn. (22) and Eqn. (23), we have

Pr[Dre = τ ]

Pr[Did = τ ]
≥
(

1− ε
)∑
π1∈Pg

1

(N − p)!
=

(
1− ε

)
· Pr[π1 ∈ Pg]

=

(
1− ε

)
·
(

1− Pr[π1 ∈ Pb]
)

(1)

≥
(

1− ε
)
·
(

1− ε0
)

≥
(

1− ε− ε0
)
,

where (1) follows from Lemma 9. By substituting the value of ε0 and ε, the result
follows. ut

6 Conclusion

This work shows that single permutation based 2-TEM and two-independent
permutations based 4-TEM are beyond birthday bound secure TEM. As already
mentioned that it would be interesting to investigate the security of 2-TEM+

and 4-TEM+ with reduced number of keys. We also conjecture that single per-
mutation based 4-TEM (i.e., make all permutations of 4-TEM identical) is also
beyond the birthday bound secure, but we currently we do not know how to
prove its security.

Acknowledgement: This work has been done in Indian Institute of Technology,
Kharagpur.
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Supplementary Material

7 Proofs of Leftover Propositions

Proposition 3. Every element of D1 is distinct and does not collide with any
primitive query output. Similarly, every element of S2 is distinct and does not
collide with any primitive query input.

Proof. Distinct property of D1 follows from ¬B.6. Moreover, if any elements of
D1 collides with any primitive query output then it would satisfy condition B.1.
This says that D1 ∩ V = φ⇒ D1 ∩ D2 = φ and hence |D1| = α1.

By similar reasoning, we claim that every element of S2 is unique (otherwise
satisfies condition B.7) and does not collide with any primitive query input
(otherwise satifies condition B.1). Hence, S2 ∩ U = φ⇒ S2 ∩ S1 = φ and hence
|S2| = α2. ut

Proposition 4. Every element of X1 is distinct and X1 ∩ S1 = φ,X1 ∩ S2 = φ.
Moreover, every element of X2 is distinct and X2 ∩ D1 = φ,X2 ∩ D2 = φ.

Proof. For the sake of contradiction, let us assume that vi ⊕ h1(ti) ⊕ h2(ti) =
vj⊕h1(tj)⊕h2(tj) for some vi⊕h1(ti)⊕h2(ti), vj⊕h1(tj)⊕h2(tj) ∈ X1. But this
implies the condition B.11 to hold, which implies that τ is not a good transcript.
Thus, every element of X1 is distinct. Moreover, none of the elements of X1

collides with any primitive query input, othwerwise it would satisfy condition
B.2. This implies that X1 ∩ S1 = φ. Moreover, X1 ∩ S2 = φ which follows due
to ¬B.4. Thus, we have, X1 ∩ U = φ ⇒ X1 ∩ S1 = φ and X1 ∩ S2 = φ. Hence,
|X1| = α1.

For the second part of the proof, for the sake of contradiction, let us assume that
ui⊕h1(ti)⊕h2(ti) = uj⊕h1(tj)⊕h2(tj) for some ui⊕h1(ti)⊕h2(ti), uj⊕h1(tj)⊕
h2(tj) ∈ X2. But this implies the condition B.12 to hold, which implies that τ is
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not a good transcript. Thus, every element of X2 is distinct. Moreover, none of
the elements of X2 collides with any primitive query output, otherwise it would
satisfy condition B.3. This implies that X2 ∩ D2 = φ. Moreover, X2 ∩ D2 = φ
which follows due to ¬B.5. Thus, we have, X2 ∩ V = φ ⇒ X2 ∩ D1 = φ and
X2 ∩ D2 = φ. Hence, |X2| = α2. ut
Proposition 5. X+ is a disjoint collection and it is inter disjoint with X. More-
over, Y+ is a disjoint collection and it is inter disjoint with Y.

Proof. S ′1 ∩ S ′2 = φ follows from ¬B.10. Moreover, S ′1 ∩ U = φ follows from the
definition of U . Similarly, S ′2∩U = φ. This proves that X+ is a disjoint collection.
To prove the second part, recall that X = {U,X1,S2}. S ′1 ∩ U = φ follows
trivially from the definition of S ′1 which implies that S ′1 ∩ S1 = φ. We also have
S ′1 ∩ X1 = φ. Otherwise condition B.4 would be satisfied. S ′1 ∩ S2 = φ follows
from ¬B.7.

Similarly, S ′2∩U = φ otherwise condition B.6 would be satisfied. This also implies
that S ′2 ∩ S1 = φ. S ′2 ∩ S2 = φ follows trivially from the definition of S ′2 and
S ′2 ∩ X1 = φ follows from ¬B.4

U ∩U = φ follows from definition of U which also implies U ∩S1 = φ. U ∩X1 = φ
follows from ¬B.4. U ∩ S2 = φ follows from the definition of U . This proves the
second part of the proposition.

For the third part of the proof, D′1 ∩ D′2 = φ follows from ¬B.10. Moreover,
D′1 ∩ V = φ follows from the definition of V. Similarly, D′2 ∩ V = φ. This proves
the first part of the proposition.

To prove the last part, recall that Y = {V,D1,X2}. D′1 ∩ V = φ follows from
¬B.7 which implies that D′1 ∩ D2 = φ. We also have D′1 ∩ D1 = φ which follows
trivially from the definition. D′1 ∩ X2 = φ follows from ¬B.5.

Moreover, D′2 ∩ V = φ follows from the definition of D′2 which implies that
D′2 ∩ D2 = φ. We also have D′2 ∩ D1 = φ which follows from ¬B.6. D′2 ∩ X2 = φ
follows from ¬B.5.

V ∩ V = φ follows from the definition of V which implies that V ∩ D2 = φ. Due
to the definition of V, V ∩D1 = φ. Moreover, V ∩X2 = φ follows from ¬B.5. This
proves that Y+ is inter disjoint with Y. ut

8 Bounding Remaining Bad Events for 2-TEM+

In this section, we bound part (A). More formally, we show that

§ : A ≤ 3qp2

N2 + 3q2

2N2 + q3

6N2 +
2p
√
q

N + q+2
N + q3/2

N .

Bounding B.1, B.2 and B.3. We consider the event B.1. For a fixed (ti, xi, yi) ∈
τc and for a fixed (uj , vj), (uj′ , vj′) ∈ τp, one has by the regularity of H and h1

and h2 are drawn independent to each other,

Pr[h1(ti) = xi ⊕ uj , h2(ti) = yi ⊕ vj′ ] ≤
1

N2
.
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By summing over all possible choices of (ti, xi, yi) ∈ τc, (uj , vj), (uj′ , vj′) ∈ τp,
we have

Pr[B.1] ≤ qp2

N2
. (24)

Similarly, for B.2 and B.3 by the regularity of H and h1 and h2 are drawn
independent to each other, one has

Pr[B.2] ≤ qp2

N2
, Pr[B.3] ≤ qp2

N2
. (25)

Bounding B.6 and B.7. We consider the event B.6. For a fixed (ti, xi, yi) 6=
(ti′ , xi′ , yi′) ∈ τc and for a fixed (uj , vj) ∈ τp, one has by the regularity and the
almost xor universal property of H and h1 and h2 are drawn independent to each
other,

Pr[h1(ti) = xi ⊕ uj , h2(ti)⊕ h2(ti′) = yi ⊕ yi′ ] ≤
1

N2
.

Note that, if ti = ti′ , the probability would have been zero as we have as-
sumed that A is a pointless distinguihser. Therefore, by summing over all possible
choices of (ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc, (uj , vj) ∈ τp, we have

Pr[B.6] ≤ pq2

2N2
. (26)

Similarly, for B.7 one obtains,

Pr[B.7] ≤ pq2

2N2
. (27)

Bounding B.8 and B.9. We consider the event B.8. For a fixed (ti, xi, yi) 6=
(ti′ , xi′ , yi′) ∈ τc, one has by the almost xor universal property of H and h1 and
h2 are drawn independent to each other,

Pr[h1(ti)⊕ h1(ti′) = xi ⊕ xi′ , h2(ti)⊕ h2(ti′) = h1(ti)⊕ h1(ti′)] ≤
1

N2
.

Note that, if ti = ti′ , the probability would have been zero as we have as-
sumed that A is a pointless distinguisher. Therefore, by summing over all possible
choices of (ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc, we have

Pr[B.8] ≤ q2

2N2
. (28)

Similarly, for B.9 one obtains,

Pr[B.9] ≤ q2

2N2
. (29)

Bounding B.10. For a fixed (ti, xi, yi), (ti′ , xi′ , yi′), (ti′′ , xi′′ , yi′′) ∈ τc, one has
by the almost xor universal property of H and h1 and h2 are drawn independent
to each other,

Pr[h1(ti)⊕ h1(ti′) = xi ⊕ xi′ , h2(ti)⊕ h2(ti′′) = yi ⊕ yi′′ ] ≤
1

N2
.
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Note that, if ti = ti′ or ti = ti′′ , the probability would have been zero as we have
assumed that A is a pointless distinguisher. However, ti′ could be equal to ti′′ .
In that case, by summing over all possible choices of (ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc,
we have

Pr[B.10] ≤ q2

2N2
. (30)

However, if ti′ 6= ti′′ , then by summing over all possible choices of (ti, xi, yi),
(ti′ , xi′ , yi′), (ti′′ , xi′′ , yi′′) ∈ τc, we have

Pr[B.10] ≤ q3

6N2
. (31)

Therefore, by combining the probability of the two events, we have

Pr[B.10] ≤ q3

6N2
+

q2

2N2
. (32)

Bounding B.11 ∨B.14. In this case, we bound the union of B.11 and B.14.
Thus, we have

Pr[B.11 ∨ B.14] = Pr[B.14] + Pr[B.11 \ B.14]. (33)

Let Iij be a indicator random variable that takes the value 1 if xi⊕h1(ti) = uj for
some (ti, xi, yi) ∈ τc and (uj , vj) ∈ τp. Otherwise, it takes the value 0. Therefore,

α1 =

q∑
i=1

p∑
j=1

Ii,j .

By the linearity of expectation, we have

E[α1] =

q∑
i=1

p∑
j=1

E[Ii,j ] =

q∑
i=1

p∑
j=1

Pr[xi ⊕ h1(ti) = uj ] ≤
qp

N
, (34)

where the last inequality follows due to the almost regularity of H. Therefore,
by applying Markov’s inequality, we have

Pr[B.14] = Pr[α1 ≥
√
q] ≤ E[α1]

√
q
≤
p
√
q

N
. (35)

Now to bound the probability of the event B.11\B.14, we have at most q/2 pairs
of ((i, j), (i′, j′)) such that xi⊕h1(ti) = uj and xi′ ⊕h1(ti′) = uj′ . For each such
pairs, one has

Pr[h2(ti)⊕ h2(ti′) = vj ⊕ vj′ ⊕ h1(ti)⊕ h1(ti′)] ≤
1

N
,

where the last inquality follows due to the almost xor universal property of H.
Therefore, by summing over all possible choices of (ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc
and (uj , vj), (uj′ , vj′) ∈ τp, we have

Pr[B.11 \ B.14] ≤ q

2N
. (36)
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By combining Eqn. (35), Eqn. (36) and Eqn. (33) we have

Pr[B.11 ∨ B.14] ≤
p
√
q

N
+

q

2N
. (37)

Bounding B.12 ∨B.15. In this case, we bound the union of B.12 and B.15.
Thus, we have

Pr[B.12 ∨ B.15] ≤ Pr[B.15] + Pr[B.12 \ B.15]. (38)

Using the similar argument, one has

Pr[B.15] ≤
p
√
q

N
, Pr[B.12 \ B.15] ≤ q

2N
. (39)

By combining Eqn. (39) and Eqn. (38), we have

Pr[B.12 ∨ B.15] ≤
p
√
q

N
+

q

2N
. (40)

Bounding B.16. First we consider the event β1 ≥
√
q. For this, let Iii′ be a

indicator random variable that takes the value 1 if xi⊕ h1(ti) = xi′ ⊕ h1(ti′) for
some (ti, xi, yi) 6= (ti′ , xi′ , yi′) ∈ τc. Otherwise, it takes the value 0. Therefore,

β1 =

q∑
i6=i′

Ii,i′ .

By the linearity of expectation, we have

E[β1] =

q∑
i 6=i′

E[Ii,i′ ] =

q∑
i6=i′

Pr[h1(ti)⊕ h1(ti′) = xi ⊕ xi′ ] ≤
q2

2N
, (41)

where the last inequality follows due to the almost xor universal property of H.
Moreover, if ti = ti′ , then the probability would have been zero as we have as-
sumed that the distinguisher A is pointless. Therefore, by applying the Markov’s
inequality, we have

Pr[β1 ≥
√
q] ≤ E[β1]

√
q
≤ q3/2

2N
. (42)

Similarly, one obtains,

Pr[β2 ≥
√
q] ≤ E[β1]

√
q
≤ q3/2

2N
. (43)

Therefore, by combining Eqn. (42) and Eqn. (43), one has

Pr[B.16] ≤ q3/2

N
. (44)

Therefore, by combining Eqn. (24)-Eqn. (44), the inequality (§) follows. ut
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9 Proof of Lemma 6

Recall that q′ is the number of construction queries that are not involved in any
input or output collisions. Moreover, none of them collides with the input or
output of any primitive query. Formally, q′ = |Q0| and hence, q′ = |U| = |V|
where recall that,

U = {x⊕ h1(t) : (t, x, y) ∈ Q0}
V = {y ⊕ h2(t) : (t, x, y) ∈ Q0}

Recall that Z0 is the set of all tuples of distinct values (v′′1,1, . . . , v
′′
1,q′) that

we are about to sample from a particular set in such a way that preserves the
permutation comptability between U and P (U) and between P−1(V) and V. One
such obvious way to preserve the permutation compatibility is to sample each
v′′1,i from {0, 1}n \Y4+ such that it satisfies the following two conditions:

• for each i ∈ [q′], v′′1,i ⊕ h1(ti)⊕ h2(ti) /∈ X4+

• for each i ∈ [q′] and for each j < i, v′′1,i⊕h1(ti)⊕h2(ti) 6= v′′1,j⊕h1(tj)⊕h2(tj)

However, such a way of sampling generate a birthday bound term in the counting
of Z0. The reason for arising birthday bound term is that we are not allowing
any collision. Therefore, to get rid of the birthday bound term, we have to allow
some collisions. To be precise, we have to allow that sampled output v′′1,i collides
with some yj ⊕ h2(tj) or v′′1,i ⊕ h1(ti) ⊕ h2(ti) collides with some xj ⊕ h1(tj).
However, such collisions generate an obvious dependency: if for some i ∈ [q′],
v′′1,i ⊕ h1(ti) ⊕ h2(ti) = xj ⊕ h1(tj) for some j ∈ [q′] such that j 6= i, then we
cannot sample v′′1,j as

v′′1,j = yi ⊕ h2(ti).

Similarly, if for some i ∈ [q′], v′′1,i = yj ⊕ h2(tj) for some j ∈ [q′] such that j 6= i,
then we cannot sample v′′1,j as

v′′1,j ⊕ h1(tj)⊕ h2(tj) = xi ⊕ h1(ti).

As we will see now, it will be sufficient to consider permutations π such that
pi(x⊕h1(t))⊕h1(t)⊕h2(t) = x′⊕h1(t′) for α pairs of queries ((t, x, y), (t′, x′, y′)),
for some sufficiently large α. However, we must have to ensure that the choice
of these α pairs do not create constraints incopatible with any queries in the
transcript. To this end, we define good pairs of queries.

Let S = {
(
(σ1, ξ1), (σ′1, ξ

′
1)
)
, . . . ,

(
(σα, ξα), (σ′α, ξ

′
α)
)
} be some unordered set of

ordered pairs, where

σi = xi ⊕ h1(ti), ξi = yi ⊕ h2(ti), (ti, xi, yi) ∈ Q0.

Similarly, σ′i and ξ′i are defined.

Definition 4. S = {
(
(σ1, ξ1), (σ′1, ξ

′
1)
)
, . . . ,

(
(σα, ξα), (σ′α, ξ

′
α)
)
} is said to be

good if it satisfies the following conditions:
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1. for i ∈ [α], yi ⊕ h2(ti)⊕ h1(t′i)⊕ h2(t′i) /∈ X0 ∪ U
2. for i ∈ [α], xi ⊕ h1(ti)⊕ h1(t′i)⊕ h2(t′i) /∈ Y0 ∪ V
3. yi ⊕ h2(ti)⊕ h1(t′i)⊕ h2(t′i) 6= yj ⊕ h2(tj)⊕ h1(t′j)⊕ h2(t′j) for each j < i

4. xi ⊕ h1(ti)⊕ h1(t′i)⊕ h2(t′i) 6= xj ⊕ h1(tj)⊕ h1(t′j)⊕ h2(t′j) for each j < i

A little though unleashes the fact that π(xi⊕h1(ti))⊕h1(ti)⊕h2(ti) = x′i⊕h1(t′i)
for each i ∈ [α]. This equality gives rises to another equality: π(x′i ⊕ h1(t′i)) =
yi ⊕ h2(ti). However, we do not want π(x′i ⊕ h1(t′i)) ⊕ h1(t′i) ⊕ h2(t′i) to collide
with any other x′′i ⊕ h1(t′′i ) or any other inputs of primitive queries. Thus, we
have our first constraint in the definition of good S. Similarly, we do not want
xi ⊕ h1(ti) ⊕ h1(t′i) ⊕ h2(t′i) to collide with any other y′′i ⊕ h2(t′′i ) or any other
outputs of primitive queries. Since, every output yi ⊕ h2(ti) ∈ V is distinct, we
want π(x′i ⊕ h1(t′i)) ⊕ h1(t′i) ⊕ h2(t′i) = yi ⊕ h2(ti) ⊕ h1(t′i) ⊕ h2(t′i) should be
distinct. Similar reasoning holds for the distinctness of xi⊕h1(ti)⊕h1(t′i)⊕h2(t′i).

Now, we have the following lemma which states that the number of good un-
ordered set of ordered pairs S is close to (q′)2α/α!. More formally,

Lemma 10. Let α be an integer such that 0 ≤ α ≤ M , where M = q/N1/3.
Then, the number of good sets S of α pairs of non-colliding queries is at least

NS(α) ≥ (q′)2α

α!

(
1− 4q

N2/3
− 24q2

N4/3
−

24
√
nq

N1/3
−

48
√
q

N1/3

)
.

Proof. It is easy to see that among the q′(q′ − 1) possible pairs of queries, at
most 2γ(τ) of them do not satisfy the first two conditions of Defn. 4. We lower
bound NS(α) as follows:

- we can choose
(
(σ1, ξ1), (σ′1, ξ

′
1)
)

among at least q′(q′ − 1) − 2γ(τ) − 2p′

possibilities.

- once we choose
(
(σ1, ξ1), (σ′1, ξ

′
1)
)
, we can choose (σ′2, ξ

′
2) freely from the re-

maining (q′−2) possibilities. Then, we choose (σ2, ξ2) which must be different
from (σ1, ξ1), (σ′1, ξ

′
1) and (σ′2, ξ

′
2). Moreover, it should be such that

σ2 6= σ1 ⊕ h1(t′1)⊕ h2(t′1)⊕ h1(t′2)⊕ h2(t′2)

ξ2 6= ξ1 ⊕ h1(t′1)⊕ h2(t′1)⊕ h1(t′2)⊕ h2(t′2)

in order to satisfy the last two conditions of Defn. 4 which removes at most
two possibilities. Hence, there are at least (q′ − 5) possibilities for (σ2, ξ2).
After the removal of at most 2γ(τ) + 2p′ pairs of queries not satisfying the
first two conditions of the definition, there remains at least (q′− 2)(q′− 5)−
2γ(τ)− 2p′ possibilities for the pair

(
(σ2, ξ2), (σ′2, ξ

′
2)
)
.

- After choosing i − 1 pairs
(
(σ1, ξ1), (σ′1, ξ

′
1)
)
, . . . ,

(
(σi−1, ξi−1), (σ′i−1, ξ

′
i−1)

)
,

there are at least (q′ − 2i)(q′ − 4i − 1) − 2γ(τ) − 2p′ choices remain for(
(σi, ξi), (σ

′
i, ξ
′
i)
)
.
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Since we consider unordered set of pairs, we have,

NS(α) ≥ 1

α!

α−1∏
i=0

(
(q′ − 2i)(q′ − 4i− 1)− 2γ(τ)− 2p′

)
.

Then we do a simple algebraic calculation as follows:

NS(α) ≥ (q′)2α

α!

α−1∏
i=0

(
(q′ − 2i)(q′ − 4i− 1)− 2γ(τ)− 2p′

)
(q′ − 2i)(q′ − 2i− 1)

≥ (q′)2α

α!

α−1∏
i=0

(
1− 2iq′ − 4i2 + 2γ(τ) + 2p′

(q′ − 2i)(q′ − 2i− 1)

)
(1)

≥ (q′)2α

α!

α−1∏
i=0

(
1− 2iq′ + 2γ(τ) + 2p′

(q′ − 2M)2

)
(2)

≥ (q′)2α

α!

(
1− q′M2 + 2γ(τ)M + 2p′M

(q′ − 2M)2

)
(3)

≥ (q′)2α

α!

(
1− qM2 + 2γ(τ)M + 2p′M

(q − 3M)2

)
(4)

≥ (q′)2α

α!

(
1− 4qM2 + 8γ(τ)M + 8p′M

q2

)
(5)

≥ (q′)2α

α!

(
1− 4q

N2/3
− 24q2

N4/3
−

24
√
nq

N1/3
−

48
√
q

N1/3

)
.

where (1) and (2) follows as i ≤ α ≤ M . (3) follows as q′ ≤ q. (4) follows as
q− 3M ≥ q/2. Finally, (5) follows due to γ(τ) ≤ 3q3/N + 3q

√
nq and p′ ≤ 6

√
q.
ut

Now, we fix an integer α with 0 ≤ α ≤ M and some good set of α pairs of
non-colliding queries:

S = {
(
(σ1, ξ1), (σ′1, ξ

′
1)
)
, . . . ,

(
(σα, ξα), (σ′α, ξ

′
α)
)
}.

Note that a permutation π maps U to P (U) and P−1(V) to V for 2α queries if
it satisfies the following equalities:

i ∈ [α] :


π(σi) = σi ⊕ h1(t′i)⊕ h2(t′i)

π(σ′i) = ξi

π(ξi ⊕ h1(t′i)⊕ h2(t′i)) = ξ′i.

Note that, the above assignment is satisfiable in the sense that all the input
outputs of the permutations π are distinct and hence compatible by the virtue
of the last two conditions of Defn. 4. Thus, π is fixed on total 3α input-output
pairs.
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Now, we consider a fixed α with 0 ≤ α ≤ M . Let S be a fixed good set, where
S = {

(
(σ1, ξ1), (σ′1, ξ

′
1)
)
, . . . ,

(
(σα, ξα), (σ′α, ξ

′
α)
)
}. Based on S, we partition U

and V as follows:

U1
∆
= {x1 ⊕ h1(t1), x′1 ⊕ h1(t′1), . . . , xα ⊕ h1(tα), x′α ⊕ h1(t′α)}, U2 = U \ U1

V1
∆
= {y1 ⊕ h2(t1), y′1 ⊕ h2(t′1), . . . , yα ⊕ h2(tα), y′α ⊕ h2(t′α)}, V2 = V \ V1

Moreover, based on S, we introduce two additional sets: B1 and B2 where

B1
∆
= {ξ1 ⊕ h1(t′1)⊕ h2(t′1), . . . , ξα ⊕ h1(t′α)⊕ h2(t′α)}

B2
∆
= {σ1 ⊕ h1(t′1)⊕ h2(t′1), . . . , σα ⊕ h1(t′α)⊕ h2(t′α)}

Note that, |U2| = |V2| = q′ − 2α, which we denote as q′′ and |B1| = |B2| = α.
Now, we have to sample the outputs for the remaining q′′ construction queries in
Q0. In particular, we will construct the set P (U2) and P−1(V2). We would like to
recall that q′′i be the number of construction queries out of q′′ whose tweak value
is ti. It is obvious that q′′i ≤ q′i ≤ qi for each i ∈ [µ]. Let (v′′1,i,j)1≤i≤µ,1≤j≤q′′i
be the tuple of distinct values in {0, 1}n \ (Y4+ t B2) such that it satisfies the
following two conditions:

• for each i ∈ [µ], j ∈ [q′′i ], v′′1,i,j ⊕ h1(ti)⊕ h2(ti) /∈ X4+ t B1

• for each i ∈ [µ], for each j ∈ [q′′i ] v′′1,i,j ⊕ h1(ti)⊕ h2(ti) is distinct from any
value v′′1,k,l ⊕ h1(tk)⊕ h2(tk) for k < i and l ∈ [q′′k ].

Let Z0(α) be the set of all tuple of distinct values (v′′1,1, . . . , v
′′
1,α′′) in {0, 1}n \

Y4+tB2 that satisfies the above two conditions and let N0(α) be the cardinality
of Z0(α). Moreover, |{0, 1}n \ (Y4+ t B2)| = (N − (p′ + q′ + α)). Similarly,
|X4+tB1| = p′+q′+α. Moreover, the first condition excludes at most p′+q′+α
values for v′′1,i,j and the last condition excludes at most

•
i−1∑
k=1

q′′k values as for each i, j, v′′1,i,j ⊕h1(ti)⊕h2(ti) is distinct from any value

v′′1,k,l ⊕ h1(tk)⊕ h2(tk), k < i and l ∈ [q′′k ]

•
i−1∑
k=1

q′′k + j − 1 values as for each i, j, v′′1,i,j must also be chosen distinct from

i−1∑
k=1

q′′k + j − 1 previous values.

Thus, one has

|Z0(α)| = N0(α) ≥
µ∏
i=1

q′′i −1∏
j=0

(
N − 2p′ − 2q′ − 2α− 2

i−1∑
k=1

q′′k − j
)

≥
µ∏
i=1

(
N − 2p′ − 2q′ − 2α− 2

i−1∑
k=1

q′′k

)
q′′i

(45)
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We set P (U2) = {v′′1,i,j : i ∈ [µ], j ∈ [q′′i ]} and P−1(V2) = {v′′1,i,j ⊕ h1(ti) ⊕
h2(ti) : i ∈ [µ], j ∈ [q′′i ]}. Note that such assignment preserves the permutation
compatibility between U2 and P (U2) and the permutation compatibility between
V2 and P−1(V2). We would like to note here that the as S is good, B1 is disjoint
with all sets of Y4+ and B2 is disjoint with all sets of X4+. Moreover, it is easy
to see that P (U2) is disjoint from all sets of Y4+ tB1 and P (V2) is disjoint from
all sets of X4+ t B2. Thus, we can set

P (U) = P (U2) t B1

P−1(V) = P−1(V2) t B2

This guarrantees that P (U) is disjoint with all sets of Y4+ and P−1(V) is disjoint
with all sets of X4+. By varying over all possible choices of good sets of all possible
α pairs of non-colliding queries, where 0 ≤ α ≤M , we have from Lemma 10 and
Eqn. (45) the following:

N0 =

∑
0≤α≤M

NS(α) · N0(α)

≥
∑

0≤α≤M

(q′)2α

α!

(
1− ε0

)
·
µ∏
i=1

(
N − 2p′ − 2q′ − 2α− 2

i−1∑
k=1

q′′k

)
q′′i

,

where ε0 = 4q/N2/3 + 24q2/N4/3 + 24
√
nq/N1/3 + 48

√
q/N1/3. This proves the

first part of the lemma.

We have already argued that P (U) is disjoint with all sets of Y4+ and P−1(V)
is disjoint with all sets of X4+. This proves the second part of the lemma. We
have explained that π is fixed on 3α input-output pairs for α pairs of queries.
For the remaining q′′ = q′ − 2α queries, π is fixed on 2q′′ input-output pairs.
Thus, all total π is fixed on 3α + 2q′′ input-output pairs. This proves the third
part of the lemma. ut

10 Bounding Terms

Before we bound the terms, we state some important results which will be used
in the calculations done in this section. We begin with an algebraic inequality,
proof of which can be found in [5].

Lemma 11. Let N, a1, a2, a3 be positive integers such that a1 + a2 ≤ N/2 and
a1 + a3 ≤ N/2. Then,

(N)a1(N − a2 − a3)a1
(N − a2)a1(N − a3)a1

≥ 1− 4a1a2a3

N2
.

Hypergeometric Distribution. Let S be a set of elements of cardinality N
such that it has g good elements. Let X be a random variable that counts the
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number of elements selected from g good elements when s samples are drawn
from S in without replacement manner. Then, we say that X follows the hy-
pergeomtric distribution with parameter N, s and g, denoted as X ∼ HypN,s,g,
if

Pr[X = α] =

(
g
α

)
·
(
N−g
s−α

)(
N
s

) =
(s)α(g)α(N − g)s−α

α!(N)s
,

where 0 ≤ α ≤ g. It is easy to see that the mean of hypergeomtric distribution
is E[X] = sg/N .

Step-I: Bounding N1.

N1

(N − p)α′1
≥

α′1−1∏
i=0

(
1−

q′ − α′′1 + α′′2 + (p+ q′ + α′1)|Xs′1,i |
N − p− i

)

≥
α′1−1∏
i=0

(
1−

(p+ q′ + α′1)|Xs′1,i |
N − p− α′1

− q′ + α′′2
N − p− α′1

)

(1)

≥

(
1−

2(p+ q′ + α′1)
α′1−1∑
i=0

|Xs′1,i |

N
− 2(q′ + α′′2)α′1

N

)
(2)

≥

(
1− 2(p+ q′ + α′1)α′2

N
− 2(q′ + α′′2)α′1

N

)
(3)

≥

(
1−

(
2p
√
q

N
+

3q3/2

N
+

3q

N

))
(46)

where (1) follows due to the assumption p+α′1 ≤ N/2. (2) follows as
α′1−1∑
i=0

|Xs′1,i | ≤

α′2 and (3) follows as α′1 ≤
√
q, α′2 ≤

√
q, α′′1 ≤

√
q, α′′2 ≤

√
q and q′ ≤ q.
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Step-II: Bounding N2.

N2

(N − p− α′1)α′′2
≥

α′′2−1∏
i=0

(
1−

q′ + (p+ q′ + α′1 + α′′2)|Yd′′2,i |
N − p− α′1 − i

)

≥
α′′2−1∏
i=0

(
1−

(p+ q′ + α′1 + α′′2)|Yd′′2,i |
N − p− α′1 − α′′2

− q′

N − p− α′1 − α′′2

)

(4)

≥

(
1−

2(p+ q′ + α′1 + α′′2)
α′′2−1∑
i=0

|Yd′′2,i |

N
− 2q′α′′2

N

)
(5)

≥

(
1− 2(p+ q′ + α′1 + α′′2)α′′1

N
− 2q′α′′2

N

)
(6)

≥

(
1−

(
2p
√
q

N
+

3q3/2

N
+

2q

N

))
(47)

where (4) follows due to the assumption p + α′1 + α′′2 ≤ N/2. (5) follows as
α′′2−1∑
i=0

|Yd′′2,i | ≤ α′′1 and (6) follows as α′1 ≤
√
q, α′2 ≤

√
q, α′′1 ≤

√
q, α′′2 ≤

√
q and

q′ ≤ q.
Step-III: Bounding N0. Let ∆′′ = α1 + α2 + α′′1 + α′2 + 3α + 2q′′. Then, we
have

N0 ·
µ∏
i=1

(N)qi

(N − p− α′1 − α′′2)∆′′
=

N0 ·
µ∏
i=1

(N)qi ·
µ∏
i=1

(N)q′i

µ∏
i=1

(N)q′i · (N − p− α
′
1 − α′′2)∆′′

=

µ∏
i=1

(N)qi

µ∏
i=1

(N)q′i · (N − p− α
′
1 − α′′2)

∆̂′′︸ ︷︷ ︸
A

·
N0 ·

µ∏
i=1

(N)q′i

(N − p′)3α+2q′′︸ ︷︷ ︸
B

where ∆̂′′ = α1 + α2 + α′′1 + α′2, p′ = p+ α′1 + α′′2 + ∆̂′′. Note that, ∆̂′′ = q − q′.
Now, we separately bound A and B as follows:

Bounding A.

A =

µ∏
i=1

(N − q′i)qi−q′i
(N − p− α′1 − α′′2)q−q′

(7)

≥ (N − q′)
µ∑
i=1

(qi−q′i)

Nq−q′
(8)
=

(
N − q′

N

)q−q′ (9)

≥
(

1− 4q3/2

N

)
where (7) follows from the fact q′ ≤ q. (8) follows due to

µ∑
i=1

q′i = q′ and
µ∑
i=1

qi = q.

Moreover, (9) follows due to q−q′ = α1 +α2 +α′′1 +α′2 ≤ 4
√
q as α1, α2, α

′′
1 , α

′
2 ≤
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√
q. Therefore,

A ≥
(

1− 4q3/2

N

)
. (48)

Bounding B.

B (10)
=

M∑
α=0

µ∏
i=1

(N − 2p′ − 2q′ − 2α− 2
i−1∑
k=1

q′′k )q′′i · (q
′)2α ·

µ∏
i=1

(N)q′i

α! · (N − p′)q′+α+q′′

(
1− ε0

)

=

M∑
α=0

(q′)2α

(q′)α(q′)α︸ ︷︷ ︸
B.1

·

µ∏
i=1

(N)q′i ·
µ∏
i=1

(N − 2p′ − 2q′ − 2α− 2
i−1∑
k=1

q′′k )q′′i

(N − p′)q′+α+q′′︸ ︷︷ ︸
B.2

·
(

1− ε0
)
· HypN−p′,q′,q′(α) · (N − p′ − q′)q′′+2α

(N − p′ − 2q′)q′′+α︸ ︷︷ ︸
B.3

where (10) follows from the fact q′′ = q′ − 2α and thus, q′ + α+ q′′ = 3α+ 2q′′.
Now, we bound B.1 and B.2× B.3 separately as follows:

Bounding B.1: For any α with 0 ≤ α ≤M , we have

B.1 =
(q′)2α

(q′)α(q′)α
≥ (q′ − 2M)2α

(q′)2α
≥
(

1− 4αM

q′

)
(11)

≥
(

1− 8M2

q

)
≥
(

1− 8q

N2/3

)
. (49)

where (11) follows due to the inequality q′ − 3M = q′/2.

Bounding B.2× B.3 For any α with 0 ≤ α ≤M , we have

B.2× B.3 =

µ∏
i=1

(N)q′′i ·
µ∏
i=1

(N − 2p′ − 2q′ − 2α− 2
i−1∑
k=1

q′′k )q′′i

(N − p′)q′+α+q′′ · (N − p′ − 2q′)q′′+α
· (N − p′ − q′)q′′+2α

·
µ∏
i=1

(N − q′′i )θi (50)

Now, by simplifying the term (N − p′)q′+α+q′′ and (N − p′ − 2q′)q′′+α, we have

(1). (N − p′)q′+α+q′′ = (N − p′)α ·
µ∏
i=1

(N − p′ − α−
i−1∑
k=1

q′′k )q′′i · (N − p
′ − α′ − q′′)q′

(2). (N − p′ − 2q′)q′′+α = (N − p′ − 2q′)α ·
µ∏
i=1

(N − p′ − 2q′ − α−
i−1∑
k=1

q′′k )q′′i
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After substituting (1) and (2) to Eqn. (50), we have

B.2× B.3 = R× S (51)

where we have,

R ∆
=

µ∏
i=1

(
(N)q′′i · (N − 2p′ − 2q′ − 2α− 2(q′′1 + . . .+ q′′i−1)q′′i

(N − p′ − α− (q′′1 + . . .+ q′′i−1))q′′i · (N − p
′ − 2q′ − α− (q′′1 + . . .+ q′′i−1))q′′i

)

S ∆
=

( (N − p′ − q′)q′′+2α ·
µ∏
i=1

(N − q′′i )θi

(N − p′)α · (N − p′ − α− q′′)q′ · (N − p′ − 2q′)α

)

Step-I: Bounding R. For each i = 1, . . . ,m, we set a1 = q′′i , a2 = p′+α+
i−1∑
k=1

q′′k

and a3 = p′ + 2q′ + α+
i−1∑
k=1

q′′k . Then by applying Lemma 11, we have

R
(12)

≥

µ∏
i=1

(
1−4q′′i (p′ + 3q′)2

N2

)
(13)

≥
(

1−4q′′(p′ + 3q′)2

N2

)
(14)

≥
(

1−
4q(p+ 6

√
q + 3q)2

N2

)

where (12) follows due to a2 ≤ p′ + α + q′′ = p′ + q′ − α ≤ p′ + q′ and a3 ≤
p′ + α+ q′′ + 2q′ = p′ + 3q′ − α ≤ p′ + 3q′. (13) follows due to q′′i ≤ q′′ and (14)
follows due to q′′, q′ ≤ q and p′ = p+α1 +α2 +α′1 +α′2 +α′1 +α′′2 ≤ p+ 6

√
q as

α1, α2, α
′
1, α
′
2, α
′′
1 , α

′′
2 ≤
√
q.

Step-II: Bounding S. For each i = 1, . . . ,m, we have

S =

(N − p′ − q′)q′′+2α ·
µ∏
i=1

(N − q′′i )θi

(N − p′)α · (N − p′ − α− q′′)q′ · (N − p′ − 2q′)α

=
(N − p′ − q′)α
(N − p′ − 2q′)α︸ ︷︷ ︸

≥1

· (N − p
′ − q′ − α)α

(N − p′)α︸ ︷︷ ︸
S.1

·
(N − p′ − q′ − 2α)q′′ ·

µ∏
i=1

(N − q′′i )θi

(N − p′ − α− q′′)q′′+2α︸ ︷︷ ︸
S.2

Bounding S.1. For each i = 1, . . . ,m, we have

S.1 =

α−1∏
i=0

(
1− q′ + α

N − p′ − i

)
≥

α−1∏
i=0

(
1− q′ + α

N − p′ − α

)
(15)

≥
(

1− 2(q′ + α)α

N

)
(16)

≥
(

1− 4qα

N

)
(17)

≥
(

1− 4q2

N4/3

)
(52)

where (15) follows due to p′+α ≤ N/2, (16) follows as q′, α ≤ q and (17) follows
due to α ≤M(= q/N1/3).
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Bounding S.2. For each i = 1, . . . ,m, we have

S.2 =
(N − p′ − q′ − 2α)q′′

(N − p′ − α− q′′)q′′︸ ︷︷ ︸
S.2.1

·

µ∏
i=1

(N − q′′i )θi

(N − p′ − α− 2q′′)θ1+...+θµ︸ ︷︷ ︸
S.2.2

(53)

where the last product term follows due to q′′i = q′i−θi, (q′′1 + . . .+q′′µ) = q′′, (q′1 +
. . .+ q′µ) = q′ and finally q′′ = q′ − 2α, which renders that (θ1 + . . .+ θµ) = 2α.
Now, we separately bound S.2.1 and S.2.2 as follows:

Bounding S.2.1. For each i = 1, . . . ,m, we have

S.2.1 =

q′′−1∏
i=0

(
1− α+ q′ − q′′

N − p′ − α− q′′ − i

)
(18)

≥
q′′−1∏
i=0

(
1− 3α

N − p′ − α− 2q′′

)
(19)

≥
q′′−1∏
i=0

(
1− 6α

N

)
≥
(

1− 6q′′α

N

)
(20)

≥
(

1− 6q2

N4/3

)
(54)

where (18) follows due to q′ − q′′ = 2α, (19) follows as p′ + α+ 2q′′ ≤ N/2 and
(20) follows due to α ≤M(= q/N1/3).

Bounding S.2.2. For each i = 1, . . . ,m, we have

S.2.2 =

µ∏
i=1

(N − q′′i )θi(
N − p′ − α− 2q′′ − (θ1 + . . .+ θi−1)

)
θi

=

µ∏
i=1

θi−1∏
i=0

(
1− q′′i − p′ − α− 2q′′ − (θ1 + . . .+ θi−1)

N − p′ − α− 2q′′ − (θ1 + . . .+ θi−1)− i

)

=

µ∏
i=1

θi−1∏
i=0

(
1− q′′i − (p′ + α+ 2q′′ + (θ1 + . . .+ θi−1))

N − p′ − α− 2q′′ − (θ1 + . . .+ θi−1)− i

)

(21)

≥

µ∏
i=1

θi−1∏
i=0

(
1− 2q′′i

N

)
≥

µ∏
i=1

(
1− 2q′′i θi

N

)
(22)

≥

µ∏
i=1

(
1− 2q′′θi

N

)
(23)

≥
(

1− 4αq′′

N

)
(24)

≥
(

1− 4αq

N

)
(25)

≥
(

1− 4q2

N4/3

)
(55)

where (21) follows due to p′ + α + 2q′′ + (θ1 + . . . + θi) ≤ N/2, (22) follows as
q′′i ≤ q′′, (23) follows as θ1 + . . . + θµ = 2α, (24) follows as q′′ ≤ q and (25)
follows due to α ≤M(= q/N1/3).
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From Eqn. (53), Eqn. (54) and Eqn. (55), we have

S.2 ≥
(

1− 6q2

N4/3

)(
1− 4q2

N4/3

)
(56)

Since S ≥ S.1 · S.2, therefore, from Eqn. (52), Eqn. (56) and from the lower
bound of R, we have

R ≥
(

1−
4q(p+ 6

√
q + 3q)2

N2

)
, S ≥

(
1− 6q2

N4/3

)(
1− 4q2

N4/3

)2

. (57)

Therefore, from Eqn. (49), Eqn. (51) and Eqn. (57), we have

B ≥
(

1− 8q

N2/3
−

4q(p+ 6
√
q + 3q)2

N2
− 14q2

N4/3
−ε0

) ∑
0≤α≤M

HypN−p′,q′,q′(α) (58)

Recall that, if X is a random variable that follows the hypergeometric distribution
with parameter N, s, g then E[X] = sg/N . Now, we have∑
0≤α≤M

HypN−p′,q′,q′(α) = 1−
∑
α≥M

HypN−p′,q′,q′(α) ≥
(

1−
E[HypN−p′,q′q′ ]

M

)

≥
(

1− q′2

M(N − p′)

)
≥
(

1− 2q

N2/3

)
(59)

Therefore, from Eqn. (58) and Eqn. (59), we have

B ≥
(

1− 10q

N2/3
−

4q(p+ 6
√
q + 3q)2

N2
− 14q2

N4/3
− ε0

)
(60)

Therefore, from Eqn. (48) and Eqn. (60), we have

N0 ·
µ∏
i=1

(N)qi

(N − p− α′1 − α′′2)∆′′
≥
(

1− 4q3/2

N
− 10q

N2/3
−

4q(p+ 6
√
q + 3q)2

N2
− 14q2

N4/3
− ε0

)
(61)

11 Proof of Lemma 7

In this section we individually bound the probabilities of each event identified
in Defn. 2. Let τ = (τc, τp1 , τp2 , k1, k2) be any attainable transcript. Recall that,
in the ideal world k1 and k2 are drawn uniformly at random from the keyspace.
Using the union bound, we have

Pr[Did ∈ Θb] ≤
13∑
i=1

Pr[B.i]. (62)
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Bounding B.1. Let Kb be the set of keys such that there exists (ti, xi, yi) ∈ τc,
u

(1)
j ∈ U (1), v

(1)
j′ ∈ V (1) such that k1 ⊕ ti = xi ⊕ u(1)

j = yi ⊕ v(1)
j′ . Since k1 is

sampled uniformly at random, one has for any fixed constant C,

Pr[B.1] ≤ Pr[|Kb| > C] +
C

N
(63)

Moreover, let

µ(τc, U
(1), V (1)) = |{

(
(t, x, y), u(1), v(1)

)
∈ τc×U (1)×V (1) : x⊕u(1) = y⊕v(1)}|.

Then, clearly one has |Kb| ≤ µ(τc, U
(1), V (1)). Now, if we set C = qp2/N +

2pq2/N + 3p
√
nq, then, from Lemma 3 and Eqn. (63), we have

Pr[B.1] ≤ qp2

N2
+

2pq2

N2
+

3p
√
nq

N
+

2

N
. (64)

Bounding B.2 and B.3. We consider bounding the event B.2. For a fixed

(ti, xi, yi) ∈ τc and for a fixed (u
(1)
j , v

(1)
j ) ∈ τp1 , (u

(2)
j′ , v

(2)
j′ ) ∈ τp2 , one has by

the independence of k1 and k2,

Pr[k1 = xi ⊕ ti ⊕ u(1)
j , k2 = v

(1)
j ⊕ ti ⊕ u

(2)
j′ ] ≤ 1

N2
.

By summing over all possible choices of (ti, xi, yi) ∈ τc, (u(1)
j , v

(1)
j ) ∈ τp1 , (u

(2)
j′ , v

(2)
j′ ) ∈

taup2 , we have

Pr[B.2] ≤ qp2

N2
. (65)

Similar argument holds for B.3 and hence,

Pr[B.3] ≤ qp2

N2
. (66)

Bounding B.4 and, B.5. Let Iij be a indicator random variable that takes the

value 1 if xi⊕k1⊕ ti = u
(1)
j for some (ti, xi, yi) ∈ τc, (u(1)

j , v
(1)
j ) ∈ τp1 . Otherwise,

it takes the value 0. Therefore,

ν1 =

q∑
i=1

p∑
j=1

Ii,j .

By the linearity of expectation, we have

E[ν1] =

q∑
i=1

p∑
j=1

E[Ii,j ] =

q∑
i=1

p∑
j=1

Pr[xi ⊕ k1 ⊕ ti = u
(1)
j ] ≤ qp

N
,

where the last inequality follows due to the uniform sampling of k1. Therefore,
by applying markov inequality, we have

Pr[B.4] = Pr[ν1 ≥
√
q] ≤ E[ν1]

√
q
≤
p
√
q

N
. (67)
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Similar argument holds for bounding B.5. Therefore,

Pr[B.5] ≤
p
√
q

N
. (68)

Bounding B.6,B.7 and B.8. We consider bounding B.6. Let Iij be a indicator

random variable that takes the value 1 if xi⊕v(2)
j = k1⊕k2 for some (ti, xi, yi) ∈

τc, (u
(2)
j , v

(2)
j ) ∈ τp2 . Otherwise, it takes the value 0. Therefore,

ν3 =

q∑
i=1

p∑
j=1

Iij .

By the linearity of expectation, we have

E[ν3] =

q∑
i=1

p∑
j=1

E[Iij ] =

q∑
i=1

p∑
j=1

Pr[xi ⊕ v(2)
j = k1 ⊕ k2] ≤ qp

N
,

where the last inequality follows due to the uniform sampling of k1. Therefore,
by applying Markov’s inequality, we have

Pr[B.6] = Pr[ν3 ≥
√
q] ≤ E[ν3]

√
q
≤
p
√
q

N
. (69)

Similar argument holds for bounding B.7 and B.8. Therefore,

Pr[B.7] ≤
p
√
q

N
, Pr[B.8] ≤

p
√
q

N
. (70)

Bounding B.9 and B.10. We first consider the event B.9. Let Iijk be a indi-

cator random variable that takes the value 1 if k1 ⊕ k2 = xi ⊕ ti ⊕ tj ⊕ v(2)
k for

some (ti, xi, yi), (tj , xj , yj) ∈ τc, (u(2)
k , v

(2)
k ) ∈ τp2 . Otherwise, it takes the value

0. Therefore,

ν5 =

q∑
i=1

q∑
j=1

p∑
k=1

Iijk.

By the linearity of expectation, we have

E[ν5] =

q∑
i=1

q∑
j=1

p∑
k=1

E[Iijk] =

q∑
i=1

q∑
j=1

p∑
k=1

Pr[k1 ⊕ k2 = xi ⊕ ti ⊕ tj ⊕ v(2)
k ] ≤ pq2

N
,

where the last inequality follows due to the uniform and independent sampling
of k1 and k2. Therefore, by applying markov inequality, we have

Pr[B.9] = Pr[ν5 ≥ p
√
q] ≤ E[ν5]

p
√
q
≤ q3/2

N
. (71)
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Similar argument holds for bounding B.10. Therefore,

Pr[B.10] ≤ q3/2

N
. (72)

Bounding B.11. We consider the event B.11. Let Iijk be a indicator random

variable that takes the value 1 if k1 = u
(2)
j ⊕ v

(2)
k ⊕ ti for some (ti, xi, yi) ∈

τc, (u
(2)
j , v

(2)
j ), (u

(2)
j , v

(2)
j ) ∈ τp2 . Otherwise, it takes the value 0. Therefore,

ν2,3 =

q∑
i=1

p∑
j=1

p∑
k=1

Iijk.

By the linearity of expectation, we have

E[ν2,3] =

q∑
i=1

p∑
j=1

p∑
k=1

E[Iijk] =

q∑
i=1

p∑
j=1

p∑
k=1

Pr[k1 = u
(2)
j ⊕ v

(2)
k ⊕ ti] ≤

qp2

N
, (73)

where the last inequality follows due to the uniform sampling of k1. Therefore,
by applying Markov’s inequality, we have

Pr[B.11] = Pr[ν2,3 ≥ p
√
q] ≤ E[ν2,3]

p
√
q
≤
p
√
q

N
. (74)

Bounding B.12. We consider the event B.12. Let Iijkl be a indicator random

variable that takes the value 1 if xi⊕k1⊕ ti = u
(1)
k , v

(1)
k ⊕ v

(2)
l ⊕ ti⊕ tj = k1⊕k2

for some (ti, xi, yi), (tj , xj , yj) ∈ τc, (u
(2)
k , v

(2)
k ), (u

(2)
l , v

(2)
l ) ∈ τp2 . Otherwise, it

takes the value 0. Therefore,

ν6 =

q∑
i=1

q∑
j=1

p∑
k=1

p∑
l=1

Iijk.

By the linearity of expectation, we have

E[ν6] =

q∑
i=1

q∑
j=1

p∑
k=1

p∑
l=1

Pr[xi⊕k1⊕ti = u
(1)
k , v

(1)
k ⊕v

(2)
l ⊕ti⊕tj = k1⊕k2] ≤ q2p2

N2
,

(75)
where the last inequality follows due to the uniform and independent sampling
of k1, k2. Therefore, by applying Markov’s inequality, we have

Pr[B.12] = Pr[ν6 ≥ p
√
q] ≤ E[ν6]

p
√
q
≤ pq3/2

N2
≤ pq2

N2
. (76)

Bounding B.13 Let Iij be an indicator random variable that takes the value

1 if there exists i 6= j ∈ [p2] such that u
(2)
i ⊕ v

(2)
i = u

(2)
j ⊕ v

(2)
j for some

(u
(2)
i , v

(2)
i ), (u

(2)
j , v

(2)
j ) ∈ τp2 . Otherwise, it takes the value 0. Therefore,

ν7 =

p2∑
i=1

p2∑
j=1

Iij .
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By the linearity of expectation, we have

E[ν7] =

p2∑
i=1

p2∑
j=1

Pr[u
(2)
i ⊕v

(2)
i = u

(2)
j ⊕v

(2)
j ] ≤ p(p− 1)

N − p
≤ 2p2

N
, assuming p ≤ N/2.

(77)
The last inequality follows due to the following fact: consider i-th and j-th query
and without loss of generality, let us assume that i < j. Now, if the j-th query

is a forward query, then v
(2)
j is uniformly distributed over a set of size N − j+ 1.

Similarly, if the j-th query is an inverse query, then u
(2)
j is uniformly distributed

over a set of size N−j+1. Therefore, the probability that u
(2)
i ⊕v

(2)
i = u

(2)
j ⊕v

(2)
j

is at most 1/N − p. Therefore, by applying Markov’s inequality, we have

Pr[B.13] = Pr[ν7 ≥
√
p] ≤ E[ν7]

√
p
≤ 2p3/2

N
. (78)

The lemma follows by combining Eqn. (62), Eqn. (64)-Eqn. (78). ut

12 Proof of Lemma 9

In this section we individually bound the probability of each events identified in
Defn. 3.

Bounding C.1: We bound this event in two separate cases. First of all, we fix

some (ti, xi, yi) ∈ τc, u
(2)
j ∈ U (2) and v

(2)
j′ ∈ V (2). Now, it is easy to see that

xi ⊕ k1 ⊕ ti /∈ U (1) (otherwise it would satisfy condition B.2 of Defn. 2) or
yi ⊕ k1 ⊕ ti /∈ V (1) (otherwise it would satisfy condition B.3 of Defn. 2). We
rewrite the event in the following way:{

π1(xi ⊕ k1 ⊕ ti) = u
(2)
j ⊕ k2 ⊕ ti

π1(v
(2)
j′ ⊕ k1 ⊕ ti) = yi ⊕ k1 ⊕ ti

Now, there can be two cases: (i) xi ⊕ k1 ⊕ ti 6= v
(2)
j′ ⊕ k2 ⊕ ti or (ii) xi ⊕ k1 ⊕

ti = v
(2)
j′ ⊕ k2 ⊕ ti. For the first case, the probability would be either zero (if

u
(2)
j ⊕ k2 ⊕ ti = yi ⊕ k1 ⊕ ti), otherwise upper bounded by 1/(N − p)2 ≤ 4/N2

(assuming p+1 ≤ N/2). Therefore, by varying over all possible choice of indices,
we have

Pr[C.1] ≤ 4qp2

N2
. (79)

For the second case, the probability would be 1/(N−p) ≤ 2/N , but in that case,

the number of choices of (ti, xi, yi), (u
(2)
j′ , v

(2)
j′ ) is at most

√
q (otherwise it would

satisy condition B.6 of Defn. 2). Moreover, the number of choices for (u
(2)
j , v

(2)
j )

is at most p. Thus, by varying over all possible choice of indices, we have

Pr[C.1] ≤
2p
√
q

N
. (80)
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Therefore, from Eqn. (79) and Eqn. (80), we have

Pr[C.1] ≤ 4pq2

N2
+

2p
√
q

N
. (81)

Bounding C.2 and C.3: Bounding these two events can be found in [9]. By
following the result of [9], we have

Pr[C.2] ≤
2p
√
q

N
, Pr[C.3] ≤

2p
√
q

N
. (82)

Bounding C.4 and C.5: We consider bounding the event C.4. First of all, we

fix some (ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc, (u(2)
j , v

(2)
j ) ∈ τp2 . Now, it is easy to see that

xi ⊕ k1 ⊕ ti /∈ U (1) (otherwise it would satisfy condition B.2 of Defn. 2). We
rewrite the event in the following way:{

π1(xi ⊕ k1 ⊕ ti) = u
(2)
j ⊕ k2 ⊕ ti

π1(xi′ ⊕ k1 ⊕ ti′) = v
(2)
j ⊕ k1 ⊕ ti ⊕ k2 ⊕ ti′

Now, there can be two cases: (i) xi ⊕ ti 6= xi′ ⊕ ti′ or (ii) xi ⊕ ti = xi′ ⊕ ti′ . For
analyzing the first case, we again have two subcases:

1. if xi′⊕k1⊕ti′ /∈ U (1), then the probability would be bounded by 1/(N−p)2 ≤
4/N2 (assuming p+1 ≤ N/2). By varying over all possible choices of indices,
we have

Pr[C.4] ≤ 4pq2

N2
.

2. if xi′ ⊕ k1 ⊕ ti′ = u
(1)
j′ for some (u

(1)
j′ , v

(1)
j′ ) ∈ τp1 , then the probability would

be bounded by 1/N . In that case there would be at most p
√
q choices for

(ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc, (u(2)
j , v

(2)
j ) ∈ τp2 and (u

(1)
j′ , v

(1)
j′ ) ∈ τp1 (otherwise

it would satisfy condition B.12 of Defn. 2). Thus, by varying over all possible
choices of indices, we have

Pr[C.4] ≤
p
√
q

N
.

By combining the above two, we have

Pr[C.4] ≤ 4pq2

N2
+
p
√
q

N
(83)

To analyze the second case, the probability would be either zero, if u
(2)
j ⊕k2⊕ti 6=

v
(2)
j ⊕ k1 ⊕ ti ⊕ k2 ⊕ ti′ , otherwise upper bounded by 1/N . But in this case, the

number of possible choices of (ti′ , xi′ , yi′) ∈ τc, (u(2)
j , v

(2)
j ) ∈ τp2 is at most

√
q

(otherwise it would satisfy condition B.5 of Defn. 2) and the number of possible
choices of (ti, xi, yi) ∈ τc is at most q. Therefore, by varying over all possible
choice of indices, we have

Pr[C.4] ≤ q3/2

N
. (84)
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Therefore, from Eqn. (83) and Eqn. (84), we have

Pr[C.4] ≤ 4pq2

N2
+
p
√
q

N
+
q3/2

N
. (85)

Similar argument holds for bounding C.5 and hence, we have

Pr[C.5] ≤ 4pq2

N2
+
p
√
q

N
+
q3/2

N
. (86)

Bounding C.6 and C.7: We consider bounding the event C.7. First of all, we

fix some (ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc, (u(2)
j , v

(2)
j ) ∈ τp2 . Now, it is easy to see that

yi ⊕ k1 ⊕ ti /∈ V (1) (otherwise it would satisfy condition B.3 of Defn. 2). We
rewrite the event in the following way:{

π1(v
(2)
j ⊕ k2 ⊕ ti) = yi ⊕ k1 ⊕ ti

π1(xi ⊕ k1 ⊕ ti)⊕ π1(xi′ ⊕ k1 ⊕ ti′) = ti ⊕ ti′

Now, note that ti 6= ti′ , otherwise the probability would have been zero as the
adversary is assumed not to make trivial queries. Therefore, ti 6= ti′ . Now, there

can be three cases: (i) xi⊕k1⊕ti = v
(2)
j ⊕k2⊕ti or (ii) xi′⊕k1⊕ti′ = v

(2)
j ⊕k2⊕ti

or (iii) xi⊕k1⊕ ti 6= v
(2)
j ⊕k2⊕ ti and xi′⊕k1⊕ ti′ = v

(2)
j ⊕k2⊕ ti. For analyzing

the first case, the probability would be bounded above by 1/N and the number

of possible choices of (ti, xi, yi) ∈ τc, (u(2)
j , v

(2)
j ) ∈ τp2 is at most

√
q (otherwise

it would satisfy condition B.6 of Defn. 2). Moreover, number of possible choices
of (ti′ , xi′ , yi′) is at most q. Therefore, by varying over all possible choices of
indices, we have

Pr[C.7] ≤ q3/2

N
(87)

For second case, again the probability would be bounded above by 1/N . But in

this case, the number of possible choices of (ti, xi, yi), (ti′ , xi′ , yi′) ∈ τc, (u(2)
j , v

(2)
j ) ∈

τp2 is at most p
√
q (otherwise it would satisfy condition B.9 of Defn. 2). There-

fore, by varying over all possible choices of indices, we have

Pr[C.7] ≤ q3/2

N
(88)

For third case, the probability would be bounded above by 1/(N − p)2 ≤ 4/N2

(assuming p+ 1 ≤ N/2). By varying over all possible choices of indices, we have

Pr[C.7] ≤ 4pq2

N2
(89)

Therefore, from Eqn. (87), Eqn. (88) and Eqn. (89), we have

Pr[C.7] ≤ 4pq2

N2
+

2q3/2

N
. (90)
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Similar argument holds for bounding C.6 and hence, we have

Pr[C.6] ≤ 4pq2

N2
+

2q3/2

N
. (91)

Bounding C.8 and C.9: Bounding these two events can be found in [9]. By
following the result of [9], we have

Pr[C.8] = Pr[C.9] = 0. (92)

Bounding C.10. We first fix (ti, xi, yi), (ti′ , xi′ , yi′), (ti′′ , xi′′ , yi′′) ∈ τc such that
(ti, xi, yi) is distinct from (ti′ , xi′ , yi′) and (ti′′ , xi′′ , yi′′). Now, note that if xi ⊕
k1⊕ ti = xi′ ⊕ k1⊕ ti′ or yi⊕ k1⊕ ti = yi′′ ⊕ k1⊕ ti′′ , then the probability would
have been zero. Therefore, we assume that none of the equalities hold. Now, we
consider three cases: (a) if xi⊕k1⊕ ti ∈ U (1), then yi⊕k1⊕ ti /∈ V (1) (otherwise
it would satisfy condition B.1 of Defn. 2). Therefore, the probability of the event

π−1
1 (yi ⊕ k1 ⊕ ti)⊕ ti = π−1(yi′′ ⊕ k1 ⊕ ti′′)⊕ ti′′

is at most 1/(N−p) ≤ 2/N (assuming p ≤ N/2). This is because if yi′′⊕k1⊕ti′′ ∈
V (1) then the probability would be zero if π−1

1 (yi′′oplusk1⊕ti′′)⊕k1⊕ti′′ ∈ U (1),
otherwise the probability would be 1/N − p. If yi′′ ⊕ k1 ⊕ ti′′ /∈ V (1) then the
probability would be 1/(N−p−1). The number of possible choices of (ti, xi, yi) ∈
τc is at most

√
q (otherwise it would satisfy condition B.4 of Defn. 2) and the

number of possible choices of (ti′′ , xi′′ , yi′′) is at most q. Therefore, by varying
over all possible choices of indices, we have

Pr[C.10] ≤ 2q3/2

N
(93)

The second case where yi⊕k1⊕ ti ∈ V (1) can be argued similarly and hence, we
have

Pr[C.10] ≤ 2q3/2

N
(94)

For the third case where xi⊕k1⊕ti ∈ U (1) and yi⊕k1⊕ti ∈ V (1), the probability
would be bounded above by 1/(N−p−2q)2 ≤ 4/N2 (assuming p+2q+1 ≤ N/2).
By summing over all possible choices of indices, we have

Pr[C.10] ≤ 4q3

N2
(95)

Therefore, from Eqn. (93), Eqn. (94) and Eqn. (95), we have

Pr[C.10] ≤ 4q3

N2
+

4q3/2

N
(96)

Bounding C.11 and C.12: Bounding these two events can be found in [9]. By
following the result of [9], we have

Pr[C.11] ≤ 4pq2

N
+

2q
√
p

N
, Pr[C.12] ≤ 4pq2

N
+

2q
√
p

N
. (97)
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Bounding C.13. Bounding C.13 is equivalent to bound the event

|{(ti, xi, yi), (tk, xk, yk) ∈ τc : π1(xk⊕k1⊕ tk)⊕ tk = π−1
1 (yi⊕k1⊕ ti)⊕ ti}| ≥ C,

where C = 3q3/N + 3q
√
nq. We fix some (ti, xi, yi), (tk, xk, yk) ∈ τc. Note that

for a fixed (ti, xi, yi), (tk, xk, yk) ∈ τc, the probability of the event

π1(xk ⊕ k1 ⊕ tk)⊕ π−1
1 (yi ⊕ k1 ⊕ ti) = tk ⊕ ti

is bounded above by 1/(N − q) ≤ 2/N (assuming q ≤ N/2). Now, by varying
over all possible choices of indices, we have

q∑
i=1

q∑
k=1

Pr[π1(xk ⊕ k1 ⊕ tk)⊕ tk = π−1
1 (yi ⊕ k1 ⊕ ti)⊕ ti] ≤

q2

N
. (98)

Therefore, by applying Markov inequality, we have

Pr[C.13] ≤ q2

N(3q3/N + 3q
√
nq)
≤ q3/2

N
, (99)

where the last inequality follows from 3q3+N(3q3/2
√
n−√q) ≥ 0 for any positive

integer q.
Bounding C.14, C.15, C.16 and C.17: Bounding these events can be found
in [9]. By following the result of [9], we have

Pr[C.14] ≤
2p
√
q

N
, Pr[C.15] ≤

2p
√
q

N

Pr[C.16] ≤ 4q3/2

N
, Pr[C.17] ≤ 4q3/2

N
(100)


