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Abstract

A quantum bit commitment scheme is to realize bit (rather than qubit) commitment by
exploiting quantum communication and quantum computation. In this work, we study the
binding property of the quantum string commitment scheme obtained by composing a generic
quantum perfectly(resp. statistically)-hiding computationally-binding bit commitment scheme
(which can be realized based on quantum-secure one-way permutations(resp. functions)) in
parallel. We show that the resulting scheme satisfies a stronger quantum computational binding
property, which we will call predicate-binding, than the trivial honest-binding. Intuitively and
very roughly, the predicate-binding property guarantees that given any inconsistent predicate
pair over a set of strings (i.e. no strings in this set can satisfy both predicates), if a (claimed)
quantum commitment can be opened so that the revealed string satisfies one predicate with
certainty, then the same commitment cannot be opened so that the revealed string satisfies the
other predicate (except for a negligible probability).

As an application, we plug a generic quantum perfectly(resp. statistically)-hiding computationally-
binding bit commitment scheme in Blum’s zero-knowledge protocol for the NP-complete lan-
guage Hamiltonian Cycle. The quantum computational soundness of the resulting protocol will
follow immediately from the quantum computational predicate-binding property of commit-
ments. Combined with the perfect(resp. statistical) zero-knowledge property which can be
similarly established as Watrous [Wat09], this gives rise to the first quantum perfect(resp. sta-
tistical) zero-knowledge argument system (with soundness error 1/2) for all NP languages based
solely on quantum-secure one-way permutations(resp. functions).
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1 Introduction

Bit commitment is an important cryptographic primitive; it can be viewed as an electronic realiza-
tion of a locked box [Gol01]. Roughly speaking, a bit commitment scheme is a two-stage (consisting
of a commit stage and a reveal stage) interactive protocol between a sender and a receiver, pro-
viding two security guarantees: hiding and binding. Intuitively, the hiding property states that
the commitment to 0 and that to 1 are indistinguishable (to the receiver) in the commit stage,
whereas the binding property states that any (claimed) bit commitment cannot be opened (by the
sender) as both 0 and 1 (except for a negligible probability) later in the reveal stage. Unfortunately,
hiding and binding properties cannot be satisfied information-theoretically at the same time; one of
them has to be conditional, e.g. based on complexity assumptions such as the existence of one-way
functions.

Turning to the quantum setting, there are two different meanings of quantum bit commit-
ment in the literature (depending on the context). The first refers to the classical realization of
bit commitment that is secure against quantum attacks, or the post-quantum secure (classical)
bit commitment [AC02, Unr16b, Unr16a]. The second refers to a realization of bit commitment
by exploiting quantum features [BB84, BC90, DMS00, CLS01, CDMS04, KO09, KO11, CKR11,
YWLQ15, FUYZ20, Yan20]; that is, now the honest parties are allowed to be quantum computers
and exchange quantum messages. (But it is still a classical bit that is secured.) Clearly, the first
meaning of quantum bit commitment can be viewed as a special case of the second one. In this
paper, the term “quantum bit commitment” will be reserved for the second, more general meaning,
which will also be the focus of this work.

The concept of quantum bit commitment is natural and sounds exciting. Though unconditional
quantum bit commitment is still impossible [May97, LC98], as a compromise we may consider
quantum bit commitment based on complexity assumptions like in the classical cryptography.
Somewhat counter-intuitive at the first glance, but the binding property of a general quantum
bit commitment is inherently weaker than the classical binding property (that is guaranteed by a
classical bit commitment secure against classical attacks, which roughly states that any claimed bit
commitment is bound to a unique bit that is typically referred to as the committed value). In more
detail, this weakness of the general quantum binding property comes from the possible superposition
attack of the sender of the quantum bit commitment, who may commit to an arbitrary superposition
of bits 0 and 1, and later open the commitment as this superposition (rather than a classical 0 or
1) successfully with certainty [DMS00, CDMS04]. By this kind of quantum superposition attack, a
fixed quantum bit commitment is no longer bound to a unique classical bit any more. The quantum
binding property that can be guaranteed by a general quantum bit commitment is often referred
to as sum-binding (named after [Unr16a]).

Difficulties in basing security on quantum binding. It is natural to ask what happen if we
replace classical bit commitments with quantum bit commitments in cryptographic applications.
Due to the weakness of the general quantum binding property as aforementioned, the security based
on the classical binding property may deteriorate after the replacement.

In greater detail, note that in applications we typically commit to a binary string by committing
it in a bitwise fashion; later, a subset of bit commitments may be opened for some verification. For
example, it is helpful to keep GMW-type zero-knowledge protocols [Blu86, GMW91] in one’s mind.
When quantum bit commitments are used, we can no longer say that a claimed quantum commit-
ment to an m-bit string is really bound to some m-bit string; instead, the committed value of such
a quantum string commitment could be a superposition of a bunch of m-bit strings of the form∑

s∈{0,1}m αs |s⟩, where the integer m ≥ 1 and complex coefficients αs’s satisfy
∑

s∈{0,1}m |αs|2 = 1.
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One may tend to argue in security analysis that this superposition behaves similar to its induced
probability distribution (|αs|2)s∈{0,1}m : if this is true, then the classical security analysis extend
to the quantum setting straightforwardly. Unfortunately, this argument is not necessarily true,
because a superposition is generally not equivalent to its induced probability distribution; in fact,
this is usually where the quantum advantage comes from in algorithm design. Actually, if one goes
into detail of the security analysis, one will find that a malicious quantum sender of commitments
may attack by making the opening information (which is entangled with quantum commitments
and their decommitments) about which bit commitments will be opened as what value in an arbi-
trary superposition. By tuning this superposition, the sender may adjust the receiver’s acceptance
probabilities in different verifications. This kind of superposition attack will make the security
analysis based on the general quantum binding property (if possible) much harder than that based
on the classical binding property.

Why quantum bit commitment is interesting? Besides the weakness as well as technical
difficulties in security analysis mentioned above, another shortcoming of quantum bit commitment is
that by today’s quantum technology, the physical realization of a general quantum bit commitment
scheme is still far beyond our reach. In spite of this, quantum bit commitment still interests us for
several reasons. First, since as early as 2000 researchers have come to realize that merely based
on quantum-secure one-way functions/permutations, one can construct non-interactive quantum
bit commitments of both flavors (i.e. statistical binding and statistical hiding), whose commit and
reveal stages consist of just a single quantum message from the sender to the receiver [DMS00,
KO09, KO11, Yan20]. It turns out that these constructions are not coincidences: recently, Yan
[Yan20] has shown that any (interactive) quantum bit commitment scheme can be converted into a
non-interactive one of a generic form1 (whose informal definition is referred to the first paragraph
of “Notations” in subsection 1.3, and formal definition to Definition 4). This is in contrast to
constant [MP12] or even polynomial [HHRS07] number of rounds in the commit stage by classical
constructions of bit commitment. Thus, using quantum bit commitments instead of the classical
ones in applications can potentially reduce the number of rounds of the interaction2 while keeping
the complexity assumption to the minimum.

More interestingly, Fang, Unruh, Yan and Zhou [FUYZ20] and Yan [Yan20] also observe that
the (either statistical or computational) binding of a generic non-interactive quantum bit commit-
ment scheme is automatically information-theoretically strict3. Here, the strictness of the quantum
binding extends the one in [Unr12] for a classical construction of bit commitment, which roughly
states that not only the revealed value but also the decommitment state used in opening a quantum
bit commitment are “unique”. We highlight that this strictness of the quantum binding originates
from the entanglement between the commitment and its decommitment, as opposed to the clas-
sical correlation in the definition of the classical strict-binding [Unr12]. We also stress that even
the quantum computational binding can be information-theoretically strict simultaneously (which
may sound contradictory as it appears)4. This is in contrast to the computational binding of a

1Actually, it is shown in [Yan20] a much stronger result that any quantum bit commitment scheme just secure
against the purification attack can be converted into a non-interactive one of the generic form. For this reason, in
this paper we can focus on this generic form without loss of generality. At a very high level, the basis idea of how
such a quantum round-collapse is possible is similar to the old idea of converting any non-interactive quantum bit
commitment scheme into the generic form [YWLQ15, FUYZ20].

2The round complexity of any cryptographic task might be one of the most important parameters.
3We do not claim that this holds w.r.t. a general quantum bit commitment. But any quantum bit commitment

scheme can be converted to the generic form [Yan20], as aforementioned.
4All mentioned above about the strictness of the quantum binding will become clear once one reads Definition 4,

which is quite simple and intuitive.
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classical bit commitment, which is impossible to be information-theoretically strict: though it may
be computationally hard to find an alternative opening, there actually exist a bunch of them! It
turns out that this strictness of the quantum binding can play an important role in applications;
in particular, it can help circumvent existing barriers only known for classical constructions, as
confirmed in [FUYZ20] and this paper (Theorem 1).

Overall, if we are optimistic about the development of quantum technology and believe that
general quantum computation and communication will be available in future, then the application
of quantum bit commitment as a primitive in quantum cryptography is worthy of study.

Progress and perspective towards basing security on quantum binding. In the past
two decades, there were only few works studying the security based on the binding property of a
general quantum bit commitment [YWLQ15]. Recently, some generic techniques to cope with the
quantum perfect/statistical binding property are developed in [FUYZ20], by which in many cases
the security based on the classical statistical binding property can be lifted to the quantum setting.
Unfortunately, when it comes to the question of the security based on the quantum computational
binding property, the answer remains elusive. To the best of our knowledge, we are aware of no such
results before. In our opinion, the perhaps most important open question towards using quantum
bit commitment as a primitive in quantum cryptography is:

Can we base quantum security on the computational binding property of a general quan-
tum bit commitment?

Based on the state-of-the-art knowledge, the answer to the question above is unclear. On one
hand, intuitively it will be true if we can view the superposition of strings underlying quantum bit
commitments as its induced probability distribution (as aforementioned). Actually, this motivates
Unruh [Unr16b, Unr16a] to introduce (computationally) collapse-binding commitments. Unfor-
tunately, general quantum commitments cannot be collapse-binding [Yan20]. In spite of this, it
turns out that by some tricks this intuitive strategy is enabled to work (in many cases) when
perfectly/statistically-binding quantum bit commitments are used [FUYZ20]. More positive evi-
dences come from the success in various security analysis in the quantum random oracle model, in
which adversaries can query a random oracle in an arbitrary superposition [BDF+11].

On the other hand, however, after a first attempt towards the security analysis, it turns out
that for a naive analysis (r.f. subsection 1.3) to work it requires that the binding error be sub-
exponentially or even exponentially small, rather than negligibly small as typical in cryptography.
We will refer to this technical difficulty as “exponential curse”, which arises from the fact that poly-
nomial number of qubits could be in a superposition of exponentially many basis states. Moreover,
the impossibility of the general quantum rewinding [vdG97], as well as other related impossibility
results on classical constructions of bit commitment secure against quantum attacks [ARU14], may
suggest a negative answer to the open question above.

One motivation of this work is to explore the application of general quantum computationally-
binding bit commitments5 in cryptographic applications, notably in constructing quantum zero-
knowledge arguments for NP languages.

1.1 Our contribution

In spite of the technical difficulty and negative evidences just mentioned, we make some progress
towards answering the main open question affirmatively in this work. Interestingly, our security

5Though we will actually focus on quantum bit commitment schemes of the generic form (Definition 4) in this
paper (as will become clear later), this restriction does not lose any generality due to [Yan20], as aforementioned.
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analysis will use a more straightforward strategy that is completely different from that of view-
ing the superposition of strings underlying quantum bit commitments as its induced probability
distribution.

Specifically, our contribution is two-fold.

1. A quantum construction of perfect/statistical zero-knowledge argument system
(with soundness error 1/2) for all NP languages

We prove the following main theorem of this paper:

Theorem 1 Plugging a generic quantum perfectly(resp. statistically)-hiding computationally-binding
bit commitment scheme (Definition 4) in Blum’s protocol [Blu86] gives rise to a three-round public-
coin quantum perfect(resp. statistical) zero-knowledge argument system for the NP-complete lan-
guage Hamiltonian Cycle, with perfect completeness and soundness error 1/2.

Following [DMS00, KO09, KO11, Yan20], since a generic quantum perfectly(resp. statistically)-
hiding computationally-binding bit commitment scheme can be constructed from quantum-secure
one-way permutations(resp. functions), the theorem above gives the first quantum perfect(resp.
statistical) zero-knowledge argument for all NP languages based on the same assumption.

Corollary 1 If quantum-secure one-way function exists, then all languages in NP have a three-
round public-coin quantum statistical zero-knowledge argument system with perfect completeness
and soundness error 1/2.

Compared with classical GMW-type statistical zero-knowledge arguments secure against classi-
cal attacks for NP [NOVY98, HNO+09], our quantum construction reduces the rounds of the inter-
action from polynomial to three, thanks to the non-interactivity of a generic quantum computationally-
binding bit commitment scheme. Compared with the classical statistical zero-knowledge argument
for NP secure against quantum attacks given in [Unr16b, Unr16a], which assumes collapsing hash
functions, our quantum construction relies on a weaker (perhaps minimum) complexity assumption
without setup.

We highlight that our proof of Theorem 1 relies heavily on (though implicitly) that the (compu-
tational) binding of a generic quantum bit commitment scheme is information-theoretically strict
(as aforementioned). It is this strict-binding property that enables a simple quantum rewinding
[YWLQ15, FUYZ20] to work even in our quantum computational soundness analysis. This circum-
vents a barrier which is only known for classical constructions [ARU14].

As a final remark, in this work we only study stand-alone Blum’s protocol. But we believe it
should be meaningful as a first step toward using non-interactive computationally-binding quantum
bit commitments in more general protocols. Some remarks on the sequential and the parallel
compositions of Blum’s atomic protocol is referred to the end of section 5.

2. A non-trivial computational binding property of the quantum string commitment
scheme obtained by composing a generic quantum bit commitment scheme in parallel

A natural way to construct a string commitment is to compose a bit commitment scheme in
parallel, i.e. committing a string in a bitwise fashion. For the purpose of proving Theorem 1, we in-
troduce a new binding property of quantum string commitments which we call “predicate-binding”.
And we show that the parallel composition of a generic quantum computationally-binding bit com-
mitment scheme gives rise to a quantum computationally predicate-binding string commitment
scheme. When we instantiate Blum’s protocol with a generic quantum computationally-binding
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bit commitment scheme, the quantum computational soundness of the protocol (which is required
towards establishing Theorem 1) can be easily based on the predicate-binding property of quantum
string commitments.

In more detail, we first formalize a kind of predicates which we will call “pattern-predicates”
(Definition 7): informally speaking, for a string to satisfy a pattern-predicate, it should exhibit a
certain “pattern” somewhere. The intuition underlying our definition is that in typical applications
of bit commitments, the receiver (of commitments) will check whether the value of the opened com-
mitments will cause it to accept. For example, in Blum’s protocol the (honest) verifier’s verification
corresponding to each challenge naturally induces a pattern-predicate.

With our definition of pattern-predicate, the predicate-binding property (Definition 8, or fomally
Definition 9) guarantees that given an arbitrary pair of inconsistent pattern-predicates on a set of
strings of the same length (i.e. no strings in this set can satisfy both predicates), if a (claimed)
quantum commitment can be opened such that the revealed string6 satisfies one predicate with
certainty, then the same commitment cannot be opened so as to satisfy the other predicate (except
for a negligible probability)7.

The proof of predicate-binding is the main technical contribution of this work, which is highly
non-trivial; in particular, the trivial reduction (via a simple hybrid argument) from string binding
to bit binding in the classical setting will fail completely here. Actually, for a technical reason
we did not prove the full predicate-binding property (i.e. w.r.t. the most general inconsistent
pattern-predicate pairs) in this work; rather, we can only show predicate-binding such that one
predicate is allowed to be of the general form, whereas the other is subject to the restriction that
it only depends on a fixed portion of the string (Thereom 2, or formally Theorem 3). In spite of
this restriction, the predicate-binding property we obtain is more than enough to prove Theorem 1.
Any extension of our result is left as an open problem. We believe that quantum predicate-binding
string commitments could be of independent interest and will be found useful elsewhere.

A comparison with the existing quantum computational string binding properties. The
parallel composition of a generic quantum bit commitment scheme trivially gives a quantum honest-
binding string commitment scheme [YWLQ15]. Roughly speaking, the honest-binding states that
the honest commitment to a string cannot be opened as any other string (except for a negligible
probability). Unfortunately, this binding property seems too weak to be useful in applications.
This is because a malicious sender may not commit honestly.

In [CDMS04], a so-called computational f -binding property w.r.t. a function f : {0, 1}m →
{0, 1}l for quantum string commitments is proposed, where integers l ≤ m. Unfortunately, no
constructions for quantum f -binding commitments are provided in [CDMS04]. Our predicate-
binding implies the f -binding w.r.t. to any efficiently computable function f whose image is just
the set {0, 1} (i.e. l = 1), if we view preimages mapped to 0 as inducing one predicate while
preimages mapped to 1 as inducing the other.

Damg̊ard, Fehr and Salvail [DFS04] introduced the so-called Q-binding property for classical
commitments secure against quantum attacks, which can be extended to quantum commitments
in a straightforward way. Here, the “Q” stands for an arbitrary predicate whose form is close to
our pattern-predicate8: very roughly, this predicate Q can be viewed as combining various pattern-

6Generally, the revealed value of a quantum string commitment could be a probability distribution over this set
of strings.

7We note that the parallel composition of classical bit commitments secure against classical attacks gives a string
commitment that is trivially predicate-binding secure against classical attacks. This is simply because the resulting
string commitment (by the parallel composition) is bound to a unique classical string.

8As communicated by the authors of [DFS04] recently [DFS21], the definition of Q-binding in the conference
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predicates into one by introducing a “choice” parameter u, and the predicate-binding we establish
here can also be viewed as the Q-binding w.r.t. the predicate Q of a special form such that |U | = 2
and pideal = 1 (in the notation used in [DFS04]). The general framework for constructing Q-binding
(classical) commitments in [DFS04] requires a setup and relies on much stronger assumptions than
quantum-secure one-way functions; in particular, one crucial assumption9 on which it relies has a
similar structure as the security game in defining Q-binding, which makes the security proof for
Q-binding there much more straightforward than ours for predicate-binding here.

Unruh [Unr16b, Unr16a] introduced computational collase-binding classical commitments se-
cure against quantum attacks. However, a straightforward extension of collapse-binding to quantum
commitments cannot hold generally, as aforementioned; more detail is referred to [Yan20].

1.2 A comparison with two recent works

In two concurrent and independent recent works, statistically-hiding [BCKM21] (resp. computationally-
hiding [?]) computationally-binding quantum bit commitments that additionally satisfy two nice
properties called extractable and equivocal properties are constructed, also based solely on quantum-
secure one-way functions. Compared with our scheme used in this work, i.e. the generic statistically-
hiding computationally-binding quantum bit commitment scheme (Definition 4), theirs are more
advantageous in the following aspects:

1. Their schemes satisfy both extractable and equivocal properties simultaneously, whereas ours
is generally unlikely to satisfy.

2. The committed value of the commitments by running the commit stage of their schemes is a
probability distribution over the set {0, 1}10, rather than a superposition as our scheme. This
makes the quantum (computational) binding property of their schemes almost as strong as the
classical binding property. As such, their schemes are likely to be more versatile in applications
than ours; and the corresponding security analysis with their commitments should be easier,
too. In this regard, we believe that plugging their commitments in Blum’s protocol will yield
a quantum zero-knowledge argument-of-knowledge (rather than just argument as achieved in
this paper) system for NP, whose security analysis can be adapted from the classical one in a
straightforward way (avoiding the issue arisen from the general quantum binding as studied
in this paper).

3. Both their schemes and ours use quantum communication. But theirs only send (and receive)
BB84 states, in contrast to arbitrary quantum states that might be sent by our scheme.

In spite of the above, we stress that commitments in [?, BCKM21] achieve better properties
(than ours) at the cost of the extremely high round complexity : they need polynomial (in the
security parameter) rounds of the interaction at least in the commit stage11, which makes them
almost impractical even when quantum computation and communication are realized one day. This
is in sharp contrast to the non-interactivity of both the commit and the reveal stages of our scheme.

version of [DFS04] has a flaw: it misses an additional information z as another input of the predicate Q to make it
efficiently computable, and the sentence “We do not require Q to be efficiently computable” there should be removed.

9Namely, the third assumption in [DFS04, section “A General Framework”].
10This can be seen from the extractability of their commitments.
11It appears that even the reveal stage of the commitment scheme given in [?] also needs polynomial rounds of the

interaction.
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1.3 Technical overview

We sketch the soundness analysis of Blum’s protocol instantiated with a generic quantum computationally-
binding bit commitment scheme, which is the key step towards establishing Theorem 1. Our goal
is to reduce the soundness of the resulting protocol to the predicate-binding property of quantum
string commitment (Lemma 12).

We assume that readers are familar with Blum’s protocol [Blu86], which is also sketched in
subsection 2.3. In its soundness analysis, the (possibly cheating) prover’s first message constitutes a
(claimed) quantum string commitment. The (honest) verifier’s acceptance conditions corresponding
to challenges 0 and 1 induce two predicates on graphs with the same number of vertices as the input
graph. When the input graph is not Hamiltonian, these two predicates will become inconsistent,
in that no single graph can satisfy both of them simultaneously. Technically, at the heart of the
reduction from the soundness of Blum’s protocol to the predicate-binding property of the quantum
string commitment lies a simple quantum rewinding technique (Lemma 2) that extends from ones
used in [YWLQ15, FUYZ20] but for the quantum statistical binding setting. We remark that
though this extension is technically trivial, conceptually why it is possible relies heavily on that a
generic quantum computationally-binding bit commitment scheme is information-theoretical strict-
binding.

We are then left with showing that the parallel composition of a generic quantum computationally-
binding bit commitment scheme indeed gives rise to a quantum computationally predicate-binding
string commitment scheme (a special case in Lemma 10 and a more general case in Theorem 3).
This is the main technical part of the paper. In the below, we first explain a technical difficulty
towards this goal by a naive try, and then sketch at a high level how to overcome it. But before
doing this, we first set up some notations that are necessary for our exposition.

Notations. A generic quantum bit commitment commitment scheme can be represented by a
quantum circuit pair12 (Q0, Q1) performing on quantum registers (C,R). To commit a bit b ∈ {0, 1},
in the commit stage the sender performs the quantum circuit Qb on quantum registers (C,R)
initialized in the state |0⟩, and then sends the commitment register C to the receiver; later in the
reveal stage, the sender sends the bit b together with the decommitment register R to the receiver,
who then does the reversible computation (i.e. performing the quantum circuit Q†

b) to decide
whether to accept or not (i.e. checking whether the registers (C,R) return to the all |0⟩’s state).
Informally, we say that the quantum bit commitment scheme (Q0, Q1) is computationally binding
if for any polynomial-time realizable unitary transformation U performing on the register R, the
inner product

∣∣ ⟨0|Q†
1UQ0 |0⟩

∣∣ is negligible; that is, unit vectors UQ0 |0⟩ and Q1 |0⟩ are almost
orthogonal13.

To commit a string of lengthm, we commit it in a bitwise fashion using the scheme (Q0, Q1). Let
Qs denote the corresponding quantum circuit used to commit the string s; that is, Qs =

⊗m
i=1Qsi ,

which performs on m copies of the quantum registers (C,R).
Let P1, P2 be two (pattern-)predicates14 on all m-bit strings. We use s ∈ P1 (resp. P2) to

denote that the string s ∈ {0, 1}m satisfies the predicate P1 (resp. P2). We say that two predicates
P1, P2 are inconsistent if no string s ∈ {0, 1}m can satisfy both P1 and P2. More details about the
formalization of predicates are referred to subsection 4.1.

12For the moment, we drop the security parameter to simplify the notation.
13The formal definitions of a generic quantum bit commitment scheme and its computational binding propery are

referred to Definition 4. Here for simplification, we neglect the auxiliary input state that the cheating sender may
receive.

14For the moment, we can think of them as efficiently computable predicates in the common sense for simplicity.
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A technical difficulty: exponential curse. We first consider the simplest scenario, in which an
m-bit string is firstly committed and later all (bit) commitments will be opened. Note that a cheat-
ing sender can first prepare an arbitrary superposition of the form

∑
s∈P1

αs |s⟩D (Qs |0⟩)C
⊗mR⊗m

(resp.
∑

s∈P2
βs |s⟩Qs |0⟩) in registers (D,C⊗m,R⊗m), and then send all commitment registers C⊗m

to the receiver in the commit stage15. Later in the reveal stage, the sender sends the register D
(which is supposed to contain the classical information about what string is to reveal), together
with all decommitment registers R⊗m, to the receiver. By this strategy, the sender can open all
commitments successfully with certainty as a distribution (which is determined by coefficients αs’s
(resp. βs’s)) of strings that satisfy the predicate P1 (resp. P2). To show predicate-binding, it is
sufficient to show that up to any polynomial-time realizable unitary transformation U that does not
touch commitment registers C⊗m (which represents the sender’s strategy in opening commitments),
any two superpositions

∑
s∈P1

αs |s⟩Qs |0⟩ and
∑

s∈P2
βs |s⟩Qs |0⟩ are almost orthogonal, i.e. their

inner product is negligible, w.r.t. any inconsistent predicate pair (P1, P2). A technical difficulty in
showing this lies in that a potential exponential blow-up may occur in bounding this inner product.
This difficulty is referred to as the exponential curse in [YWLQ15, FUYZ20], which we believe is
universal when one tries to base security on quantum binding; a similar difficulty also appears in
[CDMS04]. Now let us go into some detail in the below.

By the computational binding property of the quantum bit commitment scheme (Q0, Q1), the

inner product | ⟨0|Q†
s′UQs |0⟩ | where s ̸= s′ can be bounded by its binding error, which is negligible

(as typical in cryptography). Thus, a naive way to bound the inner product∣∣ ∑
s∈P1

α∗
s ⟨s| (⟨0|Q†

s) U
∑
s′∈P2

βs′
∣∣s′⟩ (Qs′ |0⟩)

∣∣
is first to expand it and bound each term indexed by (s, s′) using the binding error bound (while
neglecting its coefficient that can be bounded by 1), and then apply the triangle inequality. However,
when there are super-polynomial (typically exponentially many) strings s ∈ P1 or s

′ ∈ P2, this naive
approach will fail.

Actually, whether the inner product above could really be bounded by some negligible quantity
is questionable a prior. This is because generally, two superpositions of the form

∑
x αx |ϕx⟩ and∑

y βy |ξy⟩, where {|ϕx⟩}x and {|ξy⟩}y are two orthonormal bases, are not necessarily almost or-
thogonal, even when |ϕx⟩ and |ξy⟩ are almost orthogonal for each (x, y) pair. To see this, consider
the following simple example. The Hilbert space is induced by m qubits, where {|x⟩}x∈{0,1}m is the

standard basis and {H⊗m |y⟩}y∈{0,1}m is the Hadamard basis. Then consider an arbitrary vector in
this space, which can be written as a superposition of basis vectors either in the standard basis or
the Hadamard basis. Clearly, these two superpositions are actually the same vector, so that their
inner product is one. But the inner product between |x⟩ and H⊗m |y⟩ for arbitrary x, y ∈ {0, 1}m
is exponentially small! This example tells us that to bound the inner product aforementioned, we
need to exploit the structures of the two superpositions (which are induced by the structures of
predicates P1 and P2).

The similar technical difficulty also appears in the quantum statistical binding setting, where
two generic techniques were invented to overcome this exponential curse: perturbation and hypo-
thetical commitment measurement [YWLQ15, FUYZ20]. Unfortunately, neither of them extend to
the quantum computational binding setting straightforwardly. Reasons are as below. We note that
the fundamental difference between these two settings lies in that in the quantum statistical binding
setting, the bit commitment to 0 and that to 1 (stored in the commitment register C) themselves

15The tensor product m in superscripts indicates that there are m copies of the corresponding quantum register.
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are already almost orthogonal, and which will never be touched by the (possibly cheating) sender
after they are sent. Thus, we can assume that commitments will collapse immediately by hypothet-
ical commitment measurements at the moment they are sent; after the collapse, everything will be
similar to that in the classical perfect binding setting. However, in case of quantum computational
binding, the commitment to 0 and that to 1 could be close or even identical, where we are only
guaranteed that in the reveal stage the joint states of the commitment register C and the decom-
mitment register R are almost orthogonal. But the state of the decommitment register R can be
affected by the sender’s operation after the commitment stage. As such, the hypothetical-collapse
trick to handle quantum statistically-binding commitments [FUYZ20] fails completely here.

In summary, new techniques are needed to establish the quantum computational predicate-
binding property (if possible).

Our approach. For the ease of the exposition, instead of considering the aforementioned inner
product, now let us equivalently consider the projection of an arbitrary superposition of the form∑

s∈P1
αs |s⟩Qs |0⟩ on the subspace

∑
s∈P2

|s⟩ ⟨s| ⊗ (Qs |0⟩ ⟨0|Q†
s), up to any polynomial-time real-

izable unitary transformation U that does not touch commitment registers C⊗m. We overload the
notation and denote this projection also by P2 for simplicity. Our goal then becomes to show that
this projection is negligible (in the security parameter which we have dropped to simplify the nota-
tion; see footnote 12). Our idea is based on the following key observation: when the predicate P1 is
sparse, i.e. the number of the m-bit strings satisfying it is polynomially bounded, then combining a
new perturbation technique (which looks similar but is inherently different from the one developed
in the quantum statistical binding setting [YWLQ15, FUYZ20]) and the triangle inequality, we can
bound the aforementioned projection by a negligible quantity. However, to remove this sparsity
requirement, we still need to overcome the exponential curse. To this end, we need to take into
account of the coefficients of the superposition, and make an essential use of the following structure
of predicates P1 and P2: to check whether a string satisfies P1 or P2, all its bits are to examine.

For more technical details, we are to bound the norm∥∥∥ ∑
s∈P1

αs P2U (|s⟩Qs |0⟩)
∥∥∥,

where in the summation there could be exponentially many terms. At a high level, our trick is
to order these terms properly in such a way that they can be treated as leaves of a binary tree,
whose internal nodes will correspond to the summation of leaves of the subtree it determines; in
particular, the root of the tree will correspond to the summation of all leaves, whose norm is just
what we want to bound. We will actually bound norms of all internal nodes, including the root, in a
bottom-up fashion. The formal proof (of Lemma 10) is by induction on the depth of internal nodes.
Within the induction step, we will use the triangle inequality. It turns out that the accumulated
error will grow only linearly in the depth of the tree, which is just m.

As a final remark, we note that our security analysis did not achieve a totally uniform security
reduction (from the quantum computational string predicate-binding property to the quantum
computational binding property of a generic quantum bit commitment scheme); rather, we make
an essential use of a certain amount of both classical and quantum non-uniformity. (More detail
about this is referred to the discussion at the end of subsection 4.3.)

Extension. However, the (simplest) scenario (i.e. all commitments will be opened) considered
above is usually not sufficient for applications. This is because in many cases where bit commitments
are used in a larger protocol, not all bit commitments will be opened for a verification. Even worse,
positions of which bit commitments will be opened may not even be fixed: they might depend on
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the party who plays the role of the (cheating) sender. For example, consider an execution of Blum’s
protocol in which a Hamiltonian cycle is challenged to open.

Fortunately, we can extend the predicate-binding property established in the simplest case to
a more general case in which it holds that for at least one predicate (P1 or P2), the positions
of which bit commitments will be opened for its verification are fixed, while the other predicate
could be arbitrary (Theorem 3). It turns out that this extension already suffices for our purpose
of establishing Theorem 1.

For the formal proof of such an extension, there are more technical issues we need to handle.
(More detail is referred to the proof of Theorem 3 in Appendix A). Among others, we highlight
that the computational binding property of a generic quantum bit commitment scheme needs to
be strengthened (Lemma 5) for use.

Organization. We first give preliminaries in section 2. In section 3, we derive a more general
computational binding property of a generic quantum bit commitment scheme from the standard
one. It will be useful in the subsequent section 4, where we formally introduce and establish
the computational predicate-binding property of the quantum string commitment scheme that is
obtained by composing a generic quantum computationally-binding bit commitment scheme in
parallel. As an application of predicate-binding, in section 5 we show that Blum’s zero-knowledge
protocol for the NP-complete language Hamiltonian Cycle with a generic quantum computationally-
binding bit commitment scheme plugged in is sound against any quantum computationally bounded
prover. We conclude with section 6 and raise several open problems.

2 Preliminaries

A quantum system or register induces a Hilbert space. A quantum operation performing on a
quantum system induces an operator acting on the Hilbert space associated with the system. In
particular, a unitary operation induces a unitary transformation, and a binary projective measure-
ment induces a projector (corresponding to the outcome one). We will interchangeably use quantum
system and its induced Hilbert space, quantum operation and its induced operator. For example,
we may say that a unitary transformation or a projector perform on or do not touch a quantum
register.

Notations. We will explicitly write quantum register(s) as a superscript of an operator to indicate
or highlight on which register(s) this operator performs. Similarly, we will also explicitly write
quantum register(s) as a superscript of a quantum state to indicate or highlight in which register(s)
this quantum state is stored. For example, let A be a quantum register. Then we may write UA,
|ψ⟩A (resp. ρA), to indicate that the operator U performs on the register A, the quantum pure
(resp. mixed) state |ψ⟩ (resp. ρ) is stored in the register A, respectively. We may also write
U ⊗ 1A to highlight that the operation U does not touch the register A. But when it is clear from
the context, we often drop such superscripts or the tensor product with the identity to simplify
the notation; this in particular happens in many of derivations within our proofs, where we often
write out registers as superscripts or the tensor product with the identity explicitly in the first
step, while dropping them subsequently. When there are m copies of the register A, for a subset
T ⊆ {1, 2, . . . ,m}, we write A⊗T to refer to the copies of the register A indexed by the subset T ;
when the subset T is the whole set, we may just write A⊗m.

Efficiently realizable quantum computation. In this work, without loss of generality, we
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restrict to consider the following quantum computational model:

1. Quantum systems or registers are constituted of qubits.

2. There are only two kinds of quantum operations: unitary transformation and projective mea-
surement.

We also need to formalize efficiently realizable quantum operations. By [Yao93], any efficiently
realizable quantum algorithm or unitary transformation can be formalized by a family of quantum
circuits {Qn}n≥1 such that:

1. Each gate of the quantum circuit Qn comes from a pre-fixed finite, unitary, and universal
quantum gate set, e.g. {Hadamard,phase,cnot, π/8} [NC00].

2. Quantum circuit Qn is of polynomial size (w.r.t. the index n).

3. The quantum circuit family {Qn}n≥1 can be uniformly generated, i.e. there exists a polynomial-
time classical algorithm A which on input 1n outputs the description of the quantum circuit
Qn.

Since any projective measurement can be realized by first performing a unitary transformation,
followed by a measurement of all qubits in the standard basis, we say that a projective measurement
is efficiently realizable if the corresponding unitary transformation is efficiently realizable.

Any projector Π induces a binary measurement {Π,1−Π}, which produces the outcome 1
(resp. 0) when the quantum state collapses into the subspace induced the projector Π (resp.
1 − Π). We say that the projector Π is efficient realizable if its induced binary measurement is
efficiently realizable.

Quantum rewinding. A quantum rewinding technique as stated in the lemma below is adapted
from the one given in [FUYZ20] directly, whereas now we restrict to consider projectors and unitary
transformations that are efficiently realizable. In spite of this, its proof follows the same line as the
one in [FUYZ20].

Lemma 2 (A quantum rewinding) Let X and Y be two Hilbert spaces. Unit vector |ψ⟩ ∈ X⊗Y.
Efficiently realizable projectors Γ1, . . . ,Γk perform on the space X ⊗ Y, and efficiently realizable
unitary transformations U1, . . . , Uk perform on the space Y. If 1/k ·

∑k
i=1

∥∥Γi(Ui ⊗ 1X) |ψ⟩
∥∥2 ≥

1− η, where 0 ≤ η ≤ 1, then∥∥∥(U †
k ⊗ 1X)Γk(Uk ⊗ 1X) · · · (U †

1 ⊗ 1X)Γ1(U1 ⊗ 1X) |ψ⟩
∥∥∥ ≥ 1−

√
kη. (1)

2.1 A generic quantum bit commitment scheme

We first need to define quantum (in)distinguishability based on the efficiently realizable quantum
computation we fixed above. Our definition follows [Wat09].

Definition 3 ((In)distinguishability of quantum state ensembles) Two quantum state en-
sembles {ρn}n≥1 and {ξn}n≥1 are quantum statistically (resp. computationally) indistinguishable if
for any quantum state ensemble {σn}n≥1 and any unbounded (resp. efficiently realizable) quantum
algorithm D which outputs a single qubit that will be measured in the standard basis, it holds that

|Pr[D(1n, ρn ⊗ σn) = 1]− Pr[D(1n, ξn ⊗ σn) = 1]| < negl(n)

for sufficiently large n, where negl(·) is some negligible function.
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Following Yan [Yan20], the definition of a generic quantum computationally-binding bit com-
mitment scheme is given as below.

Definition 4 (A generic computationally-binding quantum bit commitment scheme) A
generic computationally-binding quantum bit commitment scheme is a two-party, two-stage proto-
col. It can be represented by an ensemble of polynomial-time uniformly generated quantum circuit
pair {(Q0(n), Q1(n))}n≥1. Specifically,

• The scheme involves two parties, a sender and a receiver, proceeding in two stages: a commit
stage followed by a reveal stage.

• In the commit stage, to commit bit b ∈ {0, 1}, the sender performs the quantum circuit
Qb(n) on quantum registers (C,R) initialized in all |0⟩’s state16. Then the sender sends the
commitment register C, whose state at this moment denoted by ρb(n), to the receiver.

• In the (canonical) reveal stage, the sender announces b, and sends the decommitment register
R to the receiver. The receiver then performs Qb(n)

† on the registers (C, R), accepting if (C,
R) return to all |0⟩’s state. (This can be done by a measurement in the computational basis
on each qubit that belongs to the registers (C, R).)

We are next to define the hiding (or concealing) and the binding properties of the scheme
{(Q0(n), Q1(n))}n≥1.

• Statistically hiding. We say that the scheme is statistically hiding if the quantum state
ensembles {ρ0(n)}n≥1 and {ρ1(n)}n≥1 are quantum statistically indistinguishable.

• Computationally ϵ(n)-binding. We say that the scheme is quantum computationally
ϵ(n)-binding if for any state |ψ⟩ in auxiliary register Z, and any efficiently realizable unitary
transformation U performing on (R, Z),∥∥∥(Q1 |0⟩ ⟨0|Q†

1

)CR
URZ

(
(Q0 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ(n), (2)

By the reversibility of quantum computation, the binding property can also be equivalently
defined by swapping the roles of Q0 and Q1 in the above. Then the inequality (2) becomes∥∥∥(Q0 |0⟩ ⟨0|Q†

0

)CR
URZ

(
(Q1 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ(n). (3)

We call ϵ(n) the binding error. When ϵ(n) is some negligible function, we usually drop it and
just say that the scheme is computationally binding.

Remark.

1. The (computational) binding property stated in the definition above is actually honest-
binding, which is equivalent to sum-binding [Yan20].

2. On instantiations of non-interactive computationally-binding quantum bit commitments of
the generic form based on quantum-secure one-way functions/permutations, one is referred
to [Yan20] for the details. Briefly, it is argued in [Yan20] that any interactive quantum bit
commitment schemes (including both classical and quantum constructions) secure against

16The number of qubits in the state |0⟩ that are needed depends on the quantum circuit Q0(n) (or Q1(n)).
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the purification attack17, which in particular include schemes proposed in [DMS00, CLS01,
KO11, NOVY98], can be converted into a non-interactive one of the generic form with the
same flavors of hiding and binding properties.

In the sequel, to simplify the notation we often drop the security parameter n and just write
(Q0, Q1) to denote a generic quantum computationally-binding bit commitment scheme.

We will use the scheme (Q0, Q1) to commit a binary string in a bitwise fashion. Namely, the
quantum circuit to commit a string s = s1s2 · · · sm ∈ {0, 1}m is given by

Qs
def
=

m⊗
i=1

Qsi , (4)

which performs on m copies of the quantum register pair (C,R).

2.2 Modeling an attack of the sender of quantum commitments

Consider a running of a larger two-party protocol in which a generic quantum bit commitment
scheme is used and the sender of quantum commitments is malicious. The other party who will be
referred to as the receiver is honest. The sender is supposed to commit to a string in {0, 1}m in a
bitwise fashion at some moment, and later try to open the commitments in a way as determined
by the larger protocol. Then the behavior of the sender can be modeled by (U, |ψ⟩) such that:

1. The sender prepares the system (C⊗m,R⊗m,D,Z) in the quantum state |ψ⟩ at the end of the
commit stage, and sends the commitment registers C⊗m to the receiver.

2. In the reveal stage, the sender first performs the unitary transformation U on the system
(R⊗m,D,Z), and then sends registers (R⊗m,D) to the receiver. The register D is supposed to
contain the classical information indicating which quantum bit commitments will be opened
as what value, and R⊗m are decommitment registers.

We have two remarks about the modeling as above:

1. We note that there might be other operations performed by both the sender and the receiver
between the end of the commit stage and the beginning of the reveal stage within the larger
protocol. But in many cases, this can be simulated by absorbing these operations and auxiliary
states introduced into the operation U and the state |ψ⟩, respectively. Anyway, in this work
we just restrict to consider the modeling as above for simplicity.

2. In the second item above, we assume without loss of generality that all decommitment regis-
ters R⊗m are sent to the receiver in the reveal stage, though sometimes only a proper subset
of commitments will be opened18. We can do this because the receiver is honest ; sending all
decommitment registers will not affect the security against the sender. More detail is referred
to [FUYZ20].

17Informally speaking, this is a kind of security that turns out to be just slightly stronger than the semi-honest
security yet much weaker than the full security.

18For example, consider a running of Blum’s zero-knowledge protocol for the language Hamiltonian Cycle in which
the cheating prover responds to the challenge 1 of the verifier.
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2.3 Blum’s zero-knowledge protocol for Hamiltonian Cycle

Basically, Blum’s protocol [Blu86] proceeds as follows: on input a graph G (assuming it is repre-
sented by its adjacency matrix) with n vertices:

1. The prover first chooses a random permutation Π ∈ Sn, where Sn consists of all permutations
over the set {1, 2, . . . , n}. Then it commits to the graph π(G), sending all n2 (quantum) bit
commitments to the verifier.

2. Upon receiving the prover’s commitments, the verifier tosses a random coin to obtain the
challenge bit b ∈ {0, 1} and sends it to the prover.

3. If the challenge b = 0, then the prover sends the permutation π together with the decommit-
ment registers for all bit commitments to the verifier. If the challenge b = 1, then the prover
sends the location of a Hamiltonian cycle H together with the decommitment registers for
the commitments of all edges of the cycle H to the verifier.

4. If the challenge b = 0, then the verifier accepts if all bit commitments are opened as π(G)
successfully. If the challenge b = 1, then the verifier accepts if the H is a possible location of
a Hamiltonian cycle and all commitments to the edges of H are opened as 1 successfully.

3 Generalized quantum computational binding

In our definition of quantum computational binding (inequalities (2) and (3) within Definition 4),
we quantify over all efficiently realizable unitary transformations that do not touch the commitment.
In this section, we show that we can generalize the quantum computational binding property by
additionally quantifying over all efficiently realizable projectors. (Recall that we call a projector Π
efficiently realizable if its induced binary measurement {Π,1−Π} is efficiently realizable).

We remark that such a generalization is introduced mainly for a technical reason. (Refer to the
subsequent section for its application.) Intuitively, such a generalization is needed because a larger
quantum protocol within which quantum bit commitments are used may involve not only unitary
transformations but also (projective) measurements. Its proof is by a standard technique, namely,
any efficient adversary that is not unitary can be converted in a straightforward manner into an
efficient adversary that is unitary by introducing ancilla qubits. The proof also makes an essential
use of the arbitrarity of the efficiently realizable unitary transformation U and the auxiliary input
state |ψ⟩ in the definition of quantum computational binding (Definition 4).

Lemma 5 Inherit all notations in Definition 4. Let the operator Γ = UkΠk · · ·U1Π1 be an arbitrary
alternation of efficiently realizable unitary transformations and projectors, where k ≥ 1 is an integer,
and for each i (1 ≤ i ≤ k) both the unitary transformation Ui and the projector Πi perform on the
quantum registers (R, Z). If the inequality (2) holds, then∥∥∥(Q1 |0⟩ ⟨0|Q∗

1)
CRΓRZ

(
(Q0 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ(n),∥∥∥(Q0 |0⟩ ⟨0|Q∗
0)

CRΓRZ
(
(Q1 |0⟩)CR |ψ⟩Z

)∥∥∥ < ϵ(n).

Proof: We just prove the first inequality; the second one can be proved symmetrically.
By the definition of quantum computationally binding (Definition 4), the first inequality trivially

holds when the operator Γ is a unitary transformation. To handle projectors, the basic idea is
simulation: namely, each binary projective measurement {Πi,1−Πi} (1 ≤ i ≤ k) performing
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on the registers (R, Z) can be simulated by a unitary transformation Vi performing on registers
(R,Z,Yi) in the standard way, where the register Yi is a single qubit register initialized in the state
|0⟩. Note that if the binary measurement {Πi,1−Πi} is efficiently realizable, then so is Vi. Put it
formally,

V RZYi
i

(
|0⟩Yi (Q0 |0⟩)CR |ψ⟩Z

)
= |1⟩Yi⊗ΠRZ

i

(
(Q0 |0⟩)CR |ψ⟩Z

)
+|0⟩Yi⊗(1−Πi)

RZ
(
(Q0 |0⟩)CR |ψ⟩Z

)
.

For each index i (1 ≤ i ≤ k) and each bit b ∈ {0, 1}, we introduce the projector

Πb
i
def
=

{
Πi, if b = 1

1−Πi, if b = 0
,

and the register Y = (Y1, . . . ,Yk). Then

(URZ
k V RZYk

k · · ·URZ
1 V RZY1

1 )
(
|0k⟩Y (Q0 |0⟩)CR |ψ⟩Z

)
=

∑
s∈{0,1}k

|s⟩Y ⊗ UkΠ
sk
k · · ·U1Π

s1
1

(
(Q0 |0⟩) |ψ⟩

)
.

Hence, ∥∥∥(Q1 |0⟩ ⟨0|Q∗
1)

CR(URZ
k V RZYk

k · · ·URZ
1 V RZY1

1 )
(
|0k⟩YQ0 |0⟩CR |ψ⟩Z

)∥∥∥2
=

∥∥∥ ∑
s∈{0,1}k

|s⟩Y ⊗ (Q1 |0⟩ ⟨0|Q∗
1)UkΠ

sk
k · · ·U1Π

s1
1

(
(Q0 |0⟩) |ψ⟩

)∥∥∥2
=

∑
s∈{0,1}k

∥∥∥ |s⟩ ⊗ (Q1 |0⟩ ⟨0|Q∗
1)UkΠ

sk
k · · ·U1Π

s1
1

(
(Q0 |0⟩) |ψ⟩

)∥∥∥2
≥

∥∥∥|1k⟩ ⊗ (Q1 |0⟩ ⟨0|Q∗
1)UkΠ

1
k · · ·U1Π

1
1

(
(Q0 |0⟩) |ψ⟩

)∥∥∥2
=

∥∥(Q1 |0⟩ ⟨0|Q∗
1)UkΠk · · ·U1Π1

(
(Q0 |0⟩) |ψ⟩

)∥∥2
=

∥∥(Q1 |0⟩ ⟨0|Q∗
1) Γ

(
(Q0 |0⟩) |ψ⟩

)∥∥2 .
While the r.h.s. of the inequality above is exactly what we want to bound, the l.h.s. can be bounded
by ϵ2 due to the inequality (2) (which holds for any efficiently realizable unitary transformation
and any auxiliary input state, in particular the unitary UkVk · · ·U1V1 and the state

∣∣0k⟩ |ψ⟩, re-
spectively). Then take the square root of both sides will finish the proof of the first inequality of
the lemma. ■

A straightforward corollary of the lemma above in the following will also be useful in our security
analysis.

Corollary 6 Inherit all notations in Definition 4. Operator Γ is the same as introduced in Lemma
5. Quantum states |ψ0⟩ , |ψ1⟩ are two possible states of the register Z. Then∣∣∣((⟨0|Q†

1)
CR ⟨ψ1|Z

)
ΓRZ

(
(Q0 |0⟩)CR |ψ0⟩Z

)∣∣∣ < ϵ(n).

Proof:∣∣∣((⟨0|Q†
1)

CR ⟨ψ1|Z
)
ΓRZ

(
(Q0 |0⟩)CR |ψ0⟩Z

)∣∣∣ ≤ ∥∥∥(Q1 |0⟩ ⟨0|Q∗
1)

CRΓRZ
(
(Q0 |0⟩)CR |ψ0⟩Z

)∥∥∥ < ϵ(n).

■
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4 The predicate-binding property of quantum string commitments

In this section, we first introduce the notion of pattern-predicate and then the predicate-binding
property of quantum string commitments. Next, we show that the parallel composition of a generic
quantum computationally-binding bit commitment scheme gives rise to a quantum string commit-
ment scheme that is predicate-binding w.r.t. a pair of inconsistent pattern-predicates of a special
form. Last, we extend this predicate-binding property to a setting that is sufficient for our appli-
cation, i.e. quantum zero-knowledge arguments for NP.

4.1 Pattern-predicate

Informally, the pattern-predicate defined in the below states that for a string to satisfy some
predicate, it should exhibit a certain “pattern” somewhere. The intuition underlying our definition
is that in typical applications of bit commitments, the receiver will check whether the value of the
opened commitments will cause it to accept.

Definition 7 (Pattern-predicate) A pattern-predicate P on binary strings {0, 1}m (m ≥ 1)
can be represented by a triplet of functions (val(·), T (·), s(·)), where given a candidate witness
w ∈ {0, 1}poly(m) as input: val(w) = 1 if w is a valid witness, and 0 otherwise19; T (w) is a subset
of {1, 2, . . . ,m}; s(w) is a string of length |T (w)|; all three functions val(·), T (·), and s(·) can be
computed in poly(m) time. A string str ∈ {0, 1}m satisfies the predicate P if there exists a (valid)
witness w ∈ {0, 1}poly(m) satisfying val(w) = 1 and str[T (w)] = s(w), where str[T (w)] denotes the
substring obtained from the string str by projecting it on coordinates in the subset T (w).

Remark. Intuitively, a valid witness w for a string str guides us to find a pattern s(w) locating
at positions specified by T (w) efficiently. This pattern will certify that the string str satisies the
pattern-predicate P . However, it might be computationally hard to find a valid witness for a given
string str.

In this work, for simplicity we often drop the prefix “pattern” and just write “predicate” to
refer to a pattern-predicate. For a predicate P , it induces a subset P (by abusing the notation) of
strings in {0, 1}m such that a string s ∈ P if and only if it satisfies the predicate P ; we will identify
a predicate as the subset induced by it. We say that two predicates P1, P2 on the set {0, 1}m are
inconsistent if P1∩P2 = ∅; that is, no strings in {0, 1}m can satisfy both P1 and P2 simultaneously.

In a typical application of commitments within a larger protocol, at some stage of this protocol
the party who plays the role of the possibly cheating sender of commitments will open commitments,
and the party who plays the role of the honest receiver of commitments will do some verification.
We note that it is this verification that natually induces a pattern-predicate. See the following
example.

Example 1. Consider a running of Blum’s zero-knowledge protocol for the NP-complete language
Hamiltonian Cycle, in which the verifier is honest while the prover might be cheating, and the
common input graph G has n vertices. Let m = n2. Each graph with n vertices can be represented
by an m-bit string. This running of Blum’s protocol induces two predicates on strings over {0, 1}m,
corresponding to the verifier’s verifications w.r.t. two possible challenges, respectively. In more
detail, when the verifier’s challenge is 0, it will check that all bit commitments are opened as a

19Sometimes, it will be more covenient to identify the function val(·) as an algorithm that decides the validity of a
candidate witness.
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graph that is isomorphic to the input graph. This induces a predicate P0 which consists of all
graphs that are isomorphic to the input graph. Formally, the predicate P0 can be represented by
a triplet of functions (val(·), T (·), s(·)) such that: given a claimed permutation π over {1, 2, . . . , n},
val(π) = 1 if π indeed represents a valid permutation; T (·) ≡ {1, 2, . . . ,m}, and s(π) = π(G).
When the verifier’s challenge is 1, it will check that n (out of n2) bit commitments are opened as
all 1’s; moreover, these n positions (of opened bit commitments) should correspond to a possible
location of a Hamiltonian cycle. This induces a predicate P1 which consists of all n-vertices graphs
containing a Hamiltonian cycle. Formally, the predicate P1 can be represented by a triplet of
functions (val(·), T (·), s(·)) such that: given a claimed Hamiltonian cycle H, val(H) = 1 if H indeed
represents a possible location of a Hamiltonian cycle; T (H) is set of coordinates corresponding to
edges of H, and s(·) ≡ 1n. If the input graph is not Hamiltonian, then the two predicates P0 and
P1 are obviously inconsistent.

Another example given below consider a simpler scenario, where a special form of pattern-
predicates is introduced. In the sequel, we will study these special pattern-predicates first before
more general ones.

Example 2. Consider the following scenario. The sender first commits to a string in a bitwise
fashion. Later, all (bit) commitments will be opened, and the receiver (of commitments) will check
whether the whole revealed string satisfies an efficiently computable predicate P in the common
sense (i.e. a predicate which can be evaluated on any input string in polynomial time, rather than
pattern-predicate introduced in this work). Let A(·) be an algorithm which runs in time poly(m)
and can decide whether a string str ∈ {0, 1}m satisies P . We note that the predicate P can also
be viewed as a pattern-predicate (A(·), T (·), s(·)) where T (·) ≡ {1, 2, . . . ,m} and s(·) is the identity
function; any string str ∈ P itself serves as its witness.

4.2 String predicate-binding

We first give an informal definition of the predicate-binding property of a quantum string commit-
ment scheme, and then informally state we have achieved towards predicate-binding by composing
a generic computationally-binding quantum bit commitment scheme in parallel. Last, we restate
the definition of the predicate-binding w.r.t. the parallization of a generic computationally-binding
quantum bit commitment scheme in a formal way for the purpose of proving predicate-binding in
the sequel.

Definition 8 (Predicate-binding, informal) Let P1, P2 be two inconsistent pattern-predicates.
We say that a quantum string commitment scheme is predicate-binding w.r.t. (P1, P2) if any cheat-
ing sender, who can succeed in convincing the receiver that the committed value of the (claimed)
quantum string commitment satisfies the predicate P1 with certainty, will fail to convince the re-
ceiver that the committed value satisfies the predicate P2 (except for a negligible probability). We
say that a quantum string commitment scheme is predicate-binding if it is predicate-binding w.r.t.
any pair of inconsistent predicates.

Remark. Classical commitments secure against classical attacks are trivially predicate-binding,
simply because there is at most one string (i.e. the committed value) associated with each (claimed)
commitment. However, this no longer holds w.r.t. either classical or quantum commitments secure
against quantum attacks.

Restricting to consider the quantum string commitment scheme obtained by composing a generic
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computationally-binding quantum bit commitment scheme (Q0, Q1) in parallel, our goal is to show
that it is predicate-binding w.r.t. inconsistent pattern-predicates pairs that are general enough for
our application (section 5). Informally, we can prove a theorem as below. We highlight (again)
that we do not achieve the full predicate-binding, which is left as an interesting open problem.

Theorem 2 Suppose that the quantum bit commitment scheme (Q0, Q1) is computationally bind-
ing. Let P1, P2 be two inconsistent predicates on the set {0, 1}m such that for (at least) one of
them, the verification of whether an m-bit string satisfies it needs to examine the bits at some
fixed positions of the string (regardless of the witness provided). Then the parallel composition of
the scheme (Q0, Q1) gives rise to a quantum string commitment scheme that is computationally
predicate-binding w.r.t. (P1, P2).

For the purpose of proving Theorem 2, now let us restate Definition 8 w.r.t. the parallization
of a generic computationally-binding quantum bit commitment scheme in a more formal way.

Suppose that a cheating sender who is modeled as in section 2.2 tries to convince the (honest)
receiver that the committed value of a (claimed) quantum string commitment satisfies a predicate
P = (val(·), T (·), s(·)), i.e. the (claimed) commitment can be opened in such a way that if w is a
valid witness, then the bit commitments indexed by the subset T (w) are opened as the string s(w).
The predicate P natually induces a projector P (also by abusing the notation) whose expression is
given by

P =
∑
w

(
|w⟩ ⟨w|

)D ⊗
(
Qs(w) |0⟩ ⟨0|Q

†
s(w)

)C⊗T (w)R⊗T (w)

. (5)

Its explanation follows. The summation is over all valid witnesses20 for m-bit strings in P1; the
quantum circuit Qs(w) (whose meaning is referred to the equation (4)) performs on the copies of
the quantum register pair (C,R) indexed by the subset T (w); in the reveal stage, the receiver will
perform the binary measurement {P,1− P} on its system to decide whether to accept or not.
Hence, the sender’s success probability of convincing the receiver to accept is given by ∥PU |ψ⟩∥2,
where recall that |ψ⟩ is the quantum state of the whole system at the end of the commit stage and
U is the sender’s operation in the reveal stage. We also note that the projector P is efficiently
realizable, since all functions val(·), T (·) and s(·) are efficiently computable.

Based on the expression (5), we can formalize the predicate-binding property of the paralleliza-
tion of a generic quantum bit commitment scheme as follows.

Definition 9 (Predicate-binding w.r.t. the parallel composition of QBC) Let P1, P2 be two
inconsistent pattern-predicates. We say that the quantum string commitment scheme obtained by
composing a generic quantum bit commitment scheme (Q0, Q1) in parallel is predicate-binding w.r.t.
(P1, P2) if ∥P2UP1 |ψ⟩∥2 is negligible, where |ψ⟩ is an arbitrary state of registers (C⊗m,R⊗m,D,Z),
and U could be any efficiently realizable unitary transformations that do not touch the quantum
commitment (i.e. the commitment registers C⊗m). We say that this quantum string commit-
ment scheme is predicate-binding if it is predicate-binding w.r.t. any pair of inconsistent pattern-
predicates.

In the subsequent two subsections, we will prove Theorem 2. We will first establish predicate-
binding w.r.t. a special form of inconsistent pattern-predicate pair (as formalized in Lemma 10),
and then extend it to a more general case (as formalized in Theorem 3).

20We point out that a string in P1 may have multiple witnesses.
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4.3 Towards predicate-binding: a special case

We first restrict to consider pattern-predicates arising in Example 2 in subsection 4.1, and try to
establish predicate-binding w.r.t. such a pair of inconsistent predicates.

By instantiating the predicate P in the equation (5) with the predicate of the form introduced
in Example 2, the expression of the projector P will become

P =
∑
s∈P

(
|s⟩ ⟨s|

)D ⊗
(
Qs |0⟩ ⟨0|Q†

s

)C⊗mR⊗m

. (6)

For any inconsistent predicate pair (P1, P2) whose corresponding projectors P1 and P2 are both
of the form (6), we can prove the following main technical lemma of this work.

Lemma 10 Suppose that the scheme (Q0, Q1) is computationally ϵ-binding for some arbitrary neg-
ligible function ϵ(·). Both predicates P1 and P2 are of the form given by the expression (6). Then for
any quantum state |ψ⟩ of registers (C⊗m,R⊗m,D,Z), and any efficiently realizable unitary transfor-
mation U that does not touch the commitment registers C⊗m, we have ∥P2UP1 |ψ⟩∥2 ≤ m2ϵ2+2mϵ.

Proof: According to the expression (6), we can write

P1 |ψ⟩ =
∑
s∈P1

αs |s⟩D ⊗Qs |0⟩C
⊗mR⊗m

⊗ |ϕs⟩Z (7)

=
∑

s∈{0,1}m
αs |s⟩D ⊗Qs |0⟩C

⊗mR⊗m

⊗ |ϕs⟩Z , (8)

where for each s ̸∈ P1, we let αs = 0 and |ϕs⟩ be arbitrary21; moreover, the complex coefficients
αs’s satisfy

∑
s∈{0,1}m |αs|2 ≤ 1. For convenience, we introduce the shorthand

|ψs⟩
def
= |s⟩ ⊗Qs |0⟩ ⊗ |ϕs⟩ (9)

for each s ∈ {0, 1}m. With these notations, our goal becomes to show∥∥∥P2U
∑

s∈{0,1}m
αs |ψs⟩

∥∥∥2 ≤ m2ϵ2 + 2mϵ. (10)

We will actually prove a strengthening of the inequality (10) by induction. Specifically, we will
prove that for each k (0 ≤ k ≤ m) and each string x ∈ {0, 1}m−k, it holds that∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs⟩
∥∥∥2 ≤ (m2ϵ2 + 2kϵ)

∑
s∈{0,1}k◦x

|αs|2 , (11)

where {0, 1}k ◦ x denotes the set of all m-bit strings with a suffix x of length m − k. For each
x ∈ {0, 1}m−k where 0 ≤ k ≤ m, if we view it as inducing an internal node/leaf of a binarty tree
which corresponds to the summation P2U

∑
s∈{0,1}k◦x αs |ψs⟩, then we will bound the (squared)

norm of each internal node in a bottom-up way. Thus, the root of the tree will correspond to the
case where k = m (then x becomes an empty string), i.e. l.h.s. of the inequality (10) without

21Here, our purpose of introducing αs and |ϕs⟩ for s ̸∈ P1 is mainly for a cleaner way of writing the proof; it will not
affect the places in the subsequent proof where the (generalized) quantum computational binding property (Lemma
5) is applied.
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the squared norm. If we can prove the inequality (11), then plugging in k = m and the inequality∑
s∈{0,1}m |αs|2 ≤ 1, we will arrive at the inequality (10).
Now we are ready to prove the inequality (11) by induction on k, where 0 ≤ k ≤ m.

Base. We show that the inequality (11) holds when k = 0. In this case, x is a string of length
m. Since the coefficient αx = 0 for x ̸∈ P1, in which case the inequality (11) holds trivially, it
suffices to fix an arbitrary x ∈ P1 and show that ∥P2U |ψx⟩∥ ≤ mϵ. To this end, our technique is
the perturbation that is similar to the quantum statistical binding setting [FUYZ20]. Specifically,
we will first show that the unit vector U |ψx⟩ is negligibly close to the (unnormalized) vector

|ψ̃x⟩
def
=

m⊗
i=1

(
1− (Qx̄i |0⟩ ⟨0|Q

†
x̄i
)
)
U |ψx⟩ , (12)

where x̄i = 1 − xi, and the projector Qx̄i |0⟩ ⟨0|Q
†
x̄i

performs on the i-the copy of the register
pair (C,R). Second, we show that from the inconsistency of the predicate pair (P1, P2), it follows
that the vector |ψ̃x⟩ is orthogonal to the subspace P2. Combining these two facts, we know that
∥P2U |ψx⟩∥ is negligible. Detail follows.

We first show that
∥∥U |ψx⟩−|ψ̃x⟩

∥∥ < mϵ via a simple hybrid argument. Specifically, we introduce

hybrids for each 0 ≤ j ≤ m such that Hj
def
=

⊗j
i=1

(
1−Qx̄i |0⟩ ⟨0|Q

†
x̄i

)
U |ψx⟩; then U |ψx⟩ = H0 and

|ψ̃x⟩ = Hm. It suffices to show that any two adjacent hybrids are negligibly close: if this is true,
then applying the triangle inequality of the operator norm m times will yield the desired bound.

Indeed, for each 1 ≤ j ≤ m,

∥Hj − Hj−1∥

=

∥∥∥∥∥
j⊗

i=1

(
1−Qx̄i |0⟩ ⟨0|Q

†
x̄i

)
U |ψx⟩ −

j−1⊗
i=1

(
1−Qx̄i |0⟩ ⟨0|Q

†
x̄i

)
U |ψx⟩

∥∥∥∥∥
≤

∥∥∥(1−Qx̄j |0⟩ ⟨0|Q
†
x̄j

)
U |ψx⟩ − U |ψx⟩

∥∥∥
=

∥∥∥(Qx̄j |0⟩ ⟨0|Q
†
x̄j

)
U(|x⟩Qx |0⟩ |ϕx⟩)

∥∥∥
< ϵ,

where the last “<” follows from Lemma 5 by considering the j-th quantum bit commitment. In
greater detail, to apply Lemma 5 we replace the |ψ⟩ and Γ in Lemma 5 with |x⟩

(⊗
i̸=j Qxi |0⟩

)
|ϕx⟩

and U here, respectively.
We then show that the (unnormalized) vector |ψ̃x⟩ is orthogonal to the subspace P2, i.e.∥∥P2|ψ̃x⟩

∥∥ = 0. This follows straightforwardly from the assumption that the predicate P2 is in-
consistent with the predicate P1. In greater detail, for each s ∈ P2, we know that it is different
from the string x ∈ P1; that is, there exists some index j (1 ≤ j ≤ m) such that sj = x̄j . Combining
this with the equation (12), it follows that∥∥∥( |s⟩ ⟨s| ⊗Qs |0⟩ ⟨0|Q†

s

)
|ψ̃x⟩

∥∥∥ ≤
∥∥∥(Qs |0⟩ ⟨0|Q†

s

)
|ψ̃x⟩

∥∥∥
≤

∥∥∥(Qx̄j |0⟩ ⟨0|Q
†
x̄j

)( m⊗
i=1

(
1− (Qx̄i |0⟩ ⟨0|Q

†
x̄i
)
)
U |ψx⟩

)∥∥∥
= 0.
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Then summing over all s ∈ P2, we obtain∥∥∥ ∑
s∈P2

(
|s⟩ ⟨s| ⊗Qs |0⟩ ⟨0|Q†

s

)
|ψ̃x⟩

∥∥∥ =
∥∥P2|ψ̃x⟩

∥∥ = 0.

Combining
∥∥U |ψx⟩ − |ψ̃x⟩

∥∥ < mϵ with
∥∥P2|ψ̃x⟩

∥∥ = 0, we arrive at ∥P2U |ψx⟩∥ ≤ mϵ.

Induction. Now suppose that the inequality (11) holds for k− 1 and each binary string x of length
m− (k − 1). We are to show that it also holds for k and an arbitrary binary string x of length of
m− k.

For an arbitrary x ∈ {0, 1}m−k, we first expand the l.h.s. of the inequality (11):∥∥∥P2U
∑

s∈{0,1}k◦x

αs |ψs⟩
∥∥∥2 = ∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs⟩+ P2U
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′⟩
∥∥∥2

≤
∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs⟩
∥∥∥2 + ∥∥∥P2U

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′⟩
∥∥∥2 (13)

+2
∣∣∣ ∑
s∈{0,1}k−1◦0x

αs ⟨ψs| · U †P2U ·
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′⟩
∣∣∣.

For convenience, we introduce shorthands

α2
0x

def
=

∑
s∈{0,1}k−1◦0x

|αs|2 , α2
1x

def
=

∑
s′∈{0,1}k−1◦1x

|αs′ |2 , α2
x

def
= α2

0x + α2
1x.

Without loss of generality, we can assume that all α0x, α1x, αx ≥ 0. With these notations, our goal
(i.e. inequality (11)) becomes to show∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs⟩
∥∥∥2 ≤ α2

x(m
2ϵ2 + 2kϵ),

and the induction hypothesis implies∥∥∥P2U
∑

s∈{0,1}k−1◦0x

αs |ψs⟩
∥∥∥2 ≤ α2

0x(m
2ϵ2 + 2(k − 1)ϵ),

∥∥∥P2U
∑

s∈{0,1}k−1◦1x

αs |ψs⟩
∥∥∥2 ≤ α2

1x(m
2ϵ2 + 2(k − 1)ϵ).

The remainder of the analysis splits into two cases.

Case 1: either α0x = 0 or α1x = 0. Without loss of generality, we can assume that α1x = 0.
This implies that αs′ = 0 for each s′ ∈ {0, 1}k−1 ◦ 1x. Thus,∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs⟩
∥∥∥2 = ∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs⟩
∥∥∥2 ≤ α2

0x(m
2ϵ2+2(k−1)ϵ) ≤ α2

x(m
2ϵ2+2kϵ),

where the first “≤” uses the induction hypothesis.
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Case 2: both α0x > 0 and α1x > 0. Following the inequality (13) and using the induction
hypothesis, we have∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs⟩
∥∥∥2 ≤ α2

0x(m
2ϵ2 + (k − 1)ϵ) + α2

1x(m
2ϵ2 + 2(k − 1)ϵ)

+2α0xα1x ·
∣∣∣ 1

α0x

∑
s∈{0,1}k−1◦0x

αs ⟨ψs| · U †P2U · 1

α1x

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′⟩
∣∣∣

︸ ︷︷ ︸
(∗)

.

We claim (refer to Claim 11 in the below) that the absolute value (∗) in the above can be bounded
by 2ϵ. Then

∥∥∥P2U
∑

s∈{0,1}k◦x

αs |ψs⟩
∥∥∥2 ≤ (α2

0x + α2
1x)(m

2ϵ2 + 2(k − 1)ϵ) + 2α0xα1x · 2ϵ

≤ (α2
0x + α2

1x)(m
2ϵ2 + 2(k − 1)ϵ) + (α2

0x + α2
1x) · 2ϵ

= α2
x(m

2ϵ2 + 2kϵ).

The induction step is thus completed in both cases.

We finish the proof the inequality (11), and in turn the whole lemma. ■

We are left to prove the following claim.

Claim 11 The absolute value (∗) is less than 2ϵ.

Proof: Inherit all notations introduced within the statement and the proof of Lemma 10. Our
idea is (again) using perturbation. Detail follows.

Plugging in the equation (9), unit vectors

1/α0x

∑
s∈{0,1}k−1◦0x

αs |ψs⟩ and 1/α1x

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′⟩

can be written in the form

Q0 |0⟩ ⊗ |ξ0⟩ and Q1 |0⟩ ⊗ |ξ1⟩ ,

respectively, where both Q0 |0⟩ and Q1 |0⟩ are the states of the k-th quantum register pair (C, R),
and

|ξ0⟩ =
1

α0x

∑
s∈{0,1}k−1◦0x

αs |s⟩ ⊗Qs[k̄] |0⟩ ⊗ |ϕs⟩ ,

|ξ1⟩ =
1

α1x

∑
s′∈{0,1}k−1◦1x

αs′
∣∣s′⟩⊗Qs′[k̄] |0⟩ ⊗ |ϕs′⟩ ;

here s[k̄] and s′[k̄] denote the substrings of s and s′ with the k-th bit dropped, respectively.
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We introduce more shorthands as follows:

|η0⟩
def
= U(Q0 |0⟩ ⊗ |ξ0⟩), |η̃0⟩

def
=

(
1− (Q1 |0⟩ ⟨0|Q†

1)
)
U(Q0 |0⟩ ⊗ |ξ0⟩),

|η1⟩
def
= U(Q1 |0⟩ ⊗ |ξ0⟩), |η̃1⟩

def
=

(
1− (Q0 |0⟩ ⟨0|Q†

0)
)
U(Q1 |0⟩ ⊗ |ξ0⟩),

(14)

where both projectors 1 − (Q1 |0⟩ ⟨0|Q†
1) and 1 − (Q0 |0⟩ ⟨0|Q†

0) perform on the k-th quantum
register pair (C, R). With these notations, our goal becomes to show

|⟨η0|P2 |η1⟩| < 2ϵ.

To this end, it suffices to show:

1. ∥|η0⟩ − |η̃0⟩∥ < ϵ;

2. ∥|η1⟩ − |η̃1⟩∥ < ϵ;

3. ⟨η̃0|P2 |η̃1⟩ = 0.

This is because if all of the three items above hold, then a simple triangle inequality will finish the
job.

Indeed, for the first item,

∥|η0⟩ − |η̃0⟩∥ =
∥∥∥(Q1 |0⟩ ⟨0|Q†

1

)
U(Q0 |0⟩ ⊗ |ξ0⟩)

∥∥∥ < ϵ,

which follows immediately from the quantum computational binding property (Lemma 5).
Symmetrically, we can prove the second item.
For the third item, according to the equation (6),

P2 =
∑
s∈P2

(
|s⟩ ⟨s|

)D ⊗
(
Qs |0⟩ ⟨0|Q†

s

)C⊗mR⊗m

=
∑
s∈P2

(
|s⟩ ⟨s|

)D ⊗
(
Qsk |0⟩ ⟨0|Q

∗
sk

)
⊗

(
Qs[k̄] |0⟩ ⟨0|Q∗

s[k̄]

)
,

where the projector Qsk |0⟩ ⟨0|Q∗
sk

performs on the k-th quantum register pair (C, R), and the
projector Qs[k̄] |0⟩ ⟨0|Q∗

s[k̄]
performs on the remaining m− 1 copies of the quantum register pair (C,

R). Whether sk = 0 or 1, following from the equations in (14),

⟨η̃0| (Qsk |0⟩ ⟨0|Q
†
sk
) |η̃1⟩ = 0.

Thus, ⟨η̃0| (|s⟩ ⟨s| ⊗Qsk |0⟩ ⟨0|Q
†
sk) |η̃1⟩ = 0. Summing over all s ∈ P2 will yield ⟨η̃0|P2 |η̃1⟩ = 0.

This finishes the proof of the claim. ■

Towards a security reduction from (string) predicate-binding to quantum computa-
tional (bit) binding. One can easily adapt our security analysis above to a construction of an
attack of the quantum computational bit binding given access to an attack of the (string) predicate-
binding. In greater detail, note that the only places we use the computational binding property of
the scheme (Q0, Q1) lies in the base step and in bounding the absolute value (∗) within the induction
step (Claim 11). Thus, if there were a successful attack (U, |ψ⟩) of the predicate-binding property
w.r.t. an inconsistent predicate pair (P1, P2), then by contradiction there are two possibilities:
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1. The inequality (11) fails for k = 0, some x ∈ {0, 1}m, and the quantum state |ψx⟩.

2. Claim 11 fails for some k where 1 ≤ k ≤ m, some x ∈ {0, 1}m−k, and quantum states
1/α0x

∑
s∈{0,1}k−1◦0x αs |ψs⟩ and 1/α1x

∑
s′∈{0,1}k−1◦1x αs′ |ψs′⟩.

Either of the two items above can be easily converted to an attack of the quantum computational
binding property of the scheme (Q0, Q1). But for this purpose, one needs to introduce both classical
and quantum non-uniformities: classical non-uniformities include x in item 1 and k, x in item 2,
while quantum non-uniformities include |ψx⟩ in item 1 and |ψs⟩ and |ψs′⟩ in item 2. This (hybrid)
non-uniformity is similar to fixing “good” random coin tosses or a good index when invoking a
hybrid argument in classical security reductions. In this sense, our security analysis above is not
fully uniform.

4.4 Extension

By slightly adapting its proof, we can extend Lemma 10 so that it holds w.r.t. more general
inconsistent predicate pairs (and thus could be useful in cryptographic applications). Specifically,
we can prove Theorem 2. Now let us restate Theorem 2 in a more formal way.

Suppose that (P1, P2) is an inconsistent pattern-predicate pair such that the predicate P2 is
of the most general form as described by the equation (5). The predicate P1 is restricted to be
such that the verification of whether an m-bit string satisfies it only needs to examine the bits
at some fixed positions of the string (regardless of the witness provided). Formally, let T1 be the
fixed subset that prescribes which bits are to examine for the verification of P1, and l = |T1|. Then
whether a string str ∈ {0, 1}m satisfies the predicate P1 actually only depends on its substring
str[T1]. The predicate P1 in turn induces a predicate P1[T1] on the set {0, 1}l which consists of
strings obtained by projecting strings in P1 on positions prescribed by the subset T1. Specifically,
P1 = (val(·), T (·), s(·)), where T (·) ≡ T1 and |s(·)| ≡ l. Following the equation (5), the projector
P1 can be written as

P1 =
∑
w

(
|w⟩ ⟨w|

)D ⊗
(
Qs(w) |0⟩ ⟨0|Q

†
s(w)

)C⊗T1R⊗T1
(15)

=
∑

str∈P1[T1]

∑
w:s(w)=str

(
|w⟩ ⟨w|

)D ⊗
(
Qstr |0⟩ ⟨0|Q†

str

)C⊗T1R⊗T1
. (16)

Then Theorem 2 can be restated as follows formally.

Theorem 3 Suppose that the scheme (Q0, Q1) is computationally ϵ-binding. Let P1, P2 be two
inconsistent predicates on the set {0, 1}m, which induce two projectors of the form (16) and (5),
respectively. Then for any quantum state |ψ⟩ of registers (C⊗m,R⊗m,D,Z), and any efficiently
realizable unitary transformation U that does not touch the commitment registers C⊗m, we have
∥P2UP1 |ψ⟩∥2 ≤ m2ϵ2 + 3mϵ.

In the remainder of this subsection, we will sketch why such an extension as described in
Theorem 2 (or formally Theorem 3) is possible. The proof of Theorem 3 is deferred to Appendix
A.

The generalization of the predicate P2. It is not hard to extend Lemma 10 to the case in
which the predicate P2 is of the most general form as described by the equation (5) (while the
restriction on the predicate P1 remains the same). This extension turns out to be already sufficient

26



for our application (section 5). Now let us briefly mention how to adapt the proof of Lemma 10 to
this case in the below.

Recall that the proof of Lemma 10 is by induction. For the base step, which essentially relies
on the inconsistency of predicates P1 and P2, almost the same proof as that of Lemma 10 goes
through even if the predicate P2 is generalized. For the induction step, however, we will encounter
new difficulty in bounding ⟨η̃0|P2 |η̃1⟩ within the proof of Claim 11 for the extension: now it may

happen that some projectors of the form |w⟩ ⟨w| ⊗
(
Qs(w) |0⟩ ⟨0|Q

†
s(w)

)
in the summation over all

valid witnesses of the equation (5) do not touch the k-th register pair (C, R). Thus, new technique
is needed to handle such projectors for the purpose of bounding the absolute value (∗). Actually,
this is where we really need to generalize the quantum computational binding property (refer to
Definition 4) so as to cope with not only unitary transformations but also projectors (Lemma 5).

In greater detail, to bound the absolute value (∗) now we divide the summation over all valid
witnesses in the equation (5) into two parts: the summations of those projectors that touch the
k-th register pair (C, R), and those do not. Correspondingly, we can bound the absolute value
of each of these two parts separately, and then use the triangle inequality to get a bound of the
absolute value (∗). In particular, the absolute value of the former part can be bounded by 2ϵ in
a similar way as that of the proof of Claim 11, whereas the absolute value of the latter part can
be bounded by ϵ, thanks to the generalized computational binding property (Lemma 5). Combing
them we obtain a 3ϵ bound of the absolute value (∗) in case of the generalized predicate P2.

The generalization of the predicate P1. Unfortunately, it seems unlikely that we can generalize
the predicate P1 to the most general form (5) (while the restriction on the predicate P2 remains
the same) by our technique. This is because the special form of the projector P1 (equation (6))
seem to play an important role in bounding the absolute value (∗) within the induction proof of
Lemma 10. In more detail, it seems that we make an essential of the following structure of the
superposition (8) (which is induced by the projector P1): for distinct s, s′ ∈ {0, 1}m, say si ̸= s′i,

the projections of unit vectors |s⟩D ⊗Qs |0⟩C
⊗mR⊗m

⊗ |ϕs⟩Z and |s′⟩D ⊗Qs′ |0⟩C
⊗mR⊗m

⊗ |ϕs′⟩Z on
the i-th quantum register pair (C, R) correspond to commitments to different bit value. It is this
structure that enables our strategy of bounding the l.h.s. of the inequality (10) to work.

In spite of the difficulty mentioned above, we still can generalize the predicate P1 to the case
in which the associated function T (·) is any constant function; that is, which bits are to examine
for the verification of P1 are fixed. (In comparison, in the special form given by the equation (6),
the function T (·) is fixed to output the whole set and the function s(·) is fixed to be the identity
function.) To have a glimpse of why such a generalization of P1 is possible, seeing from the equation
(16), we note that for distinct l-bit strings str, str′ ∈ P1[T1], the two projectors

∑
w:s(w)=str |w⟩ ⟨w|

and
∑

w:s(w)=str′ |w⟩ ⟨w| induce two subspaces that are orthogonal. Then similar to the equation
(7), we can write

P1 |ψ⟩ =
∑

str∈P1[T1]

αstr |ωstr⟩D ⊗Qstr |0⟩C
⊗T1R⊗T1 ⊗ |ϕstr⟩C

⊗(m−l)R⊗(m−l)Z , (17)

where the unit vector |ωstr⟩ is of the form
∑

w:s(w)=str αw |w⟩D, and vectors |ωstr⟩ and |ωstr′⟩ are

orthogonal for distinct str, str′ ∈ P1[T1]. It is not hard to verify that if we replace the P1 |ψ⟩ given
by the equation (7) in the proof of Lemma 10 with the one given by the equation (17), then almost
the same proof goes through.

Last, it turns out that predicates P1 and P2 in Lemma 10 can be generalized in the way as
discussed above simultaneously.
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5 Application: quantum zero-knowledge arguments for NP

In this section, we give an application of the quantum computationally predicate-binding string
commitment scheme as shown in the proceeding section. Specifically, we show that Blum’s protocol
for the NP-complete language Hamiltonian Cycle [Blu86] with a generic quantum computationally-
binding bit commitment scheme plugged in gives rise to a quantum zero-knowledge argument sys-
tem. While its quantum (perfect or statistical) zero-knowledge property can be obtained by a
straightforward application of Watrous’s quantum rewinding technique22 [Wat09, Unr12, Unr16b,
YWLQ15], its quantum computational soundness is established by Lemma 12 as stated below.
Combing them we arrive at Theorem 1.

Lemma 12 Blum’s protocol for the language Hamiltonian Cycle with a generic quantum computationally-
binding bit commitment scheme (Q0, Q1) plugged in is sound against any quantum provers who are
polynomial-time bounded, with soundness error 1/2 + negl(·).

Proof: This can be proved by instantiating Theorem 3 with proper predicates induced by Blum’s
protocol. Detail follows.

Suppose that the binding error of the scheme (Q0, Q1) is ϵ(·), which is a negligible function.
We inherit notations as introduced in subsection 2.3. Following subsection 2.2, we can model a
generic attack of the prover of Blum’s protocol in the following way. The combined (quantum)

system of the (cheating) prover and the (honest) verifier is given by (P,D,C⊗n2
,R⊗n2

), where the
n2 copies of the register pair (C,R) are used for (in total n2) quantum bit commitments; the
register D will hold the classical information of the prover’s response (i.e. the permutation π when
the challenge b = 0 or the location of a Hamiltonian cycle H when b = 1); the register P is the
prover’s (private) workspace. Suppose that the whole system is initialized in the state |ψ⟩. The

prover sends the quantum register C⊗n2
to the verifier as its first message. Then depending on

the challenge b, the prover will perform some polynomial-time realizable unitary transformation Ub

on the registers (P,D,R⊗n2
). After receiving the prover’s response, the verifier will perform some

binary measurement, which also depends on the challenge b (as prescribed in the below), to decide
to whether accept or not.

Formally, depending on the challenge b, the verifier’s accepting conditions induce two pattern-
predicates, which in turn induces two efficiently realizable projectors/binary measurements as fol-
lows:

1. The projector corresponding to b = 0 is given by

P0 =
∑
π∈Sn

(
|π⟩ ⟨π|

)D ⊗
(
Qπ(G) |0⟩ ⟨0|Q

†
π(G)

)C⊗n2
R⊗n2

=
∑

s∈{0,1}n2
:

∃π∈Sn,π(G)=s

∑
π∈Sn:π(G)=s

(
|π⟩ ⟨π|

)D ⊗
(
Qs |0⟩ ⟨0|Q†

s

)C⊗n2
R⊗n2

.

2. The projector corresponding to b = 1 is given by

P1 =
∑

H:n cycle

(
|H⟩ ⟨H|

)D ⊗
(
Q1n |0⟩ ⟨0|Q†

1n
)C⊗HR⊗H

,

22We highlight that in the literature we cite, various quantum zero-knowledge properties are based on different
hiding properties of (classical or quantum) commitments (secure against quantum attacks) than the one considered
in this work. However, their proofs extend to our setting straightforwardly, especially the proof of quantum zero-
knowledge in [YWLQ15].
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where the projector Q1n |0⟩ ⟨0|Q†
1n performs on the n copies of the register pair (C,R) that

are determined by the location of the Hamiltonian cycle H.

We highlight that here we implicitly assume that the verifier just performs a big binary measurement
(induced by either P0 or P1) to decide whether to accept or not; it in particular does not measure
the register D to extract any classical information. It is easy to see that whether measuring the
register D or not will not change the verifier’s acceptance probability. But by doing this, we are
then allowed to apply the quantum rewinding lemma (Lemma 2).

Now we are ready to argue the quantum computational soundness of Blum’s protocol. Suppose
for contradiction that there exists a efficiently realizable cheating prover given by (|ψ⟩ , U0, U1) as
aforementioned who can break the quantum computational soundness. Namely,

1

2

∑
b∈{0,1}

∥PbUb |ψ⟩∥2 >
1

2
+ n−c,

where c is some constant. Then applying the quantum rewinding lemma (Lemma 2), it follows that∥∥∥P1U1U
†
0P0U0 |ψ⟩

∥∥∥ > n−c. (18)

On the other hand, we invoke Theorem 3 by doing the replacements as summarized in the
following table:

Theorem 3 Blum’s protocol

m n2

Registers (C⊗m,R⊗m) Registers (C⊗m,R⊗m)

Register D Register D

Register Z Register P

Projector P1 Projector P0

Projector P2 Projector P1

Quantum state |ψ⟩ Quantum state U0 |ψ⟩
Unitary transformation U Unitary transformation U1U

†
0

In case that the input graph G is not Hamiltonian, the two predicates P0 and P1 are inconsistent.
Applying Theorem 3 will yield an upper bound n4ϵ2+3n2ϵ of the squared norm

∥∥P1U1U
†
0P0U0 |ψ⟩

∥∥2,
which is negligible. But this contradicts with the inequality (18).

We finish the proof of the lemma. ■

On compositions. In this section, we only consider the stand-alone Blum’s protocol, whose
soundness error is not tolerable in practice. It is not hard to see that if we compose it in sequence,
it gives rise to a quantum perfect or statistical zero-knowledge arguments for NP with negligible
soundness error (but at the cost of a significant increase of the round complexity). We may also
consider composing Blum’s atomic protocol in parallel, which we believe can reduce the soundness
error to be negligible23, too However, we do not known whether the parallelization preserves the
quantum zero-knowledge property. Actually, the same problem is notorious hard w.r.t. classical
zero-knowledge secure against quantum attacks [JKMR09, CCLY21].

23 This can be done by combining the predicate-binding of quantum commitments with a different quantum
rewinding lemma (say the one used in [Unr12] cope with Σ-protocol) than ours (i.e. Lemma 2).
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6 Conclusion and open problems

In this work, we show that the parallel composition of a generic quantum computationally-binding
bit commitment scheme gives rise to a quantum string commitment scheme that is computationally
predicate-binding, which is non-trivial to establish. The resulting commitments turn out to be
useful in constructing quantum zero-knowledge arguments for NP languages.

There are many open problems following this work. In the below, we just mention a few that
are most relevant:

1. Can we extend our technique to prove the predicate-binding w.r.t. inconsistent predicate pairs
that are more general or with different structure requirements than that is stated in Theorem
2 (or formally Theorem 3)? Can we extend our technique to prove the predicate-binding w.r.t.
multiple (≥ 3) inconsistent predicates? If we can do this, then we may show that the GMW
zero-knowledge protocol for the NP-complete language Graph 3-Coloring [GMW91] with a
generic quantum computationally-binding bit commitment scheme plugged in gives rise to a
quantum zero-knowledge argument. More ambitious, can we extend our technique to prove
the Q-binding which is extended straightforwardly from the one for classical commitments
secure against quantum attacks in [DFS04]?

2. Can we prove even stronger binding (than the predicate-binding) properties of the quan-
tum string commitment scheme obtained by composing a generic quantum computationally-
binding bit commitment scheme in parallel? Further, if this is possible, then can it yield
any interesting applications? In particular, can we extend our technique to show f -binding
as introduced in [CDMS04] w.r.t. some interesting function f so that the corresponding
quantum commitments could be useful in constructing quantum oblivious transfer like in
[CDMS04] and beyond? We note that the answer to this question is affirmative in the setting
where a generic quantum statistically-binding bit commitment scheme is composed in parallel
[FUYZ20].

3. Can we show that plugging a generic quantum computationally-binding bit commitment
scheme in a variant of Blum’s protocol [Unr12, FUYZ20] gives rise to a quantum zero-
knowledge argument-of-knowledge for the NP-complete language Hamiltonian Cycle? After
all, in many cryptographic applications the stronger argument-of-knowledge property (than
soundness) is desired.

4. How about plugging a generic computationally-binding quantum bit commitment scheme in
[GK96a] to obtain a quantum ϵ-zero-knowledge proof with constant rounds like [CCY21]? If
this is true, then we can relax the complexity assumption required in [CCY21] to quantum-
secure one-way functions by a quantum construction.

5. Does the parallel composition of Blum’s atomic protocol with a generic (statistically-binding
or computationally-binding) quantum bit commitment scheme plugged in preserve the quan-
tum zero-knowledge property? We note that classical approaches (r.f. [GK96b, DNRS03] and
their follow-up works) to this question fail completely for quantum constructions.

Acknowledgements. We thank Dominique Unruh for helpful and inspiring discussions on the
strictness of the quantum binding property and the possibility of basing quantum zero-knowledge
argument for NP on computationally-binding quantum bit commitment at an early stage of this
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A A proof of Theorem 3

We just highlight how to adapt the proof of Lemma 10 to the setting of Theorem 3, in which both
predicates P1 and P2 are generalized in the way as stated in section 4.4.

According to the equation (17), we can replace the equations (7), (8) in the proof of Lemma 10
with

P1 |ψ⟩ =
∑

str∈P1[T1]

αstr |ωstr⟩D ⊗Qstr |0⟩C
⊗T1R⊗T1 ⊗ |ϕstr⟩C

⊗(m−l)R⊗(m−l)Z

=
∑

s∈{0,1}l
αs |ωs⟩D ⊗Qs |0⟩C

⊗T1R⊗T1 ⊗ |ϕs⟩C
⊗(m−l)R⊗(m−l)Z ,
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where for each s ̸∈ P1[T1], we let αs = 0, and the corresponding |ωs⟩ and |ϕs⟩ be arbitrary24;
moreover, the complex coefficients αs’s satisfy

∑
s∈{0,1}l |αs|2 ≤ 1. We similarly introduce the

shorthand
|ψs⟩

def
= |ωs⟩ ⊗Qs |0⟩ ⊗ |ϕs⟩ ,

and our goal becomes to show∥∥∥P2U
∑

s∈{0,1}l
αs |ψs⟩

∥∥∥2 ≤ m2ϵ2 + 3mϵ.

We are to strengthen the inequality above and prove by induction that for each k (0 ≤ k ≤ l) and
each string x ∈ {0, 1}l−k, it holds that∥∥∥P2U

∑
s∈{0,1}k◦x

αs |ψs⟩
∥∥∥2 ≤ (l2ϵ2 + 3kϵ)

∑
s∈{0,1}k◦x

|αs|2 , (19)

Base. We first show that the inequality (19) holds when k = 0. In this case, x ∈ {0, 1}l. Since the
coefficient αx = 0 when x ̸∈ P1[T1], in which case the inequality (19) trivially hold, it suffices to fix
an arbitrary x ∈ P1[T1] and show that ∥P2U |ψx⟩∥ ≤ lϵ.

It is not hard to see that the proof of the base step of Lemma 10 almost goes through here,
except that now we apply the perturbation

⊗l
i=1

(
1 − (Qx̄i |0⟩ ⟨0|Q

†
x̄i
)
)
to the subspace induced

by the l copies of the quantum register pair (C, R) indexed by the subset T1. In more detail, we
introduce the (unnormalized) vector

|ψ̃x⟩
def
=

l⊗
i=1

(
1−Qx̄i |0⟩ ⟨0|Q

†
x̄i

)
U |ψx⟩ ,

which will play the same role of the equation (12) in the proof of the base step of Lemma 10.
We remark that here we will make an essential use of the fact that predicates P1 and P2 are
inconsistent, so that the string s(w) w.r.t. each witness w within the expression of the projector P2

(refer to the equation (5)) must differ with the string x ∈ P1[T1] in at least one common coordinate
i ∈ T1 ∩ T2(w).

Induction step. Now suppose that the inequality (19) holds for k − 1 and each binary string x of
the length l − (k − 1). We are to show that it also holds for k and an arbitrary binary string x of
the length of l − k.

Similar to the induction step of the proof of Lemma 10, now for each x ∈ {0, 1}l−k, we similarly
introduce shorthands

α2
0x

def
=

∑
s∈{0,1}k−1◦0x

|αs|2 , α2
1x

def
=

∑
s′∈{0,1}k−1◦1x

|αs′ |2 , α2
x

def
= α2

0x + α2
1x,

where α0x, α1x, αx ≥ 0. Then our goal becomes to show that∥∥∥P2U
∑

s∈{0,1}k◦x

αs |ψs⟩
∥∥∥2 ≤ α2

x(l
2ϵ2 + 3kϵ).

24Note that we have changed the index under the “
∑

” from str to s in the second “=” above to be in accordance
with the notations used in the proof of Lemma 10.
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Indeed,∥∥∥P2U
∑

s∈{0,1}k◦x

αs |ψs⟩
∥∥∥2 = ∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs⟩+ P2U
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′⟩
∥∥∥2

≤
∥∥∥P2U

∑
s∈{0,1}k−1◦0x

αs |ψs⟩
∥∥∥2 + ∥∥∥P2U

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′⟩
∥∥∥2

+2
∣∣∣ ∑
s∈{0,1}k−1◦0x

αs ⟨ψs| · U †P2U ·
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′⟩
∣∣∣.

The remaining analysis also splits into two cases like that of the proof of Lemma 10, depending on
whether at least one of α0x or α1x are zero. Now in the case that both α0x > 0 and α1x > 0, we
will encounter new difficulty in bounding the absolute value∣∣∣ 1

α0x

∑
s∈{0,1}k−1◦0x

αs ⟨ψs| · U †P2U · 1

α1x

∑
s′∈{0,1}k−1◦1x

αs′ |ψs′⟩
∣∣∣, (20)

the counterpart of the absolute value (∗) within the proof of Lemma 10.
We will bound the expression (20) by 3ϵ in the following claim, which can be viewed as the

counterpart of Claim 11. Once this is done, then we can complete the induction step similarly to
that of the proof of Lemma 10 and establish Theorem 3.

We are left to prove the following claim.

Claim 13 The expression (20) is less than 3ϵ.

Proof Sketch: We just highlight how to adapt the proof of Claim 11 to the setting here.
Compared with the proof of Claim 11, the new difficulty is: since now the projector P2 is

of the most general form as given by the equation (5), it could happen that for some projector

|w⟩ ⟨w|⊗Qs(w) |0⟩ ⟨0|Q
†
s(w) in the summation of P2, k ̸∈ T (w); that is, this projector does not touch

the k-th quantum register pair (C, R). This will cause our argument for the equality ⟨η̃0|P2 |η̃1⟩ = 0
within the proof of Claim 11 to fail.

To overcome this new difficulty, our idea is to split the projector P2 into two parts: the sum of
projectors that touch the k-th quantum register pair (C, R), i.e. k ∈ T (w), which we denote by P 1

2 ,
and the sum of those do not, which we denote by P 2

2 . Then for the projector P 1
2 , almost the same

proof as that of Claim 11 will yield an upper bound 2ϵ, whereas for the projector P 2
2 , we will use

the generalized quantum computational binding property (Lemma 5) to obtain an upper bound ϵ.
In more detail, after introducing similar notations |ξ0⟩ , |ξ1⟩ , |η0⟩ , |η1⟩ , |η̃0⟩ , |η̃1⟩ as in the proof

of Claim 11, our goal is to show that |⟨η0|P2 |η1⟩| < 3ϵ. Plugging in P2 = P 1
2 + P 2

2 , we will prove
that

1.
∣∣⟨η0|P 1

2 |η1⟩
∣∣ < 2ϵ, and

2.
∣∣⟨η0|P 2

2 |η1⟩
∣∣ < ϵ.

For the item 1, by the property of the projector P 1
2 , i.e. each projector in the summation of P 1

2

touches the k-th quantum register pair (C,R), almost the same proof as that of Claim 11 will yield
the same upper bound 2ϵ.

For the item 2, the projector P 2
2 does not touch the k-th quantum register pair (C,R). We then

apply Corollary 6, with the operator Γ replaced by UP 2
2U

†, which will yield
∣∣⟨η0|P 2

2 |η1⟩
∣∣ < ϵ.
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We additionally highlight that to apply Corollary 6 in proofs of the two items above, we need
to show that both projectors P 1

2 and P 2
2 are efficiently realizable given that the projector P2 is.

This is indeed the case: conditioned on a quantum state collapsing to the subspace induced by the
projector P2, we can further compute the function T (w) given the witness w and check if k ̸∈ T (w).

Combining items 1 and 2 above, the absolute value (20) can be bound by 3ϵ. This finishes the
proof of the claim. ■
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