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ABSTRACT

Implementation attacks such as power analysis and fault attacks

have shown that, if potential attackers have physical access to a

cryptographic device, achieving practical security requires more

considerations apart from just cryptanalytic security. In recent

years, and with the advent of micro-architectural or hardware-

oriented attacks, it became more and more clear that similar attack

vectors can also be exploited on larger computing platforms and

without the requirement of physical proximity of an attacker. While

newly discovered attacks typically come with implementation rec-

ommendations that help counteract a specific attack vector, the

process of constantly patching cryptographic code is quite time

consuming in some cases, and simply not possible in other cases.

What adds up to the problem is that the popular approach of

leakage resilient cryptography only provably solves part of the

problem: it discards the threat of faults. Therefore, we put forward

the usage of leakage and tamper resilient cryptographic algorithms,

as they can offer built-in protection against various types of physical

and hardware oriented attacks, likely including attack vectors that

will only be discovered in the future. In detail, we present the — to

the best of our knowledge—first framework for proving the security

of permutation-based symmetric cryptographic constructions in the

leakage and tamper resilient setting. As a proof of concept, we apply
the framework to a sponge-based stream encryption scheme called

asakey and provide a practical analysis of its resistance against side
channel and fault attacks.
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1 INTRODUCTION

In the 1990’s, implementation attacks like side channel attacks [46]

and fault attacks [16] have demonstrated that, while a cryptographic

algorithm may be mathematically secure, its real world instance

may still be broken quite easily. Hence, whenever devices oper-

ate in environments where attackers have physical access, coun-

termeasures against side channel and fault attacks are of utmost

importance. This is a major real-world concern: with the rise of the

Internet of Things (IoT), devices performing cryptographic tasks

have become ubiquitous, and many of them are physically accessi-

ble by attackers.

However, in recent years, it becamemore and more apparent that

for performing side channel or fault attacks, the physical presence

of an attacker is not a necessity. In particular, it turned out that

micro-architectural attacks [37] or hardware-oriented attacks can

achieve similar effects, are entirely software controlled, and can

thus often be performed even remotely. First successful remote

side channel attacks exploited timing variations due to caching in

modern CPU’s, and have been shown to work on implementations

of DES [74] and AES [4]. Recently, even software-based DPA attacks

on the AES instruction of modern CPU’s have been proven to be

feasible [48]. Remote fault attacks have further been shown to

work quite easily by exploiting bit-faults in RAM [38, 39, 47, 77].

The recent Plundervolt attack [58] has even demonstrated that

remotely triggered fault attacks can extract the secret key from

AES executions performed in secured enclaves.

The usual way of mitigating these newly discovered attacks in-

volves updating, e.g., the microcode of CPUs, or providing software

patches. However, some attacks like RowHammer [44, 62], work

due to the RAM’s physical properties and are hard to patch without

losing too much performance. Moreover, it is quite likely that not

every attack vector, be it a physical one or a remote one, is discov-

ered yet. Because of these reasons, it might be useful to put more

focus on cryptographic algorithms that provide a certain amount

of resilience against side channel and fault attacks, not only in their

“classical” embedded environments but also in general, and as a

second line of defense.

One popular approach to the design of cryptographic algorithms

that withstand side channel attacks is the concept of leakage re-

silient cryptography [29]. The goal of this research direction is

to design modes of operation that are provably secure under spe-

cific assumptions on the leakage an adversary can receive. Leakage

resilience gave rise to cryptographic schemes with very strong secu-

rity guarantees, for example, modes of operation that are provably

secure against all side channel attacks assuming that the leakage in

https://orcid.org/0000-0002-3816-0187
https://orcid.org/0000-0001-6679-1878
https://orcid.org/0000-0002-9569-8477
https://doi.org/10.1145/3548606.3560635
https://doi.org/10.1145/3548606.3560635


CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Dobraunig, Mennink and Primas

each round is bounded [63]. Hence, it has attracted the interest of

a lot of researchers proposing several leakage resilient symmetric

cryptographic schemes [3, 6, 7, 25, 28, 32, 53, 61, 78, 79].

Leakage resilient schemes come with some modeling of leakage,

for example, with the assumption that the leakage is bounded [29]

or hard-to-invert [27]. Showing that an assumption on the leak-

age actually holds, turns out to be quite hard, and in practice, side

channel analysis of leakage resilient schemes typically just consid-

ers which side channel attacks can be performed. See, e.g., work

on evaluating the security of a leakage resilient pseudo random

function [54, 55, 75, 76]. One attempt that has been made to bring

the theory of leakage resilient cryptography closer to practice is

simulatable leakage [70]. The high-level idea of simulatable leak-

age is to consider the distance of a cryptographic scheme from a

simulator that does not possess the key, but that still generates

leakage that is indistinguishable from the device using the actual

key. However, Longo et al. [50] pointed out some obstacles with

the practical realization of such simulators, and — to the best of

our knowledge — the instantiation of simulators is still an open

problem. On the downside, the promises delivered by leakage re-

silience focus on various assumptions on the leakage, but typically

do not consider fault attacks. Hence, the so gotten schemes provide

provable security against certain types of side channel attacks, but

do not provide any insurance against fault attacks, or any other

attack that leaks entropy of a state in general. Especially in the

remote scenario there is no reason for an attacker to not use fault

attacks if it is possible to induce faults, e.g., by using RowHammer

[39, 44].

If we look at existing leakage resilient constructions, we see that

independent of the modeling of the leakage, all these constructions

aim to limit the number of observations an attacker can make per

evaluation of an underlying primitive using a certain key. Consider-

ing this from an implementation attack perspective, such limitations

on the number of observations make a lot of sense. Attacks like

statistical fault attacks (SFA) [34], statistical ineffective fault attacks

(SIFA) [19, 20], or differential power analysis (DPA) [46] get better

with increasing data complexity an attacker is able to exploit per

secret state it tries to recover. Complementing that, these attacks

can also get better with the number of observations where the

input, as well as the secret of the underlying primitive, remain

the same. For instance, such observations can be used to reduce

the noise of traces used in a DPA, simple power analysis (SPA), or

template attack [52]. Fault attacks can also utilize different faults

on executions with the same input, like differential fault attacks

(DFA) [16].

1.1 Accumulated Interference (AI)

In this paper, we take a different approach and aim to model the

impact of implementation attacks more broadly. We do so by in-

troducing the concept of accumulated interference (AI) that allows
us to abstract side channel attacks and fault attacks in the leakage

resilient analysis. In a nutshell, accumulated interference models an

entropy loss of the associated states of a cryptographic permutation

by learning information about the associated states via side channel

and fault attacks, or basically by any possible setting in which leak-

age occurs. Accumulated interference, as we formalize in Section 2,

aims to express the accumulated gain during an experiment. It is

a function in terms of all information an attacker has observed so

far by using side channel and fault attacks, and it changes in the

course of the attack. Then, the goal of the analysis of a leakage and

tamper resilient scheme in the accumulated interference model is to

provide a limit on the data complexity for the underlying primitives.

This way of modeling side channel and fault attacks allows to either

evaluate the capabilities of an attacker “a posteriori” on a real im-

plementation, or fully define a model “a priori” akin to the bounded

leakage model in the non-adaptive or adaptive leakage setting, with

the bonus that accumulated interference covers fault attacks as well.

This way, our approach is backwards compatible, but at the same

time more general as it allows for more accurate modeling. We will

discuss these features of accumulated interference and how it can

be used in practice, below.

1.2 Coverage of Fault Attacks

Typical methods in leakage resilient cryptography aim to precisely

model the gain an attacker can get with the help of the physical leak-

age. For instance, in the bounded leakage model the leakage func-

tion can be any arbitrary function of the secret state with bounded

output length, or any function that preserves some min-entropy

of the secret state. Later, hard-to-invert leakage was introduced,

which, on a high level, requires that the leakage has the property

that even under knowledge of the leakage, the secret state is hard

to guess [27, 35]. This model, intuitively, corresponds to requiring

that a certain pseudo-entropy of the secret state, i.e., the amount

of information that the secret state has from the viewpoint of a

computationally bounded attacker, should be preserved.

However, these attempts to model the gain an attacker can get

from physical leakage leave out the threat of fault attacks. This

is a weak point in existing approaches, since in scenarios where

side channel attacks are applicable, an attacker can typically also

apply a wider range of implementation attacks, such as fault attacks.

Hence, our concept of accumulated interference does not aim to

model the physical leakage prior to an implementation attack, but

rather at the end of the attack. Therefore, accumulated interference

is agnostic to the type of implementation attack and hence our

results are naturally applicable to a wide range of attack scenarios,

including fault attacks.

In contrast to work only covering passive side channel attacks,

we also consider the fact that in fault attacks, an attacker does not

only learn information about the secret states but is also able to

change computations. As our building blocks are cryptographic

permutations, we can model this effect of faults as an entropy loss

of the computed permutation output by 𝜏 ≥ 0 bits. This covers a

wide range of faults, including biased faults, or setting 𝜏 bits of the

output of a permutation to zero. This model can also include attacks

that alter the program flow, by, e.g., not computing the permutation

and effectively replacing it by the identity function. Then, 𝜏 corre-

sponds to the width 𝑏 of the permutation. Unfortunately, this then

typically means that such a strong attacker can break the scheme.

Interestingly, bit-flips or random faults often do not directly change

the entropy of the permutations output. However, they do allow

an attacker to learn information about the output and hence, are

covered within the accumulated interference.
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1.3 A Priori Bounding of AI

One way to approach accumulated interference is by bounding it

a priori. In this approach, one assumes that each evaluation of a
cryptographic permutation allows an attacker to reduce the secret

state’s entropy by at most 𝜆 ≥ 0 bits, and these linearly add up for

multiple evaluations in order to give the accumulated gain. This

means that per evaluation, an attacker can at most learn a total of

𝜆 bits of information of the secret state, influence 𝜆 bits of infor-

mation of the secret state, or a partial combination of both. Details

about this approach are outlined in Section 2.3. This approach is

comparable to the one that has usually been adopted in leakage

resilient proofs with bounded leakage. It is a clean approach and

allows to reason about leakage in a quite simple way. On the other

hand, it is not hard to see that it is a conservative way of estimating

adversarial power.

1.4 A Posteriori Evaluation of AI

Alternatively, we can bound the actual effect of implementation

attacks a posteriori. This approach allows us to discard many restric-

tions imposed by typical leakage resilience analysis. As a pleasant

bonus, this also evades the debate on whether adaptive or non-

adaptive leakage must be considered: it is covered within the accu-

mulated gain.

Note that this stands in sharp contrast with bounded or hard-to-

invert leakage, where the leakage per query is generously bounded.

For example, in the bounded leakage model, one assumes that

each evaluation leaks at most 𝜆 ≥ 0 bits of secret data, and these

linearly add up for multiple evaluations. For the sake of comparison,

consider the following example. Take a permutation p processing

some input𝑀 concatenated with a secret key 𝐾 : p(𝑀 ∥𝐾) ⊕𝑀 ∥𝐾 .
Let us assume that an adversary can learn evaluations of p(𝑀 ∥𝐾) ⊕
𝑀 ∥𝐾 for secret 𝐾 . In the bounded leakage model, one assumes that

each evaluation leaks 𝜆 bits of data, but this means that after |𝐾 |/𝜆
evaluations, the security of the scheme is void. In contrast, in the

accumulated interference model, one assumes that up to the 𝑖-th

query, the attacker has learned 𝑓𝑖 bits of data, which is a function

of all information the attacker has observed so far. These values

𝑓1, 𝑓2, . . . remain yet undetermined, and must be substantiated with

implementation attack experiments. Comparing both approaches,

necessarily 𝑓𝑖 ≤ 𝑖 ·𝜆, but typically, the difference ismuch larger aswe

will demonstrate in our practical experiments (see also Section 1.6).

1.5 Application of AI

We demonstrate how the concept of accumulated interference can

be incorporated in leakage and tamper resilience analyses. Here,

we stress that, despite the fact that AI can truly cover any type of

entropy loss, side channels and tampering are the most well-known

and most threatening types of attacks. In Section 3 we apply accu-

mulated interference to a nonce-based stream encryption scheme

called asakey. The asakey encryption mode is derived from the

encryption part of ISAP [21, 22] and is a logical way of performing

encryption with the sponge: it initializes a sponge state with a se-

cret key, then it absorbs the nonce bit-by-bit to obtain a secret inner

part of the sponge that is used “as a key” to a plain nonce-based

sponge encryption mode with high rate. By doing a direct analysis

of asakey and by in addition confiding on the accumulated inter-

ference model, we obtain a bound that (i) is simpler than the one

that would be obtained by relying on the general leakage resilience

of the duplex [25] modularly, and that (ii) covers also fault attacks.

1.6 Justification of AI

In Section 4, we perform an exemplary analysis of an implementa-

tion of the asakey scheme of Section 3 instantiated with theKeccak-

p[1600,12] permutation [59] as used by KangarooTwelve [14] and

Keyak [13]. We analyze the implementation using the two attack

vectors of differential power analysis (DPA) [46] and statistical

ineffective fault attacks (SIFA) [19, 20]. Those results show that

a bounded leakage approach is often way too optimistic from an

attackers point of view on how information of single leakages (ex-

periments) can be combined.

As an example, have a look at Figure 3b in Section 4. The graph

shows how security degrades with the number of queries assum-

ing 𝜆-bit leakage per query and how it typically degrades in an

implementation attack which can also be expressed in accumulated

interference. It shows that a bound of 𝑓𝑖 ≤ 𝑖 · 𝜆 is generally quite

loose.

In order to get the best possible picture on the security in the

accumulated interference model, it is important to utilize the at-

tack vectors as good as possible. Hence, e.g., work that aims to

bound model errors in side channel attacks is also relevant in our

context [17].

1.7 Limitations of the Framework

Let us consider non-leakage and tamper resilient proofs for modes

of operations in cryptography. Here, the security of the mode of

operation is proven under assumptions on the underlying primitive.

For instance, we require a primitive to behave like a pseudo-random

permutation (PRP), or to fulfill some property, like having 𝜖-xor-

universality. For an instantiation of the mode of operation, the

primitive used within this mode must fulfill the assumptions. In

the case of assumptions like PRP, this is a 1 or 0 condition, a block

cipher is either a PRP (within certain limits) or not. However, with

𝜖-xor-universality, this question is more fine-grained since any

value 𝜖 gives understandable security properties. What the proof

does not do is to take over the construction and the cryptanalysis

of the underlying primitive.

We think that AI in combination with the entropy loss 𝜏 in this

framework are comparable to the relaxations you get from 𝜖-xor-

universality. For instance, non-leakage and tamper resilient modes

of operation assume and require all components to be leak-free and

tamper resilient. Taking an extreme standpoint, the proofs are void

in case of minimal leakage from the implementation. In contrast, AI

and 𝜏 relax the requirements on the implementation of the under-

lying primitive. Similar to the example with 𝜖-xor-universality, one

gets understandable security properties under leakage. What our

proofs do not do is to take over the art of implementing ciphers and

doing the analysis of the implementations. The proof just gives the

assurance that implementations are allowed to leak, or be tampered

with, to some extend while still remaining secure.
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2 A FORMALIZATION OF IMPLEMENTATION

ATTACKS

Let𝑚,𝑛 be two natural numbers. We denote by {0, 1}𝑛 the set of

𝑛-bit strings and by {0, 1}∗ the set of arbitrarily long strings. The

set of 𝑛-bit permutations is denoted perm(𝑛). Similarly, the set of

𝑚-to-𝑛-bit functions is denoted func(𝑚,𝑛). If 𝑚 ≤ 𝑛, for string

𝑋 ∈ {0, 1}𝑛 we denote by left𝑚 (𝑋 ) the𝑚 leftmost bits of 𝑋 and by

right𝑚 (𝑋 ) the𝑚 rightmost bits. For a finite set X, 𝑋 $←− X denotes

the event of uniformly randomly sampling an element 𝑋 from X.
We will be concerned with adversaries A that are given access

to one or more oracles O, and after interaction with O they output

a decision bit 𝑏: 𝑏 ← AO. For two oracles O and P, the adversarial
advantage of distinguishing the two is defined as

ΔA (O ; P) =
���Pr (

1← AO
)
− Pr

(
1← AP

)��� . (1)

2.1 Leakage and Tamper Resilience

Let F be a cryptographic function with key size 𝑘 . Let ro be a ran-
dom oracle with the same interface as F𝐾 . In a black-box scenario,

one quantifies security of F as the advantage of an adversary A in

distinguishing F𝐾 for 𝐾
$←− {0, 1}𝑘 from a random oracle ro:

AdvbbF (A) = ΔA (F𝐾 ; ro) . (2)

The adversary is typically bounded by a certain query complexity

and time complexity (memory is usually not considered). A compa-

rable definition occurs in the ideal primitive model. Suppose that F

is based on a random permutation p
$←− perm(𝑏) for some natural

number 𝑏. The adversary would, in addition to the oracle F𝐾 or ro
in (2), have bi-directional access to the random permutation p:

Advi-bbF (A) = ΔA

(
Fp
𝐾
, p± ; ro, p±

)
. (3)

The time complexity is then called primitive complexity and mea-

sures queries to p.
In the context of leakage resilient cryptography [3, 28, 29, 32,

63, 71, 79], the adversary gets access to a leaky version of the

function F𝐾 denoted as L [F𝐾 ]. Since we also consider that an

attacker can tamper (fault), we will instead consider an extended

function, namely a leaky tampered, or more broadly interference
function:

I [F𝐾 ] .
The function evaluates a tampered version of F𝐾 and in addi-

tion leaks certain secret information to the adversary. Now, the

adversary has to distinguish the challenge oracle F𝐾 from random

ro as before, but in addition it gets access to I [F𝐾 ]. The resulting
advantages are then expressed as

AdvaiF (A) = ΔA (I [F𝐾 ] , F𝐾 ; I [F𝐾 ] , ro) (4)

for the standard model, and

Advi-aiF (A) = ΔA

(
I
[
Fp
𝐾

]
, Fp
𝐾
, p± ; I

[
Fp
𝐾

]
, ro, p±

)
. (5)

for the ideal model. Naturally, the adversary is not allowed to query

the leaky tampered and the challenge oracle on identical inputs.

This restriction might sound counter-intuitive, but this is the main-

stream model for security under bounded leakage (see also Faust et

al. [32] and Barwell et al. [3, Section 2.1]). The core idea is that the

adversary gets access to a true (leaky) oracle and a challenge oracle.

The scheme is considered secure even if the attacker learns a certain

amount of information from earlier leaky evaluations, while new

evaluations (to the challenge oracle) are hard to distinguish from

random. If we would allow queries in the ideal world to I
[
Fp
𝐾

]
and

ro on identical inputs, this would give a trivial win to the adversary,

since, e.g., the leakage will not be coherent with the output of ro.

2.2 Accumulated Interference (AI)

So far, we did not specify how leakage occurs in calls to I [F𝐾 ]. In
the accumulated interference model, we define the accumulated
gain that represents leakage and tampering, basically the entropy

loss, that has occurred. We remark that this modeling straightfor-

wardly generalizes to pseudo-entropy loss, noting that measuring

the entropy is slightly more generous to the adversary.

Generally, suppose that for a certain secret state that is input to

a cryptographic primitive, the adversary has obtained 𝑞 leakages

from executions of p. This is done for 𝑟 different inputs,

𝑿 = (𝑋1, . . . , 𝑋𝑟 ) ,
occurring

𝒒 = (𝑞1, . . . , 𝑞𝑟 )
times respectively. The incurred accumulated gain is defined as

AGatk (𝑿 , 𝒒, 𝑟 ) ,

where atk ∈ {spa, dpa, sfa, . . .} denotes the attack that the adver-

sary performs.

As the name suggests, the leakage accumulates. For 𝑖 ∈ {1, 2, . . . },
we denote by 𝑟𝑖 the amount of different inputs up to the 𝑖-th query,

and likewise define 𝑿𝑖 = (𝑋1, . . . , 𝑋𝑟𝑖 ) as the inputs, with occur-

rences 𝒒𝑖 = (𝑞1, . . . , 𝑞𝑟𝑖 ) respectively.
We remark that the definition is purposely general: the model

should apply to many different modes, types of leakages, types of

tampering, and types of attacks. In particular, the indication of the

attack type atk is important, as the adversarial advantage differs

depending on the performed attack, which might be a DPA attack, a

SIFA attack, or anything else. In Section 4, we estimate the function

AGatk (𝑿 , 𝒒, 𝑟 ) for different attack types.

Next we have to specify how we model tampering with I [F𝐾 ],
besides the fact that an attacker can learn about secret states via

accumulated interference. Conceptually, this is very simple, since

we work in the random permutation model using 𝑏-bit permuta-

tions. Hence, for every new input to p, we expect a new random

value (bar repetition). Faulting the computation of p is modeled as

reducing the entropy of the 𝑏-bit value by 𝜏 bits.

2.3 A Priori Modeling of AI

To give some intuition for the usability of the definition of accumu-

lated gain, we first briefly explain how one would use this notion

when leakage and tampering is bound a priori. (Looking ahead

to Section 4, this is a rather conservative and pessimistic way of

looking at this accumulated gain, and more accurate bounds are

possible.)

Since we focus on permutation-based cryptography, we consider

the leakage associated with a call to an underlying cryptographic



Leakage and Tamper Resilient Permutation-Based Cryptography CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Algorithm 1 asakey encryption scheme

Input: (𝐾, 𝑁, 𝑃) ∈ {0, 1}𝑘 × {0, 1}𝑘 × {0, 1}∗
Output: 𝐶 ∈ {0, 1} |𝑃 |
𝑆 ← p(0𝑏−𝑘 ∥𝐾)
𝑁1∥ . . . ∥𝑁𝑘 ← 𝑁

for 𝑖 = 1, . . . , 𝑘 do

𝑆 ← p(𝑆 ⊕ 𝑁𝑖 ∥0𝑏−1)
𝑆 ← 𝑁 ∥0𝑏−𝑐−𝑘 ∥right𝑐 (𝑆)
𝑍 ← ∅
while |𝑍 | < |𝑃 | do

𝑆 ← p(𝑆)
𝑍 ← 𝑍 ∥left𝑟 (𝑆)

return left |𝑃 | (𝑃 ⊕ 𝑍 )

p

0
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r
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Figure 1: Encryption scheme. The state parameters (𝑆𝑖 ,𝑇𝑖 )
will be used in the proof of Theorem 3.1.

permutation p. In an a priori bounding, we consider that an attacker
can at most learn 𝜆 bits of information of the processed inputs and

generated output of p per call to p via side channel or fault attacks.

If a certain cryptographic construction, such as a keyed sponge,

is evaluated on top of the cryptographic permutation p, it therefore
makes sense to evaluate how many times a single input 𝑋 has

occurred in the evaluations to p. In the context of the definition of

accumulated gain, 𝑿 = (𝑋1, . . . , 𝑋𝑟 ) represents the inputs to p, and
𝒒 = (𝑞1, . . . , 𝑞𝑟 ) their occurrences. From this, one can conclude that

one learns at most 𝑟 ·max(𝒒) ·𝜆 bits of information about the secret.

However, the counting must also take into account the number of

times a single value 𝑋 has been created as output of a previous call

to p, which happens 𝜋 times, where 𝜋 is a yet to determine number.

Therefore, we can bound the accumulated gain by

AGapriori (𝑿 , 𝒒, 𝑟 ) ≤ (𝑟 ·max(𝒒) + 𝜋)𝜆 .

This will be discussed in more detail in Section 3.3.

3 AI IN SPONGE-BASED STREAM

ENCRYPTION

We consider a nonce-based sponge-based stream encryption called

asakey. The scheme is a slight variant of the encryption part of

ISAP [21, 22], using a bitwise absorption of the nonce similar to [73].

The asakey encryption scheme is parameterized by natural numbers

𝑘, 𝑏, 𝑐, 𝑟 , where 𝑘 ≤ min{𝑐, 𝑟 } and 𝑐 + 𝑟 = 𝑏, and it is based on a

cryptographic permutation p ∈ perm(𝑏). Instead of initializing the

sponge state with a nonce 𝑁 and a key 𝐾 , it first processes the

nonce bit-wise in order to obtain a secret state that functions “as a

key” (hence the name). The asakey encryption scheme is specified

in Algorithm 1 and depicted in Figure 1. As it is a stream encryption

scheme, the decryption is identical with 𝑃 and 𝐶 swapped.

3.1 Security

A variation of this scheme was already proven leakage resilient

by Dobraunig and Mennink [25], but in that work, the result was

derived as a corollary of the leakage resilience of the duplex, a versa-

tile permutation-based cryptographic mode. By now performing a

direct analysis, we obtain a simpler bound and we also more clearly

demonstrate how the accumulated interference model can be used.

The result uses the notion of the multicollision limit function

from Daemen et al. [18]. For natural numbers 𝑞, 𝑐, 𝑟 , consider the

experiment of throwing 𝑞 balls uniformly at random in 2
𝑟
bins,

and let 𝜇 be the maximum number of balls in a single bin. The

multicollision limit function 𝜈
𝑞
𝑟,𝑐 is defined as the smallest natural

number 𝜈 such that

Pr (𝜇 > 𝜈) ≤ 𝜈

2
𝑐
. (6)

In other words, the multicollision limit function 𝜈
𝑞
𝑟,𝑐 gives a value

𝜈 such that the probability of at least a 𝜈-collision is at most 𝜈/2𝑐 .
Daemen et al. [18] analyzed 𝜈

𝑞
𝑟,𝑐 in detail. As a rule of thumb [25],

the term behaves as follows:

𝜈
𝑞
𝑟,𝑐 ≲

{
(𝑟 + 𝑐)/log

2

(
2
𝑟

𝑞

)
, for 𝑞 ≲ 2

𝑟 ,

(𝑟 + 𝑐) · 𝑞
2
𝑟 , for 𝑞 ≳ 2

𝑟 .

We are now ready to state security of the stream encryption algo-

rithm asakey of Algorithm 1. The proof is given in Section 3.2.

Theorem 3.1. Let 𝑘, 𝑏, 𝑐, 𝑟 be four natural numbers such that 𝑘 ≤
min{𝑐, 𝑟 } and 𝑐 + 𝑟 = 𝑏. Consider asakey of Algorithm 1 instantiated

with a random permutation p
$←− perm(𝑏). For any adversary A with

construction complexity 𝑞, total number of encrypted message blocks
𝑄 , and with primitive complexity 𝑝 ,

Advi-aiasakey (A) ≤
𝑝∑
𝑖=1

(
1

2
𝑘−𝜏−AG(𝑖) +

𝜈
𝑄−𝑞
𝑟−𝜏,𝑐−𝜏 + 1
2
𝑐−𝜏−AG(𝑖) +

𝑄 + 2𝑞𝑘 + 1
2
𝑏−𝜏−AG(𝑖)

)
+
(𝑄 + 2𝑞𝑘)𝑞 + 2𝜈𝑄−𝑞𝑟−𝜏,𝑐−𝜏

2
𝑐−𝜏 +

(𝑄+2𝑞𝑘+1
2

)
+ 2

(𝑄+𝑞𝑘+1+𝑝
2

)
2
𝑏−𝜏 .

Here,AG(𝑖) is short forAGatk (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ), where𝑿𝑖 denotes the prim-
itive evaluations in all queries made to I

[
asakeyp

𝐾

]
up to primitive

query 𝑖 with the same inner part as primitive query 𝑖 , 𝒒𝑖 their oc-
currences, and 𝑟𝑖 the length of these tuples. In addition, we allow
tampering with p as long as Pr (p(𝑋 ) = 𝑌 ) ≤ 2

−(𝑏−𝜏) for newly
queried 𝑋 , or instead an attacker can at most tamper with 𝜏 bits of
the state.

Simply speaking, the goal of our scheme is to limit the input

complexity per evaluation of p with the same secret state. As we

will detail in Section 3.2, for all 𝑖 , each 𝑋 𝑗 contained in 𝑿 𝒊 of

AGatk (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ) shares the same inner part right𝑐 (𝑋 𝑗 ). As long
as no bad event occurs (specified in the proof), all permutation

queries within all construction queries have a differing inner part

right𝑐 (𝑇𝑗 ). An a priori bounding ofAGatk (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ) in the bounded
leakage model is given in Section 3.3. A further investigation of

how AGatk (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ) can be upper bounded for concrete imple-

mentation attacks is given in Section 4.

We note that, since the nonce 𝑁 is absorbed bitwise before it

is absorbed as a whole, it follows that 𝑟𝑖 ≤ 2. Hence, the input
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complexity per permutation evaluation within our scheme is ef-

fectively bounded to 2. This still leaves the option open to fault

inputs of repeated calls to the permutation to virtually enhance

𝑟𝑖 . To salvage asakey in this setting, we discuss in Section 3.4 a

strengthened version of asakey that prevents this under additional

assumptions by limiting max(𝒒𝑖 ).

3.2 Proof of Theorem 3.1

Write E = asakey for brevity. Without loss of generality, all con-

struction queries that A makes are for plaintext 0
∗
; all that matters

is the length of the queries. So the adversary can make 𝑞 construc-

tion queries of the form (𝑁 𝑗 , ℓ𝑗 , 𝑍 𝑗 ), where 𝑁 𝑗 ∈ {0, 1}𝑘 denotes

the nonce, ℓ𝑗 ∈ N the requested number of key stream blocks, and

𝑍 𝑗 ∈ ({0, 1}𝑟 )ℓ𝑗 the resulting key stream. All nonces 𝑁 𝑗 are unique,

and the lengths ℓ𝑗 sum to𝑄 . For each query 𝑗 , we define 𝑆 𝑗,𝑙 and𝑇𝑗,𝑙

for 𝑙 = 0, . . . , 𝑘 + ℓ𝑗 as indicated in Figure 1. Evaluations of I
[
Ep
𝐾

]
may leak information upon every evaluation of p, i.e., of every
transition from 𝑆 𝑗,𝑙 to 𝑇𝑗,𝑙 . The adversary can additionally make

𝑝 direct queries to p±, which are denoted (𝑋𝑖 , 𝑌𝑖 ). Recall that for
query 𝑖 , we defined AG(𝑖) = AGatk (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ) as the accumulated

gain up to query 𝑖 , where 𝑿𝑖 denotes the primitive evaluations in

all queries made to I
[
Ep
𝐾

]
up to primitive query 𝑖 with the same

inner part right𝑐 (𝑋𝑖 ), 𝒒𝑖 their occurrences, and 𝑟𝑖 the length of

these tuples. The adversary may in addition fault the computation

of p so that Pr (p(𝑋 ) = 𝑌 ) ≤ 2
−(𝑏−𝜏)

in each primitive evaluation

in a construction query.

Our goal is to bound

ΔA

(
I
[
Ep
𝐾

]
, Ep
𝐾
, p± ; I

[
Ep
𝐾

]
, ro, p±

)
, (7)

where ro is a random oracle. As Dobraunig and Mennink [25], we

first replace pwith a function f : {0, 1}𝑏 → {0, 1}𝑏 that has the same

interface, and that simply returns uniform random responses lazily,

and aborts if there is a collision. Formally, f maintains an initially

empty list F in which its input-output tuples will be stored. For a

query f (𝑋 ) with (𝑋, ·) ∉ F , the function f response 𝑌 ∈ {0, 1}𝑏 in

a random way. In detail, if f is called directly or indirectly through

Ef
𝐾
, it generates 𝑌

$←− {0, 1}𝑏 . If it is evaluated through I
[
Ef
𝐾

]
, the

adversary may fault p, and a certain 𝑌 drawn with probability at

most 2
−(𝑏−𝜏)

. Then, if (·, 𝑌 ) ∈ F , it aborts; otherwise, it stores
(𝑋,𝑌 ) in F . It operates symmetrically for inverse queries. Clearly,

f and p are perfectly indistinguishable as long as the former does

not abort, and hence,

ΔA

(
I
[
Ep
𝐾

]
, Ep
𝐾
, p± ; I

[
Ef𝐾

]
, Ef𝐾 , f

±
)
,

ΔA

(
I
[
Ep
𝐾

]
, ro, p± ; I

[
Ef𝐾

]
, ro, f±

)
≤

(𝑄+𝑞𝑘+1+𝑝
2

)
2
𝑏−𝜏 ,

noting that p is evaluated a total amount of at most 𝑄 + 𝑞𝑘 + 1 + 𝑝
times. We get

(7) ≤ ΔA

(
I
[
Ef𝐾

]
, Ef𝐾 , f

±
; I

[
Ef𝐾

]
, ro, f±

)
+
2

(𝑄+𝑞𝑘+1+𝑝
2

)
2
𝑏−𝜏 . (8)

To analyze the remaining distance of (8), we define four bad events,

where 𝜈 = 𝜈
𝑄−𝑞
𝑟−𝜏,𝑐−𝜏 is defined using the multicollision limit function:

Bcc there exist distinct and non-trivial ( 𝑗, 𝑙), ( 𝑗 ′, 𝑙 ′) such that

𝑆 𝑗,𝑙 = 𝑆 𝑗 ′,𝑙 ′ ;

Bcp there exist ( 𝑗, 𝑙), 𝑖 such that 𝑆 𝑗,𝑙 = 𝑋𝑖 or 𝑇𝑗,𝑙 = 𝑌𝑖 ;

BmcS there exist distinct ( 𝑗, 𝑙)1, . . . , ( 𝑗, 𝑙)𝜈+1 with 𝑙1, . . . , 𝑙𝜈+1 ≥
𝑘 + 2 such that

left𝑟 (𝑆 ( 𝑗,𝑙)1 ) = · · · = left𝑟 (𝑆 ( 𝑗,𝑙)𝜈+1 ) ;

BmcT there exist distinct ( 𝑗, 𝑙)1, . . . , ( 𝑗, 𝑙)𝜈+1 with 𝑙1, . . . , 𝑙𝜈+1 ≥
𝑘 + 2 such that

left𝑟 (𝑇( 𝑗,𝑙)1 ) = · · · = left𝑟 (𝑇( 𝑗,𝑙)𝜈+1 ) .

The subscripts of the bad events describe the type of queries that

collide, i.e., cc stands for construction-construction collisions, cp
for construction-primitive collisions, mcS for multicollisions in the

input states 𝑆 in the construction, and mcT for multicollisions in

the output states 𝑇 in the construction. For Bcc, two tuples are

non-trivial if either 𝑙 ≠ 𝑙 ′ or 𝑙 = 𝑙 ′ ≥ argmin𝜄 (𝑁𝜄 ≠ 𝑁 ′𝜄 ). This
condition is needed to exclude trivial collisions for different queries

whose nonces share a prefix. The bad events BmcS and BmcT are

introduced to aid in bounding the occurrences of Bcc and Bcp.
We write Bmc = BmcS ∨ BmcT and B = Bcc ∨ Bcp ∨ Bmc. One

can note that, as long as ¬B holds, the stream generation part

of any evaluation of Ef consists of “fresh” evaluations of f, i.e.,
evaluations that are not defined by F yet. This means that their

responses are randomly drawn from {0, 1}𝑏 , and that the resulting

key stream 𝑍 𝑗 ∈ ({0, 1}𝑟 )ℓ𝑗 is perfectly indistinguishable from

random. Therefore, we obtain for the remaining distance of (8):

ΔA

(
I
[
Ef𝐾

]
, Ef𝐾 , f

±
; I

[
Ef𝐾

]
, ro, f±

)
≤ Pr

(
AI

[
Ef
𝐾

]
,Ef
𝐾
,f±

sets B
)
.

(9)

The remaining probability is bounded by Lemma 3.2 below. The

proof of Theorem 3.1 is completed by combining this lemma with

(7), (8), and (9).

Lemma 3.2. We have

Pr
(
AI

[
Ef
𝐾

]
,Ef
𝐾
,f± sets B

)
≤

𝑝∑
𝑖=1

(
1

2
𝑘−𝜏−AG(𝑖) +

𝜈 + 1
2
𝑐−𝜏−AG(𝑖) +

𝑄 + 2𝑞𝑘 + 1
2
𝑏−𝜏−AG(𝑖)

)
+ (𝑄 + 2𝑞𝑘)𝑞 + 2𝜈

2
𝑐−𝜏 +

(𝑄+2𝑞𝑘+1
2

)
2
𝑏−𝜏 .

Proof. For brevity, write

Pr (B) := Pr
(
AI

[
Ef
𝐾

]
,Ef
𝐾
,f±

sets B
)
, (10)

and likewise for the sub-events Bcc, Bcp, and Bmc. By basic proba-

bility theory,

Pr (B) = Pr
(
Bcc ∨ Bcp ∨ Bmc

)
≤ Pr

(
Bcc ∨ Bcp | ¬Bmc

)
+ Pr (Bmc) .

In fact, following Dobraunig and Mennink [25], we will introduce

one layer of granularity in the reasoning. Note that the adversary

can trigger a total amount of at most 𝑄 + 𝑞𝑘 + 1 + 𝑝 primitive

evaluations. These are all evaluated in some sequential order. For

𝛼 = 1, . . . , 𝑄 + 𝑞𝑘 + 1 + 𝑝 , one can write Bx (𝛼) as the event that
the 𝛼-th query triggers the particular event Bx, and Bx (≤ 𝛼) as the
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event that one of the first 𝛼 queries triggers the particular event Bx.
Then,

Pr (B) ≤
𝑄+𝑞𝑘+1+𝑝∑

𝛼=1

Pr (Bcc (𝛼) | ¬B (≤ 𝛼 − 1) ∧ ¬Bmc (𝛼)) (11a)

+
𝑄+𝑞𝑘+1+𝑝∑

𝛼=1

Pr
(
Bcp (𝛼) | ¬B (≤ 𝛼 − 1) ∧ ¬Bmc (𝛼)

)
(11b)

+ Pr (Bmc) . (11c)

We will henceforth proceed the same way as [25]. We will consider

any of the 𝑄 + 𝑞𝑘 + 1 + 𝑝 evaluations of f that might happen, and

analyze the probability that this particular query 𝛼 sets Bcc (𝛼) or
Bcp (𝛼), assuming that the events were not set prior to this query.

One can also adopt a similar reasoning for Bmc, but for that event,

instead, a direct reasoning is more convenient.

Probability that a query sets Bcc (Eq. (11a)). Consider any two dis-

tinct and non-trivial queries ( 𝑗, 𝑙) and ( 𝑗 ′, 𝑙 ′). Without loss of gen-

erality, ( 𝑗 ′, 𝑙 ′) is the newer one, i.e., either 𝑗 < 𝑗 ′ or ( 𝑗 = 𝑗 ′ and
𝑙 < 𝑙 ′). We will consider the probability that any new construction

query hits an older tuple. Note that 𝑆 𝑗,0 = 0
𝑏−𝑘 ∥𝐾 for all 𝑗 , and this

is the first evaluation of f made in construction queries. We have

the following cases:

• 𝑙 ′ = 0. This case would imply that 𝑗 ′ = 1 and ( 𝑗 ′, 𝑙 ′) cannot
be the newer query;

• 𝑙 ′ ∈ {1, . . . , 𝑘}. In this case, 𝑆 𝑗 ′,𝑙 ′ is randomly generated and

it hits any older state value with 𝑙 ≠ 𝑘 + 1 with probability

1/2𝑏−𝜏 , where we note that the adversary can fault at most

𝜏 bits. The case of 𝑙 = 𝑘 + 1 is different: the adversary might

have set a nonce as input that matches the leakage that it

might have obtained from an earlier evaluation of 𝑆 𝑗 ′,𝑙 ′−1
(noting that although ( 𝑗 ′, 𝑙 ′) is newer than ( 𝑗, 𝑙), ( 𝑗 ′, 𝑙 ′ − 1)
might predate it). In this case, yet, a collision happens with

probability at most 1/2𝑐−𝜏 ;
• 𝑙 ′ = 𝑘 + 1. In this case, the attacker has set the outer part,

and the state equals any older state with probability 1/2𝑐−𝜏 ;
• 𝑙 ′ ∈ {𝑘+2, 𝑘+3, . . . }. In this case, 𝑆 𝑗 ′,𝑙 ′ is randomly generated

and it hits any older state value with probability 1/2𝑏−𝜏 .
There is 1 unique state with 𝑙 = 0, 𝑞𝑘 states with 𝑙 ∈ {1, . . . , 𝑘}, 𝑞
states with 𝑙 = 𝑘 + 1, and𝑄 −𝑞 states with 𝑙 ∈ {𝑘 + 2, 𝑘 + 3, . . . }. By
summing over all possible choices of distinct ( 𝑗, 𝑙) and ( 𝑗 ′, 𝑙 ′), we
obtain

(11a) ≤
(
𝑞𝑘 · (1 + 𝑞𝑘−1

2
+ (𝑄 − 𝑞))

2
𝑏−𝜏 + 𝑞𝑘 · 𝑞

2
𝑐−𝜏

)
+
𝑞 · (1 + 𝑞𝑘 + 𝑞−1

2
+ (𝑄 − 𝑞))

2
𝑐−𝜏

+
(𝑄 − 𝑞) · (1 + 𝑞𝑘 + 𝑞 + 𝑄−𝑞−1

2
)

2
𝑏−𝜏

≤ (𝑄 + 2𝑞𝑘)𝑞
2
𝑐−𝜏 +

(𝑄+2𝑞𝑘+1
2

)
2
𝑏−𝜏 . (12)

Probability that a query sets Bcp (Eq. (11b)). Consider any construc-

tion query ( 𝑗, 𝑙) and any primitive query 𝑖 . Note that, upon the

𝑖-th primitive query, the accumulated gain for states with the same

inner part right𝑐 (𝑋𝑖 ) is defined as AG(𝑖). This bound represents

the entropy loss of guessing that state value. For a construction

query, on the other hand, the entropy loss is already 𝜏 bits (at most).

Intuitively, these accumulate, resulting in an entropy of at least

𝑏 − 𝜏 − AG(𝑖) bits. Formally, we make the following distinction:

• 𝑙 = 0. Note that 𝑆 𝑗,0 = 0
𝑏−𝑘 ∥𝐾 for all 𝑗 , so there is only

one occurrence of this construction query. If the primitive

query is a forward query, without loss of generality its first

𝑏 − 𝑘 bits are 0. It satisfies 𝑆 𝑗,0 = 𝑋𝑖 with probability at most

1/2𝑘−𝜏−AG(𝑖) . Note that, indeed, the adversary might have

tampered 𝜏 bits. It satisfies 𝑇𝑗,0 = 𝑌𝑖 with probability 1/2𝑏 .
On the other hand, if the primitive query is an inverse query,

it satisfies 𝑇𝑗,0 = 𝑌𝑖 with probability at most 1/2𝑏−𝜏−AG(𝑖)
and 𝑆 𝑗,0 = 𝑋𝑖 with probability 1/2𝑏 . Therefore, restricted to

the case 𝑙 = 0 (which is just 1 unique construction query),

the event happens with probability at most

1

2
𝑘−𝜏−AG(𝑖) +

1

2
𝑏−𝜏−AG(𝑖) ;

• 𝑙 ∈ {1, . . . , 𝑘}. Note that this involves𝑞𝑘 construction queries,
but the adversary knows nothing about these states, besides

leakage and the fact that it might have tampered 𝜏 bits. If

the primitive query is a forward query, it satisfies either of

𝑆 𝑗,𝑙 = 𝑋𝑖 and𝑇𝑗,𝑙 = 𝑌𝑖 with probability at most 1/2𝑏−𝜏−AG(𝑖) .
For inverse queries, the analysis is identical. Therefore, re-

stricted to the case 𝑙 ∈ {1, . . . , 𝑘} (which are at most 𝑞𝑘

construction queries), the event happens with probability at

most

2𝑞𝑘

2
𝑏−𝜏−AG(𝑖) ;

• 𝑙 = 𝑘 + 1. Note that this involves 𝑞 construction queries,

and the adversary might have set the outer part of the state

to a value 𝑁 ∥0∗. In addition, it might have tampered 𝜏 bits

of the inner part. If the primitive query is a forward query,

there is at most one construction query whose first 𝑟 bits

are equal to the first 𝑟 bits of 𝑋 . It satisfies 𝑆 𝑗,𝑘+1 = 𝑋𝑖 for

that particular state with probability at most 1/2𝑐−𝜏−AG(𝑖) . It
satisfies𝑇𝑗,𝑘+1 = 𝑌𝑖 with probability 1/2𝑏 . On the other hand,
if the primitive query is an inverse query, there is at most

one construction query whose first 𝑟 bits are equal to the

first 𝑟 bits of 𝑌 . It satisfies𝑇𝑗,𝑘+1 = 𝑌𝑖 for that particular state
with probability at most 1/2𝑐−𝜏−AG(𝑖) and 𝑆 𝑗,𝑘+1 = 𝑋𝑖 with
probability 1/2𝑏 . Therefore, restricted to the case 𝑙 = 𝑘 + 1
(which are 𝑞 construction queries), the event happens with

probability at most

1

2
𝑐−𝜏−AG(𝑖) +

𝑞

2
𝑏−𝜏−AG(𝑖) ;

• 𝑙 ∈ {𝑘+2, 𝑘+3, . . . }. Note that this involves𝑄−𝑞 construction
queries. If the primitive query is a forward query, by ¬BmcS

there are at most 𝜈 = 𝜈
𝑄−𝑞
𝑟−𝜏,𝑐−𝜏 possible construction queries

with left𝑟 (𝑆 𝑗,𝑙 ) = left𝑟 (𝑋𝑖 ). It satisfies 𝑆 𝑗,𝑙 = 𝑋𝑖 for any of

these 𝜈 states with probability at most 1/2𝑐−𝜏−AG(𝑖) . It satis-
fies 𝑇𝑗,𝑙 = 𝑌𝑖 with probability 1/2𝑏 . For inverse queries, the
analysis is identical, relying on ¬BmcT. Therefore, restricted

to the case 𝑙 ∈ {𝑘 + 2, 𝑘 + 3, . . . } (which are at most 𝑄 − 𝑞
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construction queries), the event happens with probability at

most

𝜈

2
𝑐−𝜏−AG(𝑖) +

𝑄 − 𝑞
2
𝑏−𝜏−AG(𝑖) .

By summing over all possible types of queries, we obtain

(11b) ≤
𝑝∑
𝑖=1

(
1

2
𝑘−𝜏−AG(𝑖) +

𝜈 + 1
2
𝑐−𝜏−AG(𝑖) +

𝑄 + 2𝑞𝑘 + 1
2
𝑏−𝜏−AG(𝑖)

)
. (13)

Probability that a query sets Bmc (Eq. (11c)). Recall that Bmc =

BmcS∨BmcT. We start with BmcT. The state values𝑇𝑖, 𝑗 are randomly

generated using a random function, and𝑄 −𝑞 values are generated.
Thus, BmcT is a balls-and-bins experiment with 𝑄 − 𝑞 balls thrown

into 2
𝑟
bins. There is a catch here, namely that an adversary can

fault p and change the probability with which a ball falls in a specific
bin to at most 2

−(𝑟−𝜏)
. To maximize its success probability, we can

simply assume that it always faults (w.l.o.g.) the first 𝜏 bits to 0.

This reduces the probability of throwing the 𝑄 − 𝑞 balls into 2
𝑟−𝜏

bins. The event BmcT is set for the 𝑇𝑖, 𝑗 ’s if there is a bin with more

than 𝜈 = 𝜈
𝑄−𝑞
𝑟−𝜏,𝑐−𝜏 balls. By (6), this happens with probability at

most 𝜈/2𝑐−𝜏 . The analysis of BmcS is symmetric, noting that 𝑆𝑖, 𝑗+1
has the same distribution as 𝑇𝑖, 𝑗 for 𝑗 ≠ 0, 𝑘 + 1. Thus,

(11c) ≤ 2𝜈

2
𝑐−𝜏 . (14)

Conclusion. The proof is completed by a direct combination of (10),

(11), (12), (13), and (14). □

3.3 A Priori Bounding

We will consider how the bound of Theorem 3.1 looks like if we

restrict our focus to a priori bounding, assuming that an attacker can

only get/influence 𝜆 bits of information per call to the permutation

p. We can start from the reasoning of Section 2.3, put 𝑟 = 2 as

the rate is limited to one, and put 𝜋 ≤ max(𝒒𝑝 ) as parts of the
input of one permutation are in general also the output of another

permutation. We thus obtain

AGbounded (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ) ≤ 3max(𝒒𝑝 )𝜆 ,
where max(𝒒𝑝 ) ≥ max(𝒒𝑖 ) is the maximum number that a permu-

tation in asakey gets evaluated on the same input. We obtain the

following corollary.

Corollary 3.3. Let 𝑘, 𝑏, 𝑐, 𝑟 be four natural numbers such that
𝑘 ≤ min{𝑐, 𝑟 } and 𝑐 + 𝑟 = 𝑏. Consider asakey of Algorithm 1 instan-

tiated with a random permutation p
$←− perm(𝑏). For any adversary

A with construction complexity 𝑞, total number of encrypted mes-
sage blocks 𝑄 , and with primitive complexity 𝑝 , that can obtain 𝜆
bits of information per leakage and can tamper with p as long as
Pr (p(𝑋 ) = 𝑌 ) ≤ 2

−(𝑏−𝜏) for newly queried 𝑋 ,

Advi-aiasakey (A) ≤
𝑝

2
𝑘−𝜏−3max(𝒒𝑝 )𝜆

+
(𝑄+2𝑞𝑘+1

2

)
+ 2

(𝑄+𝑞𝑘+1+𝑝
2

)
2
𝑏−𝜏

+
(𝑄 + 2𝑞𝑘)𝑞 + 2𝜈𝑄−𝑞𝑟−𝜏,𝑐−𝜏

2
𝑐−𝜏 +

𝑝𝜈
𝑄−𝑞
𝑟−𝜏,𝑐−𝜏 + 𝑝

2
𝑐−𝜏−3max(𝒒𝑝 )𝜆

+ 𝑝𝑄 + 2𝑝𝑞𝑘 + 𝑝
2
𝑏−𝜏−3max(𝒒𝑝 )𝜆

.

Note that, by default, asakey does not put a restriction onmax(𝒒𝑝 ).
However, in the case of side channel attacks, the major benefit an at-

tacker can gain via measurements of the same input is to reduce the

Algorithm 2 Strengthened asakey encryption scheme

Input: (𝐾, 𝑃) ∈ {0, 1}𝑘 × {0, 1}∗
State: (𝑁,𝐻 ) ∈ {0, 1}𝑘 × {{0, 1}𝑏 }𝑘
Output: 𝐶 ∈ {0, 1} |𝑃 |

if 𝑁 = 0 then

𝑁 ← 𝑁 + 1
𝑆 ← p(0𝑏−𝑘 ∥𝐾)
for 𝑖 = 1, . . . , 𝑘 do

𝐻𝑖 ← 𝑆

𝑆 ← p(𝑆)
else

∆N ← 𝑁 ⊕ (𝑁 − 1)
𝑜 ← Position of leading 1 of ∆N
𝑁 ← 𝑁 + 1
𝐻𝑜 ← 𝐻𝑜 ⊕ 1

𝑆 ← p(𝐻𝑜 )
for 𝑖 = 𝑜 + 1, . . . , 𝑘 do

𝐻𝑖 ← 𝑆

𝑆 ← p(𝑆)
𝑆 ← 𝑁 ∥0𝑏−𝑐−𝑘 ∥right𝑐 (𝑆)
𝑍 ← ∅
while |𝑍 | < |𝑃 | do

𝑆 ← p(𝑆)
𝑍 ← 𝑍 ∥left𝑟 (𝑆)

return (𝑁 − 1, left |𝑃 | (𝑃 ⊕ 𝑍 ))𝑆

noise of the measurements. Hence, by assuming that the noise stays

high enough and never becomes zero, the effect of max(𝒒𝑝 ) can
be absorbed into 𝜆. This in principle corresponds to non-adaptive

leakage models. As we further show in Section 4, similar arguments

are also valid for a wide range of fault attacks, including SFA and

SIFA.

However, considering faults, there also exist attack vectors that

have the potential to benefit from repetitions with the same input,

most notably DFA. Another attack vector that benefits from repe-

titions is by using faults to virtually increase 𝑟𝑖 beyond 2 in, e.g.,

combined attack with DPA. We have designed asakey in such a way

that it becomes very hard to actually exploit the fact that max(𝒒𝑝 )
is essentially unbounded. See also Appendix A. Nevertheless, in

Section 3.4, we show a strengthened version of asakey, that allows
to put a bound on max(𝒒𝑝 ) under additional assumptions on the

capabilities of an attacker.

3.4 Strengthened asakey
As we have seen in the last section, asakey as described in Algo-

rithm 1 does not come with a limitation inmax(𝒒𝑝 ). In this section,

we will discuss a stateful, but functionally equivalent version called

strengthened asakey shown in Algorithm 2. Together with an addi-

tional assumption of the faulting capabilities of an attacker, we can

limit max(𝒒𝑝 ) to a constant 𝜒 .

The high level idea of Algorithm 2 is simple. First, we put a

restriction on the nonce, by initializing the nonce 𝑁 to zero for the

first use and require it to be incremented by one for each subsequent

use of strengthened asakey. In addition, we store all intermediate
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states that occur while absorbing the single nonce bits. Since we

store all intermediate states, we can start the calculation at the

point of the first differing state. Hence, the same state values are

never processed twice by a call to p in the absence of faults. We

additionally assume that an attacker tampers the sequence

∆N ← 𝑁 ⊕ (𝑁 − 1)
𝑜 ← Position of leading 1 of ∆N

𝑁 ← 𝑁 + 1
𝐻𝑜 ← 𝐻𝑜 ⊕ 1 ,

so that it leads to a nonce re-use, or skip the updates of 𝐻 , less than

𝜒 times. This essentially leads to a bounding of max(𝒒𝑝 ) ≤ 𝜒 . We

obtain the following corollary:

Corollary 3.4. Let𝑘,𝑏, 𝑐, 𝑟 be four natural numbers such that𝑘 ≤
min{𝑐, 𝑟 } and 𝑐 + 𝑟 = 𝑏. Consider asakey of Algorithm 1 instantiated

with a random permutation p
$←− perm(𝑏). For any adversary A

with construction complexity 𝑞, total number of encrypted message
blocks 𝑄 , and with primitive complexity 𝑝 , that can obtain 𝜆 bits of
information per leakage, can perform above-mentioned attack at most
𝜒 times, and can tamper with p as long as Pr (p(𝑋 ) = 𝑌 ) ≤ 2

−(𝑏−𝜏) ,

Advi-aiasakey (A) ≤
𝑝

2
𝑘−𝜏−3𝜒𝜆 +

𝑝𝜈
𝑄−𝑞
𝑟−𝜏,𝑐−𝜏 + 𝑝
2
𝑐−𝜏−3𝜒𝜆 + 𝑝𝑄 + 2𝑝𝑞𝑘 + 𝑝

2
𝑏−𝜏−3𝜒𝜆

+
(𝑄 + 2𝑞𝑘)𝑞 + 2𝜈𝑄−𝑞𝑟−𝜏,𝑐−𝜏

2
𝑐−𝜏 +

(𝑄+2𝑞𝑘+1
2

)
+ 2

(𝑄+𝑞𝑘+1+𝑝
2

)
2
𝑏−𝜏 .

Note that a mode bounding max(𝒒𝑝 ) can also be achieved by

just storing the state 𝐻𝑘 and using the inverse of p. Essentially,
the “re-keying” function of asakey is then traversed in a tree-like

fashion as in [45]. As in this case, inverse evaluations of p happen,

which can also be faulted, minor modifications to the proof are

due. In bad events Bcc and Bcp, the collision analysis is identical for

𝑙 > 0 and gives slightly smaller bounds for 𝑙 = 0, and the bounds on

these two bad events do not worsen. Inverse queries do not affect

the analysis of bad events BmcS and BmcT, which were symmetrical

in the first place. In this case, we can bound max(𝒒𝑝 ) ≤ 𝜒 , where
an attacker can effectively manipulate the absorption of an 𝑁𝑖 for

at most 𝜒 times.

In practice, this assumption is then fulfilled by placing implemen-

tation countermeasures ensuring that the absorption of the 𝑁𝑖 is

done correctly. One way of doing this is to use some form of redun-

dancy to detect a malicious fault injection during the absorption.

Having a high degree of redundancy just during the absorption is a

small cost compared to the cost of having redundancy for the whole

cipher, as it is typically required to protect non-tamper resilient

algorithms against fault attacks.

4 PRACTICAL RESULTS ON AI

In this section, we evaluate if implementations of (strengthened)

asakey can actually withstand side-channel attacks and fault at-

tacks by the examples of either differential power analysis (DPA)

or statistical ineffective fault attacks (SIFA). More concretely, we

perform experiments that point out the difference in attacker ad-

vantage when derived from either bounded leakage or AI, for the

concrete case of DPA or SIFA. Based on these experiments we then

argue that the attacker advantage derived from AI reflects reality

much closer than in case of bounded leakage, and hence also allows

to formulate more concrete security guarantees. We discuss further

different examples of implementation attacks in Appendix A.

We chose to evaluate an instance of asakey based on the Keccak-
p[1600,12] permutation using a plain AVR assembler optimized

version of Keccak-p from the Extended Keccak Code Package

(XKCP) [12] running on an XMEGA128D4 microprocessor. We

have decided to use this platform, since a plain 8-bit implementation

on a low noise microprocessor strongly favors an attacker, with

implementation attacks getting typically much harder on more

powerful CPUs or dedicated ASIC implementations.

To make the evaluation less time consuming, we assume that

the secret part is always 128 bits and that the attacker is in control

of the rest of the input bits and knows the output except 128 bits.

Clearly, such a simplified scenario strongly favors the attacker and,

as a consequence, the achieved results drastically underestimate

the actual security of this implementation of asakey, which is fine

as long as we can show that the simpler construction is already

sufficiently hard to attack. For a more thorough evaluation, more

experiments on all the possible configurations of the permutation

(see Figure 2) would need to be done.

We evaluate the information an attacker can extract via multiple

different attack vectors. For each attack vector, we get a certain

guessing advantage that an attacker can achieve using a certain

amount of measurements. Our construction in Section 3 efficiently

bounds the data complexity (max(𝑟𝑖 ) = 2) an attacker is able to

exploit per secret state it tries to recover. Hence, for attacks like

SIFA, or DPA that perform better with increasing data complexity,

we effectively end up with a security margin. In other words, we

get some impression on how much an attacker has to improve over

our already optimistically performed attacks.

In essence, this is a situation that is well-known in symmetric

cryptography, where round-reduced variants of symmetric prim-

itives are attacked and the security margin up to the full round

version gives some measure how much an attacker has to improve

to threaten the whole scheme. As in our case here, there is usually

also no guarantee in symmetric cryptography that a certain attack

vector (e.g., differential cryptanalysis [15]) is the best attack vector

on a certain scheme, nor that one cannot exploit a certain attack

vector better than previously demonstrated.

Note that asakey can only loosely limit max(𝒒𝑖 ) ≤ 𝑞. Conse-
quently, asakey does not provide mode-level protection against

certain attack types that solely rely on the exploitation of constant

inputs, like simple power analysis (SPA) and template attacks [52].

Protection against such attacks thus has to be achieved by either (i)

using the stateful mode strengthened asakey that can effectively

limitmax(𝒒𝑖 ) presented in Section 3.4, or (ii) using implementation

countermeasures (like hiding) against this specific attack vector.

Nevertheless, asakey can still offer some protection against fault

attacks that utilize different faults on executions with the same

input, like differential fault attacks (DFA) [16] since DFA needs

to be mounted on the key stream generation phase and (i) fresh

nonces prevent the repeated usage of keys during encryption, and

(ii) asakey’s hard-to-invert key derivation significantly increases

the difficulty of DFA-based key recovery attacks during decryption

(see Appendix A).
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Figure 2: The Keccak-p permutation as scrutinized in cur-

rent analysis.

In the first part of this section, we discuss the simplified attack

scenario that we subsequently use to optimistically estimate the

effectiveness of various kinds of implementation attacks on asakey.
We then present concrete attack evaluations, starting with attacks

that are limited by max(𝑟𝑖 ), and interpret the influence of these

attacks on our bound. A complementary discussion attacks that are

limited by max(𝒒𝑖 ) can be found in Appendix A.

4.1 Primitive Under Attack

We will indicate how AGdpa (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ), and AGsifa (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ) of
Theorem 3.1 behave. Before doing so, we have to settle the imple-

mentation that we consider. We assume an implementation that

for each new encryption always starts with the first permutation

call that involves the key. Hence, we know from Section 3.1 that

for such an implementation, max(𝑟𝑖 ) = 2. To limit the amount of

experiments we have to do, we can perform all experiments with

the Keccak-p[1600,12] permutation in a best-case configuration

for an attacker as shown in Figure 2.

In this setting, the goal of an attacker is to recover as much

information as possible about the secret states, which are 128 bits

placed at the last two lanes of Keccak-p[1600,12]. The attacker has
ultimate control over the 1472-bit input 𝐼 and is able to observe 𝑂 .

Please note that the degrees of freedom available to an attacker in

the scenario shown in Figure 2 are always strictly better compared

to our mode in Figure 1. Hence, we consider experiments based

on the configuration shown in Figure 2 to be a valid estimation of

the security we can expect from an implementation of our mode

shown in Figure 1 on the inspected platform.

For DPA and SIFA, the goal is to recover the secret state 𝑆𝐾𝐼 at

the input of the permutation, and we show how AGatk (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 )
changes for increasing 𝑟𝑖 . We do not take advantage in the attack

that due to the construction of our scheme, there exists also a

previous permutation call, where the inner part of this previous call

𝑆
prev

𝐾𝑂
matches the inner part of the next permutation call 𝑆𝐾𝐼 , simply

because it is unclear how to take this into account to improve our

attacks. Also note that for attacks using faults, the data complexity

at the input for some secret state 𝑆𝐾𝐼 is not strictly bounded by

𝑟𝑖 . An attacker could artificially increase the data complexity by

placing additional faults, e.g., at the input of the permutation and

exploit that in this case max(𝒒𝑖 ) is not strictly bounded. However,

this requires a quite powerful attacker capable of precisely inserting

faults and also complicates and often prohibits the detection on

whether a fault was ineffective or not.

In an implementation attack, we usually end up with a list of can-

didates for the secret bits we aim to recover. Similar to Selçuk [69],

we express the guessing advantage in bits as log
2
(#total candidates)−

log
2
(#candidates to test), where the number of candidates to test

are the candidates states, which are ranked equal or higher com-

pared to the correct secret state.

4.2 Differential Power Analysis (DPA)

In our power analysis experiment, we consider a DPA attack on a

microprocessor implementation of the Keccak-p[1600,12] permu-

tation. The target software implementation is the AVR assembler

optimized version of Keccak-p from the Extended Keccak Code

Package (XKCP) [12]. The power measurements were conducted on

a ChipWhisperer-Lite side channel evaluation board [60] featuring

an XMEGA128D4 microprocessor as the victim. We assume that

the initial state of the permutation is initialized with a 128-bit key

that is located in the last two lanes, the remaining input bits are

under the control of the attacker.

During the experiment we send random inputs 𝐼 to the device

and measure the power consumption of the following Keccak-

p[1600,12] permutation. The resulting output 𝑂 is not needed in

this attack. The strategy of the power analysis follows the principles

presented by Taha and Schaumont [72] who thoroughly analyzed

different DPA attack strategies for various instantiations of MAC-

Keccak schemes. In our case each column of the state contains

at most one key bit at the beginning of the permutation. We can

hence use a rather simple strategy based on the prediction of the

Hamming weight of intermediate values during the computation

of 𝜃 in the first round. In software, 𝜃 is usually implemented in

two steps. First, the parity of each column in the state 𝑆 (𝑥,𝑦, 𝑧) is
calculated which results in 𝜃

plane
:

𝜃
plane
(𝑥, 𝑧) =

4⊕
𝑖=0

𝑆 (𝑥, 𝑖, 𝑧) .

The output of 𝜃 then corresponds to the XOR of every state bit with

2 bits from 𝜃𝑝𝑙𝑎𝑛𝑒 :

𝑆 (𝑥,𝑦, 𝑧) = 𝑆 (𝑥,𝑦, 𝑧) ⊕ 𝜃
plane
(𝑥 − 1, 𝑧) ⊕ 𝜃

plane
(𝑥 + 1, 𝑧 − 1) .

In our experiment we focus on the values of the last two lanes of

𝜃
plane

since only these have key bits in the corresponding sheet.

While predicting values of entire 64-bit lanes is not really practical,

we can exploit the fact that the 8-bit microprocessors need to cal-

culate operations using 8-bit registers. We can hence simply guess

8 key bits, predict the Hamming weight of the corresponding 8 bits

in 𝜃
plane

, and check whether or not our prediction correlates with

the recorded power traces for multiple runs using differing 𝐼 .

The results of the experiments, depicted in Figure 3, show how

many power traces are needed until key bits can be reliably ex-

tracted. After having observed about 36 power traces the correla-

tion of predictions using the correct key guess reliably scores the

highest. The corresponding advantage of an attacker at this point

is therefore 8 bits. Using the same set of power traces all remaining

key bits can be recovered by simply adjusting the location of the

key guess in the state.

We expect experiments on other platforms with larger archi-

tectures (such as 16-, 32-, 64-bit) to perform increasingly worse,

mainly due to the fact that leakage becomes less informative with

increasing register sizes. Additionally, especially on 32-bit or 64-bit
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(b) The expected attacker advantage in guessing key bits when targeting

8 key bits for 16 times in parallel. The grey line shows the gain of 𝑖 · 𝜆,
where 𝜆 is estimated by the biggest slope gotten from the DPA attack.

Figure 3: DPA results for Keccak-p[1600,12] on an 8-bit mi-

crocontroller. After having observed about 36 power traces

the 128-bit key can be retrieved, 8-bit at a time. The experi-

ment was repeated 100 times, the results are averaged.

platforms, checking all possible values of a 32 or 64-bit key guess

becomes very time consuming. Here one can fall back to guessing,

e.g., only 16 key bits, thereby treating the remaining bits in a reg-

ister simply as noise. This however comes also at the cost of an

increased amount of required power traces.

4.3 Statistical Ineffective Fault Attacks (SIFA)

Thanks to our new model of accumulated interference, we are also

able to express the gain an attacker gets from fault attacks within a

leakage and tamper resilient framework. The effect of fault attacks

is split into two parts: (i) the accumulated gain stemming from

an attacker learning about the secret state by repeating primitive

queries while using a particular fault attack technique, and (ii) the

immediate entropy loss of the state as a direct possible consequence

of the fault. We now discuss both effects and focus on SIFA [19, 20]

on an 8-bit device for the sake of example.

SIFA has been proven to be a very versatile attack vector that can

be applied to permutation-based schemes in a very straightforward

way [24]. Although our scheme in Section 3 is not an authenticated

encryption scheme, it can still be viewed as the initialization phase

of a sponge-based stream cipher, similar as in Keyak or Ketje.

In our fault attack evaluation, we again consider the Keccak-

p[1600,12] permutation as used in Figure 2 where the input 𝐼 is ran-

domly chosen and known by the attacker. We again target an AVR

assembler optimized version of Keccak-p from the Extended Kec-

cak Code Package (XKCP) [12], running on an 8-bit XMEGA128D4

microprocessor. This time the ChipWhisperer-Lite evaluation board

[60] is used to generate a clock signal for the victim that can addi-

tionally contain purpose-built glitches for causing erroneous com-

putations.

Following a similar strategy as in [24], our goal is to collect

certain 𝐼 ’s for which an induced fault during the computation of

𝜒 in round 2 leads to a correct computation of 𝑂 . The location of

the fault is hereby chosen such that an affected state bit roughly

depends on 25 bits of the initial state. Since not all bits influence the

target bit in a non-linear way, we can get a guessing advantage of

at most 16 bits (see [24] for details). The main observation of SIFA

(and Safe-Error Attacks in general) is that the condition whether

or not a fault is ineffective can depend on the actual values that

are used in the faulted computation. An ineffective fault induction

can hence be used to filter out a specific set of 𝐼 ’s that show a

biased distribution of certain state bits in the faulted location. Once

such a set of 𝐼 ’s is collected by the attacker the corresponding key

bits can be enumerated and the distribution of bits in 𝜒 in round 2

calculated. A key guess corresponding to a strong bias in some state

bits, when measured, e.g., using the Squared Euclidean Imbalance

(SEI), then indicates a correct key guess and vice versa. The more

𝐼 ’s are collected the easier it is to distinguish the correct key guess

from all wrong key guesses.

A quick visual inspection of a power trace reveals that the com-

putation of 𝜒 in round 2 starts around clock cycle 9 550 when

measured from the start of the permutation. During the experiment

we hence send random inputs 𝐼 to the device and inject a glitch

into the clock signal once the victim starts to compute 𝜒 in round 2.

Each 𝐼 is used twice, once with clock glitch, once without, so we can

check (by comparing 𝑂) whether or not the clock glitch affected

the victim’s computation. Note that in a more realistic attacker

scenario the repetition of each 𝐼 is not really needed since either a

redundancy-based fault countermeasure or the authenticity check

during authenticated decryption could indicate whether or not an

induced fault was ineffective.

For the key recovery we guess 25 key bits and calculate the

distribution of one affected state bit at the input of 𝜒 in round 2.

If the exact location of the affected state bits is not known to the

attacker the previous step can simply be repeated for all possible

bit locations in the state. Again, a high SEI indicates a correct key

guess while a low SEI indicates either an incorrect key guess or

(if all key guesses result in low SEI) a wrong prediction of the lo-

cation of the affected state bits. In our experimental setup a clock

glitch always affects 8 bits of the state at once, probably because an

instruction was skipped in 𝜒 in round 2. As a result we only find

about one 𝐼 per 256 faulted permutations where the induced fault

was ineffective. The total number of required faulted permutations

is thus comparably high, but, since every biased bit has a different

dependency to the key bits, we can recover significantly more key

bits at once. The results of our evaluation are depicted in Figure 4.

They show how many ineffective faults were needed until the bias

in one affected state bit was high enough so that the correct key

guess can be distinguished with high confidence. We looked at two

scenarios, one with the plain implementation of the permutation

and one with a simple additional hiding countermeasure where

the permutation is using a random dummy key in 50% of the cases.
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(b) With hiding countermeasure: 50% of executions use a dummy

key.

Figure 4: Result of the SIFA evaluation on an 8-bit

XMEGA128D4 microprocessor using clock glitches. The ad-

vantage of exploiting the bias in one bit is plotted. The grey

line shows the gain of 𝑖 ·𝜆, where 𝜆 is estimated by the biggest

slope gotten in the attack.

Depending on the scenario either about 20 𝐼 ’s (5 120 faulted en-

cryptions) or about 96 𝐼 ’s (24 576 faulted encryptions) are needed

until a correct key guess can be distinguished with high confidence.

Do note however that, in contrast to the DPA attack, reducing the

amount of 𝐼 ’s at the cost of a reduced attacker advantage is more

plausible here. Since each state bit at the input of 𝜒 in round 2 has

a partially different dependency on the key bits, we can run the

key recovery 8 times, thereby recovering significantly more than

16 key bits using one set of 𝐼 ’s.

In addition to the gain an attacker gets per learning about the

state with the help of SIFA, we also have to consider the direct

entropy loss of the state. In our practical evaluation, we discuss the

case of ineffective faults on an 8-bit microprocessor. As shown by

our experiments, we do fault injections targeting 8 bits of the state,

which are ineffective with a probability of 1/256. Hence, we expect
an entropy loss within the state of around 𝜏 ≈ 8.

4.4 Interpretation of Results

Our evaluation of the DPA attack shows that having about 36 traces

for different inputs allows us to recover 8-bit of the secret state.

Since nothing restricts us to also recover the other state bytes using

the same data, we can expect that it is also possible to recover

the whole 128-bit key. Not surprisingly, the evaluation of the DPA

attack shows furthermore that the advantage of an attacker that

is limited to the observation of just two inputs to the Keccak-p
permutation is rather negligible. Here, we remark that in asakey the
data complexity is, indeed, limited to 2. Also, we want to stress that

these results are for an implementation without countermeasures,

using an evaluation setup that extremely favors the attacker, and

assuming that the attacker has control over 1472 bits of 𝐼 (instead

of just one bit as in asakey). If we compare these results with the

one derived using bounded leakage (i.e. the grey line in Figure 3b),

one can see that bounded leakage predicts an already noticeble

attacker advantage even in cases where only two traces have been

observed, which would not allow to formulate a strong security

argument for the asakey construction despite the fact that such

attacker advantages are not realistic for practical DPA attacks.

If we have a look at fault attacks, and more specifically SIFA, the

gain of an attacker could be even bigger, assuming the unlikely but

ideal case that all 𝐼 lead to ineffective faults. In the case of an attack

on a completely unprotected implementation, the guessing advan-

tage grows almost linearly with the data complexity (Figure 4a). In

the presence of a simple hiding countermeasure like dummy rounds

the required data complexity for achieving the same guessing ad-

vantage is however already impacted quite significantly (Figure 4b).

Even in the ideal case the advantage of an attacker is only 1 bit

per targeted bit. Since we targeted one complete byte in our ex-

periments, we assume that the combined advantage is 8 bits on

average. Again, we stress that these results assume an attacker that

has control over 1472 bits of 𝐼 (instead of just one bit as in asakey).
If we compare these results with the one derived using bounded

leakage (i.e. the grey lines in Figure 4a and Figure 4b), one can

again see that bounded leakage predicts higher attacker advantages

compared to AI. In this concrete case the difference between both

models is smaller, however, this only the case since we made very

attacker favoring assumptions in our evaluation. In this concrete

case, both models would allow to make strong security claims for

asakey with a data complexity of 2.

If we map our optimistic evaluation results to the accumulated in-

terference analysis of Section 3, we getmax

(
AGdpa (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 )

)
= 0.34

(from Figure 3b, advantage for 2 traces (max(𝑟𝑖 ) = 2)), considering

DPA as attack vector. If we consider SIFA, we get one bit of advan-

tage (from Figure 4a, advantage for 2 correct ciphertexts (max(𝑟𝑖 ) =
2)) per biased bit. Since in our SIFA attack a whole byte is biased, we

simply scale to max

(
AGsifa (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 )

)
= 8. Since all experiments

have been performed for a secret portion of the state of 128 bits,

we extrapolate these results for secrets bigger/smaller than 128 bits

for the sake of simplicity. For instance, for a 𝑘-bit state, we assume

an attacker has max

(
AGdpa,sifa (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 )

)
= 9

⌈
𝑘
128

⌉
. Since in a

typical instance of asakey the parameters satisfy 𝑏 > 𝑐 ≥ 𝑘 , we
have 9

⌈
𝑏
128

⌉
> 9

⌈
𝑐
128

⌉
≥ 9

⌈
𝑘
128

⌉
. To get more precise numbers, the

experiments need to be redone with the secret states in use.

5 CONCLUSION

The number of devices performing some cryptographic task under

the threat of side channel and fault attacks is likely to rise year by

year. This might either be due to the increased use of embedded

devices operating in areas where they are physically accessible, or

just by the trend that more and more devices are connected to the

Internet and hence are open for remote side channels and fault

attacks. One solution is to resort to cryptographic constructions

that provide more resilience against side channel and fault attacks
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and do not collapse immediately by the slightest sign of leakage or

a fault. With respect to symmetric cryptography in the presence of

side channels, there already exists a huge number of modes promis-

ing leakage resilience. However, on the side of resilience against

fault attacks, symmetric constructions promising both leakage and

tamper resilience on a mode level are scarce. Hence, in this paper,

we introduced the — to the best of our knowledge — first framework

showing that permutation-based constructions can be leakage and
tamper resilient.

We provided the stream cipher asakey and a version called

strengthened asakey together with an evaluation of their resistance

against side channel and fault attacks in an embedded scenario.

However, this is clearly only one step in the development of leak-

age and tamper resilient symmetric cryptography, and still many

open questions exist. One important question is whether we can

move away from the additional assumptions on the capabilities of

an attacker and the need for keeping state for strengthened asakey,
while keeping the strong guarantees on its leakage and tamper

resilience. Furthermore, our way of modeling the effects of faults

is closely fitted to the random permutation model. Our way of

modeling the effects of faults largely benefits from the feature of

public permutations that the isolated event of faulting a permuta-

tion, which is in turn modeled as reducing the entropy of the 𝑏-bit

value by 𝜏 bits or leaking 𝜆 bits of information, itself cannot reveal

the secret key. This is simply because a permutation is keyless.

Modeling the effects of faults on block cipher based modes is left

as an open problem. However, this does not mean that it cannot be

done. For instance, the construction of Pietrzak [63] already con-

siders that its weak PRFs get as inputs non-uniform keys and data,

which is potentially a point of contact for modeling the impact of

faults like we do with 𝜏 . Nevertheless, there are many other leakage-

resilient schemes following other assumptions. For instance, there

exist schemes relying on leak-free components [6, 7]. Just because

they are leak-free does not mean they are fault free, but perhaps, im-

plementing them fault free could lead to tamper resilient schemes.

In other words, while we cannot answer the question in this work

if any leakage resilient-scheme can be transformed into a tamper

resilient scheme, we provide a starting point, showing how faults

could be modeled for schemes using cryptographic permutations.

APPENDIX

A DISCUSSION ON ATTACKS LIMITED BY

max(𝒒𝑖)
As already mentioned, in contrast to strengthened asakey in Sec-

tion 3.4, pure asakey as a mode does not limit max(𝒒𝑖 ). Hence, the
mode itself only provides full protection in case of attacks that scale

with increasing max(𝑟𝑖 ), such as pure DPA. For attacks that scale

with increasing max(𝒒𝑖 ), the implementation itself has to provide

protection, so that, e.g., AGspa (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ) for an SPA is small, al-

though max(𝒒𝑖 ) is essentially unbounded. In the case of passive

side channel attacks, like SPA or template attacks, this requirement

is comparable to a non-adaptive leakage assumption [28, 32, 79].

This means that for non-adaptive leakage, it is usually assumed

that an implementation provides enough protection in case of re-

peated measurements of a primitive that processes the same input,

so that an attacker cannot learn more from repeated measurements

than from the first one. Also note that, form a practical perspective,

achieving protection against SPA attacks is still quite a bit cheaper

to realize than protection against DPA attacks, that are prevented by

asakey and would otherwise usually require the usage of expensive
higher-order masking.

Since we introduce with accumulated interference a concept

that also covers fault attacks, we can observe a similar behavior

for fault attacks. Roughly speaking, in the case of fault attacks,

we have also attacks that mainly scale for increasing max(𝑟𝑖 ), like
SFA and SIFA, but also attacks that mainly scale with increasing

max(𝒒𝑖 ) like DFA. In theory, if max(𝒒𝑖 ) is not limited by a mode,

we have to shift protection against attacks that scale well with

max(𝒒𝑖 ) to the implementation. To see how attacks that scale well

with max(𝒒𝑖 ) impact unprotected implementations of asakey, we
give a discussion of DFA next.

To estimate the performance of Differential Fault Attacks (DFA)

on unprotected implementations of our studied Keccak-p[12,1600]
permutation we mainly refer to existing works by Bagheri et al. [2]

and Luo et al. [51] who thoroughly analyzed the applicability of DFA

attacks against SHA-3, and discuss differences to our attack scenario.

Since DFA requires the observation of faulty computations, it can

only be used to directly infer information about the later rounds of

the attacked permutation. Hence, when performing DFA, we first

aim to recover 𝑆𝐾𝑂 which could then be used to also recover 𝑆𝐾𝐼 .

Following the methods of Bagheri et al. [2] who studied the ef-

fects of single-bit faults within Keccak-p, a single pair of correct
and faulted computation can directly leak 22 bits of the state before

the S-box layer of the penultimate round. By repeating this proce-

dure about 80 times using different fault locations the entire state

before the S-box layer of the penultimate round can be recovered.

Luo et al. followed up on this work by analyzing fault injections

with byte granularity (instead of bit granularity) and concluded that:

(i) about 120 repetitions are necessary if timing but not location

of the fault can be precisely controlled by the attacker, and (ii) as

few as 17 repetitions are required if both timing and location of the

fault can be precisely controlled by the attacker[51].

The main difference between the setting of, e.g., SHA3-512 by

Bagheri et al. [2] and our scenario is the amount of bits of𝑂 that are

directly observable by the attacker. While 576 bits can be observed

by the attacker in SHA3-512, up to 1472 bits can be observed in

our scenario. This does not immediately lead to a reduced amount

of necessary faulted executions since the state recovery via DFA

happens in the penultimate round. Some improvements can how-

ever be expected since the available information about large parts

of the final state can still be used to infer some prior knowledge

about state bits in the penultimate round, which then reduces the

required number of faulted executions.

Please note that for asakey this attack approach cannot be di-

rectly used to extract the long term key, since the encryption part of

asakey works with a session key from a re-keying function that is

hard to invert. To extract the long term key, a multi-step approach

is necessary. Using the notation from Figure 1, it is necessary to:

(1) Use DFA to recover a correct 𝑆𝑘+1;
(2) While injecting a fault in the penultimate round of the last

permutation call of the re-keying function, use DFA to re-

cover a faulty 𝑆𝑘+1;
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(3) Repeat step 2 until sufficiently many faulty 𝑆𝑘+1’s have been
recovered. Then, by also using the correct 𝑆𝑘+1, perform a

DFA-style state recovery within the re-keying function.

Therefore, extendingDFA fromKeccak-p to asakey requires roughly
a squared amount of faulted executions and has the additional re-

quirement of performing precise combinations of two faults per

execution.

To sum up, to recover the 128-bit secret state using a DFA, sig-

nificantly more than one computation of the permutation using the

same input is required to get in our case AGdfa (𝑿𝑖 , 𝒒𝑖 , 𝑟𝑖 ) = 128.

Since the recovery of the long term key 𝐾 already requires two

precise faults per execution, we consider such an attack against an

implementation that has cheap implementation-level countermea-

sures like shuffling in place as hard.

B RELATEDWORK

As the name suggests, permutation-based cryptography is an area

that enables a wide range of symmetric cryptographic function-

ality based on unkeyed cryptographic permutations as a building

block. In this area falls ChaCha [5] as used in TLS 1.3 [65], but also

SHA-3 [11, 59] using the sponge construction [8] and CAESAR’s

first recommendation for lightweight applications Ascon [23] that

is based on the duplex construction [10]. If we focus on sponge

and duplex constructions, their proofs of security are typically

done in the so-called random permutation model, where the actual

used cryptographic permutation is replaced with a permutation

drawn from random. By using this technique, it has been shown

that the random sponge function is indifferentiable from a random

oracle [9]. From that on, a plethora of results in the random permu-

tation model have provided more and more fine grained bounds for

various functionalities enabled by the sponge, duplex, and related

constructions [1, 18, 43, 56, 57, 67, 68]. Just recently, sponge-based

cryptography made its jump out of the black-box model, showing

that it is able to provide leakage resilience efficiently [25, 26, 40].

However, the threat of side channel attacks typically goes hand-in-

hand with the threat of fault attacks. Hence, different permutation-

based constructions have been proposed that also provide heuristic

arguments for their security against fault attacks [21, 66], although

no proof backing these arguments is given.

The work regarding the security of cryptographic implementa-

tions against adversaries inducing faults already has a rich history.

Early work of Gennaro et al. [36] investigate the security of crypto-

graphic algorithms against adversaries that can tamper with the

memory contents of a device. Later on, Ishai et al. [42], also included

computations in their scope and provided methods to generate cir-

cuits that withstand tampering with any wire. The work on creating

tamper-proof circuits has been continued by Faust et al. [33]. Both

works require the ability of a circuit to “self-destruct”. Liu and

Lysyanskaya [49] have shown that it is possible to achieve any

deterministic cryptographic functionality in a leakage and tamper

resilient manner. This is possible assuming a split-state model (e.g.,

an attacker having access to one memory part, but not the other

and vice versa), a common reference string, and a one-time leak-

age resilient public-key cryptosystem. Besides that, tamper and

leakage resilient public-key cryptosystems exist [30, 41], and re-

cently, non-malleable secret sharing has been proposed that can

tolerate tampering and leakage [31]. If we consider the vast amount

of work aiming to achieve leakage and tamper resilient public-key

cryptography or hardware circuits, together with the pervasive

threat of implementation attacks, it is about time to develop a fo-

cused framework to realize efficient leakage and tamper resilient

symmetric permutation-based cryptography. Compared to typical

solutions aiming to achieve protection of any functionality, our

solution does not require public-key cryptography, self-destruction

capabilities, nor dedicated hardware. Furthermore, we operate in a

model that allows leaking from computations but also tampering

with computations, including the memory associated with these

computations.
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