
Cryptographic Shallots: A Formal Treatment of

Repliable Onion Encryption

Megumi Ando∗ Anna Lysyanskaya†

May 29, 2020

Abstract

Onion routing is a popular, efficient, and scalable method for enabling anonymous commu-
nications. To send a message m to Bob via onion routing, Alice picks several intermediaries,
wraps m in multiple layers of encryption — a layer per intermediary — and sends the resulting
“onion” to the first intermediary. Each intermediary “peels off” a layer of encryption and learns
the identity of the next entity on the path and what to send along; finally Bob learns that he is
the recipient, and recovers the message m.

Despite its wide use in the real world (e.g., Tor, Mixminion), the foundations of onion routing
have not been thoroughly studied. In particular, although two-way communication is needed
in most instances, such as anonymous Web browsing or anonymous access to a resource, until
now no definitions or provably secure constructions have been given for two-way onion routing.
Moreover, the security definitions that existed even for one-way onion routing were found to
have significant flaws.

In this paper, we (1) propose an ideal functionality for a repliable onion encryption scheme;
(2) give a game-based definition for repliable onion encryption and show that it is sufficient
to realize our ideal functionality; and finally (3), our main result is a construction of repliable
onion encryption that satisfies our definitions.

Keywords: Anonymity, privacy, onion routing.

∗Computer Science Department, Brown University, mando@cs.brown.edu
†Computer Science Department, Brown University, anna@cs.brown.edu

Contents

1 Introduction 1

2 Repliable onion encryption: syntax and correctness 5
2.1 Onion evolutions, forward paths, return paths and layerings 6

3 FROES: onion routing in the SUC Framework 8
3.1 Ideal functionality FROES . 8

3.1.1 Setting up. 10
3.1.2 Forming an onion. 11
3.1.3 Processing an onion. 13
3.1.4 Forming a reply. 14

3.2 SUC-realizability of FROES . 14
3.3 Remarks . 15

4 Repliable-onion security: a game-based definition of security 15
4.1 Formal description of ROSecurityGame variant (a) . 16
4.2 Brief formal descriptions of ROSecurityGame variants (b) and (c) 18
4.3 Definition of repliable-onion security . 18

5 Repliable-onion security implies SUC-realizability of FROES 18
5.1 Description of simulator S . 19

5.1.1 Sampling an onion. 19
5.1.2 Completing an onion. 20
5.1.3 Recovering a reply message. 21

5.2 Proof of Theorem 1 . 21
5.3 Is repliable-onion security necessary to SUC-realize FROES? 26

6 Shallot Encryption: our repliable onion encryption scheme 27
6.1 Setting up . 28
6.2 Forming a repliable onion . 28
6.3 Processing a repliable onion (in the forward direction) 30
6.4 Replying to the anonymous sender . 30
6.5 Processing a repliable onion (in the return direction) 31
6.6 Reading the reply . 32

7 Shallot Encryption Scheme is secure 33

A Supplementary material 43
A.1 Pseudocode for ideal functionality FROES’s onion forming algorithm 43
A.2 Security game for variants (b) and (c) . 43

A.2.1 Variant (b) . 43
A.2.2 Variant (c) . 44

1 Introduction

Suppose Alice wants to send a message to Bob, anonymously, over a point-to-point network such as
the Internet. What cryptographic techniques exist to make this possible? One popular approach is
onion routing: Alice sends her message through intermediaries, who mix it with other traffic and
forward it on to Bob. In order to make this approach secure from an adversary eavesdropping on the
network, she needs to wrap her message in several layers of encryption, one for each intermediary,
giving rise to the term onion routing.

Onion routing is at the heart of Tor [DDM03, DMS04], which is a tool used by millions of
people to obscure their communication and browsing patterns. Although the security properties
guaranteed by the Tor protocol are a subject of study and debate, it appears clear that because of
its scalable nature — the more “onions” are sent over the network, the better the protocol hides
the origin of each onion, — as well as its fault tolerance — if some of the intermediaries fail or are
malicious, an onion won’t get to it its destination, but another one can be sent on instead, and
other onions are not affected, — onion routing is the favored method for achieving anonymity over
the Internet [ALU18].

As originally proposed by Chaum [Cha81], onion routing meant that Alice just uses regular
encryption to derive each subsequent layer of her onion before sending it on to the first intermediary.
I.e., if the intermediaries are Carol (public key pkC), David (public key pkD) and Evelyn (public key
pkE), then to send message m to Bob (public key pkB), Alice forms her onion by first encrypting
m under pkB, then encrypting the resulting destination-ciphertext pair (Bob, cB) under pkE , and
so forth:

O = Enc(pkC , (David,Enc(pkD, (Evelyn,Enc(pkE , (Bob,Enc(pkB,m)))))))

If we use this approach using regular public-key encryption, then the “peeled” onion O′ that
Carol will forward to David is going to be a shorter (in bit length) ciphertext than O, because
ciphertexts are longer than the messages they encrypt. So even if Carol serves as an intermediary
for many onions, an eavesdropping adversary can link O and O′ by their lengths, unless Carol
happens to be the first intermediary for another onion.

To ensure that all onions are the same length, no matter which layer an intermediary is responsi-
ble for, Camenisch and Lysyanskaya [CL05] introduced onion encryption, a tailor-made public-key
encryption scheme where each onion layer looks the same and has the same length and you can’t
tell how far an intermediary, e.g. Carol, is from an onion’s destination, even if you are Carol. They
gave an ideal functionality [Can01] for onion encryption and a cryptographic scheme that, they
argued, UC-realized it.

However, their work did not altogether solve the problem of anonymous communication via
onion routing. As Kuhn et al. [KBS19] point out, there were significant definitional issues. Also,
as, for example, Ando et al. [ALU18, ALU19] show, onion routing by itself does not guarantee
anonymity, as a sufficient number of onions need to be present before any mixing occurs.

Those issues aside, however, Camenisch and Lysyanskaya (CL) left open the problem of “repli-
able” onions. In other words, once Bob receives Alice’s message and wants to respond, what does
he do? This is not just an esoteric issue. If one wants to, for example, browse the Web anony-
mously, or anonymously download and fill out a feedback form, or carry out most Internet tasks
anonymously, a two-way channel between Alice and Bob needs to be established. Although CL
point out that their construction can be modified to potentially allow two-way communication, this
is nothing more than a suggestion, since they don’t provide any definitions or proofs.

Babel [GT96], Mixminion [DDM03], Minx [DL04] and Sphinx [DG09] all provide mechanisms for
the recipient to reply to the sender but don’t provide any formal definitions or proofs either. This left

1

a gap between proposed ideas for a repliable onion encryption scheme and rigorous examinations of
these ideas. For instance, Kuhn et al. [KBS19] pointed out a fatal security flaw in the current state-
of-the-art, Sphinx. They also pointed out some definitional issues in the CL paper and proposed
fixes for some of these issues but left open the problem of formalizing repliable onion encryption.

The challenge. Let us see why repliable onion encryption is not like other types of encryption.
Traditionally, to be able to prove that an encryption scheme satisfies a definition of security along the
lines of CCA2 security, we direct honest parties (for example, an intermediary Iris) to check whether
a ciphertext (or, for our purposes, an onion) she has received is authentic or has been “mauled;”
Iris can then refuse to decrypt a “mauled” ciphertext (correspondingly, process a “mauled” onion).
Most constructions of CCA2-secure encryption schemes work along these lines; that way, in the
proof of security, the decryption oracle does not need to worry about decrypting ciphertexts that do
not pass such a validity check, making it possible to prove security. This approach was made more
explicit by Cramer and Shoup [CS98,CS02] who defined encryption with tags, where tags defined
the scope of a ciphertext, and a ciphertext would never be decrypted unless it was accompanied by
the correct tag.

The CL construction of onion encryption also works this way; it uses CCA2-secure encryption
with tags in order to make it possible for each intermediary to check the integrity of an onion it
received. So, when constructing an onion, the sender had to construct each layer so that it would
pass the integrity check, and in doing so, the sender needed to know what each layer was going to
look like. This was not a problem for onion security in the forward direction since the sender knew
all the puzzle pieces — the message m and the path (e.g. Carol, David, Evelyn) to the recipient
Bob, — so the sender could compute each layer and derive the correct tag that would allow the
integrity check to pass.

But in the reverse direction, the recipient Bob needs to form a reply onion without knowing
part of the puzzle pieces. He should not know what any subsequent onion layers will look like: if he
did, then an adversarial Bob, together with an adversarial intermediary and the network adversary,
will be able to trace the reply onion as it gets back to Alice. So he cannot derive the correct tag for
every layer. The sender Alice cannot do so either since she does not know in advance what Bob’s
reply message is going to be. So it is not clear how a CCA2-style definition can be satisfied at all.

Another difficult technical issue to address is how to make sure that reply onions are indistin-
guishable (even to intermediaries who process them) from forward onions. As pointed out in prior
work [DDM03], this is crucial because “replies may be very rare relative to forward messages, and
thus much easier to trace.”

Our first contribution: a definition of secure repliable onion encryption in the SUC
model. We define security by describing an ideal functionality FROES in the simplified UC
model [CCL15]; from now on we refer to it as the “SUC model.” We chose the SUC model so
that our functionality and proof did not have to explicitly worry about network issues and other
subtleties of the full-blown UC model [Can01].

As should be expected of secure onion routing, FROES represents onions originating at honest
senders, or formed as replies to honest senders, using bit strings that are computed independently
on the contents of messages, their destinations, whether the onion is traveling in the forward
direction or is a reply, and identities and number of intermediaries that follow or precede an honest
intermediary.

To process an onion, an honest party P sends it to the functionality FROES, which then informs
P what its role is — an intermediary, the recipient, or the original sender of this onion. If P is an

2

intermediary, the functionality sends it a string of bits that represents the next layer of the same
onion (again, formed independently of the input). If P is the recipient, it learns the contents of the
message m and whether the onion can be replied to, and can direct the functionality to create a
reply onion containing a reply message r. Finally, if P is the sender of the original onion, then he
learns r, the reply; he also learns which one of his previous outgoing onions this is in reference to.
We describe FROES in detail in Section 3.

It is important to note that our functionality FROES is defined in such a way that it allows
for a scheme in which checking that an onion has been “mauled” is not entirely the job of each
intermediary. More precisely, we think of the onion as consisting of two pieces. The first piece is
the header H that, in FROES, is a pointer to a data structure that contains the onion’s information.
The second piece is the payload, the content C that can be thought of as a pointer to a data
structure inside FROES that contains the message m. The content C does not undergo an integrity
check until it gets to its destination. This is the way in which we overcome the challenge (described
above) of having a definition that enables replies.

Our second contribution: a game-style definition of secure repliable onion encryption.
Although UC-style definitions of security are a good way to capture the security properties of a
novel cryptographic object such as secure repliable onion encryption, they are often difficult to work
with. The simplified UC (SUC) model makes the job much easier, but it is still cumbersome to
prove that a construction SUC-realizes an ideal functionality, especially a functionality as involved
as FROES. So to make it easier, we provide a game-style definition, called “repliable-onion security,”
in Section 4.

This definition boils down to a game between an adversary and a challenger.
The challenger generates the key pairs for two participants under attack: a sender S and an

honest intermediary I. Similarly to CCA2-security for public-key encryption, the challenger also
responds (before and after the creation of a challenge onion) to the adversary’s queries to S and
I; i.e. the adversary may send onions to the parties under attack and learn how these onions are
peeled.

The adversary then requests that a challenge repliable onion be formed by the sender S; the
adversary picks the recipient R for this onion, as well as the message m to be routed to this recipient,
and the identities and public keys of all the intermediate routers on the path from the sender to
the recipient (other than S and I), and on the return path from the recipient to the sender. The
honest intermediary I must appear somewhere on this path: either (a) I is on the forward path
from S to R, or (b) I is the recipient, or (c) I is on the return path from R to S.

The challenger then tosses a coin, and depending on the outcome, forms the challenge onion in
one of two ways; the adversary’s job to win the game is to correctly guess the outcome of the coin
toss. If the coin comes up heads, the challenger forms the onion correctly, using the routing path
provided by the adversary. If it comes up tails, then the challenger makes a “switch:” he forms two
unrelated onions, one from S to I, and the other from I back to S; the details depend on whether
this is case (a), (b), or (c). He then patches up the oracles for S and I so as to be able to pretend
that the challenge onion was formed correctly. For details, see Section 4.

We then show, in Section 5, that our game-based definition is sufficient to SUC-realize FROES.
Conversely, we also show that (the non-adaptive variant of) it is necessary: any repliable onion
encryption scheme SUC-realizing FROES will satisfy it.

Here is how we overcome the definitional challenge of having a CCA2-style definition while
enabling replies. When forming a repliable onion, the sender S will generate not just the onion to
send on to the first intermediary, but, as a byproduct of forming that onion, will generate all the

3

onion layers — to be precise, the header Hi and the content Ci of the ith onion layer for every i
— on the path from himself to the recipient R. However, in the return direction, S is unable to
know in advance the content of the onion (otherwise the recipient has no ability to send a return
message); but the sender can still form just the header parts {Hi} of those onion layers. So it is the
headers that must satisfy CCA2-style non-malleability, while the content accompanying the header
can be “mauled” on its way to its destination, be it the recipient R, or, in the case of a reply onion,
the original sender S. However, upon arrival to its destination, any “mauled” content should be
peeled to ⊥.

Our main contribution: realizing secure repliable onion encryption. We resolve the
problem that CL left open fifteen years ago of constructing provably secure repliable onion encryp-
tion. Namely, we give a scheme, which we call shallot encryption, for repliable onion encryption.
Our scheme is based on a CCA2-secure cryptosystem with tags, a strong PRP (in other words, a
block cipher), and a collision-resistant hash function.

In a nutshell, here is how our construction works. As we explained above, we split up the onion
into two pieces, the header H and the content C. H contains (in layered encryption form) the
routing information and symmetric keys that are needed to process C. C contains the message
and, in case this is a forward onion, instructions for forming the reply onion; this part is wrapped
in layers of symmetric encryption. This way, the original sender Alice can form the headers for all
the layers of the reply onion even though she does not know the contents of the reply in advance;
Bob’s contribution to the reply onion is just the content C. Each intermediary is responsible for
peeling a layer off of H, learning its key k, and applying a strong PRP keyed by k to the contents
C. In a nutshell, the adaptive security properties guarantee that H cannot be “mauled,” but
checking the integrity of C is postponed until the onion gets to its destination — recipient Bob
or original sender Alice — who check it using a MAC key. This is also why our scheme is called
shallot encryption: the layered structure of the resulting onion resembles a shallot! (Shallots are a
sub-family of onions.) See Section 6 for the technical details.

Related work. Onion routing and mixes were introduced by David Chaum in 1981 [Cha81].
Tremendous interest from applied security researchers that resulted in numerous implementa-
tions [Par96, Cot95, MC00, DDM03]. To illustrate the importance of onion routing, note that the
Tor project, https://www.torproject.org/, which maintains a network of about six thousand
onion routing servers ready to help you be anonymous online, estimates that it serves about two
million users every day.

In spite of this significant interest from practitioners and the Internet community, the theoretical
foundations of onion routing are somewhat shaky. None of the implementation papers mentioned
above provided definitions or proofs of security. In 2005, Camenisch and Lysyanskaya (CL) [CL05]
provided the first formal treatment of onion encryption in one direction (i.e. without replies); they
presented the input/output (I/O) syntax of onion encryption schemes for one-way anonymous
channels and an ideal functionality Fonion of an onion encryption schemes in Canetti’s universal
composability (UC) framework [Can01]. Additionally, they gave a set of game-based definitions –
onion-correctness, onion-integrity and onion-security – that they claimed imply the realizability of
the ideal functionality Fonion. Finally, they also provided a construction that they showed satisfied
these cryptographic properties. They mentioned the possibility of having a reply option (this
possibility was already brought up in Chaum’s 1981 paper), but their formal treatment did not
extend to it.

Unfortunately, in a recent paper, Kuhn et al. [KBS19] found a mistake in CL’s game-based

4

https://www.torproject.org/

definition. In a nutshell, CL’s onion-security game proceeded as follows: An adversary attacking
an honest participant P is given P ’s public key, and specifies the input to the algorithm for forming
an onion; this input includes the identities and public keys of all the intermediaries and of the final
recipient, and the contents of the message m; P is somewhere on the routing path. The challenger
either responds with a correctly formed onion, or with an onion whose routing path is cut off at P ,
i.e., for this onion, P is the recipient of a random unrelated message m′.

Kuhn et al. point out that, although this property indeed hides where the onion is headed
after P , it does not hide where the onion has been before it got to P . Thus, the CL proof that
their onion-security definition was sufficient to UC-realize Fonion had a missing step, which Kuhn
et al. found. Kuhn et al. also showed how to use this unfortunate theoretical mistake to attack
Sphinx [DG09].

On the theory front, Kuhn et al. proposed a game-based definition that, in addition to CL’s
onion-security, includes two new properties: tail-indistinguishability (i.e., the adversary cannot
tell whether the honest party is the sender or an intermediary of the challenge onion) and layer-
unlinkability (i.e., onion layers are computationally unrelated to each other). They argued that
together they imply realizability of CL’s ideal functionality Fonion; they also showed that the mistake
in CL’s proof was not fatal for the CL construction of onion encryption, which meets their new
definition. The Kuhn et al. paper is, therefore, the state-of-the-art as far as the definition of security
for one-directional onion routing is concerned.

The focus of our paper, in contrast, is the problem of repliable onions. This problem, originally
brought up by Chaum, has not been formally addressed until now.

2 Repliable onion encryption: syntax and correctness

In this paper, an onion O is a pair, consisting of the (encrypted) content C and the header H, i.e.,
O = (H,C). The maximum length of a path of an onion, be it the forward path or the return path,
is N ; we assume that N is one of the public parameters pp.

Here, we give the formal input/output (I/O) specification for a repliable onion encryption
scheme. In contrast to the I/O specification for an (unrepliable) onion encryption scheme given
by Camenisch and Lysyanskaya [CL05], a repliable onion encryption scheme contains an additional
algorithm, FormReply, for forming return onions. This algorithm allows the recipient of a message
contained in a repliable onion to respond to the anonymous sender of the message without needing
to know who the sender is.

The algorithm for forming onions, FormOnion, also takes as one of its parameters, the label `.
This is so that when the sender receives a reply message m′ along with the label `, the sender can
identify to which message m′ is responding.

Definition 1 (Repliable onion encryption scheme I/O). The set Σ =
(G,FormOnion,ProcOnion,FormReply) of algorithms satisfies the I/O specification of a repli-
able onion encryption scheme for the label space L(1λ), the message space M(1λ), and a set P of
router names if:
• G is a probabilistic polynomial-time (p.p.t.) key generation algorithm. On input the secu-

rity parameter 1λ (written in unary), the public parameters pp, and the party name P , the
algorithm G returns a key pair, i.e.,

(pk(P), sk(P))← G(1λ, pp, P).

• FormOnion is a p.p.t. algorithm for forming onions. On input

5

i. a label ` ∈ L(1λ) from the label space,
ii. a message m ∈M(1λ) from the message space,

iii. a forward path P→ = (P1, . . . , Pd) (d stands for destination),
iv. the public keys pk(P→) associated with the parties in P→,
v. a return path P← = (Pd+1, . . . , Ps) (s stands for sender), and

vi. the public keys pk(P←) associated with the parties in P←,
the algorithm FormOnion returns a sequence O→ = (O1, . . . , Od) of onions for the forward
path, a sequence H← = (Hd+1, . . . ,Hs) of headers for the return path, and a key κ, i.e.,

(O→, H←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←))

Note: the key κ contains some state information that the sender of the onion might need for
future reference; a scheme can still satisfy our definition if κ = ⊥.
• ProcOnion is a deterministic polynomial-time (d.p.t.) algorithm for processing onions. On

input an onion O, a router name P , and the secret key sk(P) belonging to P , the algorithm
ProcOnion returns (role, output), i.e.,

(role, output)← ProcOnion(O,P, sk(P)).

When role = I (for “intermediary”), output is the pair (O′, P ′) consisting of the peeled onion O′

and the next destination P ′ of O′. When role = R (for “recipient”), output is the message m
for recipient P . When role = S (for “sender”), output is the pair (`,m) consisting of the
label ` and the reply message m for sender P .
• FormReply is a d.p.t. algorithm for replying to an onion. On input a reply message m ∈
M(1λ), an onion O, a router name P , and the secret key sk(P) belonging to P , the algorithm
FormReply returns the onion O′ and the next destination P ′ of O′, i.e.,

(O′, P ′)← FormReply(m,O,P, sk(P)).

Note: FormReply may output (⊥,⊥) if P is not the correct recipient of O.

2.1 Onion evolutions, forward paths, return paths and layerings

Now that we have defined the I/O specification for a repliable onion encryption scheme, we can
define what it means for a repliable onion encryption scheme to be correct. Before we do this, we
first define what onion evolutions, paths, and layerings are; the analogous notions for the unrepliable
onion encryption scheme were introduced by Camenisch and Lysyanskaya [CL05].

Let Σ = (G,FormOnion,ProcOnion,FormReply) be a repliable onion encryption scheme for the
label space L(1λ), the message spaceM(1λ), and the set P of router names. Let H ⊆ P be parties
with honestly formed keys. For any P 6∈ H, let sk(P) = ⊥ (i.e., secret keys that were not formed
honestly are not well-defined for the purposes of this experiment).

Let O1 = (H1, C1) be an onion received by party P1 ∈ H, not necessarily formed using
FormOnion.

We define a sequence of onion-location pairs recursively as follows: Let d be the first onion layer
of (H1, C1) that when peeled, produces either “R” or “S” (if it exists, otherwise d = ∞). For all
i ∈ [d− 1], let

(rolei+1, ((Hi+1, Ci+1), Pi+1)) = ProcOnion((Hi, Ci), Pi, sk(Pi)).

6

Let s = d if peeling (Hd, Cd) produces “S.” Otherwise, let m ∈ M(1λ) be a reply message from
the message space, and let

((Hd+1, Cd+1), Pi+1) = FormReply(m, (Hd, Cd), Pd, sk(Pd)).

Let s be the first onion layer of (Hd+1, Cd+1) that when peeled, produces either “R” or “S” (if it
exists, otherwise s =∞). For all i ∈ {d+ 1, . . . , s− 1}, let

(rolei+1, ((Hi+1, Ci+1), Pi+1)) = ProcOnion((Hi, Ci), Pi, sk(Pi)).

We call the sequence E(H1, C1, P1,m) = ((H1, C1, P1), . . . , (Hs, Cs, Ps)) of onion-location
pairs the “evolution of the onion (H1, C1) starting at party P1 given m as the reply mes-
sage.” The sequence P→(H1, C1, P1,m) = (P1, . . . , Pd) is its forward path; the sequence
P←(H1, C1, P1,m) = (Pd+1, . . . , Ps) is its return path; and the sequence L(H1, C1, P1,m) =
(H1, C1, . . . ,Hd, Cd, Hd+1, . . . ,Hs) is its layering.

We define correctness as follows:

Definition 2 (Correctness). Let G, FormOnion, ProcOnion, and FormReply form a repliable onion
encryption scheme for the label space L(1λ), the message space M(1λ), and the set P of router
names.

Let N be the upper bound on the path length (in public parameters pp). Let P = (P1, . . . , Ps),
|P | = s ≤ 2N be any list (not containing ⊥) of router names in P. Let d ∈ [s] be any index in [s]
such that d ≤ N and s − d + 1 ≤ N . Let ` ∈ L(1λ) be any label in L(1λ). Let m,m′ ∈ M(1λ) be
any two messages in M(1λ).

For every party Pi in P , let (pk(Pi), sk(Pi))← G(1λ, pp, Pi) be Pi’s key pair.
Let P→ = (P1, . . . , Pd), and let pk(P→) be a shorthand for the public keys associated with

the parties in P→. Let P← = (Pd+1, . . . , Ps), and let pk(P←) be a shorthand for the public keys
associated with the parties in P←.

Let ((H1, C1), . . . , (Hd, Cd), Hd+1, . . . ,Hs, κ) be the output of FormOnion on input the label `,
the message m, the forward path P→ = (P1, . . . , Pd), the public keys pk(P→) associated with the
parties in P→, the return path P← = (Pd+1, . . . , Ps), and the public keys pk(P←) associated with
the parties in P←.

The scheme Σ is correct if with overwhelming probability in the security parameter λ,
i. Correct forward path.

• P→(H1, C1, P1,m
′) = (P1, . . . , Pd).

• For every i ∈ [d] and content C such that |C| = |Ci|, P→(Hi, C, Pi,m
′) = (Pi, . . . , Pd).

ii. Correct return path.
• P←(H1, C1, P1,m

′) = (Pd+1, . . . , Ps).
• For every i ∈ {d + 1, . . . , s}, reply message m′′, and content C such that |C| = |Ci|,
P→(Hi, C, Pi,m

′′) = (Pd+1, . . . , Ps).
iii. Correct layering. L(H1, C1, P1,m

′) = (H1, C1, . . . ,Hd, Cd, Hd+1, . . . ,Hs),
iv. Correct message. ProcOnion((Hd, Cd), Pd, sk(Pd)) = (R,m),
v. Correct reply message. ProcOnion((Hs, Cs), Ps, sk(Ps)) = (S, (`,m′)) where (Hs, Cs) are

the header and content of the last onion in the evolution E(H1, C1, P1,m
′).

Remark We define onion evolution, (forward and return) paths, and layering so that we can
articulate what it means for an onion encryption scheme to be correct. We define correctness to
mean that how an onion peels (the evolution, paths, and layerings) exactly reflects the reverse
process of how the onion was built up. Thus, for our definition to make sense, both ProcOnion and
FormReply must be deterministic algorithms.

7

3 FROES: onion routing in the SUC Framework

In this section, we provide a formal definition of security for repliable onion encryption schemes.
We chose to define security in the simplified universal composability (SUC) model [CCL15] as
opposed to the universal composability (UC) model [Can01] as this choice greatly simplifies how
communication is modeled, in turn, allowing for a more easily digestible description of the ideal
functionality. Additionally, since SUC-realizability implies UC-realizability [CCL15], we do not lose
generality by simplifying the model in this manner.

Communication model In the SUC model, the environment Z can communicate directly with
each party P by writing inputs into P ’s input tape and by reading P ’s output tape. The parties
communicate with each other and also with the ideal functionality through an additional party, the
router R.

3.1 Ideal functionality FROES

Notation In this section, honest parties are capitalized, e.g., P , Pi; and corrupt parties are
generally written in lowercase, e.g., p, pi. An onion formed by an honest party is honestly formed
and is capitalized, e.g., O, Oi; whereas, an onion formed by a corrupt party is generally written in
lowercase, e.g., o, oi. Recall that an onion O is a pair, consisting of the (encrypted) content C and
the header H, i.e., O = (H,C).

How should we define the ideal functionality of a repliable onion encryption scheme? Honestly
formed onions in an onion routing protocol should mix at honest nodes. This property is what
enables anonymity from the standard adversary who can observe the network traffic on all commu-
nication links. Ideally, onions should mix (i) even if the distances from their respective origins or
the distances to their respective destinations differ, and (ii) regardless of whether they are forward
or return onions. Here, we define the ideal functionality so that a scheme that realizes the ideal
functionality necessarily satisfies properties (i) and (ii) above.

Intuitively, onions mix iff onion layers are (computationally) unrelated to each other. Let O′

be the onion we get from peeling the onion O. If the values of O and O′ are correlated with each
other, then O cannot mix with other onions. Conversely, if the values O and O′ are unrelated to
each other, then O can mix with other onions. However, the adversary necessarily knows how some
onions layers are linked together. If the corrupt party p peels onion o, getting peeled onion o′, then
p knows that o and o′ are linked.

Thus, we settle on our idea for an ideal functionality FROES (ROES, for “repliable onion en-
cryption scheme”) as follows: Let a segment of a routing path be a subpath of the path consisting
of a sequence of corrupt parties possibly ending with a single honest party. Note that if there are
two consecutive honest parties, (Alice, Bob) on the routing path, then (Bob) is a segment of the
path. Each routing path can be uniquely broken up into a sequence (s1, . . . , su) of non-overlapping
segments, such that each segment si contains exactly one honest participant, except for the last seg-
ment that may end in an adversarial recipient. For i 6= j, onion layers corresponding to segment si
should be computationally unrelated to the layers corresponding to segment sj .

Thus, the ideal functionality FROES forms the onion layers for each segment of a routing path
separately and independently from each other. FROES internally keeps tracks of how these layers
are linked using two data structures, OnionDict and PathDict. If FROES forms an onion layer O for
Alice (the last party of a segment) that should peel to an onion layer O′ for Bob (the first party
of the next segment), then it keeps track of this link in OnionDict; the output (O′,Bob) is stored
under the label (Alice, O). FROES initially forms and stores the onion links only for the forward

8

path and stores the return path in PathDict; onion links for the return path are generated later
on when they are needed. To produce the onion layers for a segment, FROES runs the algorithm
SampleOnion, which it gets from the ideal adversary A.

Sometimes, the environment Z instructs an ideal party to process an onion O (or form a reply
to an onion O), not stored in either OnionDict or PathDict. If the header of O is not honestly
formed, then FROES processes it according to the algorithm ProcOnion (or FormReply) supplied by
A. Otherwise, if O is the result of “mauling” just the content of an honestly formed onion X that
peels to X ′, then FROES returns the onion O′ with the same header as X ′. To do this, it runs the
algorithm CompleteOnion, also provided by A.

Suppose that we have an onion sent by an honest sender Sandy to an adversarial recipient
Robert. Our functionality allows Robert to respond; eventually an honest intermediary Iris will
receive an onion O which contains Robert’s response to Sandy. When FROES is called by Iris with
onion O, it will be tipped off to the fact that O = (H,C) is a return onion from Robert to Sandy
because the header H will be stored in PathDict. At this point, FROES knows what path the onion
will have to follow from now on and will be able to create the correct onion layers using SampleOnion
and store them in OnionDict. Once the return onion makes its way to Sandy, Sandy will ask FROES

to process it; at this point, FROES will need to know the return message r that Robert sent to Sandy.
The algorithm RecoverReply serves precisely that purpose: it takes Robert’s onion O (received by
Iris) as input, and recovers his response r.

So, at setup, the algorithms ProcOnion, FormReply, CompleteOnion, and RecoverReply are pro-
vided to FROES by A.

See Figure 1 for a summary of the ideal functionality FROES for the repliable onion encryption
scheme. Below that, we provide a formal, detailed description of FROES.

IdealSetup

1: Get from ideal adversary A:
P, Bad, G, ProcOnion,
FormReply, SampleOnion,
CompleteOnion, RecoverReply.

2: Initialize dictionaries OnionDict
and PathDict.

IdealFormOnion(`,m, P→, P←)

1: Break forward path into
segments.

2: Run SampleOnion on segments to
generate onion layers.

3: Store onion layers in OnionDict.
4: Store label ` and (rest of) return

path in PathDict.

IdealProcOnion((H,C), P)

1: If (P,H) is “familiar,” i.e., stored in one of our
dictionaries

- If (P,H,C) in OnionDict, return next stored
onion layer.

- Else if exists (P,H, (X 6= C)) in OnionDict,
return output of CompleteOnion and stored next
party (if stored next party exists), or “⊥” (if
next party doesn’t exist).

- Else if (P,H, ?) in PathDict, return output of
IdealFormOnion on message recovered using
RecoverReply and label and path stored in
PathDict.

2: Else if (P,H) is not familiar, return output of
ProcOnion((H,C), P, sk(P)).

IdealFormReply(m, (H,C), P)

1: If (P,H,C) in PathDict, return output of
IdealFormOnion on m and label and path stored in
PathDict.

2: Else, return output of
FormReply(m, (H,C), P, sk(P)).

Figure 1: Summary of ideal functionality FROES.

9

3.1.1 Setting up.

The ideal functionality FROES handles requests from the environment (to form an onion, process
an onion, or form a return onion) on behalf of the ideal honest parties.

Each static setting for a fixed set of participants and a fixed public key infrastructure requires
a separate setup. During setup, FROES gets the following from the ideal adversary A. For each
algorithm in items (iv)-(vi), we first describe the input of the algorithm in normal font and then, in
italics, provide a brief preview of how the algorithm will be used. FROES only runs for a polynomial
number of steps which is specified in the public parameters pp and can time out on running these
algorithms from the ideal adversary.

i. The set P of participants.
ii. The set Bad of corrupt parties in P.
iii. The repliable onion encryption scheme’s G, ProcOnion, and FormReply algorithms:

• G is used for generating the honest parties’ keys.
• ProcOnion is used for processing onions formed by corrupt parties.
• FormReply is used for replying to onions formed by corrupt parties.

iv. The p.p.t. algorithm SampleOnion(1λ, pp, p→, p←,m) that takes as input the security parame-
ter 1λ, the public parameters pp, the forward path p→, the (possibly empty) return path p←,
and the (possibly empty) message m. The routing path (p→, p←) = (p1, . . . , pi, Pi+1) is always
a sequence (p1, . . . , pi) of adversarial parties, possibly ending in an honest party Pi+1. FROES

fails if SampleOnion ever samples a repeating header or key.
SampleOnion is used to compute an onion to send to p1 which will be “peelable” all the way

to an onion for Pi+1. If the return path p← is non-empty and ends in an honest party Pi+1,
SampleOnion produces an onion o for the first party p1 in p→ and a header H for the last
party Pi+1 in p←. Else if the return path p← is empty, and the forward path p→ ends in
an honest party Pi+1, SampleOnion produces an onion o for the first party p1 in p→ and an
onion O for the last party Pi+1 in p→. Else if the return path p← is empty, and the forward
path p→ ends in a corrupt party pi, SampleOnion produces an onion o for the first party p1 in
p→.

v. The p.p.t. algorithm CompleteOnion(1λ, pp, H ′, C) that takes as input the security parame-
ter 1λ, the public parameters pp, the identity of the party P , the header H ′, and the content C,
and outputs an onion O = (H ′, C ′). FROES fails if CompleteOnion ever produces a repeating
onion.

CompleteOnion produces an onion (H ′, C ′) that resembles the result of peeling an onion
with content C.

vi. The d.p.t. algorithm RecoverReply(1λ, pp, O, P) that takes as input the security parameter 1λ,
the public parameters pp, the onion O, and the party P , and outputs a label ` and a reply
message m.
This algorithm is used for recovering the label ` and reply message m from the return onion O
that carries the response from a corrupt recipient to an honest sender.

Let sid denote the session id that is specific to all the parameters that the setup, above, creates.
F sid
ROES denotes the session of FROES that has been set up with this sid.
F sid
ROES generates a public key pair (pk(P), sk(P)) for each honest party P ∈ P \ Bad using

the key generation algorithm G and sends the public keys to their respective party. (If working
within the global PKI framework, each party then relays his/her key to the global bulletin board
functionality [CSV16].)
F sid
ROES also creates the following (initially empty) dictionaries:
• The onion dictionary OnionDict supports:

10

– A method put((P,H,C), (role, output)) that stores under the label (P,H,C): the role
“role” and the output “output.” Should participant P later direct F sid

ROES to process onion
O = (H,C), it will receive the values (role, output) stored in OnionDict corresponding to
(P,H,C).

– A method lookup(P,H,C) that looks up the entry (role, output) corresponding to the
label (P,H,C). This method will be used when P directs F sid

ROES to process onion O =
(H,C).

• The return path dictionary PathDict supports:
– A method put((P,H,C), (P←, `)) that stores under the label (P,H,C): the return path
P← and the label `. This method is used to store the return path P← for the onion
corresponding to label `.

– A method lookup(P,H,C) that looks up the entry (P←, `) corresponding to the label
(P,H,C). Should participant P later direct F sid

ROES to either reply to the onion (H,C) or
to process an onion with header H, the stored return path P← and label ` will be used to
form the rest of the return onion layers.

These data structures are stored internally at F sid
ROES and are accessible only by F sid

ROES.

3.1.2 Forming an onion.

After setup, the environment Z can instruct an honest party P to form an onion using the session
id sid, the label `, the message m, the forward path P→, and the return path P←. To form the
onion, P forwards the instruction from Z to F sid

ROES (via the router R).
The goal of the ideal functionality F sid

ROES is to create and maintain state information for handling
an onion O (the response to the “form onion” request). O should be “peelable” by the parties in the
forward path P→, internally associated with the return path P←, and for the purpose of realizing
this functionality by an onion encryption scheme, each layer of the onion should look “believable”
as onions produced from running FormOnion, ProcOnion, or FormReply.

Importantly, O and its onion layers should reveal no information to A, by which we mean the
following:
• Each onion routed to an honest party Pi is formed initially with just (Pi) as the routing

path and, therefore, reveals only that it is for Pi. When forming the onion, no message is
part of the input; this ensures that the onion is information-theoretically independent of any
message m.
• For every party pi or Pi in the forward path, let next(i) denote the index of the next honest

party Pnext(i) following pi. For example, if the forward path is (P1, p2, p3, P4, P5, p6, p7), then
next(2) = 4.

Conceptually, each onion routed to an adversarial party pi is formed by “wrapping”
an onion layer for each corrupt party in (pi, . . . , pnext(i)−1) (or (pi+1, . . . , p|P→|) if no honest
party after pi exists) around an onion formed for an honest party Pnext(i) (or a message if
no honest party after pi exists). This reveals at most the sequence (pi, . . . , pnext(i)−1, Pnext(i))
(or the sequence (pi, . . . , p|P→|) and the message m if no honest party after pi exists). How
this wrapping occurs depends on the internals of the SampleOnion algorithm provided by the
ideal adversary.

To ensure these properties, the ideal functionality partitions the forward path P→ into segments,
where each segment starts with a sequence of corrupt parties and can end with a single honest party:

Let Pf (f , for first) be the first honest party in the forward path. The first couple of segments
are (p1, . . . , pf−1, Pf), (pf+1, . . . , pnext(f)−1, Pnext(f)), etc.

For each segment (pi, . . . , pj−1, Pj), the ideal functionality F sid
ROES samples onions

11

(hi, ci) and (Hj , Cj) using the algorithm SampleOnion, i.e., ((hi, ci), (Hj , Cj)) ←
SampleOnion(1λ, pp, (pi, . . . , pj−1, Pj), (),⊥). As we explained when introducing the SampleOnion
input/output structure, (hi, ci) is the onion that is intended for the participant pi ∈ Bad; once the
adversarial participants take turns peeling it, the innermost layer (Hj , Cj) can be processed by the
honest participant Pj .

If the recipient Pd is honest, this process will create all the onions in the forward direction.
Suppose that the recipient pd is corrupt. Let Pe (e, for end) be the last honest party in the for-
ward path P→, and let Pnext(d) denote the first honest party in the return path P←. F sid

ROES also

runs SampleOnion(1λ, pp, (pe+1, . . . , pd), (pd+1, . . . , pnext(d)−1, Pnext(d)),m); as we explained when in-
troducing the SampleOnion input/output structure, this produces an onion oe+1 and a header
Hnext(d).

For every honest intermediary party Pi in the forward path, F sid
ROES stores under the label

(Pi, Hi, Ci) in the onion dictionary OnionDict the role “I,” the (i + 1)st onion layer (Hi+1, Ci+1),
and destination Pi+1. The (d + 1)st onion layer doesn’t exist for the innermost layer (Hd, Cd) for
an honest recipient Pd. In this case, F sid

ROES stores just the role “R” and the message m.
If the recipient Pd is honest, F sid

ROES stores the entry ((Pd, Hd, Cd), (P
←, `)) in the

dictionary PathDict. Otherwise if the recipient pd is corrupt, F sid
ROES stores the entry

((Pnext(d), Hnext(d), ∗), (p←, `)) in PathDict where p← = (pnext(d)+1, . . . , Ps). “∗” is the unique symbol
that means “any content.”

See Appendix A.1 for the pseudocode for the ideal functionality’s “onion forming” algorithm.
Example 1. The recipient P7 is honest. The forward path is P→ = (P1, p2, p3, P4, P5, p6, P7),

and the return path is P← = (p8, p9, P10, p11, P12). In this case, the first segment is (P1), and the
second segment is (p2, p3, P4) and so on; and

(⊥, (H1, C1))←SampleOnion(1λ, pp, (P1), (),⊥)

((h2, c2), (H4, C4))←SampleOnion(1λ, pp, (p2, p3, P4), (),⊥)

(⊥, (H5, C5))←SampleOnion(1λ, pp, (P5), (),⊥)

((h6, c6), (H7, C7))←SampleOnion(1λ, pp, (p6, P7), (),⊥).

F sid
ROES stores in OnionDict and PathDict:

OnionDict.put((P1, H1, C1), (I, ((h2, c2), p2)))

OnionDict.put((P4, H4, C4), (I, ((H5, C5), P5)))

OnionDict.put((P5, H5, C5), (I, ((h6, c6), p6)))

OnionDict.put((P7, H7, C7), (R,m)),

PathDict.put((P7, H7, C7), ((p8, p9, P10, p11, P12), `)).

Example 2. The recipient p7 is corrupt. The forward path is P→ = (P1, p2, p3, P4, P5, p6, p7),

and the return path is P← = (p8, p9, P10, p11, P12). In this case,

(⊥, (H1, C1))←SampleOnion(1λ, pp, (P1), (),⊥)

((h2, c2), (H4, C4))←SampleOnion(1λ, pp, (p2, p3, P4), (),⊥)

(⊥, (H5, C5))←SampleOnion(1λ, pp, (P5), (),⊥)

(o6, H10)←SampleOnion(1λ, pp, (p5, p6, p7), (p8, p9, P10),m).

12

F sid
ROES stores in OnionDict and PathDict:

OnionDict.put((P1, H1, C1), (I, ((h2, c2), p2)))

OnionDict.put((P4, H4, C4), (I, ((H5, C5), P5)))

OnionDict.put((P5, H5, C5), (I, ((h6, c6), p6))),

PathDict.put((P10, H10, ∗), ((p11, P12), `)).

After updating OnionDict and PathDict, F sid
ROES returns the first onion O1 = (H1, C1) to party

P (via the router R). Upon receiving O1 from F , P outputs the session id sid and O1.

3.1.3 Processing an onion.

After setup, the environment Z can instruct an honest party P to process an onion O = (H,C) for
the session id sid. To process the onion, party P forwards the instruction to the ideal functional-
ity F sid

ROES (via the router R).

Case 1 There is an entry (role, output) under the label (P,H,C) in OnionDict. In this case, F sid
ROES

responds to P (via the router R) with (role, output).

Case 2 There is no entry under the label (P,H,C) in OnionDict, but there exists X 6= C such
that there is an entry (I, ((H ′, X ′), P ′)) under the label (P,H,X) in OnionDict. This means that,
P has received an onion with a properly formed header, but an improperly formed content. This
is where we use the algorithm CompleteOnion to direct FROES how to peel this “mauled” onion.
Recall that CompleteOnion was provided by the adversary at setup. F sid

ROES uses it to sample an
onion (H ′, C ′)← CompleteOnion(1λ, pp, H ′, C). FROES then stores the new entry (I, ((H ′, C ′), P ′))
under the label (P,H,C) in OnionDict, and responds to P with (I, ((H ′, X ′), P ′)).

Case 3 There is no entry under the label (P,H,C) in OnionDict, but there exists X 6= C such
that there is an entry (R,m) under the label (P,H,X) in OnionDict. This means that P is the
intended recipient of the onion (H,X) but instead just received the properly formed header H with
“mauled” content C. In this case, F sid

ROES responds to P with (R,⊥).

Case 4 There is no entry under the label (P,H,C) in OnionDict, but there exists X 6= C such
that there is an entry (S, (`,m)) under the label (P,H,X) in OnionDict. This means that P was the
original sender of an onion, and header H is the correct header for his reply onion. Unfortunately,
the content C got “mauled” in transit: the correct reply onion was supposed to have content X
(since that’s what’s stored in OnionDict). In this case, F sid

ROES responds to P with (S,⊥).

Case 5 There is no entry starting with (P,H) in OnionDict, but there is an entry (P←, `) under
the label (P,H, ∗) in PathDict. This means that P is the first honest intermediary on the return
path of an onion whose recipient was adversarial. FROES needs to compute the reply message m′

that the adversarial recipient meant to send back to the honest sender. This is the purpose of
the RecoverReply algorithm that the adversary provides to FROES at setup. Let m′ be the message
obtained by running RecoverReply(1λ, pp, O, P).

Next, FROES computes the layers of the reply onion. If P← is not empty, F sid
ROES runs its “form

onion” code (see Section 3.1.2 and Appendix A.1) with (`,m′) as the “message,” P← as the forward
path, and the empty list “()” as the return path. (The code is run with auxiliary information for

13

correctly labeling the last party in P← as the sender.) In this case, F sid
ROES responds to P with

(I, ((H ′, C ′), P ′)), where (H ′, C ′) is the returned onion, and P ′ is the first party in P←.
Otherwise if P← is empty, then P is the recipient of the return onion, so F sid

ROES responds to P
with (S, (`,m′)).

Case 6 F sid
ROES doesn’t know how to peel O (i.e., there is no entry starting with (P,H) in OnionDict

and no entry under (P,H, ∗) in PathDict). In this case, O does not have an honestly formed header;
so, F sid

ROES responds to P with (role, output) = ProcOnion(1λ, pp, O, P, sk(P)) (recall that ProcOnion
is an algorithm supplied by the ideal adversary at setup).

The cases above cover all the possibilities. Upon receiving the response (role, output) from F sid
ROES,

P outputs the session id sid and (role, output).

3.1.4 Forming a reply.

After setup, the environment Z can instruct an honest party P to form a reply using the session
id sid, the reply message m, and an onion O = (H,C). To form the return onion, P forwards the
instruction to the ideal functionality F sid

ROES (via the router R).

Case 1 There is an entry (P←, `) under the label (P,H,C) in PathDict. Then F sid
ROES runs its

“form onion” code (see Section 3.1.2 and Appendix A.1) with (`,m) as the “message,” P← as
the forward path, and the empty list “()” as the return path. (The code is run with auxiliary
information for correctly labeling the last party in P← as the sender.) F sid

ROES responds to P (via
the router R) with the returned onion O′ and the first party P ′ in P←.

Case 2 No entry exists for (P,H,C) in PathDict. Then P is replying to an onion formed by an
adversarial party, so F sid

ROES replies to P with (O′, P ′) = FormReply(1λ, pp,m,O, P, sk(P)). Upon
receiving the response (O′, P ′) from F sid

ROES, P outputs the session id sid and (O′, P ′).

3.2 SUC-realizability of FROES

Let us remind the reader what it means for a cryptographic onion encryption scheme to SUC-realize
our ideal functionality [CCL15].

Ideal protocol In the ideal onion routing protocol, the environment Z interacts with the par-
ticipants by writing instructions into the participants’ input tapes and reading the participants’
output tapes. Each input is an instruction to form an onion, process an onion, or form a return
onion. When an honest party P receives an instruction from Z, it forwards the instruction to the
ideal functionality FROES via the router R. Upon receiving a response from FROES (via R), P
outputs the response. Corrupt parties are controlled by the adversary A and behave according to
A. F sid

ROES does not interact with A after the setup phase.
At the end of the protocol execution, Z outputs a bit b. Let IDEALFROES,A,Z(1λ, pp) denote Z’s

output after executing the ideal protocol for security parameter 1λ and public parameters pp.

Real protocol Let Σ be a repliable onion encryption scheme. The real onion routing protocol
for Σ is the same as the ideal routing protocol (described above), except that the honest parties
simply run Σ’s algorithms to form and process onions.

Let REALΣ,A,Z(1λ, pp) denote Z’s output after executing the real protocol.

14

Definition 3 (SUC-realizability of FROES). The repliable onion encryption scheme Σ SUC-realizes
the ideal functionality FROES if for every p.p.t. real-model adversary A, there exists a p.p.t. ideal-
model adversary S such that for every polynomial-time balanced environment Z, there exists a
negligible function ν(λ) such that∣∣∣Pr

[
IDEALFROES,S,Z(1λ, pp) = 1

]
−Pr

[
REALΣ,A,Z(1λ, pp) = 1

]∣∣∣ ≤ ν(λ).

3.3 Remarks

On the assumption that keys are consistent with PKI In describing the ideal functionality,
we made an implicit assumption that for every instruction to form an onion, the keys match the
parties on the routing path. However, generally speaking, the environment Z can instruct an honest
party to form an onion using the wrong keys for some of the parties on the routing path. Using
the dictionary OnionDict, it is easy to extend our ideal functionality to cover this case: the ideal
functionality would store in OnionDict, every onion layer for an honest party, starting from the
outermost layer, until it reaches a layer with a mismatched key. To keep the exposition clean, we
will continue to assume that inputs are well-behaved, i.e., router names are valid, and keys are as
published.

On replayed onions As originally noted by Camenisch and Lysyanskaya [CL05], the environ-
ment is allowed to repeat the same input (e.g., a “process onion” request) in the UC framework
(likewise, in the SUC framework). Thus, replay attacks are not only allowed in our model but
inherent in the SUC framework. The reason that replay attacks are a concern is that they allow
the adversary to observe what happens in the network as a result of repeatedly sending an onion
over and over again — which intermediaries are involved, etc — and that potentially allows the
adversary to trace this onion. Our functionality does not protect from this attack (and neither did
the CL functionality), but a higher-level protocol can address this by directing parties to ignore
repeat “process onion” and “form reply” requests. Other avenues to address this (which can be
added to our functionality, but we chose not to so as not to complicate it further) may include
letting onions time out, so the time frame for repeating them could be limited.

4 Repliable-onion security: a game-based definition of security

In the previous section, we gave a detailed description of an ideal functionality FROES of repliable
onion encryption in the SUC model. However, given the complexity of the description, proving
that an onion encryption scheme realizes FROES seems onerous. To address this, we provide an
alternative, game-based definition of security that implies realizability of FROES. We call this
definition, repliable-onion security.

Informally, an onion encryption scheme is repliable-onion secure if the following three properties
hold: (a), no adversary can tell (with a non-negligible advantage over random guessing) whether an
honest transmitter of an honestly formed onion is the sender of the onion or an intermediary on the
forward path. (b), given an honestly formed onion O received by the recipient, no adversary can tell
(with non-negligible advantage) whether the recipient is replying to O or sending an onion unrelated
to O. (c), no adversary can tell (with non-negligible advantage) whether an honest transmitter of
an honestly formed onion is the sender of the onion or an intermediary on the return path. In each
of these three security games, the adversary is given oracles for processing onions on behalf of the
honest parties under attack. The adversary also selects additional inputs of each game, such as the
identities of intermediaries, the message conveyed by the onion, etc.

15

In Figure 2, we give the high-level description of the game ROSecurityGame and its three variants,
(a), (b), and (c). The three variants of the game differ only in steps 4 and 5.

1: A picks honest parties’ router names I and S. I is the honest intermediary router under
attack, while S is the honest sender under attack.

2: C sets keys for honest parties I and S.
3: A gets access to oracles—O.POI, O.FRI, O.POS, and O.FRS— for processing onions and

replying to them on behalf of I and S.
4: A provides input for the challenge onion: a label `, a message m, a forward path
P→ = (P1, . . . , Pd), a return path P← = (Pd+1, . . . , Ps), and keys associated with the
routing path (P→, P←). If the return path is non-empty, it ends with S so that Ps = S. I
appears somewhere on the routing path so that Pj is the first appearance of I on the path.
The location of Pj determines which variant of the security game the adversary is playing:
(a) Pj is an intermediary on the forward path (i.e., j < d),
(b) Pj is the recipient (i.e., j = d) or
(c) Pj is on the return path (i.e., j > d).

5: C flips a coin b←$ {0, 1}. If b = 0, C forms the onion O as specified by A. If b = 1, C forms
the onion O with a “switch” at I and modifies (“rigs”) the oracles accordingly.
(a) To peel the challenge onion O on behalf of forward-path intermediary I, O.POI will

form (in answer to a query from A) a new onion using the remainder of the routing
path. To peel an onion O′ 6= O with the same header as the challenge onion, O.POI

uses the algorithm CompleteOnion.
(b) To form a reply to the challenge onion O on behalf of I, O.FRI will form a new onion

using the return path as the forward path (and the empty return path).
(c) To peel the challenge onion O on behalf of the return-path intermediary I, O.POI will

form a new onion using the remainder of the return path as the forward path (and the
empty return path).

6: A once again gets oracle access to O.POI, O.FRI, O.POS, and O.FRS.
7: A guesses b′ and wins if b′ = b.

Figure 2: Summary of the repliable onion security game, ROSecurityGame. The parameters of the
game are the security parameter λ, the repliable onion encryption scheme Σ, the p.p.t. algorithm
CompleteOnion and the adversary A.

4.1 Formal description of ROSecurityGame variant (a)

We now expand on what we described in Figure 2 and provide a formal, detailed description of
ROSecurityGame for the first variant, (a).

ROSecurityGame(1λ,Σ,CompleteOnion,A) is parametrized by the security parameter 1λ, the
repliable onion encryption scheme Σ = (G,FormOnion,ProcOnion,FormReply), the p.p.t. algorithm
CompleteOnion, and the adversary A.

1. The adversary A picks two router names I, S ∈ P (“I” for intermediary and “S” for sender)
and sends them to the challenger C.

2. The challenger C generates key pairs (pk(I), sk(I)) and (pk(S), sk(S)) for I and S using the
key generation algorithm G and sends the public keys (pk(I), pk(S)) to A.

3. A is given oracle access to (i) O.POI(·), (ii) O.FRI(·, ·), (iii) O.POS(·), and (iv) O.FRS(·, ·)
where
i-ii. O.POI(·) and O.FRI(·, ·) are, respectively, the oracle for answering “process onion” re-

16

quests made to honest party I and the oracle for answering “form reply” requests made
to I.

iii-iv. O.POS(·) and O.FRS(·, ·) are, respectively, the oracle for answering “process onion”
requests made to honest party S and the oracle for answering “form reply” requests
made to S, i.e.,

O.POI(O) = ProcOnion(O, I, sk(I))

O.FRI(m
′, O) = FormReply(m′, O, I, sk(I))

O.POS(O) = ProcOnion(O,S, sk(S))

O.FRS(m′, O) = FormReply(m′, O, S, sk(S))

Since ProcOnion and FormReply are deterministic algorithms, WLOG, the oracles don’t re-
spond to repeating queries.

4. A chooses a label ` ∈ L(1λ) and a message m ∈M(1λ). A also chooses names of participants
on a forward path P→ = (P1, . . . , Pd), and a return path P← = (Pd+1, . . . , Ps) such that (i) if
P← is non-empty, then Ps = S, and (ii) I appears somewhere on P→ before the recipient.
For each Pi 6∈ {S, I}, A also chooses its public key pk(Pi). A sends to C the parameters for
the challenge onion: `, m, P→, the public keys pk(P→) of the parties in P→, P← and the
public keys pk(P←) of the parties in P←.

5. C samples a bit b←$ {0, 1}.
If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d), H

←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←)).

In this case, the oracles—O.POI(·), O.FRI(·, ·), O.POS(·), andO.FRS(·, ·)—remain unmodified.
Otherwise, if b = 1, C performs the “switch” at honest party Pj on the forward path P→,

where Pj is the first appearance of I on the forward path. C runs FormOnion twice. First, C
runs it on input a random label x←$L(1λ), a random message y←$M(1λ), the “truncated”
forward path p→ = (P1, . . . , Pj), and the empty return path “(),” i.e.,

((O1
1, . . . , O

1
j), (), κ)← FormOnion(x, y, p→, pk(p→), (), ()).

C then runs FormOnion on a random label x′←$L(1λ), the message m (that had been chosen
by A in step 4), the remainder q→ = (Pj+1, . . . , Pd) of the forward path, and the return
path P←, i.e.,

((O1
j+1, . . . , O

1
d), H

←, κ′)← FormOnion(x′,m, q→, pk(q→), P←, pk(P←)),

We modify the oracles as follows. Let O1
j = (H1

j , C
1
j) and O1

j+1 = (H1
j+1, C

1
j+1), and let

H1
s be the last header in H←. O.POI does the following to “process” an onion O = (H,C):
i. If O = O1

j and ProcOnion(O,Pj , sk(Pj)) = (R, y), then return (I, (O1
j+1, Pj+1)).

ii. If O = O1
j and ProcOnion(O,Pj , sk(Pj)) 6= (R, y), then fail.

iii. If O 6= O1
j but H = H1

j and ProcOnion(O,Pj , sk(Pj)) = (R,⊥), then return

(I, ((H1
j+1,CompleteOnion(H1

j+1, C)), Pj+1)).

iv. If O 6= O1
j but H = H1

j and ProcOnion(O,Pj , sk(Pj)) 6= (R,⊥), then fail.
O.POS does the following to “process” an onion O:

v. If the header of O is H1
s and ProcOnion(O,Ps, sk(Ps)) = (R,m′) for some message m′ 6=

⊥, then return (S, (`,m′)).
vi. If the header of O is H1

s and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return (S,⊥).

17

vii. If the header of O is H1
s and ProcOnion(O,Ps, sk(Ps)) 6= (R,m′) for any message m′,

then fail.
All other queries are processed as before.
C sends to A, the first onion Ob1 in the output of FormOnion.

6. A submits a polynomially-bounded number of (adaptively chosen) queries to oracles O.POI(·),
O.FRI(·, ·), O.POS(·), and O.FRS(·, ·).

7. Finally, A guesses a bit b′ and wins if b′ = b.

4.2 Brief formal descriptions of ROSecurityGame variants (b) and (c)

Variant (b) differs from variant (a) in steps 4 and 5. In step 4, Pj is the recipient as opposed to an
intermediary on the forward path. In step 5, the challenger still samples a random bit b←$ {0, 1}
and, if b = 0, forms the challenge onion as specified by the adversary. If b = 1, the challenger
runs FormOnion on input a random label, a random message, the forward path (provided by the
adversary), and the empty path. The oracle for forming a reply on behalf of I is modified so that
the oracle replies with the output of FormOnion on input a random label, a random message, the
return path (provided by the adversary), and the empty path “().” For the full description, see
Appendix A.2.1.

Variant (c) also differs from variant (a) in steps 4 and 5. In step 4, Pj is an intermediary on
the return path (Pd+1, . . . , Ps), i.e., j > d, as opposed to an intermediary on the forward path
(P1, . . . , Pd). In step 5, the challenger still samples a random bit b←$ {0, 1} and, if b = 0, forms
the challenge onion as specified by the adversary. If b = 1, the challenger runs FormOnion on
input a random label, a message (provided by the adversary), the forward path (P1, . . . , Pd), and
the subpath (Pd+1, . . . , Pj). The oracle for processing an onion on behalf of I is modified so that
the oracle replies with the output of FormOnion on input a random label, a random message, the
rest of the return path (Pj+1, . . . , Ps), and the empty path “().” For the full description, see
Appendix A.2.2.

4.3 Definition of repliable-onion security

We define repliable-onion security as follows.

Definition 4 (Repliable-onion security). A repliable onion encryption scheme Σ is repliable-onion
secure if there exist a p.p.t. algorithm CompleteOnion and a negligible function ν : N 7→ R such that
every p.p.t. adversary A wins the security game ROSecurityGame(1λ,Σ,CompleteOnion,A) with
negligible advantage, i.e.,∣∣∣∣Pr

[
A wins ROSecurityGame(1λ,Σ,CompleteOnion,A)

]
− 1

2

∣∣∣∣ ≤ ν(λ).

Remarks on Definition 4 An onion formed by running a secure onion encryption scheme and
received (resp. transmitted) by an honest party P does not reveal how many layers are remaining
(resp. came before) since the adversary cannot distinguish between the onion and another onion
formed using the same parameters except with the path truncating at the recipient (resp. sender) P .

5 Repliable-onion security implies SUC-realizability of FROES

In this section, we prove the following theorem:

18

Theorem 1. If the onion encryption scheme Σ is correct (Definition 2) and repliable-onion secure
(Definition 4), then it SUC-realizes the ideal functionality FROES (Definition 3).

To do this, we must show that for any static setting (fixed adversary A, set Bad of corrupted
parties, and public key infrastructure), there exists a simulator S such that for all Z, there exists
a negligible function ν : N 7→ R such that∣∣∣Pr

[
IDEALFROES,S,Z(1λ, pp) = 1

]
−Pr

[
REALΣ,A,Z(1λ, pp) = 1

]∣∣∣ ≤ ν(λ).

We first provide a description of the simulator S:
Recall that during setup, the ideal adversary (i.e., S) sends to the ideal functionality, (i) the

set P of participants, (ii) the set Bad ⊆ P of corrupted parties, (iii) the onion encryption scheme’s
algorithms: G, ProcOnion, and FormReply, (iv) the algorithm SampleOnion, (v) the algorithm
CompleteOnion, and (vi) the algorithm RecoverReply. (See Section 3.1.1 for the syntax of these
algorithms.) In order for our construction to be secure, the simulator S must provide items (i)-(vi)
to FROES such that when the ideal honest parties respond to the environment, one input at a time,
the running history of outputs looks like one produced from running the real protocol using the
onion encryption scheme.

To complete the description of S, we must provide internal descriptions of how the last three
items above – SampleOnion, CompleteOnion, and RecoverReply – work. Since we are in the static
setting, we will assume, WLOG, that these algorithms “know” who is honest, who is corrupt, and
all relevant keys. See Figure 3 for a summary of the simulator.

Send to FROES:

P, Bad, G, ProcOnion, FormReply,
SampleOnion, CompleteOnion,
RecoverReply.

CompleteOnion(H ′, C)

Let CO be an algorithm such that no
adversary can win ROSecurityGame
with non-negligible probability. Such
an algorithm must exist since Σ is
repliable-onion secure.
CompleteOnion = CO.

SampleOnion(p→, p←,m)

SampleOnion just runs FormOnion on the segments p→ and
p← using the all-zero label and, depending on whether the
first segment contains the corrupt recipient, either the
correct message m (if it does) or a random one (if it
doesn’t).

RecoverReply(O,P)

Return the message from running ProcOnion(O,P, sk(P)).

Figure 3: Summary of simulator S

5.1 Description of simulator S

We now expand on the summary of the simulator in Figure 3.

5.1.1 Sampling an onion.

Let F sid
ROES denote the ideal functionality corresponding to the static setting. When the ideal func-

tionality F sid
ROES receives a request from the honest party P to form an onion using the label `, the

message m, the forward path P→, and the return path P←, F sid
ROES partitions the routing path

(P→, P←) into non-overlapping “segments” where each segment is a sequence of adversarial parties

19

that must end in a single honest party, unless it ends in the adversarial recipient. (See Section 3.1.2
for a more formal description of these segments.) F sid

ROES runs the algorithm SampleOnion indepen-
dently on each segment of the routing path. Additionally, if the forward path ends in a corrupt
party, F sid

ROES runs SampleOnion on the last segment of the forward path and the first segment of
the return path. Using SampleOnion in this way produces onions with the property that onions
belonging to different segments are information-theoretically unrelated to each other.

The algorithm SampleOnion takes as input the security parameter 1λ, the public parameters pp,
the forward path p→, and the return path p←.

Case 0 The routing path (p→, p←) is not a sequence of adversarial parties, possibly ending in an
honest party. In this case, the input is invalid, and SampleOnion returns an error.

Case 1 The return path p← is non-empty and ends in an honest party Pj . In this case,
SampleOnion first samples a random label x←$L(1λ) and then runs FormOnion on the label x,
the message m (from the “form onion” request), the forward path p→ = (p1, . . . , pi), the
public keys pk(p→) associated with the parties in p→, the return path p← = (pi+1, . . . , Pj),
and the public keys pk(p←) associated with the parties in p←. Finally, SampleOnion out-
puts the first onion o1 and the last header Hj in the output ((o1, . . . , oi), (hi+1, . . . ,Hj), κ) ←
FormOnion(1λ, pp, x,m, p→, pk(p→), p←, pk(p←)).

Case 2 The return path p← is empty, and the forward path p→ ends in an honest party Pi. In
this case, SampleOnion first samples a random label x←$L(1λ) and a random message y←$M(1λ)
and then runs FormOnion on the label x, the message y, the forward path p→ = (p1, . . . , Pi), the
public keys pk(p→) associated with the parties in p→, the empty return path “(),” and the empty
sequence “()” of public keys. Finally, SampleOnion outputs the first onion o1 and the last onion Oi
in the output ((o1, . . . , Oi), (), κ)← FormOnion(1λ, pp, x, y, p→, pk(p→), (), ()).

Case 3 The return path p← is empty, and the forward path p→ ends in a corrupt party pi.
In this case, SampleOnion first samples a random label x←$L(1λ) and then runs FormOnion on
the label x, the message m (from the “form onion” request), the forward path p→ = (p1, . . . , pi),
the public keys pk(p→) associated with the parties in p→, the empty return path “(),” and the
empty sequence “()” of public keys. Finally, SampleOnion outputs the first onion o1 in the output
((o1, . . . , oi), h

←, κ)← FormOnion(1λ, pp, x,m, p→, pk(p→), (), ()).

5.1.2 Completing an onion.

The environment Z can modify just the content of an honestly formed onion O = (H,X), leaving
the header H intact. When Z instructs an honest party P to process this kind of onion O = (H,C),
the ideal functionality F sid

ROES runs the algorithm CompleteOnion to produce an onion (H ′, C ′) that
(i) looks like the output of ProcOnion on (H,C) and (ii) has the same header H ′ that F sid

ROES assigned
to the peeled onion (H ′, X ′) of (H,X).

Since the onion encryption scheme Σ is repliable-onion secure (Definition 4), by defini-
tion, there exist an algorithm CO and a negligible function ν such that no adversary can win
ROSecurityGame(1λ,Σ,CO,A) with probability greater than ν(λ). We shall use this algorithm as
the simulator’s CompleteOnion algorithm, i.e., CompleteOnion = CO.

20

5.1.3 Recovering a reply message.

The environment Z can instruct an honest party P to process a return onion O formed by a corrupt
recipient pd in response to an onion from an honest sender; P can be an intermediary party on
the return path or the original sender. In such a situation, the ideal functionality F sid

ROES runs the
algorithm RecoverReply to recover the reply message from O.

The algorithm RecoverReply(1λ, pp, O, P) simply runs ProcOnion(O,P, sk(P)) and returns the
message in the output (if it exists). If no message is returned, then RecoverReply outputs an error.

5.2 Proof of Theorem 1

We now show that the view that any environment Z obtains by running the real protocol is
indistinguishable from its view when the honest participants run the ideal protocol FROES with our
simulator S.

Proof idea: An onion encryption scheme SUC-realizes FROES if the environment cannot distin-
guish whether an honest onion’s evolution (the sequence of onion layers) comes from a single call to
FormOnion (the real setting), or if it is produced by FROES. Recall that, to form an honest onion’s
evolution, FROES calls SampleOnion (which, for our simulator, is the same algorithm as FormOnion)
multiple times, each call corresponding to a segment of the onion’s routing path.

Our game-based definition of repliable-onion security has a very similar requirement: the ad-
versary cannot distinguish whether the evolution of an honestly formed onion comes from a single
FormOnion call or from two computationally unrelated FormOnion calls. More precisely, if the game
picks b = 0, then no switch occurs, and the onion layers are formed “honestly,” i.e., via a single
call to FormOnion. If the game picks b = 1, then the onion layers are formed using a “switch:” the
path is broken up into two segments, and for each segment of the path, the onion layers are formed
using separate calls to FormOnion.

At the heart of our proof is a hybrid argument that shows that onion layers formed using i
calls to FormOnion (so they have i− 1 such “switches”) are indistinguishable from those formed by
i + 1 such calls. Thus, we show that onion layers of the real protocol (produced by a single call
to FormOnion) are indistinguishable from those in the ideal world (produced by FROES that calls
FormOnion separately for each segment of the routing path).

Therefore, we conclude that if an onion encryption scheme is repliable-onion secure, then it
SUC-realizes FROES. See below for the formal proof.

Proof. We now complete our proof that repliable-onion security implies SUC-realizability of FROES.
Let Ideal(1λ,Z) be the view that the environment Z obtains when the ideal

onion routing protocol is run, i.e., when the ideal honest parties query FROES to
form onions, process onions, and form return onions. FROES obtains the algorithms
(G,ProcOnion,FormReply, SampleOnion,CompleteOnion,RecoverReply) from the simulator (a.k.a.
the ideal adversary) described above.

Let Real(1λ,Z) be the view that the environment Z obtains when the honest participants run
Σ’s algorithms to form onions, process onions, and form return onions.

Let Hybrid0(1λ,Z) be the adversary’s view in a game between the challenger and the adversary,
organized as follows. The adversary is the environment Z interacting with the honest participants
running the real protocol. The challenger controls the honest parties and also runs, on the side, the
ideal functionality FROES. When an honest party is instructed to form an onion, the challenger uses
the FormOnion algorithm of the onion encryption scheme Σ to form onions. For all of an honest
party’s other queries, the challenger uses FROES with our simulator S. Thus, the challenger uses the
ideal functionality’s algorithms IdealProcOnion and IdealFormReply to process onions and to form

21

replies. Note that these ideal algorithms will end up just using the real algorithms ProcOnion or
FormReply since those are what S supplies to FROES.

Claim 1: Real(1λ,Z) is identical to Hybrid0(1λ,Z).
Proof of Claim 1: The claim is true by construction: all honest participants are running the

same algorithms in both experiments. [end of proof of claim]

Let numFOs be the upper bound on the number of honest “form onion” queries from the environ-
ment. We now define Hybrid1(1λ,Z) through HybridnumFOs(1λ,Z).

In Hybrid1(1λ,Z): To handle the first “form onion” query, the challenger runs FROES’s algorithm
IdealFormOnion. (See Figure 1 for a summary of the algorithm.) When the algorithm runs, it stores
the onion links (for the formed onion) in the challenger’s local data structure OnionDict and stores
the return path and label (for the formed onion) in the challenger’s local data structure PathDict.
To handle any subsequent “form onion” query, the challenger runs FormOnion. To process an onion
or to form a reply, the challenger always runs IdealProcOnion or IdealFormReply. IdealProcOnion may
call on the algorithms CompleteOnion or RecoverReply as a subroutine. (See Figure 1 for a summary
of IdealProcOnion.) The output of Hybrid1(1λ,Z) is the adversary’s (i.e., the environment’s) view.

We generalize this description for Hybridi as follows.
In Hybridi(1λ,Z): To handle the kth “form onion” query, if k ≤ i, the challenger runs

IdealFormOnion; otherwise (if k > i), the challenger runs FormOnion. (IdealFormOnion stores the
onion links in OnionDict and the return path and label in PathDict.) To process an onion or to form
a reply, the challenger always runs IdealProcOnion or IdealFormReply. The output of Hybridi(1λ,Z)
is the adversary’s (i.e., the environment’s) view.

Claim 2: HybridnumFOs(1λ,Z) is identical to Ideal(1λ,Z).
Proof of Claim 2: The claim is true by construction. [end of proof of claim]

To complete our proof, we need to show that for each i, 0 ≤ i < numFOs, for any p.p.t. adversary Z,
the distribution Hybridi(1λ,Z) is indistinguishable from Hybridi+1(1λ,Z). To do this, we first define
“two-dimensional” hybrids, Hybridi,0, . . . ,Hybridi,2N , between Hybridi(1λ,Z) and Hybridi+1(1λ,Z),
such that Hybridi is identical to Hybridi,0 by construction, and Hybridi,2N is identical to Hybridi+1 by
construction. Then, we complete our proof by showing that each hybrid Hybridi,j is indistinguishable
from the next consecutive hybrid Hybridi,j+1. (These two-dimensional hybrids are also parametrized
by the security parameter 1λ and the environment Z, but we leave these out since they are now
understood by context.)

At a high-level, Hybridi,j is the experiment in which the first i “form onion” queries and the
first j segments of the (i + 1)st “form onion” query are “simulated,” and all remaining segments
are “real.” To describe this more formally, we modify the ideal functionality’s algorithms:

Let ModifiedIdealFO be the algorithm that on input a label `, a message m, a forward path
(P→1 , . . . , P→u) partitioned into subpaths (e.g., segments), a return path (P←1 , . . . , P←v) partitioned
into subpaths, and the position of recipient on the routing path, runs steps 2-4 of IdealFormOnion
(in Figure 1). That is, the algorithm runs SampleOnion on each of the forward subpaths (step 2),
stores the onion links in OnionDict (step 3), and stores the subpaths for the return path and label
in PathDict (step 4). Note that, if the recipient is adversarial, the “forward” subpath that contains
the recipient may also include part of the return path. In this case, by the “return” path, we
really mean the part of the return path not covered by any forward subpath. (See Example 2 in
Section 3.1.2 to see how this can happen.)

Let ModifiedIdealPO and ModifiedIdealFR be the same algorithms as IdealProcOnion and
IdealFormReply, respectively, except that they run ModifiedIdealFO on the partitioned return path
stored in PathDict, rather than running IdealFormOnion on the unpartitioned return path.

22

Recall that N is the upper bound on the length of the forward (or return) path. Thus, 2N is an
upper bound on the number of segments per “form onion” query. We now provide a more formal
description of the hybrids: Hybridi,1, . . . ,Hybridi,2N .

In Hybridi,1: The only time that the challenger in Hybridi,1 acts differently from the challengers
in Hybridi and Hybridi+1 is in handling the (i+ 1)st “form onion” query.

Just as both Hybridi and Hybridi+1, the first i “form onion” queries are handled by FROES.
To respond to the (i+ 1)st “form onion” query, the challenger in Hybridi,1 partitions the routing

path s into at most two non-overlapping subpaths s1 and s2 such that s1 is the first segment of s
ending in an honest party, and s2 is the remainder of s not covered by s1, i.e., s = (s1, s2). Note that
it may be possible to divide s2 into multiple segments. The challenger then runs ModifiedIdealFO
(described in boxed, above) on the subpaths s1 and s2. In particular, if the recipient is in s1,
then the challenger runs ModifiedIdealFO on the partitioned forward path (s1) and the partitioned
return path (s2). Otherwise, the challenger runs ModifiedIdealFO on the partitioned forward path
(s1, s2) and the empty return path “().” (ModifiedIdealFO stores the onion links in OnionDict and
the return path and label in PathDict.)

To handle any subsequent “form onion” query (i.e. after the first i + 1 “form onion” queries
have been made), the challenger in Hybridi,1 runs FormOnion, just as the challengers in Hybridi and
Hybridi+1 would.

To process an onion or to form a reply, the challenger runs IdealProcOnion or IdealFormReply,
just as the challengers in Hybridi and Hybridi+1 would.

We generalize this description for Hybridi,j as follows.
In Hybridi,j : To handle the kth “form onion” query,
• if k ≤ i, the challenger runs IdealFormOnion;
• if k > i+ 1, the challenger runs FormOnion;
• otherwise (if k = i + 1), the challenger partitions the routing path s into at most j + 1

non-overlapping subpaths (s1, . . . , sj+1) such that (s1, . . . , sj) are the first j segments of s
ending in an honest party and sj+1 is the remainder of s not covered by (s1, . . . , sj), i.e.,
s = (s1, . . . , sj+1) and runs ModifiedIdealFO on the subpaths (s1, . . . , sj+1). (ModifiedIdealFO
stores the onion links in OnionDict and the return path and label in PathDict.)

To process an onion or to form a reply, the challenger runs IdealProcOnion or IdealFormReply.
Claim 3: For all i ∈ [numFOs], Hybridi and Hybridi,0 produce identical results, and Hybridi−1,2N

and Hybridi produce identical results.
Proof of Claim 3: The claim is true by construction. [end of proof of claim]
Claim 4: If Σ is repliable-onion secure, then for any i ∈ [numFOs] and j ∈ [2N − 1], Hybridi,j

and Hybridi,j+1 are indistinguishable.
Proof of Claim 4: The proof of Claim 4 is by reduction.
For the sake of reaching a contradiction, suppose that there exist an adversary A and hybrids

Hybridi,j and Hybridi,j+1 such that A can distinguish between Hybridi,j and Hybridi,j+1 with non-
negligible advantage. Then, we can construct a reduction B that can break the repliable-onion
security of Σ. B runs A as a subroutine and interacts with its own challenger C for the repliable-
onion security game, as follows:

1. As in the real/ideal/hybrid setup, the reduction B chooses the identities of all honest parties.
2. Then, B chooses two honest parties, I and S uniformly at random. For each party Pi

other than I and S, it generates the keys for Pi using Σ’s key generation algorithm G:
(pk(Pi), sk(Pi))← G(1λ, pp, Pi).

3. Next, B queries its challenger C for the public keys (pk(I), pk(S)).
4. Having run the above steps, B is done setting the stage for an execution of the onion routing

protocol with the adversary A. Next, A provides the public keys of all the participants under

23

the adversarial environment’s control.
5. To handle the kth “form onion” query from A, the reduction B does the following:

• If k ≤ i: B runs IdealFomOnion and sends the output of IdealFomOnion to A.
• If k > i+ 1: B runs FormOnion and sends the output of FormOnion to A.
• If k = i+ 1:

– B first partitions the routing path s into at most j + 1 segments, (s1, . . . , sj , sj+1)
such that the first j subpaths are the first j segments of s that each end in an honest
party, and sj+1 is the remainder of s.

– Next, B runs ModifiedOF on the subpaths (s1, . . . , sj , sj+1). (ModifiedIdealFO stores
the onion links in OnionDict and the return path and label in PathDict.)

– Let Oj+1 be the onion that ModifiedOF generates for the (j + 1)st subpath. Let
(`,m, P→, pk(P→), P←, pk(P←)) be the parameters used by ModifiedOF to form
Oj+1, where ` is the label, m is the message, and P→ and P← are the forward and
return paths such that sj+1 = (P→, P←).

– If S is the not last party of the return path P← (when the return path is non-empty),
or if I is not in the routing path xj+1, then B exits the execution and outputs a
random bit b′←$ {0, 1}.

– Next, B sends (`,m, P→, P←) to its challenger C.
– B replaces the onion Oj+1 with C’s response Ôj+1 in the local onion dictionary

OnionDict and sends the output O1 of ModifiedOF to A.
6. To handle a “process onion” or a “form reply” queries:

• If the party Pi in the query is not I nor S, then B responds by running FROES using Pi’s
secret key.
• Otherwise (if the party Pi in the query is I or S), B does not know the secret key of the

honest party Pi, but its challenger C allows oracle access to ProcOnion and FormReply.
So, B forwards the request to C and responds to A with C’s response.

7. At the end of the execution, ifA outputs Hybridi,j , then B guesses b′ = 0 (no switch); otherwise
if A outputs Hybridi,j+1, then B guesses b′ = 1 (switch).

Now that we have described the reduction, next, let us analyze it.
Clearly, the reduction runs in polynomial time.
Case b = 0. If the bit that the challenger C chooses is zero (i.e., b = 0), then C forms the

challenge onion Ôj+1 exactly as specified by the reduction B with label `, message m, the forward
path P→, and the return path P←. Thus, the replacement onion layer Ôj+1 is statistically the
same as Oj+1, and the adversary’s view, in this case, is identical to Hybridi,j .

Let P→ and P← be the forward and return paths of the routing subpath xj+1 described in
step 5 of the description of the reduction B. Let pd denote the recipient, i.e., the last party on the
forward path P→. If the bit is one (i.e., b = 1), then there are three variants to consider. The three
variants correspond to where I first appears relative to the recipient pd.

Case b = 1, variant (a). In variant (a), the first appearance of I comes before pd. For example,
suppose that the forward path is P→ = (p1, p2, p3, I, p5, pd), and the return path is P← = (p7, p8, S).

In step 5, when k = i + 1, the challenger C receives the parameters for the challenger onion:
(`,m, P→, P←). To form the challenge onion, the challenger C picks a random bit b←$ {0, 1}.

In this case, b is one, so C runs FormOnion twice. (See Section 4.1 for the description of
variant (a) of the repliable-onion security game.) First, C forms an onion on using the forward path
(p1, p2, p3, I) and the return path “(),” i.e.,

((O1, O2, O3, OI))← FormOnion(x, y, (p1, p2, p3, I), ()),

where x is a random label and y is a random message. Then, C runs FormOnion on the remainder

24

of the forward path, (p5, pd) and the return path (p7, p8, S), i.e.,

((O5, Od), (H7, H8, HS))← FormOnion(x′,m, (p5, pd), (p8, p8, S)),

where x′ is another independent random label. (Note: We omit writing the keys here for readability,
but it should be understood that they are also part of the inputs to FormOnion.)

Next, C modifies the oracles that process onions and form replies on behalf of I and S. Im-
portantly, if the reduction B subsequently asks to have the challenge onion OI = Ôj+1 peeled, the
modified oracle replies with the correct “next” onion layer O5 and destination p5.

This is exactly what the challenger in Hybridi,j+1 does to generate the onion layers corresponding
to the routing subpath xj+1. First, the subpath is partitioned into the segment (p1, p2, p3, I) and the
subpath ((p5, pd), (p7, p8, S)). Then, the challenger runs ModifiedFO on these subpaths. This causes
SampleOnion (i.e., FormOnion) to be run separately on these subpaths. By storing the onion link
corresponding to these onion layers in OnionDict, the challenger of the hybrid is able to correctly
“peel” the onion OI to get the onion O5 and destination p5 in a future “process onion” query. Thus,
the view generated by the reduction is identical to Hybridi,j+1.

Case b = 1, variants (b) and (c).
In variant (b), the first appearance of I is the recipient pd. For example, the forward path is

P→ = (p1, p2, p3, I/pd), and the return path is P← = (p5, p6, p7, p8, S); and so the “switch” occurs
at the recipient I/pd. (See Section 4.2 for a brief description of variant (b) of the security game, or
Appendix A.2.1 for a full description.) Rather than forming the onion layers for the entire subpath
s = (P→, P←) in one go by running FormOnion on P→ and P←, the challenger first forms the onion
layers for the forward path by running FormOnion on just the forward path P→ and the empty
return path “().” The corresponding return onions are formed in a subsequent “form reply” query
from the adversary A (via B); the oracle for forming replies is modified so that these return onions
are formed by running FormOnion on the return path P← as the forward path and the empty return
path “().” This is precisely what the challenger in Hybridi,j+1 does; the challenger handles “form
reply” queries using the path dictionary PathDict to internally link the forward onion layers to the
information-theoretically unrelated return onion layers.

In variant (c), the first appearance of I comes after the recipient pd. For example, the forward
path is P→ = (p1, p2, pd), and the return path is P← = (I, p5, p6, p7, p8, S); and so the “switch”
occurs at the intermediary I on the return path. (See Section 4.2 for a brief description of variant (c)
of the security game, or Appendix A.2.2 for a full description.) Rather than forming the onion layers
for the entire subpath s = (P→, P←) by running FormOnion on P→ and P←, the challenger first
forms the onion layers for the forward subpath by running FormOnion on the forward path P→

and the return path (I). The return onions past I are formed in a subsequent “process onion”
query from A; the oracle for processing onions is modified so that these return onions are formed
by running FormOnion on the rest of the return path, i.e., (p5, p6, p7, p8, S), as the forward path
and the empty return path “().” Again, this is precisely what the challenger in Hybridi,j+1 does;
the challenger handles “process onion” queries using the path dictionary PathDict to internally link
the previously formed onion layers to the information-theoretically unrelated return onion layers.

Thus, when b = 1, the adversary’s view is identical to Hybridi,j+1.
Since I and S are chosen uniformly at random, if A wins with non-negligible advantage, so too

does B. [end of proof of claim]

From Claims 1-4, every consecutive pair of hybrids are indistinguishable by the environment.
Since the total number of segments is polynomially bounded in the security parameter, it follows
that the environment cannot distinguish between running Real and running Ideal. In other words,
Σ SUC-realizes FROES.

25

5.3 Is repliable-onion security necessary to SUC-realize FROES?

Let us now address the converse of the theorem. Given an onion encryption scheme Σ that SUC-
realizes FROES, does it follow that it is correct and repliable-onion secure?

In order to prove that it does, we would have to give a reduction B that acts as the environment
towards honest participants I and S; B’s goal is to determine whether I and S are running Σ or,
instead, using FROES with some simulator S. B would obtain I’s and S’s public keys from the setup
step of the system, and would pass them on to A. Whenever A issues ProcOnion queries for I and
S, B acts as the environment that sends these onions to I and S.

Next comes the challenge step, and this is where this proof would run into difficulty. In our
repliable-onion security game, it is at this point that A specifies the names and public keys of the
rest of the participants in the system. But our functionality assumed that this setup was done
ahead of time; modeling it this way made the functionality more manageable and interacted well
with the SUC model.

However, we can show that a modified, non-adaptive version of repliable-onion security is,
in fact, necessary to SUC-realize FROES. Let NAROSecurityGame(1λ,Σ,CompleteOnion,A) be the
ROSecurityGame security game modified as follows: instead of waiting until the challenge step to
specify the names and public keys on the routing path of the challenge onion, A specifies them at
the very beginning. Other than that, we define non-adaptive repliable-onion security completely
analogously to repliable-onion security, as follows:

Definition 5 (Non-adaptive repliable-onion security). A repliable onion encryption scheme Σ
is non-adaptive repliable-onion secure if there exist a p.p.t. algorithm CompleteOnion and a
negligible function ν : N 7→ R such that every p.p.t. adversary A wins the security game
NAROSecurityGame(1λ,Σ,CompleteOnion,A) with negligible advantage, i.e.,∣∣∣∣Pr

[
A wins NAROSecurityGame(1λ,Σ,CompleteOnion,A)

]
− 1

2

∣∣∣∣ ≤ ν(λ).

We are now ready to state the closest we can show to the converse of Theorem 1:

Theorem 2. If an onion encryption scheme Σ SUC-realizes the ideal functionality FROES (Defini-
tion 3) then it is non-adaptive repliable-onion secure (Definition 5).

We omit the formal proof and instead give a sketch. The proof is by hybrid argument.
Let Experiment0(1λ,A) be the adversary’s view in the non-adaptive repliable-onion security

game when b = 0. Let I and S denote the names of the honest parties chosen by A.
Let Hybridreal0(1λ,A) be the same as Experiment0 except in organization. Here, we split up the

NAROSecurityGame challenger into components: one component is responsible for executing Σ on
behalf of participant S (i.e., generate S’s keys, process and where possible, reply to onions routed
to S, and form the challenge onion on behalf of S), another is responsible for executing Σ on behalf
of I (i.e. i.e., generate I’s keys and deal with onions routed to I), and the third component, B
carries out everything else, including interacting with A. When organized this way, it is easy to see
that B and A jointly act as the environment (from the SUC model) for the real-world execution of
Σ by the honest participants S and I. The environment here isn’t doing very much: other than
sending onions to the two honest participants and observing how they are going to respond to them,
it directs only one of the participants (S) to ever form an onion, just the one challenge onion and
nothing else. The output of Hybridreal0(1λ,A) is the adversary’s view.

Let Hybridideal0(1λ,A) be the same as Hybridreal0(1λ,A) except that now the real execution of Σ
is replaced with executing FROES with simulator S. Hybridreal0 and Hybridideal0 are indistinguishable
by the hypothesis.

26

Let us look under the hood of Hybridideal0(1λ,A). We cannot assume anything about S other
than the fact that it is a successful simulator. In particular, we don’t know how S’s algorithms for
sampling and processing onions compare to the real-world analogues that come from Σ. We do,
however, know, by construction of FROES, that the layers of the sole onion that’s ever created by
FROES are computed by splitting the routing path into two segments: one that ends in I and the
other one that ends in S.

Let us consider another game Hybridideal1(1λ,A). This game is identical to Hybridideal0(1λ,A)
except in how it is internally organized. Here, acting as the environment responsible for supplying
inputs to S, B will cause two onions to be formed. In case (a), both onions are formed by S: one
with I as the recipient, and the second onion is formed using the rest of the routing path; in case (b),
S sends a non-repliable onion to I who then replies to S by forming a fresh onion; in case (c), I
forms an onion using the first segment of the path, and then a fresh onion with S as the recipient.
The parts that are visible to A are just the onions themselves, and therefore Hybridideal1(1λ,A) is
identical to Hybridideal0(1λ,A).

Next, define Hybridreal1(1λ,A): here, the environment (B acting jointly with A) interacts with
S and I exactly as in Hybridideal1(1λ,A), but S and I are running Σ instead of FROES with S. By
the hypothesis, Hybridreal1(1λ,A) is indistinguishable from Hybridideal1(1λ,A). It is easy to see that
Hybridreal1(1λ,A) and Hybridideal1(1λ,A) are identical when I appears only once in the routing path.
When I appears more than once in the routing path, the views are indistinguishable due to the
realizability of FROES.

Finally, let Experiment1(1λ,A) be the adversary’s view in the non-adaptive repliable-onion se-
curity game when b = 1. Hybridreal1(1λ,A) and Experiment1 are identical by construction.

Therefore, we have shown that Experiment1(1λ,A) ≈ Experiment1(1λ,A), and therefore, Σ is
non-adaptive repliable-onion secure.

6 Shallot Encryption: our repliable onion encryption scheme

In this section, we provide our construction of a repliable onion encryption scheme dubbed “Shallot
Encryption Scheme.” Inspired by the Camenisch and Lysyanskaya (CL) approach [CL05], our
construction forms each onion layer for a party P by encrypting the previous layer under a key k
which, in turn, is encrypted under the public key of P and a tag t. Our construction differs from the
CL construction in that the tag t is not a function of the layer’s content. Instead, authentication
of the message happens separately, using a message authentication code. The resulting object is
more like a shallot than an onion; it consists of two separate layered encryption objects: the header
and the content (which may contain a “bud,” i.e., another layered encryption object, namely the
header for the return onion). We still call these objects “onions” to be consistent with prior work,
but the scheme overall merits the name “shallot encryption.”

Notation Let λ denote the security parameter.
Let F(·)(·, ·) be a pseudorandom function family such that, whenever seed ∈ {0, 1}k, Fseed takes

as input two k-bit strings and outputs a k-bit string. Such a function can be constructed from a
regular one-input PRF in a straightforward fashion.

Let {fk(·)}k∈{0,1}∗ and {gk(·)}k∈{0,1}∗ be block ciphers, i.e., pseudorandom permutations
(PRPs). We use the same key to key both block ciphers: one ({fk(·)}k∈{0,1}∗) with a “short” block-
length L1(λ) is used for forming headers, and the other ({gk(·)}k∈{0,1}∗) with a “long” blocklength
L2(λ) is used for forming contents. This is standard and can be constructed from regular block
ciphers. Following the notational convention introduced by Camenisch and Lysyanskaya [CL05],

27

let {X}k denote fk(X) if |X| = L1(λ), or gk(X) if |X| = L2(λ), and let }X{k correspondingly
denote f−1

k (X) or g−1
k (X).

Let E = (GenE ,Enc,Dec) be a CCA2-secure encryption scheme with tags [CS98], let MAC =
(GenMAC,Tag,Ver) be a message authentication code (MAC), and let h be a collision-resistant hash
function.

6.1 Setting up

Each party Pi forms a public key pair (pk(Pi), sk(Pi)) using the public key encryption scheme’s key
generation algorithm GenE , i.e., (pk(Pi), sk(Pi))← GenE(1

λ, pp, Pi).

6.2 Forming a repliable onion

Each onion consists of (1) the header (i.e., the encrypted routing path and associated keys) and
(2) the content (i.e., the encrypted message).

Forming the header In our example, let Alice (denoted Ps) be the sender, and let Bob (denoted
Pd, d for destination) be the recipient. To form a repliable onion, Alice receives as input a label `,
a message m, a forward path to Bob

P→ = P1, . . . , Pd−1, Pd, |P→| = d ≤ N,

and a return path to herself:

P← = Pd+1, . . . , Ps−1, Ps, |P←| = s− d+ 1 ≤ N.

All other participants Pi are intermediaries.
Let “seed” be a seed stored in sk(Ps). Alice computes (i) an encryption key ki = Fseed(`, i)

for every party Pi on the routing path (P→, P←), (ii) an authentication key Kd for Bob using
GenMAC(1λ) with Fseed(d, `) sourcing the randomness for running the key generation algorithm, and
(iii) an authentication key Ks for herself using GenMAC(1λ) with Fseed(s, `) sourcing the randomness
for running the key generation algorithm.

Remark: We can avoid using a PRF in exchange for requiring state; an alternative to using a
PRF is to store keys computed from true randomness locally, e.g., in a dictionary.

The goal of FormOnion is to produce an onion O1 for the first party P1 on the routing path such
that P1 processing O1 produces the onion O2 for the next destination P2 on the routing path, and
so on.

Suppose for the time being that both the forward path and the return path are of the maximum
length N , i.e., d = s− d+ 1 = N .

Let O be an onion that we want party P to “peel.” The header of O is a sequence H =
(E,B1, . . . , BN−1). E is an encryption under P ’s public key and the tag t = h(B1, . . . , BN−1) of
the following pieces of information that P needs to correctly process the onion: (i) P ’s role, i.e., is
P an intermediary, or the onion’s recipient, or the original sender of the onion whose reply P just
received; (ii) in case P is an intermediary or recipient, the encryption key k necessary for making
sense of the rest of the onion; (iii) in case P is the original sender, the label ` necessary for making
sense of the rest of the onion; and (iv) in case P is the recipient, the authentication key K.

If P is an intermediary, it will next process (B1, . . . , BN−1) by inverting each of them, in turn,
using the block cipher’s key k, to obtain the values }B1{k, . . . , }BN−1{k. The value }B1{k reveals
the destination P ′ and the ciphertext E′ of the peeled onion. For each 1 < j < N , the value

28

}Bj{k is block (B′)j−1 of the peeled onion, so the header of the peeled onion will begin with
(E′, (B′)1, . . . , (B′)N−2). The final block (B′)N−1 of the header is formed by computing the inverse
of the PRP keyed by k of the all-zero string of length L1(λ), i.e., (B′)N−1 =}0 . . . 0{k.

Therefore, sender Alice needs to form her onion so that each intermediary applying the procedure
described above will peel it correctly. Using the keys k1, . . . , kd and Kd, Alice first forms the header
Hd = (Ed, B

1
d , . . . , B

N−1
d) for the last onion Od on the forward path (the one to be processed by

Bob): For every i ∈ {1, . . . , N − 1}, let

Bi
d = } . . . }0 . . . 0{ki . . . {kd−1

.

The tag td for integrity protection is the hash of these blocks concatenated together, i.e.,

td = h(B1
d , . . . , B

N−1
d).

The ciphertext Ed is the encryption of (R, kd,Kd) under the public key pk(Pd) and the tag td, i.e.,

Ed ← Enc(pk(Pd), td, (R, kd,Kd)).

The headers of the remaining onions in the evolution are formed recursively. Let

B1
d−1 = {Pd, Ed}kd−1

,

Bi
d−1 = {Bi−1

d }kd−1
, ∀i ∈ {2, . . . , N − 1},

td−1 = h(B1
d−1, . . . , B

N−1
d−1),

Ed−1 ← Enc(pk(Pd−1), td−1, (I, kd−1));

and so on. (WLOG, we assume that (Pd, Ed) “fits” into a block; i.e., |Pd, Ed| ≤ L1(λ). A block
cipher with the correct blocklength can be built from a standard one [KL14,BS15].) See FormHeader
in Figure 4.

Forming the encrypted content Alice then forms the encrypted content for Bob.
First, if the return path P← is non-empty, Alice forms the header Hd+1 for the return onion

using the same procedure that she used to form the header H1 for the forward onion, but using the
return path P← instead of the forward path P→ and encrypting (S, `) instead of (R, ks,Ks). That
is, the ciphertext Es of the “innermost” header Hs is the encryption Enc(pk(Ps), ts, (S, `)) rather
than Enc(pk(Ps), ts, (R, ks,Ks)). If the return path is empty, then Hd+1, ks and Ks are the empty
string.

When Bob processes the onion, Alice wants him to receive (i) the message m, (ii) the header
Hd+1 for the return onion, (iii) the keys ks and Ks for forming a reply to the anonymous sender
(Alice), and (iv) the first party Pd+1 on the return path. So, Alice sets the “meta-message” M to
be the concatenation of m, Hd+1, ks, Ks, and Pd+1: M = (m,Hd+1, ks,Ks, Pd+1).

Alice wants Bob to be able to verify that M is the meta-message, so she also computes the tag
σd = Tag(Kd,M). (WLOG, (M,σd) “fits” exactly into a block; i.e., |M | ≤ L2(λ).)

The encrypted content Ci for each onion Oi on the forward path is given by:

Ci = {. . . {M,σd}kd . . . }ki ;

see FormContent in Figure 4.
We now explain what happens when d 6= N , or s− d+ 1 6= N :
If either d or s − d + 1 exceed the upper bound N , then FormOnion returns an error. If d is

strictly less than N , the header is still “padded” to N − 1 blocks by sampling N encryption keys
as before. Likewise if s− d+ 1 < N , the header is padded to N − 1 blocks in similar fashion.

29

6.3 Processing a repliable onion (in the forward direction)

Let Carol be an intermediary node on the forward path from Alice to Bob. When Carol receives
the onion Oi = (Hi, Ci) consisting of the header Hi = (Ei, B

1
i , . . . B

N−1
i) and the content Ci, she

processes it as follows:
Carol first computes the tag ti = h(B1

i , . . . B
N−1
i) for integrity protection and then attempts to

decrypt the ciphertext Ei of the header using her secret key sk(Pi) and the tag ti to obtain her role
and key(s), i.e.,

(I, ki) = Dec(sk(Pi), ti, Ei).

Carol succeeds in decrypting Ei only if the header has not been tampered with. In this case, she
gets her role “I” and the key ki and proceeds with processing the header and content:

Carol first decrypts the first block B1
i of the current header to retrieve the next destination

Pi+1 and ciphertext Ei+1 of the processed header (header of the next onion), i.e.,

(Pi+1, Ei+1) = }B1
i {ki .

To obtain the first N − 2 blocks of the processed header, Carol decrypts the last N − 2 blocks of
H:

Bj
i+1 = }Bj+1

i {ki ∀j ∈ [N − 2].

To obtain the last block of the processed header, Carol “decrypts” the all-zero string “(0 . . . 0):”

BN−1
i+1 = }0 . . . 0{ki .

To process the content, Carol simply decrypts the current content Ci:

Ci+1 = }Ci{ki .

See ProcOnion in Figure 5.

6.4 Replying to the anonymous sender

When Bob receives the onion Od = (Hd, Cd), he processes it in the same way that the intermediary
party Carol does, by running ProcOnion:

Bob first decrypts the ciphertext Ed of the header to retrieve his role “R” and the keys kd and
Kd. If Od hasn’t been tampered with, Bob retrieves the meta-message M = (m,Hd+1, ks,Ks, Pd+1)
and the tag σd that Alice embedded into the onion by decrypting the content Cd using the key kd:

((m,Hd+1, ks,Ks, Pd+1), σd) = }Cd{kd .

Bob can verify that the message is untampered by running the MAC’s verification algorithm
Ver(Kd,M, σd).

To respond to the anonymous sender (Alice) with the message m′, Bob creates a new encrypted
content using the keys ks and Ks:

Cd+1 = {m′,Tag(Ks,m
′)}ks .

Bob sends the reply onion Od+1 = (Hd+1, Cd+1) to the next destination Pd+1. See ProcOnion and
FormReply in Figures 5 and 6.

30

SES.FormOnion(`,m, (P1, . . . , Pd), P
←)

1 : (H1, . . . ,Hd, k1, . . . , kd,Kd)← FormHeader(→, `, (P1, . . . , Pd))

2 : (C1, . . . , Cd), H
←, k←)← FormContent(`,m, P←, k1, . . . , kd,Kd)

3 : return (((H1, C1), . . . , (Hd, Cd)), H
←, ((k1, . . . , kd,Kd), k

←))

SES.FormHeader(direction, `, (P1, . . . , PN))

1 : kj = Fseed(`, j) , ∀j ∈ [N]

2 : KN = GenMAC(1λ, Fseed(N, `))

3 : BiN = } . . . }0 . . . 0{ki . . . {kN−1
, ∀i ∈ {1, . . . , N − 1}

4 : if direction =→
5 : EN ← Enc(pk(PN), h(B1

N , . . . , B
N−1
N), (R, kN ,KN))

6 : else (if direction =←)

7 : EN ← Enc(pk(PN), h(B1
N , . . . , B

N−1
N), (S, `))

8 : HN = (EN , B
1
N , . . . , B

N−1
N)

9 : for all j from N − 1 to 1

10 : B1
j = {PN , EN}kj

11 : Bij = {Bi−1j+1}kj , ∀i ∈ {2, . . . , N − 1}

12 : Ej ← Enc(pk(Pj), h(B1
j , . . . , B

N−1
j), (I, kj))

13 : Hj = (Ej , B
1
j , . . . , B

N−1
j)

14 : return (H1, . . . ,HN , k1, . . . , kN ,KN)

SES.FormContent(`,m, (Pd+1, . . . , Ps), k1, . . . , kd,Kd)

1 : (Hd+1, . . . ,Hs, kd+1, . . . , ks,Ks)← FormHeader(←, `, (Pd+1, . . . , Ps))

2 : M = (Hd+1,m, ks,Ks, Pd+1)

3 : σd = Tag(Kd,M)

4 : Cd = {M,σd}kd
5 : for all j from d− 1 to 1

6 : Cj = {Cj+1}kj
7 : return ((C1, . . . , Cd), (Hd+1, . . . ,Hs), (k1, . . . , kd,Kd))

Figure 4: Pseudocode for Shallot Encryption Scheme’s FormOnion. On input the label `, the
message m, the forward path P→, and the return path P← (and the public keys associated with
the routing path), FormOnion outputs onions O→, headers H←, and associated keys κ.

6.5 Processing a repliable onion (in the return direction)

Let David be an intermediary party on the return path. When David receives the onion Oj , he
processes it exactly in the same way that Carol processed the onion Oi in the forward direction; he
also runs ProcOnion in Figure 5. (Critically, David does not know that he is on the return path as
opposed to the forward path.)

31

SES.ProcOnion(((E,B1, . . . , BN−1), C), P)

1 : (role, key, H ′, P ′)← ProcHeader((E,B1, . . . , BN−1), P)

2 : C ′ = ProcContent(role, key, C)

3 : if role = I, return (I, ((H ′, C ′), P ′))

4 : else, return (role, C ′)

SES.ProcHeader((E,B1, . . . , BN−1), P)

1 : t = h(B1, . . . , BN−1)

2 : (role, key) = Dec(sk(P), t, E)

3 : if role = I

4 : (P ′, E′) = }B1{key
5 : (B′)j = }Bj+1{key , ∀j ∈ [N − 2]

6 : (B′)N−1 = }0 . . . 0{key
7 : return (I, key, (E′, (B′)1, . . . , (B′)N−1), P ′)

8 : else

9 : return (role, key,⊥,⊥)

SES.ProcContent(role, key, C)

1 : if role = I

2 : return }C{key
3 : if role = R

4 : parse key = (kd,Kd)

5 : ((Hd+1,m, ks,Ks, Pd+1), σd) = }C{kd
6 : if Ver(Kd, (Hd+1,m, ks,Ks, Pd+1), σd) = 1, return m

7 : else, return ⊥
8 : else

9 : reconstruct keys kd+1, . . . , ks,Ks from key

10 : (m,σs) = }{. . . {C}ks−1
. . . }kd+1

{ks
11 : if Ver(Ks,m, σs) = 1, return (`,m)

12 : else, return ⊥
Figure 5: Pseudocode for Shallot Encryption Scheme’s ProcOnion. On input the onion
((E,B1, . . . , BN−1), C) and the party P (and the secret key of P), ProcOnion returns a role (either
I, R, or S) and an output (either an onion and next destination ((H ′, C ′), P ′) or a decrypted content
C ′).

6.6 Reading the reply

When Alice receives the onion Os, she retrieves the reply from Bob by first processing the onion,
by running ProcOnion:

Alice first decrypts the ciphertext Es of the header to retrieve her role “S” and the label `.
She reconstructs the each encryption key ki = Fseed(`, i) and the authentication key Ks using
the pseudo-randomness Fseed(s, `). (Alternatively, if she stored the keys locally, she looks up the
keys associated with label ` in a local data structure). If Os hasn’t been tampered with, Alice

32

SES.FormReply(m′, (H,C), P)

1 : (role, key, H ′, P ′)← ProcHeader(H,P)

2 : if role = R

3 : parse key = (kd,Kd)

4 : ((Hd+1,m, ks,Ks, Pd+1), σd) = }C{kd
5 : if Ver(Kd, (Hd+1,m, ks,Ks, Pd+1), σd) = 1

6 : σs = Tag(Ks,m
′)

7 : return ((Hd+1, {m′, σs}ks), Pd+1)

8 : else, return (⊥,⊥)

9 : else, return (⊥,⊥)

Figure 6: Pseudocode for Shallot Encryption Scheme’s FormReply. On input the reply message m′,
the onion (H,C), and the party P (and the secret key of P), FormReply returns a return onion
(Hd+1, {m′, σs}ks) and next destination Pd+1.

retrieves the reply m′ that Bob embedded into the onion by decrypting the content Cs using the
keys (kd+1, . . . , ks):

(m′, σs) =}{. . . {Cs}ks−1 . . . }kd+1
{ks .

Alice can verify that the message is untampered by running Ver(Ks,m
′, σs). See ProcOnion in

Figure 5.

7 Shallot Encryption Scheme is secure

In this section, we prove our main theorem:

Theorem 3. Shallot Encryption Scheme (in Section 6) SUC-realizes the ideal functionality FROES

(Definition 3).

By Theorem 2, it suffices to prove the following two lemmas:

Lemma 1. Shallot Encryption Scheme is correct (Definition 2).

Proof. This lemma follows by inspection.

Lemma 2. Shallot Encryption Scheme is repliable-onion secure (Definition 4) under the assump-
tion that (i) {fk}k∈{0,1}∗ is a PRP, (ii) E is a CCA2-secure encryption scheme with tags, (iii) MAC
is a message authentication code, and (iv) h is a collision-resistant hash function.

Proof idea: In cases (a) and (c) (in these cases, Pj is an intermediary, not the recipient), we
can prove that A’s view when b = 0 is indistinguishable from A’s view when b = 1 using a hybrid
argument. The gist of the argument is as follows: First, Pj ’s encryption key kj is protected by
CCA2-secure encryption, so it can be swapped out for the all-zero key “0 . . . 0.” Next, blocks
(N − j− 1) to (N − 1) of the onion for Pj+1 look random as they are all “decryptions” under kj , so
they can be swapped out for truly random blocks. Next, blocks 1 to (N − j − 1) and the content
of the onion for Pj look random as they are encryptions under kj , so they can be swapped out for
truly random blocks. At this point, the keys for forming Oj+1 can be independent of the keys for
forming Oj , and these onions may be formed via separate FormOnion calls.

33

For case (b) (Pj is the recipient), we can use a simpler hybrid argument since only the content
of a forward onion can be computationally related to the keys for the return path. Thus, we can
swap out just the content for a truly random string. See below for the formal proof.

Proof. We present the proof of security for case (a) when the switch occurs at intermediary Pj = I
on the forward path. The proofs for cases (b) and (c) are similar.

For the analysis of the scheme’s repliable-onion security, we will make the simplifying assumption
that labels are truly random as opposed to generated using a PRF (this can be dealt with via a
straightforward reduction).

To prove the lemma, we need to prove that A cannot distinguish between Experiment0 (game
with b = 0) and Experiment1 (game with b = 1). To do this, we define hybrids Hybrid1 through
Hybrid9 and prove that (i) Hybrid1 is identical to Experiment0, (ii) A cannot distinguish between
any two consecutive hybrids, and (iii) Hybrid9 is identical to Experiment1. See Figure 7 for the road
map of the proof.

Experiment0—game with b = 0, same as Hybrid1

Hybrid1—make Oj+1, then O1

Hybrid2—same as Hybrid1 except swap ` for random label
Hybrid3—same as Hybrid2 except swap kj for fake key “0 . . . 0”

Hybrid4—same as Hybrid3 except swap (BN−j−1
j+1 , . . . , BN−1

j+1) for truly random blocks

Hybrid5—same as Hybrid4 except swap (B1
j , . . . , B

N−j−1
j) and content Cj for truly random blocks

Hybrid6—same as Hybrid5 except swap onion for intermediary Pj for onion for recipient Pj
Hybrid7—same as Hybrid6 except swap truly random blocks and content in Oj for pseudo-random

blocks (B1
j , . . . , B

N−j−1
j , Cj)

Hybrid8—same as Hybrid7 except swap truly random blocks in Hj+1 for pseudo-random blocks

(BN−j−1
j+1 , . . . , BN−1

j+1)

Hybrid9—same as Hybrid8 except swap key “0 . . . 0” for for real key kj
Experiment1—game with b = 1, same as Hybrid9

Figure 7: Road map of proof of Lemma 2

Experiment1: security game with b = 1. Let Experiment1(1λ,A) be the adversary’s view in the se-
curity game when b = 1. To create this view, the challenger does the following:

1: get from A router names I and S
2: generate keys for I and S and sends public keys (pk(I), pk(S)) to A
3: give A oracle access to O.POI, O.FRI, O.POS, and O.FRS

4: get from A parameters for challenge onion: label `, message m, forward path P→ =
(P1, . . . , Pd), and return path P← = (Pj+1, . . . , Ps) such that Pj = I and Ps = S, and
the public keys of the adversarial parties in the routing path

5: pick a random message y←$M(1λ);
let p→ = (P1, . . . , Pj) and q→ = (Pj+1, . . . , Pd);
run FormOnion(x, y, p←, pk(p←), (), ())→ ((O1, . . . , Oj), (), κ);
run FormOnion(x′,m, q←, pk(q←), P←, pk(P←))→ ((Oj+1, . . . , Od), H

←, κ′)
6: modify O.POI: to “process” an onion (Hj , C) 6= Oj with the same header Hj as Oj , O.POI

returns (I, (CompleteOnion(1λ, pp, Hj+1, C), Pj+1);
modify O.POS: to “process” an onion O with the header Hs (i.e., last header in H←), O.POS

computes the message m′ = ProcOnion(λ, pp, O, Pj , sk(Pj)) and returns (S, (`,m′))

34

7: send to A the first onion O1

8: give A oracle access to O.POI, O.FRI, O.POS, and O.FRS

Experiment0: security game with b = 0. Let Experiment0(1λ,A) be the adversary’s view when in the
security game when b = 0. To create this view, the challenger does the following:

1: get from A router names I and S
2: generate keys for I and S and sends public keys (pk(I), pk(S)) to A
3: give A oracle access to O.POI, O.FRI, O.POS, and O.FRS

4: get from A parameters for challenge onion: label `, message m, forward path P→ =
(P1, . . . , Pd), and return path P← = (Pj+1, . . . , Ps) such that Pj = I and Ps = S, and
the public keys of the adversarial parties in the routing path

5: run FormOnion(`,m, P→, pk(P→), P←, pk(P←))→ ((O1, . . . , Od), H
←, κ)

6: keep the oracles unmodified
7: send to A the first onion O1

8: give A oracle access to O.POI, O.FRI, O.POS, and O.FRS

Note: Only steps 5 and 6 (boxed) are different from the procedure for producing Experiment1(1λ,A).
Thus, the procedures (below) for producing the hybrids that go between Experiment0(1λ,A) and
Experiment1(1λ,A) also differ only in steps 5-6, and so our descriptions of them are what happens
in these steps.

Hybrid1—make Oj+1, then O1. Let the procedure for Hybrid1(1λ,A) be the same as that of

Experiment0(1λ,A) except in step 5. In step 5, the challenger (i) first, forms the onion Oj+1 using
the label `, the message m, the forward path (Pj+1, . . . , Pd), and the return path P← (ii) then,
samples keys k1, . . . , kj , and (iii) finally, forms the onion O1 by “wrapping” Oj+1 with multiple
layers of encryption using keys k1, . . . , kj .

See below for a description of what we mean by wrapping a layer of encryption.

5i : ((Oj+1, . . . , Od), H
←, (kj+1, . . . , ks,Kd,Ks))← FormOnion(`,m, (Pj+1, . . . , Pd), P

←)

5ii : k1, . . . , kj←$ {0, 1}keylength(λ)

5iii : B1
j = {Pj+1, Ej+1}kj

Bi
j = {Bi−1

j+1}kj .∀i ∈ {2, . . . , N − 1}

Ej ← Enc(pk(Pj), h(B1
j , . . . , B

N−1
j), kj)

Cj = {Cj+1}kj
Hybrid1(1λ,A) is identical to Experiment0(1λ,A) by construction.

Hybrid2—swap ` for random label. Let the procedure for Hybrid2(1λ,A) be the same as that of

Hybrid1(1λ,A) except in steps 5-6. In step 5i, the challenger swaps out the label ` (from A) for a
random label x, i.e.,

((Oj+1, . . . , Od), H
←, (kj+1, . . . , ks,Kd,Ks))← FormOnion(x,m, (Pj+1, . . . , Pd), P

←).

In step 6, the challenger modifies the oracle O.POS, accordingly. To “process” an onion O
with the header Hs (i.e., last header in H←), the oracle computes the message m′ =
ProcOnion(λ, pp, O, Pj , sk(Pj)) and returns (S, (`,m′)).

Here, we prove that A cannot distinguish between Hybrid1(1λ,A) and Hybrid2(1λ,A). For the
sake of reaching a contradiction, suppose that A can distinguish between Hybrid1 (i.e., b = 0) and
Hybrid2 (i.e., b = 1), then we can construct a reduction B that can break the CCA2-security of the
underlying encryption scheme as follows:

35

1: B receives the router names I, S from A.
2: B generates keys (pk(I), sk(I)) for I using the key generation algorithm G but gets the public

key pk(S) of S from its challenger. B sends the public keys (pk(I), pk(S)) to A.
3: B gives oracle access to A; whenever B needs to process an onion O = ((E,B1, . . . , BN−1), C)

for S, B uses the decryption oracle O.Dec to decrypt the ciphertext E. For all other “process
onion” requests, B simply runs ProcOnion.

4: B gets from A the challenge onion parameters: the label `, the message m, the forward
path P→, the return path P←, and the public keys of the adversarial parties in the routing
path. B sends the challenge messages m0 = ` and m1←$L(λ) to the challenger, and the
challenger responds with the encryption Ebs of one of the messages.

5: B uses Ebs to form onion O1: B (i) forms the header Hd (as in the procedure for Hybrid1),
(ii) forms the blocks (B1

s , . . . , B
N−1
s) for the header Hs, (iii) sets the header Hs to equal

(Ebs, B
1
s , . . . , B

N−1
s), (iv) forms the header Hd+1 by “wrapping” Hs in multiple layers of en-

cryption, (v) forms the content Cd using the header Hd+1, and (vi) forms the onion O1 by
“wrapping” the onion (Hd, Cd) in multiple layers of encryption.

6: B (possibly) modifies O.POS so that if running ProcOnion on an onion with header Hs outputs
(S, (x,m′)) for some label x and message m, O.POS outputs (S, (`,m′)) instead. (All other
“process onion” requests are handled by running ProcOnion.)

7: B sends O1 to A.
8: B gives oracle access to A (again using O.Dec to decrypt ciphertexts for S).

Finally, B guesses the bit b′ that A outputs.
The reduction works since B wins if A wins; otherwise, A would be able to break the CCA2-

security of the underlying encryption scheme. Clearly, the reduction runs in polynomial time.

Hybrid3—swap kj for fake key “0 . . . 0.” Let the procedure for Hybrid3(1λ,A) be the same as that

of Hybrid2(1λ,A) except that in step 5iii, the challenger obtains ciphertext Ej by encrypting the
all-zero key “0 . . . 0” instead of key kj , i.e.,

5i : ((Oj+1, . . . , Od), H
←, (kj+1, . . . , ks,Kd,Ks))← FormOnion(x,m, (Pj+1, . . . , Pd), P

←)

5ii : k1, . . . , kj←$ {0, 1}keylength(λ)

5iii : B1
j = {Pj+1, Ej+1}kj

Bi
j = {Bi−1

j+1}kj .∀i ∈ {2, . . . , N − 1}

Ej ← Enc(pk(Pj), h(B1
j , . . . , B

N−1
j), (0 . . . 0))

Cj = {Cj+1}kj

Here, we prove that A cannot distinguish between Hybrid2(1λ,A) and Hybrid3(1λ,A). For the
sake of reaching a contradiction, suppose that A can distinguish between Hybrid2 (i.e., b = 0) and
Hybrid3 (i.e., b = 1), then we can construct a reduction B that can break the CCA2-security of the
underlying encryption scheme as follows:

1: B receives the router names I, S from A.
2: B generates keys (pk(S), sk(S)) for S using the key generation algorithm G but gets the public

key pk(I) of I from its challenger. B sends the public keys (pk(I), pk(S)) to A.
3: B gives oracle access to A; whenever B needs to process an onion O = ((E,B1, . . . , BN−1), C)

for I, B uses the decryption oracle O.Dec to decrypt the ciphertext portion E of O. For all
other “process onion” requests, B simply runs ProcOnion.

4: B gets from A the challenge onion parameters: the label `, the message m, the forward
path P→, the return path P←, and the public keys of the adversarial parties in the routing

36

path. B sends the challenge messages m0 = kj and m1 = (0 . . . 0) to the challenger, and the
challenger responds with the encryption Ebj of one of the messages.

5: B (i) forms onion Oj+1 like in the procedure for Hybrid2, (ii) samples keys (k1, . . . , kj), and
(iii) sets onion Oj to be ((Ebj , B

1
j , . . . , B

N−1
j), Cj) where

B1
j = {Pj+1, Ej+1}kj

Bi
j = {Bi−1

j+1}kj . ∀i ∈ {2, . . . , N − 1}
Cj = {Cj+1}kj .

Finally, B forms onion O1 by wrapping onion layers around Oj .
6: B modifies oracle O.POS so that if running ProcOnion on an onion with header Hs outputs

(S, (x,m′)) for some label x and message m, O.POS outputs (S, (`,m′)) instead. (All other
“process onion” requests are handled by running ProcOnion.)

7: B sends O1 to A.
8: B gives oracle access to A (again using O.Dec to decrypt ciphertexts for I).

Finally, B guesses the bit b′ that A outputs.
The reduction works since B wins if A wins; otherwise, A would be able to break CCA2-security.

Clearly, the reduction runs in polynomial time.

Hybrid4—swap (BN−j−1
j+1 , . . . , BN−1

j+1) for truly random blocks. Let the procedure for Hybrid4(1λ,A)

be the same as that of Hybrid3(1λ,A) except in step 5. In step 5, the challenger first forms onion
Oj = ((Hj , B

1
j , . . . , B

N−1
j), Cj) like in Hybrid3. Then, the challenger computes Oj as

Oj+1 = ProcOnion(Oj , Pj , sk(Pj))

= ((Ej+1, B
1
j+1, . . . , B

N−1
j+1), Cj+1),

and forms an alternate (j + 1)st onion Ôj+1 by replacing the pseudo-random blocks

(BN−j−1
j+1 , . . . , BN−1

j+1) with truly random blocks (RN−j−1
j+1 , . . . , RN−1

j+1) so that

Ôj+1 = ((Ej+1, B
1
j+1, . . . , B

N−j−2
j+1 , RN−j−1

j+1 , . . . , RN−1
j+1), Cj+1).

Finally, the challenger forms the onion O1 by “wrapping” Ôj+1 with multiple layers of encryption.
Here, we prove that A cannot distinguish between Hybrid3(1λ,A) and Hybrid4(1λ,A). For the

sake of reaching a contradiction, suppose that A can distinguish between Hybrid3 (i.e., b = 0) and
Hybrid4 (i.e., b = 1), then we can construct a reduction B that can break the underlying PRP-CCA
security of the PRP as follows:

1: B receives the router names I, S from A.
2: B generates keys (pk(I), sk(I)) for I and keys (pk(S), sk(S)) for S using the key generation

algorithm G and sends the public keys (pk(I, pk(S)) to A.
3: B gives oracle access to A.
4: B gets from A the challenge onion parameters: the label `, the message m, the forward

path P→, the return path P←, and the public keys of the adversarial parties in the routing
path.

5: B first forms onion Oj = ((Ej , B
1
j , . . . , B

N−1
j), Cj) (like in Hybrid3) and then computes

Oj+1 = ProcOnion(Oj , Pj , sk(Pj))

= ((Ej+1, B
1
j+1, . . . , B

N−1
j+1), Cj+1).

37

B then sends to the challenger the blocks (B2
j , . . . , B

N−j−1
j), and the challenger either responds

with the pseudo-random permutations

(B0,N−j−1
j+1 , . . . , B0,N−1

j+1) = (BN−j−1
j+1 , . . . , BN−1

j+1)

of (B2
j , . . . , B

N−j−1
j) if b = 0, or truly random permutations

(B1,N−j−1
j+1 , . . . , B1,N−1

j+1) = (RN−j−1
j+1 , . . . , RN−1

j+1),

of (B2
j , . . . , B

N−j−1
j) if b = 1. B sets Ôj+1 to be

Ôj+1 = ((Ej+1, B
1
j+1, . . . , B

N−j−2
j+1 , Bb,N−j−1

j+1 , . . . , Bb,N−1
j+1), Cj+1),

and forms onion O1 by wrapping onion layers around Ôj+1.
6: B modifies oracle O.POS so that if running ProcOnion on an onion with header Hs outputs

(S, (x,m′)) for some label x and message m, O.POS outputs (S, (`,m′)) instead. (All other
“process onion” requests are handled by running ProcOnion.)

7: B sends O1 to A.
8: B gives oracle access to A.

Finally, B guesses the bit b′ that A outputs.
The reduction works since B wins if A wins; otherwise, A would be able to break the security

of the PRP. Clearly, the reduction runs in polynomial time.

Hybrid5—swap (B1
j , . . . , B

N−j−1
j) and content Cj for truly random blockss. Let the procedure for

Hybrid5(1λ,A) be the same as that of Hybrid4(1λ,A) except in step 5. In step 5, the challenger first
forms onion

Ôj+1 = ((Ej+1, B
1
j+1, . . . , B

N−j−2
j+1 , RN−j−1

j+1 , . . . , RN−1
j+1), Cj+1)

with some truly random blocks (like in Hybrid4). Then, the challenger forms Oj =
((Hj , B

1
j , . . . , B

N−1
j), Cj) by wrapping a layer of encryption around Ôj+1 and forms an alternate

jth onion Ôj by replacing the pseudo-random blocks (B1
j , . . . , B

N−j−1
j) and Cj with truly random

blocks (R1
j , . . . , R

N−j−1
j) and Rj so that

Ôj = ((Ej+1, R
1
j , . . . , R

N−j−1
j , BN−j

j , . . . , BN−1
j), Rj).

Finally, the challenger forms the onion O1 by “wrapping” Ôj with multiple layers of encryption.
Here, we prove that A cannot distinguish between Hybrid4(1λ,A) and running Hybrid5(1λ,A).

For the sake of reaching a contradiction, suppose that A can distinguish between Hybrid4 (i.e.,
b = 0) and Hybrid5 (i.e., b = 1), then we can construct a reduction B that can break the underlying
pseudo-randomness of the PRP as follows:

1: B receives the router names I, S from A.
2: B generates keys (pk(I), sk(I)) for I and keys (pk(S), sk(S)) for S using the key generation

algorithm G and sends the public keys (pk(I, pk(S)) to A.
3: B gives oracle access to A.
4: B gets from A the challenge onion parameters: the label `, the message m, the forward

path P→, the return path P←, and the public keys of the adversarial parties in the routing
path.

38

5: B first forms onion Oj+1 = ((Ej+1, B
1
j+1, . . . , B

N−j−2
j+1 , RN−j−1

j+1 , . . . , RN−1
j+1), Cj+1) with some

truly random blocks (like in Hybrid4) and then forms the onion Oj = ((Hj , B
1
j , . . . , B

N−1
j), Cj)

by “wrapping” Oj+1 with a layer of encryption. Next, B sends to the challenger the sequence

((Pj+1, Ej+1), B1
j+1, . . . , B

N−j−2
j+1 , Cj+1),

and the challenger responds with (Ebj , B
b,1
j , . . . , Bb,N−j−1

j , Cbj) which are either pseudo-random

permutations (if b = 0) or truly random permutations (if b = 1). B sets Ôj to be

Ôj = ((Ej , B
b,1
j , . . . , Bb,N−j−1

j , BN−j
j , . . . , BN−1

j), Cbj).

Finally, B forms onion O1 by wrapping onion layers around Ôj .
6: B modifies oracle O.POS so that if running ProcOnion on an onion with header Hs outputs

(S, (x,m′)) for some label x and message m, O.POS outputs (S, (`,m′)) instead. (All other
“process onion” requests are handled by running ProcOnion.)

7: B sends O1 to A.
8: B gives oracle access to A.

Finally, B guesses the bit b′ that A outputs.
The reduction works since B wins if A wins; otherwise, A would be able to break the pseudo-

randomness of the PRP. Clearly, the reduction runs in polynomial time.

Hybrid6—swap onion for intermediary Pj for onion for recipient Pj . Recall from the definition of

repliable-onion security (Definition 4), that SES is repliable-onion secure if there exist an
algorithm CompleteOnion such that for every adversary A, A can win the security game
ROSecurityGame(1λ, SES,CompleteOnion,A) with only negligible advantage.

For our proof, let CompleteOnion(1λ, pp, H ′, C) be the algorithm that samples a random string
C ′←$ {0, 1}L2(λ), where {0, 1}L2(λ) corresponds to the blocklength for the PRP (in the construc-
tion), and outputs (H ′, C ′). This will be used for the next hybrid (below).

Let the procedure for Hybrid6(1λ,A) be the same as that of Hybrid5(1λ,A) except in steps
5-6. In step 5, the challenger first forms onion Oj+1 with some truly random blocks (like in
Hybrid5). Next, the challenger forms a completely bogus onion Oj = ((Ej , R

1, . . . , RN−1, R),
where all blocks (R1, . . . , RN−1, R) are truly random and Ej = Enc(pk(Pj), h(R1, . . . , RN−1), R).
Finally, the challenger forms the onion O1 by “wrapping” Oj with multiple layers of encryp-
tion. In step 6, the challenger modifies the oracle O.POI for processing onions on behalf of
I. To “process” an onion (Hj , C) 6= Oj with the same header Hj as Oj , O.POI returns
(I, (CompleteOnion(1λ, pp, Hj+1, C), Pj+1).

The analysis: The adversary can query the oracle O.POI to process an onion with the correct

challenge header but with “mangled” content. In this case, the peeled onion in Hybrid5 looks like
the peeled onion in Hybrid6 because the former has a truly random header and content whereas the
latter has a truly random header and pseudo-random content. For all other queries, the responses
in the hybrids are statistically the same. Thus, using a straightforward hybrid argument, we can
show that the adversary cannot distinguish between running Hybrid5 and running Hybrid6.

Hybrid7—swap truly random blocks and content in Oj for pseudo-random blocks

(B1
j , . . . , B

N−j−1
j , Cj). Let the procedure for Hybrid7(1λ,A) be the same as that of Hybrid6(1λ,A)

except in step 5. In step 5, the challenger first forms onion Oj+1 with some truly random blocks
(like in Hybrid6). Next, the challenger forms the onion Oj using the algorithm FormOnion on input:

39

the random label x′ ∈ L(λ), the random message y ∈M(λ), the forward path (Pj), and the return
path “(),” i.e.,

(Oj , (), κ)← FormOnion(x′, y, (Pj), pk(Pj), (), ()).

Finally, the challenger forms the onion O1 by “wrapping” Oj with multiple layers of encryption.
A cannot distinguish between Hybrid6 and Hybrid7. Otherwise, we could construct a reduction

(very similar to the reduction used for proving that Hybrid4 ≈ Hybrid5) that can break the underlying
pseudo-randomness of the PRP.

Hybrid8—swap truly random blocks in Hj+1 for pseudo-random blocks (BN−j−1
j+1 , . . . , BN−1

j+1). Let

the procedure for Hybrid8(1λ,A) be the same as that of Hybrid7(1λ,A) except in step 5. In step
5, the challenger first forms onion Oj+1 with all pseudo-random blocks (like in Hybrid3). Next,
the challenger forms the onion Oj using the algorithm FormOnion using a random label and a
random message (like in Hybrid7). Finally, the challenger forms the onion O1 by “wrapping” Oj
with multiple layers of encryption.
A cannot distinguish between Hybrid7 and Hybrid8. Otherwise, we could construct a reduction

(very similar to the reduction used for proving that Hybrid3 ≈ Hybrid4) that can break the underlying
PRP-CCA2 security of the PRP.

Hybrid9—swap key “0 . . . 0” for for real key kj . Let the procedure for Hybrid9(1λ,A) be the same as

that of Hybrid8(1λ,A) except in step 5. In step 5, the challenger first forms onion Oj+1 with the real
key pj (like in Hybrid2). Next, the challenger forms the onion Oj using the algorithm FormOnion
using a random label and a random message (like in Hybrid8). Finally, the challenger forms the
onion O1 by “wrapping” Oj with multiple layers of encryption.
A cannot distinguish between Hybrid8 and Hybrid9. Otherwise, we could construct a reduction

(very similar to the reduction used for proving that Hybrid2 ≈ Hybrid3) that can break the underlying
CCA2-security of the encryption scheme.

Finally, Hybrid9 and Experiment1 are identical. In both, onion O1 is formed using a random
label x, a random message y, the truncated path (P1, . . . , Pj) as the forward path, and the empty
return path “().” The oracle O.POI ensures that Oj “peels” to the separately formed onion Oj+1.

This concludes our proof for case (a). The proofs for cases (b) and (c) are similar.

References

[ALU18] Megumi Ando, Anna Lysyanskaya, and Eli Upfal. Practical and provably secure onion
routing. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald San-
nella, editors, ICALP 2018, volume 107 of LIPIcs, pages 144:1–144:14. Schloss Dagstuhl,
July 2018.

[ALU19] Megumi Ando, Anna Lysyanskaya, and Eli Upfal. On the complexity of anonymous
communication through public networks. arXiv preprint arXiv:1902.06306, 2019.

[BS15] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft 0.2,
2015.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

40

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally compos-
able security for standard multiparty computation. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 3–22.
Springer, Heidelberg, August 2015.

[Cha81] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[CL05] Jan Camenisch and Anna Lysyanskaya. A formal treatment of onion routing. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 169–187. Springer, Heidel-
berg, August 2005.

[Cot95] Lance Cottrell. Mixmaster and remailer attacks, 1995.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 13–25. Springer, Heidelberg, August 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EURO-
CRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May
2002.

[CSV16] Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authentication
and key-exchange with global PKI. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages
265–296. Springer, Heidelberg, March 2016.

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a type
III anonymous remailer protocol. In 2003 IEEE Symposium on Security and Privacy,
pages 2–15. IEEE Computer Society Press, May 2003.

[DG09] George Danezis and Ian Goldberg. Sphinx: A compact and provably secure mix format.
In 2009 IEEE Symposium on Security and Privacy, pages 269–282. IEEE Computer
Society Press, May 2009.

[DL04] George Danezis and Ben Laurie. Minx: A simple and efficient anonymous packet format.
In Proceedings of the 2004 ACM workshop on Privacy in the electronic society, pages
59–65, 2004.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: the second-generation
onion router. In Proceedings of the 13th USENIX Security Symposium, August 9-13,
2004, San Diego, CA, USA, pages 303–320, 2004.

[GT96] Ceki Gulcu and Gene Tsudik. Mixing e-mail with babel. In Proceedings of Internet
Society Symposium on Network and Distributed Systems Security, pages 2–16. IEEE,
1996.

[KBS19] Christiane Kuhn, Martin Beck, and Thorsten Strufe. Breaking and (partially) fixing
provably secure onion routing. arXiv preprint arXiv:1910.13772, 2019.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. Chapman and
Hall/CRC, 2014.

41

[MC00] Ulf Möller and Lance Cottrell. Mixmaster protocol—version 2. unfinished draft, Jan
2000.

[Par96] Sameer Parekh. Prospects for remailers. First Monday, 1(2), 1996.

42

A Supplementary material

A.1 Pseudocode for ideal functionality FROES’s onion forming algorithm

IdealFormOnion(`,m, (P1, . . . , Pd), (Pd+1, . . . , Ps))

1 : cur = 1

2 : next = next(cur)

3 : while next ≤ d
4 : p→ = (pcur+1, . . . , pnext−1, Pnext)

5 : (ocur+1, Onext, κnext)← SampleOnion(1λ, pp, p→, (),⊥)

6 : cur = next

7 : next = next(cur)

8 : if the recipient pd is corrupt

9 : p→ = (pcur+1, . . . , pd)

10 : p← = (pd+1, . . . , pnext(d)−1, Pnext(d))

11 : (ocur+1, Hnext(d), κnext(d))← SampleOnion(1λ, pp, p→, p←,m)

12 : cur = next(1)

13 : while cur < d

14 : OnionDict.put((Pcur, Hcur, Ccur), (I, ((Hcur+1, Ccur+1), Pcur+1), κcur+1)

15 : if the recipient Pd is honest

16 : OnionDict.put((Pd, Hd, Cd), (R,m),⊥)

17 : PathDict.put((Pd, Hd, Cd), (P
←, `))

18 : else if next(d) ≤ s
19 : ((Pnext(d), Hnext(d), ∗), ((pnext(d)+1, . . . , Ps, `))

20 : return (H1, C1)

Figure 8: Pseudocode for FROES’s “onion forming” algorithm IdealFormOnion. On input the label
`, the message m, the forward path (P1, . . . , Pd), and the return path (Pd+1, . . . , Ps), IdealFormOnion
outputs an onion (H1, C1). When IdealFormOnion forms onions for the return path, it outputs string
“S” in place of “R” (in line 19).

A.2 Security game for variants (b) and (c)

A.2.1 Variant (b)

Below, we provide a description of steps 4 and 5 of the repliable-onion security game,
ROSecurityGame, in Section 4 for case (b).

4. A chooses a label ` ∈ L(1λ) and a message m ∈M(1λ). A also chooses a forward path P→ =
(P1, . . . , Pd) and a return path P← = (Pd+1, . . . , Ps) such that (i) if P← is non-empty, then it
ends with S, (ii) I appears in the routing path, and (iii) the first time it appears in the path
is at the recipient Pd. A sends to C the parameters for the challenge onion: `, m, P→, the
public keys pk(P→) of the parties in P→, P←, and the public keys pk(P←) of the parties in
P←.

5. C samples a bit b←$ {0, 1}.

43

If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d), H

←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←)).

In this case, the oracles—O.POI(·), O.FRI(·, ·), O.POS(·), andO.FRS(·, ·)—remain unmodified.
Otherwise, if b = 1, C performs the “switch” at honest recipient Pd. C runs FormOnion on

input a random label x←$L(1λ), a random message y←$M(1λ), the forward path P→, and
the empty return path “()”, i.e.,

((O1
1, . . . , O

1
d), (), κ)← FormOnion(x, y, P→, pk(P→), (), ()).

We modify the oracles as follows. O.FRI does the following to “form a reply” using
message m′ and onion O = O1

d: O.FRI runs FormOnion on a random label x′, a random
message y′, the return path P← as the forward path, and the empty return path “()”, i.e.,

((Om
′

j+1, . . . , O
m′
s), (), κm

′
)← FormOnion(x′, y′, P←, pk(P←), (), ()),

stores the pair (Om
′

s ,m′) (such that the pair is accessible by O.POS), and returns (Om
′

j+1, Pj+1).
O.POS does the following to “process” an onion O:

i. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) = (R,m′), then
return (S, (`,m′)).

ii. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) 6= (R,m′), then
fail.

iii. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored pair ((H ′, C ′),m′)
and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return (S,⊥).

iv. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored pair ((H ′, C ′),m′)
and ProcOnion(O,Ps, sk(Ps)) 6= (R,⊥), then fail.

All other queries are processed as before.

A.2.2 Variant (c)

Below, we provide a description of steps 4 and 5 of the repliable-onion security game,
ROSecurityGame, in Section 4 for case (c).

4. A chooses a label ` ∈ L(1λ) and a message m ∈M(1λ). A also chooses a forward path P→ =
(P1, . . . , Pd) and a return path P← = (Pd+1, . . . , Ps) such that (i) if P← is non-empty, then
it ends with S, (ii) I doesn’t appear on the P→, and (iii) I appears somewhere on P←. A
sends to C the parameters for the challenge onion: `, m, P→, the public keys pk(P→) of the
parties in P→, P←, and the public keys pk(P←) of the parties in P←.

5. C samples a bit b←$ {0, 1}.
If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d), H

←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←)).

In this case, the oracles—O.POI(·), O.FRI(·, ·), O.POS(·), andO.FRS(·, ·)—remain unmodified.
Otherwise, if b = 1, C performs the “switch” at honest party Pj on the return path P←,

where Pj is the first appearance of I on the routing path. C runs FormOnion on input a
random label x←$L(1λ), the message m (that had been chosen by A in step 4), the forward
path P→, and the “truncated” return path p← = (Pd+1, . . . , Pj), i.e.,

(O→, (H1
d+1, . . . ,H

1
j), κ)← FormOnion(x,m, P→, pk(P→), p←, pk(p←)).

We modify the oracles as follows. O.POI does the following to “process” an onion O:

44

i. If O = (H1
j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) = (R,m′) for some

message m′ (possibly equal to “⊥”), then runs FormOnion on a random label x′, a
random message y′, the remainder the return path q← = (Pj+1, . . . , Ps) as the forward
path, and the empty return path “()”, i.e.,

((Om
′

j+1, . . . , O
m′
s), (), κm

′
)← FormOnion(x′, y′, q←, pk(q←), (), ()),

stores the pair (Om
′

s ,m′) (such that the pair is accessible by O.POS), and returns
(Om

′
j+1, Pj+1).

ii. If O = (H1
j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) 6= (R,m′) for some

message m′, then fails.
O.POS does the following to “process” an onion O:

iii. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) = (R,m′), then
return (S, (`,m′)).

iv. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) 6= (R,m′), then
fail.

v. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored pair ((H ′, C ′),m′)
and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return (S,⊥).

vi. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored pair ((H ′, C ′),m′)
and ProcOnion(O,Ps, sk(Ps)) 6= (R,⊥), then fail.

All other queries are processed as before.

45

	Introduction
	Repliable onion encryption: syntax and correctness
	Onion evolutions, forward paths, return paths and layerings

	FROES: onion routing in the SUC Framework
	Ideal functionality FROES
	Setting up.
	Forming an onion.
	Processing an onion.
	Forming a reply.

	SUC-realizability of FROES
	Remarks

	Repliable-onion security: a game-based definition of security
	Formal description of ROSecurityGame variant (a)
	Brief formal descriptions of ROSecurityGame variants (b) and (c)
	Definition of repliable-onion security

	Repliable-onion security implies SUC-realizability of FROES
	Description of simulator S
	Sampling an onion.
	Completing an onion.
	Recovering a reply message.

	Proof of Theorem 1
	Is repliable-onion security necessary to SUC-realize FROES?

	Shallot Encryption: our repliable onion encryption scheme
	Setting up
	Forming a repliable onion
	Processing a repliable onion (in the forward direction)
	Replying to the anonymous sender
	Processing a repliable onion (in the return direction)
	Reading the reply

	Shallot Encryption Scheme is secure
	Supplementary material
	Pseudocode for ideal functionality FROES's onion forming algorithm
	Security game for variants (b) and (c)
	Variant (b)
	Variant (c)

