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Abstract. The e-th power residue symbol
(

α
p

)
e

is a useful mathemat-
ical tool in cryptography, where α is an integer, p is a prime ideal in
the prime factorization of pZ[ζe] with a large prime p satisfying e|p− 1,
and ζe is an e-th primitive root of unity. One famous case of the e-th
power symbol is the first semantic secure public key cryptosystem due to
Goldwasser and Micali (at STOC 1982). In this paper, we revisit the e-th
power residue symbol and its applications. In particular, we prove that
computing the e-th power residue symbol is equivalent to solving the dis-
crete logarithm problem. By this result, we give a natural extension of the
Goldwasser-Micali cryptosystem, where e is an integer only containing
small prime factors. Compared to another extension of the Goldwasser-
Micali cryptosystem due to Joye and Libert (at EUROCRYPT 2013),
our proposal is more efficient in terms of bandwidth utilization and de-
cryption cost. With a new hardness assumption naturally extended from
the one used in the Goldwasser-Micali cryptosystem, our proposal is
provable IND-CPA secure. Furthermore, we show that our results on the
e-th power residue symbol can also be used to construct lossy trapdoor
functions and circular and leakage resilient public key encryptions with
more efficiency and better bandwidth utilization.

Keywords: power residue symbol · Goldwasser-Micali cryptosystem ·
Joye-Libert cryptosystem · lossy trapdoor function · leakage resilient
public key encryption.
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1 Introduction

We have witnessed the critical role of the power residue symbol in the his-
tory of public key encryption. Based on the quadratic residuosity assumption,
Goldwasser and Micali [18] proposed the first public key encryption (named GM)
scheme with semantic security and additive homomorphism. This scheme is revo-
lutionary but inefficient in terms of bandwidth, which hinders its use in practice.
Following the light of the GM scheme, many attempts [2–5, 11–13, 15, 24, 26, 27]
have been made to address this issue.

Recall the encryption in the GM scheme. A message m ∈ {0, 1} in the GM

scheme is encrypted by c = ymr2 mod N , where N = p · q, p and q are large
primes,

(
y
N

)
=
(

y
p

)
×
(

y
q

)
= −1×−1 = 1 and r is an element picked at random

from ZN . It is easy to see that the value of logr(r2 mod N) determines the mes-
sage space. Hence, one intuitive approach to improve the bandwidth utilization
in the GM scheme is to enlarge logr(r

e mod N). At STOC 1994, Benaloh and
Tuinstra [2, 15] set e as a special prime instead of 2. In particular, e is a prime,
e|p− 1, e2 - p− 1, and e - q− 1. The corresponding decryption requires to locate
m in [0, e) by a brute-force method. Hence, e is limited to 40 bits. At ACM
CCS 1998, Naccache and Stern [24] improved Benaloh and Tuinstra’s method
by setting e as a smooth and square-free integer e =

∏
pi such that pi|φ(N)

but p2i - φ(N) for each prime pi. The message m in this scheme is recovered
from m ≡ mi (mod pi) using the Chinese Remainder Theorem where each mi is
computed by a brute-force method. Nevertheless, the constraint p2i - φ(N) limits
the possibility for enlarging the message space dramatically. At EUROCRYPT
2013, based on the 2k-th power residue symbol, Joye and Libert [3] enlarged e
to 2k to obtain a nice and natural extension (named JL) of the GM scheme with
better bandwidth utilization than previous schemes. Later on, Cao et al. [13]
demonstrated that the JL scheme could be further improved by setting e as a
product of small primes. As shown in [13], the resulting scheme (named CDWS)
is more efficient than the JL scheme in terms of bandwidth utilization and de-
cryption cost. Nonetheless, the corresponding security proof is complicated and
hard to follow.

By virtue of the fruitful use in cryptography, algorithms for computing the
e-th power residue symbol have also attracted many researchers [6, 8, 9, 14, 20,
21, 31]. Several efficient algorithms for the cases of e ∈ {2, 3, 4, 5, 7, 8, 11, 13}
have been proposed. However, as we know, these algorithms cannot be used for
improving the GM-type schemes in [3, 13] owing to the small value of e. The
general case of computing the e-th power residue symbol was tackled by Squirrel
[31] and Boer [6], but the resulting algorithms are probabilistic and inefficient.
Hence, their results may not be applied in improving the GM scheme either.
Although Freeman et al. [17] conducted that a “compatibility” identity can be
used to compute the e-th power residue symbol, this identity could be useless in
the case of a prime power e. As a result, we cannot use Freeman et al.’s algorithm
to improve the GM scheme.
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In order to solve the above problems, in this paper, we revisit the problem
of computing the e-th power residue symbol, and obtain an efficient algorithm
that can be applied in the GM-type scheme and other cryptographic primitives.
Our contributions in this paper can be summarized as follows.

– New algorithm for computing e-th power residue symbol: We prove
that computing the e-th power residue symbol is equivalent to solving the
discrete logarithm problem, if the parameters in the e-th power residue sym-
bol

(
α
p

)
e

satisfy the following properties.

• α is an integer.
• p is a prime number satisfying e|p− 1.
• p is a prime ideal in the prime factorization of pZ[ζe], and ζe is an e-th

primitive root of unity.

As we know, there exist several efficient algorithms for solving the dis-
crete logarithm problem when the corresponding order is a product of small
primes. Hence, we obtain an efficient algorithm for computing e-th power
residue symbol when the above conditions are satisfied.

– New extension of the GM scheme: We demonstrate that we can obtain a
natural extension of the GM scheme based on the e-th power residue symbol.
Compared to the JL scheme, our extension enjoys better bandwidth utiliza-
tion and higher decryption speed. While compared to the CDWS scheme, our
extension has a simpler security proof.

– New lossy trapdoor function: As in [3, 13], our GM extension can also
be used to construct an efficient lossy trapdoor function, which inherits the
advantages of our GM extension.

– New circular and leakage resilient encryption: We also give an instan-
tiation of the subgroup indistinguishability (SG) assumption by using the e-th
power residue symbol. At CRYPTO 2010, Brakerski and Goldwasser [7] gave
a generic construction of circular and leakage resilient public key encryption
based on the SG assumption. Hence, we obtain a new circular and leakage
resilient encryption scheme. Compared to the scheme in [7], our scheme is
more efficient in terms of bandwidth utilization, due to the use of the e-th
power residue symbol instead of the Jacobi symbol.

The rest of this paper is organized as follows. In Section 2, we introduce some
definitions and preliminaries about the e-th power residue symbol. In what fol-
lows, we show how to compute the e-th power residue symbol defined in Section 2
efficiently. Some properties and a hardness assumption related to the e-th power
residue symbol are also analyzed and discussed in this section. After that, we
give our extension of the GM scheme and its security and performance analysis in
Section 4. In Section 5, we give two applications of our results on the e-th power
residue symbol following the methods described in [3, 7].
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2 Notations and Basic Definitions

2.1 Notations

For simplicity, we would like to introduce the notations used in this paper in
Table 1.

Table 1. Notations used in this paper.

Notation Description
K a number field
OK the ring of integers in a number field K
letters in mathfrak ideals in OK

a = b (mod D) the relation a− b ∈ D, where elements a, b ∈ OK

#X the cardinality of a set X
Xn the Cartesian product

∏n
i=1 X

⟨X⟩ the group generated by a set X

x
R← X x is sampled from the uniform distribution over a set X

⊗ the direct product of two algebraic structures
φ the Euler’s totient function
gcd(x, y) the greatest common divisor of x and y
lcm(x, y) the least common multiple of x and y
log the binary logarithm
ζe an e-th primitive root of unity, i.e., ζe =exp(2πi/e)
Zn the ring {0, 1, . . . , n− 1} of integers mod n
Z∗
n the multiplicative group {x ∈ Zn | gcd(x, n) = 1} mod n

p, q large prime numbers
N N = p · q
ep, eq ep|p− 1 and eq|q − 1

2.2 Power Residue Symbols

We say a prime ideal A in OK is prime to an integer e ≥ 1 if A - eOK . It
is easy to deduce that the corresponding necessary and sufficient condition is
gcd(Norm(A), e) = 1, where Norm(A) = # (OK/A). Then, we have

αNorm(A)−1 = 1 (mod A) (for α ∈ OK , α /∈ A).

Furthermore, if we have an additional condition that ζe ∈ K, then we have
that the order of group 〈ζe/A〉 generated in (OK/A)

× is e, and hence e|Norm(A)−
1. Now, we can define the e-th power residue symbol

(
α
A

)
e

as follows: if α ∈ A,
then

(
α
A

)
e
= 0; otherwise,

(
α
A

)
e

is the unique e-th root of unity such that(α
A

)
e
= α

Norm(A)−1
e (mod A).
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The definition can be naturally extended to the case that A is not a prime ideal,
such that A =

∏
i Bi and gcd(Norm(Bi), e) = 1. In particular, we define(α

A

)
e
=
∏
i

(
α

Bi

)
e

.

In the rest of this paper, we simply consider the case of K = Q(ζe), since we have
OK = Z[ζe] in this case. We suggest interested readers to refer to [19, 23, 25] for
more details about the power residue symbol.

2.3 Security Definition

A public key encryption is composed of three algorithms: the key generation
algorithm KeyGen, the encryption algorithm Enc, and the decryption algorithm
Dec. The IND-CPA security for a public key encryption is defined as follows:

Definition 1 (IND-CPA Security). The public key encryption scheme PKE
= (KeyGen, Enc, Dec) is said to be IND-CPA secure if for any probabilistic poly-
nomial time (PPT) distinguisher, given the public key pk generated by KeyGen,
and any pair of messages m0, m1 of equal length, the non-negative advantage
function ϵ(κ) in the security parameter κ for distinguishing c0 = Enc (pk,m0)
and c1 = Enc (pk,m1) is negligible, i.e., we have limκ→∞ P (κ) · ϵ(κ) = 0 for
every polynomial P .

3 Computation and Properties of the Power Residue
Symbol

In this section, we show how to compute the power residue symbol in some
circumstance and investigate some relative properties that we will employ in
this paper later.

3.1 Computing Power Residue Symbols

In this subsection, we show that computing the power residue symbol is equiv-
alent to solving the discrete logarithm problem if some specific conditions are
satisfied.

Before giving the proof, we would like to introduce the concept of non-
degenerate primitive (ep, eq)-th root of unity modulo N . Let µp and µq be primi-
tive roots modulo p and q respectively. We say an integer µ is a non-degenerate
primitive (ep, eq)-th root of unity modulo N if both the following two congru-
ences hold.

µ = µ
p−1
ep

α

p (mod p) for some α ∈ Z∗
ep , and

µ = µ
q−1
eq

β

q (mod q) for some β ∈ Z∗
eq .
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According to the result in [25, Proposition I.8.3], we have

pZ[ζep ] =
∏

i∈Z∗
ep

pi, Norm(pi) = p (i ∈ Z∗
ep), and

qZ[ζeq ] =
∏

j∈Z∗
eq

qj , Norm(qj) = q (j ∈ Z∗
eq ),

where pi = pZ[ζep ]+ (ζep −µi)Z[ζep ] and qj = qZ[ζeq ]+ (ζeq −µj)Z[ζeq ]. We will
write p = p1 and q = q1 for brevity.

With the notation µ and some integer α, we can establish Theorem 1 which
shows that computing

(
α
p

)
ep

is equivalent to solving the discrete logarithm in
the cyclic subgroup 〈µ〉 ⊂ Z∗

p of order ep. We can obtain a similar result for the
case of

(
α
q

)
eq

by analogy with Theorem 1.

Theorem 1.
(

α
p

)
ep

= ζxep ⇐⇒ µx = α
p−1
ep (mod p).

Proof. We give the proof in two parts as follows.

=⇒ From the definition of the power residue symbol and Norm(p) = p, we have
that

(
α
p

)
ep

= α
Norm(p)−1

ep = α
p−1
ep (mod p). Together with

(
α
p

)
ep

= ζxep , we

obtain that ζxep = α
p−1
ep (mod p). Furthermore, from the definition of p, we

have µ = ζep (mod p). Then, µx = ζxep = α
p−1
ep (mod p) is deduced. At

last, due to µx = α
p−1
ep (mod p) and (µx, α

p−1
ep ) ∈ Z2, we can finally get

µx = α
p−1
ep (mod p).

⇐= From µx = α
p−1
ep ( mod p), we have that µx = α

p−1
ep (mod p). Furthermore,

we have that
(

α
p

)
ep

= α
p−1
ep (mod p) and ζep = µ (mod p) as in the previous

case. Hence, we have that
(

α
p

)
ep

= α
p−1
ep = µx = ζxep (mod p) and

(
α
p

)
ep

=

ζxep .

This completes the proof. ut

It is well-known that the discrete logarithm problem is intractable in general
but quite easy in some special cases. For instance, when the order of the under-
lying finite cyclic group is smooth, i.e., it only contains small prime factors, the
discrete logarithm problem can be easily solved by virtue of the Pohlig-Hellman
algorithm [29]. In our case, if ep is chosen with appropriate prime factors, the
ep-th power residue symbol can be efficiently computed by virtue of the Pohlig-
Hellman algorithm. For the completeness, we describe the Pohlig-Hellman algo-
rithm for prime powers in Algorithm 1.
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Algorithm 1 Pohlig-Hellman algorithm for prime powers
Input: (g, y, p, sk), where p and s are primes, sk|p− 1, and the order of g in Z∗

p is sk.
Output: x = (xk−1, . . . , x0)s, where gx = y (mod p), x =

∑k−1
i=0 xis

i, and xi ∈ [0, s−1]
for i ∈ [0, k − 1].
1: y0 ← y

2: Find x0 ∈ Zs such that
(
gs

k−1
)x0

= ysk−1

0 (mod p).
3: for 1 ≤ i ≤ k − 1 do
4: yi ←− yi−1

(
g−si−1

)xi−1

mod p

5: Find xi ∈ Zs such that
(
gs

k−1
)xi

= ysk−i−1

i (mod p).
6: end for
7: return x = (xk−1, . . . , x0)s

Remark 1 (Hints for Optimization). From line 2 and line 5 in Algorithm 1, we
can see that values of

(
gs

k−1
)i

mod p for each i ∈ [0, s−1] are used repeatedly.
Hence, we can save the computational cost by pre-computing and storing these
values. Similar method can be also applied to g−si mod p for each i ∈ [0, k− 1]
to save more computational cost.

Furthermore, according to line 4 in Algorithm 1, we have that

ys
k−i−1

i =
(
yi−1

(
g−si−1

)xi−1
)sk−i−1

= ys
k−i−1

i−1

(
g−sk−2

)xi−1

(mod p).

We can save the cost of computing ys
k−i−1

i if we have known the value of ysk−i−1

i−1 ,
which can be recorded during the computing process of ysk−(i−1)−1

i−1 . However, this
optimization cannot be applied for every yi (i ∈ [0, k − 1]). It is because that
once the computation of ysk−i−1

i is based on the value of ysk−(i−1)−1

i−1 , there is no
ys

k−i−2

i for computing ys
k−i−2

i+1 . As a result, this optimization can only be applied
on the odd indices.

3.2 A New Assumption from Power Residue Symbols

In this subsection, we would like to give a new assumption named (ep, eq)-th
power residue (denoted as (ep, eq)-PR) assumption which will be used in our
proposed public key encryption in Section 4 and lossy trapdoor functions in
Section 5.1.

We set that ERe
N = {x|∃y ∈ Z∗

N , ye = x (mod N)} and

NR
(ep,eq)
N =

{
x

∣∣∣∣∣ x ∈ Z∗
N ,
(x
a

)
t
= 1,

(
x

p

)
ep

and
(
x

q

)
eq

are primitive
}
,

where N , ep, eq, p, and q are the same as those in Section 3.1, a = pq, and
t = gcd(p− 1, q − 1). We define the (ep, eq)-PR assumption as follows.
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Definition 2 ((ep, eq)-th Power Residue Assumption). Given a security
parameter κ and N, (ep, eq), µ, x, it is intractable to decide whether x is in
ER

lcm(ep,eq)
N or NR

(ep,eq)
N if x is chosen at random from ER

lcm(ep,eq)
N and NR

(ep,eq)
N .

Formally, the advantage Adv
(ep,eq)-PR
A (κ) defined as∣∣∣Prob [A (N, lcm(ep, eq), µ, x) = 1

∣∣∣ x R← ER
lcm(ep,eq)
N

]
−

Prob
[
A (N, lcm(ep, eq), µ, x) = 1

∣∣∣ x R← NR
(ep,eq)
N

]∣∣∣
is negligible for any PPT adversary A; the probabilities are taken over the exper-
iment of generating (N, (ep, eq), µ) with respect to the security parameter κ and
choosing at random x from ER

lcm(ep,eq)
N and NR

(ep,eq)
N .

Remark 2. It is easy to see that if we set t = 2, ep = 2 and eq = 1, the (ep, eq)-PR
assumption becomes the standard quadratic residuosity (QR) assumption with
gcd(p − 1, q − 1) = 2. Furthermore, if we set t = 2, ep = 2k and eq = 1, the
(ep, eq)-PR assumption becomes the Gap-2k-Res assumption with q = 3 (mod 4)
which has been used in [1] and [3]. From [3, Theorem 2], we note that the Gap-
2k-Res assumption with q = 3 (mod 4) solely relies on a QR-based assumption,
namely, the k-QR assumption.

3.3 Some Properties of Power Residue Symbols

In this subsection, we present some properties of the power residue symbol that
will be used in the design of circular and leakage resilient public key encryption
(especially for the instantiation of subgroup indistinguishability assumption) in
Section 5.2. Note that only in this subsection and Section 5.1, we require that
eq = ep = e.

If eq = ep = e, according to the result in [17], we have

ai = piqi, Norm(ai) = N, and NZ[ζe] =
∏
i∈Z∗

e

ai,

where pZ[ζe] =
∏

i∈Z∗
e
pi, Norm(pi) = p, qZ[ζe] =

∏
i∈Z∗

e
qi, Norm(qi) = q, and

ai = NZ[ζe] + (ζe − µi)Z[ζe] for each i ∈ Z∗
e. Let a = a1.

Let ERe
∆ = {x ∈ Z∗

N | ∃y, ye = x (mod ∆)}, Je
N =

{
x ∈ Z∗

N

∣∣ (x
a

)
e
= 1
}

,
and U =

{
ζie
∣∣ i ∈ [0, e− 1]

}
, where ∆ ∈ {p, q,N}. We have the following theo-

rems.

Theorem 2. Z∗
p/ER

e
p
∼= U ∼= Z∗

q/ER
e
q.

Proof. We would like to prove Z∗
p/ER

e
p
∼= U at first. Consider the homomorphism

θ : Z∗
p 7→ U defined by x 7→

(
x
p

)
e
. Since the number of the distinct roots of the

polynomial f(x) = x(p−1)/e − 1 over the field Z[ζe]/p is at most (p − 1)/e and
the cardinality of ERe

p is exactly (p − 1)/e, we know that an element z ∈ Z∗
p
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satisfying
(

z
p

)
e
= 1 must lie in ERe

p. Hence, we have that the kernel of θ is ERe
p,

i.e., the homomorphism τ : Z∗
p/ER

e
p 7→ U induced by θ is a monomorphism.

Furthermore, we know the cardinality of Z∗
p/ER

e
p equals to e, which is also the

value of the cardinality of U . As a result, Z∗
p/ER

e
p
∼= U .

Similarly, we can get Z∗
q/ER

e
q
∼= U . Hence, we accomplish the proof. ut

Theorem 3. If the condition gcd((p − 1)/e, e) = gcd((q − 1)/e, e) = 1 holds,
then there exists an integer ν satisfying the following properties.

– ν is a non-degenerate primitive (e, e)-th root of unity modulo N .
–
(

ν
ai

)
e
= 1 for every i ∈ Z∗

e.
– Je

N = 〈ν〉 ⊗ ERe
N .

Proof. The proof is given one by one.
– The condition gcd((p−1)/e, e) = gcd((q−1)/e, e) = 1 implies that there exist

integers sp ∈ Z∗
e, tp, sq ∈ Z∗

e, tq such that sp
p−1
e + tpe = sq

q−1
e + tqe = 1.

Let µp = µ (mod p) and µq = µ (mod q). We can get a non-degenerate
primitive (e, e)-th root of unity modulo N by the following congruences.

ν = µsp
p (mod p)

ν = µ−sq
q (mod q)

– When ν is generated as above, we have(
ν

p

)
e

=

(
µ
sp
p

p

)
e

=

(
ζ
sp
e

p

)
e

= ζ
p−1
e sp

e ,(
ν

q

)
e

=

(
µ
−sq
q

q

)
e

=

(
ζ
−sq
e

q

)
e

= ζ
− q−1

e sq
e .

Consequently, (ν
a

)
e
=

(
ν

p

)
e

(
ν

q

)
e

= 1.

Since ν ∈ Z, the result
(

ν
ai

)
e
= 1 for each i ∈ Z∗

e follows immediately from
Galois theory.

– To prove the last property we only need to prove that every element of Je
N

can be written as a product of two elements in 〈ν〉 and ERe
N respectively

since 〈ν〉 ∩ERe
N = {1}. For any x ∈ Je

N , since there exists j ∈ Ze such that(
νj

p

)
e
=
(

x
p

)
e

and
(

νj

q

)
e
=
(

x
q

)
e
, we have x = νjye (mod p) and x = νjze

(mod q) for some x ∈ Z∗
p and y ∈ Z∗

q from Theorem 2. Take w = y (mod p)

and w = z (mod q); then we have x = νjwe (mod N), as desired.
As a result, we obtain this theorem. ut

Remark 3. From Theorem 3, when e = 2, we derive the well-known result: JN
∼=

{−1,+1} ⊗QRN , where N is a Blum integer, JN =
{
x ∈ Z∗

N

∣∣ ( x
N

)
2
= 1
}

, and
QRN =

{
x
∣∣ ∃y ∈ Z∗

N , x = y2 (mod N)
}

.
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4 A New Homomorphic Public Key Cryptosystem

In this section, we present a natural extension of the GM scheme [18] by virtue of
the power residue symbol.

4.1 Description

KeyGen (1κ): Given a security parameter κ, KeyGen outputs the public and pri-
vate key pair as follows:

pk = {N, lcm(ep, eq), y} , sk = {p, q, ep, eq, µ} ,

where N = pq, ep|p−1, eq|q−1, p and q are large primes, ep and eq are smooth
integers, y is chosen randomly from NR

(ep,eq)
N , and µ is a non-degenerate

primitive (ep, eq)-th root of unity modulo N . Note that µ is generated by
definition.

Enc (pk,m): To encrypt a message m ∈ Zlcm(ep,eq), Enc picks a random r ∈ ZN

and returns the ciphertext

c = ymrlcm(ep,eq) mod N.

Dec (sk, c): Given the ciphertext c and the private key sk = {p, q, ep, eq, µ}, Dec
first computes zp and zq satisfying

(
c
p

)
ep

= ζ
zp
ep and

(
c
q

)
eq

= ζ
zq
eq by means

of Theorem 1. Then, Dec recovers the message m ∈ Zlcm(ep,eq) from

m = zpk
−1
p (mod ep) and m = zqk

−1
q (mod eq) (1)

via the Chinese Remainder Theorem with non-pairwise coprime moduli,
where kp, kq satisfying

(
y
p

)
ep

= ζ
kp
ep and

(
y
q

)
eq

= ζ
kq
eq respectively, can

be pre-computed.

Correctness. The correctness and the additive homomorphism property of the
above public key encryption can be easily obtained by the following arguments:

ζzpep =

(
c

p

)
ep

=

(
ymrlcm(ep,eq)

p

)
ep

=

(
y

p

)m

ep

= ζmkp
ep , and

ζzqeq =

(
c

q

)
eq

=

(
ymrlcm(ep,eq)

q

)
eq

=

(
y

q

)m

eq

= ζmkq
eq

Thus, we derive the formula (1). Since every message m ∈ Zlcm(ep,eq) corresponds
to the unique pair (α, β) ∈ Zep × Zeq such that m = α (mod ep) and m = β
(mod eq), the decryption algorithm recovers the unique m ∈ Zlcm(ep,eq) from the
formula (1). Furthermore, the scheme is homomorphic for the addition modulo
ℓ = lcm(ep, eq): if c0 = ym0rℓ0 (mod N) and c1 = ym1rℓ1 (mod N) are the ci-
phertexts of two messages m0 and m1 respectively, then c0 · c1 = ym0+m1(r0r1)

ℓ

(mod N) is a valid ciphertext of (m0 +m1) mod ℓ.
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4.2 Security Analysis

The security of the above public key encryption scheme can be obtained by the
similar security analysis as for the GM scheme.

Theorem 4. Our proposed public key encryption is IND-CPA secure under the
(ep, eq)-PR assumption.

Proof. Consider changing the distribution of the public key. Under the (ep, eq)-
PR assumption, we may choose y uniformly in ER

lcm(ep,eq)
N instead of choosing it

from NR
(ep,eq)
N , while this is done without noticing the adversary. In this case,

the ciphertext carries no information about the message and hence our proposed
public key encrypiton is IND-CPA secure. ut

4.3 Parameter Selection

As described in the algorithm KeyGen, p and q are large primes, p = 1 (mod ep),
q = 1 (mod eq), and both ep and eq only contain small prime factors. In prac-
tice, it would be preferable to choose p, q, ep, eq such that 0 ≤ log ep < log p

2 ,
0 ≤ log eq < log q

2 , where p and q are efficiently generated in a similar way
as in [3, Section 5.1]. The major difference is that the size of log ep + log eq is
bounded by logN

2 . The reason is provided by the following proposition related
to Coppersmith’s method for finding small roots of bivariate modular equations.

Proposition 1. [32, Lemma 8] Let p and q be equally sized primes and N = pq.
Let d be a divisor of φ(N) = (p− 1)(q − 1). If there exists a positive constant c
such that d > N

1
2+c holds, then there exists a PPT algorithm that given N and

d, it factorizes N .

Note that taking logN
4 < log ep+log eq < logN

2 does not contradict the setting
of Φ-Hiding Assumption [10] as the prime factors of φ(N) known to the public are
very small. However, log ep + log eq shall not be close to logN

2 because we don’t
know whether there exists an attack of mixing together Coppersmith’s attack and
exhaustive searches. In particular, if we take ep = 2k, eq = 1 and k > logN

4 , the
low-order logN

4 bits of p is revealed to an adversary, and hence it can factorize N
by implementing Coppersmith’s attack [16]. Therefore, if we choose ep and eq not
to be a power of 2 and to be coprime, we may handle messages at least twice as
long as the JL scheme does. The key generation algorithm also requires a random
integer y ∈ Z∗

N sampled from NR
(ep,eq)
N . We can use Theorem 2 and the following

fact for uniformly sampling integers in NR
(ep,eq)
N . Note that a random integer

in Z∗
N has a probability of exactly φ(ep)φ(eq)

epeq
of being in the set containing all

x ∈ Z∗
N whose symbols

(
x
p

)
ep

and
(

x
q

)
eq

are primitive. Let t = gcd(p−1, q−1).

We first choose at random an element x ∈ Z∗
N such that

(
x
p

)
t
= ζαt and

(
x
q

)
t
=

ζβt are primitive after several trials. Then, we can obtain a suitable element
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y ∈
{
γ ∈ Z∗

N

∣∣ (γ
a

)
t
= 1
}

from the relations y = x−(α−1 mod t)βzt (mod p) and
y = x (mod q), where z

R← Z∗
p. If y ∈ NR

(ep,eq)
N , we have done; otherwise, we

repeat the above steps until y is in NR
(ep,eq)
N .

4.4 Performance and Comparisons

The prominent operation in the JL scheme and our proposal is the modular
multiplications over Z∗

p, if the time for searching an item in a look-up table is
negligible. For decrypting a 128-bit message, the JL scheme, according to the
remark following [3, Algorithm 1], roughly needs

log p− 128 +
128(128− 1)

4
+

128

2
= log p+ 4000

modular multiplications on average. On the contrary, our proposal (specially
Algorithm 1 with optimization) only needs about

log p− 128 +

12∑
k=0

k is even

log(929k) + 128 ≈ log p+ 414

modular multiplications on average, when we set ep = 92913 > 2128 and eq = 1.
If N is taken as 2048 bits, the decryption of our proposal is approximately 3.5
times faster than that of the JL scheme. We note that both JL scheme and our
proposal can be used to encrypt a 128- or 256-bit symmetric key in a KEM/DEM
construction [30].

On the other hand, our proposal has the similar computational cost with the
CDWS scheme in algorithms Enc and Dec. The main difference between these two
schemes is the choice of y. In particular, in the setting of CDWS scheme, y is from{
y ∈ Z∗

N

∣∣∣ ∃(x, x′), y
p−1
ep = x (mod p), y

q−1
eq = x′ (mod q)

}
, which is contained

by NR
(ep,eq)
N . This means that we can obtain y more efficiently than the CDWS

scheme does. Furthermore, our security proof is much easier to follow due to the
choice of y.

5 More Cryptographic Designs Based on the Power
Residue Symbols

5.1 Lossy Trapdoor Functions

Lossy trapdoor functions (LTDFs) [28] were introduced by Peikert and Waters and
since then numerous applications emerge in cryptography. Informally speaking,
the LTDFs consist of two families of functions. The functions in one family are
injective trapdoor functions, while functions in the other family are lossy, that is,
the image size is smaller than the domain size. It also requires that the functions
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sampled from the first and the second family are computationally indistinguish-
able. Using the constructions in [28], one can obtain IND-CCA secure public key
encryptions. So far, the LTDFs are mainly constructed from assumptions such as
DDH [28], LWE [28], QR [17], DCR [17], and Φ-Hiding. [22].

Joye and Libert constructed LTDFs with short outputs and keys based on
the k-QR, k-SJS and DDH assumptions in [3]. Of course, it is an easy matter to
generalize their constructions, using our techniques based on the power residue
symbols. Hence, we only propose a new generic construction of the LTDFs and
the corresponding conclusions. We follow the definition of the LTDFs in [3] and
omit the security analysis since it proceeds in exactly the same way in [3].

InjGen(1κ): Given a security parameter κ, let ℓN , k and n (n is a multiple of
k) be parameters determined by κ. InjGen defines m = n/k and performs
the following steps.
1. Select smooth integers ep and eq such that k < log(lcm(ep, eq)) < ℓN/2.

Generate an ℓN -bit RSA modulus N = pq such that p − 1 = epp
′ and

q−1 = eqq
′ for large primes p, q, p′, q′. Pick at random µ a non-degenerate

primitive (ep, eq)-th root of unity modulo N and y
R← NR

(ep,eq)
N .

2. For each i ∈ {1, . . . ,m}, pick hi in ER
lcm(ep,eq)
N at random.

3. Choose r1, . . . , rm
R← Zp′q′ and compute a m×m matrix (Zi,j)i,j∈{1,...,m}

with

Zi,j =

{
y · hri

j mod N, if i = j;
hri
j mod N, otherwise.

Output the evaluation key and the secret key as follows:

ek = {N,Z} , sk = {p, q, ep, eq, µ, y}.

LossyGen(1κ): The process of LossyGen is identical to the process of InjGen,
except that

– Set Zi,j = hri
j mod N for each 1 ≤ i, j ≤ m.

– LossyGen does not output the secret key sk.
Evaluation(ek, x): Given ek =

{
N,Z = (Zi,j)i,j∈{1,...,m}

}
and a message x ∈

{0, 1}n, Evaluation parses x as a k-adic string x = (x1, . . . , xm) with xi ∈
Z2k for each i. Then, Evaluation computes and returns y = (y1, . . . , ym) ∈
(Z∗

N )m with yj =
∏m

i=1 Z
xi
i,j (mod N).

Inversion(sk,y): Given sk = {p, q, ep, eq, µ, y} and y = (y1, . . . , ym) ∈ (Z∗
N )m,

Inversion applies the decryption algorithm Dec(sk, yj) of the cryptosystem
in Section 4 for each yj to recover xj for j = 1 to m. Inversion recovers and
outputs the input x ∈ {0, 1}n from the resulting vector x = (x1, . . . , xm) ∈
Zm
2k .

Proposition 2. Let ℓ = n − log(p′q′). The above construction is a (n, ℓ)-LTDF
if the (ep, eq)-th power residue assumption holds and the DDH assumption holds
in the subgroup ER

lcm(ep,eq)
N .
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Clearly, our new proposed LTDFs outperform those in [3] in terms of the
decryption cost and the bandwidth exploitation. Specifically, our LTDFs have
ℓ = n − log(p′q′) > (n− ℓN ) + log ep + log eq bits of lossiness. Therefore, the
lossiness may also be improved since there are no known attacks against the
factorization of N when ℓN/4 < log ep+log eq < ℓN/2 and 0 ≤ log ep < log p

2 , 0 ≤
log eq < log q

2 .

5.2 Circular and Leakage Resilient Public Key Encryption

Brakerski and Goldwasser introduced the notion of subgroup indistinguishability
(SG) assumption in [7, Section 3.1]. They instantiated the SG assumption based
on the QR and the DCR assumptions and proposed a generic construction of
schemes which achieve key-dependent security and auxiliary-input security based
on the SG assumption. However, the scheme based on the QR assumption can
only encrypt a 1-bit message at a time. In this subsection, we will show how to
instantiate the SG assumption under another new hardness assumption named
e-th power residue assumption. In this way, the scheme becomes much more
efficient in bandwidth exploitation.

Definition 3 (Subgroup Indistinguishability Assumption [7]). Given a
security parameter κ, and three commutative multiplicative groups (indexed by κ)
GU , GM and GL such that GU is a direct product of GM (of order M) and GL (of
order L) where GM is cyclic and gcd(M,L) = 1. We require that the generator h
for GM is efficiently computable from the description of GU . We further require
that there exists a PPT algorithm that outputs IGU

= (OPGU
, SGM

, SGL
, h, T ) an

instance of GU , where OPGU
is an efficient algorithm performs group operations

in GU , SGM
, SGL

are efficient algorithms sample a random element from GM ,GL

respectively and T is a known upper bound such that T ≥M ·L. For any adversary
A we denote the subgroup distinguishing advantage of A by

SGAdv[A] =
∣∣∣Prob [A(1κ, x) ∣∣∣ x R← GU

]
− Prob

[
A(1κ, x)

∣∣∣ x R← GL

]∣∣∣
The subgroup indistinguishability assumption is that for any PPT adversary A
it holds that for a properly sampled instance IGU

, we have that SGAdv[A] is
negligible.

Now, we instantiate the SG assumption from the e-th power residue symbol.
Let e be a smooth integer. We sample a random RSA modulus N = pq such that
e = gcd(p− 1, q− 1) and gcd((p− 1)/e, e) = gcd((q− 1)/e, e) = 1. Let ERe

N and
Je
N be described as in Section 3.3. Then, there exists a ν ∈ Je

N \ER
e
N such that

Je
N = 〈ν〉 ⊗ ERe

N from Theorem 3. The groups Je
N , 〈ν〉 and ERe

N are of orders
φ(N)/e, e and φ(N)/e2 respectively. We denote φ(N)/e by N ′. The condition
gcd((p − 1)/e, e) = gcd((q − 1)/e, e) = 1 implicates that gcd(e, φ(N)/e2) = 1.
We define as follows the e-th power residue (e-PR) assumption which is similar
to the (ep, eq)-PR assumption defined previously.
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Definition 4 (e-th Power Residue Assumption). Given a security param-
eter κ. A PPT algorithm RSAgen (κ) generates a smooth integer e and a random
RSA modulus N = pq such that e = gcd(p − 1, q − 1) and gcd((p − 1)/e, e) =
gcd((q − 1)/e, e) = 1, and chooses at random µ a non-degenerate primitive
(e, e)-th root of unity modulo N . The e-th Power Residue (e-PR) assumption
with respect to RSAgen (κ) asserts that the advantage Adve-PR

A,RSAgen (κ) defined as∣∣∣Prob [A (N, x, e) = 1
∣∣∣ x R← ERe

N

]
− Prob

[
A (N, x, e) = 1

∣∣∣ x R← Je
N

]∣∣∣
is negligible for any PPT adversary A; the probabilities are taken over the exper-
iment of running (N, e, µ)← RSAgen (κ) and choosing at random x ∈ ERe

N and
x ∈ Je

N .
Since there exist efficient sampling algorithms that sample a random element
from ERe

N and Je
N according to Theorem 2 and Theorem 3, the e-PR assumption

leads immediately to the instantiation of the SG assumption by setting GU = Je
N ,

GM = 〈ν〉, GL = ERe
N , h = ν, and T = N ≥ eN ′. The corresponding encryption

scheme is presented as follows:
KeyGen (1κ): Given a security parameter κ, KeyGen selects a smooth integer e

and samples a random RSA modulus N = pq such that e = gcd(p− 1, q − 1)
and gcd((p− 1)/e, e) = gcd((q − 1)/e, e) = 1. KeyGen selects an integer ν as
in Theorem 3, and an ℓ ∈ N which is polynomial in κ. KeyGen also samples
s

R← (Ze)
ℓ and sets the secret key sk = s. KeyGen then samples g R← (ERe

N )
ℓ

and sets

g0 =

 ∏
1≤i≤ℓ

gi
si

−1

mod N.

The public key is set to be pk = {N, g0, g}.
Enc (pk,m): On inputting a public key pk = {N, g0, g} and a message m ∈ 〈ν〉,

Enc samples r
R←
{
1, 2, . . . , N2

}
and computes c = gr mod N and c0 =

m · gr0 (mod N). Enc returns the ciphertext (c0, c).
Dec (sk, c): On inputting the secret key sk = s and a ciphertext {c0, c}, Dec

computes and returns m = c0 ·
∏

1≤i≤ℓ c
si
i mod N .

6 Conclusion
In this paper, we have made natural extension on the GM cryptosystem by using
the e-th power residue symbol, where e is merely required to be smooth in
practice. Our proposals are also proved to be secure under new well-defined
assumptions. Furthermore, they inherit all advantages from the JL cryptosystem
and LTDFs, also enhance the decryption speed as well as the efficiency of the
bandwidth utilization.

When applied to the Brakerski-Goldwasser framework for building circular
and leakage resilient public key encryptions, our scheme takes advantages of
the e-th power residue symbol rather than the Jacobi symbol, thereby is more
efficient in bandwidth utilization.
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