
Ultra-Fast Modular Multiplication Implementation
for Isogeny-Based Post-Quantum Cryptography

Jing Tian, Jun Lin, and Zhongfeng Wang
School of Electronic Science and Engineering, Nanjing University, Nanjing, China

Email: jingtian nju@sina.com, {jlin, zfwang}@nju.edu.cn

Abstract—Supersingular isogeny key encapsulation (SIKE)
protocol delivers promising public and secret key sizes over other
post-quantum candidates. However, the huge computations form
the bottleneck and limit its practical applications. The modular
multiplication operation, which is one of the most computa-
tionally demanding operations in the fundamental arithmetics,
takes up a large part of the computations in the protocol.
In this paper, we propose an improved unconventional-radix
finite-field multiplication (IFFM) algorithm which reduces the
computational complexity by about 20% compared to previous
algorithms. We then devise a new high-speed modular multiplier
architecture based on the IFFM. It is shown that the proposed
architecture can be extensively pipelined to achieve a very high
clock speed due to its complete feedforward scheme, which
demonstrates significant advantages over conventional designs.
The FPGA implementation results show the proposed multiplier
has about 67 times faster throughput than the state-of-the-art
designs and more than 12 times better area efficiency than
previous works. Therefore, we think that these achievements will
greatly contribute to the practicability of this protocol.

Index Terms—Modular multiplication, supersingular isogeny
Diffie-Hellman (SIDH) key exchange, post-quantum cryptogra-
phy (PQC), hardware architecture, FPGA.

I. INTRODUCTION

The supersingular isogeny key encapsulation (SIKE) proto-
col submitted to the NIST in November 2017 [1] has won two
rounds of intense competitions, being one of the 26 candidates.
It is a competitive candidate for standardized PQC application
because it is the only one that resembles the classical ECC
with the features of very small public and secret keys and
providing perfect forward secrecy. The SIKE is developed
based on the supersingular isogeny Diffie-Hellman (SIDH)
key exchange, to enhance its anti-attack capability. The SIDH,
which is multiple orders of magnitude faster than previous
isogeny-based cryptosystems over ordinary curves, was first
introduced by Jao and De Feo in 2011 to resist quantum
attack based on the conjectured difficulty of finding isogenies
between supersingular elliptic curves [2]. The authors also
provided an extended version by adding a new zero-knowledge
identification scheme and detailed security proofs for the
SIDH protocol in [3]. The undeniable signatures based on
the SIDH were presented in [4]. In [5], the authors presented
a method for key compression which allows a reduction in
transmission costs of per-party public information by about
a factor of two with no effect on security. However, all of
these algorithms currently encounter difficulties in practical
applications because of the massive computations.

Recently, many researchers have focused on optimization
implementations for SIDH key exchange on hardware, such
as on FPGA [6]–[8] or on ARM [9], [10]. As one of the
most computationally demanding elements in the fundamental
arithmetics, the modular multiplication is the main concerned
issue in these designs on whatever platforms. Koziel et al. pro-
posed the first FPGA implementation for SIDH key exchange
by parallelizing the multipliers in [6] based on the high-radix
Montgomery multiplication for modular multiplication [11].
They further parallelized the multipliers to replace the inverter
and improve the whole speed of SIDH in [7]. Inspired by the
efficient finite field multiplication (EFFM) algorithm for SIDH
proposed in [12], Liu et al. presented two new modular mul-
tipliers, the FFM1 and FFM2 [8] based on an unconventional
radix, both of which achieve several times faster speed than
the original EFFM. Besides, the SIDH is also implemented on
ARM-embedded systems. In [9], Seo et al. proposed a unified
ARM/NEON multi-precision multiplication on ARM based on
specialized Montgomery reduction to accelerate the modular
multiplications, and integrated it to the SIDH library [13] to
speed up the original ARM design. In [10], Jalali et al. imple-
mented the optimized field arithmetic operations on ARM for
the SIKE protocol. Actually, much progress has been made
to speed up the SIKE candidate and make it more practical.
Nevertheless, the software and hardware implementations for
this candidate still show more than one order of magnitude
slower than those for other PQC candidates.

In this paper, we propose an improved unconventional-radix
finite-field multiplication (IFFM) algorithm for SIDH, as the
modular algorithms based on the unconventional radix [8],
[12], [14] shows more efficiency than the conventional al-
gorithms [15], [16]. The mathematical analysis shows that
the proposed algorithm reduces computations by about 20%
compared to the FFM1 which is the fastest algorithm in
previous ones. Additionally, a new architecture for the IFFM is
devised with a fully paralleling and pipelining scheme, where
only one clock cycle is required to process a pair of inputs
and each sub-module is utmostly optimized. We use a specific
order of Karatsuba to optimize every multiplier and design
the constant multipliers by using left shifters and adders. All
these submodules are fully in use with exactly adapted data
widths. We also code the proposed architecture with RTL
and implement it on the Vertex-7 FPGA. The implementation
results show that the proposed design achieves about 67 times
faster throughput than the state-of-the-art designs and more

than 12 times better area efficiency than previous works.
The rest of this paper is organized as follows. Section II

gives a brief review of two classical modular multiplication al-
gorithms, and three efficient modular multiplication algorithms
for specific forms of prime. The proposed IFFM algorithm and
the complexity comparisons with previous works are presented
in Section III. In Section IV, the architecture for the proposed
algorithm is devised. The FPGA implementation results and
comparisons are provided in Section V. Section VI concludes
this paper.

II. BACKGROUND

A. Montgomery Reduction

The Montgomery reduction [15] is shown in Alg. 1. The
algorithm transfers the numbers modulo P to modulo R such
that numbers modulo R are inexpensive to process. As the
computation complexity of numbers modulo R is negligible,
we will not take this kind of computations into account in
the following calculation. Therefore, this algorithm totally
costs 2 N × N multiplications, 1 2N + 2N and 1 N + N
adders. The complexity is only related to the bit width of
P . The drawback is that the output residue is not c mod P
but cR−1 mod P . This can be compensated by converting
the inputs into Montgomery presentations by multiplying R,
and all of the arithmetic operations can be normally used. If
an algorithm requires many multiplications and divisions, this
conversion overhead will become negligible. Therefore, the
Montgomery reduction is widely used in many complicated
cryptosystems, like the SIDH [6], [7], [9].

Algorithm 1: The Montgomery reduction [15].

Input: 0 ≤ c < RP < 22N , where R = 2N and
2N−1 < P < 2N ; precompute P ′ = (−P−1) mod R.

1: t = ((c mod R)P ′) mod R
2: r = (c+ t · P)/R
3: if r ≥ P then
4: r = r − P
5: end if

Output: r = cR−1 mod P .

B. Barrett Reduction

The Barrett reduction is another efficient algorithm proposed
by Paul Barrett in 1986 [16]. This algorithm can be described
as in Alg. 2. The key idea is to transfer the complex division
to a simpler one. Since adding or multiplying one number by
a single-bit number is very easy, these kinds of operations are
not counted in this paper. This algorithm requires 1 2N×(N+
1) and 1 N(N + 1) multiplications, and 1 2N + 2N and 1
N +N adders. It should be pointed out that the complexity is
changed with the input width. When the width of the input is
the double of that of P , the multiplicative complexity of this
algorithm is almost 1.5 times of the Montgomery reduction.
The advantage is that it can directly obtain the quotient and
remainder.

Algorithm 2: The Barrett reduction [16].

Input: 0 ≤ c < 22N ; λ = b22N/P c.
1: q = b c·λ

22N
c

2: r = c− q · P
3: if r ≥ P then
4: r = r − P , q = q + 1
5: end if

Output: q = bc/P c, r = c mod P .

C. Modular Multiplication for Modulus Q = 2 · 22x32y − 1

In [12], the authors proposed a modification based on the
Barrett reduction for modulus P = 2x3y . The process is
summarized in Alg. 3, where 2x ≈ 3y , namely N1 +N2 = N
and N1 ≈ N2 ≈ N/2. The modulus P is easily split into
two parts: 2x and 3y . Since the cost of numbers modulo
2x is negligible, the cost is mainly for modulo 3y . The
addition in Step 4 can be easily implemented by using one
shifting operation. This algorithm costs 1 3N/2(N +1) and 1
N/2(N+1) multiplications, and 1 3N/2+3N/2 and 1 N+N
adders. The complexity of multiplication of this algorithm is
almost the same as that of the Montgomery reduction, while
the complexity of addition is reduced. In brief, this reduction
algorithm is more efficient than the other two algorithms.

Algorithm 3: The Barrett reduction (BR) for modulus
P = 2x3y [12].
Input: c ∈ N+, 0 ≤ c < 22N ; P ′ = P/2x = 3y , where

x = N1 and dlog2(3y)e = N2; λ = b22N/P c.
1: t = bc/2N1c, s = c mod 2N1

2: q = b t·λ
22N−N1

c
3: r = t− q · P ′
4: r = r � N1 + s
5: if r ≥ P then
6: r = r − P , q = q + 1
7: end if

Output: q, r.

The modular multiplication algorithm called EFFM pro-
posed in [12] is concluded in Alg. 4. Based on the uncon-
ventional radix P , it reduces the modulus Q to P using an
interleaved way, where Q = 2 · 22x32y − 1 and P = 2x3y .
The two input integers 0 ≤ A,B < Q are expressed as in
quadratic polynomials, such as A = a2P

2 + a1P + a0 for
a2 ∈ {0, 1} and 0 ≤ a1, a0 < P . We divide the process of the
modular multiplication into three parts: 1) the first tentative
computing; 2) the second tentative computing; and 3) post
processing as shown in Alg. 4. In the first part, according to
the rules provided in [12], the higher order (larger than two
orders) terms are reduced and merged with the lower order
terms. The common items are firstly calculated and the merged
coefficients are temporarily saved in c2, c1, and c0. The second
part is to further reduce the tentative results by adopting the
BR function as presented in Alg. 3, where input c is divided

Algorithm 4: The modular multiplication proposed in
[12].

Input: A = a2P
2 + a1P + a0, B = b2P

2 + b1P + b0;
Q = 2 · 22x32y − 1 = 2P 2 − 1;
2N−1 < Q < 2N , P < 2N/2.
1) The first tentative computing:
Common items:

1: t1 = a2b1 + a1b2, t2 = a2b0 + a1b1 + a0b2
Results:

2: c2 = t2 mod 2, c1 = b t12 c+ a1b0 + a0b1,
c0 = (2−2 mod Q)a2b2 + a0b0 + (t1 mod 2)P2 + b t22 c
2) The second tentative computing:
Reduction:

3: [q0, r0] = BR(c0, P)
4: [q1, r1] = BR(c1 + q0, P)

Common item:
5: t = q1 + c2

Results:
6: c2 = t mod 2, c1 = r1, c0 = b t2c+ r0

3) Post processing:
Normalization:

7: while c0 ≥ P do
8: c0 = c0 − P
9: c1 = c1 + 1

10: if c1 == P then
11: c0 = c2 + c0, c1 = 0, c2 = 1− c2
12: end if
13: end while
Output: C = A×B mod Q = c2P

2 + c1P + c0.

by P , obtaining the quotient q and remainder r. In Step 3 of
Alg. 4, c0 is reduced to q0 and r0. In the next step q0 is added
to c1 and the sum is reduced to q1 and r1. This algorithm
takes 4 N/2×N/2, 2 3N/4(N/2+ 1), and 2 N/4(N/2+ 1)
multiplications, and 6 N/2+N/2, 2 3N/4+3N/4, 3 N/2+N ,
and 3 N +N additions.

The FFM1 in [8] removes the coefficients a2 and b2 of the
inputs of Alg. 4, taking input A for example, by using the
following formula:

ai =

{
ai, a2 = 0

P − ai − 1, a2 = 1
, i = {1, 0}. (1)

The inverse transformation for the output is almost the same
as this equation except c2 = a2̂ b2. This modification can
efficiently avoid to precompute the number 2−2 mod Q.
The number of multiplications is the same as before, and it
takes 10 N/2 + N/2, 2 3N/4 + 3N/4, 1 N/2 + N , and 2
N +N additions. Since the transformation for the inputs and
output costs more extra additions, the reduction of additions is
limited. The authors in [8] also proposed the FFM2 algorithm
to expand the modulus P with the form of f · 2x3y± 1 where
x and y can be even or odd, and f is a small positive integer.
It costs 1 N ×N , 1 3N/2× (N + 1), and 1 N/2× (N + 1)
multiplications, and 2 N +N , and 1 3N/2+3N/2 additions.

It is clear that the FFM2 is inherently slower than the FFM1
when comparing the two multiplication counts.

III. PROPOSED IFFM ALGORITHM

A. Improved Barrett Reduction

Reducing the complexity of the BR function can effectively
improve the speed of the modular multiplication. In the
following, we will introduce two optimization methods to the
BR for higher hardware efficiency.

Firstly, the subtraction and multiplication operations in
Step 3 of Alg. 3 is further simplified. We observe that the
tentative residue r is smaller than 2P ′. Since P ′ < 2N2 , r
is smaller than 2N2+1. Thus the (2N − N2 − 1) MSBs of
c and those of q · P are either equal to each other or with
a difference of 1. Therefore, the sizes of the subtraction and
multiplication can be reduced to N2+N2 and (N2+1)×N2,
respectively. If the (N2 +1)-th MSBs of the two numbers are
not equal, the residue r would be added by the parameter 2N2 .
In the hardware design, this addition is actually unnecessary
by taking advantage of the feature of hardware computing, for
which more details will be introduced in the next section. Since
N2 ≈ N/2 < N , the reduction in complexity is significant.

Secondly, for modulus P = 2x3y , the size of the subtraction
in Step 6 of Alg. 3 can be reduced from N +N to N2 +N2

by moving Step 4 to the end.
Based on the optimization methods introduced above, the

improved Barrett reduction (IBR) only require about 1 3N/2×
(N +1) and 1 N/2× (N/2+1) multiplications, and 3 N/2+
N/2 additions. In the hardware implementation, the number of
adders can be reduced to two. The complexity of multiplication
is reduced by about 12.5% and that of addition by about 40%.

B. Proposed Modular Multiplication

The IFFM is proposed in this section based on the FFM1 [8]
which is the most efficient modular multiplication algorithm
among the state-of-the-arts. As shown in Alg. 5, the map
function is calculated by Eq. (1) and the IBR function is
introduced above. As analyzed in Section II-C, the input c of
the IBR is smaller than 2P 2−P < 22·N/2+1, so the maximum
data width of this function is N + 1. Besides, the number of
multiplications is further reduced by using the formula:

a1b0 + a0b1 = (a1 + a0)(b1 + b0)− a0b0 − a1b1. (2)

Therefore, the proposed IFFM only needs 2 N/2 × N/2, 1
(N/2 + 1) × (N/2 + 1), 2 3N/4 × N/2, and 2 N/4 × N/4
multiplications, and 6 N/4+N/4, 10 N/2+N/2, 1 N/2+N ,
and 3 N +N additions.

Assume that the upper bound of the input multiplier and
multiplicand is 2N and the modulus P satisfies 2N−1 <
P < 2N . For a fair comparison, the multiplication part
is also included for the Montgomery and Barrett modular
multiplication algorithms, abbreviated as MontM and BarM
algorithms, respectively. Usually, N is as large as several
hundred for public-key elliptic cryptographic algorithms. So
the number of bits like N + 1 is approximated to N . The
N + N/2 addition, which can be split as one N/2 + N/2

Map

Map

Mul

Mul

Mul

IBR

IBR

Post_
Paral

Post_
proc

Demap

ܽ2
ܽ1
ܽ0

ܾ2
ܾ1
ܾ0

ܿ2

ܿ1

ܿ0

-

-

ܽ1

ܽ0

ܾ1

ܾ0

ܿ2
0

ܿ1
0

ܿ0
0

1ݎ
0

1ݍ
0

0ݎ
0ݍ

 1ݍ

 1ݎ

ܿ2
1

ܿ1
1

ܿ0
1

ܿ2
2

ܿ1
2

ܿ0
2

Fig. 1. The proposed top-level architecture.

Algorithm 5: The proposed IFFM.

Input: A = a2P
2 + a1P + a0, B = b2P

2 + b1P + b0;
Q = 2 · 22x32y − 1 = 2P 2 − 1;
2N−1 < Q < 2N , P < 2N/2.
1) The first tentative computing:
mapping:

1: for i = {1, 0} do
2: ai = map(ai, a2), bi = map(bi, b2)
3: end for

Multiplication items:
4: m1 = a1b1, m2 = a0b0, m3 = (a1 + a0)(b1 + b0)

Results:
5: c2 = m1 mod 2, c1 = m3 −m1 −m2, c0 = m2 + bm1

2 c
2) The second tentative computing:
Reduction:

6: [q0, r0] = IBR(c0, P)
7: [q1, r1] = IBR(c1 + q0, P)

Common item:
8: t = q1 + c2

Results:
9: c2 = t mod 2, c1 = r1, c0 = b t2c+ r0

3) Post processing:
Normalization:

10: if c0 ≥ P then
11: c0 = c0 − P , c1 = c1 + 1
12: if c1 == P then
13: c0 = c2 + c0, c1 = 0, c2 = (1− c2)
14: end if
15: end if

demapping:
16: t = a2 ˆb2
17: c2 = c2ˆt, c1 = map(c1, t), c0 = map(c0, t)
Output: C = A×B mod Q = c2P

2 + c1P + c0.

and one N/2 + 1 additions, is approximately treated as one
N/2+N/2 addition. Besides, the complexities of addition and
multiplication grow linearly and quadratically with the data
width of the input, respectively. Thus, the numbers of additions
and multiplications can be normalized to those of N + N
additions and N ×N multiplications as shown in Table I, re-
spectively. It can be seen that the proposed IFFM consumes the
fewest number of multiplications and the number of additions
is fewer than the EFFM’s and FFM1’s. Since a multiplication
operation is much slower than an addition operation with the
same size and the total numbers of normalized additions of

TABLE I
COMPARISONS OF THE NUMBERS OF NORMALIZED N +N ADDITIONS

AND N ×N MULTIPLICATIONS FOR DIFFERENT ALGORITHMS

MontM
[15]

BarM
[16]

EFFM
[12]

FFM1
[8]

FFM2
[8] IFFM

Norm.
(N +N) 3 3 9 9 3.5 10

Norm.
(N ×N) 3 4 2 2 3 1.625

these algorithms are negligible compared to N , we can only
take the multiplication numbers into consideration for the total
computational complexity. Therefore, the proposed IFFM has
the best performance among them, about 1.23 times faster than
the state-of-the-art algorithms — the EFFM and FFM1.

IV. HARDWARE ARCHITECTURE

The top-level architecture is shown as in Fig. 1. The feed-
forward procedure is adopted and several pipeline stages are
inserted so that the modular multiplier can be completed in
only one cycle with a reasonable clock frequency and every
part can be fully optimized. From Fig. 1, we can see that
besides the explicit adders, the proposed modular multiplier
architecture is composed of six modules: 1) map; 2) Mul; 3)
IBR; 4) Post Paral; 5) Pros Proc; and 6) demap. They will
be detailed in the following.

Map This module is used to map three items into two
items. As computers use complement numbers to implement
subtraction, Eq. (1) for a2 = 1 can be reformulated as:

api = P + (−ai)− 1 = P + (ai)comp − 1

= P + ((ai)inv + 1)− 1

= P + (ai)inv, i = {1, 0} (3)

where the subscripts comp and inv represent the two’s and
ones’ complements of ai, respectively. By using this formula
transformation, one adder can be reduced and the proposed
architecture of this module is presented as in Fig. 2.

1

0

0

1

ܽ2

ܽ1

ܽ0

ܽ1

ܽ0

Fig. 2. The Map module.

Mul This module occupies the most hardware resources and
the critical path of the whole design usually exists here. The-
oretically, the Karatsuba decomposition can infinitely reduce
the complexity of multipliers. However, the other overheads
usually quickly increase along with the growing orders. The
number of orders of such decomposition is specifically de-
signed for the proposed module. We have carefully devised
them and made a good tradeoff between speed and resource
consumption.

IBR The proposed architecture is shown in Fig. 3. After
a variable c, ranging from 0 to 22N − 1, is input in this
module, it is split into two parts – the N1 LSBs saved in
cL and the other 2N −N1 bits in cH . The former part can be
directly served as a part of the remainder r. The latter part
should be further solved as the following. Firstly, variable
cH is multiplied by the constant value λ using a constant
multiplier cMul 0 and a tentative quotient q0 is output. Note
that a constant multiplier can be implemented by shifters
and adders instead of a normal multiplier. In that case, the
hardware resources can be significantly reduced and fully
utilized, and the data path can be efficiently shortened. On

cMul 0 cMul 1
′ܲ ߣ

ܲ′
-

- 0

0

1

1
2N

N1

2N-N1

N

N+1

ܮܿ

ܪܿ
0ݍ

N2+1

N20ݍ
ܮ

N2+1

ܿܽ

ܮܪܿ
N2

0ݍ
1ݍ

N+1

N+1

0ݎ N2+1

1ݎ
N2

1

N2

ܪݎ

ܮݎ
N

1ܰ 2ܰ ൌ ܰ,
1ܰ ൎ 2ܰ

Note:

N2+1
N2+1

Fig. 3. The IBR module.

the other hand, as only the N + 1 MSBs are required to be
computed and used, this unit can be further optimized when
using the Karatsuba algorithm. Then, the tentative quotient
q0 needs to be multiplied by the modulus P ′, which is also
implemented by a constant multiplier cMul 1. The output is
an approximation to cH , denoted as ca. Since the number of
remaining bits of the remainder is only N2 = N − N1, we
can deduce that the N MSBs of ca and cH are equal to each
other or with a difference of 1. By making using of the feature
of the hardware computer, we only use the N2 + 1 LSBs of
cH minus those of ca to get the tentative remainder r0, where
the data width of the subtracter is reduced from 2N −N1 to
N2 + 1. Stepping back to cMul 1, as only the N2 + 1 LSBs
of ca need to be output, we abandon the N1 − 1 MSBs of q0
and only put the N2+1 LSBs of q0 into cMul 1 to reduce the
complexity. Additionally, averagely dividing the inputs into
two parts can further reduce the hardware complexity and
data path, as the sub-multiplier with two MSB-items can be
omitted. Finally, the quotient q and the partial remainder rH
are selected from the corresponding tentative values and their
modifications based on whether r0 is larger than P ′. The final
result of r is obtained by directly combining the rL and rH
together. Pipelines can be inserted to reduce the critical path
and increase the clock speed.

Post Paral In order to limit the whole latency, c01 and c00 are
separately processed by two IBR modules in parallel. However,

1ݍ
0

1ݎ
0

 0ݍ

1ݍ

1ݎ

- -

0
1

1
0

0
1

1
0

Fig. 4. The Post Paral module.

their outputs need to be further merged. A flow chart of such
parallel execution is preliminary presented in [12]. If it is
directly implemented, five adders, two comparators, and four
multiplexers will be cost, and the critical path will be three
adders, two comparators, and two multiplexers. Therefore, we
follow this idea and further improve it. The architecture is
proposed in Fig. 4. We can see that the comparators are totally
removed, and the critical path is only three adders and one
multiplexer.

= ܿ2
1

ܿ1
1

ܿ0
1

ܿ2
2

ܿ1
2

ܿ0
2

1
0

-

1

0

0

1

1

0

Fig. 5. The Post Proc module.

Post Proc This module is to meet the constraints c2 ∈
{0, 1} and 0 ≤ c1, c0 < P . Meanwhile, all cases must
be considered. The devised architecture is shown in Fig. 5.
Since c10 is smaller than 2P , only one P should be subtracted.
If P ≤ c10 < 2P , c11 will be required to be added by 1.
Considering 0 ≤ c11 < P , the case c12 = P − 1 is different
from the others and should be discussed separately. In that
case, c11 will be equal to 0 and c12 will be added by 1. If c12 is
also equal to 1, it will be added to the final result of c20. The
total process is covered in Fig. 5. In order to optimize the data
path, the left two adders and the comparator are processed in
parallel, and the critical path is two adders and one multiplexer.

0

1

0

1

0

1

ܿ2

ܿ1

ܿ0

ܿ2
2

ܿ1
2

ܿ0
2

ܽ2
ܾ2

Fig. 6. The Demap module.

Demap The last step is to map the final results back to
normal. The demapping is shown in Fig. 6 referred to as
Demap module. The architecture of this module is the same

as that of the Map module except the one more output and
the control signals.

V. IMPLEMENTATION RESULTS

The Xilinx Vivado 2016.4 EDA platform is adopted in
FPGA implementation. The adopted SIDH-friendly prime
modulus is p = 2 · 23863242 − 1, targeting the 128-bit post-
quantum security level (PQSL). The proposed algorithm is
implemented on the Virtex-7 xc7vx690tffg1157-3 board. There
are totally 18 pipeline stages inserted to optimize the clock
frequency fclk. Since the proposed design is completely feed-
forward, it actually takes 1 clock cycle (CC) to process one
pair of inputs with a latency of 18 CCs. The comparisons
with previous algorithms implemented on FPGA are listed in
Table II. It is clear that we achieve the fastest speed, about
66 times faster than the state-of-the-art design. To make a
fairer comparison, we try to replace the DSP and BRAM with
LUT equivalently. According to the performance and resource
utilization of IP for Multiplier v12.0 announced by Xilinx [17],
it can be found that whatever device families are used will not
influence the number of LUTs, DSPs, or BRAMs. Thus we
have designed sufficient experiments and found that under the
same circumstance for a multiplier implementation, 1 DSP
is equivalent to 249 LUTs and 1 BRAM is about equal to
50 LUTs. The equivalent LUTs (ELUTs) are calculated and
listed as shown in the table. The throughput is computed
as throughput = N×fclk

CCs and the area efficiency (AE) is
defined as AE = throughput

ELUTs . It can be seen that our design
achieves the fastest throughput and the best AE, about 67 times
faster and 12 times better than the state-of-the-art designs,
respectively.

TABLE II
COMPARISONS OF MODULAR MULTIPLIERS FOR MODULUS

Q = 2 · 23863242 − 1 IMPLEMENTING ON FPGA

Algorithms EFFM [12] FFM1 [8] FFM2 [8] IFFM
Platform Virtex-6 Kintex-7 Kintex-7 Virtex-7

FFs 11,924 9,675 11,635 38,976
LUTs 12,790 16,627 33,051 63,173
DSPs 0 122 529 729

BRAMs 0 0 0 574
ELUTs1 12,790 47,005 164,772 273,394

fclk (MHz) 31 55 25 60
CCs 236 64 28 1

Time (ns) 7,613 1,164 1,120 17
Throughput

(Mb/s) 101 663 688 46,260

AE
(Kb/(s·ELUT)) 8 14 4 169

1 #ELUTs = #LUTs + 249×#DSPs + 50×#BRAMs.

VI. CONCLUSION

In this paper, we have presented a low-complexity modular
multiplication algorithm called IFFM for the SIKE protocol. A
fully paralleling architecture was proposed based on the IFFM.
Many optimization methods, such as smart formula transfor-
mation and novel architectural techniques, were introduced
and applied to this design. Hardware implementation results

have shown the proposed design is much more efficient than
prior arts.

VII. ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 61604068 and
and Grant 61774082 in part by the Fundamental Research
Funds for the Central Universities under Grant 021014380065.
(Corresponding authors: Jun Lin; Zhongfeng Wang.)

REFERENCES

[1] R. Azarderakhsh, M. Campagna, C. Costello, L. Feo, B. Hess, A. Jalali,
D. Jao, B. Koziel, B. LaMacchia, P. Longa et al., “Supersingular
isogeny key encapsulation,” Submission to the NIST Post-Quantum
Standardization project, 2017.

[2] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,” in International Workshop on
Post-Quantum Cryptography. Springer, 2011, pp. 19–34.

[3] L. De Feo, D. Jao, and J. Plût, “Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies,” Journal of Mathemat-
ical Cryptology, vol. 8, no. 3, pp. 209–247, 2014.

[4] D. Jao and V. Soukharev, “Isogeny-based quantum-resistant undeniable
signatures,” in International Workshop on Post-Quantum Cryptography.
Springer, 2014, pp. 160–179.

[5] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, “Key
compression for isogeny-based cryptosystems,” in Proceedings of the
3rd ACM International Workshop on ASIA Public-Key Cryptography.
ACM, 2016, pp. 1–10.

[6] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-quantum
cryptography on fpga based on isogenies on elliptic curves,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 1,
pp. 86–99, 2017.

[7] B. Koziel, R. Azarderakhsh, and M. M. Kermani, “A high-performance
and scalable hardware architecture for isogeny-based cryptography,”
IEEE Transactions on Computers, vol. 67, no. 11, pp. 1594–1609, 2018.

[8] W. Liu, J. Ni, Z. Liu, C. Liu, and M. O’Neill, “Optimized modular mul-
tiplication for supersingular isogeny diffie-hellman,” IEEE Transactions
on Computers, pp. 1–1, 2019.

[9] H. Seo, Z. Liu, P. Longa, and Z. Hu, “Sidh on arm: faster modular multi-
plications for faster post-quantum supersingular isogeny key exchange,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 1–20, 2018.

[10] A. Jalali, R. Azarderakhsh, and M. M. Kermani, “Neon sike: supersin-
gular isogeny key encapsulation on armv7,” in International Conference
on Security, Privacy, and Applied Cryptography Engineering. Springer,
2018, pp. 37–51.

[11] T. Blum and C. Paar, “High-radix montgomery modular exponentiation
on reconfigurable hardware,” IEEE transactions on computers, vol. 50,
no. 7, pp. 759–764, 2001.

[12] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Efficient
finite field multiplication for isogeny based post quantum cryptography,”
in International Workshop on the Arithmetic of Finite Fields. Springer,
2016, pp. 193–207.

[13] C. Costello, P. Longa, and M. Naehrig, “SIDH library,”
https://github.com/Microsoft/PQCrypto-SIDH, 2016-2019.

[14] J. Bos and S. Friedberger, “Arithmetic considerations for isogeny based
cryptography,” IEEE Transactions on Computers, 2018.

[15] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[16] P. Barrett, “Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor,” in Conference
on the Theory and Application of Cryptographic Techniques. Springer,
1986, pp. 311–323.

[17] Xilinx, “Performance and resource utilization for multiplier v12.0,” http-
s://www.xilinx.com/support/documentation/ip documentation/ru/mult-
gen.html.

