
A preliminary version of this paper appears in the proceedings of the 39th International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT 2020), c© IACR 2020. This is the full version.

Signatures from Sequential-OR Proofs

Marc Fischlin Patrick Harasser Christian Janson

Cryptoplexity, Technische Universität Darmstadt, Germany
{marc.fischlin, patrick.harasser, christian.janson}@cryptoplexity.de

Saturday 29th February, 2020

Abstract. OR-proofs enable a prover to show that it knows the witness for one of many statements, or
that one out of many statements is true. OR-proofs are a remarkably versatile tool, used to strengthen
security properties, design group and ring signature schemes, and achieve tight security. The common
technique to build OR-proofs is based on an approach introduced by Cramer, Damgård, and Schoen-
makers (CRYPTO’94), where the prover splits the verifier’s challenge into random shares and computes
proofs for each statement in parallel.

In this work we study a different, less investigated OR-proof technique, put forward by Abe, Ohkubo,
and Suzuki (ASIACRYPT’02). The difference is that the prover now computes the individual proofs
sequentially. We show that such sequential OR-proofs yield signature schemes which can be proved
secure in the non-programmable random oracle model. We complement this positive result with a
black-box impossibility proof, showing that the same is unlikely to be the case for signatures derived
from traditional OR-proofs. We finally argue that sequential-OR signature schemes can be proved secure
in the quantum random oracle model, albeit with very loose bounds and by programming the random
oracle.

Keywords. Sequential-OR proofs · Zero-knowledge · Signatures · Non-programmable random oracle
model · Quantum random oracle model

1

Contents
1 Introduction 3

1.1 OR-Proofs . 3
1.2 Applications of OR-Proofs . 3
1.3 Non-Programmable Random Oracles . 4
1.4 Sequential-OR Proofs . 5
1.5 Our Results . 5
1.6 Further Related Work . 6
1.7 Extension to the Quantum Random Oracle Model . 7

2 Preliminaries 7
2.1 Basic Notation . 7
2.2 Random Oracle Model . 8
2.3 Languages and Relations . 8
2.4 Interactive Protocols . 10
2.5 3PC-Protocols and Σ-Protocols . 12

3 Parallel-OR Proofs 14
3.1 Protocol . 14
3.2 Parallel-OR Signatures . 16

4 Sequential-OR Proofs 17
4.1 Protocol . 17
4.2 Sequential-OR Signatures . 18
4.3 Example: Post-Quantum Ring Signatures . 21

5 Impossibility of parallel-OR Signatures in the Non-Programmable Random Oracle
Model 21

6 Security in the Quantum Random Oracle Model 27

A Additional Preliminaries 36
A.1 The Fiat-Shamir Heuristic . 36
A.2 Digital Signature Schemes . 36

B Proof of Theorem 4.1 38

C Proof of Theorem 4.2 46

D Sequential-OR Proofs: The 1-out-of-n case 50

E Example: Tight Signatures in the Non-Programmable Random Oracle Model 52

F Security Proof in the Quantum Random Oracle Model 53
F.1 Connecting Signature Forgeries and Measure-and-Reprogram 53
F.2 Proving Sequential-OR Signatures . 54

2

1 Introduction
In a zero-knowledge Σ-protocol between a prover P and a verifier V, the prover holds a statement x and
a witness w for x, and the verifier only x. Both parties engage in an interactive execution, resulting in
an initial commitment com sent by the prover, a verifier random challenge ch, and a final response resp
computed by the prover. With such a proof, P shows to V that x is true (in proof systems), or that it knows
a witness w for x (in proofs of knowledge). At the same time, the zero-knowledge property guarantees
that nothing beyond this fact is revealed.

1.1 OR-Proofs

Now assume that one has two interactive proof systems of the above form for two statements x0 and x1,
and a witness wb for xb, b ∈ {0, 1}. The goal is to combine them into a single protocol which proves the
logical OR of x0 and x1; that is, the prover should be able to convince a verifier that it holds a witness for
one of the two statements, ideally without revealing which one. The first instantiation of such general OR-
proofs, sometimes called CDS-OR proofs, was given by Cramer, Damgård, and Schoenmakers [CDS94].
Their construction works under the assumption that the two protocols are special honest-verifier zero-
knowledge, meaning that a simulator S, given x and a random challenge ch at the outset, is able to
generate a verifier view (com, resp, ch) without knowing a witness for x, in such a way that this view is
indistinguishable from a genuine interaction between the real prover and an honest verifier using the given
challenge. The prover in the CDS-OR protocol from [CDS94] is described in Figure 1. For reasons that
will become apparent soon, we call such CDS-OR proofs also parallel-OR proofs.

An important observation is that the resulting protocol is witness indistinguishable, i.e., it does not
reveal for which statement the prover holds a witness. Moreover, since the resulting protocol is again
a Σ-protocol, one can apply the Fiat-Shamir transform [FS87] to it and obtain a non-interactive version
or a signature scheme in the random oracle model. Also, the construction easily generalizes to the case
of 1-out-of-n proofs.

1.2 Applications of OR-Proofs

OR-proofs have turned out to be a very powerful tool in the design of efficient protocols. Early on they
have been identified as a means to thwart man-in-the-middle attacks [CD97] and, similarly in spirit, to
give designated-verifier proofs [JSI96]. The idea in both cases is to have the verifier send its public key
to the prover, who then shows that the statement x it originally wanted to prove is true or that it knows
the verifier’s secret key. This proof is still convincing for the verifier (who knows it is the only holder of
its secret key), but not transferable to other parties. Garay et al. [GMY03] apply the same idea to make
zero-knowledge proofs simulation-sound and non-malleable, by putting a verification key into a common
reference string (CRS). The prover then shows that the original statement x is true or that it knows the
secret to the verification key in the CRS.

The idea of giving a valid proof when knowing a witness for only one of several statements can also
be used in the context of group signatures [Cv91] and ring signatures [RST01]. Given a set of public
keys x1, . . . , xn, where the signer knows only one witness wi (their own secret key), an OR-proof allows to
sign anonymously on behalf of the entire group, and witness indistinguishability implies that the identity
of the signer remains hidden. This design strategy appears explicitly for example in the group signature
scheme of Camenisch [Cam97].

The OR-technique has also proved very useful in deriving tightly-secure schemes. This approach has
appeared in several works in the literature [HJ12, BHJ+15, GJ18]. The idea is to first derive tightly-
secure signature schemes from the OR-combination of some Σ-protocols. These schemes are then used

3

Ppar-OR(1λ; (x0, x1), (b, w)):

11: comb ←$ Pb(1λ;xb, w)
12: ch1−b ←$ {0, 1}`(λ)

13: (com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b)
14: return (com0, com1)

Ppar-OR(1λ; (x0, x1), (b, w), (com0, com1), ch):

21: chb ← ch⊕ ch1−b

22: respb ←$ Pb(1λ;xb, w, comb, chb)
23: return (ch0, ch1, resp0, resp1)

Figure 1: Description of the prover algorithm Ppar-OR from the parallel-OR construction by Cramer et al. [CDS94] in the
standard model. On the left, generation of the first message com = (com0, com1). On the right, computation of the final
response resp = (ch0, ch1, resp0, resp1) answering the verifier challenge ch.

within higher-level solutions (like key exchange protocols), passing on the tight security guarantees to
these protocols.

1.3 Non-Programmable Random Oracles

Another important feature of the OR-technique is that it facilitates the design of schemes in the non-
programmable random oracle model. The general random oracle model comes with several remarkable
technical properties, rooted in the formalization of the hash function as a truly random, oracle-based
function. One of the most extraordinary consequences of this formalization is the programmability property
of the random oracle, saying that one can adaptively choose the answers to random oracle queries made
by the adversary. Indeed, the ability to change answers on the fly is a necessary feature of security proofs
of some signature schemes [FLR+10,FF13,ZCC+15,FH18]. In practice, however, hash functions are not
programmable and their values are fixed. Therefore, one would ideally prefer to forgo the programming of
random oracle replies.

The fact that the OR-technique can be used to bypass the programmability issues with the random
oracle model can already be observed in the early constructions of Σ-protocols, namely, the Okamoto
variant [Oka93] of the Schnorr signature scheme [Sch91] and the Guillou-Quisquater variant [GQ88] of the
Fiat-Shamir signature protocol [FS87]. In these variants, based on number-theoretic specifics, one uses
“embedded” OR-proofs which allow to simulate signatures without having to program the random oracle,
as opposed to [Sch91, FS87] and explicitly carried out in [PS00]: One can then simply use the known
witness to generate signatures.

Unfortunately, the security proofs of the signature schemes in [Oka93,GQ88] still need programming
at another step. Namely, in order to show that the adversary cannot forge signatures, one rewinds the
execution and re-programs the random oracle in order to extract a witness (a technique called forking
in [PS00]). This also comes with a loose security bound. Abdalla et al. [AABN02] overcome the forking
technique by considering passively-secure identification schemes, where the adversary is allowed to see
transcripts of honest executions. Still, they program the random oracle when simulating signatures.

Later, Abdalla et al. [AFLT16] used the notion of lossy identification schemes to give non-forking
security proofs for signatures derived via the Fiat-Shamir heuristic. Lossiness here roughly means that
valid statements x are indistinguishable from so-called lossy ones, for which it is statistically impossible to
find convincing proofs. This idea has later been adopted by lattice-based and LWE-based signature schemes
such as [Lyu12,BG14] (in the classical random oracle model) or the TESLA signature scheme [ABB+17]
(in the quantum random oracle model [BDF+11]). Still, all approaches program the random oracle in
order to be able to simulate signatures.

4

Pseq-OR(1λ; (x0, x1), (b, w)):

11: comb ←$ Pb(1λ;xb, w)
12: ch1−b ← H(b, x0, x1, comb)
13: (com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b)
14: chb ← H(1− b, x0, x1, com1−b)
15: respb ←$ Pb(1λ;xb, w, comb, chb)
16: return (com0, com1, resp0, resp1)

Figure 2: Description of the prover algorithm Pseq-OR from the sequential-OR construction by Abe et al. [AOS02] in the random
oracle model.

1.4 Sequential-OR Proofs

The above construction is the classical technique to combine Σ-protocols and prove OR-statements, but
it is not the only possible solution. Indeed, there is at least one other way to prove the disjunction of two
or more statements in the random oracle model, which in its spirit already appears in a work by Rivest,
Shamir, and Tauman [RST01]. Here, we follow the exposition given by Abe, Ohkubo, and Suzuki [AOS02]
in the context of group signature schemes, and call this approach the sequential-OR technique.

In this construction, the non-interactive prover computes the individual proofs sequentially, starting
with the commitment comb for the statement xb for which it knows the witness wb. Next it derives the
challenge ch1−b for the proof of x1−b (with unknown witness) as the hash value of comb. This in turn allows
the OR-prover to simulate a view (com1−b, resp1−b, ch1−b) for x1−b with this predetermined challenge, as
done in parallel-OR proofs. The simulated commitment com1−b again yields the challenge chb for the first
proof through the hash function, which the prover now can answer with a valid response respb since it
knows the witness wb. The details of the prover in the sequential-OR protocol from [AOS02] are described
in Figure 2.

Note that this technique generalizes to the 1-out-of-n case (we provide all details in Appendix D). In
fact, Abe et al. [AOS02] and follow-up works like [LWW04,BLO18], use this more general version of the
sequential-OR technique to build group signature schemes, yet still programming the random oracle to fork
and extract. The paradigm proposed by Abe et al. has also been applied in the area of cryptocurrencies, in
particular Monero [vS13] and Mimblewimble [Jed16,Poe16]. There, in order to prevent overflow attacks,
it is necessary to prove that committed values fall within a specific range. One instance of such range
proofs uses a special type of ring signature, called borromean ring signature [MP15], which is based on
ideas presented in [AOS02]. Observe that, in the aforementioned range proofs, borromean signatures have
since been superseded by more efficient bulletproofs [BBB+18].

1.5 Our Results

At first glance, the sequential-OR technique does not seem to give any significant advantage over the
parallel version. Both protocols are based on the idea that one can easily give a proof for a statement for
which the witness is known, and simulate the proof for the other statement where the challenge is known
in advance. This, however, misses one important point if we combine these two approaches with the idea
of lossy statements as in the work by Abdalla et al. [AFLT16]: We show that signatures derived from
sequential-OR proofs are secure in the non-programmable random oracle model, whereas those originating
from parallel-OR proofs do not seem to have a security proof in this model.

5

The signature scheme in the sequential-OR case is based on two valid statements x0 and x1 (the public
keys), for which we know one of the two witnesses wb (one of the secret keys). A signature for a message m
is basically a sequential-OR proof, where m is included in the hash evaluations. In contrast to the proof
in [AOS02], which is based on forking, we can now reduce unforgeability to a decisional problem about
the languages. This allows us to avoid rewinding and re-programming the random oracle.

The idea of our proof in the sequential-OR case can be illustrated by looking at the honest signer
first. If one was able to observe the signer’s random oracle queries, then their order reveals which witness
the signer is using: The signer first queries the commitment comb of the instance xb for which it knows
the witness wb. We will use the same idea against the adversary, helping us to decide if some random
input x1−b is in the language or not. If x1−b is not in the language, and thus does not have a witness, the
special soundness of the Σ-protocol guarantees that the adversary will never make the first query about
this part, since it will then not be able to answer the random challenge.1 Hence, by merely observing
the adversary’s queries, we can decide membership of x1−b. We use the other part xb in the key and its
witness wb to simulate signatures without programming the random oracle. But we need to make sure
that the adversary is not biased by our signatures. This follows from the witness indistinguishability of
the proofs (against an adversary who cannot observe random oracle queries).

We next argue that it is in general hard to show that the parallel-OR technique of Cramer et al. [CDS94]
yields a secure signature scheme in the non-programmable random oracle model. Our result assumes a
black-box reduction R transforming any (PPT or unbounded) adversary against the signature scheme into
a solver of some problem assumed to be hard, and makes a mild assumption about the zero-knowledge
simulators of the languages (namely, that they work independently of how the statements x are generated).
Remarkably, we do not make any stipulations about the reduction’s executions of the adversary instances:
The reduction can run an arbitrary (bounded) number of instances of the adversary, and there are no
restrictions on the inputs of these instances or their scheduling. However, the reduction R can only use
the external random oracle.

Our approach is based on the meta-reduction technique [GMR88,BV98,PV05]. That is, we start with
an unbounded adversary A, who breaks the signature scheme easily with its super-polynomial power by
computing a secret key and signing as the honest prover would. This means that the reduction R also
solves the underlying problem when interacting with A. Afterwards, we show how to simulate A efficiently,
resulting in an efficient algorithm solving the problem directly. This implies that there cannot exist such
a reduction R in the first place.

The crucial difference between the sequential and the parallel version of the OR-technique is that in
the latter case observing the random oracle queries of the adversary does not reveal which witness is being
used. By the zero-knowledge property one cannot distinguish real and simulated sub-proofs in the parallel
case. Indeed, our negative result relies exactly on this zero-knowledge property, taking advantage of the
fact that the random oracle is external to the reduction.

1.6 Further Related Work

The issue of non-programmability of random oracles also appears in recent works related to Canetti’s
universal composability (UC) framework [Can01]. In this model, random oracles can be cast as an ideal
functionality FRO, and protocols can be developed in the hybrid setting where FRO is present. A technical
consequence of this design choice is that the random oracle is programmable, and a compositional con-
sequence is that one would need a fresh random oracle for each protocol instance. Therefore, the global
random oracle model [CJS14], based on ideas of global set-ups [CDPW07,DSW08], defines a random oracle
functionality GsRO which can be used by all protocols, obliterating also the programmability of the random
oracle in this model.

1One can think of this as a very lossy mode.

6

We stress, however, that protocols designed in the global random oracle model are not necessarily secure
for non-programmable random oracles. The discrepancy lies in the distinction between the model and the
security proof: In the global random oracle model, one may no longer be able to program the random
oracle when devising a simulator in the model, but a reduction may still program the random oracle in the
security proof showing that the simulator is good. Indeed, this can be observed in the security reductions
in [CDG+18] proving that all signature schemes which have a stand-alone proof of unforgeability in the
“isolated” random oracle model, including schemes with a security reduction via programming, remain
secure in the strict global random oracle model GsRO.

The impossibility of proving the security of specific types of signatures derived via the Fiat-Shamir
transform in the non-programmable random oracle model has already been discussed in prior works, e.g.,
[FF13, FH16]. These works usually make some restrictions on the reduction being ruled out (like key
preservation or being single-instance), whereas we do not need any such condition. We remark here that
our impossibility result for parallel-OR signatures does likely not follow in a general way from these results,
since the same approach fails in the sequential-OR case.

In terms of OR-proofs, Ciampi et al. [CPS+16a], based on an earlier approach by Lindell [Lin15], use the
OR-technique to build non-interactive zero-knowledge proofs from Σ-protocols in the non-programmable
random oracle model. For technical reasons they also need a common reference string, which is used to
form the OR-language. Note that this is orthogonal to our goal here, where we aim to build OR-proofs for
two languages in the non-programmable random oracle model. In another work, Ciampi et al. [CPS+16b]
consider extensions of parallel-OR proofs where (some of) the languages are not specified yet when the
execution starts. This includes the solution in the common reference string model in [CPS+16a].

1.7 Extension to the Quantum Random Oracle Model

The results discussed so far are in the classical random oracle model. In terms of the quantum random
oracle model (QROM), introduced by Boneh et al. [BDF+11], the situation regarding OR-proofs is less
scrutinized. Our approach in the (classical) sequential-OR case is based on the observability of queries to
the random oracle, a technique that usually does not carry over to the QROM because of superposition
queries. In the parallel-OR case, we have seen that observability may not even help in the classical setting.

Fortunately, there have been two recent results regarding the security of Fiat-Shamir protocols in the
QROM [LZ19,DFMS19], bypassing previous negative results concerning the Fiat-Shamir transform in this
model [DFG13,ARU14]. These works both yield a non-tight bound, but give an immediate solution for
the parallel-OR case in the QROM. There, one first combines the two interactive proofs via the parallel-
OR construction to get an interactive Fiat-Shamir proof, and then applies these techniques. We show
in Section 6 that one can also prove security of signatures derived from the sequential-OR construction
in the QROM via the measure-and-reprogram technique described in [DFMS19]. The price we pay is
that we inherit the loose security bound from the solution in [DFMS19] and we, like all currently known
constructions in the QROM, need to program the quantum random oracle.

2 Preliminaries

2.1 Basic Notation

We denote by N = Z≥0 the set of non-negative integers, and by λ ∈ N the security parameter (often written
in unary notation as 1λ). A function µ : N → R is called negligible if, for every constant c ∈ R>0, there
exists λc ∈ N such that, for every λ ∈ N with λ ≥ λc, we have µ(λ) ≤ λ−c. For a random variable X, we
write x←$ X to denote that x is a random variate of X. For a finite set S of size |S|, we use s←$ S as a
shorthand for s←$ US , where US is a random variable uniformly distributed over S. The arrow ← will be

7

used for assignment statements. We denote the length of a string x ∈ {0, 1}∗ by |x|, and we write ε for the
empty string. We consider an injective, efficiently computable, efficiently reversible, and length-increasing
encoding function ({0, 1}∗)∗ → {0, 1}∗. This allows us to represent sequences of strings again as strings,
and will be tacitly used throughout the paper.

In this work we use the computational model of probabilistic oracle Turing machines, also called
algorithms. We assume that they are equipped with a separate security parameter tape containing the
value 1λ. The running time of algorithms, which is intended to be bounded by the worst case, is a function of
the security parameter input length only. A uniform algorithm is called probabilistic polynomial-time (PPT)
if its running time is bounded by a polynomial, whereas a non-uniform algorithm is PPT if it corresponds
to an infinite sequence of Turing machines, indexed by the security parameter λ, whose description sizes
and running times are bounded by a polynomial in λ. Queries to the oracles always count as one operation
each. For an algorithm A, we denote by AO(1λ;x) the random variable representing the output of A when
run on security parameter λ and input x ∈ {0, 1}∗, with access to oracles O = (O1, . . . ,Ot).

We use ⊥ as a special symbol to denote rejection or an error, and we assume that ⊥ /∈ {0, 1}∗. Both
inputs and outputs of algorithms can be ⊥, and we convene that if any input to an algorithm is ⊥, then
its output is ⊥ as well. Double square brackets J·K enclosing boolean statements return the bit 1 if the
statement is true, and 0 otherwise.

2.2 Random Oracle Model

Let ` : N → N be a polynomial-time computable function. For a security parameter λ ∈ N, a random
oracle (RO) [BR93,CGH98] is an oracle H that implements a function randomly chosen from the space
of all functions {0, 1}∗ → {0, 1}`(λ), to which all parties have access. In other words, it is an oracle that
answers every query with a truly random response chosen from the range {0, 1}`(λ). For every repeated
query the random oracle consistently returns the same output.

Constructions established and statements proved in the presence of a RO are said to hold in the random
oracle model (ROM). Throughout the paper, whenever a security game is set in the ROM, we assume that
at the beginning of the experiment a random oracle is sampled uniformly from the aforementioned function
space, and then used throughout the experiment. In this setting, it will sometimes be necessary to record
queries to the random oracle H, and we will do so via a set QH: If (i, x) ∈ QH, this means that the i-th
query to H was x.

We also define the “zero oracle” as a function Z : {0, 1}∗ → {0, 1}`(λ), x 7→ 0`(λ) for all x ∈ {0, 1}∗.
This allows us to state our definitions simultaneously in the standard model and in the ROM: Parties will
be given access to a generic oracle O, and it is understood that O := Z if the definition is formulated in
the standard model, and O := H if it is in the ROM.

The quantum analogue of the above is the so-called quantum random oracle model (QROM), introduced
by Boneh et al. [BDF+11]. Here, a quantum algorithm may query the random oracle H in superposition,
i.e., submit superposition queries of the form

∑
x αx|x〉|0〉 and obtain the output

∑
x αx|x〉|H(x)〉. We refer

to [NC11] for further background and conventions regarding quantum information.

2.3 Languages and Relations

A language is a subset L ⊆ {0, 1}∗. In this work, we assume that every language L is equipped with a
uniform PPT algorithm GL (called instance generator) which, on input (1λ; b) with b ∈ {0, 1}, returns an
element x ∈ L if b = 1 (yes-instance), and an element x /∈ L if b = 0 (no-instance). Usually, the complexity
of x is closely related to the security parameter λ, e.g., |x| = λ, but we can allow for other (polynomial)
dependencies as well.

8

A binary relation is a subset R ⊆ {0, 1}∗ × {0, 1}∗ which is polynomially bounded, i.e., there exists
a polynomial p such that, for every (x,w) ∈ R, we have |w| ≤ p(|x|). If (x,w) ∈ R, we call x an R-
instance and w an R-witness of x. For every x ∈ {0, 1}∗, we denote the set of all R-witnesses of x by
WR(x) := {w | (x,w) ∈ R} (if x is not an R-instance, then WR(x) = ∅). Note that every binary relation R
defines a language LR := {x | ∃w : (x,w) ∈ R}. Just like before for languages, we also assume that every
binary relation R is equipped with a uniform PPT algorithm GR (called instance generator) which, on
input (1λ; b) with b ∈ {0, 1}, returns a pair (x,w) ∈ R if b = 1 (yes-instance), and an element x /∈ LR
if b = 0 (no-instance). Observe that from an instance generator GR for a binary relation R we get an
instance generator GLR for LR by simply running GR and returning the first component only if b = 1.

An NP-relation is a binary relation that is polynomial-time recognizable, i.e., R ∈ P. Observe
that if R is an NP-relation, then LR ∈ NP, and vice-versa if L ∈ NP, then the set RL of all string
pairs (x,w) ∈ {0, 1}∗ × {0, 1}∗ with x ∈ L and w an NP-witness for x (w.r.t. a fixed polynomial and
Turing machine) is an NP-relation. In this situation, we have of course LRL = L and RLR ⊇ R.

We next define the OR-combination of two relations and its instance generator. Here and in the
following, we present all definitions and constructions with respect to the OR of two relations only, but
all results extend to the more general 1-out-of-n case. A yes-instance of the OR-relation is a pair of
values (x0, x1), each in its respective language, together with a witness w of either value. A no-instance of
the OR-relation is again a pair of values, where at least one is not in the corresponding language, while the
other may or may not belong to its language. The convention that a yes-instance has both inputs in their
respective languages corresponds to the setting of group signature schemes, where all parties choose their
public keys honestly; only in security reductions one may diverge from this. It is also in general necessary
to ensure completeness of the OR-protocol, since the simulator for x1−b is only guaranteed to output a
valid transcript for yes-instances.
Definition 2.1. Let R0 and R1 be two binary relations. Define the OR-relation of R0 and R1 as the
binary relation

ROR :=
{(

(x0, x1), (b, w)
) ∣∣∣ b ∈ {0, 1} ∧ (xb, w) ∈ Rb ∧ x1−b ∈ LR1−b

}
,

equipped with the instance generator GROR defined in Figure 3. We denote the corresponding OR-language
by LOR := LROR.

Observe that, for binary relations R0 and R1, the relation ROR is indeed a binary relation, and
that LOR = LR0 × LR1 .

We now recall two hardness notions a binary relation R may satisfy. Intuitively, R is decisionally hard
if no PPT distinguisher can decide if it is given an R-instance or a no-instance. It is computationally hard
if no PPT adversary can efficiently compute an R-witness w for a given R-instance x.
Definition 2.2. Let R be a binary relation. We say that R is:

1. Decisionally Hard if, for every PPT distinguisher D, there exists a negligible function µ : N→ R such
that, for every λ ∈ N and every z ∈ {0, 1}∗,∣∣∣Pr

[
ExpDHR,0

D,R (λ, z) = 1
]
− Pr

[
ExpDHR,1

D,R (λ, z) = 1
]∣∣∣ ≤ µ(λ),

where ExpDHR,0
D,R (λ, z) and ExpDHR,1

D,R (λ, z) are defined in Figure 3.

2. Computationally Hard if, for every PPT algorithm A, there exists a negligible function µ : N→ R
such that, for every λ ∈ N and every z ∈ {0, 1}∗,

Pr
[

ExpCHR
A,R (λ, z) = 1

]
≤ µ(λ),

where ExpCHR
A,R (λ, z) is defined in Figure 3.

9

GROR(1λ; b):

11: if b = 0 then
12: b′, b′′ ←$ {0, 1}
13: xb′ ←$ GLb′ (1

λ; 0)
14: x1−b′ ←$ GLR1−b′

(1λ; b′′)
15: return (x0, x1)
16: else
17: b′ ←$ {0, 1}
18: (x0, w0)←$ GR0(1λ; 1)
19: (x1, w1)←$ GR1(1λ; 1)
20: return ((x0, x1), (b′, wb′))

ExpDHR,b
D,R (λ, z):

31: x←$ GR(1λ; 0)
32: if b = 1 then
33: (x,w)←$ GR(1λ; 1)
34: b′ ←$ DO(1λ;x, z)
35: return b′

ExpCHR
A,R (λ, z):

41: (x,w)←$ GR(1λ; 1)
42: w∗ ←$ AO(1λ;x, z)
43: return J(x,w∗) ∈ RK

Figure 3: Definition of the instance generator GROR of the relation ROR, and of the experiments ExpDHR,b
D,R (λ, z)

and ExpCHR
A,R (λ, z) from Definition 2.2. Recall that O is either a random oracle or the trivial all-zero oracle.

It is readily verified that two binary relations R0 and R1 are computationally hard if and only if ROR
is computationally hard. Furthermore, if an NP-relation R is decisionally hard, it is also computationally
hard.

2.4 Interactive Protocols

An interactive protocol Π between two parties, called prover and verifier, is a pair of uniform algo-
rithms Π = (P,V). We write PO(1λ;x,w) � VO(1λ;x, z) to denote the interaction between P and V
on security parameter λ, common input x, respective auxiliary inputs w and z, with access to oracle O.

Algorithms P and V compute the next-message function of the corresponding party. In more de-
tail, PO(1λ;βi, stP) is the random variable which returns the prover’s next message αi+1 and its updated
state stP, both computed on input the security parameter λ, the last incoming message βi, and the current
state stP. Here we assume that stP contains all the information necessary for P to perform its computation,
including at least the common input, its auxiliary input, and the messages exchanged thus far. Similar
considerations hold for V.

We write trans
[

PO(1λ;x,w) � VO(1λ;x, z)
]

= (A1, B1, . . . , At, Bt, At+1) for the transcript of the
interaction between P and V. This is the random variable which returns a sequence of mes-
sages (α1, β1, . . . , αt, βt, αt+1), where (αi+1, stP)←$ PO(1λ;βi, stP) and (βj , stV)←$ VO(1λ;αj , stV) for ev-
ery 0 ≤ i ≤ t and 1 ≤ j ≤ t. Here we assume that stP, stV and β0 are initialized to stP ← (x,w), stV ← (x, z)
and β0 ← ε. The view of V in the interaction with P, denoted viewV

[
PO(1λ;x,w) � VO(1λ;x, z)

]
, is the

random variable (A1, A2, . . . , At, At+1, RV), where RV is the random variable returning V’s random coins.
The interaction between the prover and the verifier terminates with V computing a deci-

sion v ←$ VO(1λ;αt+1, stV), where v ∈ {0, 1}, on whether to accept or reject the transcript.
This is also called V’s local output, and the corresponding random variable will be denoted
by outV

[
PO(1λ;x,w) � VO(1λ;x, z)

]
.

We say that a protocol Π = (P,V) is efficient if V is a PPT algorithm. For a binary relation R, we say
that Π has an efficient prover w.r.t. R if P is a PPT algorithm and, on security parameter λ, it receives
common and auxiliary inputs x and w such that (x,w) ←$ GR(1λ; 1). Note that we will only consider
protocols which are efficient, have an efficient prover w.r.t. a specified binary relation R, and where the

10

honest verifier is independent of its auxiliary input (we can therefore assume z = ε in this case). We call
these protocols w.r.t. R.

We call Π public-coin (PC) if all the messages the honest verifier sends to P consist of disjoint segments
of its random tape, and if V’s local output is computed as a deterministic function of the common input
and the transcript, that is v ← VO(1λ;x, α1, β1, . . . , αt, βt, αt+1). In this situation we say that a transcript
is accepting for x if v = 1.

We now we state the precise definitions of the completeness, soundness, honest-verifier zero-knowledge
(HVCZK), and computational witness hiding (CWH) properties of protocols w.r.t. a relation R. Fur-
thermore, we recall the notion of computational witness indistinguishability (CWI) [FS90], which is the
property of general interactive protocols that is most relevant to our work. Intuitively, this notion captures
the idea that protocol runs for a fixed R-instance but different witnesses should be indistinguishable.

Definition 2.3. Let R be a binary relation, and let Π = (P,V) be a protocol w.r.t. R. We say that Π is:

1. Complete, if there exists a negligible function µ : N → R such that, for every λ ∈ N and ev-
ery (x,w)←$ GR(1λ; 1),

Pr
[

outV
[

PO(1λ;x,w) � VO(1λ;x)
]

= 1
]
≥ 1− µ(λ).

2. (Computationally) Sound if, for every (PPT) algorithm P∗, there exists a negligible func-
tion µ : N→ R such that, for every λ ∈ N, every x←$ GR(1λ; 0), and every y ∈ {0, 1}∗,

Pr
[

outV
[

P∗O(1λ;x, y) � VO(1λ;x)
]

= 1
]
≤ µ(λ).

3. Black-Box Computational Zero-Knowledge (BBCZK), if there exists a uniform PPT algorithm S
(called the simulator) with the following property: For every uniform PPT algorithm V∗ and every
PPT distinguisher D, there exists a negligible function µ : N → R such that, for every λ ∈ N,
every (x,w)←$ GR(1λ; 1), and every z, z′ ∈ {0, 1}∗,∣∣∣Pr

[
ExpBBCZK,0

V∗,D,Π (λ, x, w, z, z′) = 1
]
− Pr

[
ExpBBCZK,1

V∗,D,Π (λ, x, w, z, z′) = 1
]∣∣∣ ≤ µ(λ),

where ExpBBCZK,b
V∗,D,Π (λ, x, w, z, z′) is defined in Figure 4.

4. Honest-Verifier Computational Zero-Knowledge (HVCZK), if there exists a uniform PPT algo-
rithm S with the following property: For every PPT distinguisher D, there exists a negligible func-
tion µ : N→ R such that, for every λ ∈ N, every (x,w)←$ GR(1λ; 1), and every z′ ∈ {0, 1}∗,∣∣∣Pr

[
ExpBBCZK,0

V,D,Π (λ, x, w, ε, z′) = 1
]
− Pr

[
ExpBBCZK,1

V,D,Π (λ, x, w, ε, z′) = 1
]∣∣∣ ≤ µ(λ),

where ExpBBCZK,b
V,D,Π (λ, x, w, ε, z′) is defined in Figure 4.

5. Computationally Witness Indistinguishable (CWI) if, for every uniform PPT algorithm V∗ and
every PPT distinguisher D, there exists a negligible function µ : N → R such that, for every λ ∈ N,
every x←$ GLR(1λ; 1), every w,w′ ∈WR(x), and every z, z′ ∈ {0, 1}∗,∣∣∣Pr

[
ExpCWI,0

V∗,D,Π(λ, x, w,w′, z, z′) = 1
]
− Pr

[
ExpCWI,1

V∗,D,Π(λ, x, w,w′, z, z′) = 1
]∣∣∣ ≤ µ(λ),

where ExpCWI,b
V∗,D,Π(λ, x, w,w′, z, z′) is defined in Figure 4.

11

ExpBBCZK,b
V∗,D,Π (λ, x, w, z, z′):

11: v ←$ viewV∗
[
PO(1λ;x,w) � V∗O(1λ;x, z)

]
12: if b = 1 then
13: v ←$ SṼ∗O,O(1λ;x)
14: d←$ DṼ∗O,O(1λ;x, z, z′, v

)
15: return d

Ṽ∗O(α1, . . . , αi):

21: stV ← (x,w)
22: for 1 ≤ j ≤ i do
23: (βj , stV)←$ V∗Q(1λ;αj , stV)
24: return βi

ExpCWI,b
V∗,D,Π(λ, x, w,w′, z, z′):

31: y ← w

32: if b = 1 then
33: y ← w′

34: v∗ ←$ outV∗
[
PO(1λ;x, y) � V∗O(1λ;x, z)

]
35: d←$ DO

(
1λ;x, z, z′, v∗

)
36: return d

ExpCWH
V∗,R(λ, z):

41: (x,w)←$ GR(1λ; 1)
42: w∗ ←$ outV∗

[
PO(1λ;x,w) � V∗O(1λ;x, z)

]
43: return J(x,w∗) ∈ RK

Figure 4: Definition of the experiments ExpBBCZK,b
V∗,D,Π (λ, x, w, z, z′), ExpCWI,b

V∗,D,Π(λ, x, w,w′, z, z′) and ExpCWH
V∗,R(λ, z) from Defini-

tion 2.3.

6. Computationally Witness Hiding (CWH) if, for every uniform PPT algorithm V∗, there exists a
negligible function µ : N→ R such that, for every λ ∈ N and every z ∈ {0, 1}∗,

Pr
[

ExpCWH
V∗,R(λ, z) = 1

]
≤ µ(λ),

where ExpCWH
V∗,R(λ, z) is defined in Figure 4.

Note that we will later require a stronger version of CWI, which we term multi-query computational
witness indistinguishability (mqCWI). This is basically an oracle extension of ordinary CWI, where the
distinguisher can query arbitrarily many protocol executions before guessing which witness was used to
generate them. One can prove via a simple hybrid argument that CWI and mqCWI are equivalent, albeit
with a polynomial loss in the distinguishing advantage. We now provide a formal definition of this property.

Definition 2.4. Let R be a binary relation, and let Π = (P,V) be a protocol w.r.t. R in the ROM. We
say that Π is multi-query computationally witness indistinguishable (mqCWI) in the ROM if, for every
uniform PPT algorithm V∗ and every PPT distinguisher D, there exists a negligible function µ : N → R
such that, for every λ ∈ N, every x←$ GLR(1λ; 1), every w,w′ ∈WR(x), and every z, z′ ∈ {0, 1}∗,∣∣∣Pr

[
ExpmqCWI,0

V∗,D,Π (λ, x, w,w′, z, z′) = 1
]
− Pr

[
ExpmqCWI,1

V∗,D,Π (λ, x, w,w′, z, z′) = 1
]∣∣∣ ≤ µ(λ),

where ExpmqCWI,b
V∗,D,Π (λ, x, w,w′, z, z′) is defined in Figure 5.

2.5 3PC-Protocols and Σ-Protocols

Let R be a binary relation. We will be mainly interested in so-called 3PC-protocols w.r.t. R, i.e., protocols
w.r.t. R which are public-coin, and where the two parties exchange exactly three messages. We also assume
that, on security parameter λ, the only message sent by the verifier to the prover has fixed length `(λ),
for a function ` : N→ N called the length function associated to the protocol. A graphical representation
of such a protocol is given in Figure 6.

12

ExpmqCWI,b
V∗,D,Π (λ, x, w,w′, z, z′):

11: y ← w

12: if b = 1 then
13: y ← w′

14: d←$ DO[λ,x,y,z],H(1λ;x, z, z′)
15: return d

Hm(m′):

31: h← H(m′,m)
32: return h

O[λ, x, y, z](m):

21: v∗ ←$ outV∗
[
PHm(1λ;x, y) � V∗H(1λ;x, (m, z))

]
22: return v∗

ExpSCZK,b
D,Π (λ, x, w, z):

41: (ch, stD)←$ DO0 (1λ;x, z)
42: stP ← (x,w)
43: (com, stP)←$ PO(1λ; stP)
44: (resp, stP)←$ PO(1λ; ch, stP)
45: v ← (com, resp, ch)
46: if b = 1 then
47: v ←$ SO(1λ;x, ch)
48: d←$ DO1

(
1λ;x, z, v, stD

)
49: return d

Figure 5: Definition of the experiments ExpmqCWI,b
V∗,D,Π (λ, x, w,w′, z, z′) and ExpSCZK,b

D,Π (λ, x, w, z) from Definition 2.4 and Defini-
tion 2.5.

In this particular context, we call the three messages exchanged between prover and verifier the com-
mitment, the challenge, and the response, and denote them by com := α1, ch := β1, and resp := α2,
respectively. Furthermore, we say that two accepting transcripts (com, ch, resp) and (com′, ch′, resp′) for
an element x constitute a transcript collision for x if com = com′ and ch 6= ch′.

In the following, we recall the critical notion of special computational zero-knowledge. Intuitively, it
means that there exists a simulator which, for any maliciously chosen challenge given in advance, is able
to create an authentic-looking transcript. Furthermore, we define the properties of optimal soundness and
special soundness. Roughly, optimal soundness says that for every x /∈ L and every commitment, there
is at most one challenge which can lead to a valid response. Special soundness says that for x ∈ L, any
transcript collision yields a witness, and for x /∈ L no collisions can be found.

Definition 2.5. Let R be a binary relation, and let Π = (P,V) be a 3PC protocol w.r.t. R. We say that Π
is:

1. Special Computational Zero-Knowledge (SCZK), if there exists a uniform PPT algorithm S with the
following property: For every two-stage PPT distinguisher D = (D0,D1), there exists a negligible
function µ : N→ R such that, for every λ ∈ N, every (x,w)←$ GR(1λ; 1), and every z ∈ {0, 1}∗,∣∣∣Pr

[
ExpSCZK,0

D,Π (λ, x, w, z) = 1
]
− Pr

[
ExpSCZK,1

D,Π (λ, x, w, z) = 1
]∣∣∣ ≤ µ(λ),

where ExpSCZK,b
D,Π (λ, x, w, z) is defined in Figure 5.

2. Optimally Sound if, for every λ ∈ N, every x /∈ LR and every commitment com, there exists at
most one challenge ch for which there exists a response resp such that (com, ch, resp) is an accepting
transcript for x. We say that the protocol is c(λ)-optimally sound if, for every λ ∈ N, every x /∈ LR,
and every commitment com, there are at most c(λ) challenges ch as above.

3. Specially Sound, if:
(a) There exists a uniform PPT algorithm EO (called the extractor) which, on security parameter λ

and input any x ←$ GLR(1λ; 1) and a transcript collision for x, returns a witness w ∈ WR(x)
of x;

(b) For every λ ∈ N and every x /∈ LR there are no transcript collisions for x.

13

PO(1λ;x,w) � VO(1λ;x)
stP ← (x,w)
(com, stP)←$ PO(1λ; stP)

stV ← x

ch←$ {0, 1}`(λ)

stV ← (stV, com, ch)

(resp, stP)←$ PO(1λ; ch, stP)

v ← VO(1λ;x, com, ch, resp)

com

ch
resp

Figure 6: Representation of a 3PC protocol w.r.t. a binary relation R.

If R is a binary relation, and Π is a 3PC protocol w.r.t. R, then it is clear that, if Π is specially sound,
then it is also optimally sound. Furthermore, if Π is optimally sound, then it is also sound, provided that
the length function `(λ) = ω(log(λ)) is super-logarithmic in the security parameter. Finally, if Π is SCZK,
it is also HVCZK: Given a SCZK-simulator SSCZK, one obtains a HVCZK-simulator SHVCZK by simply
picking a random challenge ch and then running SSCZK on the chosen challenge.

Definition 2.6. Let R be a binary relation. A Σ-protocol w.r.t. R is a 3PC protocol Π w.r.t. R which is
complete, specially sound, and SCZK.

3 Parallel-OR Proofs
In this section we recall the classical parallel-OR construction of Cramer et al. [CDS94], which works for
two arbitrary 3PC HVCZK protocols.

3.1 Protocol

Let R0 and R1 be binary relations, and consider two 3PC HVCZK protocols Π0 = (P0,V0), Π1 = (P1,V1)
w.r.t. R0 and R1 (with HVCZK-simulators S0 and S1), such that the two length functions `0 = `1 =: `
coincide (this is no real restriction, as the challenge length of such a protocol can be increased via parallel
repetition). The construction, first presented in [CDS94] and depicted in Figure 7, allows to combine Π0
and Π1 into a new 3PC HVCZK protocol par-OR[Π0,Π1,S0, S1] = (Ppar-OR,Vpar-OR) w.r.t. the binary
relation ROR. Note that the simulators of the underlying protocols become an integral part of the scheme.
The corresponding HVCZK-simulator Spar-OR is given in Figure 8.

The key idea of the construction is to split the challenge ch sent by Vpar-OR into two random parts,
ch = ch0 ⊕ ch1, and to provide accepting transcripts for both inputs x0 and x1 with the corresponding
challenge share. If the prover knows a witness w for xb, it can use the HVCZK-simulator S1−b of Π1−b
to generate a simulated view (com1−b, resp1−b, ch1−b) for x1−b, and then compute a genuine transcript
(comb, chb, respb) for xb using the witness w it knows. In more detail, on input the security parame-
ter λ ∈ N, consider a yes-instance for the OR-relation ((x0, x1), (b, w)) ←$ GROR(1λ; 1). The execution of
the protocol par-OR[Π0,Π1, S0, S1] starts with the prover Ppar-OR and verifier Vpar-OR receiving (x0, x1) as
common input. Furthermore, Ppar-OR receives the witness (b, w) as auxiliary input. The protocol then
proceeds in the following way:

1. The prover Ppar-OR sets its state stPpar-OR ← ((x0, x1), (b, w)), and also stPb ← (xb, w). It com-
putes (comb, stPb) ←$ Pb(1λ; stPb), and runs the HVCZK-simulator S1−b to obtain a simulated view

14

Ppar-OR(1λ; (x0, x1), (b, w)) � Vpar-OR(1λ; (x0, x1))

stPpar-OR ← ((x0, x1), (b, w)), stPb ← (xb, w)
(comb, stPb)←$ Pb(1λ; stPb)
ch1−b ←$ {0, 1}`(λ)

(com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b)
stPpar-OR ← (stPpar-OR , stPb , com1−b, ch1−b, resp1−b)
com← (com0, com1)

stVpar-OR ← (x0, x1)

ch←$ {0, 1}`(λ)

stVpar-OR ← (stVpar-OR , com, ch)

chb ← ch⊕ ch1−b
(respb, stPb)←$ Pb(1λ; chb, stPb)
stPpar-OR ← (stPpar-OR , stPb , ch)
resp← (ch0, ch1, resp0, resp1)

v ← Jch0 ⊕ ch1 = chK
v0 ← V0(1λ;x0, com0, ch0, resp0)
v1 ← V1(1λ;x1, com1, ch1, resp1)

return (v ∧ v0 ∧ v1)

com

ch

resp

Figure 7: Details of the parallel-OR construction by Cramer et al. [CDS94]. Parts specific to the case where both Π0 and Π1
are SCZK (in comparison to HVCZK) are highlighted in gray.

(com1−b, resp1−b, ch1−b) ←$ S1−b(1λ;x1−b). It then sets com ← (com0, com1), sends com to the
verifier Vpar-OR, and puts stPpar-OR ← (stPpar-OR , stPb , comb, com1−b, ch1−b, resp1−b).

2. Vpar-OR picks a random challenge ch←$ {0, 1}`(λ), and sends it to Ppar-OR.
3. Ppar-OR defines chb ← ch ⊕ ch1−b, computes the b-th response (respb, stPb) ←$ Pb(1λ; chb, stPb), and

sets resp← (ch0, ch1, resp0, resp1) and stPpar-OR ← (stPpar-OR , stPb , resp). He then sends resp to Vpar-OR.
4. Vpar-OR accepts if and only if ch = ch0 ⊕ ch1 and the two transcripts verify, i.e.,

V0(1λ;x0, com0, ch0, resp0) = 1 and V1(1λ;x1, com1, ch1, resp1) = 1.
The same idea works with minor changes if Π0 and Π1 are both SCZK w.r.t. R0 and R1. The only difference
is that Ppar-OR must now sample a random challenge ch1−b before running the SCZK-simulator S1−b in the
first step. In other words, step 1. from above shall be substituted with the following:

1’. Ppar-OR sets stPb ← (xb, w), computes (comb, stPb) ←$ Pb(1λ; stPb), samples ch1−b ←$ {0, 1}`(λ),
and runs the SCZK-simulator (com1−b, resp1−b, ch1−b) ←$ S1−b(1λ;x1−b, ch1−b) to simulate the
1− b-th transcript. It then sets com ← (com0, com1), sends com to the verifier Vpar-OR, and puts
stPpar-OR ← (stPpar-OR , stPb , comb, com1−b, ch1−b, resp1−b).

The main properties of par-OR[Π0,Π1,S0,S1] are summarized in the following.

Theorem 3.1. Let R0 and R1 be binary relations, and let Π0 and Π1 be two 3PC HVCZK proto-
cols w.r.t. R0 and R1, such that the length functions satisfy `0 = `1 =: `. Consider the proto-
col Π = par-OR[Π0,Π1,S0, S1]. Then:

1. Π is a 3PC CWI HVCZK protocol w.r.t. ROR with HVCZK-simulator Spar-OR given in Figure 8.
2. If Π0 and Π1 are complete, then Π is also complete.
3. If R0 and R1 are NP-relations and ROR is computationally hard, then Π is CWH.

Furthermore, if both Π0 and Π1 are SCZK, then Π is SCZK with SCZK-simulator S′par-OR given in Figure 8.

15

Spar-OR(1λ; (x0, x1)):

11: (com0, resp0, ch0)←$ S0(1λ;x0)
12: (com1, resp1, ch1)←$ S1(1λ;x1)
13: com← (com0, com1)
14: ch← ch0 ⊕ ch1
15: resp← (ch0, ch1, resp0, resp1)
16: return (com, resp, ch)

S′par-OR(1λ; (x0, x1), ch):

21: ch0 ←$ {0, 1}`(λ)

22: ch1 ← ch⊕ ch0

23: (com0, resp0, ch0)←$ S0(1λ;x0, ch0)
24: (com1, resp1, ch1)←$ S1(1λ;x1, ch1)
25: com← (com0, com1)
26: resp← (ch0, ch1, resp0, resp1)
27: return (com, resp, ch)

Figure 8: Definition of the HVCZK-simulator Spar-OR (left) and of the SCZK-simulator S′par-OR (right) for par-OR[Π0,Π1, S0, S1].

The proof of the above can be found in a slightly different syntactical version in [Dam02], whereas the
particular proof of the CWH property can be found in [Ven15].

Of course it is possible to generalize the above construction from the case of two relations to the case
of n relations. This is done straightforwardly by executing the simulator n− 1 times on the instances for
which the prover does not hold a witness, thus simulating the transcripts. The set of all commitments are
sent to the verifier and the remaining protocol proceeds as detailed in Figure 7.

3.2 Parallel-OR Signatures

In this section, we describe how one can build a secure digital signature scheme sFS[Π,H] in the ROM
from a 3PC protocol Π using the Fiat-Shamir heuristic (cf. Appendix A.1); in particular, we will focus on
the case Π = par-OR[Π0,Π1,S0,S1].

The main idea is to use the Fiat-Shamir transform to make Π non-interactive, replacing the random
challenge (which is usually sampled by the verifier) with the image of the verification key, the commit-
ment, and the message under the random oracle. The remaining protocol is executed as usual, and the
signature consists of the commitment and the response. Verification works by recomputing the challenge
via the random oracle and then verifying that the transcript is correct. An overview of the signature
scheme sFS[Π,H] can be found in Figure 9.

In the following, we provide a more detailed description of how one can obtain such a signature scheme
from par-OR[Π0,Π1,S0, S1]. The key generation algorithm simply runs the instance generator GROR to
generate a yes-instance (x0, x1) of the relation ROR, with witness (b, w). The public verification key is set
to (x0, x1), whereas (b, w) is the secret key.

The signing algorithm starts by executing the prover Ppar-OR, which computes the two commitments
by running the prover Pb and the simulator S1−b on their respective inputs, as detailed in Figure 7. Then
the random challenge needs to be computed. Instead of waiting for the verifier, the Fiat-Shamir transform
evaluates the random oracle on the derived commitments and the message, yielding the random challenge.
The signing algorithm then continues with the execution of the prover Ppar-OR, which will perform the
XOR trick to split the challenge and then computes the missing response using the witness (all details are
provided in Figure 7). The signature then consists of the parallel-OR commitment and response.

The verification algorithm checks the validity of a candidate signature. First, the signature is parsed
into its components, and the algorithm evaluates the random oracle on the commitment and the message,
thereby generating a challenge string. Afterwards, the verifier Vpar-OR is executed on the signature com-
ponents and the generated challenge, following the details from Figure 7. If all conditions are satisfied the
signature is valid, otherwise not.

16

KGen(1λ):

11: ((x0, x1), (b, w))←$

←$ GROR(1λ; 1)
12: vk← (x0, x1)
13: sk← (b, w)
14: return (vk, sk)

SignH(1λ;m, vk, sk):

21: stPpar-OR ← (vk, sk)
22: (com, stPpar-OR)←$ Ppar-OR(1λ; stPpar-OR)
23: ch← H(vk, com,m)
24: (resp, stPpar-OR)←$ Ppar-OR(1λ; ch, stPpar-OR)
25: σ ← (com, resp)
26: return σ

VerifyH(1λ;m,σ, vk):

31: parse σ = (com, resp)
32: ch← H(vk, com,m)
33: v ← Vpar-OR(1λ; vk, com, ch, resp)
34: return v

Figure 9: Description of the signature scheme sFS[Π,H] = (KGen, Sign,Verify) obtained from the 3PC-protocol
Π = par-OR[Π0,Π1,S0, S1] by applying the Fiat-Shamir transform.

In the following theorem, we establish that signature schemes which are obtained by applying the
Fiat-Shamir heuristic to the parallel-OR protocol are UF-CMA-secure.

Theorem 3.2. Let Π0 and Π1 be two 3PC HVCZK-protocols for computationally hard relations R0 and R1,
such that the challenge functions `0 = `1 =: ` coincide and satisfy 2`(λ) = ω(log(λ)), and such that,
for at least one of the two protocols, the random variable representing the first-move message has min-
entropy ω(log(λ)). Consider the signature scheme Γ = sFS[Π,H] as depicted in Figure 9, obtained by
applying the Fiat-Shamir heuristic to the protocol Π = par-OR[Π0,Π1, S0,S1]. Then Γ is an UF-CMA-
secure signature scheme in the programmable random oracle model.

A proof of the above theorem can be found in [Ven15].

4 Sequential-OR Proofs
In this section, we discuss an alternative OR-proof technique which we call sequential-OR. This technique
was first used in the context of group signature schemes by Abe et al. [AOS02]. On a high level, in the
sequential-OR variant the prover derives two sub-proofs, where data from one proof is used to derive the
challenge for the other one.

4.1 Protocol

Similarly to Section 3, we denote by R0 and R1 two binary relations, and consider two 3PC SCZK
protocols Π0 = (P0,V0) and Π1 = (P1,V1) w.r.t. R0 and R1 and simulators S0 and S1, such that the
two length functions `0 = `1 =: ` coincide. Furthermore, let H be a random oracle. The sequential-
OR construction enables one to merge the two protocols Π0 and Π1 into a non-interactive proto-
col seq-OR[Π0,Π1, S0,S1,H] = (Pseq-OR,Vseq-OR) w.r.t. the binary relation ROR. The formal details of
the protocol are summarized in Figure 10.

The key idea of the construction is to compute the challenge for the instance the prover indeed does
know the witness of, based on the commitment for which it does not know the witness (derived via the
SCZK-simulator). In more detail, on input the security parameter λ ∈ N, consider a yes-instance for
the OR-relation ((x0, x1), (b, w)) ←$ GROR(1λ; 1). The protocol seq-OR[Π0,Π1,S0,S1,H] starts with the
prover Pseq-OR and verifier Vseq-OR receiving (x0, x1) as common input. Additionally, Pseq-OR receives the
witness (b, w) as auxiliary input. The protocol then proceeds in the following way:

1. The prover Pseq-OR first sets stPseq-OR ← ((x0, x1), (b, w)), also sets stPb ← (xb, w) and it com-
putes (comb, stPb) ←$ Pb(1λ; stPb). It then computes the challenge ch1−b evaluating the random

17

PHseq-OR(1λ; (x0, x1), (b, w)) � VHseq-OR(1λ; (x0, x1))

stPseq-OR ← ((x0, x1), (b, w)), stPb ← (xb, w)
(comb, stPb)←$ Pb(1λ; stPb)
ch1−b ← H(b, x0, x1, comb)
(com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b)
chb ← H(1− b, x0, x1, com1−b)
(respb, stPb)←$ Pb(1λ; chb, stPb)
stPseq-OR ← (stPseq-OR , stPb , com1−b, resp1−b)
resp← (com0, com1, resp0, resp1)

stVseq-OR ← (x0, x1)

ch1 ← H(0, x0, x1, com0)
ch0 ← H(1, x0, x1, com1)

v0 ← V0(1λ;x0, com0, ch0, resp0)
v1 ← V1(1λ;x1, com1, ch1, resp1)

return (v0 ∧ v1)

resp

Figure 10: Details of the sequential-OR construction by Abe et al. [AOS02].

oracle H on the common input (x0, x1) and the previously generated commitment comb. It also
includes the bit b from the witness for domain separation. Next, it runs the SCZK-simulator S1−b to
obtain a simulated view (com1−b, resp1−b, ch1−b) ←$ S1−b(1λ;x1−b, ch1−b). It then obtains the chal-
lenge chb for the first proof by evaluating H on the common input (x0, x1), the commitment com1−b
from the simulator, and the bit 1−b. Finally, Pseq-OR computes (respb, stPb)←$ Pb(1λ; chb, stPb) using
the witness for xb, and sends resp← (com0, com1, resp0, resp1) to Vseq-OR.

2. Vseq-OR first re-computes both challenge values using the random oracle H. It then accepts
the proof if and only if both transcripts verify correctly, i.e., V0(1λ;x0, com0, ch0, resp0) = 1
and V1(1λ;x1, com1, ch1, resp1) = 1.

In the following theorem, we establish the main properties of the protocol seq-OR[Π0,Π1,S0,S1,H].

Theorem 4.1. Let R0 and R1 be binary relations, and let Π0 and Π1 be two 3PC SCZK proto-
cols w.r.t. R0 and R1, such that the length functions satisfy `0 = `1 =: `. Consider the proto-
col Π = seq-OR[Π0,Π1, S0,S1,H]. Then the following holds in the ROM:

1. Π is a 1-move CWI protocol w.r.t. ROR.
2. Π is mqCWI.
3. If Π0 and Π1 are complete, then Π is also complete.
4. If R0 and R1 are NP-relations and ROR is computationally hard, then Π is CWH.

A detailed proof of Theorem 4.1 can be found in Appendix B. The technique described above can also
be easily adapted to the 1-out-of-n case. The corresponding details can be found in Appendix D.

4.2 Sequential-OR Signatures

We now show how one can use the sequential-OR proof technique (see Figure 10) to build a secure signature
scheme Γ = (KGen,Sign,Verify) in the non-programmable ROM. On a high level, the signer runs a normal
execution of the protocol seq-OR[Π0,Π1, S0, S1,H], but always includes the message m being signed when
it queries the random oracle to obtain the challenges. Signatures in this scheme consist of the commitments

18

KGen(1λ):

11: ((x0, x1), (b, w))←$

←$ GROR(1λ; 1)
12: vk← (x0, x1)
13: sk← (b, w)
14: return (vk, sk)

SignH(1λ;m, vk, sk):

21: parse vk = (x0, x1)
22: parse sk = (b, w)
23: stPb ← (xb, w)
24: (comb, stPb)←$ Pb(1λ; stPb)
25: ch1−b ← H(b, vk, comb,m)
26: (com1−b, resp1−b, ch1−b)←$

←$ S1−b(1λ;x1−b, ch1−b)
27: chb ← H(1− b, vk, com1−b,m)
28: (respb, stPb)← Pb(1λ; chb, stPb)
29: σ ← (com0, com1, resp0, resp1)
30: return σ

VerifyH(1λ;m,σ, vk):

41: parse σ = (com0, com1, resp0, resp1)
42: ch1 ← H(0, vk, com0,m)
43: ch0 ← H(1, vk, com1,m)
44: v0 ← V0(1λ;x0, com0, ch0, resp0)
45: v1 ← V1(1λ;x1, com1, ch1, resp1)
46: return (v0 ∧ v1)

Figure 11: Description of the signature scheme Γ = (KGen, Sign,Verify) obtained from the protocol seq-OR[Π0,Π1,S0, S1,H]
by appending the message m being signed to all random oracle queries.

and responses generated during the protocol execution, and verification can be achieved by re-computing
the challenges (again, including the message) and checking whether the two transcripts verify. The formal
details of the scheme can be found in Figure 11, and we provide a detailed description in the following.

The signature scheme’s key generation algorithm runs the instance generator of the OR-
relation ((x0, x1), (b, w)) ←$ GROR(1λ; 1), which returns an ROR-instance (x0, x1) and a witness w for xb.
The pair (x0, x1) then constitutes the public verification key, and (b, w) is set to be the secret signing key.

Signing a message m starts with running Pb on the instance xb with the corresponding known witness
(contained in the signing key), which results in a commitment comb. The next step is to compute the
challenge ch1−b for the instance the prover does not know the witness for, and this is done querying the
random oracle H, as done before. The only difference is that now the message m is appended to the
oracle’s input. Next, the signer runs the SCZK-simulator of Π1−b on the instance x1−b and this challenge,
generating a simulated view (com1−b, resp1−b, ch1−b). To complete the signature, it is still necessary to
derive the missing response respb. In order to do so, first the random oracle is invoked to output chb
from com1−b (again, the message m is appended to its argument), and on input this challenge the prover
computes the response respb. Finally, the signature is (com0, com1, resp0, resp1).

The verification algorithm checks whether the signature is valid for the given message. The sig-
nature is parsed in its components, and the algorithm queries the random oracle twice (including the
message) to obtain the challenges ch0 and ch1, as computed by the signing algorithm. It then verifies
whether (com0, ch0, resp0) and (com1, ch1, resp1) are accepting transcripts for x0 and x1, respectively. If
both transcripts verify correctly then the verification algorithm accepts the signature, and rejects otherwise.

Theorem 4.2. Let R0 and R1 be decisional hard relations, and let Π0 and Π1 be two 3PC optimally
sound SCZK protocols w.r.t. R0 and R1, such that the length functions satisfy `0 = `1 =: `. Consider
the signature scheme Γ obtained from the protocol Π = seq-OR[Π0,Π1, S0,S1,H] as depicted in Figure 11.
Then Γ is an UF-CMA-secure signature scheme in the non-programmable random oracle model. More
precisely, for any PPT adversary A against the UF-CMA-security of Γ making at most qH queries to the
random oracle H, there exist PPT algorithms C, V∗, D0 and D1 such that

AdvUF-CMA
A,Γ (λ) ≤ AdvmqCWI

V∗,C,Π(λ) + AdvDHR
D0,R0(λ) + AdvDHR

D1,R1(λ) + 2 · (qH(λ) + 2)2 · 2−`(λ).

19

In particular, for a perfectly witness indistinguishable proof system, the bound becomes tightly related
to the underlying decisional problem, since AdvmqCWI

V∗,C,Π(λ) ≤ qs(λ) · AdvCWI
V∗,C,Π(λ) = 0 (here and in the

following, qs denotes the number of queries the adversary makes to the signature oracle). This holds for
example if we have a perfect zero-knowledge simulator. We remark that our proof also works if the relations
are not optimally sound but instead c-optimally sound, i.e., for every x /∈ LR and every commitment, there
is a small set of at most c challenges for which a valid response can be found. In this case we get the
term c(λ) · 2−`(λ) in place of 2−`(λ) in the above bound.

The complete proof of Theorem 4.2 can be found in Appendix C, but we still give a proof sketch here.
We show that the obtained signature scheme Γ is secure via a sequence of game hops, the details of which
can be found in Figure 19. The general approach is based on the following idea:

1. Assume that we have an adversary A which creates a forgery (com∗0, com∗1, resp0∗, resp∗1) for mes-
sage m∗. We can modify A into an adversary B which will always query both (0, x0, x1, com∗0,m∗)
and (1, x0, x1, com∗1,m∗) to the random oracle when computing the forgery, simply by making the
two additional queries if necessary.

2. Since the adversary is oblivious about which witness wb is being used to create signatures, B will
submit the query (1−b, x0, x1, com∗1−b,m∗) first, before making any query about (b, x0, x1, com∗b ,m∗),
with probability roughly 1/2, and will still succeed with non-negligible probability.

3. If we next replace x1−b with a no-instance (which is indistinguishable for B because R1−b is decision-
ally hard) we obtain the contradiction that B’s advantage must be negligible now, because finding
a forgery when querying com∗1−b first should be hard by the optimal soundness property of Π1−b,
since x1−b is a no-instance.

In more detail, in the first step we transition from the classical unforgeability game G0 for the signature
scheme Γ to a game G1 where the adversary is additionally required to query both (0, x0, x1, com∗0,m∗)
and (1, x0, x1, com∗1,m∗) to the random oracle. It is always possible to make this simplifying assumption:
Indeed, given any adversary A against the UF-CMA-security of Γ, we can modify it into an adversary B
which works exactly like A, but whose last two operations before returning the forgery as computed by A
(or aborting) are the two required oracle queries, in the order given above. It is clear that B is a PPT
algorithm, that it makes at most qH+ 2 random oracle queries, and that the probabilities of adversaries A
winning game G0 and B winning game G1 are the same.

We remark that it was also possible, albeit a bit lengthy, to prove that a successful adversary A
against G0 would already make both oracle queries with overwhelming probability, so that one could
replace this first step with a more cumbersome security proof ruling out adversaries that do not make both
queries. We choose here not to do so, because it would make the proof much longer and worsen the overall
bound on the advantage of A.

Next, we define a game G2 which is the same as game G1 with the change that the adversary is
required to query (1 − b, x0, x1, com∗1−b,m∗) to the random oracle before submitting any query of the
form (b, x0, x1, com∗b ,m∗). By witness indistinguishability this should happen with roughly the same prob-
ability as the other case (with the opposite order), because from the adversary’s perspective the signatures
do not reveal which witness wb is used by the signer. Indeed, we show that the difference between both
games is (up to the factor 1

2) negligibly close. This is shown by building a distinguisher against the mqCWI
property, and proving that the difference coincides with the distinguishing advantage of this distinguisher
in the mqCWI experiment. As a result, the winning probability of B in game G1 is approximately twice
its winning probability in game G2.

Finally, we move to a game G3 which is identical to G2 with the difference that the (1− b)-th instance
is switched to a no-instance. Since the relations are decisionally hard, we can build another distinguisher
playing the DHR experiment, showing that the winning probabilities are again roughly the same.

To conclude the proof we argue that the probability of the adversary winning game G3 can be bounded
using the fact that Π1−b is optimally sound. Indeed, by the winning condition in the game, the adversary

20

needs to provide the commitment com∗1−b early on. By the fact that the (1−b)-th instance is a no-instance,
we know that for every such commitment there exists at most one challenge (derived querying H on com∗b
later in the game) for which there exists a response such that the transcript for x1−b verifies correctly. Since
the adversary must ask com∗1−b in one of the random oracle queries, there are at most qH+2 commitments
com∗1−b it can check. For every such commitment it can try at most qH+ 2 other oracle queries to find the
matching challenge, so that we can bound B’s winning probability in G3 by (qH(λ) + 2)2 · 2−`(λ)+1.

4.3 Example: Post-Quantum Ring Signatures

We discuss here briefly that our sequential-OR technique can be applied to build lattice-based ring sig-
natures. We exemplify this for the case of the Dilithium signature scheme [DKL+18]. We stress that
our solution may be less efficient than optimized lattice-based constructions such as [ESLL19] (but which,
again, relies on programming the random oracle and yields a loose reduction). Our aim is to demonstrate
that one can use the sequential-OR approach in principle to immediately obtain a solution with security
guarantees in the non-programmable classical ROM (with tight security relative to the underlying lattice
problem) and also in the QROM (with loose security at this point).

We briefly recall the Dilithium signature scheme [DKL+19]. The scheme works over a
ring Rq = Zq[X]/(Xn + 1). The public key consists of (a size-reduced version of) t = As1 + s2, where the
matrix A ∈ Rk×`q and the vectors s1, s2 become part of the secret key. The signature σ = (z, h, c) of a
message m consists of a short response value z = y + cs1, where y is chosen randomly and c = H(µ,w1) is
a (deterministically post-processed) hash value of a salted hash µ of the message m and the commitment
of w = Ay in form of its higher-order bits w1. The value h is a hint required for verification. When
generating a signature, the process may not always create a sufficiently short value z, in which case the
generation is started from scratch.

The security proof of Dilithium [KLS18] is based on the presumably hard problem to distinguish genuine
public keys (A,As1 + s2) from (A, t) for random t. As such we have our required decisional hard relation.
Optimal soundness, in the sense that for random public keys there exists at most one challenge for which
one can find a valid answer for a given commitment, has been also shown to hold with overwhelming
probability in [KLS18]. The zero-knowledge property in [KLS18] reveals, by inspecting the construction of
the simulator, that the construction is special zero-knowledge with perfectly indistinguishable distribution.
The witness indistinguishability of the sequential-OR protocol hence follows from Theorem 4.1.

We can now apply Theorem 4.2 to conclude that the sequential-OR version is a secure signature scheme
(in the non-programmable random oracle model). Note that it is irrelevant for us how many trials the
signature generation takes, since we are merely interested in the point in time when we actually observe
the right random oracle queries. With Theorem 6.1 we can also conclude that the protocol is secure in the
quantum random oracle model.

5 Impossibility of parallel-OR Signatures in the Non-Programmable
Random Oracle Model

In this section we show that it may be hard to prove the unforgeability of the parallel-OR signature
scheme Γ = sFS[par-OR[Π0,Π1, S0, S1],H] in the non-programmable ROM. On a high level, this means
that we must rule out the existence of an efficient reduction R which has access to a random oracle but
is not allowed to program it, and which transforms any (bounded or unbounded) successful adversary A
against the unforgeability of Γ into an algorithm C solving some problem G assumed to be hard with
non-negligible advantage.

21

Our proof will proceed in two steps. First, assuming by contradiction that such a reduction R indeed
does exist, we will construct a specific unbounded adversary A which breaks the unforgeability of Γ with
overwhelming probability. By the properties of R, this means that the unbounded algorithm C resulting
from the interaction between R and A must successfully break instances of G in the non-programmable
ROM with non-negligible probability. Then, we show how to efficiently simulate to R its interaction with A,
thereby yielding an efficient algorithm B against G in the standard model with roughly the same advantage
as C. This is impossible by the hardness of G, which means that R cannot exist.

In the following paragraphs we discuss which kinds of reductions R we are able to rule out, define what
types of problems G the algorithms B and C play against, and discuss a pointwise version of zero-knowledge
which the base protocols must satisfy for our result to work. We then come to the main result of this
section.

Reduction. The efficient reductions R we consider have oracle access to the random oracle H, as well
as a (bounded) number of adversary instances Ai which themselves have oracle access to H. The latter
guarantees that the reduction cannot program the random oracle for the adversarial instances, but we
stress that R gets to see all the queries made by any instance Ai. We let each adversarial instance be run
on the same security parameter λ as the reduction itself.

Recall that, in the first step of our proof, the adversary A is unbounded. Therefore, we can assume
that A incorporates a truly random function which it uses if random bits are required. With this common
derandomization technique, we can make some simplifying assumptions about the reduction: Without loss
of generality, R runs the instances of the adversary in sequential order, starting with A1. It also never
revisits any of the previous instances A1, . . . , Ai once it switches to the next instance Ai+1 by inputting a
verification key vki+1. Furthermore, we can disallow any resets of the adversarial instances: The reduction
can simply re-run the next instance up to the desired reset point and then diverge from there on.

Games. The hard problems that algorithms B and C are trying to solve are non-interactive (“oracle-free”)
problems, like distinguishing between different inputs. Formally, we consider games of the form G = (I,V, α)
consisting of an instance generation algorithm I and a verification algorithm V, where (inst, st) ←$ I(1λ)
generates a challenge inst of the game and some state information st. On input a potential solution sol
computed by some algorithm, the deterministic algorithm V(1λ; inst, sol, st) returns 0 or 1, depending on
whether sol is a valid solution of inst. The constant α allows to measure the advantage of an algorithm
trying to win the game over some trivial guessing strategy (e.g., α = 1

2 for distinguishing games). We say
that an algorithm B has advantage ε winning the game G = (I,V, α) if

Pr
[

V(1λ; inst, sol, st) = 1 : (inst, st)←$ I(1λ), sol←$ B(1λ; inst)
]
≥ α+ ε(λ).

For us, the canonical problem to reduce security of the signature scheme to would be the distinguishing
game against the hard instance generator for the underlying language. However, our theorem holds more
generally for other problems.

The all-powerful Adversary. In our setting, the reduction RH,AH1 ,AH2 ,...(1λ; inst) has black-box access
to a successful adversary A against Γ, receives as input some instance inst of a game G = (I,V, α), and is
supposed to output a valid solution sol, winning the game with non-negligible advantage ε, while interacting
with A. Recall that R must be able to convert any (efficient or unbounded) adversary A into a solver for G;
in particular, this must be the case for the following all-powerful forger A, which we will consider throughout
the proof:

1. Upon receiving a verification key vk = (x0, x1) as input, the adversary first queries its singing oracle
for a signature on the message mvk = vk.

22

2. When receiving the signature σ, adversary A verifies the signature and aborts if this check fails.
3. Else, adversary A uses its power to compute the lexicographic first witness w of x0 (if it exists),

or of x1 (if it exists, and no witness for x0 has been found). If no witness can be found, then A
aborts. Otherwise, let b ∈ {0, 1} be such that A has found a witness for xb.

4. Adversary A picks a random λ-bit message m∗ and runs the signing algorithm with secret
key sk = (b, w) to create a signature σ∗. This requires one random oracle query over the mes-
sage (x0, x1, com∗0, com∗1,m∗). The randomness necessary to create the signature and the message m∗
is computed by applying the inner random function to (vk, σ).

5. The adversary outputs (m∗, σ∗) as its forgery.
Note that since the adversary includes the public key vk in the messages mvk, our result would also hold
if the signing process itself did not include vk; according to our specification it currently does.

We observe that A obviously wins the UF-CMA experiment of Γ with overwhelming probability. We
denote by CH(1λ; inst) the adversary against G in the non-programmable ROM obtained by letting R
interact with A (see the left-hand side of Figure 12). By the properties of R, the advantage of C against G
in the non-programmable ROM must be non-negligible.

Zero-Knowledge. Recall that we defined the zero-knowledge property for protocols w.r.t. relations R
that have an efficient instance generator. Here, we need a stronger notion: Zero-knowledge must hold
pointwise for every (x,w) ∈ R. The reason is that we will rely on the zero-knowledge property to argue
that the reduction R does not learn any useful information from the signatures created by the all-powerful
adversary A. The problem here is that the reduction may choose the instance vki = (x0, x1) in the
execution of the i-th adversary adaptively and in dependence of the behavior of A in previous instances.
The reduction may then also base its final output on this choice.

We therefore say that a protocol Π = (P,V) w.r.t. a relation R is pointwise HVCZK, if there exist a
uniform PPT algorithm S and a polynomial p with the following property: For every PPT distinguisher D,
there exists a negligible function µ : N→ R such that, for every λ ∈ N, every (x,w) ∈ R with |x| , |w| ≤ p(λ),
and every z ∈ {0, 1}∗, D can distinguish verifier views viewV

[
PO(1λ;x,w) � VO(1λ;x)

]
in the honest

interaction between P and V from the simulator’s output S(1λ;x) with advantage at most µ(λ), even if D
receives z as auxiliary input.

Note that in the definition above, the relation and the language are still fixed, only the sampling
process may vary. This seems to be a reasonable assumption which applies to known protocols, as the
zero-knowledge simulator is usually independent of the generation process for the statement.

Impossibility Result. We now show that, if there exists a black-box reduction R as described above,
our all-powerful adversary A induces an efficient algorithm B winning the game directly, such that the
advantages of B and C are roughly the same. This is impossible by the assumed hardness of G, so that R
cannot exist.

Theorem 5.1. Let R0 and R1 be binary relations, and let Π0 and Π1 be two 3PC optimally sound
pointwise HVCZK protocols w.r.t. R0 and R1, such that the length functions satisfy `0 = `1 =: `. Denote
by Π = par-OR[Π0,Π1,S0, S1] the corresponding parallel-OR protocol, and let Γ = sFS[Π,H] be the parallel-
OR signature scheme derived from Π in the ROM.

Assume that there exists a PPT black-box reduction R from the unforgeability of Γ to winning a
game G = (I,V, α). Then there exists a PPT algorithm B which wins the game G with non-negligible
advantage in the standard model.

The idea is as follows. Algorithm B receives as input a challenge inst of the game G, and must compute
a valid solution sol with non-negligible probability. The strategy of B is to run the reduction R on inst as a

23

R

Compute (b, w) s.t.
((x0, x1), (b, w)) ∈ ROR

Generate m∗ and sign

Ai

..

.

...

inst

sol

C

H
inst

sol

(x0, x1)

(m∗, σ∗)

(v
k,

co
m
∗ ,
m
∗)

H
(v

k,
co

m
∗ ,
m
∗)

R

m∗ ←$ {0, 1}λ
(com∗0 , resp∗0 , ch∗0)←$ S0(1λ; x0)
(com∗1 , resp∗1 , ch∗1)←$ S1(1λ; x1)
H(vk, com∗,m∗) := ch∗0 ⊕ ch∗1

Ai

..

.

...

inst

sol

if s already queried then
t← H(s)

else
t←$ {0, 1}`(λ)

H(s) := t H

B

inst

sol

(x0, x1)

(m∗, σ∗)

(v
k,

co
m
∗ ,
m
∗)

ch
∗ 0
⊕

ch
∗ 1

Figure 12: Representation of the reduction R interacting with adversarial instances Ai in the ROM (left) and of the efficient
solver B running R and simulating its interaction with A in the standard model (right). The components simulated by B are
dashed, and the queries of which R gets informed are highlighted in gray.

subroutine, and to efficiently simulate to R its interaction with A. To do so, B must be able to answer the
two types of queries that R can make: Random oracle evaluations and forgery queries to A. The former
are handled via lazy sampling, i.e., B simulates a random oracle to R. If on the other hand R requests a
forgery for a verification key vk = (x0, x1), B at first follows the definition of A and requests a signature
for mvk. This initial signature request ensures that the verification key vk must be such that x0 ∈ L0
or x1 ∈ L1 or both. Indeed, the reduction cannot program the random oracle (which is controlled by B)
and, by special soundness of Π0 and Π1, finding a valid signature when both x0 /∈ L0 and x1 /∈ L1 is
infeasible for parallel-OR signatures. Hence, in the original experiment A will always be able to find a
witness (b, w) for vk if it receives a valid signature.

Next, A will compute a forgery for the message m∗. Here B, instead of using w from the witness (b, w)
to run Pb and compute com∗b and resp∗b in its forgery, uses the zero-knowledge simulator Sb for this part
as well. Now both parts of the signature of m∗ are independent of the actual witness. The algorithm B
can now program the random oracle H it is simulating to R, so that H(vk, com∗,m∗) matches the XOR
of the two challenges obtained from the two simulators.2 By the strong zero-knowledge property of the
base protocols, and since m∗ contains sufficient randomness to make sure that we can still set the random
oracle for R at this point, this is indistinguishable for the reduction. Finally, if at some point R returns a
solution to the given instance, algorithm B terminates with the same output. In conclusion, we can now
efficiently simulate A’s behavior to R, so that the reduction together with this simulation technique yields
our efficient algorithm B against game G (see the right-hand side of Figure 12).

Let us stress that the impossibility result above does not hold for sequential-OR signatures. The
difference lies in the observability of the reduction in both cases. In the parallel-OR case we still need
to tell R which query H(vk, com∗0, com∗1,m∗) the adversary has made to compute the forgery. But we

2One could indeed argue why we are here allowed to program the random oracle in light of the discussion about non-
programmability. One may think of this here as a restriction of the reduction, that it needs to be able to cope with such
external oracles. Technically, it gives the required advantage over the reduction to make the meta-reduction argument work.

24

have already argued that the simulated value com∗b is indistinguishable from the prover’s value com∗b in
the forgery, so that this query does not give any additional information to R. In the sequential-OR case,
however, we would need to inform R which query A makes first, revealing which witness it has computed.

Proof. Consider an efficient reduction R interacting with instances of our all-powerful adversary A. Assume
that the reduction calls at most qA instances of A and makes at most qH calls to the random oracle. Since R
is polynomial-time, both parameters are polynomially bounded. We can also assume that R never runs an
instance for the same key vk and then the same signature σ twice, because it will just receive the same
answers as before.

We start by making some simplifying assumptions about the reduction. First, we can assume that R
only provides A with a valid signature to some verification key vk = (x0, x1) if x0 ∈ L0 or x1 ∈ L1 (or
both). Indeed, since Π0 and Π1 are optimally sound, if both values are not in their language, then each
commitment com0 for x0 and com1 for x1 only allows for at most one challenge, ch0 and ch1, to have a
valid response. But then, the probability that a random oracle query H(vk, com0, com1,mvk) matches the
unique value ch0 ⊕ ch1 is at most 2−`(λ). The probability that such a random oracle query exists at all,
either made by R or, if not, later made by any instance of the adversary A when verifying the signature,
is therefore at most (qH(λ) + qA(λ)) · 2−`(λ). Given that A aborts if the signature it receives is not valid,
we can from now on assume that each public key vk for which R requests a forgery (and must provide
a signature) allows A to compute a witness (b, w), and that R itself leaves the instance immediately if
verification fails.

Second, we may assume that, whenever A creates a forgery for m∗, the random oracle has not been
queried by any party yet about any value terminating in m∗. Indeed, since A applies the internal random
function to compute m∗ from vk and σ, and we assume that the reduction never runs the adversary twice
on the same values, this can only happen if two random messages m∗ of the adversary collide, or if the
reduction has made such a query by chance. The probability for this is at most (qH(λ) + qA(λ))2 · 2−λ.
Hence, we can from now on assume that this does not happen. In other words, if R stumbles upon such a
value it immediately aborts.

We now define the algorithm B as explained in the overview above. On input (1λ; inst), B runs the
reduction on security parameter 1λ and instance inst as a subroutine, and simulates to R its interaction
with A. The random oracle queries made by R are answered via lazy sampling. If on the other hand R
calls an adversarial instance for a forgery under vk = (x0, x1), B does the following:

1. It first requests a signature of mvk = vk under vk to its signature oracle (provided by the reduction),
and checks if the corresponding signature is valid. If not, it aborts the simulation of the current
instance of A.

2. Assuming that R has provided a valid signature of mvk under vk, B does not compute a witness (b, w)
for vk (as A would do). It still picks a random message m∗ ∈ {0, 1}λ and fresh coins for the signing
process, though.

3. To compute the forgery for m∗, instead of invoking Pb(1λ;xb, w) to generate comb, B now
runs the two simulators S0(1λ;x0) and S1(1λ;x1) to compute simulated views (com∗0, resp∗0, ch∗0)
and (com∗1, resp∗1, ch∗1).

4. Algorithm B saves H(vk, com∗0, com∗1,m∗) := ch∗0 ⊕ ch∗1 into the lookup table it keeps to simu-
late the random oracle to R, and informs R that the adversary A it is simulating has made a
query (vk, com∗0, com∗1,m∗) to the random oracle, with answer ch∗0 ⊕ ch∗1.

5. Finally, B sendsm∗ and σ∗ = (com∗0, com∗1, resp∗0, resp∗1) to R as the forgery computed by the simulated
instance of A.

Note that B is now efficient: The only potentially exponential step involving the witness search has
been eliminated. We must now argue that B’s success probability in the standard model is close to the one
of C in the ROM. This is done by carrying out a reduction to the pointwise zero-knowledge property of the

25

protocols Π0 and Π1, where zero-knowledge must hold for every (x,w) ∈ R, even in the presence of some
auxiliary information z ∈ {0, 1}∗ that may contain further information about (x,w). The proof is done
via a hybrid argument for hybrids Hyb0, . . . , HybqA , where Hybi answers R’s forgery requests by running
the (unbounded) algorithm A up to, and including, the i-th adversarial instance (as C would do), and
then efficiently simulates A for the remaining instances (as B would do). Then the extreme hybrids HybqA
and Hyb0 correspond to the original inefficient algorithm C and to B’s simulation, respectively.

The jump from hybrid Hybi−1 to hybrid Hybi substitutes the honestly generated proof for xb (where xb
is the instance that A finds a witness for) in the i-th adversarial instance with a simulated one, so that we
can construct a reduction to the pointwise HVCZK property of Πb. The main idea is to let the reduction
interact with the inefficient forger A for the first i instances, up to the point where Ai has determined the
witness (b, w) for xb, and save all the state information into the auxiliary input z. This allows us to pick up
the reduction later. We then leverage the pointwise HVCZK property of Πb, with instance (xb, w) ∈ Rb:
The zero-knowledge distinguisher Db receives a genuine or simulated view for xb and the state information z,
and continues to run the reduction, but now using B’s simulation for the remaining instances (so that Db

is efficient).
More formally, we use the pointwise HVCZK property of Πb for the distinguisher Db, the in-

stance (xb, w) ∈ Rb, and the auxiliary information z defined as follows. We let (inst, sol) ←$ I(1λ)
generate an instance of G, pick a random tape r for the reduction and a random index i between 1
and qA for the jump in the hybrids, and then run the reduction (interacting with A) on input inst, up
to the point where A has computed a witness for one of the two instances in the i-th execution (on in-
put vk = (x0, x1)) and has generated the message m∗. All random oracle queries are answered via lazy
sampling and a table H is maintained to record previously answered queries. Let S store all forgery at-
tempts of A. Then we let (xb, w) ∈ Rb be the instance and the corresponding witness found by A, and we
set z = (inst, st, r, i, x1−b, b, w,m

∗, H, S). Note that if no witness can be found by A, or if A has stopped in
this instance prematurely, then we simply set xb and w to some fixed elements of the relation R0 and the
output z as before. In any case, z is of polynomial size and can be processed by an efficient distinguisher,
because qH and qA are polynomially bounded.

The (efficient) distinguisher Db against the pointwise HVCZK property of Πb receives xb, a real or
simulated view (com∗b , resp∗b , ch∗b) for xb, and the auxiliary information z = (inst, st, r, i, x1−b, b, w,m

∗, H, S).
With these data Db can re-run the reduction up to the interaction of R with the i-th adversarial instance
and then inject the given transcript (com∗b , ch∗b , resp∗b) into this instance (the transcript for x1−b needed
to complete the forgery is obtained via the simulator S1−b(1λ;x1−b)). Algorithm Db now completes the
execution of the reduction, using lazy sampling and the table H to continue the consistent simulation of
random oracle queries. In particular, in all subsequent signature forgeries it will use B’s efficient simulation
technique, calling the simulators S0 and S1 to create the two transcripts and programming the random
oracle accordingly. Note that the order of execution of these two simulators is irrelevant, because Db

only needs to inform the reduction about a single random oracle query. Finally, Db takes the reduction’s
output sol and returns the decision bit V(1λ; inst, sol, st).

Observe that Db runs in polynomial time, because it does not need to invoke any super-
polynomial subroutines like A. If Db receives a real view (com∗b , resp∗b , ch∗b) in the i-th instance,
then ch∗b is truly random and independent, and therefore programming the (simulated) random oracle
to H(vk, com∗0, com∗1,m∗) := ch∗0 ⊕ ch∗1 is perfectly sound. Hence, for real transcripts Db simulates the hy-
brid Hybi with the first i instances according to C’s strategy, and the following instances with the simulated
mode of B.

If on the other hand the transcript is simulated by Sb, then both parts of the signature are simulated.
This means that both ch∗0 and ch∗1 are indistinguishable from random strings to an efficient adversary,
which again implies that programming H(vk, com∗0, com∗1,m∗) := ch∗0 ⊕ ch∗1 is sound for R. In this case,

26

only the first i − 1 instances follow C’s method; starting form the i-th adversarial instance we have two
simulated proofs, each simulated individually. Hence, this corresponds to the (i− 1)-th hybrid Hybi−1.

Let µb : N→ R be the negligible function bounding the distinguishing advantage of Db in the pointwise
HVCZK experiment of Πb. It follows via a standard hybrid argument that any change in the reduction’s
behavior translates into a distinguisher against the pointwise HVCZK property of Π0 and Π1 (times the
number of queries qA). The advantage of our algorithm B in breaking the game is thus at least

ε(λ)− (qH(λ) + qA(λ))2 · 2−λ − (qH(λ) + qA(λ)) · 2−`(λ) − qA(λ)
(
µ0(λ) + µ1(λ)

)
,

where ε is the advantage of C. Since ε is non-negligible by assumption, so must be B’s advantage. But this
contradicts the presumed hardness of G.

6 Security in the Quantum Random Oracle Model
In this section we give an outline of the security proof for signatures derived from the sequential-OR
construction in the QROM. More details can be found in Appendix F.

While treating quantum random oracles is a clear qualitative extension in terms of the security guaran-
tees (especially if we work with quantum-resistant primitives), we have to sacrifice two important features
of our proof in the classical case. One is that the bound we obtain is rather loose. The other point
is that we need to program the random oracle in the security reduction. Both properties are currently
shared by all proofs in the quantum random oracle model, e.g., programmability appears in form of using
pairwise independent hash functions or semi-constant distributions (see [Zha12]). Hopefully, progress in
this direction will also carry over to the case of sequential-OR signatures.

Our starting point is the “measure-and-reprogram” technique of Don et al. [DFMS19] for Fiat-Shamir
protocols in the QROM. They show that it is possible to turn a quantum adversary A into an algorithm RA

such that RA measures one of the qH quantum queries of A to the random oracle, yielding some classical
query com′. The choice of this query is made at random. Algorithm RA returns either correctly H(com′)
or an independent and random value Θ to this now classical query, the choice being made at random.
Algorithm RA continues the execution of A but always returns Θ for com′ from then on. Algorithm RA

eventually returns the output (com, resp) of A.
Don et al. [DFMS19] now show that, for any quantum adversary A making at most qH quantum

random oracle queries, there exists a (quantum) algorithm RA such that, for every fixed com0 and every
predicate Λ, there exists a negligible function µcom0 : N→ R such that

Pr
[

com = com0 ∧ Λ(1λ; com,Θ, resp) : (com, resp)←$ RA,H(1λ; Θ)
]

≥ 1
O(qH(λ)2) · Pr

[
com = com0 ∧

Λ(1λ; com,H(com), resp) : (com, resp)←$ AH(1λ)
]
− µcom0(λ),

where
∑

com0 µcom0(λ) = 1
qH(λ)·2`(λ)+1 for the output size ` of the random oracle.

We will apply the above measure-and-reprogram technique twice in order to capture the two (classical)
queries in which the adversary asks for the two commitments com∗0 and com∗1 for the forgery. However,
we do not know if the strategy can be safely applied multiple times in general. Fortunately, we can apply
the technique in our setting once without actually reprogramming the random oracle, only turning one
of the queries into a classical one, and then view this as a special adversary B which still works with the
given random oracle model. In doing so we lose a factor of approximately 1/q2 in the success probability,
where q(λ) = qH(λ) + 2 + 2qs(λ) counts the number of hash queries made by both the adversary and the
signature scheme. Then we can apply the technique once more to B, losing another factor 1/q2. Finally, we

27

need to take into account that we actually obtain the matching commitments in the two measured queries,
costing us another factor 1/q. Eventually, we get an algorithm R which makes two classical queries about
the two commitments in the forgery with high probability, but with a loose factor of 1/q5 compared to the
original success probability of the forger.

Note that we now have a forger making two classical queries about the commitments com∗a∗
and com∗1−a∗ in the forgery in this order, but where we reprogram the random oracle reply in
the second query about com∗1−a∗ to Θ. In our sequential-OR construction this value Θ describes
the (now reprogrammed) challenge for the first commitment. In particular, the forgery then satis-
fies Va∗(1λ;xa∗ , com∗a∗ ,Θ, resp∗a∗) = 1 for the commitment com∗a∗ chosen before Θ is determined. If xa∗
was a no-instance, this should be infeasible by the optimal soundness property. The last step in the ar-
gument is then similar to the classical setting, showing that if R is forced to use the “wrong order” and
queries about a no-instance first with sufficiently high probability, its success probability will be small by
the witness indistinguishability of the protocol and the decisional hardness of the problems (but this time
against quantum algorithms).

Overall, we get:

Theorem 6.1. Let R0 and R1 be decisional hard relations against quantum algorithms, and let Π0 and Π1
be two 3PC optimally sound SCZK protocols w.r.t. R0 and R1, where zero-knowledge holds with respect to
quantum distinguishers, such that the length functions satisfy `0 = `1 =: `. Consider the signature scheme Γ
obtained from the protocol Π = seq-OR[Π0,Π1, S0, S1,H] as depicted in Figure 11. Then Γ is an UF-CMA-
secure signature scheme in the quantum random oracle model. More precisely, for any polynomial-time
quantum adversary A against the UF-CMA-security of Γ making at most qH quantum queries to the random
oracle H and at most qs signature queries, there exist a negligible function µ : N→ R and polynomial-time
quantum algorithms C, V∗, D0 and D1 such that

AdvUF-CMA
A,Γ (λ) ≤ O((qH(λ)+qs(λ)+2)5)·

(
AdvmqCWI

V∗,C,Π(λ)+AdvDHR
D0,R0(λ)+AdvDHR

D1,R1(λ)+2−`(λ)+1
)

+µ(λ).

Acknowledgments
We thank the anonymous reviewers for valuable comments. We thank Serge Fehr and Tommaso Gagliar-
doni for helpful discussions. This work was funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB
1119 – 236615297.

References
[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identification

to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and forward-
security. In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 418–433, Amsterdam, The Netherlands,
April 28 – May 2, 2002. Springer, Heidelberg, Germany. (Cited on pages 4 and 36.)

[ABB+17] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, Özgür Dagdelen, Edward Eaton, Gus
Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting TESLA in the quantum random
oracle model. In PQCrypto 2017, volume 10346 of Lecture Notes in Computer Science, pages
143–162. Springer, 2017. (Cited on page 4.)

[AFLT16] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly
secure signatures from lossy identification schemes. Journal of Cryptology, 29(3):597–631,
July 2016. (Cited on pages 4 and 5.)

28

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety of
keys. In Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of
Lecture Notes in Computer Science, pages 415–432, Queenstown, New Zealand, December 1–5,
2002. Springer, Heidelberg, Germany. (Cited on pages 5, 6, 17, and 18.)

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof
systems: The hardness of quantum rewinding. In 55th Annual Symposium on Foundations
of Computer Science, pages 474–483, Philadelphia, PA, USA, October 18–21, 2014. IEEE
Computer Society Press. (Cited on page 7.)

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Annual Symposium
on Foundations of Computer Science, pages 106–115, Las Vegas, NV, USA, October 14–17,
2001. IEEE Computer Society Press. (Cited on page 36.)

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334, San Francisco, CA, USA, May 21–23,
2018. IEEE Computer Society Press. (Cited on page 5.)

[BBSS18] Matilda Backendal, Mihir Bellare, Jessica Sorrell, and Jiahao Sun. The fiat-shamir zoo: Relat-
ing the security of different signature variants. In Nils Gruschka, editor, NordSec 2018, volume
11252 of Lecture Notes in Computer Science, pages 154–170. Springer, 2018. (Cited on page 36.)

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer
Science, pages 41–69, Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg, Germany.
(Cited on pages 4, 7, and 8.)

[BDG+13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, Adri-
ana López-Alt, and Daniel Wichs. Why “Fiat-Shamir for proofs” lacks a proof. In Amit Sahai,
editor, TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of Lecture Notes
in Computer Science, pages 182–201, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg,
Germany. (Cited on page 36.)

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based
on learning with errors. In Josh Benaloh, editor, Topics in Cryptology – CT-RSA 2014,
volume 8366 of Lecture Notes in Computer Science, pages 28–47, San Francisco, CA, USA,
February 25–28, 2014. Springer, Heidelberg, Germany. (Cited on page 4.)

[BHJ+15] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. Tightly-secure
authenticated key exchange. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part I, volume 9014 of Lecture Notes in Computer
Science, pages 629–658, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.
(Cited on page 3.)

[BLO18] Carsten Baum, Huang Lin, and Sabine Oechsner. Towards practical lattice-based one-time
linkable ring signatures. In David Naccache, Shouhuai Xu, Sihan Qing, Pierangela Samarati,
Gregory Blanc, Rongxing Lu, Zonghua Zhang, and Ahmed Meddahi, editors, ICICS 18: 20th
International Conference on Information and Communication Security, volume 11149 of Lec-
ture Notes in Computer Science, pages 303–322, Lille, France, October 29–31, 2018. Springer,
Heidelberg, Germany. (Cited on page 5.)

29

[BPS16] Mihir Bellare, Bertram Poettering, and Douglas Stebila. From identification to signatures,
tightly: A framework and generic transforms. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology – ASIACRYPT 2016, Part II, volume 10032 of Lecture Notes in
Computer Science, pages 435–464, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg,
Germany. (Cited on page 36.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93: 1st Conference on Computer and Communications
Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press. (Cited on
page 8.)

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring.
In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture
Notes in Computer Science, pages 59–71, Espoo, Finland, May 31 – June 4, 1998. Springer,
Heidelberg, Germany. (Cited on page 6.)

[Cam97] Jan Camenisch. Efficient and generalized group signatures. In Walter Fumy, editor, Advances
in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages
465–479, Konstanz, Germany, May 11–15, 1997. Springer, Heidelberg, Germany. (Cited on
page 3.)

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd Annual Symposium on Foundations of Computer Science, pages 136–145, Las Vegas,
NV, USA, October 14–17, 2001. IEEE Computer Society Press. (Cited on page 6.)

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In Jesper Buus Nielsen and Vincent Rij-
men, editors, Advances in Cryptology – EUROCRYPT 2018, Part I, volume 10820 of Lecture
Notes in Computer Science, pages 91–122, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany. (Cited on page 36.)

[CD97] Ronald Cramer and Ivan Damgård. Fast and secure immunization against adaptive man-in-the-
middle impersonation. In Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97,
volume 1233 of Lecture Notes in Computer Science, pages 75–87, Konstanz, Germany, May 11–
15, 1997. Springer, Heidelberg, Germany. (Cited on page 3.)

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven.
The wonderful world of global random oracles. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2018, Part I, volume 10820 of Lecture Notes
in Computer Science, pages 280–312, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany. (Cited on page 7.)

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable se-
curity with global setup. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography
Conference, volume 4392 of Lecture Notes in Computer Science, pages 61–85, Amsterdam, The
Netherlands, February 21–24, 2007. Springer, Heidelberg, Germany. (Cited on page 6.)

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Yvo Desmedt, editor, Advances in Cryptology
– CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages 174–187, Santa

30

Barbara, CA, USA, August 21–25, 1994. Springer, Heidelberg, Germany. (Cited on pages 3, 4, 6,
14, and 15.)

[CEv88] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An improved protocol for
demonstrating possession of discrete logarithms and some generalizations. In David Chaum
and Wyn L. Price, editors, Advances in Cryptology – EUROCRYPT’87, volume 304 of Lecture
Notes in Computer Science, pages 127–141, Amsterdam, The Netherlands, April 13–15, 1988.
Springer, Heidelberg, Germany. (Cited on page 52.)

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited
(preliminary version). In 30th Annual ACM Symposium on Theory of Computing, pages 209–
218, Dallas, TX, USA, May 23–26, 1998. ACM Press. (Cited on page 8.)

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global
random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st
Conference on Computer and Communications Security, pages 597–608, Scottsdale, AZ, USA,
November 3–7, 2014. ACM Press. (Cited on page 6.)

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti.
Improved OR-composition of sigma-protocols. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A: 13th Theory of Cryptography Conference, Part II, volume 9563 of Lecture Notes
in Computer Science, pages 112–141, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidel-
berg, Germany. (Cited on page 7.)

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti.
Online/offline OR composition of sigma protocols. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes
in Computer Science, pages 63–92, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg,
Germany. (Cited on page 7.)

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, Advances
in Cryptology – EUROCRYPT’91, volume 547 of Lecture Notes in Computer Science, pages
257–265, Brighton, UK, April 8–11, 1991. Springer, Heidelberg, Germany. (Cited on page 3.)

[Dam02] Ivan Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Department for Com-
puter Science, 2002. (Cited on page 16.)

[DFG13] Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. The Fiat-Shamir transformation
in a quantum world. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology –
ASIACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer Science, pages 62–81,
Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Germany. (Cited on page 7.)

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-Shamir
transformation in the quantum random-oracle model. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part II, volume 11693 of Lecture
Notes in Computer Science, pages 356–383, Santa Barbara, CA, USA, August 18–22, 2019.
Springer, Heidelberg, Germany. (Cited on pages 7, 27, 53, and 54.)

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2018(1):238–268, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/839. (Cited on page 21.)

31

https://tches.iacr.org/index.php/TCHES/article/view/839

[DKL+19] Leo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehle. Crystals-dilithium: Algorithm specifications and supporting documenta-
tion, 03 2019. https://pq-crystals.org/dilithium/index.shtml. (Cited on page 21.)

[DSW08] Yevgeniy Dodis, Victor Shoup, and Shabsi Walfish. Efficient constructions of composable
commitments and zero-knowledge proofs. In David Wagner, editor, Advances in Cryptology
– CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 515–535, Santa
Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany. (Cited on page 6.)

[ESLL19] Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Lattice-based
zero-knowledge proofs: New techniques for shorter and faster constructions and applica-
tions. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Science, pages 115–146,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. (Cited on
page 21.)

[FF13] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction technique: The case
of Schnorr signatures. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
444–460, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany. (Cited on pages 4
and 7.)

[FH16] Masayuki Fukumitsu and Shingo Hasegawa. Impossibility on the provable security of the Fiat-
Shamir-type signatures in the non-programmable random oracle model. In Matt Bishop and
Anderson C. A. Nascimento, editors, ISC 2016: 19th International Conference on Information
Security, volume 9866 of Lecture Notes in Computer Science, pages 389–407, Honolulu, HI,
USA, September 3–6, 2016. Springer, Heidelberg, Germany. (Cited on page 7.)

[FH18] Masayuki Fukumitsu and Shingo Hasegawa. Black-box separations on fiat-shamir-type signa-
tures in the non-programmable random oracle model. IEICE Transactions, 101-A(1):77–87,
2018. (Cited on page 4.)

[FLR+10] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Martijn Stam, and
Stefano Tessaro. Random oracles with(out) programmability. In Masayuki Abe, editor, Ad-
vances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Sci-
ence, pages 303–320, Singapore, December 5–9, 2010. Springer, Heidelberg, Germany. (Cited
on page 4.)

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86,
volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa Barbara, CA, USA,
August 1987. Springer, Heidelberg, Germany. (Cited on pages 3, 4, and 36.)

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd
Annual ACM Symposium on Theory of Computing, pages 416–426, Baltimore, MD, USA,
May 14–16, 1990. ACM Press. (Cited on page 11.)

[GJ18] Kristian Gjøsteen and Tibor Jager. Practical and tightly-secure digital signatures and au-
thenticated key exchange. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science,
pages 95–125, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.
(Cited on pages 3 and 52.)

32

https://pq-crystals.org/dilithium/index.shtml

[GJKW07] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature schemes
with tight reductions to the Diffie-Hellman problems. Journal of Cryptology, 20(4):493–514,
October 2007. (Cited on page 52.)

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm.
In 44th Annual Symposium on Foundations of Computer Science, pages 102–115, Cambridge,
MA, USA, October 11–14, 2003. IEEE Computer Society Press. (Cited on page 36.)

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988. (Cited on
page 6.)

[GMY03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols
using signatures. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 177–194, Warsaw, Poland, May 4–8, 2003.
Springer, Heidelberg, Germany. (Cited on page 3.)

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol fitted to
security microprocessor minimizing both trasmission and memory. In C. G. Günther, editor,
Advances in Cryptology – EUROCRYPT’88, volume 330 of Lecture Notes in Computer Science,
pages 123–128, Davos, Switzerland, May 25–27, 1988. Springer, Heidelberg, Germany. (Cited
on page 4.)

[HJ12] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryption. In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 590–607, Santa Barbara, CA, USA,
August 19–23, 2012. Springer, Heidelberg, Germany. (Cited on page 3.)

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way functions
(or: One-way product functions and their applications). In Mikkel Thorup, editor, 59th Annual
Symposium on Foundations of Computer Science, pages 850–858, Paris, France, October 7–9,
2018. IEEE Computer Society Press. (Cited on page 36.)

[Jed16] Tom Elvis Jedusor. Mimblewimble, 07 2016. https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.txt. (Cited on page 5.)

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their
applications. In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume
1070 of Lecture Notes in Computer Science, pages 143–154, Saragossa, Spain, May 12–16,
1996. Springer, Heidelberg, Germany. (Cited on page 3.)

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-
Shamir signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of
Lecture Notes in Computer Science, pages 552–586, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany. (Cited on page 21.)

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to the
security of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 224–251, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.
(Cited on page 36.)

33

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

[Lin15] Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a CRS and non-
programmable random oracle. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part I, volume 9014 of Lecture Notes in Computer
Science, pages 93–109, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.
(Cited on page 7.)

[LWW04] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups (extended abstract). In Huaxiong Wang, Josef Pieprzyk, and Vijay
Varadharajan, editors, ACISP 04: 9th Australasian Conference on Information Security and
Privacy, volume 3108 of Lecture Notes in Computer Science, pages 325–335, Sydney, NSW,
Australia, July 13–15, 2004. Springer, Heidelberg, Germany. (Cited on page 5.)

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 738–755, Cambridge, UK, April 15–19, 2012. Springer,
Heidelberg, Germany. (Cited on page 4.)

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part II, volume
11693 of Lecture Notes in Computer Science, pages 326–355, Santa Barbara, CA, USA, Au-
gust 18–22, 2019. Springer, Heidelberg, Germany. (Cited on page 7.)

[MP15] Gregory Maxwell and Andrew Poelstra. Borromean ring signatures, 06 2015. https:
//pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf. (Cited
on page 5.)

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition,
2011. (Cited on page 8.)

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92,
volume 740 of Lecture Notes in Computer Science, pages 31–53, Santa Barbara, CA, USA,
August 16–20, 1993. Springer, Heidelberg, Germany. (Cited on page 4.)

[OO98] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from
identification. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462
of Lecture Notes in Computer Science, pages 354–369, Santa Barbara, CA, USA, August 23–27,
1998. Springer, Heidelberg, Germany. (Cited on page 36.)

[Poe16] Andrew Poelstra. Mimblewimble, 10 2016. https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf. (Cited on page 5.)

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M.
Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in
Computer Science, pages 387–398, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg,
Germany. (Cited on page 36.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000. (Cited on page 4.)

34

https://pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf
https://pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent to
discrete log. In Bimal K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume
3788 of Lecture Notes in Computer Science, pages 1–20, Chennai, India, December 4–8, 2005.
Springer, Heidelberg, Germany. (Cited on page 6.)

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor,
Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer
Science, pages 552–565, Gold Coast, Australia, December 9–13, 2001. Springer, Heidelberg,
Germany. (Cited on pages 3 and 5.)

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991. (Cited on page 4.)

[Ven15] Daniele Venturi. Zero-knowledge proofs and applications, 05 2015. http://wwwusers.di.
uniroma1.it/~venturi/misc/zero-knowledge.pdf. (Cited on pages 16 and 17.)

[vS13] Nicolas van Saberhagen. Cryptonote v 2.0, 10 2013. https://cryptonote.org/whitepaper.
pdf. (Cited on page 5.)

[ZCC+15] Zongyang Zhang, Yu Chen, Sherman S. M. Chow, Goichiro Hanaoka, Zhenfu Cao, and Yunlei
Zhao. Black-box separations of hash-and-sign signatures in the non-programmable random
oracle model. In Man Ho Au and Atsuko Miyaji, editors, ProvSec 2015: 9th International
Conference on Provable Security, volume 9451 of Lecture Notes in Computer Science, pages
435–454, Kanazawa, Japan, November 24–26, 2015. Springer, Heidelberg, Germany. (Cited on
page 4.)

[Zha12] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 758–775, Santa Barbara, CA, USA,
August 19–23, 2012. Springer, Heidelberg, Germany. (Cited on page 27.)

35

http://wwwusers.di.uniroma1.it/~venturi/misc/zero-knowledge.pdf
http://wwwusers.di.uniroma1.it/~venturi/misc/zero-knowledge.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

A Additional Preliminaries
In this part of the Appendix we provide additional definitions and details about the Fiat-Shamir heuristic
and digital signature schemes.

A.1 The Fiat-Shamir Heuristic

Consider a public-coin interactive protocol Π = (P,V) w.r.t. a binary relation R where, on security
parameter λ ∈ N, all messages sent by the verifier are of fixed length `(λ), and let H : {0, 1}∗ → {0, 1}`(λ)

be a random oracle. The Fiat-Shamir transform [FS87] is a technique which uses H to turn Π into a
non-interactive protocol FS[Π,H] = (PFS,VFS) w.r.t. R.

This transform can be described as follows: On security parameter λ ∈ N, the prover PFS runs the
original algorithm P, and creates the prover incoming messages step-by-step evaluating the random oracleH
on the common input and the transcript generated thus far. The only message sent to VFS consists of the
sequence of messages generated by P. The verifier VFS can then verify it by first using the function H to
re-compute the corresponding challenges, as done by PFS, and then running V to verify the transcript (see
Figure 13 for a graphical representation of this paradigm).

The Fiat-Shamir transform has many applications, both in theory and in practice, and has therefore
been thoroughly investigated over the years. As for the soundness of this transform, it has been shown that
if Π is complete, computationally sound, and constant-move, then FS[Π,H] is complete, computationally
sound, and non-interactive in the ROM [PS96,AABN02,BPS16]. On the other hand, efforts to prove the
soundness of the Fiat-Shamir transform in the standard model mainly led to negative results [Bar01,GK03,
BDG+13]. A recent line of work [KRR17,CCRR18,HL18] bypasses these impossibility results relying on
very strong hardness assumptions.

The Fiat-Shamir heuristic can also be used to convert public-coin interactive protocols Π into digital
signature schemes, which will be denoted by sFS[Π,H] = (KGen, Sign,Verify). The key generation algorithm
simply runs the instance generator for the relation R that Π is associated with, and returns the signing
and verification keys (vk, sk) = (x,w)←$ GR(1λ; 1). The signing algorithm basically runs the Fiat-Shamir
prover PFS, but computes the challenges by also appending the message m being signed to H’s input. The
signature of m is then the output of PFS. Finally, the verification algorithm works exactly like VFS, where
again m is always appended to H’s input. The security of this signature scheme has been investigated
under various assumptions [PS96,OO98,AABN02,BPS16,BBSS18].

A.2 Digital Signature Schemes

Definition A.1. A digital signature scheme is a tuple of three probabilistic polynomial-time algo-
rithms (KGen, Sign,Verify) defined as follows:
• (sk, vk)←$ KGen(1λ): On input the security parameter, the algorithm KGen returns a key pair (sk, vk).
• σ ←$ Sign(1λ;m, sk, vk): On input the security parameter, a message m ∈M, a signer secret key sk,
and a public verification key vk, the algorithm Sign returns a signature σ.
• d ← Verify(1λ;m,σ, vk): On input the security parameter, a message m, a candidate signature σ,
and a public verification key vk, the deterministic algorithm Verify returns a bit d ∈ {0, 1}. If d = 1
we say that the signature is valid, otherwise not.

As usual we require digital signature schemes Γ to be correct. We say that Γ is correct, if there exists
a negligible function µ : N→ R such that, for every security parameter λ ∈ N, every (sk, vk)←$ KGen(1λ),
every m ∈M, and every σ ←$ Sign(1λ;m, sk, vk),

Pr[Verify(1λ;m,σ, vk) = 1] ≥ 1− µ(λ).

36

P(1λ;x,w) � V(1λ;x)
stP ← (x,w)
(α1, stP)←$ P(1λ; stP)

stV ← x

β1 ←$ {0, 1}`(λ)

stV ← (stV, α1, β1)

(αi, stP)←$ P(1λ;βi−1, stP)

βi ←$ {0, 1}`(λ)

stV ← (stV, αi, βi)

(αt, stP)←$ P(1λ;βt−1, stP)

βt ←$ {0, 1}`(λ)

stV ← (stV, αt, βt)

(αt+1, stP)←$ P(1λ;βt, stP)

v ← V(1λ;x, α1, β1, . . . , αt, βt, αt+1)

...

...

α1

β1

αi

βi

αt

βt

αt+1

PHFS(1λ;x,w) � VHFS(1λ;x)

stP ← (x,w)
(α1, stP)←$ P(1λ; stP)
β1 ← H(x, α1)
...

(αi, stP)←$ P(1λ;βi−1, stP)
βi ← H(x, α1, β1, . . . , αi)
...

(αt, stP)←$ P(1λ;βt−1, stP)
βt ← H(x, α1, β1, . . . , αt)
(αt+1, stP)←$ P(1λ;βt, stP)

β1 ← H(x, α1)
...

βi ← H(x, α1, β1, . . . , αi)
...

βt ← H(x, α1, β1, . . . , αt)
v ← V(1λ;x, α1, β1, . . . , αt, βt, αt+1)

(α1, . . . , αt+1)

Figure 13: Graphical representation of an interactive protocol Π = (P,V) w.r.t. a binary relation R (top), and the transformed
protocol FS[Π,H] = (PFS,VFS) (bottom).

37

ExpUF-CMA
Γ,A (λ):

11: Q← ∅
12: (sk, vk)←$ KGen(1λ)
13: (m∗, σ∗)←$ AO

Sign[λ,sk,vk](1λ; vk)
14: d← Verify(1λ;m∗, σ∗, vk)
15: if d = 1 ∧ m∗ /∈ Q then
16: return 1
17: return 0

OSign[λ, sk, vk](m):

21: Q← Q ∪ {m}
22: σ ←$ Sign(1λ;m, sk, vk)
23: return σ

Figure 14: Definition of the experiment ExpUF-CMA
Γ,A (λ) from Definition A.2.

Security of a digital signature scheme is captured by the notion of unforgeability. Intuitively, this
property says that no efficient adversary can generate a valid signature of a message not previously endorsed
by the signer. The formal definition is provided below.

Definition A.2. Let Γ be a digital signature scheme. We say that Γ is unforgeable under adaptive chosen-
message attack if, for every PPT algorithm A, there exists a negligible function µ : N → R such that, for
every λ ∈ N,

Pr
[

ExpUF-CMA
Γ,A (λ)

]
≤ µ(λ),

where ExpUF-CMA
Γ,A (λ) is defined in Figure 14.

B Proof of Theorem 4.1
We prove Theorem 4.1 through a sequence of lemmas. In the following, let R0 and R1 be binary relations,
and let Π0 = (P0,V0) and Π1 = (P1,V1) be two 3PC SCZK protocols w.r.t. R0 and R1 such that the
length functions satisfy `0 = `1 =: `. For brevity, denote Π := seq-OR[Π0,Π1, S0,S1,H].

Lemma B.1. Π is a 1-move CWI protocol w.r.t. ROR in the ROM.

Let us briefly sketch the proof of the above lemma before diving into the formal details. The fact that Π
is CWI crucially relies on the SCZK property of the two protocols. Indeed, if w1−b is a witness for x1−b, we
can use it to substitute the simulated proof generated by S1−b with a real proof by P1−b, thereby obtaining
a game where both proofs are honestly generated. By the SCZK property of Π1−b, this modification is
indistinguishable. We can now swap the order of the proofs and start with P1−b: From a distinguisher’s
point of view (who does not observe the random oracle queries), this is again indistinguishable. We
then switch to a simulated proof given by Sb in place of the now second proof from Pb. This is again
indistinguishable by the SCZK property of Πb.

Proof. It is clear that Π is a 1-move protocol w.r.t. ROR, so we are left to prove that it is CWI.
Let V∗ = V∗seq-OR be any uniform PPT algorithm, and let D be a PPT distinguisher. We must find a
negligible function µ : N→ R satisfying the property from Definition 2.3.5.

By assumption, Π0 and Π1 are SCZK (in the ROM), so let S0 and S1 be SCZK-simulators for Π0
and Π1. Consider the two-stage PPT distinguisher D̃ defined in Figure 15 playing the SCZK experiment
of Π0 and Π1 in the ROM, and let µ0 and µ1 be negligible functions as given by Definition 2.5.1 for this
distinguisher. We claim that µ := 2(µ0 + µ1) proves that Π is CWI in the ROM.

38

D̃H0 (1λ;xb, u):

11: parse u = ((x0, x1), (1− b, w′), z, z′)
12: stP1−b ← (x1−b, w

′)
13: (com1−b, stP1−b)←$ P1−b(1λ; stP1−b)
14: chb ← H(1− b, x0, x1, com1−b)
15: stD̃ ← (com1−b, stP1−b , chb)
16: return (chb, stD̃)

D̃H1 (1λ;xb, u, v, stD̃):

21: parse u = ((x0, x1), (1− b, w′), z, z′)
22: parse v = (comb, respb, chb)
23: parse stD̃ = (com1−b, stP1−b , chb)
24: ch1−b ← H(b, x0, x1, comb)
25: (resp1−b, stP1−b)←$ P1−b(1λ; ch1−b, stP1−b)
26: resp← (com0, com1, resp0, resp1)
27: v∗ ←$ V∗H(1λ; (x0, x1), z, resp)
28: d←$ DH(1λ; (x0, x1), z, z′, v∗)
29: return d

G′(λ, (x0, x1), (b, w), (1− b, w′), z, z′):

31: stPb ← (xb, w)
32: stP1−b ← (x1−b, w

′)
33: (comb, stPb)←$ Pb(1λ; stPb)
34: (com1−b, stP1−b)←$ P1−b(1λ; stP1−b)
35: chb ← H(1− b, x0, x1, com1−b)
36: ch1−b ← H(b, x0, x1, comb)
37: (respb, stPb)←$ Pb(1λ; chb, stPb)
38: (resp1−b, stP1−b)←$ P1−b(1λ; ch1−b, stP1−b)
39: resp← (com0, com1, resp0, resp1)
40: v∗ ←$ V∗H(1λ; (x0, x1), z, resp)
41: d←$ DH(1λ; (x0, x1), z, z′, v∗)
42: return d

Figure 15: Definition of the distinguisher D̃ = (D̃0, D̃1) and of the game G′(λ, (x0, x1), (b, w), (1− b, w′), z, z′) from the proof
of Lemma B.1.

Indeed, let λ ∈ N, (x0, x1) ←$ GLOR(1λ; 1), (b, w), (b′, w′) ∈ WROR(x0, x1), and z, z′ ∈ {0, 1}∗. We now
distinguish two cases: Assume at first that b′ 6= b, that is b′ = 1− b. Denote

G0 := ExpCWI,0
V∗,D,Π(λ, (x0, x1), (b, w), (b′, w′), z, z′), G1 := ExpCWI,1

V∗,D,Π(λ, (x0, x1), (b, w), (b′, w′), z, z′),

and let G′ := G′(λ, (x0, x1), (b, w), (1− b, w′), z, z′) be the game defined in Figure 15. Note that game G′ is
an intermediate game in which both witnesses are present: Each prover can use its respective witness to
generate a transcript. Then we have of course

|Pr[G0 = 1]− Pr[G1 = 1]| ≤
∣∣Pr[G0 = 1]− Pr

[
G′ = 1

]∣∣+ ∣∣Pr
[
G′ = 1

]
− Pr[G1 = 1]

∣∣ ,
and from the description of the games we can observe that

Pr[G0 = 1] = Pr
[

ExpSCZK,1
D̃,Π1−b

(λ, x1−b, w
′, ((x0, x1), (b, w), z, z′)) = 1

]
,

Pr
[
G′ = 1

]
= Pr

[
ExpSCZK,0

D̃,Π1−b
(λ, x1−b, w

′, ((x0, x1), (b, w), z, z′)) = 1
]

= Pr
[

ExpSCZK,0
D̃,Πb

(λ, xb, w, ((x0, x1), (1− b, w′), z, z′)) = 1
]
,

Pr[G1 = 1] = Pr
[

ExpSCZK,1
D̃,Πb

(λ, xb, w, ((x0, x1), (1− b, w′), z, z′)) = 1
]
.

By the SCZK property of Π0 and Π1 we therefore have:

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ µ1−b(λ) + µb(λ) ≤ µ(λ),

39

which proves that µ satisfies the property from Definition 2.3.5 in case b′ = 1− b. Now assume b′ = b, and
let w′′ ∈WR1−b(x1−b) be any witness of x1−b. Then observe that:

G0(λ, (x0, x1), (b, w), (b′, w′), z, z′) = G0(λ, (x0, x1), (b, w), (1− b, w′′), z, z′),
G1(λ, (x0, x1), (b, w), (b′, w′), z, z′) = G1(λ, (x0, x1), (1− b, w′′), (b, w′), z, z′),

G0(λ, (x0, x1), (1− b, w′′), (b, w′), z, z′) = G1(λ, (x0, x1), (b, w), (1− b, w′′), z, z′),

and therefore:

|Pr[G0 = 1]− Pr[G1 = 1]| ≤
≤
∣∣Pr

[
G0(λ, (x0, x1), (b, w), (1− b, w′′), z, z′) = 1

]
− Pr

[
G1(λ, (x0, x1), (b, w), (1− b, w′′), z, z′) = 1

]∣∣
+
∣∣Pr

[
G0(λ, (x0, x1), (1− b, w′′), (b, w′), z, z′) = 1

]
− Pr

[
G1(λ, (x0, x1), (1− b, w′′), (b, w′), z, z′) = 1

]∣∣
≤ (µ0(λ) + µ1(λ)) + (µ0(λ) + µ1(λ)) = µ(λ),

which concludes the proof.

Next we wish to prove that seq-OR[Π0,Π1, S0,S1,H] is mqCWI in the ROM. Before doing so, we prove
a lemma which will enable us to prove the above statement via a simple hybrid argument.

Lemma B.2. Let R0 and R1 be binary relations, and let Π0 and Π1 be two 3PC SCZK protocols w.r.t. R0
and R1 such that the length functions satisfy `0 = `1 =: `. Then seq-OR[Π0,Π1, S0,S1,H] satisfies the
property from Definition 2.4, as long as the distinguisher D queries its first oracle only once.

Proof. Let V∗ = V∗seq-OR be any uniform PPT algorithm, and let D be a PPT distinguisher that makes
only one query to its first oracle. We must find a negligible function µ : N → R satisfying the property
from Definition 2.4.

We start by viewing D as a two-stage algorithm D′ = (D′0,D′1), where D′0 runs D up to its oracle
query and returns the message m being queried, i.e., (m, stD′) ←$ D′H0 (1λ; (x0, x1), z, z′). Afterwards,
D′1 receives the oracle answer v∗ as input, resumes D’s computation, and returns the same output,
i.e., d←$ D′H1 (1λ; (x0, x1), z, z′, stD′ , v

∗).
The proof is now very similar to the one given for Lemma B.1, and will be only sketched here. The

idea is to construct a distinguisher D̃ = (D̃0, D̃1) against the SCZK property of Π0 and Π1, which allows to
interpolate between ExpmqCWI,0

V∗,D,Π (λ, (x0, x1), (b, w), (b′w′), z, z′) and a similar experiment where both proofs
are honestly generated. This can be done exactly as in Lemma B.1; in particular, the fact that D can now
query its oracle with a message does not change the proof, because this message only appears inside the
random oracle.

We can now switch back to ExpmqCWI,1
V∗,D,Π (λ, (x0, x1), (b, w), (b′w′), z, z′) from this intermediate experi-

ment, using the same distinguisher.
In conclusion, if µ0 and µ1 are the negligible functions given by Definition 2.5.1 for the distinguisher D̃

playing the SCZK game for Π0 and Π1, then the negligible function µ := 2(µ0 + µ1) proves that Π is
mqCWI, as long as D queries its first oracle only once.

Lemma B.3. Π is mqCWI in the ROM.

Proof. Taking into account the result in Lemma B.2, this follows by a standard hybrid argument.

Lemma B.4. If Π0 and Π1 are complete, then Π is complete in the ROM.

The proof of this lemma proceeds along the same lines as before: We use the SCZK property of Π1−b
to switch to a game where both proofs are honestly generated, potentially introducing a negligible error.
Changing the order of some instructions, we obtain a game consisting of two consecutive honest executions
of Π0 and Π1, and completeness follows.

40

DH0 (1λ;xb, z):

11: parse z = ((x0, x1), (1− b, w′))
12: stP1−b ← (x1−b, w

′)
13: (com1−b, stP1−b)←$ P1−b(1λ; stP1−b)
14: chb ← H(1− b, x0, x1, com1−b)
15: stD ← (com1−b, stP1−b , chb)
16: return (chb, stD)

G′(λ, (x0, x1), (b, w), (1− b, w′)):

31: stPb ← (xb, w), stP1−b ← (x1−b, w
′)

32: (comb, stPb)←$ Pb(1λ; stPb)
33: ch1−b ← H(b, x0, x1, comb)
34: (com1−b, stP1−b)←$ P1−b(1λ; stP1−b)
35: (resp1−b, stP1−b)←$ P1−b(1λ; ch1−b, stP1−b)
36: chb ← H(1− b, x0, x1, com1−b)
37: (respb, stPb)←$ Pb(1λ; chb, stPb)
38: ch1−b ← H(b, x0, x1, comb)
39: v1−b ← V1−b(1λ;x1−b, com1−b, ch1−b, resp1−b)
40: return v1−b

DH1 (1λ;xb, z, v, stD):

21: parse z = ((x0, x1), (1− b, w′))
22: parse v = (comb, respb, chb)
23: parse stD = (com1−b, stP1−b , chb)
24: ch1−b ← H(b, x0, x1, comb)
25: (resp1−b, stP1−b)←$ P1−b(1λ; ch1−b, stP1−b)
26: chb ← H(1− b, x0, x1, com1−b)
27: vb ← Vb(1λ;xb, comb, chb, respb)
28: return vb

Gc(λ, (x0, x1), (b, w), (1− b, w′)):

51: stPb ← (xb, w)
52: (comb, stPb)←$ Pb(1λ; stPb)
53: ch1−b ← H(b, x0, x1, comb)
54: (com1−b, resp1−b, ch1−b)←$ S1−b(1λ;x1−b, ch1−b)
55: chb ← H(1− b, x0, x1, com1−b)
56: (respb, stPb)←$ Pb(1λ; chb, stPb)
57: chc ← H(1− c, x0, x1, com1−c)
58: vc ← Vc(1λ;xc, comc, chc, respc)
59: return vc

Figure 16: Definition of the distinguisher D = (D0,D1), and of the games G0(λ, (x0, x1), (b, w), (1 − b, w′)),
G1(λ, (x0, x1), (b, w), (1− b, w′)) and G′(λ, (x0, x1), (b, w), (1− b, w′)) from the proof of Lemma B.4.

Proof. To prove that Π is complete in the ROM, we must find a negligible function µ : N → R satisfying
the condition from Definition 2.3.1.

By assumption, we know that Π0 and Π1 are complete, so let µ0 and µ1 be the corresponding negligible
functions given by Definition 2.3.1. Furthermore, Π0 and Π1 are assumed to be SCZK (in the ROM), so
let S0 and S1 be two SCZK-simulators for Π0 and Π1, define the two-stage PPT distinguisher D (playing
the SCZK experiment of Π0 and Π1 in the ROM) as in Figure 16, and let ν0 and ν1 be negligible functions
as given by Definition 2.5.1 for this distinguisher. We claim that µ := µ0 +µ1 +ν0 +ν1 proves completeness
of Π in the ROM.

Indeed, µ is a negligible function, because it is a sum of four negligible functions. We now prove that
it satisfies the property from Definition 2.3.1. To do so, let λ ∈ N and ((x0, x1), (b, w))←$ GROR(1λ; 1) be
given, and consider any w′ ∈WR1−b(x1−b). Then we have:

Pr
[

outVseq-OR

[
Pseq-OR(1λ; (x0, x1), (b, w)) � Vseq-OR(1λ; (x0, x1))

]
6= 1

]
= Pr[Gb 6= 1 ∨ G1−b 6= 1] ≤ Pr[Gb 6= 1] + Pr[G1−b 6= 1] ,

where Gc := Gc(λ, (x0, x1), (b, w), (1 − b, w′)), with c ∈ {0, 1}, is defined in Figure 16. We now estimate
each of the two summands, thereby concluding the proof. For the first game, we claim that

Pr[Gb = 1] = Pr
[

outVb

[
Pb(1λ;xb, w) � Vb(1λ;xb)

]
= 1

]
≥ 1− µb(λ),

which implies Pr[Gb 6= 1] ≤ µb(λ). Indeed, let RPb , R′Pb , and RS1−b be the random variables representing
the random coins used by Pb and S1−b to compute the commitment, the response, and the simulated view.

41

For given r ←$ RPb , r′ ←$ R
′
Pb , consider the set

C(r, r′) := {chb ∈ {0, 1}`(λ) : Vb(1λ;xb, comb, chb, respb) = 1},

where comb and respb are computed using r and r′, respectively. Then we have:

Pr[Gb = 1] =
∑
r,r′,s

Pr
[

Gb = 1
∣∣∣∣∣RPb = r,R′Pb = r′,

RS1−b = s

]
Pr
[
RPb = r,R′Pb = r′,

RS1−b = s

]

=
∑
r,r′

|C(r, r′)|
2`(λ) Pr

[
RPb = r,R′Pb = r′

]
= Pr

[
outVb

[
Pb(1λ;xb, w) � Vb(1λ;xb)

]
= 1

]
,

which proves our claim about the first summand. For the second term, consider the modified game
G′ := G′(λ, (x0, x1), (b, w), (1− b, w′)) defined in Figure 16. We claim that∣∣Pr[G1−b = 1]− Pr

[
G′ = 1

]∣∣ ≤ ν1−b(λ), and
∣∣Pr

[
G′ 6= 1

]∣∣ ≤ µ1−b(λ),

which implies that Pr[G1−b 6= 1] ≤ ν1−b(λ) + µ1−b(λ). The second inequality can be proved like above,
showing that

Pr
[
G′ = 1

]
= Pr

[
outV1−b

[
P1−b(1λ;x1−b, w

′) � V1−b(1λ;x1−b)
]

= 1
]
≥ 1− µ1−b(λ),

so we only focus on the first one. Observe that

Pr[G1−b = 1] = Pr
[

ExpSCZK,1
D,Π1−b

(λ, x1−b, w
′, ((x0, x1), (b, w))) = 1

]
,

Pr
[
G′ = 1

]
= Pr

[
ExpSCZK,0

D,Π1−b
(λ, x1−b, w

′, ((x0, x1), (b, w))) = 1
]
.

By the SCZK property of Π1−b this means that∣∣Pr[G1−b = 1]− Pr
[
G′ = 1

]∣∣ ≤ ν1−b(λ),

which proves our claim. In conclusion, we have

Pr
[

outVseq-OR

[
Pseq-OR(1λ; (x0, x1), (b, w)) � Vseq-OR(1λ; (x0, x1))

]
6= 1

]
≤ µb(λ) + µ1−b(λ) + ν1−b(λ) ≤ µ(λ),

that is
Pr
[

outVseq-OR

[
Pseq-OR(1λ; (x0, x1), (b, w)) � Vseq-OR(1λ; (x0, x1))

]
= 1

]
≥ 1− µ(λ),

which concludes the proof.

Lemma B.5. If R0 and R1 are NP-relations and ROR is computationally hard, then Π is CWH in the
ROM.

Let us first provide a short overview of the proof. In order to show that Π = seq-OR[Π0,Π1,S0,S1,H] is
CWH, we transform any malicious verifier V∗ = V∗seq-OR into an adversary A playing against computational
hardness of the relation ROR. In more detail, when A receives an ROR-instance (x0, x1), it discards one
of the two coordinates at random and generates a new instance to replace it. Adversary A then executes
protocol Π with V∗ using the witness it knows, hoping that V∗ will return a witness for the unchanged
coordinate. By the CWI property, which we have already proved, this holds approximately as often as it
does not.

42

AH(1λ; (x0, x1), z):

11: b̃←$ {0, 1}
12: (x̃b̃, w̃b̃)←$ GRb̃(1

λ; 1)
13: x̃1−b̃ ← x1−b̃
14: (b∗, w∗)←$ outV∗

[
PH(1λ; (x̃0, x̃1), (b̃, w̃b̃)) � V∗H(1λ; (x̃0, x̃1), z)

]
15: return (b∗, w∗)

D(1λ; (x̃0, x̃1), z, z′, v∗):

21: parse z′ = b̃

22: parse v∗ = (b∗, w∗)
23: d1 ← J((x̃0, x̃1), (b∗, w∗)) ∈ RORK
24: d2 ←

q
b∗ = 1− b̃

y

25: return (d1 ∧ d2)

Figure 17: Definition of the adversary A and of the distinguisher D from the proof of Lemma B.5.

Proof. To show that Π is CWH in the ROM, we must prove that for every uniform PPT algo-
rithm V∗ = V∗seq-OR, there exists a negligible function µ : N → R satisfying the condition from Defini-
tion 2.3.6.

So let V∗ be such an algorithm. The idea of our proof is to use V∗ to construct a PPT adversary A
against the CHR property of ROR, as done in Figure 17. Recall that A’s goal is to compute a witness
for an ROR-instance (x0, x1) it receives as input. To do so, A flips a bit b̃ and generates a new yes-
instance (x̃b̃, w̃b̃) ∈ Rb̃. After setting x̃1−b̃ ← x1−b̃, A simulates the CWH experiment to the malicious
verifier V∗ by impersonating the genuine sequential-OR prover P = Pseq-OR in a protocol execution with V∗
on input (x̃0, x̃1). Observe that this is indeed possible, because A knows the witness (b̃, w̃b̃) for (x̃0, x̃1).
Of course A’s hope is that V∗ will win the simulated CWH experiment and produce a witness (b∗, w∗)
with b∗ = 1 − b̃ (i.e., w∗ is a witness for x̃1−b̃ = x1−b̃), because this then allows A to win its own CHR
experiment. By the CWI property of Π (see Lemma B.1), this happens approximately as often as not.
Therefore, we conclude that V∗’s winning probability in the CWH experiment is only approximately double
the winning probability of A in the CHR experiment, which is negligible by assumption.

We now make this argument more precise. Again consider the PPT adversary A against the CHR
property of ROR defined in Figure 17, and let ν be a negligible function as given by Definition 2.2.2.
Furthermore, let D be the distinguisher for the CWI experiment of Π defined in Figure 17. Observe that D
is indeed a PPT algorithm, because the instruction given at line 23 in Figure 17 can be carried out in
polynomial time (we assume that R0 and R1 are NP-relations and we know that (x̃0, x̃1) ∈ LOR). We have
already shown that Π is CWI (see Lemma B.1), so let η be a negligible function as per Definition 2.3.5,
with protocol Π, verifier V∗ and distinguisher D. We claim that µ := 2ν + η proves that Π is CWH in the
ROM.

Indeed, let λ ∈ N and z ∈ {0, 1}∗ be given. To prove our claim, we consider the sequence of games
depicted in Figure 18. We start by giving a short overview of the various games:
• Game G0 := G0(λ, z) is nothing but ExpCHR

A,R (λ, z), which is the starting point of our proof.
• Game G1 := G1(λ, z) is obtained from G0 by changing the order of some instructions.
• Game G2 := G2(λ, z) is obtained from G1 by modifying the winning condition. More precisely, in

addition to the requirement given in G1, it now must also be the case that b∗ = 1− b̃.
• Game G3 := G3(λ, z) is obtained from G2 again by modifying the winning condition. In more detail,
instead of requiring that (b∗, w∗) be a witness for (x0, x1), it now must be a witness for (x̃0, x̃1).
Furthermore, we remove some obsolete instructions.
• Game G4 := G4(λ, z) is obtained from G3 by dropping the requirement that b∗ = 1 − b̃ from the

winning condition.
• Game G5 := G5(λ, z) is obtained from G4 by renaming b̃, (x̃0, w̃0), and (x̃1, w̃1) into b, (x0, w0),
and (x1, w1), respectively. Observe that G5(λ, z) = ExpCWH

V∗,R(λ, z).

43

G0(λ, z):

11: b←$ {0, 1}
12: (x0, w0)←$ GR0(1λ; 1)
13: (x1, w1)←$ GR1(1λ; 1)
14: b̃←$ {0, 1}
15: (x̃b̃, w̃b̃)←$ GRb̃(1

λ; 1)
16: x̃1−b̃ ← x1−b̃
17: v∗ ←$ outV∗

[
PH(1λ; (x̃0, x̃1), (b̃, w̃b̃))

� V∗H(1λ; (x̃0, x̃1), z)
]

18: return J((x0, x1), v∗) ∈ RORK

G1(λ, z):

21: b̃←$ {0, 1}
22: (x̃0, w̃0)←$ GR0(1λ; 1)
23: (x̃1, w̃1)←$ GR1(1λ; 1)
24: v∗ ←$ outV∗

[
PH(1λ; (x̃0, x̃1), (b̃, w̃b̃))

� V∗H(1λ; (x̃0, x̃1), z)
]

25: parse v∗ = (b∗, w∗)
26: (xb̃, wb̃)←$ GRb̃(1

λ; 1)
27: x1−b̃ ← x̃1−b̃
28: d1 ← J((x0, x1), (b∗, w∗)) ∈ RORK
29:
30: return d1

G2(λ, z):

31: b̃←$ {0, 1}
32: (x̃0, w̃0)←$ GR0(1λ; 1)
33: (x̃1, w̃1)←$ GR1(1λ; 1)
34: v∗ ←$ outV∗

[
PH(1λ; (x̃0, x̃1), (b̃, w̃b̃))

� V∗H(1λ; (x̃0, x̃1), z)
]

35: parse v∗ = (b∗, w∗)
36: (xb̃, wb̃)←$ GRb̃(1

λ; 1)
37: x1−b̃ ← x̃1−b̃
38: d1 ← J((x0, x1), (b∗, w∗)) ∈ RORK
39: d2 ←

q
b∗ = 1− b̃

y

40: return (d1 ∧ d2)

G3(λ, z):

41: b̃←$ {0, 1}
42: (x̃0, w̃0)←$ GR0(1λ; 1)
43: (x̃1, w̃1)←$ GR1(1λ; 1)
44: v∗ ←$ outV∗

[
PH(1λ; (x̃0, x̃1), (b̃, w̃b̃))

� V∗H(1λ; (x̃0, x̃1), z)
]

45: parse v∗ = (b∗, w∗)
46:
47:
48: d1 ← J((x̃0, x̃1), (b∗, w∗)) ∈ RORK
49: d2 ←

q
b∗ = 1− b̃

y

50: return (d1 ∧ d2)

G4(λ, z):

51: b̃←$ {0, 1}
52: (x̃0, w̃0)←$ GR0(1λ; 1)
53: (x̃1, w̃1)←$ GR1(1λ; 1)
54: v∗ ←$ outV∗

[
PH(1λ; (x̃0, x̃1), (b̃, w̃b̃))

� V∗H(1λ; (x̃0, x̃1), z)
]

55: parse v∗ = (b∗, w∗)
56:
57:
58: d1 ← J((x̃0, x̃1), (b∗, w∗)) ∈ RORK
59:
60: return d1

G5(λ, z):

61: b←$ {0, 1}
62: (x0, w0)←$ GR0(1λ; 1)
63: (x1, w1)←$ GR1(1λ; 1)
64: v∗ ←$ outV∗

[
PH(1λ; (x0, x1), (b, wb))

� V∗H(1λ; (x0, x1), z)
]

65: return J((x0, x1), v∗) ∈ RORK

Figure 18: Description of the sequence of games used in the proof of Lemma B.5.

44

We now discuss how the winning probabilities in the different games relate to one another. First, observe
that Pr[G1 = 1] = Pr[G0 = 1], because the two experiments are the same except for the order of some
instructions (which does not affect the winning probability).

On the other hand, it is clear that Pr[G2 = 1] ≤ Pr[G1 = 1]. Indeed, the winning condition in game G2
is more restrictive than the one in game G1, so that the desired inequality follows. In more detail,
consider the game G′3 defined exactly as G2, with the only difference being that the instruction at line 39
is substituted with d2 ←

q
b∗ = b̃

y
. Then we obviously have Pr[G1 = 1] = Pr[G2 = 1] + Pr[G′3 = 1], which

means Pr[G2 = 1] ≤ Pr[G1 = 1].
We now observe that Pr[G3 = 1] = Pr[G2 = 1], because x1−b̃ = x̃1−b̃. Therefore, as long as b∗ = 1− b̃,

w∗ is a witness for x1−b̃ if and only if it is a witness for x̃1−b̃, so that the two winning conditions coincide.
We now show that Pr [G4 = 1] ≤ 2 Pr [G3 = 1] + η(λ). To do so, consider the game G′4 de-

fined like G3, with the only difference that line 49 must be changed into d2 ←
q
b∗ = b̃

y
. Then we

have Pr[G4 = 1] = Pr[G3 = 1] + Pr[G′4 = 1]. We claim that |Pr[G3 = 1]− Pr[G′4 = 1]| ≤ η(λ). Indeed,
let B̃, R0 and R1 be random variables representing the outcome of the bit b̃ and the randomness used
by GR0 and GR1 , and denote by (x̃0, w̃0) and (x̃1, w̃1) the yes-instances generated by the corresponding
generators using specific variates r0 ←$ R0 and r1 ←$ R1. Then we have:

Pr[G3 = 1] =
∑
b̃,r0,r1

Pr
[

G3 = 1
∣∣∣∣∣ B̃ = b̃, R0 = r0,

R1 = r1

]
Pr
[
B̃ = b̃, R0 = r0,

R1 = r1

]

=
∑
b̃,r0,r1

Pr
[

ExpCWI,0
V∗,D,Π(λ, (x̃0, x̃1), (b̃, w̃b̃), (1− b̃, w̃1−b̃), z, b̃) = 1

]
Pr
[
B̃ = b̃, R0 = r0,

R1 = r1

]
,

and similarly,

Pr
[
G′4 = 1

]
=

∑
b̃,r0,r1

Pr
[

G′4 = 1
∣∣∣∣∣ B̃ = 1− b̃, R0 = r0,

R1 = r1

]
Pr
[
B̃ = 1− b̃, R0 = r0,

R1 = r1

]

=
∑
b̃,r0,r1

Pr
[

ExpCWI,1
V∗,D,Π(λ, (x̃0, x̃1), (b̃, w̃b̃), (1− b̃, w̃1−b̃), z, b̃) = 1

]
Pr
[
B̃ = b̃, R0 = r0,

R1 = r1

]
.

This in turn implies that∣∣Pr[G3 = 1]− Pr
[
G′4 = 1

]∣∣ ≤
=

∑
b̃,r0,r1

∣∣∣Pr
[

ExpCWI,0
V∗,D,Π(λ, (x̃0, x̃1), (b̃, w̃b̃), (1− b̃, w̃1−b̃), z, b̃) = 1

]

−Pr
[

ExpCWI,1
V∗,D,Π(λ, (x̃0, x̃1), (b̃, w̃b̃), (1− b̃, w̃1−b̃), z, b̃) = 1

]∣∣∣Pr
[
B̃ = b̃, R0 = r0,

R1 = r1

]

≤
∑
b̃,r0,r1

η(λ) Pr
[
B̃ = b̃, R0 = r0,

R1 = r1

]
= η(λ).

Thus we have |Pr[G3 = 1]− Pr[G′4 = 1]| ≤ η(λ). From here we derive |Pr[G4 = 1]− 2 Pr[G3 = 1]| ≤ η(λ),
which immediately proves our claim.

Finally, it is clear that Pr[G5 = 1] = Pr[G4 = 1], because we have only changed the names of some
variables. Putting everything together we now obtain:

Pr
[

ExpCWH
V∗,R(λ, z) = 1

]
= Pr[G5 = 1] = Pr[G4 = 1] ≤ 2 Pr[G3 = 1] + η(λ)

45

= 2 Pr[G2 = 1] + η(λ) = 2 Pr[G1 = 1] + η(λ) = 2 Pr[G0 = 1] + η(λ)

= 2 Pr
[

ExpCHR
A,R (λ, z) = 1

]
+ η(λ) ≤ 2ν(λ) + η(λ) = µ(λ),

which concludes our proof.

C Proof of Theorem 4.2
In this part of the Appendix we prove Theorem 4.2. Define Π := seq-OR[Π0,Π1, S0,S1,H] or the sake
of brevity, and denote by Γ := (KGen, Sign,Verify) the signature scheme obtained from the protocol Π as
defined in Section 4.2 and detailed in Figure 11.

We prove that, for every PPT adversary A, there exists a negligible function µ : N→ R such that, for
every λ ∈ N, and every z ∈ {0, 1}∗, Pr

[
ExpUF-CMA

Γ,A (λ, z) = 1
]
≤ µ(λ). We do so via the sequence of games

depicted in Figure 19:
• Game G0 coincides with the experiment ExpUF-CMA

Γ,A .
• Game G1 is the same as G0, with the added condition that a suitably modified adversary B must

have queried both (0, x0, x1, com∗0,m∗) and (1, x0, x1, com∗1,m∗) to the random oracle.
• Game G2 is the same as G1, where in addition we require that adversary B have
queried (1 − b, x0, x1, com∗1−b,m∗) at least once before making any query of the
form (b, x0, x1, com∗b ,m∗).
• Game G3 is the same as G2, but the R1−b-instance x1−b is now replaced with a no-instance for the

same relation.
As usual, our proof strategy will be to show that the probabilities of successive games return-
ing 1 are negligibly close, and that Pr [G3 = 1] is negligible as well. This allows us to conclude
that Pr[G0 = 1] = Pr

[
ExpUF-CMA

Γ,A (λ, z) = 1
]
must be a negligible function of λ, which proves the theo-

rem. We split our proof into four lemmas, one for each hop and one to bound the probability Pr[G3 = 1].

In the transition from G0 to G1 we want to force the adversary A to make both
queries (0, x0, x1, com∗0,m∗) and (1, x0, x1, com∗1,m∗) at least once. This is reflected in the modified winning
condition of G1. To do so, we consider the adversary B described in Figure 20, which basically runs A and
then makes the two required queries right before returning A’s forgery (or aborts if A does so).

Lemma C.1. Let A be a PPT adversary playing game G0 and making at most qH queries to the random
oracle H. Consider algorithm B defined in Figure 20. Then B is a PPT algorithm making at most qH + 2
queries to the random oracle, and

Pr[G0 = 1] = Pr[G1 = 1] .

Proof. All statements follow directly from the definition of B.

Lemma C.2. There exists a negligible function µ : N→ R such that

|Pr[G1 = 1]− 2 Pr[G2 = 1]| ≤ µ(λ).

Proof. Game G1 only requires in its winning condition that both (0, x0, x1, com∗0,m∗)
and (1, x0, x1, com∗1,m∗) be queried to the random oracle, without any particular restriction on
which has to come first. Hence, we can split the probability into two terms, according to the order.

In more detail, denote by E the event that adversary B queries the message (1− b, x0, x1, com∗1−b,m∗)
before making any of the queries (b, x0, x1, com∗b ,m∗) to the random oracle. Then we have:

Pr[G1 = 1] = Pr[G1 = 1 ∧ E] + Pr[G1 = 1 ∧ ¬E].

46

G0(λ, z):

11: Q← ∅, QH ← ∅
12: b←$ {0, 1}
13: (xb, wb)←$ GRb(1λ; 1)
14: (x1−b, w1−b)←$ GR1−b(1λ; 1)
15: (vk, sk)← ((x0, x1), (b, wb))
16: (m∗, σ∗)←$ AO

Sign[λ,sk,vk],H(1λ; vk, z)
17: d← VerifyH(1λ;m∗, σ∗, vk)
18: if d = 1 ∧m∗ /∈ Q

then
19: return 1
20: return 0

G1(λ, z):

21: Q← ∅, QH ← ∅
22: b←$ {0, 1}
23: (xb, wb)←$ GRb(1λ; 1)
24: (x1−b, w1−b)←$ GR1−b(1λ; 1)
25: (vk, sk)← ((x0, x1), (b, wb))
26: (m∗, σ∗)←$ BO

Sign[λ,sk,vk],H(1λ; vk, z)
27: d← VerifyH(1λ;m∗, σ∗, vk)
28: if d = 1 ∧m∗ /∈ Q ∧

[∃i, j ∈ {1, . . . , qH + 2} s.t.
(i, (b, x0, x1, com∗b ,m∗)) ∈ QH ∧
(j, (1− b, x0, x1, com∗1−b,m∗)) ∈ QH]
then

29: return 1
30: return 0

G2(λ, z):

31: Q← ∅, QH ← ∅
32: b←$ {0, 1}
33: (xb, wb)←$ GRb(1λ; 1)
34: (x1−b, w1−b)←$ GR1−b(1λ; 1)
35: (vk, sk)← ((x0, x1), (b, wb))
36: (m∗, σ∗)←$ BO

Sign[λ,sk,vk],H(1λ; vk, z)
37: d← VerifyH(1λ;m∗, σ∗, vk)
38: if d = 1 ∧m∗ /∈ Q ∧[

∃i, j ∈ {1, . . . , qH + 2} s.t.
(i, (b, x0, x1, com∗b ,m∗)) ∈ QH ∧
(j, (1− b, x0, x1, com∗1−b,m∗)) ∈ QH
∧ ∀k ∈ {1, . . . , qH + 2}

[(k, (b, x0, x1, com∗b ,m∗)) ∈ QH ⇒
⇒ j < k]

]
then

39: return 1
40: return 0

G3(λ, z):

41: Q← ∅, QH ← ∅
42: b←$ {0, 1}
43: (xb, wb)←$ GRb(1λ; 1)
44: x1−b ←$ GR1−b(1λ; 0)
45: (vk, sk)← ((x0, x1), (b, wb))
46: (m∗, σ∗)←$ BO

Sign[λ,sk,vk],H(1λ; vk, z)
47: d← VerifyH(1λ;m∗, σ∗, vk)
48: if d = 1 ∧m∗ /∈ Q ∧[

∃i, j ∈ {1, . . . , qH + 2} s.t.
(i, (b, x0, x1, com∗b ,m∗)) ∈ QH ∧
(j, (1− b, x0, x1, com∗1−b,m∗)) ∈ QH
∧ ∀k ∈ {1, . . . , qH + 2}

[(k, (b, x0, x1, com∗b ,m∗)) ∈ QH ⇒
⇒ j < k]

]
then

49: return 1
50: return 0

Figure 19: Description of the sequence of games from the proof of Theorem 4.2.

47

BOSign[λ,sk,vk],H(1λ; vk, z):

11: (m∗, σ∗)←$ AO
Sign[λ,sk,vk],H(1λ; vk, z)

12: parse σ∗ = (com∗0, com∗1, resp∗0, resp∗1)
13: h0 ← H(0, x0, x1, com∗0,m∗)
14: h1 ← H(1, x0, x1, com∗1,m∗)
15: return (m∗, σ∗)

Figure 20: Definition of the modified adversary B from Lemma C.1.

A closer look at Figure 19 shows that Pr[G1 = 1 ∧ E] = Pr[G2 = 1], since E is exactly the meaning of
the added condition in G2. Furthermore, ¬E simply means that the query (b, x0, x1, com∗b ,m∗) is made at
least once before any query of the other type. We denote by G′2 the game G1 with the added condition
that ¬E be true, so that we have Pr[G1 = 1] = Pr[G2 = 1] + Pr[G′2 = 1].

In the next step we analyze the difference |Pr[G2 = 1]− Pr[G′2 = 1]| and show that it is negligible. Here
we leverage the mqCWI property of Π. This can be done since game G′2 differs from G2 only in the winning
condition: We modify G′2 by renaming b to 1− b, and then sampling the bit b instead of 1− b. This change
results in the secret key containing the other witness w1−b, and the commitments com∗b and com∗1−b in the
winning condition are swapped. In summary, both games are now basically identical, the only difference
is the witness in the secret key. Since we know that Π is mqCWI, we can let µ be a negligible function as
per Definition 2.4 with protocol Π, a malicious verifier V∗ which simply returns the transcript it receives,
and distinguisher C from Figure 21.

We claim now that |Pr[G2 = 1]− Pr[G′2 = 1]| ≤ µ(λ). Indeed, suppose that B, R0 and R1 are random
variables representing the outcome of the bit b and the randomness used by GR0 and GR1 , and denote
by (x0, w0) and (x1, w1) the yes-instances generated by the corresponding generators using the specific
randomness r0 ←$ R0 and r1 ←$ R1. Then from the description of the games, we have the following:

Pr[G2 = 1] =
∑
b,r0,r1

Pr
[

G2 = 1
∣∣∣∣∣B = b, R0 = r0,

R1 = r1

]
Pr
[
B = b, R0 = r0,

R1 = r1

]

=
∑
b,r0,r1

Pr
[

ExpmqCWI,0
V∗,C,Π (λ, (x0, x1), (b, wb), (1− b, w1−b), ε, z) = 1

]
Pr
[
B = b, R0 = r0,

R1 = r1

]
,

and similarly,

Pr
[
G′2 = 1

]
=

∑
b,r0,r1

Pr
[

G′2 = 1
∣∣∣∣∣B = b, R0 = r0,

R1 = r1

]
Pr
[
B = b, R0 = r0,

R1 = r1

]

=
∑
b,r0,r1

Pr
[

ExpmqCWI,1
V∗,C,Π (λ, (x0, x1), (b, wb), (1− b, w1−b), ε, z) = 1

]
Pr
[
B = b, R0 = r0,

R1 = r1

]
.

48

CO[λ,(x0,x1),y,z],H(1λ; (x0, x1), z, z′):

11: Q← ∅, QH ← ∅, vk← (x0, x1)
12: (m∗, σ∗)←$ BO

Sign[λ,sk,vk],H(1λ; vk, z′)
13: d← VerifyH(1λ;m∗, σ∗, vk)
14: if d = 1 ∧ m∗ /∈ Q ∧

[
∃i, j ∈ {1, . . . , qH} s.t. (i, (b, x0, x1, com∗b ,m∗)) ∈ QH ∧

(j, (1− b, x0, x1, com∗1−b,m∗)) ∈ QH ∧ ∀k ∈ {1, . . . , qH}[(k, (b, x0, x1, com∗b ,m∗)) ∈ QH ⇒ j < k]
]

then
15: return 1
16: return 0

Figure 21: Definition of the distinguisher C from the proof of Lemma C.2.

Subtracting both expressions implies that∣∣Pr[G2 = 1]− Pr
[
G′2 = 1

]∣∣
≤

∑
b,r0,r1

∣∣∣Pr
[

ExpmqCWI,0
V∗,C,Π (λ, (x0, x1), (b, wb), (1− b, w1−b), ε, z) = 1

]

−Pr
[

ExpmqCWI,1
V∗,C,Π (λ, (x0, x1), (b, wb), (1− b, w1−b), ε, z) = 1

]∣∣∣Pr
[
B = b, R0 = r0,

R1 = r1

]

≤
∑
b,r0,r1

µ(λ) Pr
[
B = b, R0 = r0,

R1 = r1

]
= µ(λ).

From here we now get that

|Pr[G1 = 1]− 2 Pr[G2 = 1]| =
∣∣Pr[G′2 = 1]− Pr[G2 = 1]

∣∣ ≤ µ(λ),

which concludes the proof.

Lemma C.3. There exists a negligible function ν : N→ R such that

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ ν(λ).

Proof. In this lemma we prove that the probabilities of B winning games G2 and G3 are negligibly close.
The difference between the two games lies in the fact that in G2 both key parts are yes-instances, whereas
in game G3 the (1−b)-th instance is a no-instance. In order to analyze the difference we build distinguishers
against the decisional hardness property of R0 and R1. Since by assumption both relations are decisionally
hard, consider the distinguishers D0 and D1 defined in Figure 22 playing the DHR experiment for R0
and R1, respectively, and let ν0 and ν1 be the corresponding negligible functions as given in Definition 2.2.1.
Furthermore, define ν(λ) := 1/2(ν0(λ) + ν1(λ)). From the description of the games we see that

Pr[G2 = 1] = 1
2 Pr[G2 = 1 | b = 0] + 1

2 Pr[G2 = 1 | b = 1]

= 1
2 Pr[ExpDHR,1

D1,R1
(λ, z) = 1] + 1

2 Pr[ExpDHR,1
D0,R0

(λ, z) = 1],

Pr[G3 = 1] = 1
2 Pr[G3 = 1 | b = 0] + 1

2 Pr[G3 = 1 | b = 1]

= 1
2 Pr[ExpDHR,0

D1,R1
(λ, z) = 1] + 1

2 Pr[ExpDHR,0
D0,R0

(λ, z) = 1].

49

DHc (1λ;x, z):

11: Q← ∅, QH ← ∅
12: (x1−c, w1−c)←$ GR1−c(1λ; 1)
13: xc ← x

14: (vk, sk)← ((x0, x1), (1− c, w1−c))
15: (m∗, σ∗)←$ BO

Sign[λ,sk,vk],H(1λ; vk, z)
16: d← VerifyH(1λ;m∗, σ∗, vk)
17: if d = 1 ∧ m∗ /∈ Q ∧

[
∃i, j ∈ {1, . . . , qH} s.t. (i, (b, x0, x1, com∗b ,m∗)) ∈ QH ∧

(j, (1− b, x0, x1, com∗1−b,m∗)) ∈ QH ∧ ∀k ∈ {1, . . . , qH}[(k, (b, x0, x1, com∗b ,m∗)) ∈ QH ⇒ j < k]
]

then
18: return 1
19: return 0

Figure 22: Definition of the distinguishers D0 and D1 from the proof of Lemma C.3.

Then it is clear that
|Pr[G2 = 1]− Pr[G3 = 1]| ≤ 1

2(ν0(λ) + ν1(λ)) = ν(λ),

as required.

Lemma C.4. There exists a negligible function η : N→ R such that

Pr[G3 = 1] ≤ η(λ).

Proof. The final step in our proof is to study Pr[G3 = 1]. To bound this probability, we use the assumption
that Π0 and Π1 are optimally sound protocols. Indeed, recall that a forgery returned by the adversary
is of the form (m∗, σ∗), where σ∗ = (com∗0, com∗1, resp∗0, resp∗1). Observe that in G3, x1−b is a no-instance,
and the winning condition of the game requires the adversary to query (1 − b, x0, x1, com∗1−b,m∗) to the
random oracle before (b, x0, x1, com∗b ,m∗). This in particular means that the commitment com∗1−b must
be chosen by the adversary before it learns the corresponding challenge ch∗1−b = H(b, x0, x1, com∗b ,m∗).
Since by assumption Π1−b is optimally sound and x1−b is a no-instance, for every choice of com∗1−b by
the adversary there is at most one challenge for which there exists a response such that the resulting
transcript verifies correctly, and the probability that this challenge is hit by a fresh random oracle query
(over (b, x0, x1, com∗b ,m∗) for an appropriate choice of com∗b) is 2−`(λ). Given that the adversary can fix the
commitment com∗1−b in at most qH+2 ways (each by making a query of the form (1−b, x0, x1, com∗1−b,m∗) to
the random oracle), and for every such choice it can try at most qH+2 commitments com∗b to obtain the right
challenge through an oracle query, we conclude that Pr[G3 = 1] ≤ η(λ), where η(λ) = (qH(λ) + 2)2 ·2−`(λ).

D Sequential-OR Proofs: The 1-out-of-n case
In Section 4 we have studied the sequential-OR construction with just two parties (the 1-out-of-2 case).
We now describe the more general 1-out-of-n case. The formal details of the protocol are summarized in
Figure 23.

In the following, we consider n binary relations R0, . . . , Rn−1 and n 3PC SCZK proto-
cols Π0 = (P0,V0), . . . , Πn−1 = (Pn−1,Vn−1) w.r.t. these relations, such that the n length

50

PHseq-OR(1λ; (x0, . . . , xn−1), (i, w)) � VHseq-OR(1λ; (x0, . . . , xn−1))

stPi ← (xi, w)
(comi, stPi)←$ Pi(1λ; stPi)
chi+1 ← H(i, x0, . . . , xn−1, comi)
for j = i+ 1, . . . , n− 1, 0, . . . , i− 1 do

(comj , respj , chj)←$ Sj(1λ;xj , chj)
chj+1 ← H(j, x0, . . . , xn−1, comj)

(respi, stPi)←$ Pi(1λ; chi, stPi)
resp← (com0, . . . , comn−1, resp0, . . . , respn−1)

stVpar-OR ← (x0, . . . , xn−1)

for k = 0, . . . , n− 1 do
chk+1 ← H(k, x0, . . . , xn−1, comk)
vk ← Vk(1λ;xk, comk, chk, respk)

return (v0 ∧ . . . ∧ vn−1)

resp

Figure 23: Details of the 1-out-of-n sequential-OR construction. Numerical subscripts are understood to be modulo n.

functions `0 = . . . = `n−1 =: ` coincide. Furthermore, we denote by S0, . . . , Sn−1 the
corresponding SCZK-simulators, and we let H be a random oracle. The 1-out-of-n sequential-
OR construction combines the n protocols Π0, . . . , Πn−1 into one non-interactive protocol
seq-OR[Π0, . . . ,Πn−1,S0, . . . ,Sn−1,H] = (Pseq-OR,Vseq-OR) w.r.t. the binary relation ROR.

Similarly to the the 1-out-of-2 sequential-OR construction, in the general case the prover knows a
witness w for one of the n instances it is given, say xi for some 0 ≤ i ≤ n − 1. The prover starts by
computing a genuine commitment for xi (this is possible because it knows the witness w), and generates
a challenge for xi+1 by evaluating the random oracle on this commitment. After that it cycles through all
the other instances xj = xi+1, . . . , xn−1, x0, . . ., xi−1, and executes two steps for each of these: First, it
invokes the SCZK-simulator of Πj to generate a transcript for xj that matches the challenge obtained in
the preceding round, and then computes a challenge for the next instance as a random oracle evaluation of
the commitment for the current one. The last challenge the prover computes in this way is the one for xi
(given by a random oracle evaluation of the commitment generated for xi−1), which can now be genuinely
answered because the prover knows the witness w.

In more detail, on input the security parameter λ ∈ N, consider a yes-instance for the general OR-
relation ((x0, . . . , xn−1), (i, w))←$ GROR(1λ; 1).3 The protocol seq-OR[Π0, . . . ,Πn−1, S0, . . . ,Sn−1,H] starts
with the prover Pseq-OR and verifier Vseq-OR receiving (x0, . . . , xn−1) as common input. Additionally, the
prover Pseq-OR receives the witness (i, w) as auxiliary input. The protocol then proceeds in the following
way:

1. The prover Pseq-OR sets stPi ← (xi, w) and computes (comi, stPi) ←$ Pi(1λ; stPi). It then computes
the challenge chi+1 evaluating the random oracle H on the common input (x0, . . . , xn−1) and the
previously generated commitment comi. It also includes the identifier i from the auxiliary input for
domain separation.

2. In the following, for every j = i + 1, . . . , n − 1, 0, . . . , i − 1, Pseq-OR performs two steps: First, it
runs the SCZK-simulator Sj to obtain a simulated view (comj , respj , chj) ←$ Sj(1λ;xj , chj) (recall

3Note that this generator is basically the same as the one in Figure 3, adapted to the case of n relations. In more detail,
for each j = 0, . . . , n − 1, GROR runs GRj (1λ; 1) to get an instance (xj , wj) for Rj , then samples an index i uniformly at
random from {0, . . . , n− 1} and returns ((x0, . . . , xn−1), (i, wi)).

51

that chj is already known from the previous round), and then it computes the challenge chj+1 for the
“next” instance by evaluating H on the input (x0, . . . , xn−1), the commitment comj it just generated,
and the number j.

3. Finally, Pseq-OR uses its witness to compute (respi, stPi) ←$ Pi(1λ; chi, stPi), defines
resp← (com0, . . . , comn−1, resp0, . . . , respn−1), and sends resp to the verifier Vseq-OR.

4. Vseq-OR first re-computes all n challenge values using H. It then accepts the transcript if and only if
all transcripts verify correctly, i.e., for every k = 0, . . . , n−1 it holds Vk(1λ;xk, comk, chk, respk) = 1.

One can now use this more general form of the sequential-OR technique to construct a signature scheme.
This can be achieved by simply including the message m being signed in the random oracle evaluations
(as done in Figure 11 for the 1-out-of-2 case). The counterpart of Theorem 4.2, stating the security of this
signature scheme, reads as follows.

Theorem D.1. Let n > 1 be a constant, let R0, . . . , Rn−1 be decisional hard relations, and consider 3PC
optimally sound SCZK protocols Π0, . . . , Πn−1 w.r.t. R0, . . . , Rn−1 and simulators S0, . . . , Sn−1, such
that the length functions satisfy `0 = . . . = `n−1 =: `. Consider the signature scheme Γ obtained from
the protocol Π = seq-OR[Π0, . . . ,Πn−1,S0, . . . ,Sn−1,H] as described above. Then Γ is an UF-CMA-secure
signature scheme in the non-programmable random oracle model. More precisely, for any PPT adversary A
against the UF-CMA-security of Γ making at most qH queries to the random oracle H, there exist PPT
algorithms C, V∗, and D0, . . . , Dn−1 such that

AdvUF-CMA
A,Γ (λ) ≤ AdvmqCWI

V∗,C,Π(λ) + AdvDHR
D0,R0(λ) + . . .+ AdvDHR

Dn−1,Rn−1(λ) + n

n− 1(qH(λ) + n)2 · 2−`(λ).

E Example: Tight Signatures in the Non-Programmable Random Or-
acle Model

In this section we briefly discuss how our result can be used to build signature schemes that are secure
in the non-programmable random oracle model with tight security relative to the underlying language
problem. More concretely, we discuss schemes based on the DDH assumption. We remark that similar
solutions such as [GJKW07] program the random oracle to simulate signatures via the zero-knowledge
paradigm, and [GJ18] programs the random oracle to be able to insert a Diffie-Hellman value.

Recall that a group generation algorithm is a uniform PPT algorithm G which, on input 1λ, returns a
description of a cyclic group G, its order q, and a generator g of G.

Definition E.1. Let G be a group generation algorithm. We say that the Decisional Diffie-Hellman (DDH)
Problem is hard relative to G if, for every PPT distinguisher D, there exists a negligible function µ : N→ R
such that, for every λ ∈ N and every z ∈ {0, 1}∗,∣∣∣Pr

[
ExpDDH,0

D,G (λ, z) = 1
]
− Pr

[
ExpDDH,1

D,G (λ, z) = 1
]∣∣∣ ≤ µ(λ),

where ExpDDH,0
D,G (λ, z) and ExpDDH,1

D,G (λ, z) are defined in Figure 24.

The decisional hard relation R our scheme is based on uses Diffie-Hellman tuples. A yes-instance of R is
given by a tuple (G, q, g, ga, gb, gab) for random a, b ∈ Zq (the corresponding witness is b), and no-instances
are of the form (G, q, g, ga, gb, gc) for random a, b, c ∈ Zq. This gives a decisionally-hard relation under
the assumption that the DDH problem is hard in G. We immediately get a 3PC SCZK protocol Π for
inputs (G, q, g, A,B,C) by applying the proof system of Chaum et al. [CEv88] for equality of logarithms,
i.e., logg A = logB C. In particular, for every no-instance of R and every commitment, there is exactly
one challenge which admits a valid response [GJKW07], implying optimal soundness. Furthermore, there

52

ExpDDH,b
D,G (λ, z):

1: (G, q, g)←$ G(1λ)
2: a, b, c←$ Zq
3: (u, v, w)← (ga, gb, gc)
4: if b = 1 then
5: (u, v, w)← (ga, gb, gab)
6: b′ ←$ DO(1λ;G, q, g, u, v, w, z)
7: return b′

Figure 24: Definition of the experiments ExpDDH,b
D,G (λ, z) from Definition E.1.

is a special zero-knowledge simulator for Π with perfectly indistinguishable output distribution for every
yes-instance of R.

We can now plug in the above protocol Π = Π0 = Π1 into our general sequential-OR construction to
get a secure signature scheme in the non-programmable random oracle model. The resulting signatures
have twice the size of the proof system for equality of the discrete logarithm, which in turn consists of two
group elements and two scalars. Theorem 4.2 tells us that the scheme is tightly secure with respect to the
DDH assumption, because we have a perfect zero-knowledge simulator.

F Security Proof in the Quantum Random Oracle Model
In this section we provide the security proof for sequential-OR signatures in the quantum random oracle
model.

F.1 Connecting Signature Forgeries and Measure-and-Reprogram

Recall that our approach is to use the measure-and-reprogram technique of Don et al. [DFMS19] twice.
Their technique works with quantum algorithms having access to the quantum random oracle, but does
not cover the additional signature oracle that attackers against the signature scheme have. In the proof
below it is therefore often convenient to temporarily move the signature part into the quantum algorithm,
such that we obtain a quantum algorithm which only interacts with the quantum random oracle. We
can externalize the signature part again if we talk about forgers. In particular, if we investigate quantum
algorithms in the setting of Don et al. [DFMS19], we assume that A actually creates the signing key
pair (sk, vk) itself and runs the signing algorithm internally, instead of querying the oracle OSign[λ, sk, vk];
only the interaction with H in the signature creation is then done externally, and increases the number of
random oracle queries by 2qs. One may think of this as a signature wrapper, such that the adversary is now
a quantum algorithm receiving only the security parameter as input and communicating with the quantum
random oracle only. If we move back to attackers against the signature scheme, we usually assume that
the signature functionality is carried by the signing oracle and that the adversary only receives the public
key as input.

We make two assumptions about the adversary A against the sequential-OR signature scheme. First,
as in the classical setting we assume that A always makes the random oracle queries (0, x0, x1, com∗0,m∗)
and (1, x0, x1, com∗1,m∗) before outputting the forgery. Second, we assume that the forgery also contains
the challenge values ch∗0 and ch∗1 for these two hash queries. This can be easily achieved by letting A make
the two (classical) queries to the random oracle, in the given order, before outputting the forgery, and

53

including the challenge responses in the forgery. This increases the number of random oracle queries qH
by at most 2.

To apply the measure-and-reprogram technique we need to specify a predicate with which we measure
success. Recall that the predicate Λ in the construction of Don et al. [DFMS19] considers a random oracle
query, the hash value, and an additional value resp, but can be arbitrary. Our (efficient) predicate Λ will
check that both signature parts are valid, and that the query-response pair show up in the signature parts.
Yet, we do not specify if the query-response pair corresponds to the left or right signature part. In fact,
we need to permit that it matches either part, and so we define it as a disjunction of these two conditions:

Λ(1λ; (a, x0, x1, com,m), y, resp) = 1⇐⇒
a ∈ {0, 1} ∧ resp = (com0, com1, ch0, ch1, resp0, resp1)

∧ V0(1λ;x0, com0, ch0, resp0) = 1 ∧ V1(1λ;x1, com1, ch1, resp1) = 1
∧ [(com = com0 ∧ y = ch1) ∨ (com = com1 ∧ y = ch0)]


Note that any forgery of an adversary A (for fixed a, com,m) will satisfy this predicate. The predicate
then checks that the com and y values correspond to the cross-hashing of sequential-OR, and that the
signature components are valid.

F.2 Proving Sequential-OR Signatures

With the above mapping to Fiat-Shamir adversaries we can apply the technique of Don et al. [DFMS19]:

Lemma F.1. Assume that there exists a quantum adversary A against the sequential-OR signature
scheme with success probability εA, making at most qH quantum queries to the random oracle and qs
queries to the signature oracle. Write ε

[a,com,m]
A (λ) for the probability that A creates a successful

forgery (com∗0, com∗1, resp∗0, resp∗1) for m∗ and that we have m∗ = m as well as com∗a = com in that forgery,
so that

εA(λ) =
∑

(a,com,m)
ε
[a,com,m]
A (λ).

Then there exist a quantum algorithm B such that, for every (a, com,m), there exists a negligible func-
tion µ(a,com,m) : N→ R such that

Pr

 (a∗, x0, x1, com∗a∗ ,m∗) = (a, x0, x1, com,m)
∧ Λ(1λ; (a∗, x0, x1, com∗a∗ ,m∗),H(a∗, x0, x1, com∗,m∗), resp∗) = 1 :

((a∗, x0, x1, com∗a∗ ,m∗), (com∗0, com∗1, ch∗0, ch∗1, resp∗0, resp∗1), i)←$ BOSign[λ,sk,vk],H(1λ; (x0, x1))


≥ 1
O(q(λ)2) · ε

[a,com,m]
A (λ)− µ(a,com,m)(λ)

for q = qH + 2qs + 2, where
∑

(a,com,m) µ(a,com,m)(λ) is negligible.
Here, B makes at most qH + 2 quantum queries to the random oracle and at most qs queries to

the signature oracle, and outputs a uniformly distributed index i ∈ {1, . . . , qH + 2} such that the i-
th query of B is a (classical) query (a∗, x0, x1, com∗a∗ ,m∗) to the random oracle. Furthermore, there
also exists an index j ∈ {1, . . . , qH + 2} with j 6= i, such that the j-th query of B is a classical
query (1− a∗, x0, x1, com∗1−a∗ ,m∗) to the random oracle.

Proof. Consider an adversary A against the sequential-OR signature scheme. As discussed above, we
can for now think of the signature oracle as being part of A, so that A only interacts with the quan-
tum random oracle. We can also assume that A not only outputs (com∗0, com∗1, resp∗0, resp∗1) as a forgery

54

to message m∗ and public key vk = (x0, x1), but includes the challenges ch∗0 = H(1, x0, x1, com∗1,m∗)
and ch∗1 = H(0, x0, x1, com∗0,m∗) as well. As argued above, this is (almost) without loss of gen-
erality by assuming A makes the (classical) queries for the required values in the forgery at the
end; only the number of random oracle queries may increase by 2. Finally, note that for a suc-
cessful forgery (m∗, resp∗) coinciding with a fixed (a, com,m), A’s output clearly satisfies the predi-
cate Λ(1λ; (a, x0, x1, com,m),H(a, x0, x1, com,m), resp∗). This happens with probability at least ε[a,com,m]

A .
We can now apply the measure-and-reprogram technique, but instead of using an independent value Θ

we use the original hash value H(a, x0, x1, com,m). It follows that we obtain an algorithm B = RA, making
at most q = qH + 2 + 2qs random oracle queries, but such that we obtain the desired bound with a
loss of roughly 1/q2. Furthermore, B now measures the i-th query for random i and makes a classical
query about (a∗, x0, x1, com∗a∗ ,m∗) in this query, and uses response H(a∗, x0, x1, com∗a∗ ,m∗). Finally, by
construction B also makes another classical query about (1− a∗, x0, x1, com∗1−a∗ ,m∗), so that there exists
an index j as stated in the lemma. We may now externalize the signature algorithm to get an adversary
against the signature scheme.

The next step is to apply the measure-and-reprogram technique once more to B, this time repro-
gramming the random oracle to a random Θ. In doing so we obtain an algorithm R which outputs
a random index j such that, for any given (a, com,m), the j-th query (a∗, x0, x1, com∗a∗ ,m∗) satis-
fies a∗ = a, com∗a∗ = com, and m∗ = m, as well as the predicate Λ. The latter can only happen if R
either obtains the same tuple (a∗, x0, x1, com∗a∗ ,m∗) as in the i-th query of B, or if it obtains the “op-
posite” one (1 − a∗, x0, x1, com∗1−a∗ ,m∗). By assumption about B, there exists an index such that B
makes a classical query about the tuple (1 − a∗, x0, x1, com∗1−a∗ ,m∗). Hence, since R picks the index j
independently and randomly, it follows that with probability at least 1/O(q) this measured query j
yields (1− a∗, x0, x1, com∗1−a∗ ,m∗).

Furthermore, with probability at least 1/2 we also have i < j, since both values are picked independently
at random. In particular, note that Va∗(1λ;xa∗ , com∗a∗ ,Θ, resp∗a∗) = 1 for random Θ, where com∗a∗ is fixed
with the i-th query before Θ is determined in or after the j-th query. The constant 1/2 for the event i < j
is hidden in the O-notation, yielding:

Lemma F.2. Let B be as in Lemma F.1 with success probability given by εB(λ) =
∑

(a,com,m) ε
[a,com,m]
B (λ).

Then there exist a quantum algorithm R and a negligible function ν : N→ R such that

Pr
[

Va∗(1λ;xa∗ , com∗a∗ ,Θ, resp∗a∗) = 1 :
((com∗0, com∗1, resp∗0, resp∗1),m∗, i, j)←$ ROSign[λ,sk,vk],H(1λ; (x0, x1))

]
≥ 1
O(q(λ)3) · εB(λ)− ν(λ)

for q = qH + 2qs + 2, and where Θ is determined as described above. Furthermore, i < j and
the i-th and j-th queries of R to the quantum random oracle are classical queries (a∗, x0, x1, com∗a∗ ,m∗)
and (1− a∗, x0, x1, com∗1−a∗ ,m∗).

Overall, we now have a quantum algorithm R which successfully creates a signature
forgery (com∗0, com∗1, resp∗0, resp∗1) for m∗ with (non-negligible) probability

εA
O((qH(λ) + qs(λ))5) − µ(λ)− ν(λ),

making qs many signature queries and qH + 2 random oracle queries. Moreover, there are two
indices i, j ∈ {1, 2, . . . , qH + 2} with i < j such that R makes classical queries about the
messages (a∗, x0, x1, com∗a∗ ,m∗) and (1 − a∗, x0, x1, com∗1−a∗ ,m∗) to the quantum random oracle in
the i-th and j-th query. These indices are known, and the verification succeeds with respect
to Va∗(1λ;xa∗ , com∗a∗ ,Θ, resp∗a∗) = 1 for random Θ.

55

The final step is to use the decisional hardness of the underlying problem and the (multi-query) witness
indistinguishability of our proof to argue that this yields a contradiction in general. In both cases we use
hardness against quantum adversaries. Except for this, the proof then closely follows the classical case
given in Appendix C, arguing that R still succeeds with non-negligible probability if we switch the secret
key in the signing process. In particular, R would now have to find a valid response to the no-instance
for the reprogrammed random value Θ which is infeasible by the optimal soundness. In conclusion we get
that the advantage of adversary R is bounded by

AdvmqCWI
V∗,C,Π(λ) + AdvDHR

D0,R0(λ) + AdvDHR
D1,R1(λ) + 2−`(λ)+1.

The only difference to the classical setting is that we do not need to account for the number of random
oracle queries qH in the optimal soundness part, since we have considered the specific queries in the
measured queries i and j already.

56

	Introduction
	OR-Proofs
	Applications of OR-Proofs
	Non-Programmable Random Oracles
	Sequential-OR Proofs
	Our Results
	Further Related Work
	Extension to the Quantum Random Oracle Model

	Preliminaries
	Basic Notation
	Random Oracle Model
	Languages and Relations
	Interactive Protocols
	3PC-Protocols and -Protocols

	Parallel-OR Proofs
	Protocol
	Parallel-OR Signatures

	Sequential-OR Proofs
	Protocol
	Sequential-OR Signatures
	Example: Post-Quantum Ring Signatures

	Impossibility of parallel-OR Signatures in the Non-Programmable Random Oracle Model
	Security in the Quantum Random Oracle Model
	Additional Preliminaries
	The Fiat-Shamir Heuristic
	Digital Signature Schemes

	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Sequential-OR Proofs: The 1-out-of-n case
	Example: Tight Signatures in the Non-Programmable Random Oracle Model
	Security Proof in the Quantum Random Oracle Model
	Connecting Signature Forgeries and Measure-and-Reprogram
	Proving Sequential-OR Signatures

