Leakage Assessment in Fault Attacks: A Deep
Learning Perspective

Sayandeep Saha, Manaar Alam, Arnab Bag, Debdeep Mukhopadhyay, and
Pallab Dasgupta

Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur
{sahasayandeep, alammanaar, arnabbag, debdeep, pallab}@iitkgp.ac.in

Abstract. Generic vulnerability assessment of cipher implementations
against fault attacks (FA) is a largely unexplored research area to date.
Security assessment against FA is particularly important in the context
of FA countermeasures because, on several occasions, countermeasures
fail to fulfil their sole purpose of preventing FA due to flawed design or
implementation. In this paper, we propose a generic, simulation-based,
statistical yes/no experiment for evaluating fault-assisted information
leakage based on the principle of non-interference. The proposed exper-
iment is oblivious to the structure of countermeasure/cipher under test
and detects fault-induced leakage solely by observing the ciphertext dis-
tributions. Unlike a recently proposed approach [1] that utilizes ¢-test
and its higher-order variants for detecting leakage at different moments
of ciphertext distributions, in this work, we present a Deep Learning
(DL) based leakage detection test. Our DL-based detection test is not
specific to only moment-based leakages and thus can expose leakages
in several cases where t-test based technique demands a prohibitively
large number of ciphertexts. We also present a systematic approach to
interpret the leakages from DL models. Apart from improving the leak-
age detection test, we explore two generalizations of the leakage assess-
ment experiment itself — one for evaluating against the Statistical ineffec-
tive fault model (SIFA), and another for assessing fault-induced leakages
originating from “non-cryptographic” peripheral components of a secu-
rity module. Finally, we present techniques for efficiently covering the
fault space of a block cipher by exploiting logic-level and cipher-level
fault equivalences. The efficacy of DL-based leakage detection, as well as
the proposed generalizations, has been evaluated on a rich test-suite of
hardened implementations from several countermeasure classes, includ-
ing open-source SIFA countermeasures and a hardware security module
called Secured-Hardware-Extension (SHE).

Keywords: Fault Attack - Leakage Assessment - Deep Learning.

Introduction

Fault attacks (FA) [2, 3] have recently gained significant attention from both
industry and academia. The core idea of such fault assisted cryptanalysis is to
deliberately perturb the computation or control-flow of a system and gain some

2 Authors Suppressed Due to Excessive Length
Table 1: Different Countermeasure Classes and Fault Models

Type Description Fault Model |[Description
Time/Space Performs two computation on the same dat‘a . . |Corrupts a bit intermediate

and compare the result. No output if fault is||Bit stuck-at/flip
Redundancy state

found.
Code-based .] . . Corrupts multiple bits within a
Redundancy Redundancy using error-detection codes Nibble/byte byte/nibble.

‘ Same as ‘tlme/spa‘c.e l'edundancyi but ‘ o Data dependent bit-flips,
Infection no explicit comparison. Randomizes Biased bit-flips . .
. useful for biased FA or SIFA

the outcome upon fault detection.

Instruction Bit-fins in Bit-flips in S-Box intermediate
’ Uses redundant instructions. ps computation. Useful for SIFA
Level masked S-Boxes
on masked S-Boxes.
Combined Combined SCA-FA countermeasures, Single/ Multi |Instruction-Skip in
‘ i CAPA, M&M Instruction Skip |microprocessors

SIFA Bit-level error detection/correction Control Loop abort/changing outcome
countermeasures|to counter ineffective faults. fault of if/else block

information about the secret through the faulty system responses. Malicious
faults are easy to generate but challenging to prevent. Especially, classical fault
tolerance techniques often fall prey against precisely placed and repeatable faults.
There exist several physical means of injecting faults with malicious intentions.
Prominent methods include clock-glitching [4], under-powering [5], electromag-
netic (EM) glitch [6], laser-based fault injection [5,7], and Rowhammer bug (for
remote fault injection) [8,9]. While the nature and precision of the faults in
a system usually vary with the injection mechanisms, it is just one aspect of
an FA. The key extraction process also critically depends on the underlying al-
gorithm and its implementation. The standard way of performing an FA is to
analyze the algorithm along with a logical abstraction of the faults happening
in a system known as a fault model. Classically, data corruption faults having
uniformly random or some statistically biased distribution (even constant valued
faults) are exploited in most of the FAs. However, in a more generic scenario,
one cannot rule out faults in the control-flow and faults at the instruction-level,
which have also been shown to be fatal for cryptographic implementations on
several occasions. Recently, attacks have been developed using ineffective faults
by exploiting the dependence of such absence of faults on the underlying data.
Such attacks have been used to break most of the existing hardened implementa-
tions [10,11]. Being a practical class of attack, it is imperative that fault models
in FA should be practically realizable. The enormous improvement of fault injec-
tion mechanisms in the last few years [5-7] now allows even the strongest fault
model assumptions to be reasonably achievable for different implementations.
In this paper, we mainly focus on FAs in the context of block ciphers. Exist-
ing block ciphers alone are not capable of throttling FAs, and suitable coun-
termeasures are required. FA countermeasures are usually incorporated at the
algorithm-level [12,13] or at a lower level of abstraction such as in the assembly
instructions [14,15] or hardware circuits [16-18]. One common feature for most of
these countermeasures is that they utilize some form of redundancy (time, hard-
ware, or information redundancy) to detect/correct the presence of a fault in the
computation. The most common form of countermeasures, widely referred to as
detection countermeasures, deploy an explicit check operation to detect the faulty

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 3

computation and then react by either muting or randomizing the output [13,19].
In contrast, infective countermeasures avoid the explicit check operation and in-
troduce a randomized infection function that masks a faulty ciphertext to make
it useless for the adversary [12,20]. Instruction-level countermeasures implement
redundancy at the granularity of assembly codes. One straightforward strategy
is to incorporate redundant instructions in the code with the assumption that
an attacker may not be able to bypass all of them at once, causing an effective
corruption [14,15]. With the recent advent of Statistical Ineffective Fault Anal-
ysis (SIFA), a completely new class of countermeasures have been proposed.
Such SIFA countermeasures incorporate redundancy checks in a per-bit man-
ner to detect/correct every fault (whether effective and ineffective) [16-18,21],
and thereby destroying the data-dependent statistical bias causing key leakage.
Table. 1 presents a summary of countermeasures and fault models.

Unfortunately, many of these existing FA countermeasures [12,14,22,23] have
been found insecure even (sometimes) against the fault models they were de-
signed to protect for. A key cause behind such design failures is that there ex-
ists no general mechanism for security assessment in the context of FAs. Unlike
block ciphers, countermeasures are often engineered in-house, considering several
other aspects like resource/performance constraints and time to market. They
are mostly analyzed by the design team itself, or by security certification facili-
ties as an end product, which may leave critical loopholes unobserved. Devising
a generic methodology for evaluating FA is a open scope of research.

Our Contributions:

Deep Learning-based Leakage Detection for FA: In this paper, we in-
troduce a Deep Learning (DL) assisted, automated, and straightforward yes/no
testing methodology for assessing the security provided by an FA countermea-
sure called Deep Learning Fault Attack Leakage Assessment Test (DL-FALAT).
In short, DL-FALAT detects potential information leakage in ciphertext (also
called traces) distributions of a block cipher under the influence of faults. The
root of this approach lies in the theory of non-interference [24]. The main util-
ity of DL here is to realize a detection test for checking if two distributions are
same or different. Simply put, we train and validate a DL algorithm with labelled
ciphertexts resulting from fault simulations of a given implementation with two
different fault/key values, which is posed as a binary classification problem. If
the validation accuracy is found to be higher than that of a randomly guessing
binary classifier, it is concluded that the DL model is able to distinguish between
ciphertezt distributions corresponding to two different fault/key values. This phe-
nomenon implies the violation of non-interference and indicates leakage in FA.
Also, we propose simple DL models which work universally irrespective of the
design-under-test and fault model, enabling the leakage assessment with low ci-
phertext count. For FA leakage assessment, low ciphertext count is extremely
important as one has to perform the test on several fault locations in a design
for ensuring security. Another motivation for choosing DL for leakage assessment
is that it can detect the leakage-order automatically, unlike the ¢-test. For FA
countermeasures, the statistical order of the leakage is not known apriori (unlike

4 Authors Suppressed Due to Excessive Length

SCA countermeasures, such as masking). Finally, we present a systematic flow
to interpret the outcomes of the DL-based detection test. Major strengths of
DL-FALAT lie in its simplicity and the feature of not depending on any non-
trivial information regarding a hardened algorithm. It is supposed to be applied
at a pre-deployment stage ', where an evaluator is allowed to simulate faults at
different points within the implementation code and can change the keys.
Enhancing the Leakage Assessment Experiment: The second contribu-
tion of this work is to enhance the non-interference experiment (that is the
generation of two different ciphertext distributions corresponding to two differ-
ent fault/key values; referred as leakage assessment experiment) itself. As the
first enhancement, we tailor it for detecting the so-called Statistical Ineffective
Fault Analysis (SIFA). Our approach can detect the data dependency of the
correct and faulted encryptions in SIFA by analyzing the ciphertexts, and thus
can meaningfully interpret SIFA on different implementations. As a second en-
hancement, we propose a compare-with-uniform variant of the basic experiment
which can be utilized for testing so-called “non-cipher” components of a security
module against FAs. Most of the time, cryptographic primitives are associated
with several other peripheral components such as mask generation logic or input
delivery logic, which can also be targeted by an attacker leading to an exploitable
leakage. Leakage of the aforementioned kind can be successfully detected by the
compare-with-uniform enhancement of the leakage assessment experiment.
Covering the Fault Space: In order to handle the large fault space in block
ciphers, we exploit different types of equivalences present in the fault space. More
precisely, fault equivalences at gate-level circuits and the cipher-algorithm level
were exploited to provide a reasonable coverage over the fault space without
exhaustively testing every fault location. Such equivalences partition the fault
space in several equivalence classes, and testing each class member is sufficient.
The gate-level equivalences were explored with the TetraMax tool from Synop-
sys, and the cipher-level fault equivalences were found using an automated fault
analysis tool called ExpFault [25].

The efficacy of DL-FALAT has been established over a representative set of
detection, infective, instruction-level, SIFA, or combined countermeasures. To
evaluate the countermeasures against instruction-level faults, in this work, we
developed an easy-to-use instruction-level fault simulation mechanism based on
the GNU Debugger (GDB) software. In order to evaluate the holistic leakage
assessment capability of DL-FALAT on “non-cipher” components, we validate
an automotive security standard called Secure Hardware Extension (SHE) for
which we found non-trivial vulnerabilities.

Related Work:

A prior approach for leakage assessment in the context of fault attacks was
proposed in [1], which used Welch’s ¢-test for leakage detection. DL-FALAT en-
hances the power of the detection test over t-test in terms of data complexity,

! Leakage assessment with device-level practical faults may leave some vulnerable
corner cases unexplored, as certain faults may not take place for a specific injection
mechanism. We, therefore, suggest that leakage assessment should be performed with
simulated faults so that different fault types can be explored.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 5

which has been established by multiple examples in this work. In particular,
t-test is limited to the detection of leakages in the moments of a distribution
(which can be problematic [26-28]), where the statistical-order of the test has to
be defined by the evaluator. In contrast, the DL- based detection test can auto-
matically detect and combine necessary points in the trace for leakage detection
without any user intervention, and also without any limitation on moment-based
leakage. Furthermore, the work in [1] does not shed light on SIFA attacks, and
the general enhancement of the leakage assessment experiment beyond cipher
implementations. Finally, the work in [1] does not comment on how to reason-
ably test several fault locations inside a cipher so that meaningful fault coverage
estimations can be made. We address the fault space exploration problem in
this paper. Another recent contribution in this direction is due to [29], which
presents a fault diagnosis approach specific to hardware designs for evaluating
countermeasures against FAs. The approach in [29] is based on monitoring cer-
tain internal signals for detecting faults and not the ciphertexts only, and hence
expects knowledge regarding the implementation details. Moreover, vulnerabili-
ties in countermeasures are typically not limited to their fault detection modules
but also depends on the recovery modules as we practically show in the case of
infective and SIFA countermeasures. Hence, checking the leakage at the cipher-
text seems to be a better idea as it represents the true exploit of a fault attack.
Recent years have also seen several applications of DL in the context of SCA
attacks including leakage detection [28,30-33]. However, the leakage in SCA [34]
is significantly different from that of FA 2. One of the major issues in FA leakage
assessment is that one has to test several fault locations. Hence, the statistical
test at each location must operate with reasonable data complexity. The DL-
based flow presented in this paper is specifically tailored for that purpose, which
was not required for the DL-based SCA leakage detection approach [28]. Such
tailoring of the test is non-trivial, as it involves careful selection of the DL mod-
els, as well as the construction of the iterative approach proposed here. To the
best of our knowledge, this work presents the first application of DL for FAs.

The paper is organized as follows. In Sec. 1, we present the concept of leakage
in FA and its connection to the theory of non-interference, which is followed by
the basic descriptions of the leakage assessment experiments and the ¢-test based
detection test. Sec. 2 introduces the DL-based leakage detection test in detail.
Sec. 3 outlines two enhancements to the leakage assessment experiment. The
fault space exploration strategies using fault equivalence is presented in Sec. 4.
Case studies on FA countermeasures are briefly outlined in Sec. 5 (with details
in Appendix. B). We conclude in Sec. 6. Appendices present a background on

2 The leakage function in FA varies significantly between attack strategies, fault mod-
els, ciphers and countermeasure algorithms (unlike SCA leakage functions which are
usually specified by Hamming weight/distance). For example, in a typical differen-
tial fault analysis attack, the leakage function is decided by the fault propagation
path up to the ciphertext, which varies with the cipher, the fault location, and the
countermeasure structure.

6 Authors Suppressed Due to Excessive Length

DL (Appendix. A), detailed case studies (Appendix. B), and instruction-level
fault simulation methods (Appendix. C).

1 Fault Attack and Leakage Assessment

In this section, we elaborate on the concept of information leakage for FA and
relate it with non-interference. Subsequently, we present two basic experiments
for examining leakage.

1.1 Information Leakage in Fault Attacks

Leakage in fault attacks is manifested as ciphertexts (or differentials of correct
and faulty ciphertexts). Formally, it is described as:

Lrpa=C=F(f,P,K) (1)

with f denoting the value of the intermediate state differential at the point of
fault injection (also denoted as the value of the fault mask or simply fault value),
P denoting the plaintext variable and X denoting the secret key variable. The
parameter f takes value according to some fault model F'. Furthermore, the func-
tion F represents the fault propagation path through the cipher computation.
The observable for the adversary in FAs is the ciphertext under the influence of
faults (C) (resp. the differential between the correct and the faulty ciphertext

denoted as AC)3.
The plaintext P in the leakage definition (Eq. (1)) can be controlled by the

adversary. For a properly protected cipher, however, the key is supposed to re-
main secret, and no information regarding this should be leaked. Further, as
proved in [1], the fault value f at some intermediate state of the cipher compu-
tation should also be treated as a secret for protected ciphers. * In other words,
the fault value should not visibly influence the ciphertexts, and the secrecy of f

3 The observable definitions in fault attacks may go beyond the ciphertexts or ci-
phertext differentials. Later in this paper, we shall use a more general form of the
observables (Sec. 3.2).

We note that the proof in [1] implicitly considers the fault to be injected before
at least the last nonlinear operation of the cipher. This follows directly from the
arguments in [35]. Considering fault before or during the last non-linear operation
is required for most of the FAs, as otherwise the correct key cannot be distinguished
with DFA or statistical distinguishers. However, there can be a couple of exceptions,
such as the safe-error attacks with stuck-at faults, which do not depend on fault
locations. One may observe that even in this case the knowledge of the fault mask
(that is the differential between the correct and the faulty state) leaks all information
resulting in key recovery. For example, if a bit stuck-at-0 fault is injected in the state
just before the last key addition operation in AES, the fault mask is f = 0, if the
state value is also 0, and f = 1, otherwise. Hence, the knowledge of fault mask also
exposes the intermediate value in this case. To summarize, the observation regarding
the exposure of fault mask in [1] is consistent even for those fault locations which
are not followed by a non-linear layer, not causing any false negatives.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 7

is equivalent to the secrecy of the key. In the case of unprotected implementa-
tions, both the key and f leak via the faulty ciphertexts. Therefore, the only way
of preventing FA is to prevent the information flow from both K and f to the
ciphertexts obtained during a fault injection event. In practice, all the existing
fault attack countermeasures try to achieve this. Accordingly, a countermeasure
is considered to be secure if it satisfies the two following equations:

I(C,KIP) =0 and Z(C,f|P)=0 (2)

I(X,Y|Z) is the conditional mutual information between random variables X
and Y given Z.

Evidently, these two definitions can be used interchangeably for leakage as-
sessment. However, our goal is to evaluate the hardened implementations with-
out utilizing any algorithmic details of them. Lack of algorithmic details refrain
the analytical estimation of mutual information and leaves data-based statistical
estimation as the only option, which is considered challenging.

The technical difficulty in estimating mutual information be circumvented by
an alternative interpretation of the leakage with the theory of non-interference.
In simple words, the non-interference property guarantees the absence of sensi-
tive information flow from the input to any observable point of a system. For
FA-induced leakage, non-interference between the key or the fault value with
the ciphertext or ciphertext differential (or the observable, in general) implies
that the attacker cannot exploit the ciphertext to extract the secret. Assessment
of non-interference in programs is usually performed by assigning program vari-
ables with different security levels. In particular, some of the variables are secret
(marked as ‘high’), and the rest of them are public (‘low’). All the program
variables can be treated as random variables in case the underlying program is
probabilistic.? In this setting non-interference implies that the mutual informa-
tion between the ‘high’ input variables and the ‘low’ output variables must be
zero, which is the same as the definition of security provided in Eq. (2) (as in
a cipher program ciphertexts are typically ‘low’ variables and the key and the
faults are ‘high’ variables). However, an equivalent [24], easy-to-use formulation
of non-interference exists. It is based on the intuition that if the low outputs dif-
fer in two independent runs of a program having the same low inputs, but some
different high inputs (h and h'), then the program leaks about its high inputs.
For probabilistic programs, the difference in low outputs is manifested as the
difference between two distributions. We utilize this alternative notion to assess
the security from simulation data.

1.2 Basic Experiments in Leakage Assessment

In this subsection, we present two variants of the leakage assessment experiment,
which are based on the alternative notion of non-interference presented in the

5 Formally, a probabilistic program PP can be described as a routine, which contains
both probabilistic and deterministic assignments, and variables, when represented in
Single-Static-Assignment (SSA) form. Most generally, PP takes a joint distribution
of input variables and outputs a joint distribution of output variables.

8 Authors Suppressed Due to Excessive Length

last subsection. Both the fault and the key are treated as secrets ("high’ inputs).
For the sake of simplicity, we keep the value of one of the secret inputs fixed
during our testing, which gives rise to two experiments. The choice of the “fixed”
secret is driven by the type of application being tested, and also by the fault
model. Keeping the key fixed is found to be the most convenient option for the
cases where fault values vary within some finite range (for example, in the case
of random byte faults the range is {1,2,---,255}). This is due to the fact that
the size of the keyspace is much larger than the size of the fault space, and
this size would matter in certain situations. For example, in case of code-based
detection countermeasures, not every fault value or key value (considering a
fixed plaintext and fault value) is leaky, as the faulty state might get detected
by the error detection module causing zero leakage. In such cases, one has to
exhaustively search the fault /keyspace for identifying potential leaky faults (resp.
keys). While this search is fairly easy for a fault space of size 256, it may become
computationally intensive for a larger keyspace. Varying the key is a viable option
too, and convenient for control-flow faults, bit-flip/stuck-at faults, or instruction-
skip faults, where the fault can typically take a single value (e.g., a control fault
may change the execution flow of a program by altering a decision from “yes”
to “no”. The only faulty value here is “no”, and accordingly there is only one
possible fault mask).

The interference experiment with fixed key and varying fault value is pre-
sented in Algorithm. 1 (which corresponds to the first equality in Eq. (2)). The
algorithm takes a protected cipher C, and two fault values f; and f5, and a key k
as inputs. Internally, Algorithm. 1 runs two independent simulations of C for f;
and fo with fixed plaintext p and key k. One should note that C is a probabilistic
algorithm which may internally generate random numbers to randomize the out-
come in each run. The simulation traces (the ciphertexts), denoted as 7y, and Ty,
are then subjected to a statistical test TEST (). The TEST() reasons about the
equality of the distributions of the two simulation traces and returns TRUFE if
the distributions are unequal. If the distributions are unequal the Algorithm. 1
returns YES indicating interference. The second interference experiment (ref.
Algorithm. 2) is realized similarly, but by varying the keys and keeping the fault
value fixed. However, it is recommended to perform the test in Algorithm. 2
on the ciphertext differentials. This is to handle the cases when the fault has
an incomplete diffusion to the ciphertext. Considering ciphertexts rather than
the differentials would leave a constant difference between the instances of two
classes Ti, and Tg,, which may result in false positives in TEST().

It is worth mentioning that the basic interference tests can be optimized or
generalized in several ways in the context of certain countermeasure classes, fault
models, and observables. One such optimization, specific to detection counter-
measures has been presented in [1] (as a preprocessing step for selecting fault
value pairs ((f1, f2)) causing leakage). In Sec. 3 of this paper we propose two
other optimizations. In the next subsection and the subsequent section, however,
we focus on the detection test TEST().

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 9
1.3 t-test for Leakage Detection

One convenient way of implementing TEST() is to apply Welch’s t-test as done
in [1]. A t-test gives a probability to examine the validity of the null hypothesis
as the samples in both sets were drawn from the same population, i.e., the two
sets are not distinguishable. Large absolute values of the ¢-test statistic (denoted
as t) returned by the test indicate that the data-sets are statistically different.
A threshold of |¢| > 4.5 indicates that the confidence of the test is > 0.99999.

Algorithm 2 TEST-INTERF-KEY
Input: Protected Cipher C, Fault value f,

Algorithm 1 TEST-INTERF-FAULT

Input: Protected Cipher C, Fault value fi, Key k1, k2, Simulation counter S
f2, Key k, Simulation counter S Output: Yes/No
Output: Yes/No 1 Thy =05 Ty :=0
1 Tp i =0; Ty =0 2: p:= GENpr()
2: p:=GENpr() 3: corry := C(p, k1)
3: for 1 < S do 4: corry := C(p, k2)
4: Tp =T UC(D, K, f1) 5. for 1 < S do
5: Tiy := Ty UC(D, K, f2) 6 Tiy := Tiy U{corr1 @ C(p, k1, f)}
6: end for 7 Try = Try U {corra @ C(p, ka2, f)}
7. if (TEST(Ty,,Ty,)) then 8: end for
8: Return Yes 9: if (TEST(Tx,, Tk,)) then
9: else 10: Return Yes
10: Return No 11: else
11: end if 12: Return No

13: end if

In modern block ciphers, ciphertexts are of 64, or 128 bits, and treating them
as a single random variable during the t¢-test is impractical. One reasonable
solution is to treat them as multivariate quantities. Each bit, nibble or byte
of a ciphertext can be treated as a variable. The proposal is to consider both
bit and byte (or nibble, if required)-level divisions separately. As the ¢-test is
univariate, it is applied separately on each individual bit/byte location in a
point-wise manner. However, information leakage may not always be manifested
in this univariate setting. To see this, let us consider two variables Vi and V;
such that V; = X @ r and V, = r. Here X is a leakage component depending on
the key and the fault value, and r is a random variable. In a univariate setting,
if we run the ¢-test on two different instances of V; caused by two different fault
values (to be precise, X = Xy, in the first distribution and X = Xy, in the
second one), the t-test concludes that these two distributions are equal. This
is due to the presence of the random mask r. However, if one considers the
joint distribution of V7 and V5, the leakage becomes visible as the effect of the
mask r gets nullified. To capture this leakage, the t-test must be performed in
a multivariate setting. One approach for extending t-test to the multivariate
setting is to consider the centered product (i.e. higher-order statistical moments)
of different variables [1,36].

In [1], the TEST() function begins with performing a univariate test (bit/byte
level), and continues with d-th order testing, for d = 1,2,..., G, until a leakage
is observed. G is to be specified by the user. The simulation time (S in Algo-
rithm. 1, 2) increases for higher G values, and hence decides the test complexity.
However, higher G values ensure stronger security guarantee.

10 Authors Suppressed Due to Excessive Length

2 DL-FALAT: Deep Learning based Detection Test

The ¢-test and its higher-order variants indeed work for realizing TEST(), but
only with some critical theoretical and practical limitations. Higher-order t-test
can only capture different statistical moments, which has already been shown
to be sub-optimal in the context of SCA leakages [26,27], even resulting in
false negatives. Nevertheless, the application of ¢-test in the context of FA can
also be problematic from a usability perspective. Unlike SCA countermeasures,
such as masking, where maximum possible leakage order has a direct relation
with the masking order, leakage order in FA does not formally relate with the
countermeasure construction. Rather the multivariate and higher-order leakages
are often formed due to the fault propagation and improper construction of
the countermeasures (e.g., for certain infection functions in case of infective
countermeasures). Consequently, no information regarding the maximum order
of such leakages is available apriori to the designer or the evaluator. The security

guarantee depends upon the evaluator’s choice of the maximum test order G.
Both the situations (i.e. limitation of moment-based approach and the issue

with test order) mentioned above can be handled if we have a detection test,
which typically does not depend upon the calculation of moments. DL methods
are renowned for learning in highly multivariate scenarios and can take several
complex interrelations among different features (beyond moments) into consid-
eration. Further, DL does not require any order-related information to be given
from the evaluator side as it can automatically discover the dependencies be-
tween different points. Finally, during our experimentation, it was found that
DL performs significantly better in noisy scenarios, and for very high leakage
orders compared to the ¢-test based approach.

2.1 DL based Leakage Testing: Main Idea and Challenges

The idea behind DL-FALAT is to train a Neural Network (NN) with two different
sets of ciphertexts resulting from computations based on two different secret
values. Afterwards, the classification capability of the trained model is evaluated
on a validation set. The accuracy result obtained over the validation set signifies
the amount of information learned by the network. A better-than-random guess

over validation set indicates the existence of leakages from the countermeasure.
Although the approach stated above is fairly simple, it poses several caveats

and challenges during implementation. We list them as follows:

Decision Making: One fundamental challenge in DL is to quantify the decision
threshold based on which one can distinguish between a leaky and a non-leaky
implementation.

Sample Size: It is always desirable that the detection test returns a consistent
decision with lowest possible number of samples. The sample size becomes impor-
tant here as typically one might need to test multiple fault locations, requiring
several fault simulations for each of them.

Model Selection: Ideally, there should be one specific DL model that works
for a large class of test scenarios. The critical question is that whether or not
there exists one such single model? If not, what are the guidelines for constructing

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 11

proper models? Model selection becomes even more challenging when the number
of data samples is less as there may be a tendency of overfitting.

Interpretation: How to obtain meaningful insights (such as univariate or mul-
tivariate leakage, the position of leaky bytes/bits in the ciphertext, etc.) from

the DL results?
We begin by addressing the first two issues simultaneously in the next subsection,

as there are some interrelations between them.
2.2 TIterative Training and Decision Making

If better than random learning occurs for a DL model, it implies the existence
of leakage. One key insight, in this case, is that the learning need not require to
be the “best”. Rather even a small indication of leaning is sufficient to decide
leakage. However, this indication must come with high (preferably quantifiable)
statistical confidence. This insight is valuable for keeping the sample size for
training and validation relatively small and also for the selection of models.

Overall Flow: There is no clear thumb-rule for determining the proper amount
of data required for training in DL. Hence, we begin the training with reasonably
small training and validation sets and iteratively increase their size by taking
feedback from a decision-making operation, which indicates whether or not there
is any leakage. The training and validation iteration continues until leakage is de-
tected, or a user-defined size limit of the dataset has been reached. This iterative
process helps us to test with the minimum possible number of samples.

The DL-based leakage assessment experiment is outlined in Algorithm. 3. The
basic experiment is the same as one described in Algorithm. 1, however, the
TEST() is replaced with the iterative DL-based test (an equivalent extension
for Algorithm 2 is also possible). The dataset under consideration is denoted
as D = Ty, UTy, (resp. Ti, U Ti,). The instances from the set Ty, (resp. Tg,)
are labeled as 0, and the instances from the set Ty, (resp. Tx,) are labeled as 1.
The training and validation begins with a reasonably small dataset size Sin:.
The size of the set D is increased adaptively in each iteration by adding equal
number of samples from both of its constituent sets. To represent the varying
size of D, from now onward, we use the notation D; denoting the dataset at
t-th iteration. The entire set D; is divided into training and validation sets
Try and Vi, respectively. At the t-th iteration the model is trained with T'ry
and validated over VI;. The test continues until a maximum dataset size S is
reached or some leakage is detected. Table. 2 presents the parameter settings for
Algorithm. 3 (decided experimentally from our testbench). In case of infective
countermeasures, for which we mostly observed multivariate leakage, we propose
a simple optimization for saving the total learning time for multiple iterations
of Algorithm. 3, while keeping the test still reliable. For these cases, if leakage
s not observed within S = 10000, we perform another single learning iteration
with a large sample count as a final confirmation test. In our experiments, 200000
samples were found giving reliable results in such cases.%

5 While the counts in Table. 2 are experimentally verified, for some specific cases
(e.g. non-leaky cases in SIFA testing), we test until .S = 10000, (though the limit is
S = 5000) in this paper, just for a consistent understanding of the leakage trend.

12 Authors Suppressed Due to Excessive Length

Algorithm 3 DL-TEST-INTERF-FAULT

Input: Protected cipher C, Fault value fi, f2, Key k,
Simulation counter S, Initial simulation counter S;,;+, Model M
Output: Yes/No

L Tp i =0; Ty =0
2: pi= GENPT()
3: Sy 1= Sinit
4: leak := Null
5: while S; < S do
6: for i < S;nit/2 do
7 T = Ty, U(C(p, K, f1),0) > Add labels to the data as 0 or 1
s Tpy == Try U (C(p, K, 2, 1)
9: end for
10: Dy :=Tp UTyy
11: (D}, DZ,- -, Df) := GEN-CROSS-VALID-SET(D;) > Generate K subsets for cross validation
12: Ay =0
13: for : < K do
14: Tri = Uf»(:(] Dy
v i
15: Vi := Dy
16: ai’ := Train-and-Validate(M, Tr;’, Vli) > Get the validation accuracy
17: A= Ay U{ar}
18: end for
19: if (t_Test(A;) = Ho) then > Perform one-tailed t-Test
20: leak = False
21: else
22: leak = True
23: end if
24: if leak then
25: Return Yes
26: else
27: if S; < S then
28: St = St + Sinit
29: else
30: break
31: end if
32: end if

33: end while
34: Return No

K-fold Cross Validation: For training and validation to be robust even over
small datasets, we adopt the stratified K-fold cross-validation approach, which
is well-known for preventing overfitting [37] (line 11 to line 18 in Algorithm. 3).
The K-fold cross-validation can be explained as follows. The entire dataset D;

is randomly partitioned into K equal-sized subsets D}, D2, ..., DK (|DJ| = u;gl,

Vj). The stratified feature ensures that for each D, equal number of samples
from both of the classes (label-0 and label-1). Next, K — 1 of these subsets
are used for training the model M, and one subset is used as validation set.
Furthermore, this process is repeated K times giving each subset one chance to
be used as validation set. The main idea is to check if the model M is capable
of generalizing its knowledge for unseen datasets or not.

One-Sided t-test for Decision Making: In our testing methodology, we
accumulate the validation accuracy (as fraction of correctly classified examples)
for all the K validation sets in a specific iteration ¢ (the corresponding set is
denoted as Ay = (a},a?,- - -al), where each a] denote the validation accuracy
while validating on D7)). To check leakage, we perform following hypothesis test.

Ho : ppa, =05, and Hy:pa, > 0.5. (3)

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 13

Table 2: Parameters for DL-based Leakage Detection Flow
Sinit |S K
500 10000 (for infective countermeasures) 50
5000 (for time/space/information/instruction redundancy, SIFA faults))

Here 114, denote the mean over set A;. In case of leakage, the alternative hypothe-
sis H1 is accepted. We apply one-sided t-test with significance level o = 0.0001%,
and degrees of freedom K —1 (we take K = 50). The t-value threshold is t = 4.5
(i.e. t > 4.5 implies leakage). The mean value (i.e. the RHS in Eq. (3)) 0.5 in the
above-mentioned t-test is quite intuitive. Acceptance of the alternative hypothesis
indicates that the average validation accuracy is better than random guess (i.e.
0.5), which indicates that the DL model is learning and there is leakage.

2.3 Selection of the DL Model

One of the major challenges of the leakage assessment problem is to select a
generalizable model (M), which should not depend upon the design under test,
or the nature of leakage. As already pointed out, one advantage that we have
in leakage assessment is the learning need not be the best. Any better-than-
random validation accuracy is acceptable. This fact allows some flexibility for
model selection. However, one must be careful about the overfitting of a model.

Bit and Byte Models: In this work, we use the two models shown in Listing 1.1
and 1.2. The manifestation of leakage in the ciphertext structures is interpreted
as bit-level or byte-level. This choice is motivated by the structures of existing ci-
phers and countermeasures, which mostly follow bit/byte level structures. Hence,
we use two separate models for bit (Listing 1.1) and byte (Listing 1.2) level anal-
ysis. It is worth mentioning that theoretically, any one of these two models is
sufficient for detecting all classes of leakages due to fault attacks. However, de-
pending on the underlying cipher and countermeasure structure (bit/byte), the
number of ciphertexts required for detecting leakage vary between the two mod-
els. Since one of the main motivations of this work is to reduce data complexity,

we propose using both models simultaneously on the data for practical purposes.
An interesting observation here is that the models are fairly simple. We found

that they work equally well for all the examples considered in this paper. An
added advantage of simple models is the reduced risk of overfitting, especially
while we are trying to use as less data as possible. We specifically verified that
none of our examples leads to overfitting even while trained with the minimum
number of samples required. In Sec 5, we show that these models outperform
the ¢-test based strategy for the considered examples.

The models have been developed using the Python-based Keras library [38],
which uses TensorFlow [39] in the backend. Both the networks consist of one
input layer, two fully connected (or Dense) hidden layers, and one output layer.
The hidden layers in the bit-model contain 8 and 4 neurons, whereas the hidden
layers in the byte-model contain 32 and 16 layers, respectively. In both the
models, the output layer contains 2 neurons. The hidden layers in both the
models use Rectified Linear Unit (ReLu) activation function, whereas the output
layers use Softmax activation function. Also, BatchNormalization is applied

14 Authors Suppressed Due to Excessive Length

between the dense layers”. As the loss function, we use categorical cross-entropy.
The Adam optimizer is chosen for the learning process (mostly with default
parameter settings, as per Keras).

Listing 1.1: Bit-Model Listing 1.2: Byte-Model

model = Sequential ([model = Sequential ([
Dense (8, input_dim=128, Dense (32, input_dim=16,

activation=) activation=)
BatchNormalization () BatchNormalization ()
Dense (4, activation=) Dense (16, activations=)
BatchNormalization () BatchNormalization ()
Dense (2, Dense (2,

activation= Y1) activation=)ED)

2.4 Leakage Interpretation Techniques

There exist multiple approaches in the literature to interpret the decisions made
by a DL model, and they have also been used previously in the context of SCA
security [28,31]. However, there still exists important issues that were not clearly
addressed. Firstly, for certain implementations, it may happen that the model
only takes certain leaky features (i.e. ciphertext bits/bytes) into consideration
while ignoring others. This is perfectly natural as the desired classification may
be easily achieved by considering those features only. Exposing all leakage points
thus becomes an important issue®. Secondly, in the DL-based method, it is dif-
ficult to understand whether the leakage is univariate or multivariate, especially
when both kinds of leakage points are present in one trace (this is the case in
some of our examples). Note that ¢-test based method answers this question in
a reliable manner by gradually increasing the analysis order d. The motivation
behind leakage interpretation is to extract such information from a DL model.
We begin with the trained network model M during the leakage interpreta-
tion. Once again, we adopt an iterative approach. The very first step we perform
is a Sensitivity Analysis (SA) [31], which returns the contribution of each feature
in learning the leakage. Mathematically, the Sensitivity (Im;) for each feature

is computed as I'm; = ‘Z o Xf . Here x; denote the i-th input of the model

J Oz,
M, yo is the first output of M, and Xij is the value of the i-th input in the
j-th ciphertext from the validation set. The partial derivative here computes
how much the output gy changes with respect to an input x;. The sensitivity is
an aggregate of the changes over the entire validation set for each input. One
important distinction with the leakage detection test described in Algorithm 3
is that here we take the trained model and consider a fresh and sufficiently large
validation set while computing the feature importance values. Although the re-
quired number of traces increases in this case, we suggest performing leakage

" BatchNormalization decouples the learning process of the hidden layers from each
other, which is useful to regularize the learning and prevent overfitting to some
extent. It also speeds up the learning process [40].

8 Such analysis can also give valuable information on how to attack.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 15

interpretation only for those fault locations, which show some sign of leakage.
Generating more traces for a few exploitable fault locations seems reasonable.

The SA step assigns real values to individual features using which they can
be ranked according to their contribution to the decision of the DL model. In
our analysis, we first begin with the subset of most important features. The
determination of the most important subset, which we denote as M1, is driven
by a threshold T'hjys;. We found that the average of all I'm;s works well as Th;;.

Once the M T has been determined, the analysis follows two separate paths.
In the first path, we eliminate all the features in M from the actual trace
by assigning them with 0. We repeat the learning once again on the modified
trace and check if the model still learns the leakage. In case the model does not
learn, the dataset size is increased gradually up to some predefined count. This
count is kept larger than the standard leakage detection to gradually expose
even the most difficult-to-detect leakage points. The feature elimination and
training continues iteratively, until either all feature points are exhausted, or
the model fails to learn for maximum dataset size. In the second path of our
analysis, the M1 set obtained in an iteration is tested to check whether the
leakage is univariate or multivariate. We apply the same trick of eliminating
feature points in this case. However, only one point from M is eliminated at
each step, and the training is repeated. In case of a univariate leakage, even
a single point in M1 would be able to classify, whereas in case of multivariate
leakage the classification would surely require multiple points. Note that this
mechanism can only distinguish between univariate and multivariate leakages
and would not necessarily indicate the exact leakage-order. In order to achieve
the exact order, one must perform the analysis for each feasible subset of M.
While this is feasible if M is small, it would be costly to perform for larger M I
sizes. We experimentally illustrate leakage interpretation in Sec. 5.

2.5 Discussion

One obvious question in the context of DL-based leakage detection is that if
the models chosen are good enough for detecting all classes of leakages within
reasonable data complexity. We found the answer to be affirmative in all of our
examples. One reason is that we do not require the best possible learning to
happen. We further explore this matter by considering other relatively complex
models such as Convolutional Neural Nets (CNNs). It was found that the data
complexities for leakage detection in CNNs are very similar to those with our
models. While this indeed depends on the nature of the data, we believe that
simple networks are still a better choice than complex ones, as they are less prone
to overfitting, in general. Another relevant question is whether other statistical-
tests, which are not moment-dependent, work better in this context than our
DL-based method. To evaluate this, we considered the y2-test, which has been
previously used for leakage detection [41]. It was found that in terms of data
complexity, the y2-test performs similarly to the DL-based test in many cases.
However, there are pathological cases where the performance of the y2-test is
inferior to the DL-based test (one typical example is an infective countermeasure
called RIMBEN, for which DL requires 20000 traces and x2-test requires roughly

16 Authors Suppressed Due to Excessive Length

80000.). Most importantly, the order of test has to be specified even for y2-test,
which is not required for the DL-based approach. As already pointed out, this
was a motivation for shifting from the t-test based approach as the leakage
assessment for FA should discover the order itself. Hence, DL-based leakage
detection seems clearly advantageous over other approaches.

3 Proposed Generalizations of Leakage Assessment Tests

So far, we have focused on improving the leakage detection test using DL. In
this section, we propose two generalizations of the leakage assessment experiment
itself. The first one extends the experiments for SIFA faults while the second one
enhances the leakage and observable definitions for “non-cipher” components.

3.1 Handling SIFA Faults

SIFA is a recently proposed fault attack technique which utilizes the fact that
the activation (generation of a faulty value at the injection site) and propaga-
tion (propagation of the fault through the circuit) of a fault depends on secret
intermediate values. As a result, an injected fault may remain “ineffective” for
certain intermediate values, and eventually result in correct ciphertexts. As a
simple example of how ineffective faults happen, consider that an attacker in-
jects a stuck-at-0 fault to some intermediate bit of the cipher. If the actual value
of the bit is 0, no alteration will take place, and a correct ciphertext can be ob-
served. In contrast, if the actual bit value is 1, it will result in a faulty execution.
Typically, SIFA attacks exploit the correct ciphertexts for key recovery instead
of faulted ones, and this feature is crucial for bypassing most of the existing

state-of-the-art FA countermeasures [10,11].
The goal of this section is to tailor the test methodology in a way so that

it can meaningfully capture the SIFA attacks. One straightforward approach
(adopted in [29]) is to declare a countermeasure as secure only if either every
fault propagates to output, or every fault gets corrected (so that ineffectivity
of faults do not depend upon secrets). However, this is conservative and will
lead to false positives in several cases. For example, masking provides protection
against SIFA [17] for certain restricted fault models even if there is a mix of
correct and faulty ciphertexts. To defeat masking with SIFA, one would require
to fault certain specific points inside S-Boxes [11], which may not be feasible
for every implementation. Hence, having a mix of correct and faulty ciphertexts
does not necessarily mean that SIFA would take place.

SIFA Fault Models: Typically, we model the SIFA faults in two different ways.
To realize biased faults, we model them in a way so that the probability of a bit b
remaining unchanged during fault injection (denoted as pro—o if b =0 and pri_
if b =1) is not equal (i.e. pro—o # pri—1). An extreme example of this is the
so-called stuck-at-0 (resp. stuck-at-1) fault where the probability of b remaining
unchanged is 1 for b = 0, and 0 for b = 1. Such faults create correct ciphertexts
dependent on intermediate state bits which is exploited by SIFA [10] . The second
fault model is required for performing SIFA on masked implementations. Here

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 17

we perform bit-flip faults at carefully chosen locations within S-Boxes so that the
correct output becomes dependent on some unmasked intermediate value [11].
Modifications to the Basic Experiment: We now describe the modifica-
tions to the basic leakage assessment experiment. Most of the SIFA fault models
use bit-level faults for which only one possible value of fault exists (i.e. if the
bit is originally 0, the faulty value is 1 and vice versa). Our approach, in this
case, is to vary the key instead of the fault values (that is to use Algorithm 2).
The test happens with a fixed plaintext p and two chosen keys k1 and ko (vef.
Algorithm. 2). Only constraint over k; and ks is that if the encryption of p with
k1 results in bit value 0 (or 1) in the fault injection point, then the encryption
of p with ko must result in bit value 1 (or 0) in the injection point. For masked
implementations, if some shares of an intermediate bit b are targeted with a
fault, it is required that b = 0 (resp. b = 1) for k; and b = 1 (resp. b = 0) ko.
Finally, we apply a simple trick which exposes the bias in fault injection (if any)
at the ciphertext level. For detection countermeasures, the faulted output (which
is usually represented as a fized string) is replaced with random strings of same
length with the correct ciphertext. The reason behind this replacement is to get
rid of the unwanted constant difference between the two ciphertext distributions
to be tested due to fixed strings. No such replacement is required for infection
countermeasures as they already output randomized ciphertexts in case a fault
is detected. The leakage test is performed on the ciphertext differentials.

Why SIFA Leakage is Exposed? It is indeed a tempting question that how
SIFA leakage gets exposed through the aforementioned modifications. Taking
differential makes the correct ciphertexts obtained in the injection campaigns
equal to zero. The differentials corresponding to the faulty ciphertexts are ran-
dom. Each of the datasets corresponding to keys k1 and ko (denoted as T, and
Tk,), thus contains a lot of zero-valued bit/byte strings along with some ran-
dom strings. Let us denote the count of zero-valued strings as C'nty and random

strings as Cnt; in one of the datasets (say in Ty,). The ratio R—g = |C71;t0| roughly
"1

equals to either pro_o or pri_1 depending on the value of the faulted interme-
diate bit b while the plaintext p is encrypted with k1. This is because b remains
unaltered either with probability pro_o or pri_; which eventually results in a
correct ciphertext. Next, let us consider the two datasets Tx, and Tg,. As already
mentioned, b assumes different values for k1 and ks. One may observe that, the
ratios R—qy for these two datasets become different. This is because in one of the
cases (say for k1), R—g equals to pro_,o, while in the other case it equals to pri_,;.
Difference in the ratios establish the fact that the two underlying distributions
in 7y, and T, are also different, which indicates leakage. Similar arguments can
be given for the other fault model for masking implementations.

3.2 Assessing “Non-Cipher” Leakages — Compare-with-Uniform

There might be situations while a fault in some non key-dependent component
may indirectly cause the leakage of the key. One concrete example is a masked im-
plementation. The security of a masked implementation strongly depends upon
the availability of uniformly random bit sequences. Any deviation from uniform

18 Authors Suppressed Due to Excessive Length

randomness may enable an SCA attack. An adversary may de-randomize masks
by means of faults. One concrete example for hardware implementations has been
shown in [42] by corrupting a random number generator (RNG) using Hardware
Trojan Horses (HTH). Corrupting the input delivery logic for key/nonce/mask
can be another potential use case of such a phenomenon. Algorithm. 2 is not
applicable in such contexts as many such cases do not directly associate with key
(such as the mask or nonce). Algorithm. 1 will also not work because leakage
of fault values does not lead to any meaningful information unless faults are
injected inside cipher computation.

Compare-with-Uniform Experiment: In order to generalize the leakage as-
sessment for aforementioned situations, we first extend the notion of the observ-
ables from ciphertexts. An observable O is a set of variables which are either
mput or output to a cryptographic module. Apart from the ciphertexts, exam-
ples of observables include the key, mask and nonce inputs to a crypto-core. The
enhancement to the non-interference test, we are going to propose now, is based
on a simple principle — if the distribution assumed by an observable changes (to
some non-uniform distribution) due to fault injection, then there is a chance that
it may be exploitable. In order to test this, we compare any observable distribu-
tion resulting from a fault injection with a uniformly random distribution using
TEST(). The fault here is simulated several times for a single fault value. We
call this as a compare-with-uniform experiment. The intuition behind this test
is that if the fault event results in randomizing the outcome of the target observ-
able O, then no information can be extracted from it even by the attacker. In
contrary, deviation from randomness may directly indicate chances of potential
attacks caused due to randomness loss (e.g. nonce repetition, or a non-uniform
mask for SCA resistance.).

An integrated test flow considering all observable definitions is presented in
Algorithm. 4. For every fault injection point, it is first checked if the fault influ-
ences the observable or not (line. 6) by changing its value. Next, fault simulation
is performed for a single effective fault value, and the simulation data is subject
to the compare-with-uniform test. In case the test indicates no distinction from
uniform random, we may safely terminate the experiment for the fault location
indicating no leakage. In the other case, it suspects leakage. Further, if the ob-
servable is found key-dependent, we run one of Algorithm 1 or 2 (whichever
suitable) and establish the existence of key-dependent leakage.

4 Handling the Fault Space

Leakage due to fault injection strongly depends upon the location of the fault
as well as the fault model. In the proposed testing flow, we suggest faults to be
simulated for enabling exploration of different fault models without depending on
the injection mechanism. Ideally, the fault simulation and the leakage detection
test should be performed for each fault location and fault model. However, there
are ways to restrict the test only for a subset of fault locations, yet obtaining
strong confidence regarding the security of the scheme. In this section, we outline
methodologies for fault space exploration in typical block ciphers. More precisely,

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 19

Algorithm 4 TEST-INTERF-GENERALIZED

Input: Protected Cipher C, Fault value fq, fo Target Observable O, Simulation counter S
Output: Yes/No

Lo =95

2: pi= GENPT()

3: k= GENKEy()

4: O° := Simulate(C, p, k, NULL)

5. Ofm .= Simulate(C,p, k, fm) for m € {1,2}

6: if (0O°! = ©fm) then

7 for i < S do

8: Ttm = T, U Simulate(C, p, k, fm)

9: end for

10: for i < S do

11: Z/{::MUGENUNIF()RJ\/[()

12: end for

13: if (TEST(T%,,,U)) then > TEST is performed with the DL-based approach.
14: if (O =g(K)) then > If O is a function (g) of key.
15: if (fl' = fg) then

16: Return DL-TEST-INTERF-FAULT(C, p, f1, fa, S)

17: else

18: k)l = GENKEy()

19: }CQ = GENKEy()

20: Return DL-TEST-INTERF-KEY(C, p, f, k1, k2, S) bfi=fo=Ff
21: end if

22: else

23: Return Yes

24: end if
25: else

26: Return No

27: end if

28: else

29: Return No
30: end if

we exploit certain equivalence relations (stemming both from the structures of
digital circuits, as well as from the structure of block ciphers) to partition the
fault space into equivalence classes. Testing for one fault from each equivalence
class is sufficient to decide about the other members of the class.

4.1 Fault-Equivalence at Gate-Level

Testing for stuck-at faults (bit-level) is well-studied in the domain of digital
testing. Generating test vectors for a given combinational circuit with W number
of nets/wires (input, internal or output) requires to consider total 2 x W faults
(both stuck-at-0 and stuck-at-1 fault for each wire). Test generation for each of
these faults needs solving an NP-Complete problem. While it seems challenging
for large scale circuits with millions of gates, it is practical and implemented
in several commercial tools. One way of handling such a huge fault space is to
reduce/ collapse the total fault set using equivalence relations among the faults.
Tests generated over this reduced fault set with a good fault coverage guarantee
similar fault coverage over the entire circuit. This is referred to as fault-collapsing.

Fault collapsing utilizes two fundamental properties called fault-equivalence
and fault-dominance of digital circuits to result in a reduced fault set which
covers all possible single stuck-at fault scenarios.

Definition 1 (Fault Equivalence). Let Z; denotes the input-output mapping
realized by a circuit Z with a fault f induced in it (at some specific net). Two

20 Authors Suppressed Due to Excessive Length

faults f1 and fo are considered equivalent if Zy (x) = Zy,(x), forx € I (I is
the set of all possible inputs to the circuit).

Fault equivalence can be tracked structurally from the circuit netlist. As an
example we refer to the AND gate shown in Fig. 1(a). The stuck-at-0 faults at
the inputs and the output are equivalent in this case. It can be observed that
the test pattern a = 1;b = 1 detects the stuck-at-0 faults at a or b. The same
pattern detects the stuck-at-0 fault at the output y. Hence, stuck-at-0 faults at
a, b and y are equivalent. From another viewpoint, a stuck-at-0 fault at any of
a, b or y sets the output value y to 0. Hence, the corresponding mappings Z, sio
Zy,sto and Zy, q0 are equivalent. Simulating any one of these three faults will
have the same impact on the output.

’j’

O |+

T, Q0
o
?| *
M
(o
° °
u
QO
elo
ole
<

o
s
C

® Stuck-at-1
o Stuck-at-0

Fig. 1: Fault collapsing for AND: (a) Equivalent stuck-at-0 faults; (b) stuck-at-1
fault at y dominates the stuck-at-1 faults at the input nets ; (c¢) Collapsed fault
set; (d) Fault equivalence for NOT gate.

Fault dominance is another fault relation which is used for collapsing the set
of faults to be tested.

Definition 2 (Fault Dominance). Let Ty, be the set of all tests that detect a
fault fi1. A fault fo dominates f1 if and only if fi and fo are equivalent under
Ty, .

The idea of fault dominance is illustrated in Fig. 1(b) where the stuck-at-1
fault at y dominates the stuck-at-faults at a and b. The test vectors a = 0,b =1
and a = 1,b = 0 detects the stuck-at-1 faults at a and b, respectively. The
same test vectors can also detect stuck-at-1 fault at y. The reduced fault set
after collapsing is shown in Fig. 1(c). One may observe that instead of total 6
faults, one need to test only 3 faults. A similar example of collapsing based on
equivalence is shown in Fig. 1(d) for a NOT gate.

Fault Dominance and Biased Faults: One may note that dominance prop-
erty only claims equivalence on a set of test vectors 1%, . In practice, there can
be test vectors outside T’,, which detects the fault f>. Referring to the AND
gate example in Fig. 1(b), the stuck-at-1 fault at y gets detected even with
a = 0,b = 0, whereas none of the stuck-at-1 faults at a and b gets detected with
this input. While this is not an issue for conventional ATPG, it is important to
analyze if such collapsing is also appropriate in a fault attack context or not.
More precisely, we want to evaluate that if no fault simulation is performed at the

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 21

fault location y (and decision regarding its exploitability is made based on fault
simulations at a or b), would it result in a fault negative? As it turns out, for at-
tacks based on random fault models (e.g. DFA), this is not an issue because such
attacks require at most one input for a given fault location which can activate or
propagate the fault. This is guaranteed by the definition of fault dominance. For
attacks considering biased and ineffective faults, however, such dominance-based
collapsing may result in slight variation in the bias. For example, the stuck-at-1
fault at the output y of the AND gate will result in correct computation for input
value (a = 1,b = 1), and faulty computation for (¢ = 0,b = 0), (a = 0,b = 1)
and (a = 1,b = 0). On the other hand, if decision regarding this fault location
is made based on the stuck-at-1 fault at a, there will be faulty computation
for (a = 0,b = 1) and correct computation for (¢ = 0,b = 0), (a = 1,0 = 1)
and (a = 1,b = 0). Similar observations can be made for fault simulation at b.
Although this will indeed be an approximation to use the fault simulations of a
or b to decide about leakage at y, one may observe that the value dependency
of the fault persists. In other words, deciding about leakage due to location y
based on a or b preserves the exploitability of the fault at y (if any), because
the value-dependent statistical bias still exists (albeit being slightly changed).
However, any value-dependent bias in fault is sufficient for attack and hence the
collapsing remains sound even for FA context.

® Stuck-at-1
o Stuck-at-0

Fig. 2: Fault collapsing for a combinational circuit: (a) Uncollapsed faults (total
32); (b) Collapsed faults (total 15)

Fault collapsing at gate level provides a certain amount of reduction in the
size of the fault space for single stuck-at faults. Fig. 2 shows a simple illus-
tration of this claim. Further, Table. 3 provides the counts for the collapsed
and uncollapsed fault lists for an unprotected AES implementation, as well as
a TI implementation of PRESENT, and a SIFA-protected implementation of
PRESENT (ref. column 2-3). The fault lists are obtained by running a complete
ATPG in full-scan mode over the circuits using Synopsys TetraMAX. We have
also provided the fault coverage statistics over the circuits?. The advantage of
running a complete ATPG is that it rules out some of the faults which never

9 Fault coverage is the ratio of detected fault count and total (collapsed) fault count.
Although, in these cases, the fault coverage is 100%, in certain situations fault cov-
erage may go below 100% as some fault may remain undetectable even after an

22

Table 3: Fault Collapsing with Gate-Level and Algorithm Level Equivalence

Authors Suppressed Due to Excessive Length

#Collapsed
#Uncollapsed |#Collapsed fault-list after
Hardware fault-list fault-list %Fault-coverage algorithm-level
equivalence
nprotected 96358 23560 100% 660
TI-PRESENT 22049 17918 100% 1051
ANTISIFA 66489 54147 100% 3182

corrupts the output, hence further reducing the fault space. A fault which never
corrupts the ciphertext cannot be utilized for fault attack. A full-scan ATPG
converts the sequential circuit to a combinational one and labels those faults
as detectable which actually reaches some register of the circuit. In a typical
block cipher datapath, if a fault reaches a state register, then it also reaches the
ciphertext output with high probability. Hence enlisting detectable faults based
on the full-scan circuit is sound.

Handling Bit-flip Faults: So far, we have discussed bit stuck-at faults on
the nets of a circuit. It is also common to consider single bit-flip faults in fault
attacks. The list of bit-flip faults is decided based on the list of stuck-at faults, as
the fault-list contains every feasible single-bit fault locations. This is logical, as
a bit-flip fault can be expressed as the conjunction of stuck-at-0 and stuck-at-1
fault at a given net.

Handling Multi-bit Faults: Gate-level fault collapsing indeed reduces the
set of single-bit faults. However, fault attacks also exploit certain multiple-bit
fault models such as byte/nibble faults. Considering every possible multiple-bit
fault would result in a fault space which is exponential over the single-bit fault
space. Instead, we utilize certain features of the practical faults happening in
devices to restrict this fault space. Most of the practical faults only corrupt cer-
tain consecutive bits in a register. Hence, we only consider faults within a byte
or a nibble or (in rare cases) within multiple consecutive bytes. Further, multi-
bit faults are captured only at the register boundaries. This is also derived from
practical observations. Even certain single bit faults may fan-out to multiple bits
at a register (which is the often case for glitch based fault injections). In case,
there is a multiple-bit fault inside the combinational path it would eventually
result in a single/multiple-bit fault at some register boundary. Overall, consider-
ing all single-bit faults in the combinational path, as well as multiple-bit faults
at register boundaries, should holistically cover most of the feasible fault cases
in a target implementation.

A straightforward approach for cipher evaluation would be to start with the
collapsed fault list and evaluate each fault with the proposed test. Eventually,
one can also test the multiple-bit faults at the register boundaries of each round.
However, as we shall show in the next subsection, the fault space can further be

ATPG run. Such undetectable faults, however, do not influence the FA testing as
undetectable faults can never corrupt the ciphertexts.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 23

reduced for block cipher designs, taking advantage of their high-level structural
equivalence in such ciphers.

4.2 Fault Equivalence in Block Ciphers

While gate-level fault collapsing provides some reduction in the space of single-
bit faults it is blind to the high-level structural features of the cipher under
evaluation. Block ciphers are constructed by repeating some basic sub-blocks
(such as S-Boxes and diffusion layers) several times. Such sub-blocks are found
to be equivalent in terms of fault attacks with respect to the attack complexity.
Such equivalence can be exploited to reduce the fault space drastically. The idea
is to deduce such equivalence from an unprotected version of the cipher under
test (preferably a high-level algorithmic representation as used in automated

fault attack tools such as ExpFault [43]).
Unlike the previous subsection, where the equivalence of faults was defined in

terms of input-output mappings of faulty functions, here we define equivalence
in terms of fault attack complexity.

Definition 3 (Fault Equivalence in Block Ciphers). Two fault locations
f1 and fo according to a specific fault model are considered equivalent if they
result in attacks with the same complexity. The attack complexity is defined as
a tuple (Rm, Eval) where Rm denote the ezhaustive key search complexity after
the attack and Eval denote the complexity of associated key guessing operation.

The definition of fault attack complexity above closely follows the one defined
in ExpFault. One should note that this definition mentions the fault locations
and does not comment about fault values. The value part of a fault (byte/nibble
faults are usually multi-valued) is taken care off by the fault model specification.
For example, in a random byte fault model, every fault value at a specific location
is considered to be equivalent and showing exploitability for one fault value pair
is sufficient. Even for biased faults, every statistical bias in the fault distribution
at a fault location is considered equivalent.

As an example of how to exploit such equivalence, we consider the AES block
cipher. If a random byte fault is injected at the input of a 9th round S-Box, it
results in an attack recovering 32 key bits. We used the automated fault analysis
tool ExpFault [43] for exploring all byte fault locations at the input of the 9th
round S-Box operation'?. Every byte location is found to result in an attack that
requires an exhaustive search of 28 (i.e., Rm = 28). For the evaluation of the
keys, at most, 32 key-bits have to be guessed simultaneously, making the key
guessing complexity Fval = 232. Hence, all 16 byte locations (i.e., S-Box) inputs
were considered as equivalent, and testing one of them should suffice. Similarly,
any byte fault between the 8th and 9th round MixColumns is also equivalent
to each other. We also note that FA countermeasures usually do not destroy
the structural similarities within the original cipher structures. Hence, deciding
the equivalence over an unprotected implementation and using those exploitable
locations for testing the protected implementations works fine.

10 There are total 16 such locations

24 Authors Suppressed Due to Excessive Length

To further illustrate the concept of cipher-level fault equivalence, we now
use graphical representations of partial ciphers generated from the ExpFault
tool (called Cipher Dependency Graph or CDG in ExpFault’s terminology). Al-
though such graphs are not among the normal outputs of ExpFault, they can be
generated for debugging purposes from the version of the tool we used. Fig. 3 dis-
plays one such graphical representation of the last two rounds of AES. Each node
here corresponds to a bit of the state. Each topological layer in the graph repre-
sents the input of a sub-operation (i.e. SubBytes, ShiftRows, MixColumns, and
AddRoundKey). The S-Box and MixColumns layers are represented as complete
subgraphs, and red nodes represent the key bits. The direction of the arrows is
towards the ciphertext, and the last topological level represents the ciphertext.

Each topological layer (except those involving key addition) of the AES CDG
contains 128 nodes. Starting from the 9th round input (as we consider the fault
injection at the 9th round), the entire CDG contains four subgraphs, discon-
nected from each other. For the sake of representation, we place these four sub-
graphs, as Fig. 3(a)—(d). Without loss of generality, we consider two independent
fault injection scenarios at two different byte locations in subgraph Fig. 3(b) and
Fig. 3(c). The fault propagation path for Fig. 3(b) is colored blue, and the other
one is colored green. The first observation here is that both the “blue” and
the “green” subgraph involve the same number of key-bits from the last round,
which gets extracted by this attack. Moreover, both the graphs are isomorphic
to each other if we ignore few nodes from the first topological layer. It is quite
evident that the complexity components Rm and Fwal are the same for these
two fault injections due to the isomorphic graph structures. Hence these two
fault injections can be considered equivalent and analyzing one would be suf-
ficient. The CDG structure confirms that all 16 S-Box inputs (input nodes to
the 8 x 8 complete subgraphs in the first two layers) are equivalent in terms of
attack complexity.

4.3 Putting it All Together

Last two subsections described two independent techniques for handling the
fault space in block ciphers. While the fault equivalence in block ciphers is
generic and can be applied for both software and hardware implementations,
the gate-level fault-collapsing is specific to hardware circuits. In case of software
implementations, the faults are generated at instruction-level at specific points
(such as S-Box input, output, and intermediate instructions) found by exploiting
algorithm-level fault equivalence. Overall, we go by the following steps:

— Perform the cipher-level fault collapsing using ExpFault tool. Get the list of
equivalent fault locations and select only a single location from the list. Such
locations are described as the inputs to some sub-operation (e.g. SubBytes,
ShiftRows, MixColumns) by the ExpFault tool [43].

— Select the module which implements the sub-operation specified at the pre-
vious step. For hardware implementation, perform gate-level fault collapsing
for this module only, and populate the fault list. Simulate each fault from this
fault list by stitching extra gates at the fault locations. For example, a bit-flip

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 25

Fig. 3: Hlustration: Cipher-level fault equivalence.

fault can be generated by stitching a 2-input XOR gate at the fault location.
One input of the XOR gate is attached with the fault location, whereas the
other input is set to 1 to flip the value at the fault location. This strategy is
also used for generating stuck-at and other fault models, simply by changing
the gate types. For software implementations, target every instruction within
this module using the GDB-based methodology described in Appendix C.

— Acquire simulation data from target fault locations and apply the DL-based
leakage detection test to decide their exploitability.

Column 4 in Table 3 illustrates the outcome of such testing in terms of fault-
locations tested (for hardware implementations). One may note that testing
one S-Box per round for AES and PRESENT is sufficient, and the size of the
corresponding fault set is significantly small with respect to the entire fault space
of the circuits.

5 Case Studies

In this section, we outline the case studies used to evaluate the techniques pre-
sented in the last few sections. We only provide the summary of different test
cases here, and the detailed evaluation results are given in Appendix. B. Our
evaluation set contains representatives from each of the countermeasure classes
described in Table. 1. Moreover, to establish the usefulness of the compare-with-
uniform extension in Sec. 3.2, we present a scenario of mask-derandomization
and evaluation of the firmware of an HSM called SHE [49]. It is worth men-
tioning that all the redundancy, infective, and instruction countermeasure were
implemented in software. The combined SCA-FA and SIFA countermeasures

26 Authors Suppressed Due to Excessive Length

Table 4: Summary of Results

Skip SIFA :‘;ﬁﬁs
i i g Fault
1-byte Single |Multi based auts (Unbiased
Countermeasures Inst. Inst. (Biased |)
Fault Ski Ski Control Bit-Fli Bit-Flip
p p Fault Dlat Gate
Faults)
Input)
Simple time/space
T Secure | Secure | Secure | Secure |Insecure| Insecure
redundancy
Time/Space/|1-bit parity [13]
Information |(information Insecure|Insecure| Insecure | Secure |Insecure| Insecure
Redundancy; |redundancy)
Infective Infective [12]
. R Insecure|Insecure| Insecure - Insecure | Insecure
(without noise)
Infective [12]
. . Insecure|Insecure| Insecure - Insecure | Insecure
(with noise)
Infective [44] I I I I I
(RIMBEN) nsecure | Insecure| Insecure - nsecure | Insecure
Infective [22] Secure | Secure | Secure |Insecure|Insecure| Insecure
Infective [45] Insecure|Insecure| Insecure _ Insecure | Insecure
Inst. Idempotent Sec Sec Ins Insec Insec
Level Inst. [14] ecure ecure | Insecure - nsecure | Insecure
Masking [46]+
SCA-LFA glasswal FA Secure | Secure | Secure - Secure Insecure
Combined ountermeasure
CAPA [19] Secure [Secure [Secure | Secure [Secure
M&M [20] Secure |[Secure [Secure |_ Secure |Insecure
SIFA AntiSIFA [47] Secure | Secure | Secure _ Secure Secure
Counter- Impeccable g q g q q
measure Circuits T [16]** ecure ecure ecure - ecure ecure
Insecure
Security . for faults
Module SHE Firmware [48] - - in data - - -
transfer

¥
Bit-stuck-at faults are special cases of biased bit-flip faults.
Insecure against paired faults at the comparison and combined FA-SCA attack
** Secure up to a predefined security order

were implemented in hardware, with an exception for CAPA [19] and M&M [20],
which were simulated in Python. We implemented these two countermeasures for
KATAN-32 [50] block cipher and tested representative fault locations at differ-
ent building blocks to only verify the security claims from the papers. The SHE
design is a hardware/software co-design where the crypto-core is in hardware,
and the rest of the computation is running as firmware in a soft-core processor
(for simplicity, we checked some parts of the firmware). Table 4 summarizes the
outcomes of leakage assessment over the testbench for different fault models.
In order to reach a meaningful and practical coverage over the fault space
of a block cipher, we exploit the equivalences present in the fault spaces as
described in Sec. 4. Due to the presence of algorithm and cipher-level fault
equivalences, we only need to simulate faults for one S-Box per round at its
inputs, outputs, or intermediates points for most of our test cases involving
AES and PRESENT. Gate-level fault equivalences further reduce the count of
fault locations. The gate-level fault equivalence was estimated using the Synop-
sys TetraMAX!! whereas the algorithm-level equivalence was decided using the

11 The syntheses were performed using Synopsys Design Compiler and DFT compiler
(with STMicroelectronics CMOS65 — a 65nm technology library due to STMicroelec-

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 27

Table 5: Leakage Detection Time of the Examples Tested

Avg. Leakage Total Fault |#Location| Avg Leakage
Software Code Size|#Checked|Detection Time /|| Hardware Count Checked |Detection Time /
Examples (# inst.) | Insts. fault location Examples |(in full-scan) X fault location
(in seconds) (Collapsed) | #rounds (in seconds)
Re dﬁ:g:ncy 83270 532 564.8 gc‘)fi“;i 17918 1051 x 3 304.45
Parity [13] 50544 597 425.94 AntiSIFA [17] 54147 3182 x 3 302.63
Impeccable
Infective [12] 208380 1170 620.41 Circuits II [16] 17731 3744 x 1 300.38
(3-way red)
Impeccable
Infective [44] 97519 532 682.65 Circuits II [16] 88721 13895 x 1 301.76
(7-way red)
Infective [22] 166520 1052 868.82
Infective [45] 90491 532 573.26
I‘iz‘::p‘[’{i?t 96593 1127 426.38
SHE Firmware [49] 205 205 436.16

ExpFault tool [43]. To further (reasonably) reduce the number of locations to
be tested, we target only the last three rounds (six rounds for infective counter-
measures [12] and [22] as dummy rounds were present) of the ciphers in most of
our test cases, due to the fact that most of the fault attacks target only last few
rounds of block ciphers. Although there exist attacks such as Fault Template
Attacks (FTA) [51], which are also applicable for middle rounds, their working
principle is the same in every round and, thus, checking the last few rounds
suffice. 2 Our testbench consists of both software and hardware implementa-
tions. We simulated bit/byte-fault, instruction-skip, and control faults on an
instruction-level abstraction of the software codes with a GDB-based fault sim-
ulator (detailed in Appendix C). We used state-of-the-art simulation tools (such
as Synopsys VCS) and a simple strategy of automatically stitching Hardware
Trojan Horses at desired fault locations for simulating hardware faults. A sum-
mary of implementations tested, along with timing results, is given in Table. 5.
The experiments were performed on three systems with Intel Xeon processors,
each having 64 processing elements. The code length here presents the total
number of instructions executed (for X86-64 architecture). For instruction-skip
experiments, we model up to 3 consecutive skips. We present average leakage
detection time (fault simulation + learning) for each fault location for running
Algorithm 3.

6 Conclusion

Security evaluation of an FA-protected implementation is a problem of utmost
practical importance. In this paper, we have proposed a DL-assisted leakage

tronics). No area/timing optimization was imposed during synthesis. All Synopsys
tools utilized in this work are under registered trademarks of Synopsys Inc.

12 Only for the test cases involving Impeccable Circuits-I1T [16], we did not use the
algorithm level equivalence as the current version of ExpFault tool does not support
tweakable block ciphers. In this case, we simulate faults for different constituent
modules (S-Box and MC modules in one of the redundant branches).

28 Authors Suppressed Due to Excessive Length

detection test DL-FALAT, which can validate protected block cipher implemen-
tations as well as leakages in peripheral components of security modules. It
automatically detects the order of leakage, which is not straightforward to de-
tect from the countermeasure structure in FA. The test is not only suitable for
filtering out malformed designs but can also figure out the points of vulnera-
bilities. We have shown how a variant of this test can be utilized to evaluate
against a variety of SIFA faults. Moreover, a comprehensive guideline for evalu-
ating the fault space of a block cipher with the proposed test is also presented,
which utilizes the equivalences present in fault space. Experimental validation
over different countermeasure classes establishes that DL-FALAT is able to rule
out flawed designs quickly. Although, in principle, a t-test based leakage de-
tection test should also detect all the leakages given enough data, DL-FALAT
detects it with significantly lower data complexity than ¢-test in many cases.
Data complexity can be crucial for FA contexts as multiple fault locations are
required to be tested. A potential future direction in this research is to adopt
the test for public-key implementations.

References

1. Saha, S., et. al.: ALAFA: Automatic leakage assessment for fault attack counter-
measures. In: DAC. p. 136. ACM (2019)

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
CRYPTO. pp. 513-525. Springer, Santa Barbara, USA (Aug 1997)

3. Tunstall, M., et. al.: Differential fault analysis of the advanced encryption standard
using a single fault. In: IFIP. pp. 224-233. Springer (2011)

4. Agoyan, M., et. al.. When clocks fail: On critical paths and clock faults. In:
CARDIS. pp. 182-193. Springer (2010)

5. Canivet, G., et. al.: Glitch and laser fault attacks onto a secure aes implementation
on a sram-based fpga. JoC 24(2), 247-268 (2011)

6. Dehbaoui, A., et. al.: Electromagnetic transient faults injection on a hardware and
a software implementations of aes. In: FDTC. pp. 7-15. IEEE (2012)

7. Agoyan, M., et. al.: How to flip a bit? In: IEEE IOLTS. pp. 235-239. IEEE (2010)

8. Bhattacharya, S., Mukhopadhyay, D.: Curious case of rowhammer: flipping secret
exponent bits using timing analysis. In: CHES. pp. 602-624. Springer (2016)

9. Zhang, F., et. al.: Persistent fault analysis on block ciphers. TCHES pp. 150-172
(2018)

10. Dobraunig, C., et. al.: Sifa: exploiting ineffective fault inductions on symmetric
cryptography. TCHES pp. 547-572 (2018)

11. Dobraunig, C., et. al.: Statistical ineffective fault attacks on masked aes with fault
countermeasures. In: ASTACRYPT. pp. 315-342. Springer (2018)

12. Gierlichs, B., et. al.: Infective computation and dummy rounds: fault protection for
block ciphers without check-before-output. In: LatinCrypt. pp. 305-321. Springer
(2012)

13. Guo, X., et. al.: Security analysis of concurrent error detection against differential
fault analysis. JCEN 5(3), 153-169 (Sep 2015)

14. Moro, N., et. al.: Formal verification of a software countermeasure against instruc-
tion skip attacks. JCEN 4(3), 145-156 (2014)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 29

Patranabis, S., et. al.: Fault tolerant infective countermeasure for aes. HASS 1(1),
3-17 (2017)

Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable circuits II. IACR
Cryptology ePrint Archive 2019, 1369 (2019)

Saha, S., et. al.: A framework to counter statistical ineffective fault analysis of block
ciphers using domain transformation and error correction. IEEE TIFS (2019)
Breier, J., et. al.. A countermeasure against statistical ineffective
fault analysis. IACR Cryptology ePrint Archive 2019, 515 (2019),
https://eprint.iacr.org/2019/515

Reparaz, O., et. al.: Capa: the spirit of beaver against physical attacks. In:
CRYPTO. pp. 121-151. Springer (2018)

De Meyer, L., et. al.: M&m: Masks and macs against physical attacks. TCHES
2019(1), 25-50 (2018)

Daemen, J., et. al.: Protecting against statistical ineffective fault attacks. Tech.
rep., IACR Cryptology ePrint Archive (2019)

Tupsamudre, H., et. al.: Destroying fault invariant with randomization. In: CHES.
pp. 93-111. Springer (2014)

Yuce, B., et. al.: Software fault resistance is futile: Effective single-glitch attacks.
In: FDTC. pp. 47-58. IEEE (2016)

Clark, D., et. al.: Quantified interference: Information theory and information flow.
In: WITS’04 (2004)

Saha, S., et. al.: ExpFault: an automated framework for exploitable fault charac-
terization in block ciphers. TCHES pp. 242-276 (2018)

Standaert, F.X.: How (not) to use welch’s t-test in side-channel security evalua-
tions. In: CARDIS. pp. 65-79. Springer (2018)

Moradi, A., et. al.: Leakage detection with the x2-test. TCHES pp. 209-237 (2018)
Wegener, F., Moos, T., Moradi, A.: DL-LA: deep learning leakage assessment: A
modern roadmap for SCA evaluations. JACR Cryptology ePrint Archive 2019,
505 (2019)

Arribas, V., et. al.: Cryptographic fault diagnosis using verfi (2020)

Yang, G., Li, H., Ming, J., Zhou, Y.: Convolutional neural network based side-
channel attacks in time-frequency representations. In: CARDIS. pp. 1-17. Springer
(2018)

Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. TCHES pp. 107-131 (2019)

Kim, J., et. al.: Make some noise. unleashing the power of convolutional neural
networks for profiled side-channel analysis. TCHES pp. 148-179 (2019)

Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for
side-channel analysis. TCHES pp. 348-375 (2020)

Cooper, J., et. al.: Test vector leakage assessment (tvla) methodology in practice.
international cryptographic module conference, 2013

Sakiyama, K., et. al.: Information-theoretic approach to optimal differential fault
analysis. IEEE TIFS 7(1), 109-120 (2011)

Schneider, T., Moradi, A.: Leakage assessment methodology. In: CHES. pp. 495—
513. Springer (2015)

Zeng, X., Martinez, T.R.: Distribution-balanced stratified cross-validation for ac-
curacy estimation. Journal of Experimental & Theoretical Artificial Intelligence
12(1), 1-12 (2000)

Chollet, F., et al.: Keras documentation. keras. io (2015)

30 Authors Suppressed Due to Excessive Length

39. Abadi, M., et. al.: Tensorflow: A system for large-scale machine learning. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). pp. 265—283 (2016)

40. Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

41. Moradi, A., et. al.: Leakage detection with the x2-test. TCHES pp. 209-237 (2018)

42. Johnson, A.P., et. al.: Remote dynamic partial reconfiguration: A threat to
internet-of-things and embedded security applications. Microprocessors and Mi-
crosystems 52, 131-144 (2017)

43. Saha, S., et. al.: ExpFault (2018), https://cadforassurance.org/tools/sca/exp-fault/

44. Wang, B., et. al.: Exploration of benes network in cryptographic processors: A
random infection countermeasure for block ciphers against fault attacks. IEEE
TIFS 12(2), 309-322 (2016)

45. Ghosh, S., et. al.: Preventing fault attacks using fault randomization with a case
study on aes. In: ACISP. pp. 343-355. Springer (2015)

46. Poschmann, A., et. al.: Side-channel resistant crypto for less than 2,300 ge. JoC
24(2), 322-345 (2011)

47. Saha, S., et. al.: Transform-and-Encode: A countermeasure framework for statis-
tical ineffective fault attacks on block ciphers. IACR Cryptology ePrint Archive
2019, 545 (2019), https://eprint.iacr.org/2019/545

48. Using the cryptographic service engine (cse): An introduction to the cse module
(2011), http://cache.freescale.com/files/32bit/doc/app note/AN4234.pdf

49. memebers, H.: SHE - secure hardware extension functional specification versionl.1
(rev 439) (2011), www.automotive-his.de

50. De Canniere, C., Dunkelman, O., Knezevi¢, M.: Katan and ktantan — a family of
small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
CHES. pp. 272-288. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

51. Saha, S., et. al.: Fault template attacks on block ciphers exploiting fault propaga-
tion. In: EUROCRYPT. pp. 612-643. Springer (2020)

52. Lomne, V., et. al.: On the need of randomness in fault attack countermeasures-
application to aes. In: FDTC. pp. 85-94. IEEE (2012)

53. Bogdanov, A., et. al.: Present: An ultra-lightweight block cipher. In: CHES. pp.
450-466. Springer (2007)

54. Beierle, C., et. al.: Craft: Lightweight tweakable block cipher with efficient protec-
tion against dfa attacks. JACR Transactions on Symmetric Cryptology 2019(1),
5-45 (2019)

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 31

Supplementary Material

32 Authors Suppressed Due to Excessive Length

A Background on Deep Learning

Deep Learning (DL) algorithms deal with extracting meaningful information
from data by fitting mathematical models to it. The advantage of DL over tra-
ditional Machine Learning (ML) algorithms is that it does not require manual
feature engineering techniques, which is a pre-requisite step in almost every ML
algorithms to achieve reasonable accuracy. As a result, DL algorithms have been
successfully applied in a variety of fields for efficient pattern recognition like
image recognition, natural language processing, speech recognition, autonomous
driving, etc. One of the most used applications of DL is in the field of data clas-
sification, where the problem is to identify the category of a new observation
based on a training dataset containing observation whose category memberships
are known. In this section, we first provide an outline of data classification using
DL algorithms and then provide a brief introduction to Multi-Layer Perceptron
(MLP) networks, which is the core of all DL algorithms.

DL-based Data Classification: The objective of data classification is to clas-
sify some data = € R? based on their labels Lb(z) € Z, where d is the dimension
ofx and Z ={0,1,---,L — 1} is a set with L number of classification labels. In
most of the DL-based classification problem, the one-hot encoding of the labels
are used, which is defined as:

Bla)l] = {1 if i = Lb(z)

0 otherwise

i.e., B can be seen as a vector representation of the label Lb(z). A classification
algorithm can be viewed as a mapping N : R — RIZ|, which takes € R? as
input to classify and produces an output vector y = N (z) € RIZl. In order to
quantify the efficiency of the mapping A for a given input x we define an error
function &€ : RIZl — R. Categorical-cross-entropy (CE) error function is mostly
used for one-hot encoded dataset, which quantifies how far the output of N is
from the expected output of the label. CE is defined as:

|Z]

CF = = 3 (B(x) i) log(W (2)]i)

%

In order to quantify the error of A/ over a whole set of data, we define a loss
function, which is the average over all the errors calculated using £. An MLP
consists of a set of trainable parameters. A detailed discussion of these trainable
parameters is provided later. The loss function depends on these trainable pa-
rameters, which are tuned during a training process to improve the efficiency
of the network. The training starts with initializing small random values (in a
given interval) to the trainable parameters. The training process is a classic nu-
merical optimization problem, where the goal is to find the optimal parameters
minimizing the loss function. A preferred approach to train an MLP is to use the
Stochastic Gradient Descent (SGD) technique to optimize the loss function. The

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 33

basic operation of SGD contains two steps. First, it calculates gradients of the
loss function with respect to each parameter in the MLP. Then, it backpropagates
the gradients to adjust all the parameters proportionally to the gradients. SGD
maintains a single learning rate (the constant term in the proportionality) for all
parameter updates, and the learning rate does not change during training. Adam
optimizer is a more advanced version of SGD where a learning rate is maintained
for each network parameters separately, which are adapted as the learning un-
folds. The process of updating all the parameters based on the training data in
a single iteration is known as an epoch. The training process is defined as the
repetition of epochs for a predetermined number of times in order to minimize
the loss function. The training process also depends on several hyper-parameters,
such as network architecture, loss function, optimization strategy, etc., which a
designer needs to select before starting the training process. Once the MLP pa-
rameters are optimized after the training, the network N can be used to classify
a data x whose corresponding label is unknown as:

I = argmax NV (z)[]
jeZ

One point to be noted in this case is that there is a tendency in each DL al-
gorithms to memorize information in the training dataset instead of learning
generalizable features of the entire data during the training process. The phe-
nomenon is known as overfitting of the network, which is a big challenge for
every DL designer. In order to monitor whether the network is being overfitted
or not, one widely used practice is to divide the complete dataset into three parts
— training, validation, and testing. The network is trained with the training data,
and after each epoch, it is tested with validation data to monitor both training
accuracy and validation accuracy. Overfitting is manifested by a continuous rise
of the training accuracy over the number of epochs while the validation accuracy
begins to fall. In that case, we adjust the training hyper-parameters to get rid of
such overfitting. Finally, we determine the effectiveness of the learned mapping
by calculating test accuracy using the testing data.

Multi-Layer Perceptron: Multiple Layer Perceptron (MLP) is one of the
basic types of DL architectures. MLP is a class of feed-forward neural networks
composed of multiple layers, and each layer consists of basic elements, called
perceptrons (Q) (also known as nmeurons). A perceptron, Q : R® — R, takes
as input a vector x € R" and outputs a weighted sum evaluated through an
activation function denoted by A as follows:

Qx) = A(Z w;x; +b)

w;s are called the weights and b the bias of the perceptron unit. Popular activa-
tion functions are, for instance, the Rectified Linear Unit, Hyperbolic Tangent,
Sigmoid, and Softmaz. In an MLP, each perceptron output of one layer is con-
nected to each perceptron of the next layer, which is called a fully connected
network. An MLP consists of three different types of layers:

34 Authors Suppressed Due to Excessive Length

— Input Layer: It is an intermediate between the input data and the rest of
the network. The output of the perceptrons belonging to this layer is sim-
ply the input vector itself. The number of perceptrons in the input layer is
determined by the number of feature points in the input data.

— Hidden Layer: It introduces non-linearity in the network so that the MLP
can fit a non-linear separable dataset. The number of perceptrons on the
hidden layer or even the number of layers depends on the nonlinearity and
complexity of the dataset. It has been demonstrated that the use of a huge
number of perceptrons can lead to overfitting if the dataset is close to a
linearly separable one. On the other hand, the use of too few perceptrons
may lead to an inaccurate solution for a complex dataset.

— Output Layer: It is the last layer of the network that directly maps the
output of the hidden layer to classes that the user intends to predict. Hence,
the number of perceptrons in the output layer is determined by the number
of classes in the input dataset.

The weights and biases of an MLP are the trainable parameters that are updated
during gradient descent optimization, as discussed previously. The number of
hidden layers and the number of neurons in each layer constitute a subset of
hyper-parameters.

B Detailed Case Studies

This section presents detailed case studies on a large set of countermeasures
evaluated in this work. A summary of the results on this test set has already been
presented Table. 4 in Sec. 5. We begin our discussion with infective, detection
and instruction-level countermeasures. Next, we present case studies on SIFA,
and also evaluate SIFA countermeasures and two combined countermeasures
CAPA [19] and M&M [20]. Finally, we describe two instances of so-called “non-
cipher” leakage — for mask de-randomization in masked cipher implementations,
and for a hardware security module called SHE.

B.1 Infective Countermeasures and Detection Countermeasures

Infective Countermeasures: In our experiments, we consider the total four
infective countermeasures. This subsection presents detailed analysis on them
along with parity-based detection countermeasures. To compare with the ¢-test,
in the rest of the paper we refer to the t-test results by ALAFA.

Ezample 1. The first infective countermeasure considered is due to [12], which
tries to randomize the outcome upon the detection of a fault with an infec-
tion function. The protected implementation executes each round of AES two
times — the first one contributes in actual encryption, and the second one is
redundant. Furthermore, there are (optional) random “dummy” rounds (round
computations over a random state changing at each encryption). Dummy round
computations randomly take place between each actual and redundant round to

Leakage Assessment in Fault Attacks A Pee

p Learning Pers}i)ectlve

MI = [4, 12,13, 14, 15]
81— 400
— E:AFFAALAT 1.25 _w __— Threshold

—_ 50 Non-Leakage Zone
v > 100 5300
% 40 = kS
- ; 0.75 5
g * g’ 0.50 g 20
© 20 [T [}
2) ¥ 100
411 ’ 0‘25 "\,4\’_‘_‘_""_1

0 [ammmmmmmm T 0.00 -\/\[L*-/\\,-\ 0

0 15 0 5 10

2000 4000 6000 8000 10000

5

#Ciphertexts Bytes Bytes
(a) (b) (c)
=00,1,2 3] =18, 9,10, 11]
w0 1
4000
> > 09
£'300 £
S S 3000 o
2 b= ©08
@ 200 % 2000 3
(] Q &) 0.7
9 100 91000
\—‘—‘—Q/_Aw‘—‘—‘—d .—o—o—o—o—o—o—/ \—0—0—4 ”
0 0 os
0 5 10 15 10 15 112,13,14,15] [13,14,15] [14,15] 115)
Bytes Bytes Features Used for Training
(d) (e) (f)

Fig.4: Leakage of Infective countermeasure [12] single-byte fault: a) Variation
of absolute t-test scores for DL-FALAT and ALAFA with respect to ciphertext
count; (b) SA results for first iteration; (¢) SA results for second iteration; (d)
SA results for third iteration; (e) SA results for fourth iteration; (f) M analysis
for first iteration.

confuse the attacker regarding the correct fault injection round. The non-zero
XOR differential between actual and redundant computation is used to “infect”,
the state during fault injection, which is further combined with the actual, re-
dundant and dummy round computations, resulting in a randomized ciphertext.
Our first experiment considers the countermeasure without the dummy rounds.
Without loss of generality, we describe fault injections at the 9-th round of AES
state. Leakage is observed in this case. Fig. 4(a) compares the outcome from DL-
FALAT to that of ALAFA [1] in terms of absolute ¢t-values. The byte-wise testing
performs better for both ALAFA and DL-FALAT in this case. The leakage has
been detected roughly with 1400 ciphertexts (when the line crosses the red region

at t = 4.5) for DL-FALAT, while ALAFA requires almost 7000 ciphertexts.
The next step is to figure out the leakage orders for the DL-FALAT, for which

we perform the SA (ref. Sec. 2.4). The first set of leaky points (i.e., the set M1T)
that gets exposed by the SA are the bytes [4,5, 6, 7] from the 16-byte ciphertext
(Fig. 4(b)). M1 sets are constructed using the average sensitivity of all points in
the trace as threshold Thyss (red lines in Fig. 4(b)-(e)), as described is Sec. 2.4.
The number of ciphertexts required to expose this leakage prominently is 1400.
An analysis of the M I set reveals this leakage to be multivariate (Fig. 4(f)) as at
least 3 bytes in M I are required for learning the leakage. To expose all the leakage
points, we iteratively continue by entirely removing the features in M set and

36 Authors Suppressed Due to Excessive Length

—— DL-FALAT - i’t;’;‘“

8 -== ALAFA 30 Non-Leakage Zone
@ Non-Leakage Zone)
3 \ <
L6 =
° % 20
e 5
> T > 10
4-)2 ~

. e e

20 25 30 35 40 0 5000 10000 15000 20000
#Dummy rounds #Ciphertexts
(a) (b)

Fig.5: Comparative analysis of DL-FALAT with ALAFA: (a) Infective counter-
measure [12] with dummy rounds and a single-byte fault. The absolute values
of t-statistic have been plotted for different count of dummy rounds #dum. The
amount of noise increases with the increase in #dum; (b) Variation of absolute
t-test scores for DL-FALAT and ALAFA in case of RIMBEN countermeasure
with the count of ciphertexts.

increasing the ciphertext count. The second set of leakage points ([12, 13,14, 15])
get exposed without requiring any further increase in the ciphertext count giving
some hint that the leakage order of the first two sets might be equal (Fig. 4(c)).
The next set of leakage points getting exposed are [0, 1,2, 3], for which 40000
ciphertexts are required (ref. Fig. 4(d)). Finally, the third leakage column gets
exposed with ciphertext count of 200000 (ref. Fig. 4(e)). Leakage is multivariate
for all these M I sets. The variation in ciphertext counts for different leakage sets
indicates that the statistical order may not be the same for all of them, which is
supported by the actual attack presented in [22]. Precisely, column [4, 5,6, 7] and
[12,13,14,15] have (bivariate) leakage order 1, column [0,1,2, 3] has an leakage
order 2, and the third column has order 3.

Ezample 2. In this example, the leakage detection is performed on [12] with the
dummy rounds included. Note that dummy rounds induce noise in fault injection
as the attacker cannot determine the exact round of injection. The amount of
noise depends on the dummy round count (#dum). For reasonable dummy round
counts of #dum (i.e. #dum = 20, 25, 30, 35, 40) the signal probabilities are 0.256,
0.202, 0.164, 0.136 and 0.114, respectively, if we target AES 9th round. Fig. 5(a)
presents the leakage profiles with respect to the number of dummy rounds for
both ALAFA and DL-FALAT '3. As it can be observed, DL-FALAT outperforms
ALAFA by a very large margin for all the noisy cases. Even for a sufficiently
large count of ciphertexts (200000), ALAFA fails to detect the leakage while
DL-FALAT succeeds. The leakage interpretation results are very similar to that
of the previous example.

Ezample 3. The third example considers a different infective countermeasure
due to [44], also called RIMBEN (Random Infection based on Modified Benes
Network). RIMBEN detects the presence of a fault during execution by taking

13 Only for this case study, we present the leakage result by varying the count of dummy
rounds. For each valuation of dummy round count, the same (200000) number of
ciphertexts is considered.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 37

|MI| = 60 10 |MI| = 60
20 '
0.8
L5 >
= ©
=10 50.6
e S
¥ <
Vos 0.4
0.0
0 50 100 0273 20 40
Bits # of Features Deleted from M/
(a) (b)

Fig.6: Infective countermeasure RIMBEN [44] with single-byte fault: (a) SA
analysis results from first iteration; (b) M analysis results from first iteration.

the differential of a cipher and a redundant computation state at each inter-
mediate round during encryption. The fault is then propagated through the
computation, and at the end, the faulty ciphertext (C') is XOR-ed (masked)
with a random bit string and returned as output. The random bit string is also
generated from the fault differential AC, utilizing a preprocessing logic and two
consecutive Benes network. The random bitstring outputted by this construction
has a Hamming Weight (HW) of %7 where IV denote the block size of the cipher,
as well as the size of the N x N Benes network. Standard values of N are 128
or 64. In the present context, we consider a protected AES implementation for
which N = 128.

The analysis results on RIMBEN have been illustrated in Fig. 5(b). Once
again, in this case, we consider a fault injection at the 9th round of AES state.
The analysis has been performed for both bit and byte-level abstractions of
the ciphertexts, with the bit-level results being more prominent. As it can be
observed, the leakage is observed by the DI-FALAT within 8000 ciphertexts. In
contrast, ALAFA cannot detect any leakage even while higher orders up to 128
is considered'#. The reason behind ALAFA failing is that all 128 bits take part
in decision making in this case, and leakage detection with 128-th order analysis
would require an impractically large trace count.

While performing the leakage interpretation, the first step of SA reveals the
set of 60 points, as shown in Fig. 6(a). However, it can also be observed that the
points which do not get included in this MI also have some observable sensi-
tivity. The size 60 of the M I set can be explained by the fact that the HW of
the masking string in RIMBEN is 64. And so knowledge of roughly half (60) of
the ciphertext bits reduces the entropy of the masked data sufficiently for the
DL model to decide the boundary between two classes with some better-than-
random accuracy. The analysis of M1 shows that after removing 10 points the

14 Considering higher-order leakages in ALAFA requires the construction of all possible
subsets up to the specific leakage order. In the present case, we need to go up to
order 128. The total number of subsets to be considered up to order 128 is 2'28,
which is clearly infeasible to cover. So we considered the single case where the order
of test is 128. The result being shown in the plots are for test order 128.

38 Authors Suppressed Due to Excessive Length

validation accuracy becomes 0.5 (Fig. 6(b)). This reveals the leakage as highly
multivariate, as considering even 50 points keeps the entropy of the mask suffi-
ciently high refraining classification.

FEzxzample 4. This example considers the infective countermeasure proposed by
Tupsamundre et al. at CHES 2014 [22], which is an improvement over [12]. The
main difference is that if a single/multi-byte data corruption happens in any
of the cipher redundant or dummy rounds, the protected cipher is supposed to
output a fresh random string instead of a randomized infected intermediate state
as in [12]. The countermeasure is first tested for single-byte fault model. As it
can be seen in Fig. 7 (a), no leakage is observed in this case, both by DL-FALAT
and ALAFA.

12.5 —— DL-FALAT el
=== ALAFA 80 Non-Leakage Zone
— Non-Leakage Zone iy
810'0 a
© o 60
~ 75
Q
3 =40
© 5.0 ©
3 T
. =20y 7.
IR VIR i 0
0075 50000 100000 150000 200000 1000 2000 3000 4000
#Ciphertexts #Ciphertexts
(a) (b)

Fig.7: (a) Infective countermeasure [22] with single-byte fault: DL-FALAT and
ALAFA leakage profile with varying ciphertext count; (b) Infective countermea-
sure [22] instruction-skip based loop-abort: DL-FALAT and ALAFA leakage pro-
file with varying ciphertext count.

The next interesting observation is due to a control fault. We found that
an instruction-skip corrupting the loop counter variable (during last 2 rounds)
creates a univariate information leakage as shown in Fig. 7(b) A careful investi-
gation of this leaky event reveals that during such loop-abort fault injection, in
several cases the cipher outputs the input of the 10-th round instead of a random
string, thus leading to an attack. In [15], a similar attack was mentioned which
was found by manual inspection.

Ezample 5. This example considers the infective countermeasure in [45], which
utilizes an infection function comprising a deterministic linear diffusion func-
tion followed by a randomized nonlinear mixing function. Both ALAFA (for
d = 2) and DL-FALAT indicates leakage in this case for single-byte fault model
(Fig. 8(a))!®. The leakage is multivariate, and DL-FALAT automatically discov-
ers that. Being interesting, here we show results from one iteration of the leakage
interpretation experiment. As it can be seen in Fig. 8(b) two consecutive points
attain almost the same sensitivity values. Multiple such pairs get captured in
one M1 set during the first iteration of the interpretation experiment. We also

15 Note that, for this countermeasure, leakage has been observed while the ciphertexts
were considered bit-wise.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 39

.
. 0.008
w 03-
>
G £0.006
p 2 g
E) D 0.004 3
2 a:) Jor
> w0 <
0 0.002
0
o= 0.000
500 1000 " 1500 2000 2500 0 50 . 100 HH:HS 46,47,48] (45, 46, 47, 48) 146,47, 48] 147, 48] 148)
#Ciphertexts Bits Features Used for Training
(a) (b) (c)

Fig. 8: Infective countermeasure [45] with single-byte fault: (a) Variation of leak-
age with ciphertext count for DL-FALAT and ALAFA; (b) SA for the DL-FALAT
leakage for one iteration of iterative leakage interpretation; (c¢) Analysis of the
MT set in one iteration of leakage interpretation.

found that removing features in one M1 set readily exposes another set of leak-
age points without any increment in the dataset size. This fact indicates that
the order of leakages might be the same throughout the ciphertext. Further,
the results of an individual M analysis is presented in Fig. 8(c), which clearly
indicates that the leakage is multivariate.

It is worth mentioning that most of the time/space redundancy and infec-
tive countermeasures tested in this work are vulnerable against two equal faults
in redundant branches (exceptions are countermeasures based on information
redundancy, and CAPA, M&M described later in this section, where computa-
tions in redundant branches are different from each other). The reason is that
with two equal faults, the countermeasure mechanisms get bypassed, and actual
faulty ciphertexts directly reach the output causing univariate leakage. Finally,
it is worth noting that the simple time/space redundancy countermeasure is vul-
nerable against a combined side-channel and fault attack [52]. We believe that
DL-FALAT, with its observables extended with side-channel traces, will be able
to detect this class of attacks.

Detection Countermeasures: In this class, we consider a simple time redun-
dancy countermeasure, and an information redundancy countermeasure using
1-bit parity. Our first example utilizes simple two-way redundancy for error-
detection. While considered under a one-byte fault model, this countermeasure
always returns | as every fault gets captured. Among different fault models,
here we mention the case with single-byte fault. For this case the experiment in
Algorithm. 1 (and DL variant in Algorithm. 3) seems suitable. For a single-byte
fault in one computation branch, we found that all faults get detected, and the
constant output L is indistinguishable even if we consider two different fault
values (f1, fo). Hence, no leakage is caused for single-byte faults'®.

16 A univariate leakage can be observed if along with the byte fault an instruction-skip
based control fault is utilized, to corrupt the outcome of XOR operation performing
check operation at the end. However, in this paper, we did not focus on multiple
cycle fault scenarios. The experiments remain unchanged even for those cases.

40 Authors Suppressed Due to Excessive Length
12 Ml =10, 7,10, 13] .
‘
.30 1.0 11
3 Zos >10
2 2 ® 09
20 b= -
) 206 5
= 5 8 0.8
>10 &H 04 <Los
<
el JU UL =
0 0.0 0.5
600 800 1000 1200 1400 0 5 10 15 (677,10, 131 17,160,131 [10,13] 1131
#Ciphertexts Bytes Features Used for Training
(a) (b) (c)

Fig.9: Leakage analysis and leakage interpretation for the parity example: (a)
Comparative leakage analysis of DL-FALAT and ALAFA with varying number
of ciphertexts; (b) SA of leakage; (c) M Analysis indicating univariate leakage.

Next, we consider 1-bit parity-based error detection on the block cipher AES.
The countermeasure is bypassed for 50% of the byte faults having even parity
and hence declared insecure. To quickly discover a leaky fault pair (f1, f2) for
applying Algorithm. 1, we used the preprocessing step mentioned in [1]. Fig. 9(a)
provides the leakage profile in this case. The analysis of the MI set indicates
4 leakage points and a univariate leakage (as the learning can be performed
with high accuracy even with a single feature point (Fig. 9 (b), (c¢)). One should
note that although the leakage is observed in this case, for a well-formed code
based redundancy, finding out a so-called leaky fault is significantly rare. Hence,
even if there will be leakage for most of the code based countermeasures, the
exploitability depends on the rarity of the leaky faults, in general. We have also
tested the applicability of DL-FALAT on instruction-level countermeasures with
instruction-skip faults. The results are presented in Appendix. B.2.

B.2 Instruction Level Countermeasures

To test the applicability of DL-FALAT for instruction-level countermeasures, we
implemented the scheme proposed in [14] for an AES implementation without
any algorithm-level protection. The scheme in [14] replicates some machine in-
structions in a code multiple times, if there is no impact of replicating these
instructions on the final outcome of the code. Such instructions are called idem-
potent instructions. In our case, each idempotent instruction is duplicated once.
The instruction-skip experiments were performed with the GDB-based tool de-
scribed in Appendix. C.

The instruction-level countermeasures against FAs mainly rely on the fact
that an adversary can only skip a certain number of consecutive instructions
at a time. This is a reasonable assumption for certain practical fault injection
setups. However, it has been shown in [23] that for clock glitch-based injections,
one single glitch may affect multiple consecutive instructions which are present in
the processor pipeline during the glitch event. Such an observation necessitates
testing for so-called higher-order fault injections where multiple consecutive in-
structions are to be skipped at the same time. Our GDB-based fault simulator
easily simulates such multiple consecutive fault scenarios. While performing a
first-order fault injection (that is only single instruction-skip), we observed no

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 41
vatth Avlacks. A el

40

30

20

t-Value (abs)

10

0

500 600 700 800 900 1000
#Ciphertexts

Fig. 10: Instruction-level countermeasure with duplicate idempotent instruc-
tions [14]. Two consecutive skips expose univariate leakage.

12

— 10 —
) m [y
Q Q
s st s
E g6 E!
© © ©
> > 4 >]
S 3 L10
2
1000 2000 3000 4000 5000 072000 4000 6000 8000 10000 OSGo 1000 1500 2000 2500
#Ciphertexts #Ciphertexts #Ciphertexts
(a) (b) (c)

Fig.11: (a) Variation of leakage with ciphertext count for SIFA (on AES with
redundancy) with pro_o = 1, pri—1 = 0; (b) Variation of leakage with ciphertext
count for SIFA (on AES with redundancy) with pro_o = 0.5, pri_1 = 0.5; (¢)
Variation of leakage with ciphertext count for SIFA attack on masking.

leakage. However, significant leakage can be observed if two consecutive instruc-
tions are skipped simultaneously, as shown in Fig. 10. We also performed leakage
interpretation experiments which confirms that the leakage here is univariate.

B.3 Leakage Assessment for SIFA

In this subsection, we validate the enhancements proposed in Sec. 3.1 for assess-
ing SIFA-related leakages. Here we first validate an FA-protected (with time re-
dundancy) unmasked AES, followed by a combined SCA-FA protected PRESENT
(hardware implementation). Next, we validate hardware implementations of two
recently proposed SIFA countermeasures, namely AntiSTFA [47] and Impecca-
ble Circuits IT [16]. We also test two other combined countermeasures, namely
CAPA [19] and M&M [20] against SIFA in Appendix B.4. The reason behind
keeping CAPA and M&M in a separate section is that they follow a very different
design strategy from the rest of the countermeasures.

FA-protected and Combined Countermeasures As already mentioned in
Sec. 3.1, we simulate two kinds of faults to realize SIFA - 1) Biased data de-
pendent bit-flips, 2) Unbiased bit-flips inside the S-Box computations. In our
first example (FA-protected AES), we simulate a stuck-at-0 fault (pro—o = 1,
pri1 = 0). The leakage profile for this attack is shown in Fig. 11(a), which
presents the variation of (univariate) leakage with respect to ciphertext count
for both ALAFA and DL-FALAT. We observed a similar leakage for pro_,g =

42 Authors Suppressed Du«la0 to Excessive Length

— LT =
- AR = A

8 Non-Leakage Zone 8 ~ 8
[%] (%]
Q Q Q
AN L6 L6
S E S
© 4 s 4 © 4
> > >
2 2 2

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

#Ciphertexts #Ciphertexts #Ciphertexts
(a) (b) (c)

Fig.12: Evaluating SIFA countermeasures: (a) AntiSIFA [17] with single-bit
fault; (b) Impeccable Circuit II [16] with single bit error correction and 1-bit
fault; (c) Impeccable Circuit II with 2-bit error correction and 2-bit fault.

0.75, pri_1 = 0.25. However, an experiment with pro_o = 0.5, pri_1 = 0.5
(Fig. 11(b)) did not show any leakage even though there is a mix of correct
and faulty ciphertexts. This is expected and shows that having many ineffective
faults does not always indicate the chances of SIFA.

Next, we test a combined countermeasure that uses Threshold Implementa-

tion (TT) [46] for SCA protection, and simple time redundancy (two consecutive
computation followed by a checking at the end) for FA protection realized for
PRESENT block cipher [53]. With single-bit stuck-at-0 faults in the S-Box input
(one share is corrupted) or linear layer input, in this case, we observed no leak-
age due to the presence of masking. The masking here changes the impact of a
stuck-at fault similar to the situation where pro_o = 0.5, pri_; = 0.5. However,
while injecting inside TT equations (precisely, we injected single bit-flip fault in
a register at the middle of the shared S-Box computation), we observe leakage
(ref. Fig. 11(c)).
SIFA Countermeasures: We next focus on two SIFA countermeasures from [17]
and [16]. The first countermeasure, also called AntiSIFA, incorporates fine-
grained error correction in a per-bit manner with a masked implementation
of PRESENT. The error-correction is performed with majority voting and is
implemented with redundancy to make it fault-tolerant. The original proposal
presents an example of implementation with single-bit error correction support.
While tested with single-bit faults (even the one inside S-Boxes, as described
in the last example), we found that the countermeasure successfully prevents
the SIFA attacks by giving output only correct ciphertexts which supports the
claims made in the original paper (ref. Fig. 12(a)).

The final experiment on SIFA attacks is on an open-source hardware imple-
mentation of the Impeccable-Circuits II [16]. The main idea of this counter-
measure is to throttle the negative impacts of fault propagation by introducing
special checkpoints within the circuit, as well as forcefully making some circuit
paths independent of each other. Moreover, linear code-based (resp. majority
voting based) error correction is incorporated to counter SIFA attacks. In the
open-source hardware implementation, the countermeasure is implemented on a
tweakable block cipher CRAFT [54] 17. for single-bit error correction (3-way re-

17 https://github.com/emsec/ImpeccableCircuitsIT

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 43

dundancy), and two-bit error correction (7-way redundancy). In the experiments,
we tested for different single-bit and multi-bit faults. Here we only mention re-
sults SIFA testing with stuck-at-0/1 faults for a single round. For 3-way (resp.
7-way) redundancy we found that single-bit (resp. 2-bit) faults get corrected.
The results are depicted in Fig. 12 (b) and (c), respectively, where no leakage
can be observed. However, it is worth mentioning that if we go beyond these
fault models (such as 2-bit faults for 3-way redundancy and 3-bit faults for the
7-way redundancy) leakage can be observed in our experiments. Overall, the
experiments establish the efficacy of DL-FALAT.

B.4 Evaluation of CAPA and M&M

CAPA: CAPA [19] and M&M [20] are two recently proposed classes of com-
bined countermeasures claiming security against combined SCA-FA adversary.
However, in this paper, we are only interested in their FA security. CAPA adapts
multiparty computation (with both active and passive security guarantees) in
the context of a crypto circuit. More precisely, in CAPA, the computation is
divided into tiles with each tile representing one party of the computation. The
communications between tiles are kept limited and secured with the help of extra
randomness (called Beaver triples). The input to be processed is first shared into
d independent shares to provide SCA security. Each share is processed within
a tile. The input is also multiplied with a (or multiple) randomly generated,
non-zero hash key a to generate information-theoretic hashes. The hash key is
also maintained in a shared manner. CAPA computes over the shared values
and their corresponding hashes for each gate up to the ciphertext level. The
hash check is performed during the computation of the nonlinear gates, and the
computation aborts upon finding out a mismatch. The active (i.e. FA) security
of the scheme stems from the fact that the hash key is changed randomly at
every cipher execution. In order to bypass the hash check, an adversary must
inject a fault such that the hash value of the correct and the faulty states are
equal. This happens with probability 27°™, where m is the number of hash keys
and GF(2%) is the finite field over which the cipher computation is performed.
In order to validate CAPA with DL-FALAT, we implemented the KATAN-
32 [50] block cipher in Python. KATAN-32 is a 32-bit block cipher having a fairly
simple round structure mostly consisting shift operations, with only 4 AND and
8 XOR operations per round. Additionally, there are 4 XOR operations in the
key schedule. In our implementation of KATAN with CAPA, each basic gate is
replaced with an equivalent CAPA gate. We also maintained m = 8 hash keys to
maintain a practical fault detection capability. The computations are performed
over the field GF(2). Faults were simulated for input, output and intermedi-
ate computation of one representative CAPA gate from each gate type within a
round. CAPA was able to provide security against bit-stuck-at, bit-flip, and byte
faults. Further, we perform SIFA evaluation over this implementation. STFA eval-
uation is interesting here as SIFA was not explicitly mentioned in the adversary
model of CAPA. It was found that CAPA provides security against the different
types of SIFA faults discussed in this paper. The result of one such experiment

44

t-Value (abs)

0 2000 4000 6000 8000 10000 600 800 1000 1200 1400
#Ciphertexts #Ciphertexts

(a) (b)
Fig.13: (a) CAPA [19] with bit-flip STFA fault during an AND gate computa-
tion: DL-FALAT and ALAFA leakage profile with varying ciphertext count; (b)

M&M [20] with bit-flip STFA fault during an AND gate computation: DL-FALAT
and ALAFA leakage profile with varying ciphertext count.

is depicted in Fig 13(a). The fault model tested for this specific experiment is
a single-bit flip at one of the input shares of a CAPA AND gate. In case the
fault propagates through the AND gate, it would corrupt (or not corrupt) the
AND output depending on the data on the other input of the AND gate (in other
words, it would result in a data-dependent ineffectivity of the fault). However, no
leakage is observed in this case even with such data-dependent ineffective fault.
We investigated the reason behind this SIFA resistance of the scheme. The STFA
resistance stems from the way the non-linear (AND) computation is performed.
More precisely, in CAPA the AND computation is performed with the help of
random Beaver triples (a, b, ¢), where a, b, and ¢ denote shares of bit variables
a, b and c, respectively. For a valid Beaver triple ¢ = ab. During the AND com-
putation, the shares of the actual variables to be multiplied are blinded with
a, b. These blinded shares are next broadcasted among all the tiles. The hash
check is performed after this broadcast operation, and if the check passes, the
remaining computations for the multiplication are performed. Such hash check
before the multiplication prevents SIFA, as no fault values are allowed to pass
through non-linear gates in this case, which is the sole cause behind attacks like
SIFA and FTA. Operations until the hash check are linear. The result remains
the same even for biased bit-flip faults. In a nutshell, CAPA is found secure for
the fault models and locations tested in this work.

MEM: The M&M countermeasure adopts concepts similar to CAPA, but it
is significantly lightweight from an implementation perspective. The generation
and maintenance of hashes throughout the computation are similar to that of
CAPA. However, instead of checking hash values at each non-linear gate, M&M
performs an infective computation at the end. While it indeed makes M&M
lightweight with respect to CAPA, it cannot anymore provide SIFA security. To
validate this we performed the SIFA evaluation with DL-FALAT on a KATAN-32
implementation having M&M. As it is shown in Fig 13 (b), DL-FALAT indicates
leakage in this case. This is, however, not surprising as the M&M paper already
excludes SIFA from its security claims. Overall, M&M is also found respecting
its claimed security goals.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 45

B.5 Generalized leakage Assessment

An Example of Mask De-randomization: In this example, we elaborate
the need of the compare-with-uniform experiment presented in Sec 3.2. Let us
consider an SCA resistant AES implementation, which expects a fresh random
mask of 128 bits for every execution. The SCA security strongly depends on
the uniform random distribution of the mask. Without loss of generality, we
assume a software implementation in this case, along with an instruction-skip
fault model. For a target architecture having 32-bit bus width, the 128-bit mask is
supplied to the AES module in chunks of 32-bits, as shown in Listing. 1.3. In this
pseudocode, the mask values are assumed to originate from memory locations
M11, M12, M13, M14. The observable O, in this case, is the mask register of the
AES. Now, an adversary may skip one or multiple of these instructions causing
the mask to remain fixed for all of the executions. In this case, we assume the first
32-bit data transfer is skipped resulting in a constant mask value for that 32 bits.
The procedure described in Algorithm. 4 can identify this loss of randomness
in this case, by detecting a deviation from the uniform randomness. Note that
there is no point in running TEST-INTERF-KEY or TEST-INTERF-FAULT in this
case as the mask does not vary with the key. The result of the leakage assessment
test is presented in Fig. 14 for ALAFA, and DL-FALAT. The necessity of the
compare-with-uniform test is established via this example.

Listing 1.3: Mask Deran-
domization

—mov regl, <M11>
mov reg2, <Mi2>
mov reg3, <M13>

mov regé4, <Mi4> 500 1000 1500 2000 2500
#Ciphertexts

t-Value (abs)

0

Fig. 14: Leakage results: Derandomization of mask.

Non-Cipher Leakage from SHE: Now we provide another example where
the manifestation of leakage happens on some observable other than ciphertexts.
We consider an automotive security standard called SHE. SHE standard rec-
ommends a hardware security module (HSM) for automotive electronic control
units (ECU), which primarily includes an AES block for encryption and authen-
tication support, as well as a True Random Number Generator (TRNG). The
services provided are the secure boot, encryption with different keys, and authen-
tication. There exist commercial microprocessors from vendors like NXP, and
Fujitsu, which include dedicated blocks implementing SHE often called Crypto-
graphic Service Engine (CSE). In such implementations, the HSM is kept almost
isolated from the rest of the components. It is provided with hardware AES, pri-
vate ROM, RAM and configuration registers. The master processor of the host
ECU can access the HSM only through the configuration registers. In addition
to this, there is another external interface connected to the secure storage, which
is tamper-proof and inaccessible to the user in a normal mode of operation. This

46 Authors Suppressed Due to Excessive Length

L1125

> é 10.0
CSE Control -» CSE ROM g 75
(Microblaze) CEERA f (Boot Loader) E 50
=1 : 2
T K 2.5
v . 0.0
- 5 Dol 1000 2000 3000 4000 5000
32 bit AXI Data | 32 bit AXI Data Vo #Ciphertexts
Bus I Bus P
il , . (b)
CEE Rlaginr: | SEnuu Sunue » AES Core :
60
""" '®
Custom Bus Interface 32 AE);(I Data . 40
us 3
Ext lHost | . 1 =~ » Control Path >(? 20
ernal Hos!]
SHE Secure Storage —> DataPath
Firmware '
(ARM Cortex A9) () SHE Host Environment ' 0500 600 700 800 900 1000
' #Ciphertexts
(a) (c)

Fig. 15: (a) SHE Prototype: Basic Architecture; Leakage profile: SHE design; (b)
Compare-with-uniform with DL-FALAT; (c) Leakage for two different keys.

secure storage contains the firmware(s) (which needs to be verified, securely
booted, and updated if required), and the secret keys used by the ECU. All the
functionalities of the HSM are controlled by a core engine which is referred to as
CSE core. The purpose of this block is to execute the firmware for CSE which
implements certain cryptographic protocols by using the hardware primitives
provided. One reasonable approach for realizing this core is to utilize a small
32-bit processor.

In order to verify the robustness of this architecture, we implemented it ac-
cording to the specifications given in [48,49]. The basic SHE architecture is
depicted in Fig. 15(a). The entire prototype has been implemented on the Zed-
Board Zyng-7000 platform. A MicroBlaze softcore processor-based module serves
as the CSE controller (core). CSE RAM and CSE ROM have been realized using
on-chip block memory available on the Zyng-7000 FPGA device. AES core and
CSE registers are purely FPGA logic-based modules. All these modules are in-
terconnected with the CSE controller module through a 32-bit AXI data bus. For
the external host, we used an ARM Core available on Zyng-7000 device. Secure
storage depicted in the diagram is also realized using on-chip block memory.
All the data stored in these memory blocks are stored in 32-bit word aligned
format to work with 32-bit AXI bus. The control logic (i.e., the firmware) of
CSE controller is written in C language (with functions from Xilinx MicroBlaze
C library) which executes on the embedded MicroBlaze softcore processor. All
the control and data operations are performed by memory-mapped 32-bit AXI
data transfer commands (Xil_Out32() and Xil_In32()).

For the sake of simplicity, the main target of our verification here is the
firmware code which can be targeted by an instruction-skip attacker. We con-
sider the basic encryption support provided by CSE. The 128-bit secret key is
to be copied from the RAM to the internal registers of AES in this case. The

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 47

plaintext (and mask, if required) is also supplied in a similar fashion. However,
an instruction-skip based leakage is observed here during the data transfer op-
eration. More precisely, the 32-bit bus architecture of our implementation allows
the 128-bit key to be transferred to the AES core in chunks of 32-bits. Therefore,
a 128-bit transfer requires four consecutive calls to the 32-bit data transfer op-
eration of MicroBlaze as shown in Listing. 1.4 (this operation, in turn, makes
a call to the 32-bit data transfer instruction of MicroBlaze ISA having opcode
swi). This part(s) of the code serves as our target spot during the transfer of
the secret key. KEY;, i € {0,1,2,3} represent the four 32 bit words of the key.

Listing 1.4: Code Snippet for AXI Data Transfer

Xil_Out32 (XPAR_AESCORE_O_SOO_AXI_BASEADDR ,KEYO);
Xil_Out32 (XPAR_AESCORE_O_SOO_AXI_BASEADDR+4,KEY1);
Xil_Out32 (XPAR_AESCORE_O_SOO_AXI_BASEADDR+8,KEY2);
Xil_Out32 (XPAR_AESCORE_O_SOO_AXI_BASEADDR+12,KEY3);

In our experiments, we skip one/more of these data transfer operations.One
reasonable assumption here is that the AES core is reset after each execution.
So, the key register is supposed to contain an all 0 value at the beginning. The
observable here is the key register inside the AES core. Algorithm. 4 detects
the presence of a key leakage in this case. The leakage profiles for the first
and second invocation of the TEST() (Algorithm. 4) are depicted in Fig. 15(b)
and (c), respectively. The compare-with-uniform test in Fig. 15(b) indicates a
randomness loss for the whole key. Due to key dependency of the observable, the
next test to be invoked is TEST-INTERF-KEY (as with skip we had only one fault
value). Fig. 15(c) presents the result of this experiment which indicates leakage.

One important question here is the exploitability of the leakage. The DL-
FALAT test itself cannot comment on that. However, for this specific example,
we found the leakage exploitable. Considering that fact that the AES registers
are reset to zero after each execution, the aforementioned instruction-skip results
in a scenario where a significant number of key bits are fized to zero. Skipping
three consecutive data transfer operations will set 96 key bits to zero, and only 32
bits of the original key will remain intact. Upon receiving the faulty ciphertexts,
the adversary can run an erhaustive search of 32 bits and recover the unaltered
32 bits in the corrupted key. Repeating this attack three more times rest of the
key bits can also be recovered. The computational complexity of this attack is 232.

C Simulation of Instruction-Level Faults

Fault simulation for low-level software codes are fairly challenging. In this sec-
tion, we elaborate a generic and easy-to-use methodology for simulating instruc-
tion faults. However, before describing the details of this tool-flow, let us mo-
tivate the reader why instruction-level faults deserve special attention. Firstly,
an instruction-level fault, such as instruction-skip is one of the most repeat-
able, easy-to-generate, and consistent fault models. Secondly, their occurrence
at a lower level of abstraction explicitly captures certain fault cases which are
difficult to simulate at a high level. For example, certain control faults such as

48 Authors Suppressed Due to Excessive Length

loop-abort or change of control-flow may be realistically generated from skipping
or modifying a certain set of instructions or register values. For the purpose of
illustration, let us consider the code in Listing. 1.5. The X86-64 assembly corre-
sponding to line 5 of this code results in almost 30 instructions (some part pro-
vided in Listing. 1.6). In practice, one or more instructions from this assembly
may be vulnerable. Also, there may be cases where skipping multiple consecutive
instructions simultaneously, results in a desired faulty behaviour at high-level.

Listing 1.5: AddRoundKey of AES Listing 1.6: X86-64 assembly (line. 5)

for(i=0;i<4;i++) movl -8(%rbp), %eax
{ cltq
for(j=0;j<4; j++) movl -4(%rbp), %hedx
{ movslg ‘%edx, Y%rdx
state[jl[i]l"= salq $2, hrdx
RoundKey [round*Nb*4+i*Nb+j]; addq hrax, Jrdx
} leaq state (hrip),
} hrax
addq %rdx, Yrax
addq %rdx, Yrax
movb %hcl, (Yrax)

C.1 The GDB-based Fault Simulator

In this subsection, we introduce our automation for simulating instruction-level
faults. The simulator utilizes the GDB tool, which is one of the most common
debugging support available. One great advantage of using GDB is that simu-
lating for different platforms requires almost negligible changes to be made in
the simulator. Listing. 1.7 presents an example of how an instruction- skip event
can be simulated using GDB. We refer to the code snippets already presented
in Listing. 1.5 and 1.6 for X86-64 architecture. However, the same experiment
can also be repeated for any embedded architecture like ATMega, or ARM. In
this case, we assume the availability of the high-level C code of Listing. 1.5. A
breakpoint is set at line number 5 of this high-level code. The breakpoint is also
conditioned to be encountered only when ¢ == 0 and j == 0. Such conditional
breakpoints allow us to create the instruction-skip faults at specific loop itera-
tions. The skip itself is realized on the very first instruction of Listing. 1.6 by
executing lines 6-10 in the GDB script of Listing. 1.3. The core idea here is to
change the address stored in the program counter register to the next address.
Note that, GDB also allows explicit modification of program counter value and
even multiple consecutive instruction-skips and instruction-modifications can be
implemented using this fact. Furthermore, explicit register modification feature
also allows us to simulate register faults, as well as memory faults precisely. It is
worth to mention that any instruction can be targeted in this way by moving the
execution to the desired point with the nexti command provided by GDB. The

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 49

current implementation of our instruction-fault simulator expects the position of
a skip in terms of the function name and target loop counter value (if required)
as inputs. However, in the general case, it can also start from the beginning of
a program and simulate skips for every instruction encountered. One important
point here is that instruction-level faults are often caused by one or more archi-
tectural features of the underlying processor. For example, in [23], it was shown
that due to the presence of multiple instructions within the pipeline at a single
clock cycle, one clock glitch is able to corrupt multiple instructions, which in
turn results in bypassing certain instruction-level countermeasures. Given the
fact that our GDB based fault simulator is capable of emulating the final ef-
fect of such complex micro-architectural events, it is well suited for the current
purpose and should be applicable in several other such verification contexts.

Listing 1.7: GDB snippet for instruction-skip in Listing. 1.5, 1.6

break main

break 5

condition 2 (i == 0 && j == 0)
r

c

set $varl
set $var?2
set $var3 $instn_length ($v2)
set $var4d $pc + $v3 + $vi
jump *($var4d)

$instn_length ($pc)
$pc + $vi

