
Leakage Assessment in Fault Attacks: A Deep
Learning Perspective

Sayandeep Saha, Manaar Alam, Arnab Bag, Debdeep Mukhopadhyay, and
Pallab Dasgupta

Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur

{sahasayandeep, alammanaar, arnabbag, debdeep, pallab}@iitkgp.ac.in

Abstract. Generic vulnerability assessment of cipher implementations
against fault attacks (FA) is a largely unexplored research area to date.
Security assessment against FA is particularly important in the context
of FA countermeasures because, on several occasions, countermeasures
fail to fulfil their sole purpose of preventing FA due to flawed design or
implementation. In this paper, we propose a generic, simulation-based,
statistical yes/no experiment for evaluating fault-assisted information
leakage based on the principle of non-interference. The proposed exper-
iment is oblivious to the structure of countermeasure/cipher under test
and detects fault-induced leakage solely by observing the ciphertext dis-
tributions. Unlike a recently proposed approach [1] that utilizes t-test
and its higher-order variants for detecting leakage at different moments
of ciphertext distributions, in this work, we present a Deep Learning
(DL) based leakage detection test. Our DL-based detection test is not
specific to only moment-based leakages and thus can expose leakages
in several cases where t-test based technique demands a prohibitively
large number of ciphertexts. We also present a systematic approach to
interpret the leakages from DL models. Apart from improving the leak-
age detection test, we explore two generalizations of the leakage assess-
ment experiment itself – one for evaluating against the Statistical ineffec-
tive fault model (SIFA), and another for assessing fault-induced leakages
originating from “non-cryptographic” peripheral components of a secu-
rity module. Finally, we present techniques for efficiently covering the
fault space of a block cipher by exploiting logic-level and cipher-level
fault equivalences. The efficacy of DL-based leakage detection, as well as
the proposed generalizations, has been evaluated on a rich test-suite of
hardened implementations from several countermeasure classes, includ-
ing open-source SIFA countermeasures and a hardware security module
called Secured-Hardware-Extension (SHE).

Keywords: Fault Attack · Leakage Assessment · Deep Learning.

Introduction

Fault attacks (FA) [2, 3] have recently gained significant attention from both
industry and academia. The core idea of such fault assisted cryptanalysis is to
deliberately perturb the computation or control-flow of a system and gain some

2 Authors Suppressed Due to Excessive Length

Table 1: Different Countermeasure Classes and Fault Models
Type Description Fault Model Description

Time/Space
Redundancy

Performs two computation on the same data
and compare the result. No output if fault is
found.

Bit stuck-at/flip
Corrupts a bit intermediate
state

Code-based
Redundancy

Redundancy using error-detection codes Nibble/byte
Corrupts multiple bits within a
byte/nibble.

Infection
Same as time/space redundancy, but
no explicit comparison. Randomizes
the outcome upon fault detection.

Biased bit-flips
Data dependent bit-flips,
useful for biased FA or SIFA

Instruction
Level

Uses redundant instructions.
Bit-flips in
masked S-Boxes

Bit-flips in S-Box intermediate
computation. Useful for SIFA
on masked S-Boxes.

Combined
Combined SCA-FA countermeasures,
CAPA, M&M

Single/ Multi
Instruction Skip

Instruction-Skip in
microprocessors

SIFA
countermeasures

Bit-level error detection/correction
to counter ineffective faults.

Control
fault

Loop abort/changing outcome
of if/else block

information about the secret through the faulty system responses. Malicious
faults are easy to generate but challenging to prevent. Especially, classical fault
tolerance techniques often fall prey against precisely placed and repeatable faults.

There exist several physical means of injecting faults with malicious intentions.
Prominent methods include clock-glitching [4], under-powering [5], electromag-
netic (EM) glitch [6], laser-based fault injection [5,7], and Rowhammer bug (for
remote fault injection) [8, 9]. While the nature and precision of the faults in
a system usually vary with the injection mechanisms, it is just one aspect of
an FA. The key extraction process also critically depends on the underlying al-
gorithm and its implementation. The standard way of performing an FA is to
analyze the algorithm along with a logical abstraction of the faults happening
in a system known as a fault model. Classically, data corruption faults having
uniformly random or some statistically biased distribution (even constant valued
faults) are exploited in most of the FAs. However, in a more generic scenario,
one cannot rule out faults in the control-flow and faults at the instruction-level,
which have also been shown to be fatal for cryptographic implementations on
several occasions. Recently, attacks have been developed using ineffective faults
by exploiting the dependence of such absence of faults on the underlying data.
Such attacks have been used to break most of the existing hardened implementa-
tions [10,11]. Being a practical class of attack, it is imperative that fault models
in FA should be practically realizable. The enormous improvement of fault injec-
tion mechanisms in the last few years [5–7] now allows even the strongest fault
model assumptions to be reasonably achievable for different implementations.

In this paper, we mainly focus on FAs in the context of block ciphers. Exist-
ing block ciphers alone are not capable of throttling FAs, and suitable coun-
termeasures are required. FA countermeasures are usually incorporated at the
algorithm-level [12,13] or at a lower level of abstraction such as in the assembly
instructions [14,15] or hardware circuits [16–18]. One common feature for most of
these countermeasures is that they utilize some form of redundancy (time, hard-
ware, or information redundancy) to detect/correct the presence of a fault in the
computation. The most common form of countermeasures, widely referred to as
detection countermeasures, deploy an explicit check operation to detect the faulty

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 3

computation and then react by either muting or randomizing the output [13,19].
In contrast, infective countermeasures avoid the explicit check operation and in-
troduce a randomized infection function that masks a faulty ciphertext to make
it useless for the adversary [12,20]. Instruction-level countermeasures implement
redundancy at the granularity of assembly codes. One straightforward strategy
is to incorporate redundant instructions in the code with the assumption that
an attacker may not be able to bypass all of them at once, causing an effective
corruption [14,15]. With the recent advent of Statistical Ineffective Fault Anal-
ysis (SIFA), a completely new class of countermeasures have been proposed.
Such SIFA countermeasures incorporate redundancy checks in a per-bit man-
ner to detect/correct every fault (whether effective and ineffective) [16–18, 21],
and thereby destroying the data-dependent statistical bias causing key leakage.
Table. 1 presents a summary of countermeasures and fault models.
Unfortunately, many of these existing FA countermeasures [12, 14, 22, 23] have

been found insecure even (sometimes) against the fault models they were de-
signed to protect for. A key cause behind such design failures is that there ex-
ists no general mechanism for security assessment in the context of FAs. Unlike
block ciphers, countermeasures are often engineered in-house, considering several
other aspects like resource/performance constraints and time to market. They
are mostly analyzed by the design team itself, or by security certification facili-
ties as an end product, which may leave critical loopholes unobserved. Devising
a generic methodology for evaluating FA is a open scope of research.

Our Contributions:

Deep Learning-based Leakage Detection for FA: In this paper, we in-
troduce a Deep Learning (DL) assisted, automated, and straightforward yes/no
testing methodology for assessing the security provided by an FA countermea-
sure called Deep Learning Fault Attack Leakage Assessment Test (DL-FALAT).
In short, DL-FALAT detects potential information leakage in ciphertext (also
called traces) distributions of a block cipher under the influence of faults. The
root of this approach lies in the theory of non-interference [24]. The main util-
ity of DL here is to realize a detection test for checking if two distributions are
same or different. Simply put, we train and validate a DL algorithm with labelled
ciphertexts resulting from fault simulations of a given implementation with two
different fault/key values, which is posed as a binary classification problem. If
the validation accuracy is found to be higher than that of a randomly guessing
binary classifier, it is concluded that the DL model is able to distinguish between
ciphertext distributions corresponding to two different fault/key values. This phe-
nomenon implies the violation of non-interference and indicates leakage in FA.
Also, we propose simple DL models which work universally irrespective of the
design-under-test and fault model, enabling the leakage assessment with low ci-
phertext count. For FA leakage assessment, low ciphertext count is extremely
important as one has to perform the test on several fault locations in a design
for ensuring security. Another motivation for choosing DL for leakage assessment
is that it can detect the leakage-order automatically, unlike the t-test. For FA
countermeasures, the statistical order of the leakage is not known apriori (unlike

4 Authors Suppressed Due to Excessive Length

SCA countermeasures, such as masking). Finally, we present a systematic flow
to interpret the outcomes of the DL-based detection test. Major strengths of
DL-FALAT lie in its simplicity and the feature of not depending on any non-
trivial information regarding a hardened algorithm. It is supposed to be applied
at a pre-deployment stage 1, where an evaluator is allowed to simulate faults at
different points within the implementation code and can change the keys.
Enhancing the Leakage Assessment Experiment: The second contribu-
tion of this work is to enhance the non-interference experiment (that is the
generation of two different ciphertext distributions corresponding to two differ-
ent fault/key values; referred as leakage assessment experiment) itself. As the
first enhancement, we tailor it for detecting the so-called Statistical Ineffective
Fault Analysis (SIFA). Our approach can detect the data dependency of the
correct and faulted encryptions in SIFA by analyzing the ciphertexts, and thus
can meaningfully interpret SIFA on different implementations. As a second en-
hancement, we propose a compare-with-uniform variant of the basic experiment
which can be utilized for testing so-called “non-cipher” components of a security
module against FAs. Most of the time, cryptographic primitives are associated
with several other peripheral components such as mask generation logic or input
delivery logic, which can also be targeted by an attacker leading to an exploitable
leakage. Leakage of the aforementioned kind can be successfully detected by the
compare-with-uniform enhancement of the leakage assessment experiment.
Covering the Fault Space: In order to handle the large fault space in block
ciphers, we exploit different types of equivalences present in the fault space. More
precisely, fault equivalences at gate-level circuits and the cipher-algorithm level
were exploited to provide a reasonable coverage over the fault space without
exhaustively testing every fault location. Such equivalences partition the fault
space in several equivalence classes, and testing each class member is sufficient.
The gate-level equivalences were explored with the TetraMax tool from Synop-
sys, and the cipher-level fault equivalences were found using an automated fault
analysis tool called ExpFault [25].
The efficacy of DL-FALAT has been established over a representative set of

detection, infective, instruction-level, SIFA, or combined countermeasures. To
evaluate the countermeasures against instruction-level faults, in this work, we
developed an easy-to-use instruction-level fault simulation mechanism based on
the GNU Debugger (GDB) software. In order to evaluate the holistic leakage
assessment capability of DL-FALAT on “non-cipher” components, we validate
an automotive security standard called Secure Hardware Extension (SHE) for
which we found non-trivial vulnerabilities.
Related Work:
A prior approach for leakage assessment in the context of fault attacks was

proposed in [1], which used Welch’s t-test for leakage detection. DL-FALAT en-
hances the power of the detection test over t-test in terms of data complexity,

1 Leakage assessment with device-level practical faults may leave some vulnerable
corner cases unexplored, as certain faults may not take place for a specific injection
mechanism. We, therefore, suggest that leakage assessment should be performed with
simulated faults so that different fault types can be explored.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 5

which has been established by multiple examples in this work. In particular,
t-test is limited to the detection of leakages in the moments of a distribution
(which can be problematic [26–28]), where the statistical-order of the test has to
be defined by the evaluator. In contrast, the DL- based detection test can auto-
matically detect and combine necessary points in the trace for leakage detection
without any user intervention, and also without any limitation on moment-based
leakage. Furthermore, the work in [1] does not shed light on SIFA attacks, and
the general enhancement of the leakage assessment experiment beyond cipher
implementations. Finally, the work in [1] does not comment on how to reason-
ably test several fault locations inside a cipher so that meaningful fault coverage
estimations can be made. We address the fault space exploration problem in
this paper. Another recent contribution in this direction is due to [29], which
presents a fault diagnosis approach specific to hardware designs for evaluating
countermeasures against FAs. The approach in [29] is based on monitoring cer-
tain internal signals for detecting faults and not the ciphertexts only, and hence
expects knowledge regarding the implementation details. Moreover, vulnerabili-
ties in countermeasures are typically not limited to their fault detection modules
but also depends on the recovery modules as we practically show in the case of
infective and SIFA countermeasures. Hence, checking the leakage at the cipher-
text seems to be a better idea as it represents the true exploit of a fault attack.
Recent years have also seen several applications of DL in the context of SCA
attacks including leakage detection [28,30–33]. However, the leakage in SCA [34]
is significantly different from that of FA 2. One of the major issues in FA leakage
assessment is that one has to test several fault locations. Hence, the statistical
test at each location must operate with reasonable data complexity. The DL-
based flow presented in this paper is specifically tailored for that purpose, which
was not required for the DL-based SCA leakage detection approach [28]. Such
tailoring of the test is non-trivial, as it involves careful selection of the DL mod-
els, as well as the construction of the iterative approach proposed here. To the
best of our knowledge, this work presents the first application of DL for FAs.

The paper is organized as follows. In Sec. 1, we present the concept of leakage
in FA and its connection to the theory of non-interference, which is followed by
the basic descriptions of the leakage assessment experiments and the t-test based
detection test. Sec. 2 introduces the DL-based leakage detection test in detail.
Sec. 3 outlines two enhancements to the leakage assessment experiment. The
fault space exploration strategies using fault equivalence is presented in Sec. 4.
Case studies on FA countermeasures are briefly outlined in Sec. 5 (with details
in Appendix. B). We conclude in Sec. 6. Appendices present a background on

2 The leakage function in FA varies significantly between attack strategies, fault mod-
els, ciphers and countermeasure algorithms (unlike SCA leakage functions which are
usually specified by Hamming weight/distance). For example, in a typical differen-
tial fault analysis attack, the leakage function is decided by the fault propagation
path up to the ciphertext, which varies with the cipher, the fault location, and the
countermeasure structure.

6 Authors Suppressed Due to Excessive Length

DL (Appendix. A), detailed case studies (Appendix. B), and instruction-level
fault simulation methods (Appendix. C).

1 Fault Attack and Leakage Assessment

In this section, we elaborate on the concept of information leakage for FA and
relate it with non-interference. Subsequently, we present two basic experiments
for examining leakage.

1.1 Information Leakage in Fault Attacks

Leakage in fault attacks is manifested as ciphertexts (or differentials of correct
and faulty ciphertexts). Formally, it is described as:

LFA = C = F(f,P,K) (1)

with f denoting the value of the intermediate state differential at the point of
fault injection (also denoted as the value of the fault mask or simply fault value),
P denoting the plaintext variable and K denoting the secret key variable. The
parameter f takes value according to some fault model F . Furthermore, the func-
tion F represents the fault propagation path through the cipher computation.
The observable for the adversary in FAs is the ciphertext under the influence of
faults (C) (resp. the differential between the correct and the faulty ciphertext
denoted as ∆C)3.

The plaintext P in the leakage definition (Eq. (1)) can be controlled by the
adversary. For a properly protected cipher, however, the key is supposed to re-
main secret, and no information regarding this should be leaked. Further, as
proved in [1], the fault value f at some intermediate state of the cipher compu-
tation should also be treated as a secret for protected ciphers. 4 In other words,
the fault value should not visibly influence the ciphertexts, and the secrecy of f

3 The observable definitions in fault attacks may go beyond the ciphertexts or ci-
phertext differentials. Later in this paper, we shall use a more general form of the
observables (Sec. 3.2).

4 We note that the proof in [1] implicitly considers the fault to be injected before
at least the last nonlinear operation of the cipher. This follows directly from the
arguments in [35]. Considering fault before or during the last non-linear operation
is required for most of the FAs, as otherwise the correct key cannot be distinguished
with DFA or statistical distinguishers. However, there can be a couple of exceptions,
such as the safe-error attacks with stuck-at faults, which do not depend on fault
locations. One may observe that even in this case the knowledge of the fault mask
(that is the differential between the correct and the faulty state) leaks all information
resulting in key recovery. For example, if a bit stuck-at-0 fault is injected in the state
just before the last key addition operation in AES, the fault mask is f = 0, if the
state value is also 0, and f = 1, otherwise. Hence, the knowledge of fault mask also
exposes the intermediate value in this case. To summarize, the observation regarding
the exposure of fault mask in [1] is consistent even for those fault locations which
are not followed by a non-linear layer, not causing any false negatives.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 7

is equivalent to the secrecy of the key. In the case of unprotected implementa-
tions, both the key and f leak via the faulty ciphertexts. Therefore, the only way
of preventing FA is to prevent the information flow from both K and f to the
ciphertexts obtained during a fault injection event. In practice, all the existing
fault attack countermeasures try to achieve this. Accordingly, a countermeasure
is considered to be secure if it satisfies the two following equations:

I(C,K|P) = 0 and I(C, f |P) = 0 (2)

I(X,Y |Z) is the conditional mutual information between random variables X
and Y given Z.

Evidently, these two definitions can be used interchangeably for leakage as-
sessment. However, our goal is to evaluate the hardened implementations with-
out utilizing any algorithmic details of them. Lack of algorithmic details refrain
the analytical estimation of mutual information and leaves data-based statistical
estimation as the only option, which is considered challenging.

The technical difficulty in estimating mutual information be circumvented by
an alternative interpretation of the leakage with the theory of non-interference.
In simple words, the non-interference property guarantees the absence of sensi-
tive information flow from the input to any observable point of a system. For
FA-induced leakage, non-interference between the key or the fault value with
the ciphertext or ciphertext differential (or the observable, in general) implies
that the attacker cannot exploit the ciphertext to extract the secret. Assessment
of non-interference in programs is usually performed by assigning program vari-
ables with different security levels. In particular, some of the variables are secret
(marked as ‘high’), and the rest of them are public (‘low’). All the program
variables can be treated as random variables in case the underlying program is
probabilistic.5 In this setting non-interference implies that the mutual informa-
tion between the ‘high’ input variables and the ‘low’ output variables must be
zero, which is the same as the definition of security provided in Eq. (2) (as in
a cipher program ciphertexts are typically ‘low’ variables and the key and the
faults are ‘high’ variables). However, an equivalent [24], easy-to-use formulation
of non-interference exists. It is based on the intuition that if the low outputs dif-
fer in two independent runs of a program having the same low inputs, but some
different high inputs (h and h′), then the program leaks about its high inputs.
For probabilistic programs, the difference in low outputs is manifested as the
difference between two distributions. We utilize this alternative notion to assess
the security from simulation data.

1.2 Basic Experiments in Leakage Assessment

In this subsection, we present two variants of the leakage assessment experiment,
which are based on the alternative notion of non-interference presented in the

5 Formally, a probabilistic program PP can be described as a routine, which contains
both probabilistic and deterministic assignments, and variables, when represented in
Single-Static-Assignment (SSA) form. Most generally, PP takes a joint distribution
of input variables and outputs a joint distribution of output variables.

8 Authors Suppressed Due to Excessive Length

last subsection. Both the fault and the key are treated as secrets (’high’ inputs).
For the sake of simplicity, we keep the value of one of the secret inputs fixed
during our testing, which gives rise to two experiments. The choice of the “fixed”
secret is driven by the type of application being tested, and also by the fault
model. Keeping the key fixed is found to be the most convenient option for the
cases where fault values vary within some finite range (for example, in the case
of random byte faults the range is {1, 2, · · ·, 255}). This is due to the fact that
the size of the keyspace is much larger than the size of the fault space, and
this size would matter in certain situations. For example, in case of code-based
detection countermeasures, not every fault value or key value (considering a
fixed plaintext and fault value) is leaky, as the faulty state might get detected
by the error detection module causing zero leakage. In such cases, one has to
exhaustively search the fault/keyspace for identifying potential leaky faults (resp.
keys). While this search is fairly easy for a fault space of size 256, it may become
computationally intensive for a larger keyspace. Varying the key is a viable option
too, and convenient for control-flow faults, bit-flip/stuck-at faults, or instruction-
skip faults, where the fault can typically take a single value (e.g., a control fault
may change the execution flow of a program by altering a decision from “yes”
to “no”. The only faulty value here is “no”, and accordingly there is only one
possible fault mask).

The interference experiment with fixed key and varying fault value is pre-
sented in Algorithm. 1 (which corresponds to the first equality in Eq. (2)). The
algorithm takes a protected cipher C, and two fault values f1 and f2, and a key k
as inputs. Internally, Algorithm. 1 runs two independent simulations of C for f1

and f2 with fixed plaintext p and key k. One should note that C is a probabilistic
algorithm which may internally generate random numbers to randomize the out-
come in each run. The simulation traces (the ciphertexts), denoted as Tf1 and Tf2
are then subjected to a statistical test TEST (). The TEST () reasons about the
equality of the distributions of the two simulation traces and returns TRUE if
the distributions are unequal. If the distributions are unequal the Algorithm. 1
returns YES indicating interference. The second interference experiment (ref.
Algorithm. 2) is realized similarly, but by varying the keys and keeping the fault
value fixed. However, it is recommended to perform the test in Algorithm. 2
on the ciphertext differentials. This is to handle the cases when the fault has
an incomplete diffusion to the ciphertext. Considering ciphertexts rather than
the differentials would leave a constant difference between the instances of two
classes Tk1

and Tk2
, which may result in false positives in TEST ().

It is worth mentioning that the basic interference tests can be optimized or
generalized in several ways in the context of certain countermeasure classes, fault
models, and observables. One such optimization, specific to detection counter-
measures has been presented in [1] (as a preprocessing step for selecting fault
value pairs ((f1, f2)) causing leakage). In Sec. 3 of this paper we propose two
other optimizations. In the next subsection and the subsequent section, however,
we focus on the detection test TEST ().

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 9

1.3 t-test for Leakage Detection

One convenient way of implementing TEST () is to apply Welch’s t-test as done
in [1]. A t-test gives a probability to examine the validity of the null hypothesis
as the samples in both sets were drawn from the same population, i.e., the two
sets are not distinguishable. Large absolute values of the t-test statistic (denoted
as t) returned by the test indicate that the data-sets are statistically different.
A threshold of |t| > 4.5 indicates that the confidence of the test is > 0.99999.

Algorithm 1 TEST-INTERF-FAULT

Input: Protected Cipher C, Fault value f1,
f2, Key k, Simulation counter S

Output: Yes/No
1: Tf1 := ∅; Tf2 := ∅
2: p := GENPT ()
3: for i ≤ S do
4: Tf1 := Tf1 ∪ C(p, k, f1)
5: Tf2 := Tf2 ∪ C(p, k, f2)
6: end for
7: if (TEST (Tf1 , Tf2)) then
8: Return Yes
9: else

10: Return No
11: end if

Algorithm 2 TEST-INTERF-KEY

Input: Protected Cipher C, Fault value f ,
Key k1, k2, Simulation counter S

Output: Yes/No
1: Tk1

:= ∅; Tk2
:= ∅

2: p := GENPT ()
3: corr1 := C(p, k1)
4: corr2 := C(p, k2)
5: for i ≤ S do
6: Tk1

:= Tk1
∪ {corr1 ⊕ C(p, k1, f)}

7: Tk2
:= Tk2

∪ {corr2 ⊕ C(p, k2, f)}
8: end for
9: if (TEST (Tk1

, Tk2
)) then

10: Return Yes
11: else
12: Return No
13: end if

In modern block ciphers, ciphertexts are of 64, or 128 bits, and treating them
as a single random variable during the t-test is impractical. One reasonable
solution is to treat them as multivariate quantities. Each bit, nibble or byte
of a ciphertext can be treated as a variable. The proposal is to consider both
bit and byte (or nibble, if required)-level divisions separately. As the t-test is
univariate, it is applied separately on each individual bit/byte location in a
point-wise manner. However, information leakage may not always be manifested
in this univariate setting. To see this, let us consider two variables V1 and V2

such that V1 = X ⊕ r and V2 = r. Here X is a leakage component depending on
the key and the fault value, and r is a random variable. In a univariate setting,
if we run the t-test on two different instances of V1 caused by two different fault
values (to be precise, X = Xf1 in the first distribution and X = Xf2 in the
second one), the t-test concludes that these two distributions are equal. This
is due to the presence of the random mask r. However, if one considers the
joint distribution of V1 and V2, the leakage becomes visible as the effect of the
mask r gets nullified. To capture this leakage, the t-test must be performed in
a multivariate setting. One approach for extending t-test to the multivariate
setting is to consider the centered product (i.e. higher-order statistical moments)
of different variables [1, 36].

In [1], the TEST () function begins with performing a univariate test (bit/byte
level), and continues with d-th order testing, for d = 1, 2, . . . , G, until a leakage
is observed. G is to be specified by the user. The simulation time (S in Algo-
rithm. 1, 2) increases for higher G values, and hence decides the test complexity.
However, higher G values ensure stronger security guarantee.

10 Authors Suppressed Due to Excessive Length

2 DL-FALAT: Deep Learning based Detection Test

The t-test and its higher-order variants indeed work for realizing TEST (), but
only with some critical theoretical and practical limitations. Higher-order t-test
can only capture different statistical moments, which has already been shown
to be sub-optimal in the context of SCA leakages [26, 27], even resulting in
false negatives. Nevertheless, the application of t-test in the context of FA can
also be problematic from a usability perspective. Unlike SCA countermeasures,
such as masking, where maximum possible leakage order has a direct relation
with the masking order, leakage order in FA does not formally relate with the
countermeasure construction. Rather the multivariate and higher-order leakages
are often formed due to the fault propagation and improper construction of
the countermeasures (e.g., for certain infection functions in case of infective
countermeasures). Consequently, no information regarding the maximum order
of such leakages is available apriori to the designer or the evaluator. The security
guarantee depends upon the evaluator’s choice of the maximum test order G.

Both the situations (i.e. limitation of moment-based approach and the issue
with test order) mentioned above can be handled if we have a detection test,
which typically does not depend upon the calculation of moments. DL methods
are renowned for learning in highly multivariate scenarios and can take several
complex interrelations among different features (beyond moments) into consid-
eration. Further, DL does not require any order-related information to be given
from the evaluator side as it can automatically discover the dependencies be-
tween different points. Finally, during our experimentation, it was found that
DL performs significantly better in noisy scenarios, and for very high leakage
orders compared to the t-test based approach.

2.1 DL based Leakage Testing: Main Idea and Challenges

The idea behind DL-FALAT is to train a Neural Network (NN) with two different
sets of ciphertexts resulting from computations based on two different secret
values. Afterwards, the classification capability of the trained model is evaluated
on a validation set. The accuracy result obtained over the validation set signifies
the amount of information learned by the network. A better-than-random guess
over validation set indicates the existence of leakages from the countermeasure.

Although the approach stated above is fairly simple, it poses several caveats
and challenges during implementation. We list them as follows:

Decision Making: One fundamental challenge in DL is to quantify the decision
threshold based on which one can distinguish between a leaky and a non-leaky
implementation.
Sample Size: It is always desirable that the detection test returns a consistent
decision with lowest possible number of samples. The sample size becomes impor-
tant here as typically one might need to test multiple fault locations, requiring
several fault simulations for each of them.
Model Selection: Ideally, there should be one specific DL model that works
for a large class of test scenarios. The critical question is that whether or not
there exists one such single model? If not, what are the guidelines for constructing

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 11

proper models? Model selection becomes even more challenging when the number
of data samples is less as there may be a tendency of overfitting.
Interpretation: How to obtain meaningful insights (such as univariate or mul-
tivariate leakage, the position of leaky bytes/bits in the ciphertext, etc.) from
the DL results?
We begin by addressing the first two issues simultaneously in the next subsection,
as there are some interrelations between them.

2.2 Iterative Training and Decision Making

If better than random learning occurs for a DL model, it implies the existence
of leakage. One key insight, in this case, is that the learning need not require to
be the “best”. Rather even a small indication of leaning is sufficient to decide
leakage. However, this indication must come with high (preferably quantifiable)
statistical confidence. This insight is valuable for keeping the sample size for
training and validation relatively small and also for the selection of models.

Overall Flow: There is no clear thumb-rule for determining the proper amount
of data required for training in DL. Hence, we begin the training with reasonably
small training and validation sets and iteratively increase their size by taking
feedback from a decision-making operation, which indicates whether or not there
is any leakage. The training and validation iteration continues until leakage is de-
tected, or a user-defined size limit of the dataset has been reached. This iterative
process helps us to test with the minimum possible number of samples.
The DL-based leakage assessment experiment is outlined in Algorithm. 3. The

basic experiment is the same as one described in Algorithm. 1, however, the
TEST () is replaced with the iterative DL-based test (an equivalent extension
for Algorithm 2 is also possible). The dataset under consideration is denoted
as D = Tf1 ∪ Tf2 (resp. Tk1 ∪ Tk2). The instances from the set Tf1 (resp. Tk1)
are labeled as 0, and the instances from the set Tf2 (resp. Tk2) are labeled as 1.
The training and validation begins with a reasonably small dataset size Sinit.
The size of the set D is increased adaptively in each iteration by adding equal
number of samples from both of its constituent sets. To represent the varying
size of D, from now onward, we use the notation Dt denoting the dataset at
t-th iteration. The entire set Dt is divided into training and validation sets
Trt and V lt, respectively. At the t-th iteration the model is trained with Trt
and validated over V lt. The test continues until a maximum dataset size S is
reached or some leakage is detected. Table. 2 presents the parameter settings for
Algorithm. 3 (decided experimentally from our testbench). In case of infective
countermeasures, for which we mostly observed multivariate leakage, we propose
a simple optimization for saving the total learning time for multiple iterations
of Algorithm. 3, while keeping the test still reliable. For these cases, if leakage
is not observed within S = 10000, we perform another single learning iteration
with a large sample count as a final confirmation test. In our experiments, 200000
samples were found giving reliable results in such cases.6

6 While the counts in Table. 2 are experimentally verified, for some specific cases
(e.g. non-leaky cases in SIFA testing), we test until S = 10000, (though the limit is
S = 5000) in this paper, just for a consistent understanding of the leakage trend.

12 Authors Suppressed Due to Excessive Length

Algorithm 3 DL-TEST-INTERF-FAULT

Input: Protected cipher C, Fault value f1, f2, Key k,
Simulation counter S, Initial simulation counter Sinit, Model M

Output: Yes/No
1: Tf1 := ∅; Tf2 := ∅
2: p := GENPT ()
3: St := Sinit

4: leak := Null
5: while St ≤ S do
6: for i ≤ Sinit/2 do
7: Tf1 := Tf1 ∪ 〈C(p, k, f1), 0〉 . Add labels to the data as 0 or 1
8: Tf2 := Tf2 ∪ 〈C(p, k, f2), 1〉
9: end for

10: Dt := Tf1 ∪ Tf2
11: 〈D1

t ,D
2
t , · · ·,D

K
t 〉 := GEN-CROSS-VALID-SET(Dt) . Generate K subsets for cross validation

12: At := ∅
13: for i ≤ K do

14: Trit :=
⋃K

j=0
j 6=i

Dj
t

15: V lit := Di
t

16: ai
t := Train-and-Validate(M, Trit, V lit) . Get the validation accuracy

17: At := At ∪ {ai
t}

18: end for
19: if (t Test(At) =⇒ H0) then . Perform one-tailed t-Test
20: leak = False
21: else
22: leak = True
23: end if
24: if leak then
25: Return Yes
26: else
27: if St ≤ S then
28: St = St + Sinit

29: else
30: break
31: end if
32: end if
33: end while
34: Return No

K-fold Cross Validation: For training and validation to be robust even over
small datasets, we adopt the stratified K-fold cross-validation approach, which
is well-known for preventing overfitting [37] (line 11 to line 18 in Algorithm. 3).
The K-fold cross-validation can be explained as follows. The entire dataset Dt

is randomly partitioned into K equal-sized subsets D1
t ,D2

t , · · ·,DK
t (|Dj

t | =
|Dt|
K ,

∀j). The stratified feature ensures that for each Dj
t , equal number of samples

from both of the classes (label-0 and label-1). Next, K − 1 of these subsets
are used for training the model M, and one subset is used as validation set.
Furthermore, this process is repeated K times giving each subset one chance to
be used as validation set. The main idea is to check if the model M is capable
of generalizing its knowledge for unseen datasets or not.

One-Sided t-test for Decision Making: In our testing methodology, we
accumulate the validation accuracy (as fraction of correctly classified examples)
for all the K validation sets in a specific iteration t (the corresponding set is
denoted as At = 〈a1

t , a
2
t , · · ·aKt 〉, where each ajt denote the validation accuracy

while validating on Dj
t)). To check leakage, we perform following hypothesis test.

H0 : µAt
= 0.5, and H1 : µAt

> 0.5. (3)

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 13

Table 2: Parameters for DL-based Leakage Detection Flow
Sinit S K

500
10000 (for infective countermeasures)
5000 (for time/space/information/instruction redundancy, SIFA faults))

50

Here µAt
denote the mean over set At. In case of leakage, the alternative hypothe-

sisH1 is accepted. We apply one-sided t-test with significance level α = 0.0001%,
and degrees of freedom K−1 (we take K = 50). The t-value threshold is t = 4.5
(i.e. t ≥ 4.5 implies leakage). The mean value (i.e. the RHS in Eq. (3)) 0.5 in the
above-mentioned t-test is quite intuitive. Acceptance of the alternative hypothesis
indicates that the average validation accuracy is better than random guess (i.e.
0.5), which indicates that the DL model is learning and there is leakage.

2.3 Selection of the DL Model

One of the major challenges of the leakage assessment problem is to select a
generalizable model (M), which should not depend upon the design under test,
or the nature of leakage. As already pointed out, one advantage that we have
in leakage assessment is the learning need not be the best. Any better-than-
random validation accuracy is acceptable. This fact allows some flexibility for
model selection. However, one must be careful about the overfitting of a model.

Bit and Byte Models: In this work, we use the two models shown in Listing 1.1
and 1.2. The manifestation of leakage in the ciphertext structures is interpreted
as bit-level or byte-level. This choice is motivated by the structures of existing ci-
phers and countermeasures, which mostly follow bit/byte level structures. Hence,
we use two separate models for bit (Listing 1.1) and byte (Listing 1.2) level anal-
ysis. It is worth mentioning that theoretically, any one of these two models is
sufficient for detecting all classes of leakages due to fault attacks. However, de-
pending on the underlying cipher and countermeasure structure (bit/byte), the
number of ciphertexts required for detecting leakage vary between the two mod-
els. Since one of the main motivations of this work is to reduce data complexity,
we propose using both models simultaneously on the data for practical purposes.

An interesting observation here is that the models are fairly simple. We found
that they work equally well for all the examples considered in this paper. An
added advantage of simple models is the reduced risk of overfitting, especially
while we are trying to use as less data as possible. We specifically verified that
none of our examples leads to overfitting even while trained with the minimum
number of samples required. In Sec 5, we show that these models outperform
the t-test based strategy for the considered examples.

The models have been developed using the Python-based Keras library [38],
which uses TensorFlow [39] in the backend. Both the networks consist of one
input layer, two fully connected (or Dense) hidden layers, and one output layer.
The hidden layers in the bit-model contain 8 and 4 neurons, whereas the hidden
layers in the byte-model contain 32 and 16 layers, respectively. In both the
models, the output layer contains 2 neurons. The hidden layers in both the
models use Rectified Linear Unit (ReLu) activation function, whereas the output
layers use Softmax activation function. Also, BatchNormalization is applied

14 Authors Suppressed Due to Excessive Length

between the dense layers7. As the loss function, we use categorical cross-entropy.
The Adam optimizer is chosen for the learning process (mostly with default
parameter settings, as per Keras).

Listing 1.1: Bit-Model

model = Sequential ([

Dense(8, input_dim =128,

activation=’relu’)

BatchNormalization ()

Dense(4, activation=’relu’)

BatchNormalization ()

Dense(2,

activation=’softmax ’)])

Listing 1.2: Byte-Model

model = Sequential ([

Dense(32, input_dim =16,

activation=’relu’)

BatchNormalization ()

Dense(16, activation=’relu’)

BatchNormalization ()

Dense(2,

activation=’softmax ’)])

2.4 Leakage Interpretation Techniques

There exist multiple approaches in the literature to interpret the decisions made
by a DL model, and they have also been used previously in the context of SCA
security [28,31]. However, there still exists important issues that were not clearly
addressed. Firstly, for certain implementations, it may happen that the model
only takes certain leaky features (i.e. ciphertext bits/bytes) into consideration
while ignoring others. This is perfectly natural as the desired classification may
be easily achieved by considering those features only. Exposing all leakage points
thus becomes an important issue8. Secondly, in the DL-based method, it is dif-
ficult to understand whether the leakage is univariate or multivariate, especially
when both kinds of leakage points are present in one trace (this is the case in
some of our examples). Note that t-test based method answers this question in
a reliable manner by gradually increasing the analysis order d. The motivation
behind leakage interpretation is to extract such information from a DL model.

We begin with the trained network model M during the leakage interpreta-
tion. Once again, we adopt an iterative approach. The very first step we perform
is a Sensitivity Analysis (SA) [31], which returns the contribution of each feature
in learning the leakage. Mathematically, the Sensitivity (Imi) for each feature

is computed as Imi =
∣∣∣∑j

∂y0

∂xi
·Xj

i

∣∣∣. Here xi denote the i-th input of the model

M, y0 is the first output of M, and Xj
i is the value of the i-th input in the

j-th ciphertext from the validation set. The partial derivative here computes
how much the output y0 changes with respect to an input xi. The sensitivity is
an aggregate of the changes over the entire validation set for each input. One
important distinction with the leakage detection test described in Algorithm 3
is that here we take the trained model and consider a fresh and sufficiently large
validation set while computing the feature importance values. Although the re-
quired number of traces increases in this case, we suggest performing leakage

7 BatchNormalization decouples the learning process of the hidden layers from each
other, which is useful to regularize the learning and prevent overfitting to some
extent. It also speeds up the learning process [40].

8 Such analysis can also give valuable information on how to attack.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 15

interpretation only for those fault locations, which show some sign of leakage.
Generating more traces for a few exploitable fault locations seems reasonable.

The SA step assigns real values to individual features using which they can
be ranked according to their contribution to the decision of the DL model. In
our analysis, we first begin with the subset of most important features. The
determination of the most important subset, which we denote as MI, is driven
by a threshold ThMI . We found that the average of all Imis works well as ThMI .

Once the MI has been determined, the analysis follows two separate paths.
In the first path, we eliminate all the features in MI from the actual trace
by assigning them with 0. We repeat the learning once again on the modified
trace and check if the model still learns the leakage. In case the model does not
learn, the dataset size is increased gradually up to some predefined count. This
count is kept larger than the standard leakage detection to gradually expose
even the most difficult-to-detect leakage points. The feature elimination and
training continues iteratively, until either all feature points are exhausted, or
the model fails to learn for maximum dataset size. In the second path of our
analysis, the MI set obtained in an iteration is tested to check whether the
leakage is univariate or multivariate. We apply the same trick of eliminating
feature points in this case. However, only one point from MI is eliminated at
each step, and the training is repeated. In case of a univariate leakage, even
a single point in MI would be able to classify, whereas in case of multivariate
leakage the classification would surely require multiple points. Note that this
mechanism can only distinguish between univariate and multivariate leakages
and would not necessarily indicate the exact leakage-order. In order to achieve
the exact order, one must perform the analysis for each feasible subset of MI.
While this is feasible if MI is small, it would be costly to perform for larger MI
sizes. We experimentally illustrate leakage interpretation in Sec. 5.

2.5 Discussion

One obvious question in the context of DL-based leakage detection is that if
the models chosen are good enough for detecting all classes of leakages within
reasonable data complexity. We found the answer to be affirmative in all of our
examples. One reason is that we do not require the best possible learning to
happen. We further explore this matter by considering other relatively complex
models such as Convolutional Neural Nets (CNNs). It was found that the data
complexities for leakage detection in CNNs are very similar to those with our
models. While this indeed depends on the nature of the data, we believe that
simple networks are still a better choice than complex ones, as they are less prone
to overfitting, in general. Another relevant question is whether other statistical-
tests, which are not moment-dependent, work better in this context than our
DL-based method. To evaluate this, we considered the χ2-test, which has been
previously used for leakage detection [41]. It was found that in terms of data
complexity, the χ2-test performs similarly to the DL-based test in many cases.
However, there are pathological cases where the performance of the χ2-test is
inferior to the DL-based test (one typical example is an infective countermeasure
called RIMBEN, for which DL requires 20000 traces and χ2-test requires roughly

16 Authors Suppressed Due to Excessive Length

80000.). Most importantly, the order of test has to be specified even for χ2-test,
which is not required for the DL-based approach. As already pointed out, this
was a motivation for shifting from the t-test based approach as the leakage
assessment for FA should discover the order itself. Hence, DL-based leakage
detection seems clearly advantageous over other approaches.

3 Proposed Generalizations of Leakage Assessment Tests

So far, we have focused on improving the leakage detection test using DL. In
this section, we propose two generalizations of the leakage assessment experiment
itself. The first one extends the experiments for SIFA faults while the second one
enhances the leakage and observable definitions for “non-cipher” components.

3.1 Handling SIFA Faults

SIFA is a recently proposed fault attack technique which utilizes the fact that
the activation (generation of a faulty value at the injection site) and propaga-
tion (propagation of the fault through the circuit) of a fault depends on secret
intermediate values. As a result, an injected fault may remain “ineffective” for
certain intermediate values, and eventually result in correct ciphertexts. As a
simple example of how ineffective faults happen, consider that an attacker in-
jects a stuck-at-0 fault to some intermediate bit of the cipher. If the actual value
of the bit is 0, no alteration will take place, and a correct ciphertext can be ob-
served. In contrast, if the actual bit value is 1, it will result in a faulty execution.
Typically, SIFA attacks exploit the correct ciphertexts for key recovery instead
of faulted ones, and this feature is crucial for bypassing most of the existing
state-of-the-art FA countermeasures [10,11].

The goal of this section is to tailor the test methodology in a way so that
it can meaningfully capture the SIFA attacks. One straightforward approach
(adopted in [29]) is to declare a countermeasure as secure only if either every
fault propagates to output, or every fault gets corrected (so that ineffectivity
of faults do not depend upon secrets). However, this is conservative and will
lead to false positives in several cases. For example, masking provides protection
against SIFA [17] for certain restricted fault models even if there is a mix of
correct and faulty ciphertexts. To defeat masking with SIFA, one would require
to fault certain specific points inside S-Boxes [11], which may not be feasible
for every implementation. Hence, having a mix of correct and faulty ciphertexts
does not necessarily mean that SIFA would take place.

SIFA Fault Models: Typically, we model the SIFA faults in two different ways.
To realize biased faults, we model them in a way so that the probability of a bit b
remaining unchanged during fault injection (denoted as pr0→0 if b = 0 and pr1→1

if b = 1) is not equal (i.e. pr0→0 6= pr1→1). An extreme example of this is the
so-called stuck-at-0 (resp. stuck-at-1) fault where the probability of b remaining
unchanged is 1 for b = 0, and 0 for b = 1. Such faults create correct ciphertexts
dependent on intermediate state bits which is exploited by SIFA [10] . The second
fault model is required for performing SIFA on masked implementations. Here

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 17

we perform bit-flip faults at carefully chosen locations within S-Boxes so that the
correct output becomes dependent on some unmasked intermediate value [11].
Modifications to the Basic Experiment: We now describe the modifica-
tions to the basic leakage assessment experiment. Most of the SIFA fault models
use bit-level faults for which only one possible value of fault exists (i.e. if the
bit is originally 0, the faulty value is 1 and vice versa). Our approach, in this
case, is to vary the key instead of the fault values (that is to use Algorithm 2).
The test happens with a fixed plaintext p and two chosen keys k1 and k2 (ref.
Algorithm. 2). Only constraint over k1 and k2 is that if the encryption of p with
k1 results in bit value 0 (or 1) in the fault injection point, then the encryption
of p with k2 must result in bit value 1 (or 0) in the injection point. For masked
implementations, if some shares of an intermediate bit b are targeted with a
fault, it is required that b = 0 (resp. b = 1) for k1 and b = 1 (resp. b = 0) k2.
Finally, we apply a simple trick which exposes the bias in fault injection (if any)
at the ciphertext level. For detection countermeasures, the faulted output (which
is usually represented as a fixed string) is replaced with random strings of same
length with the correct ciphertext. The reason behind this replacement is to get
rid of the unwanted constant difference between the two ciphertext distributions
to be tested due to fixed strings. No such replacement is required for infection
countermeasures as they already output randomized ciphertexts in case a fault
is detected. The leakage test is performed on the ciphertext differentials.
Why SIFA Leakage is Exposed? It is indeed a tempting question that how
SIFA leakage gets exposed through the aforementioned modifications. Taking
differential makes the correct ciphertexts obtained in the injection campaigns
equal to zero. The differentials corresponding to the faulty ciphertexts are ran-
dom. Each of the datasets corresponding to keys k1 and k2 (denoted as Tk1

and
Tk2

), thus contains a lot of zero-valued bit/byte strings along with some ran-
dom strings. Let us denote the count of zero-valued strings as Cnt0 and random
strings as Cnt1 in one of the datasets (say in Tk1). The ratio R=0 = Cnt0

|Tk1
| roughly

equals to either pr0→0 or pr1→1 depending on the value of the faulted interme-
diate bit b while the plaintext p is encrypted with k1. This is because b remains
unaltered either with probability pr0→0 or pr1→1 which eventually results in a
correct ciphertext. Next, let us consider the two datasets Tk1

and Tk2
. As already

mentioned, b assumes different values for k1 and k2. One may observe that, the
ratios R=0 for these two datasets become different. This is because in one of the
cases (say for k1), R=0 equals to pr0→0, while in the other case it equals to pr1→1.
Difference in the ratios establish the fact that the two underlying distributions
in Tk1

and Tk2
are also different, which indicates leakage. Similar arguments can

be given for the other fault model for masking implementations.

3.2 Assessing “Non-Cipher” Leakages – Compare-with-Uniform

There might be situations while a fault in some non key-dependent component
may indirectly cause the leakage of the key. One concrete example is a masked im-
plementation. The security of a masked implementation strongly depends upon
the availability of uniformly random bit sequences. Any deviation from uniform

18 Authors Suppressed Due to Excessive Length

randomness may enable an SCA attack. An adversary may de-randomize masks
by means of faults. One concrete example for hardware implementations has been
shown in [42] by corrupting a random number generator (RNG) using Hardware
Trojan Horses (HTH). Corrupting the input delivery logic for key/nonce/mask
can be another potential use case of such a phenomenon. Algorithm. 2 is not
applicable in such contexts as many such cases do not directly associate with key
(such as the mask or nonce). Algorithm. 1 will also not work because leakage
of fault values does not lead to any meaningful information unless faults are
injected inside cipher computation.
Compare-with-Uniform Experiment: In order to generalize the leakage as-
sessment for aforementioned situations, we first extend the notion of the observ-
ables from ciphertexts. An observable O is a set of variables which are either
input or output to a cryptographic module. Apart from the ciphertexts, exam-
ples of observables include the key, mask and nonce inputs to a crypto-core. The
enhancement to the non-interference test, we are going to propose now, is based
on a simple principle – if the distribution assumed by an observable changes (to
some non-uniform distribution) due to fault injection, then there is a chance that
it may be exploitable. In order to test this, we compare any observable distribu-
tion resulting from a fault injection with a uniformly random distribution using
TEST (). The fault here is simulated several times for a single fault value. We
call this as a compare-with-uniform experiment. The intuition behind this test
is that if the fault event results in randomizing the outcome of the target observ-
able O, then no information can be extracted from it even by the attacker. In
contrary, deviation from randomness may directly indicate chances of potential
attacks caused due to randomness loss (e.g. nonce repetition, or a non-uniform
mask for SCA resistance.).
An integrated test flow considering all observable definitions is presented in

Algorithm. 4. For every fault injection point, it is first checked if the fault influ-
ences the observable or not (line. 6) by changing its value. Next, fault simulation
is performed for a single effective fault value, and the simulation data is subject
to the compare-with-uniform test. In case the test indicates no distinction from
uniform random, we may safely terminate the experiment for the fault location
indicating no leakage. In the other case, it suspects leakage. Further, if the ob-
servable is found key-dependent, we run one of Algorithm 1 or 2 (whichever
suitable) and establish the existence of key-dependent leakage.

4 Handling the Fault Space

Leakage due to fault injection strongly depends upon the location of the fault
as well as the fault model. In the proposed testing flow, we suggest faults to be
simulated for enabling exploration of different fault models without depending on
the injection mechanism. Ideally, the fault simulation and the leakage detection
test should be performed for each fault location and fault model. However, there
are ways to restrict the test only for a subset of fault locations, yet obtaining
strong confidence regarding the security of the scheme. In this section, we outline
methodologies for fault space exploration in typical block ciphers. More precisely,

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 19

Algorithm 4 TEST-INTERF-GENERALIZED

Input: Protected Cipher C, Fault value f1, f2 Target Observable O, Simulation counter S
Output: Yes/No
1: Tfm := ∅;
2: p := GENPT ()
3: k := GENKEY ()
4: Oc := Simulate(C, p, k, NULL)

5: Ofm := Simulate(C, p, k, fm) for m ∈ {1, 2}
6: if (Oc! = Ofm) then
7: for i ≤ S do
8: Tfm := Tfm∪ Simulate(C, p, k, fm)
9: end for

10: for i ≤ S do
11: U := U ∪GENUNIFORM ()
12: end for
13: if (TEST (Tfm ,U)) then . TEST is performed with the DL-based approach.
14: if (O = g(K)) then . If O is a function (g) of key.
15: if (f1! = f2) then
16: Return DL-TEST-INTERF-FAULT(C, p, f1, f2, S)
17: else
18: k1 := GENKEY ()
19: k2 := GENKEY ()
20: Return DL-TEST-INTERF-KEY(C, p, f, k1, k2, S) . f1 = f2 = f
21: end if
22: else
23: Return Yes
24: end if
25: else
26: Return No
27: end if
28: else
29: Return No
30: end if

we exploit certain equivalence relations (stemming both from the structures of
digital circuits, as well as from the structure of block ciphers) to partition the
fault space into equivalence classes. Testing for one fault from each equivalence
class is sufficient to decide about the other members of the class.

4.1 Fault-Equivalence at Gate-Level

Testing for stuck-at faults (bit-level) is well-studied in the domain of digital
testing. Generating test vectors for a given combinational circuit with W number
of nets/wires (input, internal or output) requires to consider total 2×W faults
(both stuck-at-0 and stuck-at-1 fault for each wire). Test generation for each of
these faults needs solving an NP-Complete problem. While it seems challenging
for large scale circuits with millions of gates, it is practical and implemented
in several commercial tools. One way of handling such a huge fault space is to
reduce/collapse the total fault set using equivalence relations among the faults.
Tests generated over this reduced fault set with a good fault coverage guarantee
similar fault coverage over the entire circuit. This is referred to as fault-collapsing.

Fault collapsing utilizes two fundamental properties called fault-equivalence
and fault-dominance of digital circuits to result in a reduced fault set which
covers all possible single stuck-at fault scenarios.

Definition 1 (Fault Equivalence). Let Zf denotes the input-output mapping
realized by a circuit Z with a fault f induced in it (at some specific net). Two

20 Authors Suppressed Due to Excessive Length

faults f1 and f2 are considered equivalent if Zf1(x) = Zf2(x), for x ∈ I (I is
the set of all possible inputs to the circuit).

Fault equivalence can be tracked structurally from the circuit netlist. As an
example we refer to the AND gate shown in Fig. 1(a). The stuck-at-0 faults at
the inputs and the output are equivalent in this case. It can be observed that
the test pattern a = 1; b = 1 detects the stuck-at-0 faults at a or b. The same
pattern detects the stuck-at-0 fault at the output y. Hence, stuck-at-0 faults at
a, b and y are equivalent. From another viewpoint, a stuck-at-0 fault at any of
a, b or y sets the output value y to 0. Hence, the corresponding mappings Za,st0

Zb,st0 and Zy,st0 are equivalent. Simulating any one of these three faults will
have the same impact on the output.

a

b

y a ya

b

y
a

b

y

(a) (b)

(c) (d)

Stuck-at-1

Stuck-at-0

Fig. 1: Fault collapsing for AND: (a) Equivalent stuck-at-0 faults; (b) stuck-at-1
fault at y dominates the stuck-at-1 faults at the input nets ; (c) Collapsed fault
set; (d) Fault equivalence for NOT gate.

Fault dominance is another fault relation which is used for collapsing the set
of faults to be tested.

Definition 2 (Fault Dominance). Let Tf1 be the set of all tests that detect a
fault f1. A fault f2 dominates f1 if and only if f1 and f2 are equivalent under
Tf1 .

The idea of fault dominance is illustrated in Fig. 1(b) where the stuck-at-1
fault at y dominates the stuck-at-faults at a and b. The test vectors a = 0, b = 1
and a = 1, b = 0 detects the stuck-at-1 faults at a and b, respectively. The
same test vectors can also detect stuck-at-1 fault at y. The reduced fault set
after collapsing is shown in Fig. 1(c). One may observe that instead of total 6
faults, one need to test only 3 faults. A similar example of collapsing based on
equivalence is shown in Fig. 1(d) for a NOT gate.

Fault Dominance and Biased Faults: One may note that dominance prop-
erty only claims equivalence on a set of test vectors Tf1 . In practice, there can
be test vectors outside Tf1 , which detects the fault f2. Referring to the AND
gate example in Fig. 1(b), the stuck-at-1 fault at y gets detected even with
a = 0, b = 0, whereas none of the stuck-at-1 faults at a and b gets detected with
this input. While this is not an issue for conventional ATPG, it is important to
analyze if such collapsing is also appropriate in a fault attack context or not.
More precisely, we want to evaluate that if no fault simulation is performed at the

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 21

fault location y (and decision regarding its exploitability is made based on fault
simulations at a or b), would it result in a fault negative? As it turns out, for at-
tacks based on random fault models (e.g. DFA), this is not an issue because such
attacks require at most one input for a given fault location which can activate or
propagate the fault. This is guaranteed by the definition of fault dominance. For
attacks considering biased and ineffective faults, however, such dominance-based
collapsing may result in slight variation in the bias. For example, the stuck-at-1
fault at the output y of the AND gate will result in correct computation for input
value (a = 1, b = 1), and faulty computation for (a = 0, b = 0), (a = 0, b = 1)
and (a = 1, b = 0). On the other hand, if decision regarding this fault location
is made based on the stuck-at-1 fault at a, there will be faulty computation
for (a = 0, b = 1) and correct computation for (a = 0, b = 0), (a = 1, b = 1)
and (a = 1, b = 0). Similar observations can be made for fault simulation at b.
Although this will indeed be an approximation to use the fault simulations of a
or b to decide about leakage at y, one may observe that the value dependency
of the fault persists. In other words, deciding about leakage due to location y
based on a or b preserves the exploitability of the fault at y (if any), because
the value-dependent statistical bias still exists (albeit being slightly changed).
However, any value-dependent bias in fault is sufficient for attack and hence the
collapsing remains sound even for FA context.

(a) (b)

Stuck-at-1

Stuck-at-0

Fig. 2: Fault collapsing for a combinational circuit: (a) Uncollapsed faults (total
32); (b) Collapsed faults (total 15)

Fault collapsing at gate level provides a certain amount of reduction in the
size of the fault space for single stuck-at faults. Fig. 2 shows a simple illus-
tration of this claim. Further, Table. 3 provides the counts for the collapsed
and uncollapsed fault lists for an unprotected AES implementation, as well as
a TI implementation of PRESENT, and a SIFA-protected implementation of
PRESENT (ref. column 2-3). The fault lists are obtained by running a complete
ATPG in full-scan mode over the circuits using Synopsys TetraMAX. We have
also provided the fault coverage statistics over the circuits9. The advantage of
running a complete ATPG is that it rules out some of the faults which never

9 Fault coverage is the ratio of detected fault count and total (collapsed) fault count.
Although, in these cases, the fault coverage is 100%, in certain situations fault cov-
erage may go below 100% as some fault may remain undetectable even after an

22 Authors Suppressed Due to Excessive Length

Table 3: Fault Collapsing with Gate-Level and Algorithm Level Equivalence

Hardware
#Uncollapsed
fault-list

#Collapsed
fault-list

%Fault-coverage

#Collapsed
fault-list after
algorithm-level
equivalence

Unprotected
AES

26358 23560 100% 660

TI-PRESENT 22049 17918 100% 1051
ANTISIFA 66489 54147 100% 3182

corrupts the output, hence further reducing the fault space. A fault which never
corrupts the ciphertext cannot be utilized for fault attack. A full-scan ATPG
converts the sequential circuit to a combinational one and labels those faults
as detectable which actually reaches some register of the circuit. In a typical
block cipher datapath, if a fault reaches a state register, then it also reaches the
ciphertext output with high probability. Hence enlisting detectable faults based
on the full-scan circuit is sound.

Handling Bit-flip Faults: So far, we have discussed bit stuck-at faults on
the nets of a circuit. It is also common to consider single bit-flip faults in fault
attacks. The list of bit-flip faults is decided based on the list of stuck-at faults, as
the fault-list contains every feasible single-bit fault locations. This is logical, as
a bit-flip fault can be expressed as the conjunction of stuck-at-0 and stuck-at-1
fault at a given net.

Handling Multi-bit Faults: Gate-level fault collapsing indeed reduces the
set of single-bit faults. However, fault attacks also exploit certain multiple-bit
fault models such as byte/nibble faults. Considering every possible multiple-bit
fault would result in a fault space which is exponential over the single-bit fault
space. Instead, we utilize certain features of the practical faults happening in
devices to restrict this fault space. Most of the practical faults only corrupt cer-
tain consecutive bits in a register. Hence, we only consider faults within a byte
or a nibble or (in rare cases) within multiple consecutive bytes. Further, multi-
bit faults are captured only at the register boundaries. This is also derived from
practical observations. Even certain single bit faults may fan-out to multiple bits
at a register (which is the often case for glitch based fault injections). In case,
there is a multiple-bit fault inside the combinational path it would eventually
result in a single/multiple-bit fault at some register boundary. Overall, consider-
ing all single-bit faults in the combinational path, as well as multiple-bit faults
at register boundaries, should holistically cover most of the feasible fault cases
in a target implementation.

A straightforward approach for cipher evaluation would be to start with the
collapsed fault list and evaluate each fault with the proposed test. Eventually,
one can also test the multiple-bit faults at the register boundaries of each round.
However, as we shall show in the next subsection, the fault space can further be

ATPG run. Such undetectable faults, however, do not influence the FA testing as
undetectable faults can never corrupt the ciphertexts.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 23

reduced for block cipher designs, taking advantage of their high-level structural
equivalence in such ciphers.

4.2 Fault Equivalence in Block Ciphers

While gate-level fault collapsing provides some reduction in the space of single-
bit faults it is blind to the high-level structural features of the cipher under
evaluation. Block ciphers are constructed by repeating some basic sub-blocks
(such as S-Boxes and diffusion layers) several times. Such sub-blocks are found
to be equivalent in terms of fault attacks with respect to the attack complexity.
Such equivalence can be exploited to reduce the fault space drastically. The idea
is to deduce such equivalence from an unprotected version of the cipher under
test (preferably a high-level algorithmic representation as used in automated
fault attack tools such as ExpFault [43]).

Unlike the previous subsection, where the equivalence of faults was defined in
terms of input-output mappings of faulty functions, here we define equivalence
in terms of fault attack complexity.

Definition 3 (Fault Equivalence in Block Ciphers). Two fault locations
f1 and f2 according to a specific fault model are considered equivalent if they
result in attacks with the same complexity. The attack complexity is defined as
a tuple 〈Rm,Eval〉 where Rm denote the exhaustive key search complexity after
the attack and Eval denote the complexity of associated key guessing operation.

The definition of fault attack complexity above closely follows the one defined
in ExpFault. One should note that this definition mentions the fault locations
and does not comment about fault values. The value part of a fault (byte/nibble
faults are usually multi-valued) is taken care off by the fault model specification.
For example, in a random byte fault model, every fault value at a specific location
is considered to be equivalent and showing exploitability for one fault value pair
is sufficient. Even for biased faults, every statistical bias in the fault distribution
at a fault location is considered equivalent.

As an example of how to exploit such equivalence, we consider the AES block
cipher. If a random byte fault is injected at the input of a 9th round S-Box, it
results in an attack recovering 32 key bits. We used the automated fault analysis
tool ExpFault [43] for exploring all byte fault locations at the input of the 9th
round S-Box operation10. Every byte location is found to result in an attack that
requires an exhaustive search of 28 (i.e., Rm = 28). For the evaluation of the
keys, at most, 32 key-bits have to be guessed simultaneously, making the key
guessing complexity Eval = 232. Hence, all 16 byte locations (i.e., S-Box) inputs
were considered as equivalent, and testing one of them should suffice. Similarly,
any byte fault between the 8th and 9th round MixColumns is also equivalent
to each other. We also note that FA countermeasures usually do not destroy
the structural similarities within the original cipher structures. Hence, deciding
the equivalence over an unprotected implementation and using those exploitable
locations for testing the protected implementations works fine.

10 There are total 16 such locations

24 Authors Suppressed Due to Excessive Length

To further illustrate the concept of cipher-level fault equivalence, we now
use graphical representations of partial ciphers generated from the ExpFault
tool (called Cipher Dependency Graph or CDG in ExpFault’s terminology). Al-
though such graphs are not among the normal outputs of ExpFault, they can be
generated for debugging purposes from the version of the tool we used. Fig. 3 dis-
plays one such graphical representation of the last two rounds of AES. Each node
here corresponds to a bit of the state. Each topological layer in the graph repre-
sents the input of a sub-operation (i.e. SubBytes, ShiftRows, MixColumns, and
AddRoundKey). The S-Box and MixColumns layers are represented as complete
subgraphs, and red nodes represent the key bits. The direction of the arrows is
towards the ciphertext, and the last topological level represents the ciphertext.

Each topological layer (except those involving key addition) of the AES CDG
contains 128 nodes. Starting from the 9th round input (as we consider the fault
injection at the 9th round), the entire CDG contains four subgraphs, discon-
nected from each other. For the sake of representation, we place these four sub-
graphs, as Fig. 3(a)–(d). Without loss of generality, we consider two independent
fault injection scenarios at two different byte locations in subgraph Fig. 3(b) and
Fig. 3(c). The fault propagation path for Fig. 3(b) is colored blue, and the other
one is colored green. The first observation here is that both the “blue” and
the “green” subgraph involve the same number of key-bits from the last round,
which gets extracted by this attack. Moreover, both the graphs are isomorphic
to each other if we ignore few nodes from the first topological layer. It is quite
evident that the complexity components Rm and Eval are the same for these
two fault injections due to the isomorphic graph structures. Hence these two
fault injections can be considered equivalent and analyzing one would be suf-
ficient. The CDG structure confirms that all 16 S-Box inputs (input nodes to
the 8 × 8 complete subgraphs in the first two layers) are equivalent in terms of
attack complexity.

4.3 Putting it All Together

Last two subsections described two independent techniques for handling the
fault space in block ciphers. While the fault equivalence in block ciphers is
generic and can be applied for both software and hardware implementations,
the gate-level fault-collapsing is specific to hardware circuits. In case of software
implementations, the faults are generated at instruction-level at specific points
(such as S-Box input, output, and intermediate instructions) found by exploiting
algorithm-level fault equivalence. Overall, we go by the following steps:

– Perform the cipher-level fault collapsing using ExpFault tool. Get the list of
equivalent fault locations and select only a single location from the list. Such
locations are described as the inputs to some sub-operation (e.g. SubBytes,
ShiftRows, MixColumns) by the ExpFault tool [43].

– Select the module which implements the sub-operation specified at the pre-
vious step. For hardware implementation, perform gate-level fault collapsing
for this module only, and populate the fault list. Simulate each fault from this
fault list by stitching extra gates at the fault locations. For example, a bit-flip

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 25

6534

5589

5646 5651

6159

5899

6639

5896

5460

5625

6405 64606379 6358

5908

6022

6587

5419

6334

6156

5786

5498

59105888

6045

6529

5772

6636

55905504 5509

5913

6481 6483

5457

5763 5790

5626

5661

5551

5643

6608

6335

5500

6376

5778

5549

6532

5656

5891 5769

6036

5765

6535

5918

6612

6023

5914

54215376

5915

6152

5761

6154 6165

6637

5638

6354

5902

5461

61496148

6458

6040

5892 5776

6169

6613

5507

6033

6147

57645760

6378

5641

6638

5505

5380

6482

5631

6162

5510

5791

6024

6359

5784 5919

6357

5901 5789

6511

5650

6016 6025

6168

5588

6167

6031

6610

6353

5916

5502

6614

5649

6328

5422

5655 5663

5787

5456

5508

6155

6027

5503

6030

6173

5906

5496

6480

6046

6276

5586

648763816505

5547

5654

6586

5783

6032

5780

6484

53795382

6153

5640 5645

6531

5912

6047

5895

5637

5775

6279

5911

6609

6157

6273

60446042

6330

6633

5634 5653

5781

5459

6038

6380

6533

6150

6037

5773

6017

6145

6028

5548

6485

5662

6611

6332

5770

5659

6403

5506

5779

6333

5550

62756401

6584

65086274

6161

5889

6331

5762

5418 5497

5630

6632

5499

5546

5898

6590

5585 5627

6160

5660

5624

65916530

5633

6528

5767

6146

64636456

5768

6407 6506

5462

5900

6164

5788

5642

6585 6588

5416

5648

5893

6510

6174

5629

5777

6355

6039

6406

5463

5909 5917

6172

63776504

6615

5423

5644

5904

6329

6166

5782

6404

5771

5591

6163

6635

5378

6175

5501

6634

6034

5587

6035

6461

5647

6043

5658

6144

5635

5890

5632

6507 6509 6383

5774

63566272

5903

6026

6352

5377

6400

5657

5458

6589

5381

5584

64576277

6041

5544

5636

6151

5628

5652

6278

6171

6020

6382 6462

5545

5905

5417 5420

5897

602960216019

64866402

6170

6018

5383

5639

5511

5894 57855766 5907

6158

6459

(a)

5925

6054

6539

6309

5937

5687

6196

5936

6415

5413

5821

6306

5690

6518

6066

54025406

6489

6564

5678

6560 6618

6186

6366

66466566

6193

6620

6078

6207

5535

6064 6065

6617

55435539

6284

5949

6280

5933

6493

5945

6563

5576

61816176

5924

6308 6283 6519

5531

64886287

5674

5922

6361

5529

6623

6061

5940

5540

6285

5676

5819

5533

5415 5453

6072

6542

6076

6642

5675

5541

61916180

6050

5530

6541

6079

5448

5802

6055

6647

64096437

5814

5617

5673

5404

6202

6432

5401

5577 5623

6641

5809

6517

5542

6192

59485935

5454

6386

5664

6362

6205

6365

6536

56165536

6513

6200

5411

5694

6049

5449 5488

5799 5927

6414

5939

6516

6201

5579

5679

5492

60676048

6492

6058

54915403

6491 6367

6185

5667

6051

5792

5681

6071

5691

6206

6068

6385

5538

5823 5951

6182

5943

6538

5621

5795

6307

5817

5686

5794 5947

5682

6412 65126286

5407

5580

6194

5926

5410

6565 6567

5493

6562

6052

5670

6190

6077

6310

5812

5582

5938

6179

6537

5810 5818

6495

5805

5669

5583

5932

6390

5695

6364

5920

6199

595058155808

5528

6391

6188

5816

5677

6073

6282

5494

5803

63886311

6183 6204

5934

6184

5820

6490

6060 6069

5578

6053 6056

64106435

6189

6075

5619

5408

5622

6197

6387 6389

5929 5941 58225800 5946

64136411

6178

6360

5930

6177

5944

6187

5683

6494

5798

6434 6438

6070

6616

5412

5942

5666

6408

5811

6057

6561 6619

5923 5806

6074

5931

6540 66216543

5450

5928

5665

5796

6439

5797 5807

5680

6059

6195

6622

6305 6433 6384

5414

6515

5671

6363

5688

5804

5618

5668 5685

5495

5693

6640

5921

5620

5490

5672

6304 6436

5813

6203

5532

5452

5689

5537

5801

6643

5405

6281

6645

5409

5684

54895455

6062

5534 5581

5793

5692

6063

6514

6644

5451

6198

5400

(b)

5713

6341

5841

6096

5525

5832

5708

6218

6441 6419

6222

6468

6570

5437

5969

6313

5432

5703

6417

5846

6650

5967

5715

5983

64186444

6226

6523

5718

6098

5523

5726

6399

5982

5712 5727

5610

6396

5978

6111

6524

5561

5851

6526

6652

6470

6097

5440

6651

6107

5839

6093

5824

6232

5433

6575

5717

6649

5961

6105

5831

6091

6393

5958

6083

5393 5394

5837

6447

5572

6314

5716 5696

5829

6442

6547

59685826 5960

6236

5563

6228

5613

6654

6443

6545

6315

5447

6103

6465

5834

6599

6087

5487

5565

5962

6521

5615

5854

5435

5828

6595

5825 5853

5436

6445

6108

5833

6525

5714

5843

5699

6573

5485

6343

5953

6572

5710

6208

5704572557245720

6104

5956

5484

64666464

6594

5964 5971

5524

6423

6221

5847

5521

5392

6446 6294 6397

6238

5723

6082

5697

6549 6653

5830

63946291

5698

6234

5560

6223

5438 5444

5526

5827

6214

5445

6337

5573

5702

5480

6471

6235

5955

6090

5609

6421

6086

6290

6095

6292

6209

6416

5395

6571

5441

6548

5855

5721

5570

6395

5842

6110

5959 59805952

6099 6102

62176216

5399

6231

6544 6550

6219

6422

6220

6094

6230

5439

5569

6340

5965

6527

5396

6212

5700

5482

6227

6088

5481

6569

5706

6084

6211

55745568

5709

6568

5981

6338 6469

5398

6593

5442

6089

5434

5575

5849

6085

6293

5963 5972

63926288

5722

6289

5973

6215

6655

6225

6101

5522

5705

5848

6342

6081

63986295

5562

5397

5527

5711

6109

5979

5483

5612

5974

6092 6100

5614

6648

6520

5701

6440

5608

5975

6319

6233

5977

6420

56115564

5840

6546

5719

58445957 5970

6210 6224

5707

5838

6336

5571

6598

5443

6106

6597

6229

5976

5566

5835

6467

5966

6339

6239

5446

6317

5567

5954

6592 6551

6318

5850

6316

6237

5845

6596

5520

6312

6213

6080

5836

6574

6522

5486

5852

(c)

6428

6253

5751

5857

5512

6012

5517

6425

5861

5734

6271

5477

6246

6500

6009

5594

6252

6132

5600

54655390

6496

5867

6629

6003

6582

5478

6630

5864

6264

5556 5592

5752

6369

5601

5749

56035558

6559

5747

5596

6368

5469

6245 6267

6478

6124

5860 5874

6244

6501 6350

5746 5748 5756 57315742

6122

5728

6474

5467

6015

5426

5757

6453

6624

5738

6250

6114

5599

6129

5474

5554 55935555 5602

6346

5881

5473

5882

6243

6142

6345

6135

6374

5557

5987

5595

6429

5754

5984

6577

6344

6119

6426 63016375

6552

6268

6602

6451

6255

5856

65546576

5598

6002

5743

5869

5739

6005

6325

58865990

6502

5993 5994

6113

6263

6118

5858 6004

6370

6000

6249

6351

6627 6557

5865

5518

6579

5425

5870

6476

6254

6321

5755

64526479 630363736497

5431

6583

64306498 6455

5391

6472

5430

6580

6431

5998

6125

60065877

5552

6115

5519

6127

6256

5868

5427

5880 6014

5553

6116

5515

6133

5424

6140

6503

59955859

6326

5471

5986 5863

6628 6581

6427 6300

62576240

5514

6450

5604

5737

5385

6130

6499

6601

5468

6349

5559

5991

5730

5992

6553

5607

6449

6131

6625

5988 6011

6112

6266

5472

6128

6320 6302

6631

5735

5997

6136

6448

6138

5985

6123

6247

6008

5429

6424

6007

5732

5866

6555

5741

58765989 5878

6143

54795428

5750

62616251

6134

6265

6139

5466

6241

6600

6260

6010

6626 6556

6013

6604

5996

5753

6242

5729

5470

5875

6299

5597

5476

6117 6121

5475

5887

6558

6327 6296

6606

5745

64756473 6297

6141

62986371 6454

5873

6323

57445736

6258

5885

5464

6578

5871

6347

5388

6322

5606

6607

5605

5758

58725999

6120

64776372

5386

6324

5862

6248

6126

5879

5740

5389

5883

6603

6348

5733

5884

6262 6270

5513

5759

6269

6001

5516

5387

6137

6259

5384

6605

(d)

Fig. 3: Illustration: Cipher-level fault equivalence.

fault can be generated by stitching a 2-input XOR gate at the fault location.
One input of the XOR gate is attached with the fault location, whereas the
other input is set to 1 to flip the value at the fault location. This strategy is
also used for generating stuck-at and other fault models, simply by changing
the gate types. For software implementations, target every instruction within
this module using the GDB-based methodology described in Appendix C.

– Acquire simulation data from target fault locations and apply the DL-based
leakage detection test to decide their exploitability.

Column 4 in Table 3 illustrates the outcome of such testing in terms of fault-
locations tested (for hardware implementations). One may note that testing
one S-Box per round for AES and PRESENT is sufficient, and the size of the
corresponding fault set is significantly small with respect to the entire fault space
of the circuits.

5 Case Studies

In this section, we outline the case studies used to evaluate the techniques pre-
sented in the last few sections. We only provide the summary of different test
cases here, and the detailed evaluation results are given in Appendix. B. Our
evaluation set contains representatives from each of the countermeasure classes
described in Table. 1. Moreover, to establish the usefulness of the compare-with-
uniform extension in Sec. 3.2, we present a scenario of mask-derandomization
and evaluation of the firmware of an HSM called SHE [49]. It is worth men-
tioning that all the redundancy, infective, and instruction countermeasure were
implemented in software. The combined SCA-FA and SIFA countermeasures

26 Authors Suppressed Due to Excessive Length

Table 4: Summary of Results

Countermeasures
1-byte
Fault

Single
Inst.
Skip

Multi
Inst.
Skip

Skip-
based
Control
Fault

SIFA
Faults
(Biased
Bit-Flip

Faults)*

SIFA
Faults
(Unbiased
Bit-Flip
at Gate
Input)

Time/Space/
Information
Redundancy;
Infective

Simple time/space

redundancy+ Secure Secure Secure Secure Insecure Insecure

1-bit parity [13]
(information
redundancy)

Insecure Insecure Insecure Secure Insecure Insecure

Infective [12]
(without noise)

Insecure Insecure Insecure Insecure Insecure

Infective [12]
(with noise)

Insecure Insecure Insecure Insecure Insecure

Infective [44]
(RIMBEN)

Insecure Insecure Insecure Insecure Insecure

Infective [22] Secure Secure Secure Insecure Insecure Insecure
Infective [45] Insecure Insecure Insecure Insecure Insecure

Inst.
Level

Idempotent
Inst. [14]

Secure Secure Insecure Insecure Insecure

SCA+FA
Combined

Masking [46]+
Classical FA
Countermeasure

Secure Secure Secure Secure Insecure

CAPA [19] Secure Secure Secure Secure Secure
M&M [20] Secure Secure Secure Secure Insecure

SIFA
Counter-
measure

AntiSIFA [47]** Secure Secure Secure Secure Secure
Impeccable

Circuits II [16]**
Secure Secure Secure Secure Secure

Security
Module

SHE Firmware [48]

Insecure
for faults
in data
transfer

*
Bit-stuck-at faults are special cases of biased bit-flip faults.

+ Insecure against paired faults at the comparison and combined FA-SCA attack
** Secure up to a predefined security order

were implemented in hardware, with an exception for CAPA [19] and M&M [20],
which were simulated in Python. We implemented these two countermeasures for
KATAN-32 [50] block cipher and tested representative fault locations at differ-
ent building blocks to only verify the security claims from the papers. The SHE
design is a hardware/software co-design where the crypto-core is in hardware,
and the rest of the computation is running as firmware in a soft-core processor
(for simplicity, we checked some parts of the firmware). Table 4 summarizes the
outcomes of leakage assessment over the testbench for different fault models.

In order to reach a meaningful and practical coverage over the fault space
of a block cipher, we exploit the equivalences present in the fault spaces as
described in Sec. 4. Due to the presence of algorithm and cipher-level fault
equivalences, we only need to simulate faults for one S-Box per round at its
inputs, outputs, or intermediates points for most of our test cases involving
AES and PRESENT. Gate-level fault equivalences further reduce the count of
fault locations. The gate-level fault equivalence was estimated using the Synop-
sys TetraMAX11, whereas the algorithm-level equivalence was decided using the

11 The syntheses were performed using Synopsys Design Compiler and DFT compiler
(with STMicroelectronics CMOS65 – a 65nm technology library due to STMicroelec-

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 27

Table 5: Leakage Detection Time of the Examples Tested

Software
Examples

Code Size
(# inst.)

#Checked
Insts.

Avg. Leakage
Detection Time /

fault location
(in seconds)

Hardware
Examples

Total Fault
Count

(in full-scan)
(Collapsed)

#Location
Checked
×

#rounds

Avg Leakage
Detection Time /

fault location
(in seconds)

Time
Redundancy

83270 532 564.8
Combined
SCA + FA

17918 1051 × 3 304.45

Parity [13] 50544 597 425.94 AntiSIFA [17] 54147 3182 × 3 302.63

Infective [12] 208380 1170 620.41
Impeccable

Circuits II [16]
(3-way red)

17731 3744 × 1 300.38

Infective [44] 97519 532 682.65
Impeccable

Circuits II [16]
(7-way red)

88721 13895 × 1 301.76

Infective [22] 166520 1052 868.82
Infective [45] 90491 532 573.26
Idempotent

Inst. [14]
96593 1127 426.38

SHE Firmware [49] 205 205 436.16

ExpFault tool [43]. To further (reasonably) reduce the number of locations to
be tested, we target only the last three rounds (six rounds for infective counter-
measures [12] and [22] as dummy rounds were present) of the ciphers in most of
our test cases, due to the fact that most of the fault attacks target only last few
rounds of block ciphers. Although there exist attacks such as Fault Template
Attacks (FTA) [51], which are also applicable for middle rounds, their working
principle is the same in every round and, thus, checking the last few rounds
suffice. 12 Our testbench consists of both software and hardware implementa-
tions. We simulated bit/byte-fault, instruction-skip, and control faults on an
instruction-level abstraction of the software codes with a GDB-based fault sim-
ulator (detailed in Appendix C). We used state-of-the-art simulation tools (such
as Synopsys VCS) and a simple strategy of automatically stitching Hardware
Trojan Horses at desired fault locations for simulating hardware faults. A sum-
mary of implementations tested, along with timing results, is given in Table. 5.
The experiments were performed on three systems with Intel Xeon processors,
each having 64 processing elements. The code length here presents the total
number of instructions executed (for X86-64 architecture). For instruction-skip
experiments, we model up to 3 consecutive skips. We present average leakage
detection time (fault simulation + learning) for each fault location for running
Algorithm 3.

6 Conclusion

Security evaluation of an FA-protected implementation is a problem of utmost
practical importance. In this paper, we have proposed a DL-assisted leakage

tronics). No area/timing optimization was imposed during synthesis. All Synopsys
tools utilized in this work are under registered trademarks of Synopsys Inc.

12 Only for the test cases involving Impeccable Circuits-II [16], we did not use the
algorithm level equivalence as the current version of ExpFault tool does not support
tweakable block ciphers. In this case, we simulate faults for different constituent
modules (S-Box and MC modules in one of the redundant branches).

28 Authors Suppressed Due to Excessive Length

detection test DL-FALAT, which can validate protected block cipher implemen-
tations as well as leakages in peripheral components of security modules. It
automatically detects the order of leakage, which is not straightforward to de-
tect from the countermeasure structure in FA. The test is not only suitable for
filtering out malformed designs but can also figure out the points of vulnera-
bilities. We have shown how a variant of this test can be utilized to evaluate
against a variety of SIFA faults. Moreover, a comprehensive guideline for evalu-
ating the fault space of a block cipher with the proposed test is also presented,
which utilizes the equivalences present in fault space. Experimental validation
over different countermeasure classes establishes that DL-FALAT is able to rule
out flawed designs quickly. Although, in principle, a t-test based leakage de-
tection test should also detect all the leakages given enough data, DL-FALAT
detects it with significantly lower data complexity than t-test in many cases.
Data complexity can be crucial for FA contexts as multiple fault locations are
required to be tested. A potential future direction in this research is to adopt
the test for public-key implementations.

References

1. Saha, S., et. al.: ALAFA: Automatic leakage assessment for fault attack counter-
measures. In: DAC. p. 136. ACM (2019)

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
CRYPTO. pp. 513–525. Springer, Santa Barbara, USA (Aug 1997)

3. Tunstall, M., et. al.: Differential fault analysis of the advanced encryption standard
using a single fault. In: IFIP. pp. 224–233. Springer (2011)

4. Agoyan, M., et. al.: When clocks fail: On critical paths and clock faults. In:
CARDIS. pp. 182–193. Springer (2010)

5. Canivet, G., et. al.: Glitch and laser fault attacks onto a secure aes implementation
on a sram-based fpga. JoC 24(2), 247–268 (2011)

6. Dehbaoui, A., et. al.: Electromagnetic transient faults injection on a hardware and
a software implementations of aes. In: FDTC. pp. 7–15. IEEE (2012)

7. Agoyan, M., et. al.: How to flip a bit? In: IEEE IOLTS. pp. 235–239. IEEE (2010)

8. Bhattacharya, S., Mukhopadhyay, D.: Curious case of rowhammer: flipping secret
exponent bits using timing analysis. In: CHES. pp. 602–624. Springer (2016)

9. Zhang, F., et. al.: Persistent fault analysis on block ciphers. TCHES pp. 150–172
(2018)

10. Dobraunig, C., et. al.: Sifa: exploiting ineffective fault inductions on symmetric
cryptography. TCHES pp. 547–572 (2018)

11. Dobraunig, C., et. al.: Statistical ineffective fault attacks on masked aes with fault
countermeasures. In: ASIACRYPT. pp. 315–342. Springer (2018)

12. Gierlichs, B., et. al.: Infective computation and dummy rounds: fault protection for
block ciphers without check-before-output. In: LatinCrypt. pp. 305–321. Springer
(2012)

13. Guo, X., et. al.: Security analysis of concurrent error detection against differential
fault analysis. JCEN 5(3), 153–169 (Sep 2015)

14. Moro, N., et. al.: Formal verification of a software countermeasure against instruc-
tion skip attacks. JCEN 4(3), 145–156 (2014)

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 29

15. Patranabis, S., et. al.: Fault tolerant infective countermeasure for aes. HASS 1(1),
3–17 (2017)

16. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable circuits II. IACR
Cryptology ePrint Archive 2019, 1369 (2019)

17. Saha, S., et. al.: A framework to counter statistical ineffective fault analysis of block
ciphers using domain transformation and error correction. IEEE TIFS (2019)

18. Breier, J., et. al.: A countermeasure against statistical ineffective
fault analysis. IACR Cryptology ePrint Archive 2019, 515 (2019),
https://eprint.iacr.org/2019/515

19. Reparaz, O., et. al.: Capa: the spirit of beaver against physical attacks. In:
CRYPTO. pp. 121–151. Springer (2018)

20. De Meyer, L., et. al.: M&m: Masks and macs against physical attacks. TCHES
2019(1), 25–50 (2018)

21. Daemen, J., et. al.: Protecting against statistical ineffective fault attacks. Tech.
rep., IACR Cryptology ePrint Archive (2019)

22. Tupsamudre, H., et. al.: Destroying fault invariant with randomization. In: CHES.
pp. 93–111. Springer (2014)

23. Yuce, B., et. al.: Software fault resistance is futile: Effective single-glitch attacks.
In: FDTC. pp. 47–58. IEEE (2016)

24. Clark, D., et. al.: Quantified interference: Information theory and information flow.
In: WITS’04 (2004)

25. Saha, S., et. al.: ExpFault: an automated framework for exploitable fault charac-
terization in block ciphers. TCHES pp. 242–276 (2018)

26. Standaert, F.X.: How (not) to use welch’s t-test in side-channel security evalua-
tions. In: CARDIS. pp. 65–79. Springer (2018)

27. Moradi, A., et. al.: Leakage detection with the x2-test. TCHES pp. 209–237 (2018)

28. Wegener, F., Moos, T., Moradi, A.: DL-LA: deep learning leakage assessment: A
modern roadmap for SCA evaluations. IACR Cryptology ePrint Archive 2019,
505 (2019)

29. Arribas, V., et. al.: Cryptographic fault diagnosis using verfi (2020)

30. Yang, G., Li, H., Ming, J., Zhou, Y.: Convolutional neural network based side-
channel attacks in time-frequency representations. In: CARDIS. pp. 1–17. Springer
(2018)

31. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. TCHES pp. 107–131 (2019)

32. Kim, J., et. al.: Make some noise. unleashing the power of convolutional neural
networks for profiled side-channel analysis. TCHES pp. 148–179 (2019)

33. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for
side-channel analysis. TCHES pp. 348–375 (2020)

34. Cooper, J., et. al.: Test vector leakage assessment (tvla) methodology in practice.
international cryptographic module conference, 2013

35. Sakiyama, K., et. al.: Information-theoretic approach to optimal differential fault
analysis. IEEE TIFS 7(1), 109–120 (2011)

36. Schneider, T., Moradi, A.: Leakage assessment methodology. In: CHES. pp. 495–
513. Springer (2015)

37. Zeng, X., Martinez, T.R.: Distribution-balanced stratified cross-validation for ac-
curacy estimation. Journal of Experimental & Theoretical Artificial Intelligence
12(1), 1–12 (2000)

38. Chollet, F., et al.: Keras documentation. keras. io (2015)

30 Authors Suppressed Due to Excessive Length

39. Abadi, M., et. al.: Tensorflow: A system for large-scale machine learning. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). pp. 265–283 (2016)

40. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

41. Moradi, A., et. al.: Leakage detection with the x2-test. TCHES pp. 209–237 (2018)
42. Johnson, A.P., et. al.: Remote dynamic partial reconfiguration: A threat to

internet-of-things and embedded security applications. Microprocessors and Mi-
crosystems 52, 131–144 (2017)

43. Saha, S., et. al.: ExpFault (2018), https://cadforassurance.org/tools/sca/exp-fault/
44. Wang, B., et. al.: Exploration of benes network in cryptographic processors: A

random infection countermeasure for block ciphers against fault attacks. IEEE
TIFS 12(2), 309–322 (2016)

45. Ghosh, S., et. al.: Preventing fault attacks using fault randomization with a case
study on aes. In: ACISP. pp. 343–355. Springer (2015)

46. Poschmann, A., et. al.: Side-channel resistant crypto for less than 2,300 ge. JoC
24(2), 322–345 (2011)

47. Saha, S., et. al.: Transform-and-Encode: A countermeasure framework for statis-
tical ineffective fault attacks on block ciphers. IACR Cryptology ePrint Archive
2019, 545 (2019), https://eprint.iacr.org/2019/545

48. Using the cryptographic service engine (cse): An introduction to the cse module
(2011), http://cache.freescale.com/files/32bit/doc/app note/AN4234.pdf

49. memebers, H.: SHE - secure hardware extension functional specification version1.1
(rev 439) (2011), www.automotive-his.de

50. De Cannière, C., Dunkelman, O., Knežević, M.: Katan and ktantan — a family of
small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
CHES. pp. 272–288. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

51. Saha, S., et. al.: Fault template attacks on block ciphers exploiting fault propaga-
tion. In: EUROCRYPT. pp. 612–643. Springer (2020)

52. Lomne, V., et. al.: On the need of randomness in fault attack countermeasures-
application to aes. In: FDTC. pp. 85–94. IEEE (2012)

53. Bogdanov, A., et. al.: Present: An ultra-lightweight block cipher. In: CHES. pp.
450–466. Springer (2007)

54. Beierle, C., et. al.: Craft: Lightweight tweakable block cipher with efficient protec-
tion against dfa attacks. IACR Transactions on Symmetric Cryptology 2019(1),
5–45 (2019)

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 31

Supplementary Material

32 Authors Suppressed Due to Excessive Length

A Background on Deep Learning

Deep Learning (DL) algorithms deal with extracting meaningful information
from data by fitting mathematical models to it. The advantage of DL over tra-
ditional Machine Learning (ML) algorithms is that it does not require manual
feature engineering techniques, which is a pre-requisite step in almost every ML
algorithms to achieve reasonable accuracy. As a result, DL algorithms have been
successfully applied in a variety of fields for efficient pattern recognition like
image recognition, natural language processing, speech recognition, autonomous
driving, etc. One of the most used applications of DL is in the field of data clas-
sification, where the problem is to identify the category of a new observation
based on a training dataset containing observation whose category memberships
are known. In this section, we first provide an outline of data classification using
DL algorithms and then provide a brief introduction to Multi-Layer Perceptron
(MLP) networks, which is the core of all DL algorithms.

DL-based Data Classification: The objective of data classification is to clas-
sify some data x ∈ Rd based on their labels Lb(x) ∈ Z, where d is the dimension
of x and Z = {0, 1, · · · , L− 1} is a set with L number of classification labels. In
most of the DL-based classification problem, the one-hot encoding of the labels
are used, which is defined as:

B(x)[i] =

{
1 if i = Lb(x)

0 otherwise

i.e., B can be seen as a vector representation of the label Lb(x). A classification
algorithm can be viewed as a mapping N : Rd → R|Z|, which takes x ∈ Rd as
input to classify and produces an output vector y = N (x) ∈ R|Z|. In order to
quantify the efficiency of the mapping N for a given input x we define an error
function E : R|Z| → R. Categorical-cross-entropy (CE) error function is mostly
used for one-hot encoded dataset, which quantifies how far the output of N is
from the expected output of the label. CE is defined as:

CE = −
|Z|∑
i

(B(x)[i])log(N (x)[i])

In order to quantify the error of N over a whole set of data, we define a loss
function, which is the average over all the errors calculated using E . An MLP
consists of a set of trainable parameters. A detailed discussion of these trainable
parameters is provided later. The loss function depends on these trainable pa-
rameters, which are tuned during a training process to improve the efficiency
of the network. The training starts with initializing small random values (in a
given interval) to the trainable parameters. The training process is a classic nu-
merical optimization problem, where the goal is to find the optimal parameters
minimizing the loss function. A preferred approach to train an MLP is to use the
Stochastic Gradient Descent (SGD) technique to optimize the loss function. The

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 33

basic operation of SGD contains two steps. First, it calculates gradients of the
loss function with respect to each parameter in the MLP. Then, it backpropagates
the gradients to adjust all the parameters proportionally to the gradients. SGD
maintains a single learning rate (the constant term in the proportionality) for all
parameter updates, and the learning rate does not change during training. Adam
optimizer is a more advanced version of SGD where a learning rate is maintained
for each network parameters separately, which are adapted as the learning un-
folds. The process of updating all the parameters based on the training data in
a single iteration is known as an epoch. The training process is defined as the
repetition of epochs for a predetermined number of times in order to minimize
the loss function. The training process also depends on several hyper-parameters,
such as network architecture, loss function, optimization strategy, etc., which a
designer needs to select before starting the training process. Once the MLP pa-
rameters are optimized after the training, the network N can be used to classify
a data x whose corresponding label is unknown as:

l = argmax
j∈Z

N (x)[j]

One point to be noted in this case is that there is a tendency in each DL al-
gorithms to memorize information in the training dataset instead of learning
generalizable features of the entire data during the training process. The phe-
nomenon is known as overfitting of the network, which is a big challenge for
every DL designer. In order to monitor whether the network is being overfitted
or not, one widely used practice is to divide the complete dataset into three parts
– training, validation, and testing. The network is trained with the training data,
and after each epoch, it is tested with validation data to monitor both training
accuracy and validation accuracy. Overfitting is manifested by a continuous rise
of the training accuracy over the number of epochs while the validation accuracy
begins to fall. In that case, we adjust the training hyper-parameters to get rid of
such overfitting. Finally, we determine the effectiveness of the learned mapping
by calculating test accuracy using the testing data.

Multi-Layer Perceptron: Multiple Layer Perceptron (MLP) is one of the
basic types of DL architectures. MLP is a class of feed-forward neural networks
composed of multiple layers, and each layer consists of basic elements, called
perceptrons (Q) (also known as neurons). A perceptron, Q : Rn → R, takes
as input a vector x ∈ Rn and outputs a weighted sum evaluated through an
activation function denoted by A as follows:

Q(x) = A(

n∑
i=1

wixi + b)

wis are called the weights and b the bias of the perceptron unit. Popular activa-
tion functions are, for instance, the Rectified Linear Unit, Hyperbolic Tangent,
Sigmoid, and Softmax. In an MLP, each perceptron output of one layer is con-
nected to each perceptron of the next layer, which is called a fully connected
network. An MLP consists of three different types of layers:

34 Authors Suppressed Due to Excessive Length

– Input Layer: It is an intermediate between the input data and the rest of
the network. The output of the perceptrons belonging to this layer is sim-
ply the input vector itself. The number of perceptrons in the input layer is
determined by the number of feature points in the input data.

– Hidden Layer: It introduces non-linearity in the network so that the MLP
can fit a non-linear separable dataset. The number of perceptrons on the
hidden layer or even the number of layers depends on the nonlinearity and
complexity of the dataset. It has been demonstrated that the use of a huge
number of perceptrons can lead to overfitting if the dataset is close to a
linearly separable one. On the other hand, the use of too few perceptrons
may lead to an inaccurate solution for a complex dataset.

– Output Layer: It is the last layer of the network that directly maps the
output of the hidden layer to classes that the user intends to predict. Hence,
the number of perceptrons in the output layer is determined by the number
of classes in the input dataset.

The weights and biases of an MLP are the trainable parameters that are updated
during gradient descent optimization, as discussed previously. The number of
hidden layers and the number of neurons in each layer constitute a subset of
hyper-parameters.

B Detailed Case Studies

This section presents detailed case studies on a large set of countermeasures
evaluated in this work. A summary of the results on this test set has already been
presented Table. 4 in Sec. 5. We begin our discussion with infective, detection
and instruction-level countermeasures. Next, we present case studies on SIFA,
and also evaluate SIFA countermeasures and two combined countermeasures
CAPA [19] and M&M [20]. Finally, we describe two instances of so-called “non-
cipher” leakage – for mask de-randomization in masked cipher implementations,
and for a hardware security module called SHE.

B.1 Infective Countermeasures and Detection Countermeasures

Infective Countermeasures: In our experiments, we consider the total four
infective countermeasures. This subsection presents detailed analysis on them
along with parity-based detection countermeasures. To compare with the t-test,
in the rest of the paper we refer to the t-test results by ALAFA.

Example 1. The first infective countermeasure considered is due to [12], which
tries to randomize the outcome upon the detection of a fault with an infec-
tion function. The protected implementation executes each round of AES two
times – the first one contributes in actual encryption, and the second one is
redundant. Furthermore, there are (optional) random “dummy” rounds (round
computations over a random state changing at each encryption). Dummy round
computations randomly take place between each actual and redundant round to

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 35

2000 4000 6000 8000 10000
#Ciphertexts

0

10

20

30

40

50

60

t-
Va

lu
e

(a
bs

)

DL-FALAT
ALAFA
Non-Leakage Zone

(a)

0 5 10 15
Bytes

0.00

0.25

0.50

0.75

1.00

1.25

Se
ns

iti
vi

ty

MI = [4, 5, 6, 7]
Threshold

(b)

0 5 10 15
Bytes

0

100

200

300

400

Se
ns

iti
vi

ty

MI = [12, 13, 14, 15]
Threshold

(c)

0 5 10 15
Bytes

0

100

200

300

400

Se
ns

iti
vi

ty

MI = [0, 1, 2, 3]
Threshold

(d)

0 5 10 15
Bytes

0

1000

2000

3000

4000
Se

ns
iti

vi
ty

MI = [8, 9, 10, 11]
Threshold

(e)

[12, 13, 14, 15] [13, 14, 15] [14, 15] [15]
Features Used for Training

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(f)

Fig. 4: Leakage of Infective countermeasure [12] single-byte fault: a) Variation
of absolute t-test scores for DL-FALAT and ALAFA with respect to ciphertext
count; (b) SA results for first iteration; (c) SA results for second iteration; (d)
SA results for third iteration; (e) SA results for fourth iteration; (f) MI analysis
for first iteration.

confuse the attacker regarding the correct fault injection round. The non-zero
XOR differential between actual and redundant computation is used to “infect”,
the state during fault injection, which is further combined with the actual, re-
dundant and dummy round computations, resulting in a randomized ciphertext.

Our first experiment considers the countermeasure without the dummy rounds.
Without loss of generality, we describe fault injections at the 9-th round of AES
state. Leakage is observed in this case. Fig. 4(a) compares the outcome from DL-
FALAT to that of ALAFA [1] in terms of absolute t-values. The byte-wise testing
performs better for both ALAFA and DL-FALAT in this case. The leakage has
been detected roughly with 1400 ciphertexts (when the line crosses the red region
at t = 4.5) for DL-FALAT, while ALAFA requires almost 7000 ciphertexts.

The next step is to figure out the leakage orders for the DL-FALAT, for which
we perform the SA (ref. Sec. 2.4). The first set of leaky points (i.e., the set MI)
that gets exposed by the SA are the bytes [4, 5, 6, 7] from the 16-byte ciphertext
(Fig. 4(b)). MI sets are constructed using the average sensitivity of all points in
the trace as threshold ThMI (red lines in Fig. 4(b)-(e)), as described is Sec. 2.4.
The number of ciphertexts required to expose this leakage prominently is 1400.
An analysis of the MI set reveals this leakage to be multivariate (Fig. 4(f)) as at
least 3 bytes inMI are required for learning the leakage. To expose all the leakage
points, we iteratively continue by entirely removing the features in MI set and

36 Authors Suppressed Due to Excessive Length

20 25 30 35 40
#Dummy rounds

0

2

4

6

8

t-v
alu

e
(a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(a)

0 5000 10000 15000 20000
#Ciphertexts

0

10

20

30

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(b)

Fig. 5: Comparative analysis of DL-FALAT with ALAFA: (a) Infective counter-
measure [12] with dummy rounds and a single-byte fault. The absolute values
of t-statistic have been plotted for different count of dummy rounds #dum. The
amount of noise increases with the increase in #dum; (b) Variation of absolute
t-test scores for DL-FALAT and ALAFA in case of RIMBEN countermeasure
with the count of ciphertexts.

increasing the ciphertext count. The second set of leakage points ([12, 13, 14, 15])
get exposed without requiring any further increase in the ciphertext count giving
some hint that the leakage order of the first two sets might be equal (Fig. 4(c)).
The next set of leakage points getting exposed are [0, 1, 2, 3], for which 40000
ciphertexts are required (ref. Fig. 4(d)). Finally, the third leakage column gets
exposed with ciphertext count of 200000 (ref. Fig. 4(e)). Leakage is multivariate
for all these MI sets. The variation in ciphertext counts for different leakage sets
indicates that the statistical order may not be the same for all of them, which is
supported by the actual attack presented in [22]. Precisely, column [4, 5, 6, 7] and
[12, 13, 14, 15] have (bivariate) leakage order 1, column [0, 1, 2, 3] has an leakage
order 2, and the third column has order 3.

Example 2. In this example, the leakage detection is performed on [12] with the
dummy rounds included. Note that dummy rounds induce noise in fault injection
as the attacker cannot determine the exact round of injection. The amount of
noise depends on the dummy round count (#dum). For reasonable dummy round
counts of #dum (i.e. #dum = 20, 25, 30, 35, 40) the signal probabilities are 0.256,
0.202, 0.164, 0.136 and 0.114, respectively, if we target AES 9th round. Fig. 5(a)
presents the leakage profiles with respect to the number of dummy rounds for
both ALAFA and DL-FALAT 13. As it can be observed, DL-FALAT outperforms
ALAFA by a very large margin for all the noisy cases. Even for a sufficiently
large count of ciphertexts (200000), ALAFA fails to detect the leakage while
DL-FALAT succeeds. The leakage interpretation results are very similar to that
of the previous example.

Example 3. The third example considers a different infective countermeasure
due to [44], also called RIMBEN (Random Infection based on Modified Benes
Network). RIMBEN detects the presence of a fault during execution by taking

13 Only for this case study, we present the leakage result by varying the count of dummy
rounds. For each valuation of dummy round count, the same (200000) number of
ciphertexts is considered.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 37

0 50 100
Bits

0.0

0.5

1.0

1.5

2.0

Se
ns

itiv
ity

|MI| = 60
Threshold

(a)

0 20 40
of Features Deleted from MI

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

|MI| = 60

(b)

Fig. 6: Infective countermeasure RIMBEN [44] with single-byte fault: (a) SA
analysis results from first iteration; (b) MI analysis results from first iteration.

the differential of a cipher and a redundant computation state at each inter-
mediate round during encryption. The fault is then propagated through the
computation, and at the end, the faulty ciphertext (C) is XOR-ed (masked)
with a random bit string and returned as output. The random bit string is also
generated from the fault differential ∆C, utilizing a preprocessing logic and two
consecutive Benes network. The random bitstring outputted by this construction
has a Hamming Weight (HW) of N

2 , where N denote the block size of the cipher,
as well as the size of the N × N Benes network. Standard values of N are 128
or 64. In the present context, we consider a protected AES implementation for
which N = 128.

The analysis results on RIMBEN have been illustrated in Fig. 5(b). Once
again, in this case, we consider a fault injection at the 9th round of AES state.
The analysis has been performed for both bit and byte-level abstractions of
the ciphertexts, with the bit-level results being more prominent. As it can be
observed, the leakage is observed by the DL-FALAT within 8000 ciphertexts. In
contrast, ALAFA cannot detect any leakage even while higher orders up to 128
is considered14. The reason behind ALAFA failing is that all 128 bits take part
in decision making in this case, and leakage detection with 128-th order analysis
would require an impractically large trace count.

While performing the leakage interpretation, the first step of SA reveals the
set of 60 points, as shown in Fig. 6(a). However, it can also be observed that the
points which do not get included in this MI also have some observable sensi-
tivity. The size 60 of the MI set can be explained by the fact that the HW of
the masking string in RIMBEN is 64. And so knowledge of roughly half (60) of
the ciphertext bits reduces the entropy of the masked data sufficiently for the
DL model to decide the boundary between two classes with some better-than-
random accuracy. The analysis of MI shows that after removing 10 points the

14 Considering higher-order leakages in ALAFA requires the construction of all possible
subsets up to the specific leakage order. In the present case, we need to go up to
order 128. The total number of subsets to be considered up to order 128 is 2128,
which is clearly infeasible to cover. So we considered the single case where the order
of test is 128. The result being shown in the plots are for test order 128.

38 Authors Suppressed Due to Excessive Length

validation accuracy becomes 0.5 (Fig. 6(b)). This reveals the leakage as highly
multivariate, as considering even 50 points keeps the entropy of the mask suffi-
ciently high refraining classification.

Example 4. This example considers the infective countermeasure proposed by
Tupsamundre et al. at CHES 2014 [22], which is an improvement over [12]. The
main difference is that if a single/multi-byte data corruption happens in any
of the cipher redundant or dummy rounds, the protected cipher is supposed to
output a fresh random string instead of a randomized infected intermediate state
as in [12]. The countermeasure is first tested for single-byte fault model. As it
can be seen in Fig. 7 (a), no leakage is observed in this case, both by DL-FALAT
and ALAFA.

0 50000 100000 150000 200000#Ciphertexts
0.0

2.5

5.0

7.5

10.0

12.5

t-v
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(a)

1000 2000 3000 4000
#Ciphertexts

0

20

40

60

80

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(b)

Fig. 7: (a) Infective countermeasure [22] with single-byte fault: DL-FALAT and
ALAFA leakage profile with varying ciphertext count; (b) Infective countermea-
sure [22] instruction-skip based loop-abort: DL-FALAT and ALAFA leakage pro-
file with varying ciphertext count.

The next interesting observation is due to a control fault. We found that
an instruction-skip corrupting the loop counter variable (during last 2 rounds)
creates a univariate information leakage as shown in Fig. 7(b) A careful investi-
gation of this leaky event reveals that during such loop-abort fault injection, in
several cases the cipher outputs the input of the 10-th round instead of a random
string, thus leading to an attack. In [15], a similar attack was mentioned which
was found by manual inspection.

Example 5. This example considers the infective countermeasure in [45], which
utilizes an infection function comprising a deterministic linear diffusion func-
tion followed by a randomized nonlinear mixing function. Both ALAFA (for
d = 2) and DL-FALAT indicates leakage in this case for single-byte fault model
(Fig. 8(a))15. The leakage is multivariate, and DL-FALAT automatically discov-
ers that. Being interesting, here we show results from one iteration of the leakage
interpretation experiment. As it can be seen in Fig. 8(b) two consecutive points
attain almost the same sensitivity values. Multiple such pairs get captured in
one MI set during the first iteration of the interpretation experiment. We also

15 Note that, for this countermeasure, leakage has been observed while the ciphertexts
were considered bit-wise.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 39

500 1000 1500 2000 2500
#Ciphertexts

0

50

100

150

200

250

t-
Va

lu
e

(a
bs

)

DL-FALAT
ALAFA
Non-Leakage Zone

(a)

0 50 100
Bits

0.000

0.002

0.004

0.006

0.008

Se
ns

iti
vi

ty

MI = [43, 44, 45, 46, 47, 48]
Threshold

(b)

[44, 45, 46, 47, 48] [45, 46, 47, 48] [46, 47, 48] [47, 48] [48]
Features Used for Training

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(c)

Fig. 8: Infective countermeasure [45] with single-byte fault: (a) Variation of leak-
age with ciphertext count for DL-FALAT and ALAFA; (b) SA for the DL-FALAT
leakage for one iteration of iterative leakage interpretation; (c) Analysis of the
MI set in one iteration of leakage interpretation.

found that removing features in one MI set readily exposes another set of leak-
age points without any increment in the dataset size. This fact indicates that
the order of leakages might be the same throughout the ciphertext. Further,
the results of an individual MI analysis is presented in Fig. 8(c), which clearly
indicates that the leakage is multivariate.

It is worth mentioning that most of the time/space redundancy and infec-
tive countermeasures tested in this work are vulnerable against two equal faults
in redundant branches (exceptions are countermeasures based on information
redundancy, and CAPA, M&M described later in this section, where computa-
tions in redundant branches are different from each other). The reason is that
with two equal faults, the countermeasure mechanisms get bypassed, and actual
faulty ciphertexts directly reach the output causing univariate leakage. Finally,
it is worth noting that the simple time/space redundancy countermeasure is vul-
nerable against a combined side-channel and fault attack [52]. We believe that
DL-FALAT, with its observables extended with side-channel traces, will be able
to detect this class of attacks.

Detection Countermeasures: In this class, we consider a simple time redun-
dancy countermeasure, and an information redundancy countermeasure using
1-bit parity. Our first example utilizes simple two-way redundancy for error-
detection. While considered under a one-byte fault model, this countermeasure
always returns ⊥ as every fault gets captured. Among different fault models,
here we mention the case with single-byte fault. For this case the experiment in
Algorithm. 1 (and DL variant in Algorithm. 3) seems suitable. For a single-byte
fault in one computation branch, we found that all faults get detected, and the
constant output ⊥ is indistinguishable even if we consider two different fault
values (f1, f2). Hence, no leakage is caused for single-byte faults16.

16 A univariate leakage can be observed if along with the byte fault an instruction-skip
based control fault is utilized, to corrupt the outcome of XOR operation performing
check operation at the end. However, in this paper, we did not focus on multiple
cycle fault scenarios. The experiments remain unchanged even for those cases.

40 Authors Suppressed Due to Excessive Length

600 800 1000 1200 1400
#Ciphertexts

0

10

20

30

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(a)

0 5 10 15
Bytes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Se
ns

iti
vi

ty

MI = [0, 7, 10, 13]
Threshold

(b)

[0, 7, 10, 13] [7, 10, 13] [10, 13] [13]
Features Used for Training

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Ac
cu

ra
cy

(c)

Fig. 9: Leakage analysis and leakage interpretation for the parity example: (a)
Comparative leakage analysis of DL-FALAT and ALAFA with varying number
of ciphertexts; (b) SA of leakage; (c) MI Analysis indicating univariate leakage.

Next, we consider 1-bit parity-based error detection on the block cipher AES.
The countermeasure is bypassed for 50% of the byte faults having even parity
and hence declared insecure. To quickly discover a leaky fault pair (f1, f2) for
applying Algorithm. 1, we used the preprocessing step mentioned in [1]. Fig. 9(a)
provides the leakage profile in this case. The analysis of the MI set indicates
4 leakage points and a univariate leakage (as the learning can be performed
with high accuracy even with a single feature point (Fig. 9 (b), (c)). One should
note that although the leakage is observed in this case, for a well-formed code
based redundancy, finding out a so-called leaky fault is significantly rare. Hence,
even if there will be leakage for most of the code based countermeasures, the
exploitability depends on the rarity of the leaky faults, in general. We have also
tested the applicability of DL-FALAT on instruction-level countermeasures with
instruction-skip faults. The results are presented in Appendix. B.2.

B.2 Instruction Level Countermeasures

To test the applicability of DL-FALAT for instruction-level countermeasures, we
implemented the scheme proposed in [14] for an AES implementation without
any algorithm-level protection. The scheme in [14] replicates some machine in-
structions in a code multiple times, if there is no impact of replicating these
instructions on the final outcome of the code. Such instructions are called idem-
potent instructions. In our case, each idempotent instruction is duplicated once.
The instruction-skip experiments were performed with the GDB-based tool de-
scribed in Appendix. C.

The instruction-level countermeasures against FAs mainly rely on the fact
that an adversary can only skip a certain number of consecutive instructions
at a time. This is a reasonable assumption for certain practical fault injection
setups. However, it has been shown in [23] that for clock glitch-based injections,
one single glitch may affect multiple consecutive instructions which are present in
the processor pipeline during the glitch event. Such an observation necessitates
testing for so-called higher-order fault injections where multiple consecutive in-
structions are to be skipped at the same time. Our GDB-based fault simulator
easily simulates such multiple consecutive fault scenarios. While performing a
first-order fault injection (that is only single instruction-skip), we observed no

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 41

500 600 700 800 900 1000
#Ciphertexts

0

10

20

30

40

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

Fig. 10: Instruction-level countermeasure with duplicate idempotent instruc-
tions [14]. Two consecutive skips expose univariate leakage.

1000 2000 3000 4000 5000
#Ciphertexts

0

100

200

300

t-
Va

lu
e

(a
bs

)

DL-FALAT
ALAFA
Non-Leakage Zone

(a)

2000 4000 6000 8000 10000
#Ciphertexts

0

2

4

6

8

10

12

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(b)

500 1000 1500 2000 2500
#Ciphertexts

0

10

20

30

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(c)

Fig. 11: (a) Variation of leakage with ciphertext count for SIFA (on AES with
redundancy) with pr0→0 = 1, pr1→1 = 0; (b) Variation of leakage with ciphertext
count for SIFA (on AES with redundancy) with pr0→0 = 0.5, pr1→1 = 0.5; (c)
Variation of leakage with ciphertext count for SIFA attack on masking.

leakage. However, significant leakage can be observed if two consecutive instruc-
tions are skipped simultaneously, as shown in Fig. 10. We also performed leakage
interpretation experiments which confirms that the leakage here is univariate.

B.3 Leakage Assessment for SIFA

In this subsection, we validate the enhancements proposed in Sec. 3.1 for assess-
ing SIFA-related leakages. Here we first validate an FA-protected (with time re-
dundancy) unmasked AES, followed by a combined SCA-FA protected PRESENT
(hardware implementation). Next, we validate hardware implementations of two
recently proposed SIFA countermeasures, namely AntiSIFA [47] and Impecca-
ble Circuits II [16]. We also test two other combined countermeasures, namely
CAPA [19] and M&M [20] against SIFA in Appendix B.4. The reason behind
keeping CAPA and M&M in a separate section is that they follow a very different
design strategy from the rest of the countermeasures.

FA-protected and Combined Countermeasures As already mentioned in
Sec. 3.1, we simulate two kinds of faults to realize SIFA – 1) Biased data de-
pendent bit-flips, 2) Unbiased bit-flips inside the S-Box computations. In our
first example (FA-protected AES), we simulate a stuck-at-0 fault (pr0→0 = 1,
pr1→1 = 0). The leakage profile for this attack is shown in Fig. 11(a), which
presents the variation of (univariate) leakage with respect to ciphertext count
for both ALAFA and DL-FALAT. We observed a similar leakage for pr0→0 =

42 Authors Suppressed Due to Excessive Length

2000 4000 6000 8000 10000
#Ciphertexts

0

2

4

6

8

10

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(a)

0 2000 4000 6000 8000 10000
#Ciphertexts

0

2

4

6

8

10

t-
Va

lu
e

(a
bs

)

DL-FALAT
ALAFA
Non-Leakage Zone

(b)

0 2000 4000 6000 8000 10000
#Ciphertexts

0

2

4

6

8

10

t-
Va

lu
e

(a
bs

)

DL-FALAT
ALAFA
Non-Leakage Zone

(c)

Fig. 12: Evaluating SIFA countermeasures: (a) AntiSIFA [17] with single-bit
fault; (b) Impeccable Circuit II [16] with single bit error correction and 1-bit
fault; (c) Impeccable Circuit II with 2-bit error correction and 2-bit fault.

0.75, pr1→1 = 0.25. However, an experiment with pr0→0 = 0.5, pr1→1 = 0.5
(Fig. 11(b)) did not show any leakage even though there is a mix of correct
and faulty ciphertexts. This is expected and shows that having many ineffective
faults does not always indicate the chances of SIFA.

Next, we test a combined countermeasure that uses Threshold Implementa-
tion (TI) [46] for SCA protection, and simple time redundancy (two consecutive
computation followed by a checking at the end) for FA protection realized for
PRESENT block cipher [53]. With single-bit stuck-at-0 faults in the S-Box input
(one share is corrupted) or linear layer input, in this case, we observed no leak-
age due to the presence of masking. The masking here changes the impact of a
stuck-at fault similar to the situation where pr0→0 = 0.5, pr1→1 = 0.5. However,
while injecting inside TI equations (precisely, we injected single bit-flip fault in
a register at the middle of the shared S-Box computation), we observe leakage
(ref. Fig. 11(c)).

SIFA Countermeasures: We next focus on two SIFA countermeasures from [17]
and [16]. The first countermeasure, also called AntiSIFA, incorporates fine-
grained error correction in a per-bit manner with a masked implementation
of PRESENT. The error-correction is performed with majority voting and is
implemented with redundancy to make it fault-tolerant. The original proposal
presents an example of implementation with single-bit error correction support.
While tested with single-bit faults (even the one inside S-Boxes, as described
in the last example), we found that the countermeasure successfully prevents
the SIFA attacks by giving output only correct ciphertexts which supports the
claims made in the original paper (ref. Fig. 12(a)).

The final experiment on SIFA attacks is on an open-source hardware imple-
mentation of the Impeccable-Circuits II [16]. The main idea of this counter-
measure is to throttle the negative impacts of fault propagation by introducing
special checkpoints within the circuit, as well as forcefully making some circuit
paths independent of each other. Moreover, linear code-based (resp. majority
voting based) error correction is incorporated to counter SIFA attacks. In the
open-source hardware implementation, the countermeasure is implemented on a
tweakable block cipher CRAFT [54] 17. for single-bit error correction (3-way re-

17 https://github.com/emsec/ImpeccableCircuitsII

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 43

dundancy), and two-bit error correction (7-way redundancy). In the experiments,
we tested for different single-bit and multi-bit faults. Here we only mention re-
sults SIFA testing with stuck-at-0/1 faults for a single round. For 3-way (resp.
7-way) redundancy we found that single-bit (resp. 2-bit) faults get corrected.
The results are depicted in Fig. 12 (b) and (c), respectively, where no leakage
can be observed. However, it is worth mentioning that if we go beyond these
fault models (such as 2-bit faults for 3-way redundancy and 3-bit faults for the
7-way redundancy) leakage can be observed in our experiments. Overall, the
experiments establish the efficacy of DL-FALAT.

B.4 Evaluation of CAPA and M&M

CAPA: CAPA [19] and M&M [20] are two recently proposed classes of com-
bined countermeasures claiming security against combined SCA-FA adversary.
However, in this paper, we are only interested in their FA security. CAPA adapts
multiparty computation (with both active and passive security guarantees) in
the context of a crypto circuit. More precisely, in CAPA, the computation is
divided into tiles with each tile representing one party of the computation. The
communications between tiles are kept limited and secured with the help of extra
randomness (called Beaver triples). The input to be processed is first shared into
d independent shares to provide SCA security. Each share is processed within
a tile. The input is also multiplied with a (or multiple) randomly generated,
non-zero hash key α to generate information-theoretic hashes. The hash key is
also maintained in a shared manner. CAPA computes over the shared values
and their corresponding hashes for each gate up to the ciphertext level. The
hash check is performed during the computation of the nonlinear gates, and the
computation aborts upon finding out a mismatch. The active (i.e. FA) security
of the scheme stems from the fact that the hash key is changed randomly at
every cipher execution. In order to bypass the hash check, an adversary must
inject a fault such that the hash value of the correct and the faulty states are
equal. This happens with probability 2−sm, where m is the number of hash keys
and GF (2s) is the finite field over which the cipher computation is performed.

In order to validate CAPA with DL-FALAT, we implemented the KATAN-
32 [50] block cipher in Python. KATAN-32 is a 32-bit block cipher having a fairly
simple round structure mostly consisting shift operations, with only 4 AND and
8 XOR operations per round. Additionally, there are 4 XOR operations in the
key schedule. In our implementation of KATAN with CAPA, each basic gate is
replaced with an equivalent CAPA gate. We also maintained m = 8 hash keys to
maintain a practical fault detection capability. The computations are performed
over the field GF (2). Faults were simulated for input, output and intermedi-
ate computation of one representative CAPA gate from each gate type within a
round. CAPA was able to provide security against bit-stuck-at, bit-flip, and byte
faults. Further, we perform SIFA evaluation over this implementation. SIFA eval-
uation is interesting here as SIFA was not explicitly mentioned in the adversary
model of CAPA. It was found that CAPA provides security against the different
types of SIFA faults discussed in this paper. The result of one such experiment

44 Authors Suppressed Due to Excessive Length

0 2000 4000 6000 8000 10000
#Ciphertexts

0

2

4

6

8

10

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(a)

600 800 1000 1200 1400
#Ciphertexts

0

100

200

300

400

500

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(b)

Fig. 13: (a) CAPA [19] with bit-flip SIFA fault during an AND gate computa-
tion: DL-FALAT and ALAFA leakage profile with varying ciphertext count; (b)
M&M [20] with bit-flip SIFA fault during an AND gate computation: DL-FALAT
and ALAFA leakage profile with varying ciphertext count.

is depicted in Fig 13(a). The fault model tested for this specific experiment is
a single-bit flip at one of the input shares of a CAPA AND gate. In case the
fault propagates through the AND gate, it would corrupt (or not corrupt) the
AND output depending on the data on the other input of the AND gate (in other
words, it would result in a data-dependent ineffectivity of the fault). However, no
leakage is observed in this case even with such data-dependent ineffective fault.
We investigated the reason behind this SIFA resistance of the scheme. The SIFA
resistance stems from the way the non-linear (AND) computation is performed.
More precisely, in CAPA the AND computation is performed with the help of
random Beaver triples 〈a, b, c〉, where a, b, and c denote shares of bit variables
a, b and c, respectively. For a valid Beaver triple c = ab. During the AND com-
putation, the shares of the actual variables to be multiplied are blinded with
a, b. These blinded shares are next broadcasted among all the tiles. The hash
check is performed after this broadcast operation, and if the check passes, the
remaining computations for the multiplication are performed. Such hash check
before the multiplication prevents SIFA, as no fault values are allowed to pass
through non-linear gates in this case, which is the sole cause behind attacks like
SIFA and FTA. Operations until the hash check are linear. The result remains
the same even for biased bit-flip faults. In a nutshell, CAPA is found secure for
the fault models and locations tested in this work.

M&M: The M&M countermeasure adopts concepts similar to CAPA, but it
is significantly lightweight from an implementation perspective. The generation
and maintenance of hashes throughout the computation are similar to that of
CAPA. However, instead of checking hash values at each non-linear gate, M&M
performs an infective computation at the end. While it indeed makes M&M
lightweight with respect to CAPA, it cannot anymore provide SIFA security. To
validate this we performed the SIFA evaluation with DL-FALAT on a KATAN-32
implementation having M&M. As it is shown in Fig 13 (b), DL-FALAT indicates
leakage in this case. This is, however, not surprising as the M&M paper already
excludes SIFA from its security claims. Overall, M&M is also found respecting
its claimed security goals.

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 45

B.5 Generalized leakage Assessment

An Example of Mask De-randomization: In this example, we elaborate
the need of the compare-with-uniform experiment presented in Sec 3.2. Let us
consider an SCA resistant AES implementation, which expects a fresh random
mask of 128 bits for every execution. The SCA security strongly depends on
the uniform random distribution of the mask. Without loss of generality, we
assume a software implementation in this case, along with an instruction-skip
fault model. For a target architecture having 32-bit bus width, the 128-bit mask is
supplied to the AES module in chunks of 32-bits, as shown in Listing. 1.3. In this
pseudocode, the mask values are assumed to originate from memory locations
M11, M12, M13, M14. The observable O, in this case, is the mask register of the
AES. Now, an adversary may skip one or multiple of these instructions causing
the mask to remain fixed for all of the executions. In this case, we assume the first
32-bit data transfer is skipped resulting in a constant mask value for that 32 bits.
The procedure described in Algorithm. 4 can identify this loss of randomness
in this case, by detecting a deviation from the uniform randomness. Note that
there is no point in running TEST-INTERF-KEY or TEST-INTERF-FAULT in this
case as the mask does not vary with the key. The result of the leakage assessment
test is presented in Fig. 14 for ALAFA, and DL-FALAT. The necessity of the
compare-with-uniform test is established via this example.

Listing 1.3: Mask Deran-
domization

→mov reg1 , <M11 >

mov reg2 , <M12 >

mov reg3 , <M13 >

mov reg4 , <M14 > 500 1000 1500 2000 2500
#Ciphertexts

0

50

100

150

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

Fig. 14: Leakage results: Derandomization of mask.

Non-Cipher Leakage from SHE: Now we provide another example where
the manifestation of leakage happens on some observable other than ciphertexts.
We consider an automotive security standard called SHE. SHE standard rec-
ommends a hardware security module (HSM) for automotive electronic control
units (ECU), which primarily includes an AES block for encryption and authen-
tication support, as well as a True Random Number Generator (TRNG). The
services provided are the secure boot, encryption with different keys, and authen-
tication. There exist commercial microprocessors from vendors like NXP, and
Fujitsu, which include dedicated blocks implementing SHE often called Crypto-
graphic Service Engine (CSE). In such implementations, the HSM is kept almost
isolated from the rest of the components. It is provided with hardware AES, pri-
vate ROM, RAM and configuration registers. The master processor of the host
ECU can access the HSM only through the configuration registers. In addition
to this, there is another external interface connected to the secure storage, which
is tamper-proof and inaccessible to the user in a normal mode of operation. This

46 Authors Suppressed Due to Excessive Length

Secure Storage
(Firmware)

External Host
(SHE)

(ARM Cortex A9)

CSE Control
(Microblaze) CSE RAM CSE ROM

(Boot Loader)

AES CoreCSE Registers

32 bit AXI Data
Bus

32 bit AXI Data
Bus

32 AXI Data
BusCustom Bus Interface

SHE Host Environment

Cryptographic Service Engine

Control Path

Data Path

(a)

1000 2000 3000 4000 5000
#Ciphertexts

0.0

2.5

5.0

7.5

10.0

12.5

15.0

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(b)

500 600 700 800 900 1000
#Ciphertexts

0

20

40

60

t-V
al

ue
 (a

bs
)

DL-FALAT
ALAFA
Non-Leakage Zone

(c)

Fig. 15: (a) SHE Prototype: Basic Architecture; Leakage profile: SHE design; (b)
Compare-with-uniform with DL-FALAT; (c) Leakage for two different keys.

secure storage contains the firmware(s) (which needs to be verified, securely
booted, and updated if required), and the secret keys used by the ECU. All the
functionalities of the HSM are controlled by a core engine which is referred to as
CSE core. The purpose of this block is to execute the firmware for CSE which
implements certain cryptographic protocols by using the hardware primitives
provided. One reasonable approach for realizing this core is to utilize a small
32-bit processor.

In order to verify the robustness of this architecture, we implemented it ac-
cording to the specifications given in [48, 49]. The basic SHE architecture is
depicted in Fig. 15(a). The entire prototype has been implemented on the Zed-
Board Zynq-7000 platform. A MicroBlaze softcore processor-based module serves
as the CSE controller (core). CSE RAM and CSE ROM have been realized using
on-chip block memory available on the Zynq-7000 FPGA device. AES core and
CSE registers are purely FPGA logic-based modules. All these modules are in-
terconnected with the CSE controller module through a 32-bit AXI data bus. For
the external host, we used an ARM Core available on Zynq-7000 device. Secure
storage depicted in the diagram is also realized using on-chip block memory.
All the data stored in these memory blocks are stored in 32-bit word aligned
format to work with 32-bit AXI bus. The control logic (i.e., the firmware) of
CSE controller is written in C language (with functions from Xilinx MicroBlaze
C library) which executes on the embedded MicroBlaze softcore processor. All
the control and data operations are performed by memory-mapped 32-bit AXI
data transfer commands (Xil Out32() and Xil In32()).

For the sake of simplicity, the main target of our verification here is the
firmware code which can be targeted by an instruction-skip attacker. We con-
sider the basic encryption support provided by CSE. The 128-bit secret key is
to be copied from the RAM to the internal registers of AES in this case. The

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 47

plaintext (and mask, if required) is also supplied in a similar fashion. However,
an instruction-skip based leakage is observed here during the data transfer op-
eration. More precisely, the 32-bit bus architecture of our implementation allows
the 128-bit key to be transferred to the AES core in chunks of 32-bits. Therefore,
a 128-bit transfer requires four consecutive calls to the 32-bit data transfer op-
eration of MicroBlaze as shown in Listing. 1.4 (this operation, in turn, makes
a call to the 32-bit data transfer instruction of MicroBlaze ISA having opcode
swi). This part(s) of the code serves as our target spot during the transfer of
the secret key. KEYi, i ∈ {0, 1, 2, 3} represent the four 32 bit words of the key.

Listing 1.4: Code Snippet for AXI Data Transfer

Xil_Out32(XPAR_AESCORE_0_S00_AXI_BASEADDR ,KEY0);

Xil_Out32(XPAR_AESCORE_0_S00_AXI_BASEADDR +4,KEY1);

Xil_Out32(XPAR_AESCORE_0_S00_AXI_BASEADDR +8,KEY2);

Xil_Out32(XPAR_AESCORE_0_S00_AXI_BASEADDR +12,KEY3);

In our experiments, we skip one/more of these data transfer operations.One
reasonable assumption here is that the AES core is reset after each execution.
So, the key register is supposed to contain an all 0 value at the beginning. The
observable here is the key register inside the AES core. Algorithm. 4 detects
the presence of a key leakage in this case. The leakage profiles for the first
and second invocation of the TEST () (Algorithm. 4) are depicted in Fig. 15(b)
and (c), respectively. The compare-with-uniform test in Fig. 15(b) indicates a
randomness loss for the whole key. Due to key dependency of the observable, the
next test to be invoked is TEST-INTERF-KEY (as with skip we had only one fault
value). Fig. 15(c) presents the result of this experiment which indicates leakage.

One important question here is the exploitability of the leakage. The DL-
FALAT test itself cannot comment on that. However, for this specific example,
we found the leakage exploitable. Considering that fact that the AES registers
are reset to zero after each execution, the aforementioned instruction-skip results
in a scenario where a significant number of key bits are fixed to zero. Skipping
three consecutive data transfer operations will set 96 key bits to zero, and only 32
bits of the original key will remain intact. Upon receiving the faulty ciphertexts,
the adversary can run an exhaustive search of 32 bits and recover the unaltered
32 bits in the corrupted key. Repeating this attack three more times rest of the
key bits can also be recovered. The computational complexity of this attack is 232.

C Simulation of Instruction-Level Faults

Fault simulation for low-level software codes are fairly challenging. In this sec-
tion, we elaborate a generic and easy-to-use methodology for simulating instruc-
tion faults. However, before describing the details of this tool-flow, let us mo-
tivate the reader why instruction-level faults deserve special attention. Firstly,
an instruction-level fault, such as instruction-skip is one of the most repeat-
able, easy-to-generate, and consistent fault models. Secondly, their occurrence
at a lower level of abstraction explicitly captures certain fault cases which are
difficult to simulate at a high level. For example, certain control faults such as

48 Authors Suppressed Due to Excessive Length

loop-abort or change of control-flow may be realistically generated from skipping
or modifying a certain set of instructions or register values. For the purpose of
illustration, let us consider the code in Listing. 1.5. The X86-64 assembly corre-
sponding to line 5 of this code results in almost 30 instructions (some part pro-
vided in Listing. 1.6). In practice, one or more instructions from this assembly
may be vulnerable. Also, there may be cases where skipping multiple consecutive
instructions simultaneously, results in a desired faulty behaviour at high-level.

Listing 1.5: AddRoundKey of AES

for(i=0;i<4;i++)

{

for(j=0;j<4;j++)

{

state[j][i]^=

RoundKey[round*Nb*4+i*Nb+j];

}

}

Listing 1.6: X86-64 assembly (line. 5)

movl -8(%rbp), %eax

cltq

movl -4(%rbp), %edx

movslq %edx , %rdx

salq $2, %rdx

addq %rax , %rdx

leaq state (%rip),

%rax

addq %rdx , %rax

:

:

addq %rdx , %rax

movb %cl, (%rax)

C.1 The GDB-based Fault Simulator

In this subsection, we introduce our automation for simulating instruction-level
faults. The simulator utilizes the GDB tool, which is one of the most common
debugging support available. One great advantage of using GDB is that simu-
lating for different platforms requires almost negligible changes to be made in
the simulator. Listing. 1.7 presents an example of how an instruction- skip event
can be simulated using GDB. We refer to the code snippets already presented
in Listing. 1.5 and 1.6 for X86-64 architecture. However, the same experiment
can also be repeated for any embedded architecture like ATMega, or ARM. In
this case, we assume the availability of the high-level C code of Listing. 1.5. A
breakpoint is set at line number 5 of this high-level code. The breakpoint is also
conditioned to be encountered only when i == 0 and j == 0. Such conditional
breakpoints allow us to create the instruction-skip faults at specific loop itera-
tions. The skip itself is realized on the very first instruction of Listing. 1.6 by
executing lines 6-10 in the GDB script of Listing. 1.3. The core idea here is to
change the address stored in the program counter register to the next address.
Note that, GDB also allows explicit modification of program counter value and
even multiple consecutive instruction-skips and instruction-modifications can be
implemented using this fact. Furthermore, explicit register modification feature
also allows us to simulate register faults, as well as memory faults precisely. It is
worth to mention that any instruction can be targeted in this way by moving the
execution to the desired point with the nexti command provided by GDB. The

Leakage Assessment in Fault Attacks: A Deep Learning Perspective 49

current implementation of our instruction-fault simulator expects the position of
a skip in terms of the function name and target loop counter value (if required)
as inputs. However, in the general case, it can also start from the beginning of
a program and simulate skips for every instruction encountered. One important
point here is that instruction-level faults are often caused by one or more archi-
tectural features of the underlying processor. For example, in [23], it was shown
that due to the presence of multiple instructions within the pipeline at a single
clock cycle, one clock glitch is able to corrupt multiple instructions, which in
turn results in bypassing certain instruction-level countermeasures. Given the
fact that our GDB based fault simulator is capable of emulating the final ef-
fect of such complex micro-architectural events, it is well suited for the current
purpose and should be applicable in several other such verification contexts.

Listing 1.7: GDB snippet for instruction-skip in Listing. 1.5, 1.6

break main

break 5

condition 2 (i == 0 && j == 0)

r

c

set $var1 = $instn_length($pc)

set $var2 = $pc + $v1

set $var3 = $instn_length($v2)

set $var4 = $pc + $v3 + $v1

jump *($var4)

