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ABSTRACT
Noisy measurements of a physical unclonable function (PUF) are
used to store secret keys with reliability, security, privacy, and com-
plexity constraints. A new set of low-complexity and orthogonal
transforms with no multiplication is proposed to obtain bit-error
probability results significantly better than all methods previously
proposed for key binding with PUFs. The uniqueness and secu-
rity performance of a transform selected from the proposed set is
shown to be close to optimal. An error-correction code with a
low-complexity decoder and a high code rate is shown to provide
a block-error probability significantly smaller than provided by
previously proposed codes with the same or smaller code rates.

Index Terms— physical unclonable function (PUF), no multi-
plication transforms, secret key agreement, low complexity.

1. INTRODUCTION

Biometric identifiers such as fingerprints are useful to authenticate
a user. Similarly, secret keys are traditionally stored in non-volatile
memories (NVMs) to authenticate a physical device that contains
the key. NVMs require hardware protection even when the device is
turned off since an attacker can try to obtain the key at any time. A
safe and cheap alternative to storing keys in NVMs is to use phys-
ical identifiers, e.g., fine variations of ring oscillator (RO) outputs,
as a randomness source. Since invasive attacks to physical identi-
fiers permanently change the identifier output, there is no need for
continuous hardware protection for physical identifiers [1].

Physical unclonable functions (PUFs) are physical identifiers
with reliable and high-entropy outputs [2,3]. PUF outputs are unique
to each device, so they are used for safe and low-complexity key stor-
age in digital devices. These keys can be used for private authentica-
tion, secure computation, and encryption. Replacing such identifiers
is expensive, so key-storage methods should limit the information
the public data leak about the identifier outputs. Moreover, the same
device should be able to reconstruct a secret key generated from the
noiseless outputs by using the noisy outputs and public information.
The ultimate secret-key vs. privacy-leakage rate tradeoffs are given
in [4–6]. The secret-key and privacy-leakage rate limits for a sub-
optimal chosen-secret (CS) model called fuzzy commitment scheme
(FCS) [7] are given in [8]. We consider the FCS to compare different
post-processing methods applied to PUFs. Asymptotically optimal
CS model constructions are given in [9] and similar comparison re-
sults can be obtained by using these constructions.

Physical identifier outputs are highly correlated and noisy, which
are the two main problems in using PUFs. If errors in the extracted
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sequences are not corrected, PUF reliability would be low. If corre-
lations are not eliminated, machine learning algorithms can model
the PUF outputs [10]. To solve the two problems, the discrete cosine
transform (DCT) is used in [11] to generate a uniformly-distributed
bit sequence from PUFs under varying environmental conditions.
Similarly, the discrete Walsh-Hadamard transform (DWHT), dis-
crete Haar transform (DHT), and Karhunen-Loève transform (KLT)
are compared in [12] in terms of the maximum secret-key length,
decorrelation efficiency, reliability, security, and hardware cost. The
DCT, DWHT, and DHT provide good reliability and security re-
sults, and a hardware implementation of the DWHT in [12] shows
that the DWHT requires a substantially smaller hardware area than
other transforms. There are two main reasons why the DWHT can
be implemented efficiently. Firstly, the matrix that represents the
DWHT has elements 1 or −1, so there is no matrix multiplication.
Secondly, an input-selection algorithm that is an extension of the
algorithm in [13] allows to calculate two-dimensional (2D) DWHT
recursively. Based on these observations, we propose a new set
of transforms that preserve these properties and that significantly
improve the reliability of the sequences extracted from PUFs.

The FCS requires error-correction codes (ECCs) to achieve the
realistic block-error probability of PB = 10−9 for RO PUFs. The
ECCs proposed in [12] have better secret-key and privacy-leakage
rates than previously proposed codes, but in some cases it is assumed
that if multiple bits are extracted from each transform coefficient,
each bit is affected by independent errors. This assumption is not
valid in general. Thus, we extract only one bit from each transform
coefficient. The contributions of this work are as follows.

• We propose a new set of 2D orthogonal transforms that have
low-complexity hardware implementations and no matrix
multiplications. The new set of transforms are shown to pro-
vide an average bit-error probability smaller than the most
reliable transform considered in the PUF literature, i.e., DCT.

• Bit sequences extracted using a transform selected from the
new set of transforms are shown to give good uniqueness and
security results that are comparable to state-of-the-art results.

• We propose a joint transform-quantizer-code design method
for the new set of transforms in combination with the FCS
to achieve a block-error probability substantially smaller than
the common value of 10−9 with perfect secrecy.

This paper is organized as follows. In Section 2, we review the
FCS. The transform-coding algorithm to extract secure sequences
from RO PUFs is explained in Section 3. A new set of orthogonal
transforms that require a small hardware area and that result in bit-
error probabilities smaller than previously considered transforms is
proposed in Section 4. In Section 5, we compare the new transforms
with previous methods and show that the proposed ECC provides a
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Fig. 1. The fuzzy commitment scheme (FCS).

block-error probability for the new selected transform (ST) that is
smaller than for previously considered transforms.

2. REVIEW OF THE FUZZY COMMITMENT SCHEME

Fig. 1 shows the FCS, where an encoder Enc(·) adds a codeword
CN , uniformly distributed over a set with cardinality |S|, modulo-2
to the binary noiseless PUF-output sequenceXN during enrollment.
We show in Section 3 that the sequence XN and its noisy version
Y N can be obtained by applying the post-processing steps in Fig. 2
to RO outputs X̃L and its noisy version Ỹ L, respectively. The sum
WN = CN ⊕XN is publicly sent through a noiseless and authen-
ticated channel, and it is called helper data. The modulo-2 sum of
WN and the noisy PUF-output sequence Y N = XN ⊕ EN , where
EN is the binary error vector, gives the noisy codeword CN ⊕EN .
Using the noisy codeword, a channel decoder Dec(·) estimates the
secret key S during reconstruction. A reliable secret-key agreement
is possible by using XN , Y N , and WN [14, 15].

One can achieve a (secret-key, privacy-leakage) rate pair (Rs,R`)
using the FCS with perfect secrecy if, given any ε>0, there is some

N≥1, and an encoder and a decoder for which Rs =
log |S|
N

and

Pr[S 6= Ŝ] ≤ ε (reliability) (1)

I
(
S;WN)=0 (perfect secrecy) (2)

1

N
I
(
XN ;WN) ≤ R` + ε. (privacy) (3)

Condition (2) ensures that the public side information WN does not
leak any information about the secret key, so one achieves perfect
secrecy. The normalized information that WN leaks about the PUF
output sequence XN is considered in (3). If one should asymp-
totically limit the unnormalized privacy leakage I(XN ;WN ), pri-
vate keys available during enrollment and reconstruction are neces-
sary [4], which is not realistic or practical; see the discussions in [9].

Suppose the measurement channel PY |X is a binary symmetric
channel (BSC) with crossover probability p, and X is independent
and identically distributed (i.i.d.) according to a uniform distribu-
tion. Define Hb(p)=−p log p− (1− p) log(1− p) as the binary en-
tropy function. The region R of all achievable (secret-key, privacy-
leakage) rate pairs for the FCS with perfect secrecy is [8]

R=
{
(Rs, R`) : 0 ≤ Rs ≤ 1−Hb(p), R` ≥ 1−Rs

}
. (4)

We plot this region in Section 5 to evaluate the secret-key and
privacy-leakage rates achieved by the proposed ECC.
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Fig. 2. The transform-coding steps.

The FCS is a particular realization of the CS model. The region
Rcs of all achievable (secret-key, privacy-leakage) rate pairs for the
CS model, where a generic encoder is used to confidentially trans-
mit an embedded secret key to a decoder that observes Y N and the
helper data WN , is given in [4, 5] as the union over all PU|X of the
set of achievable rate pairs (Rs, R`) such that{

0 ≤ Rs ≤ I(U ;Y ), R` ≥ I(U ;X)− I(U ;Y )
}

(5)

where PX is the probability distribution of X and the alphabet U
of the auxiliary random variable U can be limited to have the size
|U| ≤ |X | + 1 as U − X − Y forms a Markov chain. The FCS
achieves a boundary point of Rcs for a BSC PY |X only at the point
(R∗s , R

∗
` ) = (1−Hb(p), Hb(p)). To achieve the other points on

the rate-region boundary, one should use a nested code construction
as in [9] or a binning based construction as in [16], both of which
require careful polar code [17] designs. This is not necessary to
illustrate the gains from the new set of transforms and it suffices to
combine the new set with the FCS.

3. POST-PROCESSING STEPS

We consider a 2D array of r×c ROs. Denote the continuous-valued
outputs of L = r×c ROs as the vector random variable X̃L, dis-
tributed according to fX̃L . Suppose that the noise component Ẽj

on the j-th RO output is Gaussian distributed with zero mean for
all j = 1, 2, . . . , L and that the noise components are mutually in-
dependent. Denote the noisy RO outputs as Ỹ L = X̃L+ ẼL. We
extract binary vectors XN and Y N from X̃L and Ỹ L, respectively,
and define binary error variables Ei=Xi ⊕ Yi for i=1, 2, . . . , N .

The post-processing steps used during the enrollment (and re-
construction) to extract a bit sequence XN (and its noisy version
Y N ) are depicted in Fig. 2. These steps are transformation, his-
togram equalization, quantization, Gray mapping, and concatena-
tion. Since RO outputs X̃L are correlated, we apply a transform
Tr×c(·) for decorrelation. We model all transform coefficients and
noise components as random variables with Gaussian marginal dis-
tributions. A transform-coefficient output T that comes from a dis-
tribution with mean µ 6= 0 and variance σ2 6= 1 is converted into
a standard Gaussian random variable during histogram equalization,
which reduces the hardware area when multiple bits are extracted.
Independent bits can be extracted from transform coefficients by set-
ting the quantization boundaries of a K-bit quantizer to

bk = Q−1

(
1− k

2K

)
for k = 0, 1, . . . , 2K (6)



where Q(·) is the Q-function. Quantizing a coefficient T̂ to k if
bk−1 < T̂ ≤ bk ensures that XN is uniformly distributed, which is
necessary to achieve the rate point where the FCS is optimal.

One can use scalar quantizers without a performance loss in se-
curity if the RO output statistics satisfy certain constraints [6]. We
do not use the first transform coefficient, i.e., DC coefficient, for
bit extraction since it corresponds to the average over the RO array,
known by an attacker [6]. Furthermore, Gray mapping ensures that
the neighboring quantization intervals result in only one bit flip. This
is a good choice as the noise components Ei for all i = 1, 2, . . . , N
have zero mean. The sequences extracted from transform coeffi-
cients are concatenated to obtain the sequence XN (or Y N ).

4. NEW ORTHOGONAL TRANSFORMS

A useful metric to measure the complexity of a transform is the num-
ber of operations required for computations. Consider only RO ar-
rays of sizes r = c = 8 and 16, which are powers of 2, so fast al-
gorithms are available. In [6], the DWHT is suggested as the best
candidate among the set of transforms {DCT, DHT, KLT, DWHT}
for RO PUF applications with a low-complexity constraint such as
internet of things (IoT) applications.

In [12], we extend an input-selection algorithm to compute the
2D 16 × 16 DWHT by applying a 2 × 2 matrix operation recur-
sively to illustrate that the DWHT requires a small hardware area in
a field programmable gate array (FPGA) since it does not require
any multiplications. Following this observation, we propose a set of
transforms that are orthogonal (to decorrelate the RO outputs better),
that have matrix elements 1 or−1 (to eliminate multiplications), and
that have size of 16×16 (to apply the input-selection algorithm given
in [12] to further reduce complexity). We show in the next section
that these transforms provide higher reliability than other transforms
previously considered in the literature.

4.1. Orthogonal Transform Construction and Selection

Consider an orthogonal matrix A with elements 1 or −1 and of size
k × k, i.e., AAT = I , where T is the matrix transpose and I is the
identity matrix of size k × k. It is straightforward to show that the
following matrices are also orthogonal:[

A A
A −A

]
,

[
A A
−A A

]
,

[
A −A
A A

]
,

[
−A A
A A

]
,[

−A −A
−A A

]
,

[
−A −A
A −A

]
,

[
−A A
−A −A

]
,

[
A −A
−A −A

]
. (7)

Since 2k
2

possible matrices should be checked for orthogonality, we
choose k = 4 to keep the complexity of the exhaustive search for
orthogonal matrices low. The result of the exhaustive search is a
set of orthogonal matrices A of size 4×4. By applying the matrix
construction methods in (7) twice consecutively, we obtain 12288
unique orthogonal transforms of size 16×16 with elements 1 or−1.

We apply these orthogonal transforms, one of which is the
DWHT, to an RO dataset to select the orthogonal transform whose
maximum bit-error probability over the transform coefficients is
minimum. This selection method provides reliability guarantees to
every transform coefficient. An ECC that has a higher code dimen-
sion than it is achievable according to the Gilbert-Varshamov (GV)
bound [18,19] for the maximum error probability over the transform
coefficients of the ST, is given in Section 5.3. This illustrates that
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Fig. 3. The histograms and means of the bit-error probabilities of
the transform coeeficients obtained from the DCT, DWHT, and the
selected transform (ST) from the new set.

our selection method is conservative and the block-error probability
is substantially smaller than 10−9.

There are also other orthogonal transforms of size 16×16 but we
illustrate in the next section that the new set suffices to significantly
increase the reliability of the extracted bits as compared to previously
considered transforms and previous RO PUF methods.

5. PERFORMANCE EVALUATIONS

We use RO arrays of size 16×16 from the RO dataset in [20] and
apply the transform-coding steps in Fig. 2 to compare the previously
considered transforms with the new set of transforms in terms of
their reliability, uniqueness, and security. We illustrate that a Bose-
Chaudhuri-Hocquenghem (BCH) code can be used for error correc-
tion in combination with the FCS to achieve a block-error probability
smaller than the common value of 10−9.

5.1. Transform Comparisons

We compare the orthogonal transform selected from the new set, i.e.,
the ST, with the DCT and DWHT in terms of the bit-error probabil-
ities of the 255 transform coefficients obtained from the RO dataset
in [20]. Fig. 3 illustrates the bit-error probabilities of the DCT,
DWHT, and the ST. The mean of the ST is smaller than the means
of the DCT and DWHT. Furthermore, the maximum bit-error prob-
ability of the DCT and ST are almost equal and are less than the
maximum error probability of the DWHT. Most importantly, the ST
has a large set of transform coefficients with bit-error probabilities
close to zero, so an ECC design for the maximum or mean bit-error
probability of the ST would give pessimistic rate results. We propose
in the next section an ECC for the ST to achieve a smaller block-error
probability than the block-error probability for the DCT.

5.2. Uniqueness and Security

A common measure to check the randomness of a bit sequence is
uniqueness, i.e., the average fractional Hamming distance (HD) be-
tween the sequences extracted from different RO PUFs [21]. The
rate region in (4) is valid if the extracted bit sequences are uniformly
distributed, making the uniqueness a valid measure for the FCS.

Uniqueness results for the DCT, DWHT, KLT, and DHT have a
mean HD of 0.5000 and HD variances of approximately 7×10−4

[12], which are close to optimal and better than previous RO PUF
results. For the ST, we obtain a mean HD of 0.5001 and a HD vari-
ance of 2.69×10−2. This suggests that the ST has good average



uniqueness performance, but there might be a small set of RO PUFs
from which slightly biased bit sequences are extracted. The latter
can be avoided during manufacturing by considering uniqueness as
a parameter in yield analysis of the chip that embodies the PUF. We
apply the national institute of standards and technology (NIST) ran-
domness tests [22] to check whether there is a detectable deviation
from the uniform distribution in the sequences extracted by using the
ST. The bit sequences generated with the ST pass most of the ran-
domness tests, which is considered to be an acceptable result [22]. A
correlation thresholding approach in [11] further improves security.

5.3. Code Selection

Consider the scenario where secret keys are used as an input to the
advanced encryption standard (AES), a symmetric-key cryptosys-
tem, with a key size of 128 bits, so the code dimension of the ECC
should be at least 128 bits. The maximum error probability over
the transform coefficients of the ST is pmax = 0.0149, as shown in
Fig. 3. Furthermore, assume that we use an ECC with a bounded
minimum distance decoder (BMDD) to keep the complexity low.
A BMDD can correct all error patterns with up to b dmin−1

2
c errors,

where dmin is the minimum distance of the code. It is straightfor-
ward to show that the ECC should have at least a minimum distance
of dmin = 41 to achieve a block-error probability of PB ≤ 10−9 if
all transform coefficients are assumed to have a bit-error probability
of pmax. None of binary BCH and Reed-Solomon (RS) codes, which
have good minimum-distance properties, can satisfy these parame-
ters. Similarly, the GV bound computed for pmax shows that there
exists a linear binary ECC with code dimension 98. Consider the bi-
nary BCH code with the block length 255, code dimension 131 that
is greater than the code dimension of 98 given by the GV bound, and
minimum distance dmin,BCH = 37 that is close to the required value
of dmin = 41. We illustrate in the next section that this BCH code
provides a block-error probability significantly smaller than 10−9.

5.4. Reliability, Privacy, and Secrecy Analysis of the Code

We now show that the proposed ECC satisfies the block-error
probability constraint. The block-error probability PB for the
BCH(255, 131, 37) code with a BMDD is equal to the probabil-
ity of having more than 18 errors in the codeword, i.e., we have

PB =

255∑
j=19

[ ∑
D∈Fj

∏
i∈D

pi •
∏
i∈Dc

(1− pi)

]
(8)

where pi ≤ pmax is the bit-error probability of the i-th transform
coefficient, as in Fig. 3, for i=2, 3, . . . , 256,Fj is the set of all size-
j subsets of the set {2, 3, . . . , 256}, andDc denotes the complement
of the set D. The bit-error probabilities pi represent probabilities of
independent events due to the mutual independence assumption for
transform coefficients and one-bit quantizers used.

The evaluation of (8) requires
∑18

j=0

(
255
j

)
≈ 1.90×1027 differ-

ent calculations, which is not practical. We therefore apply the dis-
crete Fourier transform - characteristic function (DFT-CF) method
[23] to (8) and obtain the result PB ≈ 2.860× 10−12 < 10−9.
This value is smaller than the block-error probabilitiy PB,DCT =
1.26 × 10−11 obtained in [6] for the DCT with the same code. The
block-error probability constraint is thus satisfied by using the BCH
code although the conservative analysis suggests otherwise.

The rate regions given in (4) and (5) are asymptotic results, i.e.,
they assume N →∞. Since separate channel and secrecy coding is
optimal for the FCS, we can use the finite length bounds for a BSC
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PY |X with crossover probability p = 1
L−1

∑L
i=2 pi ≈ 0.0088, i.e.,

the error probability averaged over all used coefficients. In [6], we
show that the BCH(255, 131, 37) code achieves (Rs,BCH, R`,BCH) ≈
(0.514, 0.486) bits/source-bit, significantly better than previously
proposed codes in the RO PUF literature, so it suffices to compare
the proposed code with the best possible finite-length results for the
FCS. We use Mrs. Gerber’s lemma [24], giving the optimal auxiliary
random variable U in (5), to compute all points in the region Rcs.
We plot all achievable rate pairs, the (secret-key, privacy-leakage)
rate pair of the proposed BCH code, and a finite-length bound for
the block length of N = 255 bits and PB =10−9 in Fig. 4.

The maximum secret-key rate is R∗s ≈ 0.9268 bits/source-bit
with a corresponding minimum privacy-leakage rate ofR∗` ≈0.0732
bits/source-bit. The gap between the points (Rs,BCH, R`,BCH) and
(R∗s , R

∗
` ) can be partially explained by the short block length of

the code and the small block-error probability. The finite-length
bound given in [25, Theorem 52] shows that the rate pair (Rs, R`)=
(0.7029, 0.2971) bits/source-bit is achievable by using the FCS, as
depicted in Fig. 4. One can thus improve the rate pairs by using bet-
ter codes and decoders with higher hardware complexity, which is
undesirable for IoT applications. Fig. 4 also illustrates the fact that
there are operation points of the region Rcs that cannot be achieved
by using the FCS and, e.g., a nested polar code construction from [9]
should be used to achieve all points inRcs.

6. CONCLUSION

We proposed a new set of transforms that are orthogonal (so that
the decorrelation efficiency is high), that have elements 1 or −1 (so
that the hardware complexity is low), and that have a size of k × k
where k is a power of 2 (so that an input-selection algorithm can be
applied to further decrease complexity). By using one-bit uniform
quantizers for each transform coefficient obtained by applying the
ST, we obtained bit-error probabilities that are on average smaller
than the bit-error probabilities obtained from previously considered
transforms. We proposed a BCH code as the ECC for RO PUFs in
combination with the FCS. This code achieves the best rate pair in
the RO PUF literature and it gives a block-error probability for the
ST that is substantially smaller than for the DCT. We illustrated that
the FCS cannot achieve all possible rate points. In future work, in
combination with the new set of transforms, we will apply a joint
vector quantization and error correction method by using nested po-
lar codes to achieve rate pairs that cannot be achieved by the FCS.
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