
From Rerandomizability to Sequential
Aggregation: Efficient Signature Schemes Based

on SXDH Assumption

Sanjit Chatterjee and R. Kabaleeshwaran�

Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, India

{sanjit, kabaleeshwar}@iisc.ac.in

Abstract. An aggregate signature allows one to generate a short aggre-
gate of signatures from different signers on different messages. A sequen-
tial aggregate signature (SeqAS) scheme allows the signers to aggregate
their individual signatures in a sequential manner. All existing SeqAS
schemes that do not use the random oracle assumption either require a
large public key or the security depends upon some non-standard inter-
active/static assumptions. In this paper, we present an efficient SeqAS
scheme with constant-size public key under the SXDH assumption. In
the process, we first obtain an optimized (and more efficient) variant of
Libert et al’s randomizable signature scheme. While both the schemes
are more efficient than the currently best ones that rely on some static
assumption, they are only slightly costlier than the most efficient ones
based on some interactive assumption.

Keywords: Rerandomizable signature, sequential aggregate signature, dual-
form signature technique, SXDH assumption.

1 Introduction

The notion of rerandomizable signature (RRS) was introduced by Camenisch
and Lysyanskaya [4]. Rerandomizability guarantees that given a signature σ
on some message m under the public key PK, anybody can compute another
valid signature on the same message which is indistinguishable from the original
signature. The above feature makes RRS a very useful tool in building privacy-
preserving protocols.

The notion of aggregate signature was introduced by Boneh et al. [3]. As the
name suggests, aggregation allows one to generate a (compressed) aggregate of
a collection of individual signatures on different messages generated by different
signers. This notion is inspired by several applications such as certificate chains
of public-key infrastructure and secure routing in the context of border gate-
way protocol [3]. Sequential aggregate signature (SeqAS), introduced in [24], is
a special type of aggregate signature. In SeqAS each signer sequentially adds
his/her signature on the aggregated-so-far signature. Lu et al. [23] presented the

first SeqAS scheme without random oracle based on the Waters signature [30]
under the CDH assumption. However, their construction requires a large public
key (linear in the security parameter).

In 2011, Schröder [28], showed how to construct a SeqAS scheme with constant-
size public key based on the Camenisch-Lysyanskaya rerandomizable signature
(CL-RRS). However, like the original CL-RRS scheme, security of Schröder’s
construction is based on a non-standard interactive assumption, called LRSW [25].
[28] relies upon the randomness re-use technique of [23], which makes use of the
randomness of the so-far aggregated signature to construct the aggregate sig-
nature. Lee et al. [16] improved Schröder’s construction further by introducing
public key sharing technique, in which one of the elements from the public key of
the underlying signature scheme (in this case, CL-RRS) is placed in the public
parameter. Due to this new technique, they have achieved efficient verification
and optimized public key size.

In 2013, Lee et al. [18] presented a SeqAS scheme with constant-size public
key. Their SeqAS scheme is built on a signature scheme that supports multi-
user setting and is publicly rerandomizable. In particular, the signature scheme
is obtained by introducing suitable components to the signature derived from
Lewko-Waters IBE [20] through Naor transformation. They have also used Ger-
bush et al’s [7] dual-form signature technique to prove unforgeability under a
previously introduced static assumption [20] along with some standard assump-
tions. Their follow-up work [17] improved upon the previous SeqAS in terms of
signature size as well as signing/verification at the cost of a slightly larger public
key under the same standard assumption along with two previously introduced
static assumptions [20].

Apart from the reliance on non-standard assumption, another limitation of
the CL-RRS scheme is that the signature size is linear in the number of message
blocks signed. In 2016, Pointcheval and Sanders [26] presented another reran-
domizable signature scheme (called, PS-RRS) where the signature size is inde-
pendent of the message block length. However, unforgeability of PS-RRS scheme
is proved under a new interactive assumption. Following the idea of [16], they
have also presented an efficient SeqAS scheme based on the PS-RRS scheme.

In 2016, Libert et al. [21] presented a randomizable signature scheme (de-
noted as LMPY-RS). They suitably combined a previously proposed signature
scheme [22] with a quasi-adaptive NIZK (QA-NIZK) argument [14] to obtain
a constant size randomizable signature for multiple message blocks. Using the
dual-form signature technique [7], they argue unforgeability of their construction
under the SXDH assumption.

1.1 Our Contribution

Our first contribution is to propose an efficient rerandomizable signature scheme
under the SXDH assumption. We then use the proposed RRS to realize a se-
quential aggregate signature scheme with constant-size public key under the
SXDH assumption. The performance of the proposed schemes is very close to

2

that of previous proposals based on some non-standard interactive assumption.
For detailed comparison, see Table 2 (resp. Table 4) for RRS (resp. SeqAS).

For the randomizable signature, compared to Libert et al. [21], our main nov-
elty lies in the application of the QA-NIZK proof system of Kiltz and Wee [14].
In particular, instead of the real QA-NIZK proof component, we use the simu-
lated one. Hence we first generate the secret exponent of the signature scheme
and then define the trapdoor keys with respect to the linear subspace relation
of the proof system. Then, using the dual-form signature technique [7] we argue
unforgeability based on the SXDH assumption while full rerandomizability [8] is
shown to follow unconditionally. See §3 for the detail.

Next, our RRS serves as a building block to construct a sequential aggregate
signature (SeqAS) scheme in §4. Our construction employs both ‘randomness re-
use’ and ‘public key sharing’ techniques [16]. Since the original LMPY-RS is not
directly amenable to signature aggregation, we tweak the signature scheme to
realize the desired functionality. As can be seen from Table 4, existing schemes in
a similar setting have one of the following limitations. To have security based on
a standard assumption, the scheme suffers from large public key size [23]. When
public key size is constant, security relies on some non-standard assumption [19].
In contrast, we obtain an efficient construction with constant size public key (and
signature) where security is argued based on the well-known SXDH assumption.

2 Preliminaries

For a prime p, Z∗p denotes the set of all non-zero elements from Zp. We denote

a
$← A to be an element chosen uniformly at random from the non-empty set A.

We define the bilinear group generator as follows.

Definition 1 A bilinear group generator P is a probabilistic polynomial time
(PPT) algorithm which takes the security parameter λ as input and outputs Θ =
(p,G,H,GT , e, g, h), where p is prime, G, H and GT are the prime p order groups
and g (resp. h) is an arbitrary generator of G (resp. H) and e : G×H −→ GT
is a bilinear map that satisfies, (i) Bilinearity: For all g, g′ ∈ G and h, h′ ∈ H,
one has e(g ·g′, h ·h′) = e(g, h) ·e(g, h′) ·e(g′, h) ·e(g′, h′), (ii) Non degeneracy:
If a fixed g ∈ G satisfies e(g, h) = 1 for all h ∈ H, then g = 1 and similarly for
elements of H and (iii) Computability: The map e is efficiently computable.

We recall the decisional Diffie-Hellman assumption (DDH) in G (denoted as
DDHG) as follows.

Assumption 1 Given (Θ = (p,G,H,GT , e, g, h), ga, gb) and T = gab+θ, it is

hard to decide whether θ = 0 or not, for a, b
$← Zp.

In the same way, we can define the DDH assumption in H (denoted as DDHH).
When P satisfies the DDH assumption in both G and H, then we say that P
satisfies the symmetric external Diffie-Hellman (SXDH) assumption.

We recall from [11] the double pairing assumption (DBP) in H (denoted as
DBPH) as follows.

3

Assumption 2 Given (Θ = (p,G,H,GT , e, g, h), hr, hs), it is hard to compute
(R, S) 6= (1, 1) from G2 such that e(R, hr)e(S, hs) = 1.

In the same way, we can define the DBP assumption in G (denoted as DBPG).
From [1, Lemma 2], it is clear that, DBPG is reducible to DDHG and DBPH is re-
ducible to DDHH. The formal definition of digital signature, rerandomizable sig-
nature and sequential aggregate signature schemes can be found in Appendix A.

3 Rerandomizable Signature

In this section, we describe an efficient rerandomizable signature scheme, whose
security is proved under the SXDH assumption. Our construction is inspired
from [21]. In [21], one requires to know the public key components to randomize
the signature, whereas in our scheme one needs to know only the underlying
group order. This feature will later play an important role in the construction
of aggregate signature of §4.

3.1 Construction

Libert et al. [21] presented a randomizable signature scheme (denoted as LMPY-RS)
based on QA-NIZK proof system. In particular, to prove that a vector of group
elements belongs to some linear subspace, [12,14] showed that the argument size
will be independent of the subspace dimension. [21] exploited this property to
obtain a randomizable signature scheme for multiple block messages with a con-
stant size signature. In order to prove unforgeability, they have used Gerbush et
al’s [7] dual-form signature technique.

In LMPY-RS scheme the secret key SK consists of ω from Zp and the pub-
lic key PK consists of

(
g, g0, h, U1 = gu1 , {V1j = gv1j}`j=1, Ω = gω0 , CRS

)
with

CRS consisting of
(
z, U2, {V2j}`j=1, hz, h0 = hδ0z , h`+1 = h

δ`+1
z , h10 = hδ10z , h20 =

hδ20z , {h1j = h
δ1j
z , h2j = h

δ2j
z }`j=1

)
, where g, z, g0, U1, U2, V1j , V2j are from G

and h, hz, h0, h`+1, h10, h20, h1j , h2j are from H. Note that the trapdoor infor-
mation

(
δ0, δ`+1, δ10, δ20, {δ1j , δ2j}`j=1

)
are generated in such a way that z =

gδ0g
δ`+1

0 , U2 = U δ01 gδ10gδ200 and V2j = V δ01j g
δ1jg

δ2j
0 holds. Hence one can write

U2 = gu2 , {V2j = gv2j}`j=1, where u2 = δ0u1 + δ10 +aδ20, v2j = δ0v1j + δ1j +aδ2j
and g0 = ga. The randomizable signature on the message m = (m1, . . . ,m`)
consists of σ = (σ1, σ2, σ3, π), where

σ1 = gω
(
U1

∏̀
j=1

V
mj
1j

)s
, σ2 = gs, σ3 = gs0, π = zω

(
U2

∏̀
j=1

V
mj
2j

)s
.

Note that the signature component π corresponds to the QA-NIZK proof that
the statement (σ1, σ

m1
2 , . . . , σm`2 , σ2, σ

m1
3 , . . . , σm`3 , σ3, Ω) belongs to a linear sub-

space generated by the matrix M ∈ Z(`+2)×(2`+4)
p as defined in Equation 1. Our

RRS scheme is obtained from LMPY-RS scheme by removing the first row and the

4

last `+ 2 columns of the matrix M , which results in the matrix N as defined in
Equation 1.

M =



g 1 1 . . . 1 1 1 1 . . . 1 1 g0

V11 g 1 . . . 1 1 g0 1 . . . 1 1 1
V12 1 g . . . 1 1 1 g0 . . . 1 1 1

...
...

...
. . .

...
...

...
...

. . .
...

...
V1` 1 1 . . . g 1 1 1 . . . g0 1 1
U1 1 1 . . . 1 g 1 1 . . . 1 g0 1


, N =


V11 g 1 . . . 1 1
V12 1 g . . . 1 1

...
...

...
. . .

...
...

V1` 1 1 . . . g 1
U1 1 1 . . . 1 g

 . (1)

Notice that the removal of the first row of M corresponds to putting ω =
0 mod p which amounts to removing gω (resp. zω) from σ1 (resp. π) and Ω
from PK. The last ` + 2 columns of M correspond to the second generator
g0 and {{h2j}`j=1, h20, h`+1} in PK of LMPY-RS. In the signature generation,
we directly use the simulated proof component instead of the real QA-NIZK
proof component. This allows to set SK containing the trapdoor dependent
information u2, {v2j}`j=1 along with g, u1, {v1j}`j=1.

Table 1. RRS scheme in the prime-order setting.

Setup(λ)

Run P(λ)→ (p,G,H,GT , e, g, h), where g
$← G, h $← H,

Return PP = (p,G,H,GT , e, g, h).

KeyGen(PP)

Choose δ0, u1, u2, {v1j , v2j}`j=1
$← Zp, hz

$← H and set h0 := hδ0z ,
δ10 := u2 − δ0u1, δj := v2j − δ0v1j , for all j ∈ [1, `].

Set SK := {g, u1, u2, {v1j , v2j}`j=1}, PK :=
{
hz, h0, h10 := hδ10z , {hj := h

δj
z }`j=1

}
.

Return (SK,PK).
Sign(SK,m = (m1, . . . ,m`))

Choose r
$← Zp and set A := gr(u1+

∑`
j=1 v1jmj), B := gr, C := gr(u2+

∑`
j=1 v2jmj).

Return (m, σ = (A,B,C)).

Ver(PK,m = (m1, . . . ,m`), σ = (A,B,C))
Parse the message and signature and check

B 6= 1 and e(A, h0)e(B, h10

∏̀
j=1

h
mj
j) = e(C, hz). (2)

If the above two conditions hold, then return accept, otherwise return reject.
Rand(PK,m = (m1, . . . ,m`), σ = (A,B,C))

If Ver(PK,m, σ)=1, then choose s
$← Zp and compute A′ := As, B′ := Bs, C′ := Cs.

Return σ′ = (A′, B′, C′).
Else Return ⊥.

The RRS scheme consists of four PPT algorithms, which are defined in Table 1.
Notice that, we avoid the trivial forgery attack by checking B 6= 1. Suppose, we

5

do not check the above condition, then anyone can output σ = (1, 1, 1) as a
(trivial) forgery on any message m ∈ Z`p. Correctness of the scheme can be
verified using the following derivation,

e(A, h0)e(B, h10

∏̀
j=1

h
mj
j) = e(gr(u1+

∑
j v1jmj), hδ0z)e(gr, h

δ10+
∑
j δjmj

z)

= e(gr(δ0u1+δ10)+r
∑
j(δ0v1j+δj)mj , hz)

= e(gr(u2+
∑
j v2jmj), hz) = e(C, hz).

The first equality is obtained by substituting the values of the signature and
public key components. Second equality is obtained using the bilinearity of the
pairing map. The third equality is obtained by substituting the value of u2 and
v2j components from Table 1.

Notice that, it is sufficient to consider the elements U1 = gu1 , U2 = gu2 and
{V1j = gv1j , V2j = gv2j}`j=1, as part of the SK. However, for better efficiency,
we consider the respective exponents of U1, U2, V1j and V2j as part of the SK,
which saves 2` many exponentiation and multiplication in the group G.

3.2 Randomizability

The main feature of a rerandomizable signature scheme is the so-called random-
izability property. This feature has been utilized effectively in the construction
of several other protocols, such as group signature [2] and anonymous credential
scheme [4].

Theorem 1 The RRS scheme satisfies perfect randomizability.

Proof. We argue that our RRS scheme satisfies perfect randomizability. To es-
tablish that, it is sufficient to prove that the signature returned by Rand and
Sign are identically distributed. First, we consider the signature σ = (A,B,C)
returned by the adversary A using Sign on the message m = (m1, . . . ,m`). In
particular, we write

A = gr(u1+
∑
j v1jmj), B = gr, C = gr(u2+

∑
j v2jmj),

for some randomness r from Zp. Then we consider the signature σ1 = (A1, B1, C1)
returned by Rand on the message and signature pair (m, σ), where A1 = As =

gsr(u1+
∑
j v1jmj), B1 = Bs = grs and C1 = Cs = gsr(u2+

∑
j v2jmj), for some ran-

domness s from Zp. Now we consider the signature σ0 = (A0, B0, C0) returned
by Sign on the same message m, where

A0 = gz(u1+
∑
j v1jmj), B0 = gz, C0 = gz(u2+

∑
j v2jmj)

for some randomness z from Zp. Notice that, in the signature σ1, the exponent
s is the source of randomness whereas in the signature σ0, the exponent z is the
source of randomness. Thus it is clear that both the signatures σ0 and σ1 are
identically distributed, as rs and z are independent and identically distributed.

ut

6

3.3 Unforgeability

We use the Gerbush et al’s [7] dual-form signature technique and prove un-
forgeability under the SXDH assumption. Note that, unlike [21], we argue un-
forgeability without appealing to the security of the underlying QA-NIZK proof
system.
Partition of forgery space: Let V be the set of all message and signature
pairs such that they verify under the public key PK. We partition the forgery
class V into two disjoint sets VI and VII which are defined as follows.

Type-I: VI = {(m∗, σ∗) ∈ V : S∗1 = 1 and S∗2 = 1},
Type-II: VII = {(m∗, σ∗) ∈ V : S∗1 6= 1 and S∗2 6= 1},

where S∗1 := A∗(B∗)−u1−
∑`
j=1 v1jm

∗
j and S∗2 := (C∗)−1(B∗)u2+

∑`
j=1 v2jm

∗
j . Now

we argue that the Type-II forgery class is same as the complement of Type-I
forgery class with respect to the forgery space V, i.e., VII = V −VI . Notice that
from the verification Equation 2, we can simplify as follows.

1 = e(A∗, h0)e(B∗, h10

∏`

j=1
h
m∗j
j)e(C∗, hz)

−1

= e(A∗, hδ0z)e(B∗, h
δ10+

∑`
j=1 δjm

∗
j

z)e(C∗, hz)
−1

= e(A∗, hδ0z)e(B∗, h
(u2−δ0u1)+

∑`
j=1(v2j−δ0v1j)m∗j

z)e(C∗, hz)
−1

= e(A∗(B∗)−u1−
∑`
j=1 v1jm

∗
j , hδ0z)e((C∗)−1(B∗)u2+

∑`
j=1 v2jm

∗
j , hz)

= e(S∗1 , h0)e(S∗2 , hz)

In the above derivation, the second equality is obtained by the values of h10 and
hj and then substituting the values of δ10 and δj . The third equality is obtained
by using the bilinearity of the pairing map and the last equality is obtained by
the definition of S∗1 and S∗2 . Suppose S∗1 = 1, then the above equation can be
simplified as e(S∗2 , hz) = 1. Then from the non-degeneracy of the pairing, we
have S∗2 must be 1. In the same way, suppose S∗2 = 1, then S∗1 must be 1. Hence
there is no valid forgery such that (i) S∗1 = 1 and S∗2 6= 1 hold or (ii) S∗1 6= 1 and
S∗2 = 1 hold.
Structure of forged signature: Consider the message and signature pair
(m∗, σ∗) satisfying the verification Equation 2, where m∗ = (m∗1, . . . ,m

∗
`) ∈ Z`p

and σ∗ = (A∗, B∗, C∗) ∈ G3. Suppose the forgery is Type-II, then we explain,
how the signature components are written explicitly in terms of the secret ex-
ponents. Since B∗ ∈ G, B∗ 6= 1 and g is the generator of G, we can write
B∗ = gr, for some r ∈ Z∗p. For the Type-II forgery, the condition S∗1 6= 1 holds,
we can write S∗1 = gs1 , for some s1 ∈ Z∗p. Then substituting B∗ value in S∗1

we obtain that A∗ = gr
(
u1+

∑`
j=1 v1jm

∗
j

)
+s1 . The condition S∗2 6= 1 holds for a

Type-II forgery. Then we can write S∗2 = g−s, for some s ∈ Z∗p. By substituting

the value of B∗ in S∗2 , we obtain that C∗ = gr(u2+
∑`
j=1 v2jm

∗
j)+s. Now from the

verification Equation 2, the additional terms gs1 and gs must satisfy the condi-
tion e(gs1 , h0) = e(gs, hz), so that the Type-II forgery is valid. From the above

7

condition, we can derive that s1 = s/δ0. Hence a Type-II forgery can be written
as,

A∗ = gr(u1+
∑`
j=1 v1jm

∗
j)+s/δ0 , B∗ = gr, C∗ = gr(u2+

∑`
j=1 v2jm

∗
j)+s, (3)

for some r, s ∈ Zp.
Suppose the forgery is Type-I, then we see that both conditions, S∗1 = 1 and

S∗2 = 1 hold. From the above explanation for the Type-II forgery case and the
above conditions, it is clear that s has to be zero modulo p for a Type-I forgery.
Hence by substituting s = 0 in Equation 3, we obtain the desired form of Type-I
forgery as defined in Table 1.
Two signing algorithms: Let SignA be same as the Sign algorithm defined
in Table 1. Next we define the following SignB algorithm, which is used by the
simulator in the unforgeability proof. The SignB algorithm takes the secret key
SK along with element δ0 from Zp and the message m ∈ Z`p and outputs a
message-signature pair.

SignB(SK ∪ {δ0},m = (m1, . . . ,m`)): Choose r, s
$← Zp and compute A :=

gr(u1+
∑`
j=1 v1jmj)+s/δ0 , B := gr C := gr(u2+

∑`
j=1 v2jmj)+s. Return (m, σ :=

(A,B,C)).

From the verification Equation 2, the additional element gs/δ0 in A paired with
hδ0z is same as the additional element gs in C paired with hz. Hence, the signature
returned by SignB also verifies under PK.
Proof Intuition: We prove unforgeability of our RRS scheme using a hybrid
argument. Let GameR be the real EUF-CMA security game, i.e., given the public
key, adversary A makes q many signing oracle queries which are answered using
SignA and returns a forgery (from V) on a new message. Next, we define a new
game Game0 which is similar to GameR except that A returns a Type-I forgery.
The only difference between GameR and Game0 is that of A producing a Type-II
forgery. Then we prove that under the DBPH assumption, A cannot return a
Type-II forgery, which ensures that GameR and Game0 are indistinguishable. In
this reduction, simulator B embeds the DBP instance to generate the public key
terms hz and hδ0z . Then by choosing all the other secret exponents, B can answer
for SignA queries. Finally, from the Type-II forgery returned by A, B computes
the solution for the DBPH instance.

Next, we define another game Gamek which is similar to Game0, except that
the first k signing queries are answered using SignB algorithm. Then we prove
that Gamek−1 and Gamek are indistinguishable under the DDHG assumption.
In this reduction, simulator B embeds one of the terms (say gb) from the DDH
instance to define u1 and u2. In particular, B defines u1 = ũ1 + tb/δ0 and
u2 = ũ2 + tb, for random exponents ũ1, ũ2, δ0, t. Then B uses the other term (say
ga) from the DDH instance for the k-th signature and embeds ga and gab+θ to
answer for the k-th signing query. For a given DDH tuple with θ = 0 we are
simulating Gamek−1, otherwise we are simulating Gamek.

Finally, we argue that the advantage of Gameq is negligible under the DBPH
assumption. In this reduction, simulator B embeds the DBP instance to simulate

8

the public key components hz and hδ0z . Then B defines the exponents u1 and
u2 in such a way that B can answer for SignB oracle queries. In particular, B
defines u1 = ũ1 − t/δ0 and u2 = ũ2 − t, for random exponents t, ũ1, ũ2. Once
the adversary returns a Type-I forgery, then B could extract the solution for the
DBP problem.

Theorem 2 If SXDH assumption holds in P, then the RRS scheme is EUF-
CMA secure.

Proof. First we define the following games.

GameR: This is the original EUF-CMA game. Recall that, after receiving the
PK from the challenger, the adversary A makes q many signing oracle
queries adaptively and then returns a forgery on a new message.

Game0: Same as GameR except that A returns a forgery from VI . Let E be
the event that A returns a forgery from VII in Game0. In Lemma 3, we
prove that the event E happens with negligible probability under DBPH
assumption. Thus we deduce that GameR and Game0 are computationally
indistinguishable under DBPH assumption. In particular we have,

|AdvGameR
A −AdvGame0

A | ≤ Pr[E] ≤ AdvDBPH
B .

Gamek: Same as Game0 except that the first k signing queries are answered
using SignB , for k ∈ [1, q], whereas the last q− k queries are answered using
SignA. For k ∈ [1, q], in Lemma 4, we prove that Gamek−1 and Gamek are
computationally indistinguishable under DDHG assumption. In particular
we have,

|AdvGamek−1

A −AdvGamek
A | ≤ AdvDDHG

B .

Finally in Lemma 5, we prove that Adv
Gameq
A is negligible under DBPH assump-

tion. In particular we have,

Adv
Gameq
A ≤ AdvDBPH

B .

Hence by the hybrid argument and from Equations 4, 5 and 6, described below,
we have,

AdvUFA = AdvGameR
A = |AdvGameR

A −AdvGame0
A +AdvGame0

A −AdvGame1
A + . . .+

Adv
Gamek−1

A −AdvGamek
A + . . .−AdvGameq

A +Adv
Gameq
A |

≤ |AdvGameR
A −AdvGame0

A |+
q∑

k=1

|AdvGamek−1

A −AdvGamek
A |+ |AdvGameq

A |

≤ AdvDBPH
B + q AdvDDHG

B +AdvDBPH
B

≤ (q + 2)AdvSXDHB .

ut

9

Lemma 3 If DBPH assumption holds in P, then Pr[E] is negligible.

Proof. Assume that the event E happens with some non-negligible probability.
Then we construct a simulator B to break the DBPH assumption as follows. B
is given Θ and hr, hs from H and his goal is to compute (R,S) 6= (1, 1) from G2

such that e(R, hr)e(S, hs) = 1. Now B chooses u1, u2, {v1j , v2j}`j=1 uniformly at
random from Zp. First B implicitly sets δ10 = u2 − δ0u1 and δj = v2j − δ0v1j ,
for j ∈ [1, `]. Then B defines the public key as,

PK :=
{
hz := hr, h0 := hs, h10 := hu2

r h
−u1
s , {hj := hv2jr h−v1js }`j=1

}
.

Once PK is given to A, he makes q many signing oracle queries to B. Since B
knows all the SK components such as g, u1, u2, {v1j , v2j}`j=1, he can answer all
the signing queries using SignA algorithm.

Finally, A returns a forgery (m∗, σ∗), where m∗ = (m∗1, . . . ,m
∗
`) ∈ Z`p and

σ∗ = (A∗, B∗, C∗) ∈ G3. Then B checks (i) the forgery (m∗, σ∗) is valid and (ii)
the message m∗ is not queried earlier. If any of these checks fail to hold, then
B aborts. Otherwise, B tries to solve the DBPH assumption as follows. First B
computes S = A∗(B∗)−u1−

∑`
j=1 v1jm

∗
j and R = (C∗)−1(B∗)u2+

∑`
j=1 v2jm

∗
j . Since

the forgery is valid, hence it satisfies the verification Equation 2 which can be
re-written and then simplified as follows.

1 = e(C∗, hz)
−1 · e(A∗, h0) · e(B∗, h10

∏
j

h
m∗j
1j)

= e(C∗, hr)
−1e(A∗, hs) · e(B∗, hu2

r h
−u1
s

∏
j

(hv2jr h−v1js)m
∗
j)

= e((C∗)−1(B∗)u2+
∑
j v2jm

∗
j , hr)e(A

∗(B∗)−u1−
∑
j v1jm

∗
j , hs)

= e(R, hr)e(S, hs).

In the above derivation, the second equality follows from the structure of public
key components and the third equality follows from the bilinearity of the pairing
map. The last equality follows from the definition of R and S.

In order to break the DBPH problem, it is sufficient to argue that (R,S) 6=
(1, 1). From our contradiction assumption, A returns a Type-II forgery, then it

must satisfy S = A∗ (B∗)−u1−
∑
j v1jm

∗
j 6= 1 and R = (C∗)−1(B∗)u2+

∑
j v2jm

∗
j

6= 1. Then B returns (R,S) as a non-trivial solution for the DBPH instance.
Thus we have,

Pr[E] ≤ AdvDBPH
B . (4)

ut

Lemma 4 If DDHG assumption holds in P, then Gamek−1 ≈c Gamek, for k ∈
[1, q].

Proof. Suppose there exists a PPT adversary A, who distinguishes Gamek−1

from Gamek with some non-negligible probability under the condition that A

10

returns a Type-I forgery. Then we construct a simulator B to break the DDHG
assumption as follows. B is given Θ, ga, gb, gab+θ and his goal is to decide whether
θ = 0 mod p or not. Now B chooses δ0, ũ1, ũ2, t uniformly at random from Zp
and implicitly sets u1 = ũ1 + tb/δ0 and u2 = ũ2 + tb. B also chooses hz uniformly
at random from H and defines h0 = hδ0z . Then B defines δ10 := u2 − δ0u1 =
ũ2 − δ0ũ1 and hence s/he simulates h10 as hũ2−δ0ũ1

z . B also chooses v1j , v2j

uniformly at random from Zp and defines hj as h
v2j−δ0v1j
z . Here PK consists

of {hz, h0, h10, {hj}`j=1}, which is then sent to A. Notice that B can simulate

the SK components g, {v1j , v2j}`j=1 along with δ0. However, B can simulate

U1 := gũ1(gb)t/δ0 and U2 = gũ2(gb)t, so that he can answer for the signing
queries. B computes V1j := gv1j , V2j := gv2j , for j ∈ [1, `].

After receiving PK, A makes signing queries on some message mi = (mi1,
. . . ,mi`). For the first k − 1 (resp. last q − k) queries, B uses SignB (resp.
SignA) algorithm to answer for signing queries, as he knows the components
g, U1, U2, {V1j , V2j}`j=1 as well as δ0. In particular, SignB queries are answered
by computing σi = (Ai, Bi, Ci), where

Ai = (U1

∏
j

V
mij
1j)rgs/δ0 , Bi = gr, Ci = (U2

∏
j

V
mij
2j)rgs

and r, s are chosen uniformly at random from Zp. However, SignA queries are
answered by letting s = 0 in the above signature obtained using SignB algorithm.
For the k-th query, B embeds the DDH instance to construct the signature
σk = (Ak, Bk, Ck), where Bk := ga and

Ak := (ga)ũ1(gab+θ)t/δ0(ga)
∑
j v1jmkj = ga

(
(ũ1+tb/δ0)+

∑
j v1jmkj

)
gtθ/δ0

= ga(u1+
∑
j v1jmkj)+tθ/δ0 ,

Ck := (ga)ũ2(gab+θ)t(ga)
∑
j v2jmkj = ga

(
(ũ2+tb)+

∑
j v2jmkj

)
gtθ,

= ga(u2+
∑
j v2jmkj)+tθ.

In the above derivation, we re-arrange the terms appropriately and use the defi-
nition of u1 and u2. Note that the exponent a from the DDH instance is used to
simulate the signature randomness whereas s = tθ mod p. Suppose θ = 0 mod
p, then s = 0 mod p, i.e., the signature σk is distributed as an output of SignA.
If θ 6= 0 mod p, then s 6= 0 mod p, i.e., the signature σk is distributed as an
output of SignB with non-zero exponent s = tθ mod p.

Finally, A returns a forgery (m∗, σ∗). As before, B checks (i) the forgery is
valid and (ii) the message m∗ = (m∗1, . . . ,m

∗
`) is not queried earlier. Note that σk

is generated using the DDH instance. Since B knows δ0, U1, U2 and all the other
secret key components, B can generate the k-th signature of any type properly.
However, B cannot on her/his own decide the type of the signatures generated
using the problem instance, as s/he cannot compute S∗1 and S∗2 which uses the
exponents u1 and u2. In other words, B needs to rely on the advantage of A.

From Lemma 3, under DBP assumption, A only returns a Type-I forgery.
Also from our initial contradiction assumption,A distinguishes between Gamek−1

11

and Gamek with some non-negligible probability. So B leverages A to break the
DDH assumption. Thus we have,∣∣AdvGamek−1

A −AdvGamek
A

∣∣ ≤ AdvDDHG
B . (5)

ut

Lemma 5 If DBPH assumption holds in P, then AdvGameq is negligible.

Proof. Suppose there exists a PPT adversary A, who wins in Gameq and pro-
duces a Type-I forgery with some non-negligible probability. Then we con-
struct a simulator B to break the DBPH assumption as follows. B is given
Θ and hr, hs from H and his goal is to compute (R,S) 6= (1, 1) from G2

such that e(R, hr)e(S, hs) = 1. Now B sets hz := hr, h
δ0
z := hs and im-

plicitly sets u1 := ũ1 − t/δ0 and u2 := ũ2 − t, for randomly chosen ũ1, ũ2, t
from Zp. Thus B can simulate U ′1 := gũ1 = gu1+t/δ0 and U ′2 := gũ2 = gu2+t.
Next B chooses {v1j , v2j}`j=1 uniformly at random from Zp and implicitly sets
δ10 := u2 − δ0u1 = ũ2 − δ0ũ1 and δj := v2j − δ0v1j , for j ∈ [1, `]. Then B com-

putes h10 = hδ10z = hũ2
r h
−ũ1
s and hj = h

δj
z = h

v2j
r h

−v1j
s , for j ∈ [1, `]. Now B

defines the PK as
(
hz, h0, h10, {hj}`j=1

)
. Notice that B knows the secret expo-

nents {v1j , v2j}`j=1. Hence B computes V1j = gv1j , V2j = gv1j , for j ∈ [1, `].
After receiving PK, A makes signing oracle queries on the message mi =

(mi1, . . . ,mi`). Then B answers the SignB queries by computing σi = (Ai, Bi, Ci),
where Bi := gr and

Ai :=
(
U ′1
∏
j

V
mij
1j

)r
=
(
gu1+t/δ0

∏
j

(gv1j)mij
)r

= gr(u1+
∑
j v1jmij)+rt/δ0 ,

Ci :=
(
U ′2
∏
j

V
mij
2j

)r
=
(
gu2+t

∏
j

(gv2j)mij
)r

= gr(u2+
∑
j v2jmij)+rt,

for r randomly chosen from Zp. From the above derivation, it is clear that
signature σi is properly distributed as an output of SignB with s = rt mod-
ulo p. Finally A returns a forgery (m∗, σ∗), where m∗ = (m∗1, . . . ,m

∗
`) and

σ∗ = (A∗, B∗, C∗). As before, B checks (i) the forgery is valid and (ii) m∗ is not
queried earlier. If any of these checks fail to hold then B aborts. Otherwise, B
breaks the DBP assumption as follows.

From the contradiction assumption, A returns a Type-I forgery with some
non-negligible probability. Then, B can write the Type-I forgery components as,

A∗ = gr(u1+
∑`
j=1 v1jm

∗
j), B∗ = gr and C∗ = gr(u2+

∑`
j=1 v2jm

∗
j), for some r ∈ Zp.

Now B computes

S = A∗(B∗)−ũ1−
∑`
j=1 v1jm

∗
j = gr(ũ1−t/δ0)−rũ1 = g−rt/δ0 ,

R = (C∗)−1(B∗)ũ2+
∑`
j=1 v2jm

∗
j = g−r(ũ2−t)+rũ2 = grt.

In the above derivation, we have used the definition of u1 = ũ1 − t/δ0 and u2 =
ũ2 − t. Then one can verify that e(R, hr)e(S, hs) = e(grt, hz)e(g

−rt/δ0 , hδ0z) = 1,

12

here we have used the values of hr and hs. From the verification Equation 2,
B∗ 6= 1 holds and hence R 6= 1 holds. In other words, (R,S) is a non-trivial
solution of DBPH problem instance. Thus we have,

Adv
Gameq
A ≤ AdvDBPH

B . (6)

ut

3.4 Comparison

In Table 2, we compare our rerandomizable signature scheme with some existing
schemes in the prime-order pairing setting. We use the following metrics: public
key size (denoted as |PK|), signature size (denoted as |σ|), signing cost, verifi-
cation cost and the computational assumption required to prove unforgeability.

Table 2. Comparing rerandomizable signatures for multiple block messages.

|PK| |σ| Signing Cost Verification Cost Assum.
PS-RRS (`+ 2)|H| 2|G| 2EG 2P + `(EH +MH) PS
LMPY-RS (2`+ 5)|G|+ (2`+ 6)|H| 4|G| 6EG + (2`+ 2)MG 5P + 3MGT + 2`MH SXDH
RRS §3.1 (`+ 3)|H| 3|G| 3EG 3P +MGT + `(EH +MH) SXDH

For any group X ∈ {G,H,GT }, EX ,MX respectively denote the cost of exponentiation,
multiplication in X and |X| is the bit size of X whereas P denotes pairing computation cost. PS

denote the interactive assumption used in [26].

We denote PS-RRS to be the rerandomizable signature scheme described
in [26]. As we can see, PS-RRS is an efficient scheme in terms of the size of the
public key and signature as well as the running time of signing and verification
algorithms. However, unforgeability of the PS-RRS scheme is proved under an
interactive assumption [26, Assumption 1].

Libert et al’s [21] randomizable signature scheme (LMPY-RS) is currently the
most efficient one under the SXDH assumption. Here the size of the public key
and running time of the signing algorithm are at least three times that of the
PS-RRS scheme whereas, the signature size is double and the verification time
is two and a half times that of the PS-RRS scheme.

The performance of the RRS scheme proposed in this paper is roughly two
times better than that of LMPY-RS scheme, in terms of public key size and running
time of the signing and verification algorithms, whereas our scheme has three
signature components instead of four in LMPY-RS. Compared to the PS-RRS
scheme, our scheme requires just one additional group element H in the public
key and only one additional exponentiation in G for signing and one additional
pairing plus a single multiplication in GT for signature verification. However,
in contrast to the interactive assumption used in [26], security of our scheme
requires only the SXDH assumption.

13

4 Sequential Aggregate Signature

In this section, we present a sequential aggregate signature (SeqAS) scheme
with constant-size public key and signature and prove its unforgeability under
the SXDH assumption. Like [16], our construction uses both ‘randomness re-use’
and ‘public key sharing’ techniques.

4.1 Construction

The starting point of the SeqAS is our RRS scheme. We observe that the LMPY-
RS scheme does not allow signature aggregation. For that, it seems necessary
to make one element of the trapdoor key of the underlying knowledge system,
namely δ0, publicly available. However, in that case, the security reduction no
longer works. We resolve this issue, by first letting the setup authority choose
u1, u2, δ0 from Zp and define δ10 = u2 − δ0u1. Then the j-th signer chooses
v1j , v2j from Zp and implicitly defines δj = v2j − δ0v1j . Note that the above
changes are possible as, unlike [21], our scheme uses simulated QA-NIZK proof
component.

To construct the SeqAS scheme, we thus extend the RRS structure to the
multi-user setting. Recall that our RRS signature is of the form gr(u1+

∑
j v1jmj), gr

and gr(u2+
∑
j v2jmj). As mentioned above we treat v1j and v2j as the j-th signer’s

secret key. However, to apply the ‘public key sharing’ technique [16], g, gu1 and
gu2 need to be made public for aggregation and hz, h0, h10 are also needed for
verification. This implies that the public parameter AS.PP of the SeqAS scheme
consists of {g, U1 = gu1 , U2 = gu2 , hz, h0 = hδ0z , h10 = hu2

z h
−u1
0 }. Then, the j-

th signer implicitly sets δj = v2j − δ0v1j , where the corresponding secret key

SKj contains {v1j , v2j} and the verification key PKj contains {hj = h
δj
z =

h
v2j
z h

−v1j
0 }.

Now we explain, how to aggregate the signature using ‘randomness re-use’
technique. Consider a message m1 which is signed by the first user using SK1 =
{v11, v21} by computing σ1 = (A1, B1, C1), where A1 = (U1g

v11m1)t1 , B1 =
gt1 , C1 = (U2g

v21m1)t1 , for some t1 randomly chosen from Zp. Then, given
(m1, σ1), the second user uses SK2 = {v12, v22} to compute the aggregate sig-
nature σ2 = (A2, B2, C2) on the message m2, where A2 = (A1B

v12m2
1)t2 , B2 =

Bt21 , C2 = (C1B
v22m2
1)t2 , for t2 randomly chosen from Zp. In the same way, we

can extend the above procedure for polynomial many aggregation. We present
our SeqAS construction in Table 3.

Correctness Note that the verification Equation 7 of the SeqAS scheme is
same as the verification Equation 2 of our RRS scheme. Hence, it is sufficient
to ensure the resulting aggregate signature can be written explicitly as in the
RRS scheme. This will guarantee the correctness of the SeqAS scheme. Now we
establish the structure of the signature returned by AS.Sign using mathematical
induction. If s = 0, then AS.Sign sets σ = (A,B,C) = (gu1 , g, gu2) and computes
the signature σ1 = (A1, B1, C1) on the message m1, where A1 = (ABv11m1)t =

14

Table 3. SeqAS scheme in the prime-order setting.

AS.Setup(λ)

Run P(λ)→ (p,G,H,GT , e, g, h), where g
$← G, h $← H.

Choose u1, u2, δ0
$← Zp, hz

$← H, define δ10 := u2 − δ0u1 and

compute U1 = gu1 , U2 = gu2 , h0 = hδ0z , h10 = hδ10z .
Return AS.PP := {p,G,H,GT , e, g, h, U1, U2, hz, h0, h10}.

AS.KeyGen(AS.PP)

Choose v1j , v2j
$← Zp and compute hj := h

v2j
z h

−v1j
0 .

Return (SKj := {v1j , v2j}, PKj := {hj}).

AS.Sign(SK,m = (m1, . . . ,ms), σ, (PK1, . . . , PKs),m)
Check the following,

If s = 0, then set σ = (U1, g, U2),
If s > 0 and AS.Ver((PK1, . . . , PKs), (m1, . . . ,ms), σ) = 0, then it halts,
If m = 0 or any of mi = 0, then it halts,
If for some j ∈ [1, s] such that PKj = PK, then it halts,

Suppose the algorithm did not halt, then
parse SK as {v1τ , v2τ}, PK as {hτ}, σ as (A,B,C).

Select t
$← Zp and compute A′ = (ABv1τm)t, B′ = Bt and C′ = (CBv2τm)t.

Return ((m1, . . . ,ms,m), σ′ = (A′, B′, C′)).

AS.Ver(AS.PP, (PK1, . . . , PKs), (m1, . . . ,ms), σ = (A,B,C))
Parse PKj = {hj}, for all j ∈ [1, s] and check whether mi = 0 or PKi = PKj ,

for any i 6= j and i, j ∈ [1, s]. If any of the above conditions hold, then abort,
otherwise check

B 6= 1 and e(A, h0)e(B, h10

s∏
j=1

h
mj
j) = e(C, hz). (7)

If the above two conditions hold, then return accept, otherwise return reject.

gt(u1+v11m1), B1 = Bt = gt and C1 = (CBv12m1)t = gt(u2+v12m1). Let’s assume
that after k many aggregation, the aggregate signature σk = (Ak, Bk, Ck) on the
messages (m1, . . . ,mk) under the public keys (PK1, . . ., PKk) can be written

as Ak = gr(u1+
∑k
j=1 v1jmj), Bk = gr, Ck = gr(u2+

∑k
j=1 v2jmj), for some r ∈

Zp. Now we prove that the aggregate signature σk+1 = (Ak+1, Bk+1, Ck+1) of
the messages (m1, . . . ,mk,mk+1) under (PK1, . . . , PKk, PKk+1) can be written
explicitly as in Table 3. Observe that from the definition of AS.Sign, we can write

Ak+1 = (AkB
v1k+1mk+1

k)t = grt(u1+
∑k+1
j=1 v1jmj), Bk+1 = Btk = grt and Ck+1 =

(CkB
v2k+1mk+1

k)t = grt(u2+
∑k+1
j=1 v2jmj), for t

$← Zp. Thus the resulting signature
σk+1 is distributed as similar to the RRS scheme of §3.1. Hence correctness of the
SeqAS scheme follows from that of RRS scheme.

15

4.2 Security

We argue the unforgeability of SeqAS scheme in the certified public key setting
[23], see Appendix A.3 for the formal security definition. Informally, given the
public key and access to join and signing oracle queries, the adversary cannot
produce a valid forgery.

We give a reduction from the security of our RRS scheme. In the certified
public key model, the adversary gives both public and secret keys to the sim-
ulator. Hence simulator knows all the secret keys except the secret key of the
underlying RRS scheme (for single message). The simulator responds to an aggre-
gate signature query by first obtaining a signature of the underlying RRS from
its challenger and then constructing the aggregate signature. From the aggre-
gate signature structure, which can be viewed as a linear function of the secret
exponents, the aggregation is oblivious to the order in which the messages are
signed. Once the adversary returns a non-trivial forgery, the simulator extracts
the forgery for the underlying RRS scheme by using the secret keys of all the
other signers.

Theorem 6 If RRS scheme is EUF-CMA secure, then SeqAS scheme is EUF-
CMA secure in the certified public key setting.

Proof. Suppose there exists a PPT adversary A who breaks the EUF-CMA
security of SeqAS scheme in the certified public key setting, with some non-
negligible probability. Then we construct a simulator B that breaks the EUF-
CMA security of the RRS scheme as follows.
Setup: First, B initializes the key list KeyList as empty. Next B obtains the
public parameter PP as (p,G,H,GT , e, g̃, h) along with the public-key PK as
{hz, h0, h10, hτ}, from his challenger C. Then B sets PK∗ = hτ . Now B requests
a signature query on zero message to C. Then C returns σ0 = (A0, B0, C0) =
(g̃ru1 , g̃r, g̃ru2), for some r ∈ Zp. Now B assigns g := B0, U1 := A0, U2 :=
C0 and computes the public parameter for our SeqAS scheme as, AS.PP :=
{g, h, U1, U2, hz, h0, h10}. Then B forwards AS.PP and PK∗ to A.
Join Query: A makes the join queries by sending the key pair SKj = {v1j , v2j}
and PKj = {hj} to B. B checks whether (SKj , PKj) are generated correctly by
checking

hj
?
= hv2jz h

−v1j
0 . (8)

For correctly generated key pair (SKj , PKj), B adds it in the KeyList.
Signing Query: A makes a sequential aggregate signature query on the mes-
sage mi to B by sending an aggregate signature σi on the messages (mi1, . . .misi)
under the public keys (PKi1, . . . , PKisi). B aborts, if any of the following con-
dition holds, (i) if si > 0 and the aggregate signature σi is invalid, (ii) if
there exists j ∈ [1, si] such that PKij does not belong to KeyList, (iii) if
there exists some j ∈ [1, si] such that PKij = PK∗. Otherwise, B requests
a signature query on mi to his challenger C, which returns σ = (A,B,C).

16

Note that, all the public keys PKij involved in the signing queries are cer-
tified before. Hence, B knows the associated key pairs (SKij , PKij), for all
j ∈ [1, si]. Then, B parses SKij as {v1ij , v2ij}. Next, B chooses t uniformly
at random from Zp and computes the aggregate signature σ′i = (A′i, B

′
i, C
′
i),

where A′i =
(
AB

∑si
j=1 v1ijmij

)t
, B′i = Bt, C ′i =

(
CB

∑si
j=1 v2ijmij

)t
. It is easy to

see that the signature generated above is properly distributed. From the linear
structure of the signature exponents, the order of aggregation does not matter.
Hence, σ′i is a valid aggregate signature on (mi1, . . . ,misi ,mi) under the public
keys (PKi1, . . . , PKisi , PK

∗).
Output: After q many number of aggregate signature queries, A returns a
forgery σ∗ = (A∗, B∗, C∗) on the messages (m∗1, . . . ,m

∗
s) under the public keys

(PK1, . . . , PKs). Now B ensures the validity of the forgery, if the following con-
ditions are satisfied,

i. AS.Ver((PK1, . . . , PKs), σ
∗, (m∗1, . . . ,m

∗
s))= 1,

ii. For all PKj 6= PK∗, PKj ∈ KeyList,
iii. There exists one j∗ ∈ [1, s], PK∗ = PKj∗ and m∗j∗ 6= mi, for all i ∈ [1, q].

Condition (i) ensures that the forgery σ∗ satisfies the verification Equation 7.
Whereas, the condition (ii) ensures that B knows all the secret key SKj compo-
nents such that Equation 8 holds, for the associated keys PKj 6= PK∗. Recall
that the public keys are generated independently by each of signer. Also the con-
dition (iii) ensures that the aggregate signature forgery includes the challenge
public key PK∗ as part of the aggregation. Now B computes the rerandomiz-

able signature forgery σ∗m = (A∗m, B
∗
m, C

∗
m), where A∗m = A∗

(
B∗
)−∑

j 6=j∗ v1jm
∗
j ,

B∗m = B∗ and C∗m = C∗
(
B∗
)−∑

j 6=j∗ v2jm
∗
j . Next we prove that the above con-

structed rerandomizable signature σ∗m satisfies the verification Equation 2 as
follows,

e(C∗m, hz) = e(C∗
(
B∗
)−∑

j 6=j∗ v2jm
∗
j , hz) = e(C∗, hz)e((B

∗)−
∑
j 6=j∗ v2jm

∗
j , hz)

=
(
e(A∗, h0)e(B∗, h10h

m∗j∗
τ

∏
j 6=j∗

h
m∗j
j)
)
e((B∗)−

∑
j 6=j∗ v2jm

∗
j , hz)

= e(A∗, h0)e(B∗, h10h
m∗j∗
τ)e(B∗,

∏
j 6=j∗

h
(v2j−δ0v1j)m∗j
z)e(B∗,

∏
j 6=j∗

h
−v2jm∗j
z)

= e(A∗(B∗)−
∑
j 6=j∗ v1jm

∗
j , h0)e(B∗, h10h

m∗j∗
τ)

= e(A∗m, h0)e(B∗m, h10h
m∗j∗
τ).

The first equality is obtained by using the value of C∗m and the second equality
is obtained by using the bilinearity of the pairing. Third equality is obtained
from the verification Equation 7 and the fourth equality is obtained by using the
definition of δj and bilinearity. The fifth equality is obtained by canceling the
v2j terms. The final equality is obtained using the values of A∗m and B∗m.

The condition (iii) of aggregate signature forgery ensures the non-trivial
forgery with respect to the queried messages. Hence, the resulted forgery σ∗m
on the message m∗j∗ under PK∗ is clearly a valid forgery for the RRS scheme. ut

17

4.3 Comparison

We compare our SeqAS scheme with the existing schemes in Table 4. We con-
sider all the sequential aggregate signature schemes in asymmetric pairing set-
ting [6] whose unforgeability is proved in the certified public key setting (see
Appendix A.3) in the standard model. Here we use the following metrics: public
key size (denoted as |PK|), aggregate signature size (denoted as |AS|), sign-
ing and verification cost and the computational assumption required to prove
unforgeability of the aggregate signature scheme.

Table 4. Comparing sequential aggregate signature schemes using certified public key
setting in the standard model.

Scheme |PK| |AS| Signing cost Verification cost Assumption

LOSSW-3a
λ|G|+ λ|H|

2|G| 2P + `MGT + (`− 1)λMH 2P + `MGT CDH
+1|GT | +6EG + (2`λ+ 6)MG +`λMH

SAS1
2|G|+ 8|H| 8|G| 8P + (4`+ 14)EH 8P + 1EGT SXDH, DBDH

+1|GT | +10EG + 1EGT +(4`+ 14)EH LW2

SAS2
6|G|+ 6|H| 6|G| 6P + (3`+ 6)EH 6P + 1EGT LW1, DBDH

+1|GT | +(3`+ 18)EG + 1EGT +(3`+ 6)EH LW2

LLY-SeqAS 1|H| 3|G| 5P +MGT + `EH 5P +MGT + `EH LRSW
+2`MH + 5EG + 2MG +2`MH

PS-SeqAS 1|H| 2|G| 2P + `(EH +MH)
2P + `(EH +MH) PS

+3EG + 1MG

SeqAS 1|H| 3|G| 3P +MGT + `(EH +MH) 3P +MGT SXDH
+5EG + 2MG +`(EH +MH)

For any group X ∈ {G,H,GT }, we denote EX ,MX and |X| be the exponentiation, multiplication
in X and bit size of X and P denotes asymmetric pairing computation time. λ denotes the security

parameter and ` denotes the number of signature aggregated so far. PS and LRSW denote the
interactive assumptions in [26] and [25].

Chatterjee et al. [5] presented aggregate signature variants of [23] denoted
as LOSSW-3a, whose security is proved under the CDH assumption. However,
the size of the public key is some multiple of the security parameter λ, where
λ takes 256 for the 128 bit-level security. This results in a sequential aggregate
signature with a large public key size.

In 2012, Lee et al. [15, Section 3.5] extended the idea from [28] and presented
a sequential aggregate signature scheme based on the Camenisch-Lysyanskaya
(CL) signature in the asymmetric pairing setting. The resulted scheme is denoted
as LLY-SeqAS and it has a constant size public key. The security of the LLY-
SeqAS scheme is based on the security of the CL-signature scheme, which is
proved under an interactive assumption. In 2015, Lee et al. [19] presented two
SeqAS schemes, namely SAS1 and SAS2 schemes. The security of SAS1 is proved
under SXDH, DBDH and LW2 assumptions and SAS2 is proved under DBDH,
LW1 and LW2 assumptions described in [20]. Note that, both LW1 and LW2
assumptions are non-standard static assumptions whose hardness is established
in the generic group model, which provides only the lower bound [13, 29]. They
have used the dual system encryption technique to prove the security of their
schemes. However, their public key size (resp. aggregate signature size) increases
by a factor of 9 (resp. 2) with respect to the LLY-SeqAS construction.

18

In 2016, [26] presented a sequential aggregate signature (denoted as PS-
SeqAS) scheme based on their rerandomizable signature construction. One can
see that PS-SeqAS is the most efficient scheme among all the SeqAS schemes
presented in Table 4. However, the security of the PS-SeqAS scheme is proved
under an interactive assumption. The performance of our SeqAS scheme is very
close to PS-SeqAS even though we argue security under the SXDH assumption.
In particular, public key size remains the same in both schemes, whereas sig-
nature size increases by one group element in our scheme as compared to the
PS-SeqAS scheme. Also, we require one additional pairing and one target group
multiplication to verify the signature.

5 Concluding Remark

We proposed the first construction of a sequential aggregate signature scheme
with constant-size public key in the standard model based on the SXDH as-
sumption in the prime order bilinear pairing setting. This is achieved by suitably
modifying a randomizable signature scheme from [21]. The performance of both
the rerandomizable signature scheme and sequential aggregate signature scheme
comes quite close to prior proposals where security is based on some interactive
assumption.

References

1. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. J.
Cryptology, 29(2):363–421, 2016.

2. Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warin-
schi. Get shorty via group signatures without encryption. In Juan A. Garay and
Roberto De Prisco, editors, SCN, volume 6280, pages 381–398, Springer, 2010.

3. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifi-
ably encrypted signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT,
volume 2656, pages 416–432, Springer, 2003.

4. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Matthew K. Franklin, editor, CRYPTO, volume
3152, pages 56–72, Springer, 2004.

5. Sanjit Chatterjee, Darrel Hankerson, Edward Knapp, and Alfred Menezes. Com-
paring two pairing-based aggregate signature schemes. Des. Codes Cryptography,
55(2-3):141–167, 2010.

6. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryp-
tographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

7. Michael Gerbush, Allison B. Lewko, Adam O’Neill, and Brent Waters. Dual form
signatures: An approach for proving security from static assumptions. In Xiaoyun
Wang and Kazue Sako, editors, ASIACRYPT, volume 7658, pages 25–42, Springer,
2012.

8. Essam Ghadafi. Short structure-preserving signatures. In Sako [27], pages 305–321.
9. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A ”paradoxical” solution

to the signature problem (extended abstract). In FOCS, pages 441–448. IEEE
Computer Society, 1984.

19

10. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

11. Jens Groth. Homomorphic Trapdoor Commitments to Group Elements. IACR
Cryptology ePrint Archive, 2009:007, 2009.

12. Charanjit S. Jutla and Arnab Roy. Switching lemma for bilinear tests and constant-
size NIZK proofs for linear subspaces. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO, volume 8617, pages 295–312, Springer, 2014.

13. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Nigel P. Smart, editor,
EUROCRYPT, volume 4965, pages 146–162, Springer, 2008

14. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT, volume 9057, pages
101–128, Springer, 2015.

15. Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Aggregating cl-signatures revisited:
Extended functionality and better efficiency. IACR Cryptology ePrint Archive,
2012:562, 2012.

16. Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Aggregating cl-signatures revisited:
Extended functionality and better efficiency. In Ahmad-Reza Sadeghi, editor, FC,
volume 7859, pages 171–188, Springer, 2013.

17. Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Sequential aggregate signatures
made shorter. In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel,
and Reihaneh Safavi-Naini, editors, ACNS, volume 7954, pages 202–217, Springer,
2013.

18. Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Sequential aggregate signatures
with short public keys: Design, analysis and implementation studies. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC, volume 7778, pages 423–442,
Springer, 2013.

19. Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Sequential aggregate signatures
with short public keys without random oracles. Theor. Comput. Sci., 579:100–125,
2015.

20. Allison B. Lewko and Brent Waters. New techniques for dual system encryption
and fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC,
volume 5978, pages 455–479, Springer, 2010.

21. Benôıt Libert, Fabrice Mouhartem, Thomas Peters, and Moti Yung. Practical
”signatures with efficient protocols” from simple assumptions. In Xiaofeng Chen,
XiaoFeng Wang, and Xinyi Huang, editors, AsiaCCS, pages 511–522. ACM, 2016.

22. Benôıt Libert, Thomas Peters, and Moti Yung. Short group signatures via
structure-preserving signatures: Standard model security from simple assumptions.
In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO, volume 9216, pages
296–316, Springer, 2015.

23. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Se-
quential aggregate signatures and multisignatures without random oracles. In Serge
Vaudenay, editor, EUROCRYPT, volume 4004, pages 465–485, Springer, 2006.

24. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential
aggregate signatures from trapdoor permutations. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT, volume 3027, pages 74–90, Springer, 2004.

25. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In Howard M. Heys and Carlisle M. Adams, editors, SAC, volume 1758,
pages 184–199, Springer, 1999.

20

26. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Sako
[27], pages 111–126.

27. Kazue Sako, editor. CT-RSA, volume 9610, Springer, 2016.
28. Dominique Schröder. How to aggregate the CL signature scheme. In Vijay Atluri

and Claudia Dı́az, editors, ESORICS, volume 6879, pages 298–314, Springer, 2011.
29. Victor Shoup. Lower bounds for discrete logarithms and related problems. In

Walter Fumy, editor, EUROCRYPT, volume 1233, pages 256–266, Springer, 1997.
30. Brent Waters. Efficient identity-based encryption without random oracles. In

Ronald Cramer, editor, EUROCRYPT, volume 3494, pages 114–127, Springer,
2005.

A Definitions

A.1 Digital Signature

The formal definition of digital signature scheme and its security model were
introduced in [9,10]. We recall the definition of digital signature scheme from [8],
which consists of four PPT algorithms.

Setup(1λ) Given the security parameter λ, it returns a public parameter PP .
Here PP includes the description of the message spaceM and the signature
space Σ.

KeyGen(PP) Given the public parameter PP , it returns a key pair (PK,SK).
We assume that SK contains PK and PK contains PP .

Sign(SK,m) Given the message m ∈ M and SK, it returns a signature σ on
the message m.

Ver(PK,m, σ) Given the message and signature pair along with the public key
PK, it returns 1 only if σ is a valid signature on the message m under PK.

The digital signature scheme is correct, if for all security parameter λ, all
PP ← Setup(1λ), all (PK,SK)← KeyGen(PP), all messages m ∈M and σ ←
Sign(SK,m), it holds that Ver(PK,m, σ)=1.

The security of digital signature scheme is captured using the existential
unforgeability under chosen message attack (EUF-CMA) model [10] which is
defined using the following experiment between a challenger C and an adversary
A.

Setup C runs the Setup and KeyGen to obtain (PK,SK). A is given with PK.
Queries A adaptively requests the signature on the message mi, for i ∈ [1, q].
C answers each query by computing σi = Sign(SK,mi).

Output Finally, A returns a message and signature pair (m∗, σ∗) and wins if
Ver(PK,m∗, σ∗)=1 with m∗ 6= mi, for all i ∈ [1, q].

The advantage of A (denoted as AdvUFA) is defined to be the probability
that A wins in the above game. A signature scheme is said to be (t, q, ε)-secure
against existential unforgeability under chosen message attack ((t, q, ε)-EUF-
CMA secure), if for any t-time adversary A that makes at most q many signing
oracle queries, AdvUFA ≤ ε, where t and q are the polynomial functions of λ and
ε is a negligible function in λ.

21

A.2 Rerandomizable Signature

We recall the definition of rerandomizable signature scheme from [8]. A reran-
domizable signature scheme consists of five PPT algorithms (Setup, KeyGen,
Sign, Ver, Rand), in which the first four algorithms are defined as in the digital
signature scheme, whereas the Rand algorithm is defined as follows.

Rand(PK,m, σ) Given a PK along with a valid message and signature pair, it
returns a new signature σ′ on the same message m under PK.

A rerandomizable signature scheme is said to be secure if the scheme satisfies
randomizability and unforgeability. Unforgeability is captured using EUF-CMA
model as similar to the digital signature scheme described in Appendix A.1.
Informally, randomizability ensures that given both PK and SK, A cannot
decide whether he is given a signature returned by Sign or by Rand algorithm.
Formally, it is defined in [8] using the following experiment between a challenger
C and an adversary A.

Setup C runs the Setup and KeyGen to obtain (PK,SK). A is given with PK
and SK.

Challenge Phase A returns a message and signature pair (m∗, σ∗) to C who
chooses a random bit b ∈ {0, 1}. If b = 0, then C computes σ0 = Sign(SK,m∗),
else computes σ1 = Rand(PK,m∗, σ∗). Then, C sends σb to A.

Output Finally A returns a bit b′ and wins if Ver(PK,m∗, σ∗)=1 and b′ = b.

The advantage of A is defined as AdvRandA = |Pr[b′ = b]− 1/2|. A randomizable
signature scheme is said to be (t, ε)-secure against randomizability, if for any
t-time adversary A, AdvRandA ≤ ε, where t is a polynomial function of λ and ε is
a negligible function in λ. If ε = 0, then we say that the scheme satisfies perfect
randomizability.

A.3 Sequential Aggregate Signature

The notion of sequential aggregate signature scheme was introduced by Lysyan-
skaya et al. [24]. Here we recall the definition of sequential aggregate signature
scheme from [23]. A sequential aggregate signature scheme is defined using four
PPT algorithms which are described below.

AS.Setup(1λ) Given the security parameter λ, it returns a public parameter
PP .

AS.KeyGen(PP) Given the public parameter PP , it returns a key pair (PK,
SK). We assume that SK contains PK and PK contains PP .

AS.Sign(SK, (m1, . . . ,ms), σ, (PK1, . . . , PKs),m) Given an aggregate signa-
ture σ on the messages (m1, . . . ,ms) under the public keys (PK1, . . . , PKs),
a message m and a secret key SK such that the associated public key
PK /∈ {PKj}sj=1, it returns a new aggregate signature σ′ on the messages
(m1, . . . ,ms,m) under the public keys (PK1, . . . , PKs, PK).

22

AS.Ver((PK1, . . . , PKs), (m1, . . . ,ms), σ) Given the public keys (PK1, . . . , PKs),
messages (m1, . . . ,ms) along with the signature σ, it returns 1 only if σ is a
valid aggregate signature on (m1, . . . ,ms) under (PK1, . . . , PKs).

The sequential aggregate signature scheme is correct, if for all security pa-
rameter λ, all PP ← AS.Setup(1λ), all (PKj , SKj) ← AS.KeyGen(PP) for
all j ∈ [1, s], all messages (m1, . . ., ms−1) ∈ M, all aggregated-so-far signa-
ture σ on the messages (m1, . . . ,ms−1) under (PK1, . . . , PKs−1) and σ′ ←
AS.Sign(SKs, (m1, . . . ,ms−1), σ, (PK1, . . . , PKs−1),m), it holds that AS.Ver(
(PK1, . . . , PKs,), (m1, . . . ,ms), σ

′)=1.
We consider the security of sequential aggregate signature scheme in the

certified public key setting [23]. Informally, given a public key and polynomial
many aggregate signing oracle access along with polynomial many join oracle
access, it is hard for an adversary to produce an aggregate signature forgery
on a new message, which is not queried to the aggregate signing oracle. While
making a join oracle query, adversary requests a certification of a public key by
sending public and secret key pair to the challenger. The challenger returns a
certification of the requested public key, if the given key pair is valid. Formally,
security is defined using the following experiment between the challenge C and
an adversary A.

Setup: C initializes a key list KeyList as empty. Next, it runs the AS.Setup to
get PP and the AS.KeyGen to get (PK∗, SK∗). Then C sends PK∗ to A.

Join Query: A adaptively requests to authenticate the public key PKi by
sending (PKi, SKi) to C, for i ∈ [1, qJ]. If the key pair is valid, then C
authenticates the public key PKi and adds to KeyList.

Signing Query: A adaptively requests a sequential aggregate signature under
the challenge public key PK∗ on the message mi, for i ∈ [1, q]. In addition, it
supplies an aggregated-so-far signature σi on the messages (mi,1, . . . ,mi,si)
under the public keys (PKi,1, . . . , PKi,si). C checks (i) σi verifies, (ii) PKi,j

belongs to KeyList, for all j ∈ [1, si] and (iii) PK∗ 6= PKi,j , for all j ∈ [1, si].
Once all the above conditions satisfy, then C answers by computing σ′i =
AS.Sign(SK∗, (mi,1, . . . ,mi,si), σi, (PKi,1, . . . , PKi,si), mi).

Output: A outputs an aggregate signature σ∗ on the messages (m∗1, . . . ,m
∗
s)

under the public keys (PK1, . . . , PKs) and wins the game if the following
conditions are all satisfied:
1. AS.Ver((PK1, . . . , PKs), (m

∗
1, . . . ,m

∗
s), σ

∗)=1,
2. For all PKj 6= PK∗, PKj ∈ KeyList,
3. For some j∗ ∈ [1, s], PK∗ = PKj∗ and m∗j∗ 6= mi, for all i ∈ [1, q].

The advantage of A (denoted as AdvAS.UFA) is defined to be the probability
that A wins in the above game. A sequential aggregate signature scheme is said
to be (t, q, qJ , ε)-secure against existential unforgeability under chosen message
attack ((t, q, qJ , ε)-EUF-CMA secure), if for any t-time adversary A that makes
at most q many aggregate signing oracle queries and at most qJ many join oracle
queries, AdvAS.UFA ≤ ε, where t, q and qJ are the polynomial functions of λ and
ε is a negligible function in λ.

23

	From Rerandomizability to Sequential Aggregation: Efficient Signature Schemes Based on SXDH Assumption

