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Abstract Modern attribute-based anonymous credential (ABC) sys-
tems bene�t from special encodings that yield expressive and highly
e�cient show proofs on logical statements. The technique was �rst pro-
posed by Camenisch and Groÿ, who constructed an SRSA-based ABC
system with prime-encoded attributes that o�ers e�cient AND, OR and
NOT proofs. While other ABC frameworks have adopted constructions in
the same vein, the Camenisch-Groÿ ABC has been the most expressive
and asymptotically most e�cient proof system to date, even if it was
constrained by the requirement of a trusted message-space setup and
an inherent restriction to �nite-set attributes encoded as primes. In this
paper, combining a new set commitment scheme and an SDH-based sig-
nature scheme, we present a provably secure ABC system that supports
show proofs for complex statements. This construction is not only more
expressive than existing approaches, but it is also highly e�cient under
unrestricted attribute space due to its ECC protocols only requiring a
constant number of bilinear pairings by the veri�er; none by the prover.
Furthermore, we introduce strong security models for impersonation and
unlinkability under adaptive active and concurrent attacks to allow for
the expressiveness of our ABC as well as for a systematic comparison
to existing schemes. Given this foundation, we are the �rst to compre-
hensively formally prove the security of an ABC with expressive show
proofs. Speci�cally, building upon the q-(co-)SDH assumption, we prove
the security against impersonation with a tight reduction. Besides the set
commitment scheme, which may be of independent interest, our security
models can serve as a foundation for the design of future ABC systems.

1 Introduction

An anonymous attribute-based credential (ABC) system allows a user to obtain
credentials, that is, certi�ed attribute set A from issuers and to anonymously
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prove the possession of these credentials as well as properties of A. Anonymous
credentials were �rst proposed by Chaum [33] but it does not draw much at-
tention until Brands [17] constructed a pragmatic single-show ABC system and
Camenisch and Lysyanskaya (CL) [26] presented a practical multi-show ABC
system. CL-ABC system uses the signer's signature on a committed, and there-
fore blinded, attribute as the user credential. The proof of possession of a valid
credential is a zero-knowledge proof of knowledge on the validity of the signa-
ture and the wellformedness of the commitment. This commit-and-sign technique
has been employed by ABC systems from RSA-based signature scheme [27] and
pairing-based signature schemes [4, 6, 8, 12, 20, 24, 25, 28, 31, 57] on blocks of
messages in which the i-th attribute is �xed as the exponent to the i-th base.
Therefore, the show proofs have a computational complexity linear to the num-
ber of attributes in the credential, in terms of the modular exponentiations and
scalar multiplications, respectively.

In contrast to the technique above which is termed as traditional encoding by
Camenisch and Groÿ [22, 23], they suggested a prime encoding for the SRSA-CL
signature scheme [27] to o�er show proofs on AND, OR and NOT statements
with constant complexity for the prime-encoded attributes. Speci�cally, the
Camenisch-Groÿ (CG) construction separates the unrestricted attribute space S
into string attributes space and �nite-set attributes space such that S = SS∪SF .
The CG encoding uses a product of prime numbers to represent a �nite-set at-
tribute set AF ∈ SF in a single exponent, a technique subsequently applied to
graphs as complex data structures [43, 44]. Prime encoding results in highly ef-
�cient show proofs: each execution only requires a constant number of modular
exponentiations. However, the construction constrains SF to a set of pre-certi�ed
prime numbers and increases the public key size1. Furthermore, the security of
the CG ABC system was only established on the properties of its show proofs
and not formally on the overall properties of the ABC system. Despite these
drawbacks, to the best of our knowledge, CG ABC system [23, 44] is the only
ABC system in the standard model that has show proof for AND, OR, and NOT
statements with constant complexity.

Related Works. The SDH-CL signature scheme [24, 28, 59] is a popular candi-
date for the ABC system based on the traditional encoding. It is also referred
as the BBS+ signature scheme [1, 4, 6, 14, 61, 63] or the Okamoto signature
scheme [2, 53]. Au et al. [4] and Akagi et al. [2] constructed provably secure ABC
systems on this foundation while Camenisch et al. [24] integrated a pairing-based
accumulator to yield an ABC system that supports revocation. Later, Sudarsono
et al. [61] applied the accumulator on SF as in prime encoding and showed that
the resulting ABC system can support show proofs for AND and OR statements
with constant complexity. Yet, the accumulator requires a large public key size:
|SF | �nite-set attributes plus the corresponding |SF | signatures. Inspired by the
concept of attribute-based signature, Zhang and Feng [63] solved the large pub-

1 If the prime numbers are not pre-certi�ed by a signature each, the show proofs have
to include expensive interval proofs.
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lic key problem, while additionally supporting threshold statements (ANY) in
show proofs, at the cost of having the credential size linear to |AF |. Compar-
ing the traditional encoding-based ABC systems to the accumulator-based ABC
systems, the latter require more bilinear pairing operations in the show proofs,
and having either large public key or credential sizes.

There were some attempts to apply Camenisch et al.'s accumulator [24] and
its variants on P-signatures [46], LRSW-CL signature [45] and structure pre-
serving signatures [7, 54, 58] to support complex non-interactive zero-knowledge
(NIZK) show proofs. Among all, Sadiah et al.'s ABC system [58] o�ers the most
expressive show proofs. Considering only S = SF , their ABC system allows
constant-size and constant-complexity NIZK show proofs for monotone formu-
las at the cost of issuing |P(AF )| credentials to every user where P(AF ) is
the power set of the user attribute set AF . Instead of performing this expen-
sive process during the issuing protocol, Okishima and Nakanishi's ABC sys-
tem [54] generates P(SF ) during key generation and in�ates the public key
size with |P(SF )| signatures to enable constant-size non-interactive witness-
indistinguishable (NIWI) show proofs for conjunctive composite formulas. There
are also ABC systems [8, 12] that were built on Pointcheval and Sanders' sig-
nature [56]. The ABC system proposed by Bemmann et al. [8] combines both
traditional encoding and accumulator [52] to support monotone formulas under
the non-interactive proof of partial knowledge protocol [3]. Although it has sig-
ni�cantly shorter credential and supports unrestricted attribute space compared
to that of Sadiah et al.'s [58], its show proofs complexity is linear to the number
of literals in the monotone formula.

The �ndings on the use of accumulator in constructing ABC system corre-
spond to the observations in the ABC transformation framework proposed by Ca-
menisch et al. [21]. They discovered that the CL signatures are not able to achieve
constant-size NIZK show proofs without random oracle. The framework takes
in a structure-preserving signature scheme and a vector commitment scheme to
produce an UC-secure ABC system. Their instantiation supports constant-size
NIZK show proofs on subset statements and provably secure under the common
reference string model. Using the similar ingredients, Fuchsbauer et al. [42] con-
structed an ABC system that o�ers constant-size NIZK show proofs on subset
statement. The security models in the two works, however, are not designed
to cover expressive show proofs. Other frameworks [12, 25] that formalized the
commit-and-sign technique and even those [8, 54, 58] support show proofs on
complex statements also fall short in this aspect.

Research Gap. Existing constructions yield considerable restrictions when ex-
pressive show proofs are concerned: The SRSA-based CG scheme [22] as well
as accumulator-based schemes [7, 45, 46, 54, 58, 61] constrain the attribute
space to �nite-set attributes (AF ∈ SF ) and require a trusted setup that in-
�ates either the public-key size or the credential size. Their expressiveness and
the computational complexity are no better than the pairing-based construc-
tions [2, 4, 8, 42, 63] and the general ABC frameworks [12, 21, 25] alike, when
only string attributes (AS ∈ SS) are considered. Expressive proofs for large at-
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tribute set are desirable in privacy-preserving applications such as direct anony-
mous attestation [18, 19, 34�36, 38]. Also, we observe a need for a systematic
canonicalization of security models for all mentioned schemes. In short, an ideal
ABC system should have:

1. strong security assurance, and
2. appropriate public key size, and
3. expressive show proofs with low complexity regardless of the attribute space.

Our Contribution. We present a perfectly hiding and computationally binding
set commitment scheme, called MoniPoly, which supports set membership proofs
and disjointness proofs on the committed messages. Following the commit-and-
sign methodology, we combine the MoniPoly commitment scheme tracing back
to Kate et. al.'s work [47] with SDH-based Camenisch-Lysyanskaya signature
scheme [28, 59] to present an e�cient ABC system that support expressive show
proofs for AND, OR and k-out-of-n threshold (ANY) clauses as well as their
respective complements (NAND, NOR and NANY). Our ABC system is the most
e�cient construction for the unrestricted attribute space to-date. And it is at
least as expressive as the existing constructions specially crafted for the restricted
attribute space.

To the best of our knowledge, neither the constructions nor security models of
existing ABC systems allow for complex interactive show proofs. As an immedi-
ate contribution, we rigorously de�ne the necessary and stronger security notions
for ABC systems. Our notions for security of impersonation resilience and un-
linkability under adaptive active and concurrent attacks are stronger than those
of the state-of-the-art ABC systems [21, 25, 42, 54]. We prove the security of our
construction with respect to the security against impersonation and linkability
in the standard model, especially o�ering a tight reduction for impersonation
resilience under the q-(co-)SDH assumption.

Organization. We organize the paper as follows. In Section 2, we brie�y introduce
the related mathematical background and we present the MoniPoly commitment
scheme in Section 3. We present our ABC system which is a combination of
the MoniPoly commitment scheme with SDH-based CL signatures [28, 59] in
Section 4. Section 5 o�ers an evaluation of the MoniPoly ABC in terms of security
properties, expressivity as well as computational complexity in comparison to
other schemes in the �eld.

2 Preliminaries

2.1 Mathematical Tools

Bilinear Pairing. Let G1,G2,GT be groups of prime order p. Let g1 ∈ G1, g2 ∈
G2 and x, y ∈ Zp where g1, g2 are the generators, the bilinear pairing function is
e : G1 ×G2 → GT with the following properties:

1. Bilinearity: e(gx1 , g
y
2 ) = e(gy1 , g

x
2 ) = e(g1, g2)xy
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2. Non-degeneracy: e(g1, g2) 6= 1
3. E�ciency: e is e�ciently computable.

Throughout this work, we will assume Type-3 pairing which has G1 6= G2.

De�nition 1. Discrete Logarithm Assumption (DLOG). An algorithm C is said
to (tdlog, εdlog)-break the DLOG assumption if C runs in time at most tdlog and
furthermore:

Pr[x ∈ Zp : C(g, gx) = x] ≥ εdlog

for a negligible probability εdlog. We say that the DLOG assumption is (tdlog, εdlog)-
secure if no algorithm (tdlog, εdlog)-solves the DLOG problem.

De�nition 2. Discrete Logarithm with Auxiliary Input (DLOGwAI) [32, 37].
An algorithm C is said to (tdlogwai, εdlogwai)-break the DLOGwAI assumption if C
runs in time at most tdlogwai and furthermore:

Pr[x ∈ Zp : C(g, gx, . . . , gx
q

) = x] ≥ εdlogwai

for a negligible probability εdlogwai. We say that the DLOGwAI assumption is
(tdlogwai, εdlogwai)-secure if no algorithm (tdlogwai, εdlogwai)-solves the DLOGwAI prob-
lem.

De�nition 3. q−Strong Di�e-Hellman Assumption (SDH) [59]. An algorithm
C is said to (tsdh, εsdh)-break the SDH assumption if C runs in time at most tsdh
and furthermore:

Pr[x ∈ Zp, c ∈ Zp \ {−x}] : C(g1, g
x
1 , . . . , g

xq

1 , g2, g
x
2 ) = (g

1
x+c

1 , c)] ≥ εsdh

for a negligible probability εsdh. We say that the SDH assumption is (tsdh, εsdh)-
secure if no algorithm (tsdh, εsdh)-solves the SDH problem.

De�nition 4. q−co-Strong Di�e-Hellman Assumption (co-SDH) [32]. An al-
gorithm C is said to (tcosdh, εcosdh)-break the co-SDH assumption if C runs in time
at most tcosdh and furthermore:

Pr[x ∈ Zp, c ∈ Zp \ {−x}] : C(g1, g
x
1 , . . . , g

xq

1 , g2, g
x
2 , . . . , g

xq

2 ) = (g
1

x+c

1 , c)] ≥ εcosdh

for a negligible probability εcosdh. We say that the co-SDH assumption is (tcosdh, εcosdh)-
secure if no algorithm (tcosdh, εcosdh)-solves the co-SDH problem.

De�nition 5. q−Bilinear Strong Di�e-Hellman Assumption (BSDH) [32]. An
algorithm C is said to (tbsdh, εbsdh)-break the BSDH assumption if C runs in time
at most tbsdh and furthermore:

Pr[x ∈ Zp, c ∈ Zp \ {−x}] :

C(g1, g
x
1 , . . . , g

xq

1 , g2, g
x
2 , . . . , g

xq

2 ) = (e(g1, g2)
1

x+c , c)] ≥ εbsdh

for a negligible probability εbsdh. We say that the BSDH assumption is (tbsdh, εbsdh)-
secure if no algorithm (tbsdh, εbsdh)-solves the BSDH problem.
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De�nition 6. Relation (R) [40]. Let R be a relation {(x,w)} testable in poly-
nomial time where |x| = |w|. For any statement x, its witness set w(x) =
{w1, . . . , |w(x)|} is the set of w such that (x,w) ∈ R.

De�nition 7. Proof of Knowledge System [40]. An interactive proof of kowledge
system over R is a pair of algorithms (P, V ) satisfying:

1. Completeness: The veri�er V (x) always accepts a true statement produced by
the prover protocol P (x,wi ∈ w(x)) for ∀(x,w) ∈ R, except with a negligible
probability ε.

2. Soundness: The veri�er V (x) always rejects a false statement produced by
any prover protocol P ∗(x,w∗), and any knowledge extractor M(x,w∗;P ∗)
that uses P ∗ as subroutine, except with a negligible probability.

De�nition 8. Witness Hiding [40]. Let Gen be a generator for R and a state-
ment x, (P, V ) is witness hiding on (R, Gen) if a new witnesses w ∈ w(x) cannot
be computed by any veri�er protocol V ∗(x) and witness extractor M(x;V ∗, Gen)
after interacting with P (x,wi ∈ w(x)), except with a negligible probability.

2.2 Digital Signature Scheme

A digital signature scheme is de�ned by three algorithm as DS = (KeyGen,Sign,Verify)
as follows:

1. KeyGen(1k)→ (pk, sk): A pair of public and secret keys are generated based
on the security parameter input 1k. The public key pk can be made known
to the public while the secret key sk is kept secret by the signer.

2. Sign(m, pk, sk)→ σ: The signer uses the secret key sk to sign on a message
m, generating a signature σ.

3. Verify(m,σ, pk) → b: The veri�er takes the signer's public key pk and σ as
the input to ensure that the signature is genuinely signed by the signer. If
the signature is veri�ed, the algorithm returns b = 1 and b = 0 otherwise.

2.2.1 Unforgeability We refer to the security notion of strong existential
unforgeability under chosen message attacks (seuf-cma) [13]. The security model
is de�ned as the following game between a forger F and a challenger C:

Game 1 (seuf − cma(F , C))

1. Setup: C runs KeyGen and sends pk to F .
2. Phase 1: F is allowed to issue queries to the Sign oracle.
3. Challenge: F outputs a challenge message m∗ which may have been queried

to Sign oracle previously.
4. Phase 2: F can continue to query the Sign oracle as in Phase 1.
5. Forgery. F outputs a message and signature pair (m∗, σ∗) which is di�er-

ent from all the previous replies from the Sign oracle. F wins the game if
Verify(m∗, σ∗, pk) outputs 1.
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De�nition 9. A forger F is said to (tsig, εsig)-break the seuf-cma security of a
signature scheme if F runs in time at most tsig and wins in Game 1 such that:

Pr[Verify(m∗, σ∗, pk) = 1] ≥ εsig

for a negligible probability εsig. We say that a signature scheme is seuf-cma-secure
if no forger (tsig, εsig)-wins Game 1.

We adapt the notation of random self-reducibility for identi�cation scheme [48]
to that of witness hiding proof system [40].

De�nition 10. Random Self-Reducibility. A witness hiding proof system (Gen, P, V )
is said to be random self-reducible if there are three algorithms Rerand, Derand
and Tran such that, for all key pair (pk, sk) generated by Gen:

1. Rerand(pk) outputs (pk′, ρ) where pk′ has the same distribution to the pk′′

of a newly generated key pair (pk′′, sk′′) by Gen.
2. Derand(pk, pk′, sk′, ρ) outputs a valid sk with respect to pk for any valid key

pair (pk′, sk′).
3. Tran(pk, pk′, ρ, π′(P,V ) = (P (pk′, w′i ∈ w(pk′)), V (pk′))) transforms a valid

transcript π′(P,V ) into π(P,V ) = (P (pk,wi ∈ w(pk)), V (pk)) which is valid
with respect to pk.

2.3 The SDH-based CL Signature Scheme

Camenisch and Lysyanskaya [28] introduced a technique to construct secure
pairing-based signature schemes which support signing on committed messages.
They also showed that their technique can extract an e�cient SDH-based sig-
nature scheme from Boneh et al.'s group signature [14] scheme but no security
proof was provided. This scheme was later proven to be seuf-cma-secure with a
tight reduction [59] to the SDH assumption in the standard model. We describe
the SDH-CL signature scheme [24, 28, 59] as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a, b, c ∈ G1, g2 ∈ G2 and a secret value x ∈ Z∗p. Output the public key
pk = (e,G1,G2,GT , p, a, b, c, g2, X = gx2 ) and the secret key sk = x.

Sign(m, pk, sk): On input m, choose the random values s, t ∈ Z∗p to compute

v = (ambsc)
1

x+t . In the unlikely case in which x+ t = 0 mod p occurs, reselect
a random t. Output the signature as sig = (t, s, v).

Verify(m, sig, pk): Given sig = (t, s, v), output 1 if the equation:

e(v,Xgt2) = e((ambsc)
1

x+t , gx+t
2 )

= e(ambsc, g2).

holds and output 0 otherwise.
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Theorem 1. [59] SDH-based CL signature scheme is seuf-cma-secure in the
standard model if the Strong Di�e-Hellman problem is (tsdh, εsdh)-hard.

3 MoniPoly Set Commitment Scheme

Algorithm 1 MPEncode(): Encode attribute set into coe�cients {mi}0≤i≤n
Input: Attribute set A = {m0, . . . ,mn−1} and prime order p.
Output: L = {m0, . . . ,mn}.
Post-conditions:

∑n
i=0 mix

′i = (x′ +m0) · · · (x′ +mn−1)

1: L[|A|+ 1]← 1
2: if |A| = 1 then

3: L[0]← A[0]
4: return L
5: end if

6: L[0]← A[0]×A[1] mod p
7: L[1]← A[0] +A[1] mod p
8: for i← 2 to |A| do
9: for j ← i to 0 do

10: if j = i then
11: L[i]← L[i− 1] +A[i]
12: else if j = 1 then

13: L[j]← L[j]×A[i] + L[j − 1]
14: L[0]← L[0]×A[i]
15: else

16: L[j]← L[j]×A[i] + L[j − 1]
17: end if

18: end for

19: end for

20: return L

The key idea of set commitment scheme traces back to the polynomial com-
mitment scheme [47] which can commit to a polynomial and support opening at
indexes of the polynomial. Inheriting this nature, our MoniPoly set commitment
scheme and similar ones [21, 42] transform a message m ∈ Zp into (x′ + m)
where x′ ∈ Zp is not known to the user and multiple messages form a monic
polynomial f(x′) =

∏n
i=1(x′ + mi). This monic polynomial, in turn, can be

rewritten as f(x′) =
∑n
i=0 mix

′i. Its coe�cients mi ∈ Z∗p can be e�ciently com-
puted, for instance, using the encoding algorithm MPEncode() : Znp → Zn+1

p of
complexity O(n2) as depicted in Algorithm 1 or a more e�cient yet restrictive2

algorithm [55] of complexity O(n log n).

2 This algorithm requires n|pm − 1 for an integer m and may not be ful�lled by some
primes order p secured against Cheon's attack [37] on SDH assumption, the basis of
our set commitment scheme. A secure p has divisors n < (log p)2 for p− 1 and p+ 1
where n can be as small as 6 and 4 [60].
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Our commitment scheme's unique property is that it treats the opening value
as one of the roots in the monic polynomial. Hence, the name MoniPoly. Fold-
ing the opening value into the monic polynomial yields compelling advantages,
especially, enabling a greater design space for presentation proofs.

While related schemes [21, 42, 47] realize subset opening, our scheme supports
the opening of intersection sets and di�erence sets, in addition. Thus, MoniPoly
is more expressive. Furthermore, the presentation proofs created on MoniPoly are
more e�cient than other commitment-based frameworks. Finally, treating the
opening value as a root of the monic polynomial yields a scheme that is closely
aligned with well-established commitment scheme paradigms, which, in turn,
�ts into a range of popular signature schemes and enables signing committed
messages.

3.1 Interface

We de�ne the MoniPoly set commitment scheme as the following algorithms:

MoniPoly = (Setup,Commit,Open,OpenIntersection,

VerifyIntersection,OpenDifference,VerifyDifference)

1. Setup(1k, n)→ (pk, sk). A pair of public and secret keys (pk, sk) are gener-
ated by a trusted authority based on the security parameter input 1k. The
message domain D is de�ned and n − 1 is the maximum messages allowed.
If n is �xed, sk is not required in the rest of the scheme.

2. Commit(pk,A, o)→ (C). On the input of pk, a message set A ∈ Dn−1 and a
random opening value o ∈ D, output the commitment C.

3. Open(pk, C,A, o) → b. Return b = 1 if C is a valid commitment to A with
the opening value o under pk, and return b = 0 otherwise.

4. OpenIntersection(pk,C,A, o, (A′, l)) → (I,W ) or ⊥. If |A′ ∩ A| ≥ l holds,
return an intersection set I = A′ ∩ A of length l with the corresponding
witness W , and return an error ⊥ otherwise.

5. VerifyIntersection(pk, C, (I,W ), (A′, l)) → b. Return b = 1 if W is a witness
for S being the intersection set of length l for A′ and the set committed to
in C, and return b = 0 otherwise.

6. OpenDi�erence(pk,C,A, o, (A′, l̄)) → (D,W ). If |A′ − A| ≥ l̄ holds, return
the di�erence set D = A′−A of length l̄ with the corresponding witness W ,
and return ⊥ otherwise.

7. VerifyDi�erence(pk,C, (D,W ), (A′, l̄))→ b. Return b = 1 if W is the witness
for D being the di�erence set of length l̄ for A′ and the set committed to in
C, and return b = 0 otherwise.

3.2 Security Requirements

De�nition 11. A set commitment scheme is perfectly hiding if every commit-
ment C = Commit(pk,A, o) is uniformly distributed such that there exists an
o′ 6= o for all A′ 6= A where Open(pk,C,A′, o′) = 1.
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De�nition 12. An adversary A is said to (tbind, εbind)-break the binding security
of a set commitment scheme if A runs in time at most tbind and furthermore:

Pr[Open(pk,C,A1, o1) = Open(pk, C,A2, o2) = 1] ≥ εbind.

for a negligible probability εbind and any two pairs (A1, o1), (A2, o2) output by A.
We say that a set commitment scheme is (tbind, εbind)-secure wrt. binding if no
adversary (tbind, εbind)-breaks the binding security of the set commitment scheme.

3.3 Construction

We describe the MoniPoly commitment scheme as follows:

Setup(1k). Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 × G2 → GT . Select random gen-
erators a ∈ G1, g2 ∈ G2 and a secret values x′ ∈ Z∗p. Compute the values

a0 = a, a1 = ax
′
, . . . , an = ax

′n
, X0 = g2, X1 = gx

′

2 , . . . , Xn = gx
′n

2 to output the
public key pk = (e,G1,G2,GT , p, {ai, Xi}0≤i≤n) and the secret key sk = (x′).
Note that sk can be discarded by the authority if the parameter n is �xed.

Commit(pk,A, o). Taking as input a message set A = {m1, . . . ,mn−1} ∈ Z∗p and
the random opening value o ∈ Z∗p, output the commitment as

C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 =

n∏
j=0

a
mj

j

where {mj} = MPEncode(A ∪ {o}).

Open(pk, C,A, o). Return 1 if C =
∏n
j=0 a

mj

j holds where {mj} = MPEncode(A∪
{o}) and return 0 otherwise.

OpenIntersection(pk,C,A, o, (A′, l)). If |A′ ∩ A| ≥ l holds, return an intersection
set I = A′ ∩A of length l and a witness such that:

W = a
(x′+o)

∏
mj∈(A−I)(x

′+mj)

0

=

n−l∏
j=0

a
wj

j

where {wj} = MPEncode((A ∪ {o})− I). Otherwise, return a null value ⊥. The
correctness can be veri�ed as follows:

C = W
∏

mj∈I
(x′+mj)

=

(
a

(x′+o)
∏

mj∈(A−I)(x
′+mj)

0

)∏
mj∈I

(x′+mj)

= a
(x′+o)

∏
mj∈A

(x′+mj)

0 .
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VerifyIntersection(pk,C, I,W, (A′, l)). Return 1 if

e

C |A′|∏
j=0

a
m1,j

j , X0

 = e

W |A′|−l∏
j=0

a
m2,j

j ,

l∏
j=0

X
ij
j



holds and return 0 otherwise, where {ij} = MPEncode(I), {m1,j} = MPEncode(A′)
and {m2,j} = MPEncode(A′ − I). The correctness is as follows:

e

C |A′|∏
j=0

a
m1,j

j , X0


= e (C,X0) e

|A′|∏
j=0

a
m1,j

j , X0


= e

(
a

(x′+o)
∏

mj∈A
(x′+mj)

0 , X0

)
e

(
a

∏
mj∈A′

(x′+mj)

0 , X0

)
= e

(
a

(x′+o)
∏

mj∈(A−I)(x
′+mj)

0 , X

∏
mj∈I

(x′+mj)

0

)
e

(
a

∏
mj∈(A′−I)(x

′+mj)

0 , X

∏
mj∈I

(x′+mj)

0

)

= e

W, l∏
j=0

X
ij
j

 e

|A′|−l∏
j=0

a
m2,j

j ,

l∏
j=0

X
ij
j


= e

W |A′|−l∏
j=0

a
m2,j

j ,

l∏
j=0

X
ij
j



OpenDi�erence(pk, C,A, o, (A′, l̄)). If |A′ ∩ A| ≥ l̄ holds, return a di�erence set

D = A′ − A of length l̄ and the witness (W =
∏n−l̄
j=0 a

wj

j , {rj}
l̄−1
j=0). The val-

ues ({wj}, {rj}) = MPEncode(A)/MPEncode(D) are computed using expanded
synthetic division such that {wj} are the coe�cients of quotient q(x′) and {rj}
are the coe�cients of remainder r(x′). Speci�cally, let the polynomial divisor be

d(x′) =
∑l̄
j djx

′j where {dj} = MPEncode(D), the monic polynomial f(x′) in

the commitment C = a
f(x′)
0 can be rewritten as f(x′) = d(x′)q(x′) + r(x′). Note

that
∏l̄−1
j=0 a

rj
j 6= 1G1

whenever d(x′) cannot divide f(x′), i.e., the sets A and D
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are disjoint. The correctness can be veri�ed from the following:

C = a
(x′+o)

∏
mj∈A

(x′+mj)

0

= a
q(x′)

∏
mj∈D

(x′+mj)

0 a
r(x′)
0

=

n−l̄∏
j=0

a
wj

j

d(x′)

a
r(x′)
0

= W d(x′)
l̄−1∏
j=0

a
rj
j .

VerifyDi�erence(pk,C,D, (W, {rj}l̄−1
j=0), (A′, l̄)). Return 1, if the following holds:

e

C l̄−1∏
j=0

a
−rj
j

|A′|∏
j=0

a
m1,j

j , X0

 = e

W |A′|−l̄∏
j=0

a
m2,j

j ,

l̄∏
j=0

X
dj
j

 ,

l̄−1∏
j=0

a
rj
j 6= 1G1

and return 0 otherwise, where {dj} = MPEncode(D), {m1,j} = MPEncode(A′)
and {m2,j} = MPEncode(A′ −D). The correctness is as follows:

e

C l̄−1∏
j=0

a
−rj
j

|A′|∏
j=0

a
m1,j

j , X0


= e

C l̄−1∏
j=0

a
−rj
j , X0

 e

|A′|∏
j=0

a
m1,j

j , X0


= e

(
a
d(x′)q(x′)+r(x′)
0 a

−r(x′)
0 , X0

)
e

(
a

∏
mj∈A′

(x′+mj)

0 , X0

)
= e

(
a
d(x′)q(x′)
0 , X0

)
e

(
a

∏
mj∈(A′−D)(x

′+mj)

0 , X

∏
mj∈D

(x′+mj)

0

)

= e

(
a
∑n−l̄

j=0 w1,jx
′j

0 , X
d(x′)
0

)
e

|A′|−l̄∏
j=0

a
m2,j

j , X
d(x′)
0


= e

W |A′|−l̄∏
j=0

a
m2,j

j ,

l̄∏
j=0

X
dj
j

 .

Remark 1. In the security analysis of MoniPoly, we will take a di�erent approach
compared to the previous constructions [21, 42, 47]. We consider the perfectly
hiding property and the conventional computational binding property [39] that
only requires an adversary cannot present two pairs (A1, o1) and (A2, o2) such
that Commit(pk,A1, o1) = Commit(pk,A2, o2). We will show in Section 3.4 that
this conventional binding property is a superset of formers' subset binding prop-
erties.
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3.4 Security Analysis

Theorem 2. The MoniPoly commitment scheme is perfectly hiding.

Proof. Given a commitment C = a
(x′+o)

∏n−1
j=1 (x′+mj)

0 , there are |Z∗p| − 1 possible
pairs of ((m′1, . . . ,m

′
n−1), o′) 6= ((m1, . . . ,mn−1), o) which can result in the same

C. Furthermore, for every committed message set {m1, . . . ,mn−1}, there is a
unique o such that:

dloga0
(C) = (x′ + o)

n−1∏
j=1

(x′ +mj) mod p

o =
dloga0

(C)∏n−1
j=1 (x′ +mj)

− x′ mod p

Since o is chosen independently of the committed messages {m1, . . . ,mn−1}, the
latter are perfectly hidden. ut

The following theorem considers an adversary which breaks the binding prop-
erty by �nding two di�erent message sets A and A∗ which can be of di�erent
lengths such that |A| ≥ |A∗|.

Theorem 3. The MoniPoly commitment scheme is (tbind, εbind)-secure wrt. the
binding security if the co-SDH problem is (tcosdh, εcosdh)-hard such that:

εbind = εcosdh, tbind = tcosdh + T (n)

where T (n) is the time for dominant group operations in G1 to extract a co-SDH
solution where n is the total of committed messages plus the opening value.

Proof. We show that if there exists an adversary Abind which can �nd two pairs
(A, o) and (A∗, o∗) such that Open(pk,C,A, o) = Open(pk, C,A∗, o∗) = 1, there
exists a challenger C which can break the co-SDH assumption with the help
of Abind. C sets the co-SDH challenge as the public key pk = (a0 = g1, a1 =
gx
′

1 , . . . , an = gx
′n

1 , X0 = g2, X1 = gx
′

2 , . . . , Xn = gx
′n

2 ) and sends to Abind.

WhenAbind outputs two such pairs (A, o) and (A∗, o∗), we have a
(x′+o)

∏k
i=1(x′+mi)

0 =

a
(x′+o∗)

∏k∗
i=1(x′+m∗i )

0 . In order to ease the explanation, we viewA = {m1, . . . ,mk, o}
and A∗ = {m∗1, . . . ,m∗k∗ , o∗} where 1 ≤ k∗ ≤ k ≤ n−1. We �rst consider the case
of k∗ = k. By the setting of A and A∗, there are at least two unique elements that
exist in A but not in A∗. Assume o ∈ A is one of the unique elements such that

a
(x′+o)

∏k
i=1(x′+mi)

0 = a
c(x′)(x′+o)+r
0 = a

(x′+o)
∑k∗

i w∗i x
′i+r

0 . Let ({w∗i }0≤i≤k∗ , r) =
MPEncode(A∗)/MPEncode({o}) and {wi}0≤i≤k = MPEncode(A − {o}), C can
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extract a solution (o, g
1

x′+o ) for the co-SDH problem as follow:

a
(x′+o)

∏k
i=1(x′+mi)

0 = a
(x′+o∗)

∏k∗
i=1(x′+m∗i )

0

⇔a(x′+o)
∏k

i=1(x′+mi)
0 = a

c(x′)(x′+o)+r
0

⇔a
c(x′)+ r

x′+o

0 = a
∏k

i=1(x′+mi)
0

⇔a
1

x′+o

0 =

(
k∏
i=0

awi
i

k∗∏
i=0

a
−w∗i
i

)r−1

= g
1

x′+o

1 .

Notice that Abind also breaks the binding property in the witness W from

OpenIntersection algorithm and that in the witness (W, {rj}l̄−1
j=0) from OpenDifference

algorithm if the pairs (A, o) and (A∗, o∗) further satisfy the conditions: (1)
|A∗ ∩ A| = l and ful�lls |A′ ∩ A∗| = |A′ ∩ A| = l for the witness in set in-
tersections, (2) |A∗ −A| = l̄ and ful�lls |A′ −A∗| = |A′ −A| = l̄ for the witness
in set di�erences, respectively. Recall that the current setting is k∗ = k and this
implies |A∗ ∩A| = l for 0 ≤ l ≤ |A| − 2. So, from the two sets in (1), we have

OpenIntersection(pk,Commit(pk,A− {o}, o), A− {o}, o, (A′, l))
= OpenIntersection(pk,Commit(pk,A∗ − {o∗}, o∗), A∗ − {o∗}, o∗, (A′, l))

where 0 ≤ l ≤ |A′| ≤ |A| − 2; from the two sets in (2), we have

OpenDifference(pk,Commit(pk,A− {o}, o), A− {o}, o, (A′, l̄))
= OpenDifference(pk,Commit(pk,A∗ − {o∗}, o∗), A∗ − {o∗}, o∗, (A′, l̄))

where 2 ≤ l̄ ≤ |A′| ≤ |A|. In either case, it must be the case such that
Commit(pk,A−{o}, o) = Commit(pk,A∗−{o∗}, o∗) and therefore Open(pk,C,A−
{o}, o) = Open(pk,C,A∗ − {o∗}, o∗) = 1 where C can extract a SDH solution as
before.

In the case of k∗ < k, the calculations above work in the similar way except
the value l must be within 0 ≤ l ≤ |A′| ≤ |A∗| − 1 and the value l̄ must be
within 2 ≤ l̄ ≤ |A′| ≤ |A∗| − 1. Therefore, in any case of k∗ ≤ k, whenever
Abind breaks the binding property, C can �nd a SDH solution. Since C simulates
the experiment perfectly, we have εbind = εcosdh. Next, compared to the time
tbind taken by Abind, C used only tcosdh plus O(n) group operations in G1 to
�nd the co-SDH solution. Denoting the extra time taken by C as T (n) gives
tbind − T (n) = tcosdh as required. ut

As the security analysis covers the set di�erence and set intersection operations,
the binding property holds in AND, OR, ANY, NOR, NANY and NAND proofs
as well. The polynomial binding, evaluation binding and batch binding proper-
ties in Kate et al.'s polynomial commitment and its variants [21, 42, 47] can
be viewed as a subset of our binding property, since they support only subset
operations. Moreover, our proof does not rely on the stronger bilinear variant of
SDH assumption and this shows that bilinear pairing operation does not help in
breaking the binding property.
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4 Attribute-Based Anonymous Credential System

Table 1: Syntax and semantics for an access policy φ.
(a) BNF grammar

BNF

attr ::= <attribute>=<value>
set ::= attr,set | attr
con ::= AND | NAND | OR | NOR
cont ::= ANY | NANY
clause ::= con(set) | cont(l,set)
stmt ::= clause ∧ stmt | clause
policy ::= stmt(set) | ⊥

(b) Truth table with respect to input A

Clause Truth Condition

OR(A′) |A′ ∩A| > 0
ANY(1 < l < |A′|, A′) |A′ ∩A| ≥ l
AND(A′) |A′ ∩A| = |A′|
NOR(A′) |A′ ∩ Ā| > 0
NANY(1 < l < |A′|, A′) |A′ ∩ Ā| ≥ l
NAND(A′) |A′ ∩ Ā| = |A′|

Note: con = connective, cont = connective with threshold

Before presenting the formal de�nition of ABC system, we brie�y de�ne the
attribute set A and the access policy φ in our proposed ABC system which are
closely related to MoniPoly's opening algorithms. Informally, we view a relation
between two attribute sets as a clause. Clauses can be accumulated using the
logical ∧ operator in building the composite statement for an access policy.

Attribute We view a descriptive attribute set A = {m1, . . . ,mn} as a user's
identity. To be precise, an attribute m is an attribute-value pair in the format
attribute=value and A is a set of attributes. For instance, the identity of a user can
be described as: A = {“gender = male”, “name = bob”, “ID = 123456”, “role =
manager”, “branch = Y”}.

Access Policy An access policy φ as de�ned by the BNF grammar in Table 1
expresses the relationship between two attribute sets A and A′. An access pol-
icy φ is formed by an attribute set A as well as a statement stmt that spec-
i�es the relation between A and A′. We have some additional rules for the φ
where we require |A| = n > 1 and |A′| ≤ n. Besides, in the special case of
|A′| = 1, the connective must be either AND or NAND. An access policy φ
outputs 1 if the underlying statement is evaluated to true and outputs 0 oth-
erwise. Taking the attribute set A above as an example, we have φstmt(A) =
φAND(A′1)∧OR(A′2)(A) = 1 for the attribute sets A′1 = {“role = manager”} and
A′2 = {“branch = X”, “branch = Y”, “branch = Z”}. Note that the attribute set
A′ has been implicitly de�ned by stmt and we simply write φstmt in the subse-
quent sections when the reference to the attribute set A′ is clear.
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4.1 Interface

We de�ne an attribute-based anonymous credential system by �ve algorithms
ABC = {KeyGen,Obtain, Issue,Prove,Verify} as follows:

1. KeyGen(1k, 1n) → (pk, sk): This algorithm is executed by the issuer. On
the input of the security parameter k and the attributes upper bound n, it
generates a key pair (pk, sk).

2. (Obtain(pk,A), Issue(pk, sk))→ (cred or ⊥): These two algorithms form the
credential issuing protocol. The �rst algorithm is executed by the user with
the input of the issuer's public key pk and an attribute set A. The second
algorithm is executed by the issuer and takes as input the issuer's public
key pk and secret key sk. At the end of the protocol, Obtain outputs a valid
credential cred produced by Issue or a null value ⊥ otherwise.

3. (Prove(pk, cred, φstmt),Verify(pk, φstmt))→ b: These two algorithms form the
credential presentation protocol. The second algorithm is executed by the
credential veri�er which takes as input the issuer's public key pk and has
the right to decide the access policy φstmt. The �rst algorithm is executed
by the credential prover which takes as input the issuer's public key pk,
user's credential cred and an access policy φstmt such that φstmt(A) = 1.
If φstmt(A) = 0, the credential holder aborts and Verify outputs b = 0. If
φ = ⊥, prover and veri�er complete a proof of possession which proves the
validity of credential only instead of a show proof which additionally proves
the relation between A and A′. At the end of the protocol, Verify outputs
b = 1 if it accepts prover and outputs b = 0 otherwise.

In the following, we de�ne the key security requirements for an anonymous
credential system in the form of impersonation resilience, anonymity and un-
linkability.

4.2 Security Requirements

Table 2: Types of adversary by attack abilities.

Protocol
Attack

Passive Active

Issuing 1 2, 2+

Presentation 3 4

4.2.1 Impersonation Resilience. The security goal of an ABC system re-
quires that it is infeasible for an adversary to get accepted by the veri�er in the
show proof. Before de�ning the impersonation resilience security model for graph
signature scheme, we de�ne the types of adversary according to their abilities in
Table 2:
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1. Type 1: Adversary has access to the signing protocol transcript. This ability
is represented by having access to an IssueTranscript oracle.

2. Type 2: In addition to the Type 1 ability, the adversary can corrupt the
users. This additional ability is represented by having access to the Obtain
oracle of issuing protocol.

3. Type 2+: In addition to the Type 2 ability, the adversary can corrupt the
issuer. This additional ability is represented by having access to the Issue
oracle of issuing protocol.

4. Type 3: Adversary has access to the presentation protocol transcript. This
ability is represented by having access to a PresentTranscript oracle.

5. Type 4: In addition to the Type 3 ability, the adversary can corrupt the
veri�er. This additional ability is represented by having access to the Verify
oracle in presentation protocol.

We denote the adversary according to their ability as A1,A2,A2+ ,A3 and A4

respectively. These �ve adversaries can be combined to give stronger adversaries.
For instance, we consider A1,2,4 = {A1,A2,A4} and A2+,4 = {A2+ ,A4} in this
work for impersonation resilience and unlinkability, respectively. Note that hav-
ing the ability of corrupting a user implies the ability of acting as a prover in
the presentation protocol, which is represented by having access to the Prove
oracle. However, Obtain and Prove oracles do not cover the functionality of Is-
sueTranscript which produces issuing transcripts of the uncorrupted user. We also
allow an adversary to adaptively issue concurrent queries. We de�ne our security
model as the security against impersonation under active and concurrent attacks
(imp-aca) in the game between an adversary A and a challenger C as follows.

Game 2 (imp− aca(A, C))

1. Setup: C runs KeyGen(1k, 1n) and sends pk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Prove and

Verify oracles where he plays the role of user, prover and veri�er, respectively,
on any attribute set Ai of his choice in the i-th query. A can also issue queries
to the IssueTranscript oracle which takes in Ai and returns the corresponding
transcripts of issuing protocol.

3. Challenge: A outputs the challenge attribute set A∗ and its corresponding
access policy φ∗stmt such that φ∗stmt(Ai) = 0 and φ∗stmt(A

∗) = 1 for every Ai
queried to the Obtain oracle during Phase 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 with the restric-
tion that it cannot query an attribute set Ai to Obtain such that φ

∗
stmt(Ai) = 1.

5. Impersonate: A completes a show proof as the prover with C as the veri�er
for the access policy φ∗stmt(A

∗) = 1. A wins the game if C outputs 1.

De�nition 13. An adversary A is said to (timp, εimp)-break the imp-aca security
of an ABC system if A runs in time at most timp and wins in Game 2 such that:

Pr[(A,Verify(pk, φ∗stmt)) = 1] ≥ εimp

17



for a negligible probability εimp. We say that an ABC system is imp-aca-secure if
no adversary (timp, εimp)-wins Game 2.

Note that we reserve the term unforgeability of the signature scheme as de-
�ned in Game 1 in contrast to some contributions in the literature [2, 12, 21,
25, 42, 57]. One can view our impersonation resilience notion as the stronger
version of the misauthentication resistance from the ABC systems with expres-
sive show proofs [7, 54, 58] which does not cover the active and concurrent
adversary besides disallowing adaptive queries. We also introduce a new oracle,
namely, IssueTranscript that covers the passive adversary for the issuing proto-
col. This makes our security de�nition more comprehensive than that by related
works [12, 21, 25, 42].

Similar to the ABC systems [21, 42] which support subset show proofs, in
the imp-aca security game, we consider only show proofs but not the proof of
possession which proves only the validity of credential and nothing on the rela-
tionships between attribute sets, i.e., φstmt∗ =⊥. This is because A can trivially
cheat by using any corrupted credential to generate a proof of possession, if the
ABC system o�ers anonymity and unlinkability. Anyway, we note that the show
proof for φAND(A∗)(A

∗) in the security game can subsume a proof of possession
where we have A that �honestly� impersonates using the challenge attribute set
A∗ as it claims it would. Therefore, when we mention show proof, we mean both
proof of possession and show proof unless otherwise speci�ed.

4.2.2 Anonymity. Anonymity requires that an adversary cannot recover the
identity of a user from the issuing protocol and the show proofs. The security
model for full anonymity under active and concurrent attacks (anon-aca) is de-
�ned as a game between an adversary A and a challenger C:

Game 3 (anon− aca(A, C))

1. Setup: C runs KeyGen and sends pk, sk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove

and Verify oracles where he plays the role of user, issuer, prover and veri�er,
respectively, on any attribute set Ai of his choice in the i-th query. A can
also issue queries to a Corrupt oracle that takes in a transcript of issuing
protocol or presentation protocol whose user or prover, respectively, is C and
returns the entire internal state, including the random seed used by C in the
transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗stmt which he wishes to challenge such that φ
∗
stmt(A0) =

φ∗stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing the challenge bit b ∈
{0, 1} and interacts as the user with A as the issuer to complete the protocol

(Obtain(pk,Ab), Issue(pk, sk))→ credb.
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Subsequently, C interacts as the prover with A as the veri�er for polynomially
many times as requested by A to complete the protocol

(Prove(pk, credb, φ
∗
stmt),Verify(pk, φ∗stmt))→ 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

5. Guess: A outputs a guess b′ and wins the game if b′ = b.

De�nition 14. An adversary A is said to (tano, εano)-break the anon-aca-security
of an ABC system if A runs in time at most tano and wins in Game 3 such that:

|Pr[b = b′]− 1

2
| ≥ εano

for a negligible probability εano. We say that an ABC system is anon-aca-secure
if no adversary (tano, εano)-wins Game 3.

Di�erent from the anonymity notion in the ABC systems [2, 6, 7, 20, 31, 42,
54, 58, 63] considering the anonymity in the show proofs only, our full anonymity
notion considers both issuing protocol and show proofs. This is similar to Blömer
et al.'s notion [57], however our notion is equipped with an extra Corrupt oracle.
It is also stronger than the anonymity notion used by Fuchbauer et al. and similar
works [2, 42] which assumes an adversary can collude with issuer but does not
know sk.

Following the de�nition of our full anonymity security, the ABC systems
which use a non-blind issuing protocol are obviously not fully anonymous be-
cause the adversary can always obtain Ab in plain by acting as the issuer of the
challenge issuing protocol. This is true even when we consider the weaker adver-
sary A1 from Table 2 that only knows the issuing transcript for the challenge
attribute set from the IssueTranscript oracle. However, communicating a com-
mitted attribute set by the user to the issuer during the issuing protocol does
not necessarily o�er user anonymity. As an example, we show a �nite-attribute
attack on credential systems that do not o�er an anonymous issuing protocol in
Appendix A.

4.2.3 Unlinkability. Unlinkability requires that an adversary cannot link
the attributes or instances among the issuing protocols and the presentation
protocols. We consider two types of unlinkability notions, namely, full attribute
unlinkability and full protocol unlinkability. We require that an adversary, after
being involved in the generation of a list of credentials, cannot di�erentiate the
sequence of two attribute sets in the full attribute unlinkability. The security
model for full attribute unlinkability under active and concurrent attacks (aunl-
aca) is de�ned as a game between an adversary A and a challenger C.

Game 4 (aunl− aca(A, C))
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1. Setup: C runs KeyGen and sends pk, sk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove

and Verify oracles where he plays the role of user, issuer, prover and veri�er,
respectively, on any attribute set Ai of his choice in the i-th query. A can
also issue queries to an additional oracle, namely, Corrupt which takes in a
transcript of issuing protocol or show proofs whose user or prover, respec-
tively, is C and returns the entire internal state, including the random seed
used by C in the transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗stmt which he wishes to challenge such that φ
∗
stmt(A0) =

φ∗stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing a challenge bit b ∈ {0, 1}
and interacts as the user with A as the issuer to complete the protocols:

(Obtain(pk,Ab), Issue(pk, sk))→ credb,

(Obtain(pk,A1−b), Issue(pk, sk))→ cred1−b.

Subsequently, C interacts as the prover with A as the veri�er for polynomially
many times as requested by A to complete the protocols in the same order:

(Prove(pk, credb, φ
∗
stmt),Verify(pk, φ∗stmt))→ 1,

(Prove(pk, cred1−b, φ
∗
stmt),Verify(pk, φ∗stmt))→ 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

5. Guess: A outputs a guess b′ and wins the game if b′ = b.

De�nition 15. An adversary A is said to (taunl, εaunl)-break the aunl-aca-security
of an ABC system if A runs in time at most taunl and wins in Game 4 such that:

|Pr[b = b′]− 1

2
| ≥ εaunl

for a negligible probability εaunl. We say that an ABC system is aunl-aca-secure
if no adversary (taunl, εaunl)-wins Game 4.

Our full attribute unlinkability is more generic than that in Camenisch et al.'s
ABC transformation frameworks [21] where we assume the challenged attribute
sets A0, A1 are not equivalent such that A0 6= A1. Besides, unlike Ringers et
al.'s unlinkability notion [57], ours covers both issuing and show proofs as in
Camenisch et al.'s privacy notions [25], though the latter does not have a Corrupt
oracle while the former does.

On the other hand, as far as we know, the full protocol unlinkability has not
been considered before. This notion requires that an adversary, after being in-
volved in the generation of a list of credentials, cannot link an instance of issuing
protocol and an instance of a show proof that are under the same credential.
The full protocol unlinkability under active and concurrent attacks (punl-aca) is
de�ned as a game between an adversary A and a challenger C:
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Game 5 (punl− aca(A, C))

1. Setup: C runs KeyGen and sends pk, sk to A.
2. Phase 1: A is able to issue concurrent queries to the Obtain, Issue, Prove

and Verify oracles where he plays the role of users, issuer, provers and ver-
i�er, respectively, on any attribute set Ai of his choice in the i-th query. A
can also issue queries to an additional oracle, namely, Corrupt which takes
in a transcript of issuing protocol or show proofs whose user or prover, re-
spectively, is C and returns the entire internal state, including the random
seed used by C in the transcript.

3. Challenge: A decides the two equal-length, non-empty attribute sets A0, A1

and the access policy φ∗stmt which he wishes to challenge such that φ
∗
stmt(A0) =

φ∗stmt(A1) = 1. A is allowed to select A0, A1 from the existing queries to
Obtain in Phase 1. C responds by randomly choosing two challenge bits
b1, b2 ∈ {0, 1} and interacts as the user with A as the issuer to complete
the protocols in the order

(Obtain(pk,Ab1), Issue(pk, sk))→ credb1 ,

(Obtain(pk,A1−b1), Issue(pk, sk))→ cred1−b1 .

Subsequently, C interacts as the prover with A as the veri�er for polynomially
many times as requested by A to complete the protocols in the order

(Prove(pk, credb2 , φ
∗
stmt),Verify(pk, φ∗stmt))→ 1,

(Prove(pk, cred1−b2 , φ
∗
stmt),Verify(pk, φ∗stmt))→ 1.

4. Phase 2: A can continue to query the oracles as in Phase 1 except querying
the transcripts of the challenged issuing and show proofs to Corrupt.

5. Guess: A outputs a guessed pair of issuing protocol transcript π(O,I) and
show proof transcript π(P,V ) and wins the game if the pair is under the same
credential such that credπ(O,I)

= credπ(P,V )
.

De�nition 16. An adversary A is said to (tpunl, εpunl)-break the punl-aca-security
of an ABC system if A runs in time at most tpunl and wins in Game 5 such that:

|Pr[credπ(O,I)
= credπ(P,V )

]− 1

2
| ≥ εpunl

for a negligible probability εpunl. We say that an ABC system is punl-aca-secure
if no adversary (tpunl, εpunl)-wins Game 5.

It is clear that a full anonymity adversary is a weaker form of a full attribute
unlinkability adversary and we prove that full attribute unlinkability implies full
anonymity (Appendix B) in an ABC system but the opposite does not hold.
We also show that there is no reduction between full attribute unlinkability and
full protocol unlinkability (Appendix C). Therefore, we only prove the security
against the full attribute unlinkability and the full protocol unlinkability for our
proposed ABC system.
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4.3 Construction

Concisely, a user credential cred is an SDH-CL signature sig on the MoniPoly
commitment C of his attribute set A. Next, the show proofs of our ABC system
is proving the validity of sig and C such that:

PK{(· · · ) :1 = SDH-CL.Verify(C, sig, pk) ∧
1 = MoniPoly.VerifyPred(pk,C,A,W, (A′, l))}

where Pred = {Intersection,Difference}. The commitment veri�cation algorithms
are the main ingredient that form the access policy for our ABC system. We de-
scribe the proposed ABC system as follows:

KeyGen(1k): Construct three cyclic groups G1,G2,GT of order p based on an
elliptic curve whose bilinear pairing is e : G1 ×G2 → GT . Select random gener-
ators a, b, c ∈ G1, g2 ∈ G2 and two secret values x, x′ ∈ Z∗p. Compute the values

a0 = a, a1 = ax
′
, . . . , an = ax

′n
, X = gx2 , X0 = g2, X1 = gx

′

2 , . . . , Xn = gx
′n

2

to output the public key pk = (e,G1,G2,GT , p, b, c, {ai, Xi}0≤i≤n, X) and the
secret key sk = (x, x′).

(Obtain(pk,A), Issue(pk, sk)): User interacts with veri�er as follows to generate
a user credential cred on an attribute set A = {m1, . . . ,mn−1}.

1. User chooses a random opening value o ∈ Z∗p to compute C =
∏n
j=0 a

mj

j =
Commit(pk,A, o). Subsequently, user selects random s1 ∈ Z∗p to initialize the
issuing protocol by completing the protocol with the issuer:

PK

{
(α0, . . . , αn, σ) : M =

n∏
j=0

a
αj

j b
σ

}
where σ = s1 and {α0, . . . , αn} = {m0, . . . ,mn}.

2. Issuer proceeds to the next step if the protocol is veri�ed. Else, issuer outputs
⊥ and stops.

3. Issuer generates the SDH-CL signature forM as sig = (t, s2, v = (Mbs2c)1/(x+t)).
4. If sig is not a valid signature on A ∪ {o}, user outputs ⊥ and stops. Else,

user outputs the credential as cred = (t, s, v, A = A ∪ {o}) where:

s = s1 + s2, v =
(
a
∏n

j=1(x′+mj)

0 bsc
)1/(x+t)

.

4.3.1 Proof of Possession. This protocol proves the ownership of a valid
credential cred and the wellformedness of the committed attribute set A =
{m1, . . . ,mn} without disclosing any attribute. The Prove and Verify algorithms
interact as follows.
(Prove(pk, cred,⊥),Verify(pk,⊥)):

1. Veri�er requests for a proof of possessions protocol by sending an empty
access policy φ = ⊥.
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2. Prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ = (t′ =

ty, s′ = sr2, v′ = vr
2y−1

).

3. Setting v′,W =
∏n−1
j=0 a

w′j
j as the public input where {w′j}0≤j≤n−1 = r ×

MPEncode(A − {o}), prover runs the zero-knowledge protocol below with
the veri�er:

PK

{
(ρ, τ, γ, α0, α1, σ) :e(Cρbσcρv′−τ , X0) = e(v′γ , X) ∧

e(Cρ, X0) = e(W,Xα1
1 Xα0

0 )

}
where ρ = r2, τ = t′, γ = y, {αj} = r×MPEncode({o}), σ = s′. The protocol
above can be compressed as:

PK

{
(ρ, τ, γ, α0, α1, σ) : e(W,Xα1

1 Xα0
0 )e

(
bσcρv′−τ , X0

)
= e(v′γ , X)

}
to realize a more e�cient proof.

4. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.

4.3.2 Show Proofs. A show proof proves the relation between the attribute
set A in cred and the queried set A′ chosen by the veri�er. Using the same com-
pression technique from the proof of possession, we describe the single clause
show proofs by the following presentation protocols.

AND proof. This protocol allows prover to disclose an attribute set A′ =
{m1, . . . ,mk} ⊆ A upon the request from veri�er and proves that his credential
cred contains A′. The showing protocol for AND proof is as follows.

(Prove(pk, cred, φAND(A′)),Verify(pk, φAND(A′))):

1. Veri�er requests an AND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If A′ 6⊆ A, prover aborts and the veri�er outputs 0.
3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry
−1

, {w′j}0≤j≤n−k = r ×MPEncode(A−A′)).

4. Setting v′,W =
∏n−k
j=0 a

w′j
j as the public input, prover runs the zero-knowledge

protocol below with the veri�er:

PK

{
(ρ, τ, γ, σ) : e

W, k∏
j=0

X
mj

j

 e(bσcρv′−τ , X0) = e(v′γ , X)

}

where
∏k
j=0X

mj

j and {mj} = MPEncode(A′) are computed by the veri�er
and ρ = r, τ = t′, γ = y, σ = s′.

5. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.
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ANY and OR proofs. This is the show proof for the threshold statement, and
it is an OR proof when the threshold is equal to one. Consider the scenario where
the prover is given an attribute set A′ = {m1, . . . ,mk} and he needs to prove that
he has l attributes {mj}1≤j≤l ∈ (A′ ∩A) without the veri�er knowing which at-
tributes he is proving. The showing protocol for the ANY statement is as follows.

(Prove(pk, cred, φANY(l,A′)),Verify(pk, φANY(l,A′))):

1. Veri�er requests an ANY(l, A′) proof for the attribute set A′ = {m1, . . . ,mk}.
2. Prover randomly selects l-attribute intersection set I ⊆ (A′ ∩A). If no such
I can be formed, the prover aborts and the veri�er outputs 0.

3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr
2y−1

, {w′j}0≤j≤n−l = r ×MPEncode(A− I)).

4. Setting v′,W =
∏n−l
j=0 a

w′j
j ,W

′ =
(∏k−l

j=0 a
m2,j

j

)r−1

as the public input where

{m2,j}0≤j≤k−l = MPEncode(A′−I), prover runs the zero-knowledge protocol
below with the veri�er:

PK

{
(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

W ′W, l∏
j=0

X
ιj
j

 e

 k∏
j=0

a
−m1,j

j bσcρv′−τ , X0

 = e(v′γ , X)

}

where
∏k
j=0 a

−m1,j

j and {m1,j}0≤j≤k = MPEncode(A′) are computed by the

veri�er and ρ = r2, τ = t′, γ = y, {ιj}0≤j≤l = r ×MPEncode(I), σ = s′.

5. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.

NAND and NOT proofs. This is the showing protocol for the NAND statement
which allows a prover to show that an attribute set A′ = {m1, . . . ,mk} is disjoint
with the set A in his credential. Note that it is a NOT proof when |A′| = 1. The
showing protocol on the NAND statement is as below.

(Prove(pk, cred, φNAND(A′)),Verify(pk, φNAND(A′))):

1. Veri�er requests a NAND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If |A′ −A| < k, prover aborts and the veri�er outputs 0.

3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr, v′ = vry
−1

, {w′j = rwj}0≤j≤n−k, {r′j = rrj}0≤j≤k−1) where
({wj}0≤j≤n−k, {rj}0≤j≤k−1) = MPEncode(A)/MPEncode(A′).
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4. Setting v′,W =
∏n−k
j=0 a

w′j
j as the public input, prover runs the zero-knowledge

protocol with the veri�er:

PK

{
(ρ, τ, γ, µ0, . . . , µk−1, σ) :

k−1∏
j=0

a
µj

j 6= 1G1∧

e

W, k∏
j=0

X
mj

j

 e

k−1∏
j=0

a
µj

j b
σcρv′−τ , X0

 = e(v′γ , X)

}

where
∏k
j=0X

mj

j and {mj} = MPEncode(A′) are computed by the veri�er
and {µj} = {r′j}, ρ = r, τ = t′, γ = y, σ = s′.

5. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.

NANY proof. This is the showing protocol for the negated threshold state-
ment. Consider the scenario where the prover is given an attribute set A′ =
{m1, . . . ,mk} and he needs to prove that an l-attribute set D ⊆ (A′ − A) are
not in the credential without the veri�er knowing which attributes he is proving.
The showing protocol on the NANY statement is as below.

(Prove(pk, cred, φNANY(l̄,A′)),Verify(pk, φNANY(l̄,A′))):

1. Veri�er requests a NANY proof for the attributes A′ = {m1, . . . ,mk}.
2. Prover randomly selects an l̄-attribute di�erence set D ∈ (A′−A). If no such
D can be formed, prover aborts and the veri�er outputs 0.

3. Else, prover chooses random r, y ∈ Z∗p to randomize the credential as cred′ =

(t′ = ty, s′ = sr2, v′ = vr
2y−1

, {w′j = rwj}0≤j≤n−l̄, {r′j = r2wj}0≤j≤l̄−1)
where ({wj}0≤j≤n−l̄, {rj}0≤j≤l̄−1) = MPEncode(A)/MPEncode(D).

4. Setting v′,W =
∏n−l̄
j=0 a

w′j
j ,W

′ =
(∏k−l̄

j=0 a
m2,j

j

)r−1

as the public input where

{m2,j}0≤j≤k−l̄ = MPEncode(A′−D), prover runs the zero-knowledge proto-
col with the veri�er:

PK

{
(ρ, τ, γ, δ0, . . . , δl̄, µ0, . . . , µl̄−1, σ) :

l̄−1∏
j=0

a
µj

j 6= 1G1∧

e

W ′W, l̄∏
j=0

X
δj
j

 e

 k∏
j=0

a
−m1,j

j

l̄−1∏
j=0

a
µj

j b
σcρv′−τ , X0

 = e(v′γ , X)

}

where
∏k
j=0 a

−m1,j

j and {m1,j}0≤j≤k = MPEncode(A′) are computed by the

veri�er and {µj} = {r′j}, ρ = r2, τ = t′, γ = y, {δj}0≤j≤l̄ = r×MPEncode(D), σ =
s′.

5. Veri�er outputs 1 if the protocol is veri�ed and 0 otherwise.
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4.4 Security Analysis

4.4.1 Impersonation Resilience. We establish the security of theMoniPoly
ABC system by constructing a reduction to the (co-)SDH problem. To achieve
tight security reduction, we make use of Multi-Instance Reset Lemma [48] as the
knowledge extractor which requires the adversary A to run N parallel instances
of impersonation under active and concurrent attacks. The challenger C can ful�ll
this requirement by simulating the N − 1 instances from its given SDH instance
which is random self-reducible [13]. Since this is obvious, we describe only the
simulation for a single instance of impersonation under active and concurrent
attacks in the security proofs.

Theorem 4. If an adversary A (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tcosdh, εcosdh)-breaks the co-SDH problem such that:

εcosdh
tcosdh

=
εimp

timp
,

or an algorithm C which (tsdh, εsdh)-breaks the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total adversary instance, q = Q(O,I) + Q(P,V ) is the total query
made to the Obtain and Verify oracles, while T (q2) is the time parameterized by
q to setup the simulation environment and to extract the SDH solution. Consider
the dominant time elements timp and tsdh only, we have:(

1−
(

1− εimp +
1 + (q − 1)!/pq−2

p

)N)2

≤ εsdh, 2Ntimp ≈ tsdh.

Let N = (εimp− 1+(q−1)!/pq−2

p )−1, we get εsdh ≥ (1−e−1)2 ≥ 1/3 and the success
ratio is:

εsdh
tsdh
≥ 1

3 · 2Ntimp

6εsdh
tsdh

≥ εimp

timp
− 1 + (q − 1)!/pq−2

timpp

which gives a tight reduction.

To modularize the proof for Theorem 4, we categorize the way an adver-
sary impersonates in Table 3. This is like the approach in the tight reduction
proof for the SDH-CL signature scheme proposed by Schäge [59]. Subsequently,
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Table 3: Types of impersonation and the corresponding assumptions.

Type A MPEncode(A) s t v Adversary Assumption Lemmas

0 0 1 * * * Abind co-SDH Theorem 3
1 0 0 0 0 0 A1 SDH 1
2 0 0 0 0 1 A1 DLOG 1
3 0 0 0 1 0 A2 SDH 2
4 0 0 0 1 1 A2 DLOG 2
5 0 0 1 0 0 A1 SDH 1
6 0 0 1 0 1 A1 DLOG 1
7 0 0 1 1 0 A3 SDH 3
8 0 0 1 1 1 A3 DLOG 3
9 1 1 0 0 0 A1 SDH 1
10 1 1 0 0 1 A1 DLOG 1
11 1 1 0 1 0 A2 SDH 2
12 1 1 0 1 1 A2 DLOG 2
13 1 1 1 0 0 A1 SDH 1
14 1 1 1 0 1 A1 N/A 1
15 1 1 1 1 0 A3 SDH 3
16 1 1 1 1 1 A3 N/A 3

Note: * = 1 or 0, 1 = equal, 0 = unequal, N/A = not available

we di�erentiate A into A = {Abind,A1,A2,A3} corresponding to four di�er-
ent simulation strategies by C. We omit the proof for the binding property of
MoniPoly commitment scheme Abind which has been described in Theorem 3
and can be trivially applied here.

In each of the simulation strategy, we consider only the success probability
of breaking the SDH problem which is weaker than the DLOG problem such
that εsdh ≥ εdlog. Let M

∗ =
∏n
j=1(x′ + m∗j ) and Mi =

∏n
j=1(x′ + mi,j) where

A∗ = {m∗j} and Ai = {mj}, respectively, the DLOG problem can be solved
whenever the forgery v∗ produced by A equals to a vi which has been generated
by C such that:

∵ v∗ ≡ vi

(aM
∗

0 bs
∗
c)

1
x+t∗ ≡ (aMi

0 bsic)
1

x+ti

(aM
∗+s∗β+γ

0 )
1

x+t∗ ≡ (aMi+siβ+γ
0 )

1
x+ti

∴
M∗ + s∗β + γ

x+ t∗
≡ Mi + siβ + γ

x+ ti
mod p

which leads to:

x ≡ t∗Mi − tiM∗ + β(t∗si − tis∗) + γ(t∗ − ti)
M∗ −Mi + β(s∗ − si)

mod p

where C can solve the SDH problem using x. Following the equation, the Type 14
impersonation (A∗, v∗, s∗) = (Ai, vi, si) will not happen as it causes a division
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by zero. On the other hand, Type 16 represents the impersonation using the
uncorrupted cred generated by C when it answers A's IssueTranscript queries
or Verify queries. If A's view is independent of C's choice of (ti, si), we have
(t∗, s∗) 6= (ti, si) with probability 1−1/p. This causes Type 16 impersonation to
happen with a negligible probability of 1/p at which point our simulation fails.

We present Lemma 1, 2 and 3 corresponding to the adversaries A1, A2 and
A3 as follows.

Lemma 1. If an adversary A1 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V ) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a q-SDH instance (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2 ) where q = Q(O,I) +

Q(P,V ) is the maximum number of queries A1 can issue to the Obtain and Verify
oracles, we show that if A1 exists, there exists an algorithm C which can output

(g
1

x+t

1 , t) by acting as the simulator for the ABC system as follows:

Game0. This is the attack by A on the real N instances of anonymous credential
system. Let S be the event of a successful impersonation, by assumption, we have:

Pr[S0] = εimp. (1)

Game1. In order to simulate the environment of the ABC system, C uniformly
and randomly selects distinct t0, t

′
0, t
′′
0 , x
′, t1, . . . , tq ∈ Z∗p. Next, let f(x) denotes

the polynomial f(x) =
∏q
k=1(x+ tk) =

∑q
k=0 ρkx

k and fi(x) denotes the poly-

nomial fi(x) =
∏q
k=1,k 6=i(x + tk) =

∑q−1
k=0 λkx

k. Let g
f(x)
1 =

∏q
k=0(gx

k

1 )ρk , C
sends (e,G1,G2,GT , p, a0 = g

f(x)t0
1 , a1 = ax

′

0 , . . . , an = ax
′n

0 , b = g
f(x)t′0
1 , c =

g
f(x)t′′0
1 , X = gx2 , X0 = g2, X1 = Xx′

0 , . . . , Xn = Xx′n

0 ) as the public key to A1. C
also creates two empty lists L(O,I) and L(P,V ) where the former stores the cor-
rupted credentials simulated during the issuing protocol while the latter stores
the non-corrupted credentials simulated during the presentation protocol. Since
t0, t

′
0, t
′′
0 , x
′ are uniformly random, the distribution of the simulated public key

(and the corresponding random self-reducible [13] N − 1 instances) is the same
as that of the original scheme. So, we have:

Pr[S1] = Pr[S0]. (2)
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Game2. In this game, A1 plays the role of multiple users to concurrently in-
teract with the issuer simulated by C. Without loss of generality, we assume
every user i uses di�erent attribute set Ai. If the i-th session of an issuing
protocol ends successfully, C produces a credential credi for A1's chosen Ai =
{m1,i, . . . ,mn−1,i, oi}. Their interaction is as follows:

1. A1 concurrently initializes the issuing protocol with C by running the zero-
knowledge protocol:

PK

{
(α0,i, . . . , αn,i, σi) : Mi =

n∏
j=0

a
αj,i

j bσi

}
Without loss of generality, we assume A1 always execute this protocol hon-
estly. Therefore, C always reset successfully and can extract the secret expo-
nents {αj,i} = MPEncode(Ai), σi = s1,i used by A1 in the protocol.

2. C chooses a random value s2,i ∈ Z∗p and sets:

vi = (a
∏n

j=1(x′+mj,i)

0 bsic)
1

x+ti

= a

∏n
j=1(x′+mj,i)

x+ti
0 bsii ci

=

n∏
j=0

a
mj,i

j,i b
s1,i+s2,i
i ci

where aj,i = g
fi(x)t0x

′j

1 , bi = g
fi(x)t′0
1 , ci = g

fi(x)t′′0
1 . If (m0,i, . . . ,mn,i, ti, si, vi) ∈

L(P,V ), C removes it from L(P,V ) and adds to L(O,I). C returns sigi =
(ti, s2,i, vi) as the SDL-CL signature on Mi to A1.

Since C's choices of ti, si,2 are independent of A's view, a collision vi = vj for
some i, j ≤ q in A's concurrent queries happens with a negligible probability
of Pr[Col] = 1/p in which A1 can compute the discrete logarithm x. Else, C
simulates the Issue oracle perfectly for every concurrent query and A1 can for-
mulate its credential credi = (ti, si = s1,i + s2,i, vi, Ai) as in the original issuing
protocol. This gives:

Pr[S2] = Pr[S1] + Pr[Col]

≤ Pr[S1] +

q−1∏
i=1

i/p

≤ Pr[S1] + (q − 1)!/pq−1. (3)

Game3. In this game, A1 plays the role of multiple provers to concurrently inter-
act with the veri�er simulated by C. Without loss of generality, we assume every
prover i uses a valid credi to run its show proof on φstmti such that φstmti(Ai) = 1.
C always simulates the Verify oracle correctly and this gives:

Pr[S3] = Pr[S2]. (4)
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Game4. In this game, A1 plays the role of veri�er to concurrently interact with
multiple provers simulated by C. When A1 asks for a show proof on φstmti , C
interacts with A1 using a credi such that φstmti(Ai) = 1. We assume C already
has the appropriate credentials on his hand for these queries. Else, C simulates
(m0,i, . . . ,mn,i, ti, si, vi) as in Game2 and adds it to L(P,V ) before interacting
with A1. This gives:

Pr[S4] = Pr[S3]. (5)

Game5. In this game, A1 wants to impersonate the prover whose attribute
set is A∗ = {m∗1, . . . ,m∗n} 6= Ai ∈ L(O,I) using the access policy φ∗stmt such
that φ∗stmt(A

∗) = 1 and φ∗stmt(Ai) = 0. A1 is still allowed to query the oracles
as in Game2, Game3 and Game4 but with the restriction φ∗stmt(Ai) 6= 1 for
Ai to the Obtain oracle. Finally, if A1 completes a show proof for A∗ such that
(AProve

1 (pk, ·, φ∗stmt(A
∗)), CVerify(pk, φ∗stmt(A

∗))) = 1, C resets A1 to the time where
it has just sent the witnesses. If the show proof veri�ed again, C can obtain
two valid transcripts and recover the secret exponents to extract the credential
elements (t∗, s∗, v∗).

SinceA1 must output t
∗ /∈ {t1, . . . , tq}, if v∗ /∈ L(O,I)∪L(P,V ), C can construct

a polynomial c(x) of degree n− 1 such that f(x) = c(x)(x+ t∗) + d to compute:

v∗1/(t0
∑n

j=0 m∗jx
′j+t′0s

∗+t′′0 )dg
− c(x)

d
1 = g

(t0
∑n

j=0 m∗j x′j+t′0s∗+t′′0 )f(x)

(t0
∑n

i=0
m∗
j
x′j+t′0s∗+t′′0 )(x+t∗)d

− c(x)
d

1

= g
c(x)(x+t∗)+d

d(x+t∗) − c(x)
d

1

= g
1

x+t∗
1

and output (g
1

x+t∗ , t∗) as the solution for the SDH instance. On the other hand,
if we have v∗ ∈ L(O,I) ∪ L(P,V ), C can extract the discrete logarithm x to break
the SDH assumption.

Let Pr[Acc] be the probability of C outputs 1 in the presentation protocol with
A1, and Pr[Res] be the probability of C resets successfully, by Multi-Instance
Reset Lemma [48], we have:

Pr[S5] ≤ Pr[S4] + Pr[Acc]

≤ Pr[S4] + N
√

Pr[Res]− 1 + 1/p+ 1

≤ Pr[S4] + N

√√
εsdh − 1 + 1/p+ 1 (6)

and summing up the probability from (1) to (6), we have εimp ≤ N
√√

εsdh − 1 +
1/p+1+(q−1)!/pq−1 as required. The time taken by C is at least 2Ntimp due to
reset and interacting with N parallel impersonation instances, in addition to the
environment setup and the �nal SDH solution extraction that cost T (q2). ut

Lemma 2. If an adversary A2 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which

30



(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

1 + (q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V ) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.

Proof. Given a q-SDH instance (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2 ) where q = Q(O,I) +

Q(P,V ) is the maximum number of queries A2 can issue to the Obtain and Verify

oracles, there exists an algorithm C which can output (g
1

x+t

1 , t) by acting as the
simulator for the ABC system as follows:

Game0. This is the same as the Game0 in Lemma 1 where we have:

Pr[S0] = εimp. (7)

Game1. This is the same as the Game1 in Lemma 1 except that C additionally
checks whether X = gti2 for i ∈ {1, . . . , q}. If such ti is found, C outputs the so-
lution of the SDH instance using the discrete logarithm x = ti. C also computes
fi,j(x) =

∏q
k=1,k 6=i,j(x + tk) =

∑q−2
k=0 γkx

k and uniformly selects random dis-

tinct s1, . . . , sq ∈ Z∗p. C sends (e,G1,G2,GT , p, a0 = g
f(x)t0
1 , a1 = ax

′

0 , . . . , an =

ax
′n
, b = g

f(x)t′0−
∑q

j=1 fj(x)

1 , c = g
f(x)t′′0 +

∑q
j=1 sjfj(x)

1 , X = gx2 , X0 = g2, X1 =

Xx′

0 , . . . , Xn = Xx′n

0 ) as the public key to A2. This gives:

Pr[S1] ≤ Pr[S0]. (8)

Game2. This is the same as the Game2 in Lemma 1 except that, after resetting

A2, C simulates the SDH-CL signature sigi = (ti, si, vi) onMi = a
(x′+oi)

∏n−1
j=1 (x′+mj,i)

0 bs1,i

for Ai = {m1,i, . . . ,mn−1,i, oi} such that:

vi = (a
∏n

j=1(x′+mj,i)

0 bs1,i+(si−s1,i)c)1/(x+ti)

=

(
g
f(x)t0

∏n
j=1(x′+mj,i)

1 g
si(f(x)t′0−

∑q
j=1 fj(x))

1 g
f(x)t′′0 +

∑q
j=1 sjfj(x)

1

)1/(x+ti)

=

(
g
f(x)(t0

∏n
j=1(x′+mj,i)+sit

′
0+t′′0 )

1 g
∑q

j=1,j 6=i(sj−si)fj(x)+(si−si)fi(x)

1

)1/(x+ti)

= g
fi(x)(t0

∏n
j=1(x′+mj,i)+sit

′
0+t′′0 )+

∑q
j=1,j 6=i(sj−si)fj,i(x)

1

and s2,i = si − s1,i. When the protocol ends, A2 can compile the credential as
credi = (ti, si = s1,i + s2,i, vi, Ai). As C simulates the Issue oracle perfectly, we
have:

Pr[S2] ≤ Pr[S1] + (q − 1!)/pq−1. (9)
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Game3. This is the same as the Game3 in Lemma 1 and we have:

Pr[S3] = Pr[S2]. (10)

Game4. This is the same as the Game4 in Lemma 1 and we have:

Pr[S4] = Pr[S3]. (11)

Game5. Similar to the Game5 in Lemma 1, C can reset A2 to extract the
elements (t∗, s∗, v∗) of cred∗ where v∗ has the form:

v∗ =

(
g
f(x)(t0

∏n
j=1(x′+mj,i)+s

∗t′0+t′′0 )+
∑q

j=1,j 6=i(sj−s
∗)fj(x)+(si−s∗)fi(x)

1

)1/(x+ti)

.

Since A2 must output t∗ = ti ∈ {t1, . . . , tq} but s∗ 6= si ∈ {s1, . . . , sq} for
an i ∈ {1, . . . , q}, C proceeds to compute c(x) of degree q − 2 and d ∈ Z∗p from
the knowledge of {t1, . . . , tq} such that fi(x) = c(x)(x + ti) + d. Moreover, it
will be the case v /∈ L(O,I) ∪ L(P,V ) or C already found x = ti during Game1.
Subsequently, C calculates:(

v∗/g
fi(x)(t0

∑n
j=0 m∗jx

′j+s∗t′0+t′′0 )+
∑q

j=1,j 6=i(sj−s
∗)fj,i(x)+c(x)(si−s∗)

1

) 1
d(si−s∗)

= g
(fi(x)−c(x)(x+ti))(si−s∗)

d(si−s∗)(x+ti)

1

= g
1

x+ti
1

and outputs (g
1

x+ti
1 , ti) as the solution for the SDH instance. Therefore, we have:

Pr[S5] ≤ Pr[S4] + N

√√
εsdh − 1 + 1/p+ 1 (12)

and summing up the probability from (8) to (12), we have εimp ≤ N
√√

εsdh − 1+
1/p+ 1 + (q − 1)!/pq−1 as required. The time taken by C is at least 2Ntimp due
to reset and interacting with N parallel impersonation instances, in addition to
the environment setup and the �nal SDH solution extraction that cost T (q2).

ut

Lemma 3. If an adversary A3 (timp, εimp)-breaks the imp-aca-security of the
proposed anonymous credential system, then there exists an algorithm C which
(tsdh, εsdh)-solves the SDH problem such that:

εimp ≤ N

√√
εsdh − 1 +

(q − 1)!/pq−2

p
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q = Q(O,I) + Q(P,V ) is the number
of queries made to the Obtain and Verify oracles, while T (q2) is the time pa-
rameterized by q to setup the simulation environment and to extract the SDH
solution.
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Proof. Given a q-SDH instance (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2 ) where q = Q(O,I) +

Q(P,V ) is the maximum number of queries A3 can make to the Obtain and Verify

oracles, there exists an algorithm C which can output (g
1

x+t

1 , t) by acting as the
simulator for the ABC system as follows:

Game0. This is the same as the Game0 in Lemma 1 and we have:

Pr[S0] = εimp. (13)

Game1. The precomputations and checking are the same as the Game1 in

Lemma 2 but (e,G1,G2,GT , p, a0 = g
f(x)t0−

∑q
j=1 fj(x)

1 , a1 = ax
′

0 , . . . , an = ax
′n

0 , b =

g
f(x)t′0−

∑q
j=1 fj(x)

1 , c = g
f(x)t′′0 +

∑q
j=1 zjfj(x)

1 , X = gx2 , X0 = g2, X1 = Xx′

0 , . . . , Xn =

Xx′n

0 ) as the public key to A3 where the random z1, . . . , zq ∈ Z∗p are uniformly
distributed. This gives:

Pr[S1] ≤ Pr[S0]. (14)

Game2. This is the same as the Game2 in Lemma 1 except that, after resetting

A3, C simulates the SDH-CL signature sigi = (ti, si, vi) onMi = a
(x′+oi)

∏n−1
j=1 (x′+mj,i)

0 bs1,i

for Ai = {m1,i, . . . ,mn−1,i, oi} by letting si = zi −
∑n
j=0 mj,ix

′j where:

vi = (a
∏n

j=1(x′+mj,i)

0 bs1,i+(si−s1,i)c)1/(x+ti)

=

(
g

(f(x)t0−
∑q

j=1 fj(x))(
∑n

j=0 mj,ix
′j)

1 g
(f(x)t′0−

∑q
j=1 fj(x))si

1 g
f(x)t′′0 +

∑q
j=1 zjfj(x)

1

)1/(x+ti)

=

(
g
f(x)(t0

∑n
j=0 mj,ix

′j+sit
′
0+t′′0 )−zi

∑q
j=1 fj(x)+

∑q
j=1 zjfj(x)

1

)1/(x+ti)

=

(
g
f(x)(t0

∑n
j=0 mj,ix

′j+sit
′
0+t′′0 )

1 g
∑q

j=1,j 6=i(zj−zi)fj(x)+(zi−zi)fi(x)

1

)1/(x+ti)

= g
fi(x)(t0

∑n
j=0 mj,ix

′j+sit
′
0+t′′0 )+

∑q
j=1,j 6=i(zj−zi)fj,i(x)

1

and s2,i = si − s1,i. When the protocol ends, A3 compiles the credential as
credi = (ti, si = s1,i + s2,i, vi, Ai). As C simulates the Issue oracle perfectly, we
have:

Pr[S2] ≤ Pr[S1] + (q − 1)!/pq−1. (15)

Game3. This is the same as the Game3 in Lemma 1 and we have:

Pr[S3] = Pr[S2]. (16)

Game4. This is the same as the Game4 in Lemma 1 and we have:

Pr[S4] = Pr[S3]. (17)
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Game5. By de�nition, A3 must output t∗ = ti ∈ {t1, . . . , tq} and s∗ = si ∈
{s1, . . . , sq} for a i ∈ {1, . . . , q}. Note that it must be the case v∗ /∈ L(O,I)∪L(P,V )

or x = ti has been found during Game1. In the unlikely case of Type 16 forgery
(A∗, s∗, t∗, v∗) ∈ L(P,V ) which happens with probability 1/p, C aborts. Similar
to the Game5 in Lemma 1, C can reset A3 to extract the elements (t∗, s∗, v∗) of
cred∗. C proceeds to compute c(x) of degree q−2 and d ∈ Z∗p from the knowledge
of {t1, . . . , tq} such that fi(x) = c(x)(x+ ti) + d. Subsequently, C calculates:(

v∗/g
fi(x)(t0

∑n
j=0 m∗jx

′j+s∗t′0+t′′0 )+
∑q

j=1,j 6=i(zj−z
∗)fj,i(x)+(zi−z∗)c(x)

1

)d(zi−z∗)

= g
(fi(x)−c(x)(x+ti))(zi−z∗)

(x+ti)d(zi−z∗)
1

= g
1

x+ti
1

and outputs (g
1

x+tj

1 , tj) as the solution for the SDH instance. Therefore, we have:

Pr[S5] ≤ Pr[S4] + N

√√
εsdh − 1 + 1 (18)

and summing up the probability from (13) to (18), we have εimp ≤ N
√√

εsdh − 1+
1 + (q − 1)!/pq−1 as required. The time taken by C is at least 2Ntimp due to
reset and interacting with N parallel impersonation instances, in addition to the
environment setup and the �nal SDH solution extraction which cost T (q2). ut

Combining Theorem 3, Lemmas 1, 2, and 3 gives Theorem 4 as required.

4.4.2 Unlinkability. Next, we prove the unlinkability of the proposed ABC
system. It is su�cient to show that the witnesses, the committed attributes
and the randomized credential in the issuing protocol and presentation protocol,
respectively, are perfectly hiding. Then, we demonstrate that every instance
of the protocols is uniformly distributed due to the random self-reducibility
property. This implies that even when A is given access to the Obtain, Issue,
Prove, Verify and Corrupt oracles, it does not has advantage in guessing the
challenged attribute sets.

Lemma 4. The committed attributes and the corresponding witness in the issu-
ing protocol of the ABC system are perfectly hiding.

Proof. By Theorem 2, the MoniPoly commitment C =
∏n
j=0 a

mj

j in the issuing
protocol is perfectly hiding. Subsequently, the value M = Cbs1 is a Pedersen
commitment which is also perfectly hiding. The same reasoning is applicable on

the commitment value in the zero-knowledge protocol R =
∏n
j=0 a

m̃j

j bs̃1 which
has the same structure as that of M . ut

Lemma 5. The initialization of the issuing protocol in the ABC system has
random self-reducibility.
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Proof. Let Gen = KeyGen, P = user, V = issuer, pk = M and sk = ({mj}, s1),
we de�ne the algorithms Rerand, Derand and Tran as follows:

� Rerand(M) randomly selects ρ ∈ Z∗p and outputs M ′ = Mρ where M =∏n
j=0 a

mj

j bs1 is the commitment on attributes generated by user. For all
(M, {mj}, s1), (M ′, {m′j}, s′1) has the same uniform distribution as another
(M ′′, {m′′j }, s′′1) which would have been generated by user.

� Derand(M,M ′, ({m′j}, s′1), ρ) outputs ({mj}, s1) = ({m′j/ρ}, s′1/ρ) for all (M ′, ρ) ∈
Rerand(M).

� Tran(M,M ′, ρ, (R′, e′, {m̂′j}, ŝ′1)) outputs (R = R′1/ρ, {m̂j} = {m̂′j/ρ}, ŝ1 =
ŝ′1/ρ for all (M ′, ρ) ∈ Rerand(M). The transcript (R, e′, {m̂j}, ŝ1) is valid
wrt. M if (R′, e′, {m̂′j}, ŝ′1) is valid wrt. M ′.

ut

Lemma 6. The randomized credential in the presentation protocol of the ABC
system are perfectly hiding.

Proof. Given a user's randomized credential v′ = vry
−1

in the show proof, there
are |Z∗p| − 1 possible pairs of (r′, y′) 6= (r, y) which can result in the same v′.
Besides, for each r, there is a unique y such that:

dloga0
(v′) = dloga0

(v)ry−1

y =
dloga0

(v)

dloga0
(v′)
· r

Since r, y are chosen independently from each other, and of the credential element
v, the latter is perfectly hidden. The same reasoning applies on the randomized
credential v′ = vr

2y−1

. ut

Lemma 7. The presentation protocol of the ABC system o�ers random self-
reducibility.

Proof. Let Gen = KeyGen, P = prover, V = verifier, pk = (v′,W ) and sk =
(t, s, v, o, r, y), we de�ne the algorithms Rerand, Derand and Tran for the proof
of possession as follows:

� Rerand(v′,W ) randomly selects ρ1, ρ2 ∈ Z∗p and outputs (v′′ = v′ρ1/ρ2 ,W ′ =

W ρ1) where (v′ = vr
2y−1

,W =
∏n−1
j a

wj

j ) are the randomized public inputs
generated by prover. For all ((v′,W ), (t, s, v, o, r, y)),

((v′′,W ′), (t′ = tρ2, s
′ = sρ2

1, v
′, o′ = oρ1, r

′ = rρ1, y
′ = yρ2))

has the same uniform distribution as another ((v′′′,W ′′), (t′′, s′′, v′′, o′′, r′′, y′′))
which would have been generated by prover.

� Derand((v′,W ), (v′′,W ′), (t′, s′, v′, o′, r′, y′), (ρ1, ρ2)) outputs

(t, s, v, o, r, y) = (
t′

ρ2
,
s′

ρ2
1

, v′ρ
−2
1 ρ2 ,

o′

ρ1
,
r′

ρ1
,
y′

ρ2
)

for all ((v′′,W ′), (ρ1, ρ2)) ∈ Rerand(v′).
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� Tran((v′,W ), (v′′,W ′), (ρ1, ρ2), (W ′, V ′, Y ′, e′, {m̂′j}, ŝ′, r̂′, ŷ′, t̂′)) outputs(
V = V ′ρ

−2
1 ρ2 , Y = Y ′ρ

−2
1 , e′, {m̂j} =

{ m̂′j
ρ1

}
, ŝ =

ŝ′

ρ2
1

, r̂ =
r̂′

ρ2
1

, ŷ =
ŷ′

ρ2
, t̂ =

t̂′

ρ2

)
for all ((v′′,W ′), (ρ1, ρ2)) ∈ Rerand(v′,W ). The transcript (V, Y, e′, {m̂j}, ŝ, r̂, ŷ, t̂)
is valid wrt. (v′,W ) if (V ′, Y ′, e′, {m̂′j}, ŝ′, r̂′, ŷ′, t̂′) is valid wrt. to (v′′,W ′).

The show proofs can be shown to have random self-reducibility in the similar
way. ut

Theorem 5. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as the randomized credential are perfectly hiding, the ABC system is
aunl-aca-secure.

Proof. We show that an adversary A can win the aunl-aca-security game only
with a negligible advantage εaunl, with respect to the ABC system simulator C.

Game0. This is an attack on the original ABC system. Let S0 denotes a suc-
cessful distinguishing attempt, by de�nition we have:

Pr[S0] ≤ εaunl +
1

2
. (19)

Game1. C generates (pk, sk) as in the original algorithm and forwards to A so
that the latter can play the role of user and issuer. In addition, C maintains
two list L(O,I), L(P,V ) for corrupted issuing protocol and presentation protocol,
respectively. Since C does not alter the key generation algorithm, this gives:

Pr[S1] = Pr[S0]. (20)

Game2.When A acts as the issuer to concurrently interact with multiple users,
C simulates Obtain oracle to produce a credential credi for the user in the i-th
session. Without lost of generality, we assume every user uses di�erent attribute
set Ai = {m1,i, . . . ,mn−1,i, oi}. Their interaction is as follows:

1. C initiates the issuing protocol for user in the i-th session of the concurrent
interactions by running the zero-knowledge protocol:

PK

{
(α0,i, . . . , αn,i, σi) : Mi =

n∏
j=0

a
αj,i

j bσi

}
.

2. A returns sigi = (ti, si,2, vi) to C as the SDH-CL signature on Mi.

3. C generates its credential credi = (ti, si, vi, Ai) as in the original algorithm
and adds (credi, s1,i, s̃1, m̃0,i, . . . , m̃n,i) to L(O,I).
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This interaction is the same as in the original issuing protocol from the view
of A. Furthermore, from Lemma 4, it is clear that every Mi and its witness
corresponding to Ai have perfect hiding and each protocol session is uniformly
distributed by Lemma 5. The arguments remain valid for the case where A
concurrently runs the issuing protocol on the same attribute set. We ignore the
case where A acts as a user in the issuing protocol as it does not gain more
information than acting as an issuer. This gives:

Pr[S2] = Pr[S1]. (21)

Game3. Comparing to the previous games, A additionally queries the issuing
protocol transcript of the i-th session to the Corrupt oracle. C searches in L(O,I)

to return the internal state and the random exponents used in completing the
protocol. By Lemma 5, for any two witness sets:

(s̃1,i,1, m̃0,i,1, . . . , m̃n,i,1), (s̃1,i,2, m̃0,i,2, . . . , m̃n,i,2)

in the issuing protocol returned by Corrupt, the distribution of their transcripts
are identical to each other from the view of A. Following Lemma 4, this is true
even for the non-uniformly distributed attributes m0,i, . . . ,mn−1,i which have
been hidden by oi and s1,i. Since A does not gain any advantage, we have:

Pr[S3] = Pr[S2]. (22)

Game4. Now A also acts as the veri�er to concurrently interact with C as
the provers for multiple credentials. C runs the i-th session of a show proof
for credi = (ti, si, vi, Ai = {m1,i, . . . ,mn−1,i, oi}). Without loss of generality,
we assume A always requests for successful show proofs where φstmt(Ai) = 1.
The interaction is the same as in the original show proof from the view of A.
Moreover, Lemma 6 shows that every v′i and the witnesses corresponding to v′i
have perfect hiding and Lemma 7 indicates every protocol session is uniformly
distributed. The arguments also hold for the case where A concurrently runs the
presentation protocol on the same credential. This gives:

Pr[S4] = Pr[S3]. (23)

Game5. In contrast to the previous games, A also queries the presentation pro-
tocol transcript of the i-th session to the Corrupt oracle. C searches in L(P,V ) to
return the internal state and the random exponents used in completing the pro-
tocol. The presentation protocol is an extension to the initialization in the issuing
protocol where C additionally proves the knowledge of the blinding factors used
to randomize the credential. Speci�cally, C proves the validity of the randomized
credential element v′i in a witness-hiding protocol, such that it consists of the
corresponding randomized attributes (m′0,i, . . . ,m

′
n,i), the blinded credential ele-

ments (t′i, s
′
i) and the blinding factors (ri, yi). Therefore, following Lemma 7, for

any two witness sets in a presentation protocol returned by Corrupt, the distri-
bution of their transcripts are identical from the view of A. Following Lemma 6,
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this is true even if A knows (ti, s2,i, vi) that have been exposed during the issuing
protocol, which now have been perfectly hidden by (ri, yi). A can also act as a
prover in which it does not gain useful information. The same argument applies
on show proofs with access policy of composite clauses and we have:

Pr[S5] = Pr[S4] (24)

where A does not gain any advantage from the query.

Game6. When A decides two attribute sets A0 and A1 as well as the access
policy φ∗stmt which he wishes to challenge such that φ∗stmt(A0) = φ∗stmt(A1) = 1,
C randomly decides a bit b ∈ {0, 1} and play the user role to run the challenge
issuing protocol with A for Ab and A1−b, respectively. When the issuing protocol
is completed, C obtains two credentials credb and cred1−b. In the same order,
C uses credb and cred1−b to complete the challenge show proof with A as the
veri�er. A can request polynomially many times of show proofs. From time to
time, A still can query the oracles as before with the restriction of querying the
challenge transcripts to Corrupt. Finally, if A makes a correct guess b′ = b, it
breaks the full attribute unlinkability of the ABC system with the probability:

Pr[S6] = Pr[S5]

= Pr[b′ = b]

=
1

2
+ εaunl. (25)

Combining the probability from equation (19) to (25), we have a negligible εaunl
as required and A runs in time taunl. ut

Using the similar approach, we show that the security of full protocol unlink-
ability also holds for the proposed ABC system.

Theorem 6. If the initialization of the issuing protocol and the presentation
protocol have random self-reducibility, and their witnesses, committed attributes
as well as randomized credential are perfectly hiding, the ABC system is punl-

aca-secure.

Proof. The proof is the same as that of Theorem 5 except Game6:

Game6. When A decides two attribute sets A0 and A1 as well as the access
policy φ∗stmt which he wishes to challenge such that φ∗stmt(A0) = φ∗stmt(A1) = 1, C
randomly decides a bit b1 ∈ {0, 1} and play the user role to run the challenge is-
suing protocol with A for Ab1 and A1−b1 , respectively. When the issuing protocol
is completed, C obtains two credentials credb1 and cred1−b1 . C randomly decides
another bit b2 ∈ {0, 1} and uses credb2 and cred1−b2 to complete the challenge
presentation protocol with A as the veri�er. A can request polynomially many
times of show proofs. From time to time, A still can query the oracles as before
with the restriction of querying the challenge transcripts to Corrupt. Finally, if A
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makes a correct guess (π(O,I), π(P,V )) such that credπ(O,I)
= credπ(P,V )

, it breaks
the full protocol unlinkability of the ABC system with the probability:

Pr[S6] = Pr[S5]

= Pr[credπ(O,I)
= credπ(P,V )

]

=
1

2
+ εpunl. (26)

Therefore, we have a negligible εpunl as required and A runs in time tpunl. ut

5 Evaluation

We compare our proposed ABC system to the related ABC systems in the liter-
ature. We consider security properties as well as asymptotic complexity vis-à-vis
of the expressiveness of their show proofs.

5.1 Security

We o�er a general overview of security properties in comparison with other
schemes here before we show the tightness of our own scheme.

5.1.1 Security Properties in Comparison. We summarize the security
properties of ABC systems in either SDH or alternative paradigms in Table 4.
The table shows that the relevant schemes vary signi�cantly in their claimed
security requirements. MoniPoly is the only ABC system that achieves the full
range of security requirements. At the same time, it is proven secure in the
standard model with a tight security reduction.

5.1.2 Tight Security Reduction. The MoniPoly ABC system features a
tight reduction to the q-(co-)SDH assumption. If a prime order p secure [60]
against Cheon's attack [37] on SDH assumption is used, the MoniPoly ABC
system can be realized using the standard key length for EC-DLOG [5, 49]3

without any changes. However, if the order p is not constructed as such, a larger
key length is required. Let SR denote the success ratio. Furthermore, assume the
probability of breaking the q-(co-)SDH assumption over groups of p is

√
q/p [37].

We get:

εimp

timp
=
εcosdh
tcosdh

SR(A) = SR(C)

2−κ =

√
n

p

2−κ = 2
log n−log p

2 .

3 These works o�er more precise estimates compared to previous work by Menezes et
al. [51] and they have been adopted by ISO 15946-5 for the update of parameters of
pairing-based curves.
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Table 4: Security properties of related ABC systems.

ABC System
Impersonation
Resilience

Anonymity Unlinkability Security
Model

Hard
Problem

Tight
Reduction

I P I P I↔P

ASM [4]    # # # RO SDH, DDHI #
TAKS [62]  #  # # # RO SDH, DDH #
AMO [2]  #  #  # Standard SDH, DLIN #
CKS [24]  # # # # # Standard DHE, HSDHE #

SNF [61]  # # # # # Standard
SDH, DHE,
HSDH, TDH

#

ZF [63]  #  #  # Standard
SDH, HPDH,
HSDH, TDH

#

BNF [7] G# # G# # # # Standard DLIN, SFP, DHE #
CKLMNP [25]  # #   # Standard SRSA, DLOG #
BBDT [6]  #  # # # Standard SDH #
RVH [57]  # # #  # Standard whLRSW #
SNBF [58]  #  # # # Standard DLIN, SFP, DHE #
ON [54] G# # G# # # # Standard DLIN, SFP, DHE #
CDDH [20]  #  # # # Standard SCDHI #
BB [11]  #  # # # Generic SDH, MSDH-1 #
BBBB+ [8]  G# G# # # # RO SDH, MSDH-1 #
BBDE [12]    # # # Standard SDH, MSDH-1 #
CG [22, 23]  # # # # # Standard SRSA #

CDHK [21]  # #   # CRS

SXDH, RootDH,
BSDH, SDH,

XDLIN, co-CDH,
DBP

#

FHS [42]    # G# # Generic
DDH, co-DLOG,

co-SDH
#

This Work       Standard SDH, co-SDH  

Note:  : proof provided, G#: claim provided, #: no claim, I: Issuing, P: Presentation
# in Issuing: only weak anonymity or unlinkability / trusted issuer / no blind issuing

Next, we approximate T (q2) ≈ q2 and gain:

6εsdh
tsdh

≥ εimp

timp
− 1 + (q − 1)!/pq−2

timpp

SR(A) ≤ 6SR(C) +
1 + (q − 1)!/pq−2

timpp

2−κ ≤ 23

√
q

p
+

1 + (q − 1)!/pq−2

p

2−κ ≤ 2
7+log q−log p

2 +
1

p
+
q

p

2−κ ≤ 2
7+log q−log p

2 + 21−log p + 21+log q−log p,

where we obtain 2−κ ≥ 2
7+log q−log p

2 ≥ 2
log n−log p

2 when log p ≥ 2κ + 7 + log q.
Let the total number of attributes supported by the ABC system be n ≤ q.
Setting the bit length for the order p as log p = 2κ+ 8 + log q, we gain a security
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level of at least 2−κ. In Table 5, we illustrate the relation between log p and the
respective security level κ as well as the total allowed queries q.

Table 5: Bit length for the group order p at di�erent security levels.

log q κ = 80 κ = 112 κ = 128 κ = 256

30 198 262 294 550
40 208 272 304 560
50 218 282 314 570

5.1.3 Curve Recommendations. The setting proposed in Section 5.1.2 ful-
�lls the requirement of EC-DLOG assumption in groups G1 and G2 which re-
quires that log p ≥ 2κ, it remains to examine whether this setting can satisfy the
requirement of DLOG assumption in GT . The latter requires that the �nite �eld
modulus in GT is large enough to resist the special extended tower number �eld
sieve (SexTNFS) attack [5, 49]. We examine the popular curves recommended by
Barbulescu and Duquesne [5] and found that some curves parameters guarantee
the κ-bit security in GT but not G1 (and G2) for our proposed ABC system.
For instance, the most e�cient curve in the work, namely, KSS-16 needs a curve
parameter u of length log u = 34 to ensure the 128-bit security in GT . Such u
results in log p = log (u8+48u4+625)

61250 ≈ 256, which is only su�cient to guarantee
the 112-bit security at log q = 24 according to Table 5. Considering the overall
security in G1,G2 and GT , we suggest the bit length for u at di�erent security
levels in Table 6.

Table 6: Bit length for u and p at di�erent security levels.

log q
κ = 128 κ = 256

BN BLS-12 KSS-16 KSS-18 KSS-32 KSS-36 BLS-42 BLS-48 BLS-54

30 114(462) 77(308) 39(209) 51(297) 49(737) 56(644) 46(552) 35(560) 30(555)
40 114(462) 77(308) 40(304) 53(309) 49(737) 56(644) 47(564) 35(560) 31(573)
50 114(462) 79(316) 42(320) 54(416) 49(737) 56(644) 48(576) 36(576) 31(573)

Note: Cell value is in the format of log u(log p)

The log u = 114 for BN curve results in a group order of length log p =
log 36u4 + 36u3 + 18u2 + 6u + 1 ≈ 462 which covers log q ≤ 198 that are more
than su�cient. On the other hand, the log u = 77 for BLS-12 curve results
in log p = log u4 − u2 + 1 ≈ 308 which is just nice to cover log q ≤ 44. If
using BN curve is a must and one is willing to accept κ = 118, the parameter
with log u = 95 proposed by Luo and Chen [50] can be considered which has
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Table 7: Asymptotic complexity for show proofs in related ABC systems.
Property ABC System

Attribute Space SF SS + SF S

Technique Accumulator Trad. Encd. Accumulator Prime Encd. Trad. Encd. Comm. MoniPoly

Setup O(nF ) O(2nF ) O(n) O(n) O(n) O(n) O(n) O(n)

Issuing Protocol
Prover O(1) O(1) O(1) O(nS) O(n) O(n) O(n) O(n)

Veri�er O(2
√
nF ) O(nF ) O(n) O(nS) O(n) O(n) O(n) O(n)

P
re
se
n
ta
ti
o
n
P
ro
to
co
l

Possession
Prover O(nF ) O(L) O(nS) +O(N) O(nS) +O(1) O(n) +O(1) O(n) O(n) O(n)
Veri�er O(nF ) O(L) O(nS) +O(N) O(nS) +O(1) O(n) +O(1) O(n) O(n) O(1)

AND(A′)
Prover O(kF ) O(L) O(nS − kS) +O(N) O(nS − kS) +O(1) O(nS − kS) +O(1) O(n− k) O(n− k) O(n− k)
Veri�er O(kF ) O(L) O(nS) +O(N) O(nS) +O(1) O(nS) +O(1) O(n) O(k) O(k)

OR(A′)
Prover O(kF ) O(L) O(nSkS) +O(N) O(nSkS) +O(1) O(nSkS) +O(1) 7 7 O(n+ k)
Veri�er O(kF ) O(L) O(nSkS) +O(N) O(nSkS) +O(1) O(nSkS) +O(1) 7 7 O(k)

ANY(l, A′)
Prover O(kF ) O(L) O(nS !) +O(N) 7 7 7 7 O(n− l + k)
Veri�er O(kF ) O(L) O(nS !) +O(N) 7 7 7 7 O(k + l)

NAND(A′)
Prover 7 O(L) 7 7 O(nS − kS) +O(1) 7 7 O(n)
Veri�er 7 O(L) 7 7 O(nS) +O(1) 7 7 O(2k)

NOR(A′)
Prover 7 O(L) 7 7 7 7 7 O(n+ k)
Veri�er 7 O(L) 7 7 7 7 7 O(k)

NANY(l̄, A′)
Prover 7 O(L) 7 7 7 7 7 O(n+ k)
Veri�er 7 O(L) 7 7 7 7 7 O(k + 2l̄)

Constant Size Proofs 3 3 7 3 3 7 3 3

Flexible Attribute Indexing 7 7 7 7 7 7 3 3

Schemes [58] [54] [63] [61] [23] [4, 8, 11, 12, 24] [21, 42] This Work

Note: S: attribute space, k = |A′| ≤ n = |A| = nS + nF , S: string attributes, F : �nite-attributes, L: maximum allowed ∧ in CNF,
N : maximum attributes allowed in a statement, 3: realized, 7: not realized

log p ≈ 384 that can cover log q ≤ 120. Using the similar calculation, we list
the appropriate log u and log p for the popular curves at 128-bit and 256-bit in
Table 6.

5.2 Expressivity and Computational Complexity

Table 8: Computational complexity for relevant ABC systems on proof of pos-
session and AND proof.

S ABC Proof of Possession Complexity AND Proof Complexity

SF
SNBF [58]2 (54 + 3nF )M1 + 66M2 + 3MT + 40P (50 + 3kF )M1 + 66M2 + 3MT + 40P
ON [54]1,2 (1338 + 6L)M1 + 5MT + 105P (1334 + 6L)M1 + 5MT + 105P

SS + SF
SNF [61]1 (67 + 2nS)M1 +MT + 10P (67 + 2nS − kS)M1 +MT + 10P
ZF [63]1 (49 + 2(nS + nF +N))M1 + 11P (49 + 2(nS + kF +N)− kS)M1 + 11P
CG [22, 23] (7 + 2nS + 2)E (9 + 2nS − kS)E

S

ASM [4, 24] (20 + 2n)M1 + 2P (20 + 2n− k)M1 + 2P
CDHK [21]2 (20 + 4n)M1 + 70M2 + 2MT + 28P (20 + 2n− k)M1 + (70 + k)M2 + 2MT + 28P
FHS [42] (12 + 2n)M1 + 8P (11 + n− k)M1(1) + (k + 1)M2 + 8P
BB [8, 11, 12] 2nM2 + 2P (2n− k)M2 + 2P
This Work (9 + n)M1 + 4M2 + 3P (9 + n− k)M1 + (k + 1)M2 + 3P

Note:
1Type-1 pairing scheme, 2assume batch GS-proof [10] is used, p: group order, n: total attributes,

S: string attributes, F : �nite-attributes, L: maximum allowed ∧ in CNF, | · |: element size,
N : maximum attributes allowed in a statement, Mx(·): exponentiation in Gx, P : pairing,
E(·): modular exponentiation in QRN

In Table 7, we compare the MoniPoly ABC system to relevant popular ABC
systems with respect to their realized show proofs and asymptotic computational
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complexities. Table 7 is normalized in that it considers only the asymptotic
complexity for the most expensive operations (e.g., the scalar multiplication,
modular exponentiation, or pairing).

5.2.1 Expressivity over Unrestricted Attribute Space. The MoniPoly
ABC system is the �rst scheme that can e�ciently support all logical statements
in the show proofs regardless of the types of attribute space (cf. Table 7). That
is, MoniPoly operates on arbitrary attributes while o�ering a wide range of
statements in its expressiveness.

We note that the traditional encoding can achieve the same expressiveness,
in principle, in an unrestricted attribute space S as well as string attribute space
SS . However, traditional encoding will yield ine�cient proofs.

5.2.2 Expressivity over Finite-Set Attribute Space. Let us now consider
the comparison with schemes with only �nite-set attribute space SF . Most of the
accumulator-based ABC systems [58, 61] are restricted to �nite-set attributes
only. While MoniPoly supports negation statements in terms of expressivity,
their show proofs do not. The restriction to �nite-set attributes and monotone
(non-negative) formula a�ords them a low asymptotic complexity in show proofs.
However, their setup and issuing protocols are prohibitively expensive with ex-
ponential computational and space complexity (O(2nF ) [54] and O(2

√
nF ) [58]),

in turn, restricting the number of attributes that can be feasibly encoded.
The latest ABC system in this line of work [54] proposes a workaround on

the negated forms of attributes separately. In this scheme, each of its show proof
has O(L) complexity where L is the maximum number of ∧ operators permitted
in a composite conjunctive formulae. Moreover, the additional negated �nite-set
attributes double the credential size and the already massive public key size.

5.2.3 Comparison to Commitment-Based Schemes. MoniPoly bears
similarities in terms of computational and communication complexity to other
commitment-based ABC systems [21, 42]. Although MoniPoly does not have
constant asymptotic complexity, the veri�er is required to compute only three
pairings for a single-clause show proof. This makes our scheme the most ef-
�cient construction of its kind in this comparison. At the same time, apart
from having constant-size AND proof similarly to the relevant commitment-based
schemes [21, 42], MoniPoly can achieve constant-size show proofs as discussed
in Section 6.2.

5.2.4 Parametric Complexity Analysis. We estimate the computational
complexity of the schemes listed in Table 8 and present in Figure 1 the complex-
ity for each ABC system at 128-bit and 256-bit security level. While schemes
especially crafted for a restricted �nite-set attribute space are the fastest schemes
in the �eld, Monipoly is the most e�cient ABC system based on commitment
schemes and outperforms most schemes in the �eld, overall. If strength in terms
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Figure 1: Asymptotic complexity of ABC systems (scalar multiplications in G1)

of security properties is a prerequisite, our ABC system outperforms all listed
in Table 8 while having e�cient constant size show proofs.

This estimation is based on the following relative computation costs in equiv-
alents of scalar multiplications in G1:

BLS-12 curve at 128-bit security: for a scalar multiplication in G2, an ex-
ponentiation in GT and a pairing, respectively, is about the same as comput-
ing 2, 6 and 9 scalar multiplications (M1) in G1. The modular exponentiation
of RSA-3072 on the other hand is equivalent to 5M1.

BLS-48 curve at 256-bit security: the relative costs are elevated to 16M1,
48M1, 49M1 and 56M1, respectively.

We also assume the computational cost in Type-1 pairing friendly curve is equiv-
alent to that of Type-3 as well as L = 1 and N = 1. The details of the estimation
can be found in the Appendix E.
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Figure 2: Benchmark of MoniPoly ABC system in 1000 rounds.

5.3 Actual Performance

As a proof of concept, we implemented our ABC system using the Apache Mi-
lagro Cryptography Library [41] (AMCL, Java-based, version 3, 64-bit) on i7-
4790S 3.2GHz and 16GB RAM with Windows 10 Enterprise x64. Our benchmark
is performed with a conservative setting:

1. non-SDH secure prime order p is used, and
2. every attribute is 512-bit in length, and
3. Algorithm 1 is used to convert A into {mj}.

We choose BLS-12 and BLS-48 curves for the benchmark at 128-bit and 256-bit
security level, respectively, as they are in the same curve family and have rather
short log p among all.

AMCL has a default BLS-12 curve that suits our security requirement, namely,
BLS461 which uses 77-bit u. However, the default BLS-48 curve in AMCL uses
31-bit u and does not meet our security requirement. Thus, we customize the
library to use a 35-bit u = 23 + 26 + 225 + 235 which results in log p = 561, just
nice to cover log q ≤ 41. The BLS-48 curve is then set to y2 = x3 − 7 with the
full group generator as (2, 1). We �x |A| = {250, 500, 750, 1000} and |A′| = 10.

The ABC system was run for 1100 rounds with the �rst 100 rounds as warm-
up. Figure 2 displays the average computation times of the 101-th to 1100-th
rounds. At 128-bit security level, our show proofs can be completed within one
second at an attributes size of |A| ≤ 650. At 256-bit security level, show proofs
are completed within three seconds at an attributes size of |A| ≤ 250.

6 Discussion

6.1 E�ciently Enabling Composite Statements

Composite statements, such as, composed of multiple high-level conjunctions,
can be realized with MoniPoly e�ciently. For that, we propose an e�cient strat-
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egy instead of naively repeating the show proofs multiple times for an access
policy with a composite statement.

The prover runs a proof of possession protocol followed by a proof to show
that the committed attributes from every clause in the composite statement is
part of the committed attributes in the credential. For instance, given the com-
posite statement stmt = AND(A′1) ∧ ANY(l, A′2) where k1 = |A′1|, k2 = |A′2|, a

prover can run the showing protocol as follows. LetWA′1
=
∏n−k1

j=0 a
w′

A′1,j

j ,WA′2
=∏n−l

j=0 a
w′

A′2,j

j ,W ′A′2
=
∏k2−l
j=0 a

m′
A′2,2,j

j where {w′A′1,j}0≤j≤n−k1
= r2×MPEncode(A−

A′1), {w′A′2,j}0≤j≤n−l = r × MPEncode(A − I), {m′A′2,2,j}0≤j≤k2−1 = r−1 ×
MPEncode(A′2 − I) for a randomly selected r ∈ Z∗p. Setting v′,WA′1

,WA′2
,W ′A′1

as public inputs, the prover runs the showing protocol on φstmt as follows:

PK

{
(ρ, τ, γ, ι0, . . . , ιl, σ) :

e

WA′1
,

k1∏
j=0

X
mA′1,j

j

 e

W ′A′2WA′2
,

l∏
j=0

X
ιj
j

 e

 k2∏
j=0

a
−mA′2,1,j

j (bσcρv′−τ )2, X0


= e(v′2γ , X)

}
where

∏k1

j=0X
mA′1,j

j ,
∏k2

j=0 a
mA′2,2,j

j , {mA′1,1,j
}0≤j≤k1 = MPEncode(A′1), {mA′2,1,j

}0≤j≤k2 =

MPEncode(A′2) are computed by the veri�er and ρ = r2, τ = t′, γ = y, {ιj}0≤j≤l =
r×MPEncode(I), σ = s′. It is thus obvious that for any composite statement of
k clauses, we can run the protocol above in a similar way using k+2 pairings. In
precise, the k+ 1 pairings on the left-hand side correspond to the k clauses and
a credential. Lastly, the corresponding credential elements in the pairings at the
left-hand side and right-hand side are brought up to the power of k, respectively.
Note that the complexity of k + 2 parings does not change even when negation
clauses are involved.

6.1.1 Monotone Formulas. Our ABC system can well support access policy
with arbitrary monotone formulas in the form of proofs of partial knowledge but
at the cost of simulating additional |A′−A| proofs in each presentation protocol.
As an example, let A = {Y,Z} and the monotone formula as stmt = X∨ (Y∧Z).
Proof of partial knowledge requires two show proofs, a simulated proof for X and
a real proof for (Y∧Z), with a total of 6 pairings. If we view them as a composite
statement stmt = OR(X,Y) ∧ OR(X,Z) = (X ∨ Y) ∧ (X ∨ Z), our show proof can
be completed using 4 pairings.

Another alternative is to extend MoniPoly commitment scheme to adapt
the extractable collision-resistant hash (ECRH) function [9]. ECRH is used in
authenticated data structure (ADS) scheme [29] to support hierarchical set op-
erations. However, this may not be trivial as the ECRH secret key is generated
by the user in an ADS scheme, while it should be generated by the issuer in an
ABC system.
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6.2 Constant-Size Proofs

In Section 4.3, we show that our proof of possession and AND proof are of
constant-size. In this section, we explain how to achieve constant-size for the
rest of the show proofs by adding at most two more bilinear pairing operations.

6.2.1 Constant-Size ANY Let XI ∈ G2 represent the value
∏l
j=0X

ιj
j in the

original proof, the new proof below gives a constant-size ANY proof:

PK

{
(ρ, τ, γ, ι0, ι1, σ) :

e (W ′W,XI) e

 k∏
j=0

a
−m1,j

j bσcρv′−τ , X0

 = e(v′γ , X) ∧

e(a0, XI) = e(WI , X
ι1
1 X

ι0
0 )

}
which can be compressed to save a pairing:

PK

{
(ρ, τ, γ, ι0, ι1, σ) :

e (a0W
′W,XI) e

 k∏
j=0

a
−m1,j

j bσcρv′−τ , X0

 = e(v′γ , X)e(WI , X
ι1
1 X

ι0
0 )

}

where {mj}0≤j≤l−1 = r× u×MPEncode(I \mi) for a randomly selected mi ∈ I
and an u ∈ Z∗p such that the equation:

e(a0, I) = e(a0, X
r
∏

m∈I(x′+m)

0 )

= e(a
ru

∏
m∈I\mi

(x′+m)

0 , X
u−1(x′+mi)
0 )

= e(

l−1∏
j=0

a
rumj

j , Xu−1

1 Xu−1mi
0 )

= e(WI , X
ι1
1 X

ι0
0 )

holds.

6.2.2 Constant-Size NAND and NOT Recall that the secret exponents
µ0, . . . , µk−1 are the coe�cients for the non-zero remainder polynomial r(x′) =
nk−1x

′k−1 + · · · + n0. If nk−1 = 1, r(x′) is a monic polynomial and the non-
complex number roots can be computed from the eigenvalues of a companion
matrix formed by the coe�cients. Subsequently, we can use the technique above
to turn proving the knowledge of the exponents for R =

∏k−1
j=0 a

µj

j in the original
proof into proving the knowledge of a witness WR and two exponents µ0, µ1. If
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nk−1 6= 1, we remove from it the value nk−1−1 to obtain r′(x′) = x′k−1+· · ·+n0

and nk−1 − 1 will be proved separately. Therefore, the new proof is as follows:

PK

{
(ρ, τ, γ, µ0, µ1, µ2, σ) : R 6= 1G1∧

e

W, k∏
j=0

X
mj

j

 e
(
Rbσcρv′−τ , X0

)
= e(v′γ , X) ∧

e(R,X0) = e(WR, X
µ1

1 Xµ0

0 )e(aµ2

k−1, X0)

}
which can be compressed into:

PK

{
(ρ, τ, γ, µ0, µ1, µ2, σ) : R 6= 1G1

∧

e

W, k∏
j=0

X
mj

j

 e
(
R2a−µ2

k−1b
σcρv′−τ , X0

)
= e(v′γ , X)e(WR, X

µ1

1 Xµ0

0 )

}

where the equation:

e(R,X0) = e(a
r(nk−1x

′k−1+···+n0)
0 , X0)

= e(a
r(x′k−1+···+n0)
0 , X0)e(a

r(nk−1−1)x′k−1

0 , X0)

= e(a
ru

∏
m∈r′(x′)\mi

(x′+m)

0 , X
u−1(x′+mi)
0 )e(a

r(nk−1−1)x′k−1

0 , X0)

= e(

k−1∏
j=0

a
rumj

j , Xu−1

1 Xu−1mi
0 )e(a

r(nk−1−1)
k−1 , X0)

= e(WR, X
µ1

1 Xµ0

0 )e(aµ2

k−1, X0)

holds.

6.2.3 Constant-Size NANY The constant-size NANY proof can be designed
in a similar way by combining the techniques above. The new proof is as follows:

PK

{
(ρ, τ, γ, δ0, δ1, µ0, µ1, µ2, σ) : R 6= 1G1∧

e (a0W
′W,XD) e

 k∏
j=0

a
−m1,j

j R2a−µ2

l̄−1
bσcρv′−τ , X0

 =

e(v′γ , X)e(WR, X
µ1

1 Xµ0

0 )e(WD, X
δ1
1 Xδ0

0 )

}
.
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6.3 Interval Proof

Interval proofs can be realized in MoniPoly especially for moderately-sized in-
tervals. The range proof for general cases is equivalently costly as in the prime
encoding [22, 23], requiring a sub-logarithmic communication complexity [4, 15,
16, 30]. At the same time, our ABC system can support e�cient interval proof
in a range of common application scenarios. We give an example of age in-
terval proof with constant proof size where a prover wants to prove that he
is at least 18 year-old. Assuming the current date is 2 January 2020 and the
prover's birthday is on 1 January 2002, we can have two redundant attributes
“byear = 2002”, “bmth = Jan2002” for “bday = 01Jan2002” in prover's credential
so that the veri�er can ask for a show proof on the statement:

NAND(“byear = 2020”, . . . , “byear = 2003”,

“bmth = Feb2002”, . . . , “bmth = Dec2002”,

“bday = 02Jan2002”, . . . , “bday = 31Jan2002”),

which costs only three pairings when the credential contains |A| ≥ 17+11+30 =
58 attributes. In the case where |A| < 58, the prover breaks4 the NAND statement
into a composite statement of d58/|A|e NAND clauses and prove them with
d58/|A|e+ 2 pairings.

6.4 NIZK Proof

Using Fiat-Shamir Heuristic, our proposed ABC system can execute non-interactive
show proofs in the random oracle model. Another feasible solution is to extend
the SDH-CL signature into a structure preserving signature, which may be very
similar to the automorphic signature proposed by Abe et al. [1], to utilize GS
proof [10] in the common reference string model.

7 Conclusion

We introduced a new set commitment scheme which results in an e�cient multi-
show ABC system that supports show proofs on AND, OR, ANY and the corre-
sponding negation statements. Due to its expressive power, we devised stronger
security models for ABC system and subsequently proved its security against
impersonation and linkability in the standard model. The proposed ABC sys-
tem enjoys tight security reduction besides being the most expressive and secure
ABC system to-date under the unrestricted attribute space.

4 There maybe times a prover has to prove in this way because our show proof tech-
nique is bound by the condition |A′| ≤ |A|.
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A Finite-Attribute Attack

We brie�y de�ne a weak anonymity notion which covers the user anonymity
in the issuing protocol, before explaining the proposed �nite-attribute attack.
Weak Anonymity. In the weak anonymity security game, the adversary's goal is
to reveal the attribute set of a targetted credential. The adversary does not have
access to the issuer's sk and cannot query the Obtain, Issue,Prove and Corrupt
oracles. We further prohibit the adversary from playing the Issuer role during
the challenge phase, in addition to the training phases. Instead, throughout
the security game, the adversary (i.e., A1 from Table 2) can only access an
IssueTranscript oracle which returns the issuing protocol transcript for a queried
attribute set.

De�nition 17. An adversary A is said to (twano, εwano)-break the security against
weak anonymity of an ABC system if A runs in time at most twano and further-
more:

|Pr[b = b′]− 1

2
| ≥ εwano.

for a negligible probability εwano. We say that an ABC system is weakly-anonymous
if no adversary (twano, εwano)-wins the weak anonymity game.

The IssueTranscript oracle of our weak anonymity model does not allow the
adversary to corrupt the challenged attribute set, but only to learn the corre-
sponding issuing protocol transcript. We argue that permitting this adversary
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capability constitutes a natural model and even a necessity unless we assume
the existence of a secure channel (as in the KVABC system [6, 20, 31]). Hence,
we perceive weak anonymity a natural requirement on attribute-based credential
systems.

While the weak anonymity property is typically ful�lled by attribute-based
credential systems [4, 6, 8, 11, 12, 21�25, 57, 61, 62] which a�ord the user
anonymity through hidden signing of committed attributes as in early anony-
mous credential scheme constructions [27, 28], it bears a deliberate discussion in
relation to the construction proposed by Fuchsbauer et al. [42]. Although Fuchs-
bauer et al. do not consider user anonymity in the issuing protocol as a security
requirement, per se, they consider a malicious issue in their anonymity model.
In turn, their anonymity model does not allow the adversary to use the attribute
sets from the corrupted credentials as the challenge, which is aligned with the
situation we �nd with the weak anonymity proposed here. Hence, even though
the two anonymity notions are incomparable, we believe weak anonymity to still
be a sound measuring stick for any ABC, including the one by Fuchsbauer et
al.5

The Finite-Attribute Attack. We denote as S the attribute universe of the ABC
system in practice, which may contain known-format string attributes and a
�xed amount of �nite-attributes [61, 63]. For instance, an attribute set A in a
credential cred may include name, age, gender, social number, driving license
and so on. These attributes have �nitely many values and can be enumerated in
polynomial time. We explain how an adversary A wins the weak anonymity game
on Fuchsbauer et al.'s ABC system (Section 5.4, [42]) using a single transcript
of the issuing protocol as follows.

1. A knows the public parameters of set commitment scheme from the organi-
zation public key opk, that is, ppsc = (BG, (aiP, aiP̂ )i∈[t]). A also knows the
public key upk = usk · P = ρ · P .

2. A announces the challenge attribute sets A0 and A1 as well as the disclosure
attribute set D.

3. A observes the issuing protocol for the attribute set Ab selected by challenger
and obtains (C,R = r · C, σ) through the observation.

4. A assumes b = 0 and checks whether e(C, P̂ ) = e(upk,
∑t
i=0 fia

iP̂ ) where

A0 = {s0,1, . . . , s0,t} and fA0
(a) =

∏t
i=1(a− s0,i) =

∑t
i=0 fia

i.
5. If the equation holds, A outputs his guess as b′ = 0 and b′ = 1 otherwise.

It is clear that A is always successful in making a correct guess b = b′. If the at-
tack above is carried out in the practice, the attacker needs to perform only

5 Although the weak anonymity model considers an extra oracle compared to Fuchs-
bauer et al.'s anonymity model, the former is not a relatively stronger model. In
fact, the weak anonymity de�ned above is incomparable to that by Fuchsbauer et al.
because the latter allows an adversary to collude with the issuer but does not allow
the adversary to obtain the issuing protocol transcript, including the transcript for
the (uncorrupted) challenged attribute sets.
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1
2 (t2 + 3t − 4) + 1 multiplications and additions, respectively, in Zp to �nd
{f0, . . . , ft}, in addition to t− 1 point scalar multiplications, t + 1 point ad-
ditions and two pairing operations, assuming Algorithm 1 is used. In order to
guarantee a result, the attacker can repeat the process for

(|S|
t

)
rounds and this

results in a total complexity of:

tS +

(
|S|
t

)((
1

2
(t2 + 3t− 4) + 1

)
(tm + ta) + t(tM + tA) + tP

)
+ tP

where tS is the time to compile the attribute set S, ta and tm are the time taken
for an addition and a multiplication in Zp, tM is the time taken for a scalar
multiplication in G2, tA is the time taken for a point addition and tP is the time
taken for a bilinear pairing operation. The complexity is in polynomial time and
it can be further reduced if a proper classi�cation is done prior to the brute
force search. For instance, the issuer can choose not to combine the attributes
bday : 01Jan2002, . . . , bday : 31Dec2002 at the same time inside A.

We stress that this attack does not invalidate the security proofs of Fuchs-
bauer et al. [42], as their security model excludes the adversary's capacity to
obtain the issuing transcript. At the same time, it is an appreciable di�erence
compared to other ABC systems that this �nite-attribute attack is possible in
this particular construction. We note that one can create a workaround for the
issue by establishing a secure channel for the issuing protocol or by sending C,R
in an encrypted form using issuer's public key.

B Full Attribute Unlinkability Implies Full Anonymity

We show that full attribute unlinkability implies full attribute anonymity in an
ABC system but the reverse is not true.

Theorem 7. If an adversary Aaunl (taunl, εaunl)-breaks the aunl-aca-security of an
ABC system, it also (tano, εano)-breaks the anon-aca-security of the ABC system.

Proof. Assume full anonymity adversary Aano exists, we can construct a full
unlinkability adversary Aaunl to break the full unlinkability of the ABC system
with the help from Aano.

When Aaunl receives (pk, sk) from its oracle, it passes that to Aano. Since
Aaunl knows sk, it can answer all the queries from Aano. When Aano decides
the challenge attribute sets A∗, A0, A1, Aaunl uses them as its challenge. When
Aano makes a query for the challenge issuing protocol, Aaunl acts as a man-in-
the-middle to pass the messages in between Aano and its challenge oracles. In
precise, when Aaunl obtains two sets of answer, i.e., runs two issuing protocols
with its challenge oracles, it always acts as the man-in-the-middle for the b-th
set of answer to complete the challenge issuing protocol with Aano. Similarly,
Aaunl answers the query on the challenge proof of possession protocol for Aano

by using the b-th set answer. When Aano outputs the guess b′, Aaunl outputs b
′

as its guess. It is clear that if b = b′, Aaunl wins the full attribute unlinkability
game.
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Now we explain why the opposite reduction does not hold. Consider the same
security game as above but with the position of Aaunl and Aano interchanged.
When Aaunl queries on its challenge attribute sets, it expects to receive replies
from the challenge oracle for both attribute sets. However, Aano can obtain only
a reply for the challenge attribute set Ab from its challenge oracle, and have
to simulate another attribute set A1−b itself. Subsequently, Aano has to guess
with probability 1/2 which attribute set is A1−b and Aaunl's guess of b

′ is valid6

only when Aano guessed the correct attribute set A1−b. Therefore, it is clear that
Aaunl does not increase the advantage of Aano in breaking the full anonymity of
an ABC system. This con�rms that Aano is a subset of Aaunl.

C Full Attribute Unlinkability vs. Full Protocol

Unlinkability

We show that there is no reduction between full attribute unlinkability and full
protocol unlinkability.

Consider the security game in Appendix B but Aano is replaced with Apunl.
Since Aaunl and Apunl both select two attribute sets A0, A1 as the challenge
and receive two sets of issuing and presentation transcripts during the challenge
phase, Aaunl can simulate the environment for Apunl perfectly. However, when
Apunl outputs a guess which is a pair of issuing and show proof transcripts,
Aaunl cannot extract useful information to assist in making the correct guess
b. Therefore, it is clear that Apunl does not increase the advantage of Aaunl in
breaking the full attribute unlinkability of an ABC system. When the position of
Aaunl and Apunl are interchanged such that Apunl simulates the environment for
Aaunl, the same problem occurs during the guessing phase. This con�rms that
Aaunl and Apunl are independent of each other.

D Protocol Details

The constructions for the zero knowledge protocols in the proposed ABC system
are as follows.

D.1 Issuing Protocol Initialization

1. User randomly selects s̃1, m̃0, . . . , m̃n ∈ Z∗p and sends M,R =
∏n
j=0 a

m̃j

j bs̃1

to the issuer.

2. Issuer replies with a challenge e ∈ Z∗p.
3. User sends the response ŝ1 = s̃1 + es1, m̂0 = m̃0 + em0, . . . , m̂n = m̃n + emn

to the issuer.

6 We assume Aaunl makes a random guess on b′ instead of aborting the game, if it
notices the two challenge protocols are under the same attribute set.
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4. Issuer proceeds to the next step if:

n∏
j=0

a
m̂j

j bŝ1 =

n∏
j=0

a
m̃j+emj

j bs̃1+es1

=

n∏
j=0

a
m̃j

j bs̃1
n∏
j=0

a
emj

j bes1

= RMe

holds. Else, issuer outputs ⊥ and stops.

D.2 Proof of Possession Protocol

1. Prover chooses r, y, r̃, ỹ, t̃y, õ0, õ1, s̃ ∈ Z∗p and sends v′ = vr
2y−1

,W =
∏n−1
j=0 a

w′i
j , V =

v′ỹ, Y1 = bs̃cr̃v′t̃y , Y2 =
∏1
j=0X

õj
j to veri�er where {w′j} = r×MPEncode(A−

{o}).
2. Veri�er replies with a random challenge e ∈ Z∗p.
3. Prover responds with r̂ = r̃+er2, ŷ = ỹ+ey, t̂y = t̃y−ety, ô0 = õ0+eo0r, ô1 =

õ1 + eo1r, ŝ = s̃+ esr2 where {o0, o1} = MPEncode({o}).
4. Veri�er outputs 1 if the equation e(W,Y −1

2

∏1
j=0X

ôj
j )e(Y −1bŝcr̂v′t̂y , X0) =

e(v′ŷV −1, X) holds such that:

e

W,Y −1
2

1∏
j=0

X
ôj
j

 e(Y −1bŝcr̂v′t̂y , X0)

= e

W, 1∏
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X
−õj
j

1∏
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X
õj+eojr
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(
b−s̃c−r̃v′−t̃ybs̃+esr

2

cr̃+er
2

v′t̃y−ety, X0

)

= e

 n∏
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a
mj

j , X0

er2

e

(
besr

2

cer
2

v′ety, X0

)

= e


 n∏
j=0

a
mj

j bsc

er2

v−er
2t, X0


= e

 n∏
j=0

a
mj

j bscv−t, X0

er2

= e(vr
2

, X)e = e
(
v′ŷV −1, X

)
and 0 otherwise, where {mj} = MPEncode(A).
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D.3 AND Proof

The detailed show proof for φAND(A′) is as follows:

1. Veri�er requests an AND proof for the attribute set A′ = {m1, . . . ,mk}.
2. If A′ 6⊆ A, prover aborts and veri�er outputs 0.
3. Else, prover chooses r, y, r̃, ỹ, t̃y, s̃ ∈ Z∗p and sends v′ = vry

−1

, V = v′ỹ,W =∏n−k
j=0 a

w′j
j , Y = bs̃cr̃v′t̃y to veri�er where {w′j}0≤j≤n−k = r×MPEncode(A−

A′).
4. Veri�er replies with a random challenge e ∈ Z∗p.
5. Prover responds with r̂ = r̃ + er, ŷ = ỹ + ey, t̂y = t̃y − ety, ŝ = s̃+ esr.
6. Veri�er outputs 1 if the equation

e

W e,

k∏
j=0

X
mj

j

 e(Y −1bŝcr̂v′t̂y , X0) = e(v′ŷV −1, X)

holds such that:

e

W e,

k∏
j=0

X
mj

j

 e
(
Y −1bŝcr̂v′t̂y , X0

)

= e

n−k∏
j=0

a
ewjr
j ,

k∏
j=0

X
mj

j

 e
(
b−s̃c−r̃v′−t̃ybs̃+esrcr̃+erv′t̃y−ety, X0

)
= e(vx+tv−t, X0)er

= e(vr, X)e = e
(
v′ŷV −1, X

)
and 0 otherwise, where {mj} = MPEncode(A′) are computed by the veri�er.

D.4 ANY Proof

The detailed show proof for φANY(l,A′) is as follows:

1. Veri�er requests a show proof φANY(l,A′) on the attribute setA
′ = {m1, . . . ,mk}.

2. Prover randomly selects l-attribute intersection set I ⊆ (A′ ∩A). If no such
I can be formed, prover aborts and veri�er outputs 0.

3. Else, prover chooses r, y, r̃, r̃r, ỹ, t̃y, ĩ0, . . . , ĩl, s̃ ∈ Z∗p and sends v′ = vr
2y−1

, V =

v′ỹ,W =
∏n−l
j=0 a

w′j
j ,W

′ =
(∏k−l

j=0 a
m2,j

j

)r−1

, Y1 = bs̃cr̃v′t̃y , Y2 =
∏l
j=0X

ĩj
j to

veri�er where {w′j}0≤j≤n−l = r × MPEncode(A − I) and {m2,j}0≤j≤k−l =
MPEncode(A′ − I).

4. Veri�er replies with a random challenge e ∈ Z∗p.
5. Prover calculates {ij} = MPEncode(I) and responds with r̂ = r̃ + er2, ŷ =

ỹ + ey, t̂y = t̃y − ety, î0 = ĩ0 + ei0r, . . . , îl = ĩl + eilr, ŝ = s̃+ esr2.
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6. Veri�er outputs 1 if the equation holds:
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2

l∏
j=0

X
îj
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such that:
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 k∏
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j , X0
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(
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j=1(x′+mj)

0 , X0

)er2

e
(
bscv−t, X0

)er2

= e(vx+tv−t, X0)er
2

= e(vr
2

, X)e = e
(
v′ŷV −1, X

)
and veri�er outputs 0 otherwise, where {m1,j} = MPEncode(A′) are com-
puted by the veri�er.

D.5 NAND Proof

The detailed show proof for φNAND(A′) is as follows:

1. Veri�er request a NAND proof for the attributes A′ = {m1, . . . ,mk}.
2. If |A′ ∩A| < k, prover aborts and veri�er outputs 0.

3. Else, prover chooses r, y, r̃, ỹ, t̃y, s̃ ∈ Z∗p and sends v′ = vry
−1

, V = v′ỹ,W =(∏n−k
j=0 a

wj

j

)r
, Y1 =

∏k−1
j=0 a

r̃j
j , Y2 = bs̃cr̃v′t̃y to veri�er where

({wj}0≤j≤n−k, {rj}0≤j≤k−1) = MPEncode(A)/MPEncode(A′).

4. Veri�er replies with a random challenge e ∈ Z∗p.
5. Prover responds with r̂ = r̃ + er, ŷ = ỹ + ey, t̂y = t̃y − ety, ŝ = s̃+ esr, r̂0 =

r̃0 + er0r, . . . , r̂k−1 = r̃k−1 + erk−1r.

6. Veri�er outputs 1 if the two equations hold:

(a)
∏k−1
j=0 a

r̂j
j Y
−1
1 6= 1G1

(b) e(W e,
∏k
j=0X

mj

j )e
(
Y −1

1

∏k−1
j=0 a

r̂j
j Y
−1
2 bŝcr̂v′t̂y , X0

)
= e

(
v′ŷV −1, X

)
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and 0 otherwise, where {mj} = MPEncode(A′) are computed by the veri�er.
The correctness for the equations is as shown below:

e

W e,
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X
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 e
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
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k−1∏
j=0

a
rj
j b

scv−t, X0

er

= e(vx+tv−t, X0)er

= e(vr, X)e = e(v′ŷV −1, X).

D.6 NANY Proof

The detailed show proof for φNANY(l,A′) is as follows:

1. Veri�er requests an NANY(l, A′) proof for the attribute setA′ = {m1, . . . ,mk}.
2. Prover randomly selects l̄-attribute di�erence set D ∈ (A′ − A). If no such
D can be formed, prover aborts and veri�er outputs 0.

3. Else, prover chooses r, y, r̃, ỹ, t̃y, d̃0, . . . , d̃l̄, s̃ ∈ Z∗p and sends v′ = vr
2y−1

, V =

v′ỹ,W =
(∏n−l̄

j=0 a
wj

j

)r
, Y1 =

∏l̄−1
j=0 a

r̃j
j ,W
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, Y2 = bs̃cr̃v′t̃y , Y3 =∏l̄
j=0X

d̃1,j

j to veri�er where ({wj}0≤j≤n−l̄, {rj}0≤j≤l̄−1) = MPEncode(A)/MPEncode(A′).

4. Veri�er replies with a random challenge e ∈ Z∗p.
5. Prover calculates {dj} = MPEncode(D) and responds with r̂ = r̃ + er2, ŷ =

ỹ+ey, t̂y = t̃y−ety, d̂0 = d̃0+ed0r, . . . , d̂l̄ = d̃l̄+edl̄r, r̂0 = r̃0+er0r
2, . . . , r̂l̄−1 =

r̃l̄−1 + erl̄−1r
2, ŝ = s̃+ esr2.

6. Veri�er outputs 1 if the two equations hold:

(a)
∏l̄−1
j=0 a

r̂j
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)
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and outputs 0 otherwise, where {m1,j} = MPEncode(A′). The correctness
for the equations are as shown below:
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.

E Complexity Comparison

Table 9: Comparison of credential size, and complexity for proof of possession
and AND proof on related ABC systems.

S ABC Credential Size Proof of Possession Complexity AND Proof Complexity

SF
SNBF [58]2 nF I+2

∑nF /2
i=1

(
nF /2
i

)
(2|G1|+5|G2|)

2M1(1) + 26M1(2) + 3M1(nF ) + 25M2(2) + 4M2(4) +
3MT (1) + 40P

2M1(1) + 24M1(2) + 3M1(kF ) + 25M2(2) + 4M2(4) +
3MT (1) + 40P

ON [54]1,2 nF I + 7|G1|
74M1(1) + (3L+ 2)M1(2) + 45M1(3) + 75M1(15) +
5MT (1) + 105P

74M1(1) + 3LM1(2) + 45M1(3) + 75M1(15) + 5MT (1) +
105P

SS + SF
SNF [61]1 nF I+5|G1|+ (nS + 3)|Zp| 23M1(1)+8M1(2)+6M1(3)+2M1(nS+5)+MT (1)+10P

23M1(1) + 8M1(2) + 6M1(3) + 2M1(nS − kS + 5) +
M1(kS) +MT (1) + 10P

ZF [63]1 nF I+(nF + 6)|G1|+ (nS + 2)|Zp|
18M1(1) + 2M1(nS + 5) + 10M1(2) + 2M1(3) +
M1(nF − 1) +M1(Ñ − 2) +M1(Ñ + nF − 2) + 11P

18M1(1) + 2M1(nS − kS + 5) +M1(kS) + 10M1(2) +
2M1(3)+M1(kF−1)+M1(Ñ−2)+M1(Ñ+kF−2)+11P

CG [22, 23]
1|ZN |+ 1|ZNMκ|+ 1|ZM+2|+
nF |ZM/n|+ nS |ZM |

E(1) + 2E(3 + nS) + E(2) 3E(1) + 2E(3 + nS − kS) + E(kS)

S

ASM [4, 24] 1|G1|+ (n+ 2)|Zp| 2M1(1) + 3M1(2) + 2M1(3) + 2M1(3 + n) + 2P 2M1(1)+3M1(2)+2M1(3)+2M1(3+n−k)+M1(k)+2P

CDHK [21]2 (n+ 5)|G1|+ 2|G2|
2M1(2) + 2M1(8) + 2M1(2n) + 2M2(1) + 34M2(2) +
2MT (1) + 28P

2M1(2) + 2M1(8) +M1(k) +M1(2n− 2k) + 2M2(1) +
M2(k) + 34M2(2) + 2MT (1) + 28P

FHS [42] (n+ 3)|G1|+ 1|G2|+ 2|Zp| 10M1(1) + 2M1(n+ 1) + 8P 10M1(1) +M1(n− k + 1) +M2(k + 1) + 8P
BBBB+ [8, 12] 2|G1|+ n|Zp| 2M2(n) + 2P 2M2(n− k) +M2(k) + 2P
This Work 1|G1|+ (3n+ 3)|Zp| 3M1(1) + 2M1(3) +M1(n− 1) + 2M2(2) + 3P 3M1(1) + 2M1(3) +M1(n− k) +M2(k + 1) + 3P

Note:
1Type-1 pairing scheme, 2assume batch GS-proof [10] is used, p: group order, n: total attributes,S: string attributes, F : �nite-attributes, L: maximum allowed ∧ in CNF,

Ñ : maximum attributes allowed in a statement, | · |: element size,Mx(·): multi-exponentiation in Gx, P : pairing, N : RSA modulus, M : attribute space, κ: security parameter,
E(·): multi-exponentiation, I: attribute index.

We consider only proof of possession and AND proof in Table 9 because
not every scheme from Table 7 can support OR proof and above. Also, due to
the di�erent natures of the ABC systems, the numbers in Table 9 is a con-
servative estimation and we argue that the result is adequately generated. For
instance, we include attributes in the credential for every ABC system where the
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credential size may be higher than what it was in the original works. Besides,
we exclude computations for proprietary properties such as encoding [22, 23],
pseudonymization [8, 24] and revocation [12] which are not covered by our de�ni-
tion. We also perform trivial optimization on the protocols, such as compressing
the pairing terms to equivalent but more e�cient evaluations [4, 24, 61, 63]
and using batch GS-proofs [21, 54, 58]. Notice that we denote our credential
size as 1|G1| + (3n + 3)|Zp| but not 1|G1| + (n + 2)|Zp| as in Section 4.3. The
extra (2n + 1)|Zp| elements are from the pre-processing for MPEncode(A) and
MPEncode(A − {o}). Since some ABC systems [8, 12, 21, 42, 61, 63] have not
speci�ed their proof of possession protocol, we assume the Schnorr-like proof of
knowledge protocol is used. For the ABC systems under SF , we assume their
accumulator values are also committed during the proof of possession protocol.
Finally, viewing Mx(y) = y × Mx(1), we have the the numbers displayed in
Table 8.
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