
Noname manuscript No.
(will be inserted by the editor)

CENCPP∗ – Beyond-birthday-secure Encryption from
Public Permutations

Arghya Bhattacharjee · Avijit Dutta ·
Eik List · Mridul Nandi

April 18, 2022

Abstract Public permutations have been established as important primitives
for the purpose of designing cryptographic schemes. While many such schemes
for authentication and encryption have been proposed in the past decade, the
birthday bound in terms of the primitive’s block length n has been mostly
accepted as the standard security goal. Thus, remarkably little research has
been conducted yet on permutation-based modes with higher security guar-
antees. At CRYPTO’19, Chen et al. showed two constructions with higher
security based on the sum of two public permutations. Their work has sparked
increased interest in this direction by the community. However, since their
proposals were domain-preserving, the question of encryption schemes with
beyond-birthday-bound security was left open.

This work tries to address this gap by proposing CENCPP∗, a nonce-based
encryption scheme from public permutations. Our proposal is a variant of
Iwata’s block-cipher-based mode CENC that we adapt for public permuta-
tions, thereby generalizing Chen et al.’s Sum-of-Even-Mansour construction
to a mode with variable output lengths. Like CENC, our proposal enjoys a

A. Bhattacharjee
Indian Statistical Institute, Kolkata, India
bhattacharjeearghya29(at)gmail.com.

A. Dutta
Institute of Advancing Intelligence, TCG-CREST, Kolkata, India
avirocks.dutta13(at)gmail.com.

E. List
Bauhaus-Universität Weimar, Weimar, Germany
eik.list(at)uni-weimar.de

M. Nandi
Indian Statistical Institute, Kolkata, India
mridul.nandi(at)gmail.com.

2 Arghya Bhattacharjee et al.

comfortable rate-security trade-off that needs w + 1 calls to the primitive for
w primitive outputs. We show a tight security level for up to O(22n/3/w2)
primitive calls. While the term of w ≥ 1 can be arbitrary, two independent
keys suffice. Beyond our proposal of CENCPP∗ in a generic setting with w+ 1
independent permutations, we show that only log2(w + 1) bits of the input
for domain separation suffice to obtain a single-permutation variant with a
security level of up to O(22n/3/w4) queries.

Keywords symmetric-key cryptography · permutation · provable security ·
CENC · SoEM.

Mathematics Subject Classification (2010) 94A60

1 Introduction

Permutation-based cryptography has become an important branch of symme-
tric-key cryptography. Permutations spare the cryptographer from the task of
designing and analyzing a secure key schedule. Permutations have a long his-
tory in many applications. For example, the eSTREAM candidate Salsa [1] al-
ready allowed hashing, expansion, and encryption based on a permutation. Af-
ter Keccak’s selection as the SHA-3 standard [37], the number of proposed per-
mutations and the number of schemes built upon them has surged. Nowadays,
various schemes exist, few for hashing and authentication like Chaskey [34],
but many more for authenticated encryption, where many AE schemes are
based on the Duplex construction [3].

The security of many block-cipher-based modes, such as GCM [30] or OCB3
[28] is limited by the birthday bound of the primitive’s state size (usually in-
dicated by n bits). This limitation renders the privacy guarantees void when
some internal collision occurs, which happens with non-negligible probability
after O(2n/2) blocks have been processed under the same key. Modes with
higher security guarantees appear helpful for cases where smaller primitives
must be used. As a response, the cryptographic community has proposed var-
ious modes with higher security over the previous decades, such as CENC [24].
Many more modes have been proposed in the domain of MACs and fixed-
output-length PRFs, that includes designs like PMAC+ [42], Sum-ECBC [41],
3kf9 [43], LightMAC_Plus [35], or the Sum of GCM constructions [27], many of
which could be generalized under the framework of Double-block-Hash-then-
Sum designs [12]. The rise of tweakable block ciphers (TBCs) [29], that take a
tweak as an additional public input, allowed the construction of further modes
with enhanced security guarantees, such as ΘCB3 [28] or OTR [33].

For permutation-based modes, the birthday-bound limitation is often toler-
ated, e.g. in Farfalle [2], or Elephant [4], or OPP [19] and compensated by the
usage of larger permutations. However, birthday-bound-secure permutation-
based modes are not useful in practice if the underlying permutation size is
small. For example, a birthday-bound-secure permutation-based mode instan-
tiated with PHOTON [22] of state size 100 bits or SPONGENT [6] of state size

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 3

88 bits, gives only 50 (resp. 44) bits of security. At CRYPTO’19, Chen et al. [9]
initiated a line of research for fixed output-length PRFs with beyond-birthday-
bound security. They proposed two designs: the Sum-of-Even-Mansour con-
structions (SoEM) and the Sum of Key-alternating Ciphers (SoKAC), with
proofs for up to O(22n/3) queries. The single-primitive variants were revisited
by Nandi [36] and Chakraborti et al. [7], respectively. More importantly, the
latter work proposed PDM-MAC, a version of SoKAC that needed only a sin-
gle permutation and its inverse, as well as only a single key while maintaining
security for up to O(22n/3) queries.

Besides those stateless deterministic constructions, at least two nonce-based
PRFs for variable-length inputs with higher security exist. In [7], Chakra-
borti et al. also proposed PDM∗MAC, which extends PDM-MAC to variable-
length inputs by adding a polynomial hash of the message in the middle. At
Africacrypt 2020, Dutta et al. [17] introduced nEHtMp, a variant of Enhanced
Hash-then-MAC from public permutations. Both PDM∗MAC and nEHtMp are
nonce-based 2n/3-bit-secure MACs. In the long run, however, the question will
be to build more secure authenticated encryption schemes. For this purpose, at
least equally secure encryption modes are necessary. The constructions above
can produce only fixed-length outputs. Modes with security beyond the birth-
day bound are desirable for settings that are bound to small primitives but
need higher security. One can use a fixed-output-length PRF repeatedly by
changing the input for every block. However, this would imply a rate of 1/2,
e.g. for SoEM or PDM-MAC in counter mode. Therefore, the task of design-
ing a variable-output-length encryption scheme with comparable security and
higher efficiency is still open.

In this work, we propose CENCPP∗[w], a mode of operation, built from n-bit
permutations with O(22n/3/w2) security where w is a small user-adjustable in-
teger that represents a trade-off between security and efficiency. It is a variable-
output-length version of SoEM22 that adapts Iwata’s block-cipher-based mode
CENC [24]. CENCPP∗ can be instantiated directly with usual permutations and
requires only two independent keys for variable sizes. While our generic con-
struction CENCPP∗[w] assumes (w + 1) independent permutations, we sug-
gest a variant that needs only a single public permutation while sacrificing
only log2(w + 1) bits of the input space for separating domains. We derive
domain-separated single-primitive variants of SoEM and CENCPP∗, that we
call DS-SoEM and DS-CENCPP[w], and show their security. We argue that two
independent keys are necessary and sufficient for our security guarantees by
providing distinguishers for all constructions in O(2n/2) queries if they used
a single key or a simple key-scheduling approach. Moreover, we describe dis-
tinguishers in O(22n/3) queries to show that the security is effectively tight
except for the logarithmic factor in w.

Table 1 compares our proposals with beyond-birthday-secure PRFs from the
literature that are built upon public permutations. Although no standalone
parallelizable encryption mode from permutations seems to exist, our mode
is not a novum; the encryption procedures inside many permutation-based

4 Arghya Bhattacharjee et al.

authenticated encryption schemes, as in Elephant [4], OPP [19], Minalpher [40],
etc. can be seen as such. We added them as well as SoEM and PDM-MAC in
counter mode for comparison.

To compare their state sizes, let k, ν, and c denote the length of keys, nonces,
and counters in bits, respectively. Elephant-like modes have min(n/2, k)-bit
security and need 2n+ν+c bits of state size: ν+c bits for the nonce and counter
input, n bits for the mask derived from the key, and n bits for the current block.
A similar argument holds for Duplex-based constructions, which need only 2n
bits of state for min(n/2, k)-bit security. In contrast, the previously proposed
PRFs with beyond-birthday-bound security need more memory. For example,
SoEM and SoKAC21 need 4n bits each: 2n bits for the keys and 2n bits for
the state. With a single key, PDM-MAC could reduce the memory to 3n bits.
CENCPP and DS-CENCPP need a similar amount of memory as SoEM but are
nonce-based. Thus, CENCPP needs 2n bits for the state, 2n bits for two keys,
and ν + c bits for nonce and counter. It would be desirable to further reduce
those figures in future work.

Hereafter, Section 2 recalls preliminaries before Section 3 defines CENCPP∗.
We employ two different keys for security and show that it is necessary to
combine them for most primitive calls. We show that simpler key schedulings
would lead to a birthday-bound distinguisher in Section 4. Next, we analyze
the security of the generic CENCPP∗ construction in Section 5. In Section 6, we
propose domain-separated variants of SoEM and CENCPP∗, called DS-SoEM
and DS-CENCPP. We provide a design rationale and distinguishers on weaker
variants in Section 7. We analyze the security of DS-CENCPP and DS-SoEM
in Section 8.1 and 8.2, respectively. Section 9 concludes.

2 Preliminaries

In general, we will use lowercase letters x, y for indices and integers, uppercase
letters X,Y for binary strings and functions, calligraphic uppercase letters
X ,Y for sets and spaces. For an event E, we write E to denote its complemen-
tary event. We write F2 for the finite field of characteristic 2 and Fn2 for an
n-element vector of elements in F2, or bit strings. We will use Fn2 and {0, 1}n in-
terchangeably in this paper. X ‖Y denotes the concatenation of binary strings
X and Y , and X ⊕ Y for their bitwise XOR, i.e., addition in F2. We indicate
the length of X in bits by |X| and write Xi for the i-th block. We denote
by X � X that X is chosen uniformly at random from the set X . We define
Func(X ,Y) for the set of all functions F : X → Y, Perm(X) for the set of all
permutations P : X → X . We define by X1, . . . , Xj

x←− X an injective splitting
of a string X into blocks of x-bit such that X = X1 ‖ · · · ‖Xj , |Xi| = x for
1 ≤ i ≤ j − 1, and |Xj | ≤ x. For positive integer m, we use X≤m def

=
⋃m
i=0 X i.

By 〈X〉n, we denote the encoding of an integer X into an n-bit string, e.g.,
〈135〉8 = (10000111)2. For any n-bit string X and non-negative integer x ≤ n,

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 5

Table 1: Comparison with existing PRFs from public permutations with beyond-birthday-
bound security and few modes with birthday-bound security. Prim. = primitives, IF =
inverse-free, n = state size (in bits), w = word parameter, d = domain size, ν = nonce size,
c = counter size, ∗ = variable size, security in O(·) bits under n-bit keys, •/– = yes/no, †
= rate for the finalization only, (B)BB = (beyond-)birthday-bound.

Efficiency Bits

Construction #
P
ri
m
.

#
K
ey
s

IF N
on

ce
Rate State size In Out Security

Fixed-length input, fixed-length output
PDM-MAC [7] 1 1 – – 1/2 3n n n 2n/3

SoEM22 [9] 2 2 • – 1/2 4n n n 2n/3

SoKAC22 [9] 2 2 • – 1/2 4n n n 2n/3

pEDM [18] 1 2 • – 1/2 4n n n 2n/3

DS-SoEM [Sect. 6] 1 2 • – (n− d)/2n 4n n− d n 2n/3

Variable-length input, fixed-length output
nEHtMp [17] 1 2 • • 1/2 † 4n− 1 ∗ n 2n/3

PDM∗MAC [7] 1 2 – • 1/2 † 3n ∗ n 2n/3

1K-PDM∗MAC [7] 1 1 – • 1/2 † 3n ∗ n 2n/3

Variable-length input, variable-length output BB security
Elephant [4] 1 1 • • 1 2n+ ν + c ∗ ∗ min(k, n/2)

Minalpher [40] 1 1 • • 1 2n+ ν + c ∗ ∗ min(k, n/2)

OPP [19] 1 1 • • 1 2n+ ν + c ∗ ∗ min(k, n/2)

Variable-length input, variable-length output, BBB security
CTR-SoEM22 2 2 • – 1/2 4n+ ν + c ∗ ∗ 2n/3

CTR-PDM-MAC 1 1 – – 1/2 3n+ ν + c ∗ ∗ 2n/3

CENCPP∗ [Sect. 3] w+1 2 • • w/(w + 1) 4n+ ν + c ∗ ∗ 2n/3− log(w2)

DS-CENCPP [Sect. 6] 1 2 • • w(n− d)/((w + 1)n) 4n+ ν + c ∗ ∗ 2n/3− log(w4)

we use lsbx(X) and msbx(X) to denote the x least significant and most sig-
nificant bits of X, respectively. For q ∈ N, we define [q]

def
= {1, . . . , q} and

[0..q]
def
= {0, . . . , q}. Given a vector space V ⊆ F of a field F, and an element

α ∈ K, we define the space α · V def
= {α · V : V ∈ V}. We write αV or α · V

when the operation is clear from the context. Given two spaces V,W ⊆ F, we
define V +W def

= {V ∈ V,W ∈ W : V +W}, where addition is in F.

A distinguisher D is an efficient Turing machine that interacts with a set of
oracles that are black boxes to D. We write ∆D

(
O1;O2

)
for the advantage of

D to distinguish between O1 and O2. Mathematically, it is expressed as

∆D(O1;O2)
def
=
∣∣∣Pr[DO

1

⇒ 1]− Pr[DO
2

⇒ 1]
∣∣∣ , (1)

where the notation DO ⇒ 1 denotes that the distinguisher D is given access
to the oracle O to which it interacts with and after the interaction it outputs

6 Arghya Bhattacharjee et al.

1. All probabilities in Equation (1) are defined over the random coins of the
oracles and those of D, if applicable.

We consider information-theoretic distinguishersD, whose resources are bound-
ed only in terms of their maximal numbers of queries and blocks that they can
ask to their available oracles. One can derive computation-theoretic counter-
parts straightforwardly.

PRF security refers to the maximal advantage of distinguishing the outputs
of a scheme from random bits of the expected length. Given two non-empty
sets or spaces X ,Y, let F : K × X → Y be a function, ρ � Func(X ,Y)
and K � K be a secret key. Then, the PRF advantage of D is defined as
AdvPRF

F (D)
def
= ∆D (F ; ρ). We call D a PRF distinguisher.

Similar to the PRF advantage, we define PRP advantage as follows: given
a non-empty set or space X , let E : K × X → X be a bijective function,
P � Perm(X) and K � K be a secret key. Then, the PRP advantage of D is
defined as AdvPRP

E (D)
def
= ∆D (E;P). We call D a PRP distinguisher.

A nonce-based encryption scheme Π = (E ,D) is a tuple of algorithms for
encryption and decryption with signatures E : K × N × F∗2 → F∗2 and D :
K × N × F∗2 → F∗2, where N denotes a nonce space. The nonce N ∈ N
must not repeat over all encryption queries. Distinguishers that obey this
requirement are called nonce-respecting. We assume that Π is correct, i.e., for
all K,N,M ∈ K×N ×F∗2, it holds that DK(N, EK(N,M)) = M . Let K � K
and ρ : N × F∗2 → F∗2 be a function that, on input (N,M), samples uniformly
a random string C of the same length as the output length of EK for random
K � K. The nE-security of a nonce-respecting distinguisher D is defined as
AdvnE

Π (D)
def
= ∆D (E ; ρ). We call D a nE distinguisher.

In the ideal-permutation model, the distinguisher has one additional oracle P±
that provides access to the permutation P in for- and backward directions.
This work studies the security notions such as PRF and nE security in the
ideal-permutation model. We write Π[P] and E [P], D[P], etc. to indicate that
Π is based on a primitive P .

We have to parameterize our distinguishers in terms of the resources it can
use. We write AdvXF (qc, σ,m)

def
= maxD{AdvXF (D)} to denote the maximal

advantage over all X-distinguishers D on F , where X ∈ {PRF,PRP}, that ask
≤ qc queries of≤ σ blocks in total to its oracles such that the maximum number
of message blocks in a query is at most m. When we analyze constructions
based on public permutations P0, . . . , Pw in the ideal-permutation model, we
further use qp for the number of queries to the primitive oracles, i.e., we write

AdvXF (qp, qc, σ,m)
def
= max

D
{AdvXF (D)}

to denote the maximal advantage over all X-distinguishers D on F that ask
≤ qp primitive queries, ≤ qc construction queries of ≤ σ blocks in total to

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 7

its oracles such that the maximum number of message blocks in a query is
at most m. Since we consider information-theoretic distinguishers, we will not
consider their time parameter t in defining their advantages. However, based
on contexts, we omit some resources in defining the adversarial advantage.
W.l.o.g., we assume that D never asks queries to which it already knows the
answer.

The H-coefficient technique is a proof method by Patarin [38,39] that was
modernized by Chen and Steinberger [8]. A distinguisher D interacts with
oraclesO 1 and obtains outputs from a real worldOreal or an ideal worldOideal.
The results of its interaction are collected in a transcript τ . The oracles can
sample random coins before the experiment (often a key or an ideal primitive
that is sampled beforehand) and are then deterministic [8]. We choose two
random variables Θreal for the distribution of transcripts in the real world and
correspondingly Θideal for that in the ideal world, respectively. A transcript τ
is attainable if D can observe τ with non-zero probability in the ideal world.
Let Att denote the set of all attainable transcripts. The Fundamental Lemma
of the H-coefficients technique, whose proof can be found, e.g., in [8,38], states
that we can split the set Att into two disjoint sets GoodT and BadT and
bound the distinguishing advantage as:

Lemma 1 ([38]) Assume, there exist ε1, ε2 ≥ 0 s. t. for any transcript τ ∈
GoodT, it holds Pr[Θreal=τ]

Pr[Θideal=τ]
≥ 1− ε1 and Pr [Θideal ∈ BadT] ≤ ε2. Then, for

all distinguishers D, it holds that ∆D (Oreal;Oideal) ≤ ε1 + ε2.

The technique has been generalized by Hoang and Tessaro [23] in their ex-
pectation method, which allowed them to derive the Fundamental lemma as
a corollary.

Lemma 2 Let d ≥ 0 be a positive integer and K0,K1 � {0, 1}n be two
independent n-bit random variables. Let A2×2 = (aij) ∈ {0, 1}n be a non-
singular matrix. Then for any b1 ∈ {0, 1}n−d and for any b2 ∈ {0, 1}n

Pr [msbn−d(a0,0 ·K0 ⊕ a0,1 ·K1) = b1, (a1,0 ·K0 ⊕ a1,1 ·K1) = b2] =
2d

22n
.

Proof. Let us consider the two equations{
a0,0 ·K0 ⊕ a0,1 ·K1 = b1‖〈α〉d
a1,0 ·K0 ⊕ a1,1 ·K1 = b2 ,

where α ∈ {0, 1}d. Now, the number of solutions to the above system of
equations is 1. Therefore, by varying the last d bits of the constant of the
first equations to its all possible choices, we have total 2d many solutions to
the original system of equations and hence the result follows.

A simple corollary of the above result yields the following:

1 The oracle O could be a sequence of multiple oracles.

8 Arghya Bhattacharjee et al.

Lemma 3 Let A2×2 = (aij) ∈ {0, 1}n be a non-singular matrix. For any
b1, b2 ∈ {0, 1}n

Pr
[
K0,K1 � {0, 1}n : A · (K0,K1)> = (b1, b2)>

]
= 2−2n .

Proof. This result simply follows from Lemma 2 by setting d = 0.

Lemma 4 Let 0 ≤ pi ≤ 1 for i = 1, . . . , n. Then, we have
n∏
i=1

(1− pi) ≤ 1−
n∑
i=1

pi +
∑

1≤i<j≤n

pipj .

Proof. We prove the result by induction on n. The result holds true for n = 1, 2.
Let the result holds true for n = m. We prove the result for n = m + 1.
Therefore,

m+1∏
i=1

(1− pi) =

m∏
i=1

(1− pi)(1− pm+1)

≤ (1−
m∑
i=1

pi +
∑

1≤i<j≤m

pipj)(1− pm+1)

= (1−
m+1∑
i=1

pi +
∑

1≤i<j≤m+1

pipj) +
∑

1≤i<j≤m

pipjpm+1

≤ (1−
m+1∑
i=1

pi +
∑

1≤i<j≤m+1

pipj),

which proves the result for n = m+ 1 and hence we prove the result.

3 The CENCPP∗ Mode

This section defines a generic CENC construction that we call CENCPP∗.
Standing on the shoulders of existing constructions, we start with the nec-
essary details of SoEM and CENC.

3.1 SoEM

At CRYPTO’19, Chen et al. [9] proposed SoEM (Sum of Even-Mansour con-
structions) and SoKAC (Sum of Key-alternating Ciphers). Both designs repre-
sent fixed-length PRFs which they provided analyses for up to O(22n/3) queries
for both. An improved analysis that showed subtleties of the proof of SoKAC21
was presented later in [36]. The former sums the results of two single-round
Even-Mansour ciphers; the latter is a variant of Encrypted Davies-Meyer [31]
from public instead of keyed primitives.

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 9

M

P1 P2

K1 K2

K1 K2

U X

V Y

C

Fig. 1: The construction SoEM22 by Chen et al. [9].

Chen et al. parametrized their constructions as SoEMλκ and SoKACλκ, where
λ denoted the number of permutations, and κ the number of keys. Figure 1
illustrates SoEM22, which will be relevant in this work. Both modes need
two calls to the independent permutations. Moreover, SoEM demanded two
independent keys. Chen et al. also studied SoEM12 with a single permutation:
P (M ⊕K1)⊕K1⊕P (M ⊕K2)⊕K2, and SoKAC12 as P (P (M ⊕K1)⊕K2)⊕
K1 ⊕ P (M ⊕ K1) ⊕ K2, and showed distinguishers with O(2n/2) queries for
both. However, Chakraborti et al. [7] showed that the distinguisher on the
latter may be incorrect and SoKAC12 could offer a security bound of Ω(22n/3)
(cf. [18]).

3.2 CENC

CENC is a nonce-based block-cipher mode that generalizes the sum of per-
mutations by Iwata [24]. It uses the nonce concatenated with a counter as
block-cipher input, splits each sequence of w message blocks into chunks, and
processes them by XORP.

In XORP, the message M is split into w blocks of n bits, for a small positive
integer w. Let n, ν, µ be integers such that n = ν + µ and w + 1 ≤ 2µ. Let
E : K × Fn2 → Fn2 be a block cipher, and let N = Fν2 be a nonce space. The
remaining µ input bits are used for a counter. Let K ∈ K be a secret key
and N ∈ N be a nonce. Then, XORP[EK , w](N, s) computes a key stream
S1 ‖ . . . ‖Sw as

Si
def
= EK(N ‖ 〈s〉µ)⊕ EK(N ‖ 〈s+ i〉µ), for i ∈ [w] .

Thus, it makes w + 1 block-cipher calls with pairwise distinct inputs, where
EK(X ‖ 〈s〉µ) with the starting value s of the counter is XORed to each of
the other blocks. XORP[EK , w] can be used as a length-restricted encryption
scheme by XORing its output to a message M of |M | ≤ n · w bits. The final
chunk is simply truncated to the length of the final message block. We slightly

10 Arghya Bhattacharjee et al.

N ‖ 〈0〉

(a0,0 ·K0)
⊕ (a0,1 ·K1)

P0

X̂1,0

Û1,0

V̂1,0

N ‖ 〈0〉

(a1,0 ·K0)
⊕ (a1,1 ·K1)

P1

M1

C1

X̂1,0

Û1,1

V̂1,1

N ‖ 〈0〉

(a2,0 ·K0)
⊕ (a2,1 ·K1)

P2

M2

C2

X̂1,0

Û1,2

V̂1,2

N ‖ 〈1〉

(a0,0 ·K0)
⊕ (a0,1 ·K1)

P0

X̂2,0

Û2,0

V̂2,0

N ‖ 〈1〉

(a1,0 ·K0)
⊕ (a1,1 ·K1)

P1

M3

C3

X̂2,0

Û2,1

V̂2,1

N ‖ 〈1〉

(a2,0 ·K0)
⊕ (a2,1 ·K1)

P2

M4

C4

X̂2,0

Û2,2

V̂2,2

Fig. 2: Encryption of a message M = (M1, . . ., M4) with CENCPP∗[(P0, P1, P2), 2]K0,K1 .
The final chunk is truncated if its length is less than 2n bits. N is a nonce, K0 and K1

are independent secret keys and P0, P1, and P2 independent permutations. In this figure,
Ûi,j (resp. V̂i,j) denotes the permutation input (resp. output) for the j-th invocation of the
permutation in the i-th chunk. For the i-th chunk, X̂i,0 denotes V̂i,0 ⊕ ai,0K0 ⊕ ai,1K1.

adapt the definition by [24,26] to

XORP[EK , w] : N × Fµ2 → (F2)n·w,

where XORP[EK , w](N, i) uses N ‖ 〈i〉µ, N ‖ 〈i+ 1〉µ, . . . as inputs to EK .
CENC concatenates several instances of XORP[EK , w] with pair-wise distinct
inputs. Let M ∈ F∗2 be a message s. t. (M1 ‖ . . . ‖Mm)

n←−M . Let ` = dm/we
denote the number of chunks. It must hold that ` · (w + 1) < 2µ. Then

CENC[EK , w](N,M)
def
= msb|M |

(
‖ `−1i=0 XORP[EK , w] (N, i · (w + 1))

)
⊕M.

3.3 CENCPP∗

In the following, we adapt CENC to the public-permutation setting. Let A =
(aij) be a (w + 1) × 2 dimensional matrix such that each of its elements aij
is an n-bit binary string. Let P0, . . ., Pw ∈ Perm(Fn2) be permutations, and
let K0,K1 ∈ Fn2 be independent secret keys. We define P

def
= (P0, . . . , Pw) as

shorthand form. Furthermore, D ⊆ Fµ2 be a set of domains, s. t. n = ν + µ.
For brevity, we define a key vector K = (K0,K1). We combine both keys K0

and K1 for the individual permutations as (ai,0 ·K0)⊕ (ai,1 ·K1) to generate
the i-th round key K ′i, for all i ∈ [0..w]. In matrix notation, we write this as
follows:

A ·K =


a0,0 a0,1

a1,0 a1,1

.

aw,0 aw,1

 ·
[
K0

K1

]
=


K ′0

K ′1
...
K ′w

 .

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 11

Algorithm 1 Definition of CENCPP∗.
101: function CENCPP∗[P, w,A].EK(N,M)
102: (M1, . . . ,Mm)

n←−M
103: `← dm/we
104: for i← 0..`− 1 do
105: j ← i · w
106: (Sj+1 ‖ · · · ‖Sj+w)
107: ← XORPP∗[P, w,A]K(N ‖ 〈i〉µ)
108: for k ← j + 1..j + w do
109: Ck ← msb|Mk|(Sk)⊕Mk

110: return (C1 ‖ · · · ‖Cm)

201: function CENCPP∗[P, w,A].DK(N,C)
202: return CENCPP∗[P, w,A].EK(N,C)

301: function XORPP∗[P, w,A]K(I)
302: (K0,K1)← K
303: (P0, . . . , Pw)← P
304: L0 ← (a0,0 ·K0)⊕ (a0,1 ·K1)

305: Û0 ← I ⊕ L0

306: X̂0 ← P0(Û0)⊕ L0

307: for α← 1..w do
308: Lα ← (aα,0 ·K0)⊕ (aα,1 ·K1)

309: Ûα ← I ⊕ Lα
310: X̂α ← Pα(Ûα)⊕ Lα
311: Oα ← X̂α ⊕ X̂0

312: return O ← (O1 ‖ · · · ‖Ow)

We call A the key-scheduling matrix. We adapt XORP to XORPP∗ to note that
it is based on the XOR of public permutations. For a key-scheduling matrix
A of dimension (w+1)×2, we define XORPP∗ [P, w,A] : (Fn2)2×Fn2 → (Fn2)w,
instantiated with w + 1 permutations P0, . . . , Pw, a key space (Fn2)2 and the
key-scheduling matrix A. We write XORPP∗ as short for XORPP∗ [P, w,A]
when w, key-scheduling matrix A and the permutations P are clear from the
context. Given that the permutations are independent, CENCPP∗ uses the
same input (N ‖ 〈i〉µ) for each permutation in one call of XORPP∗. We define
encryption and decryption of the nonce-based mode CENCPP∗ as given in
Algorithm 1.

3.4 Discussion

Further constructions with beyond-birthday security from public permutations
are naturally possible. However, our proposal CENCPP∗ seems efficient. Instan-
tiating CENC with a two-round Even-Mansour construction could be a generic
approach that can provide roughly the security of the primitive, i.e., 2n/3 bits,
and would employ d2w+1

w e calls to the permutation for w message blocks. In
their proposal of AES-PRF, Mennink and Neves increased the performance of
their construction [32] by instantiating it with five-round AES. However, its
security margin is thin [14] and improved cryptanalysis could break it in the
near future.

More related works exist in the secret-permutation setting. Cogliati and Seurin
[10] showed that a variant of EDM with a single keyed permutation – that is
EK(EK(M) ⊕M) – possesses roughly O(22n/3) security. The work by Guo
et al. [21] followed this direction, showing O(22n/3/n) security for the single-
permutation variants of EDM and its dual EDMD– EK(EK(M)) ⊕ EK(M).
Moreover, they proved a similar security result also for the sum from a single
permutation and its inverse, SUMPIP: EK(M) ⊕ E−1K (M). The Decrypted
Wegman-Carter Davies-Meyer construction [13] would also possess a security
bound of O(22n/3) but limited the input space to 2n/3 bits. SUMPIP could

12 Arghya Bhattacharjee et al.

I

K0

K0

P0

X̂0

Û0

V̂0

I

K1

K1

P1

O1

X̂0

Û1

V̂1

X̂1

I

αK1

αK1

P2

O2

X̂0

Û2

V̂2

X̂2

· · ·

I

αw−1K1

αw−1K1

Pw

Ow

X̂0

Ûw

V̂w

X̂w

M

P1 P2

K αK

K αK

U X

V Y

C

Fig. 3: Example of using a weak key schedule for XORPP∗ (left) and SoEM′ (right).

retain beyond-birthday-bound security with public permutations, i.e.

P (M ⊕K1)⊕K1 ⊕ P−1(M ⊕K2)⊕K2

could be secure beyond O(2n/2) queries when using a public primitive P .
MACs from public permutations obtained a high level of attention recently.
In [7], Chakraborti et al. proposed a PDM-MAC

P−1(P (K ⊕M)⊕K ⊕ 2K ⊕M)⊕ 2K ,

which eliminated the need for a second key from SUMPIP. They also consid-
ered a nonce-based variable-input-length PRF, PDM∗MAC, and a single-key
version 1K-PDM∗MAC. All of their constructions maintained a security bound
ofO(22n/3). However, the instantiations needed both forward and inverse of the
permutation, which is less practical for a permutation-based design compared
to the construction that invokes the permutation only in forward direction.

In [18], Dutta et al. studied the security pEDM, a strongly related variant of
SoKAC12, which uses the single permutation only in forward direction:

P (P (M ⊕K1)⊕ (M ⊕K1)⊕K2)⊕K1 ,

also with O(22n/3) security. These constructions consider related aspects, but
are fixed-output-length PRFs, whereas CENCPP∗ can encrypt messages of vari-
able lengths. Comparing CENCPP∗ with w = 1, pEDM has the advantage of
using only a single primitive. Though, the latter can evaluate the primitive
calls in parallel and allows a better rate for greater w, whereas for an encryp-
tion with the latter, similar arguments as for a counter mode with a two-round
Even-Mansour construction would hold.

4 Birthday-bound Distinguisher on CENCPP∗ with Weak Key
Scheduling

To derive the i-th round key Li of CENCPP∗, we have Li = (ai,0·K0)⊕(ai,1·K1)
for all i ∈ [0..w], where A = (ai,j) ∈ {0, 1}n is the key-scheduling matrix of

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 13

dimension (w+1)×2 and K0,K1 are two independent n-bit keys. Using SoEM
as a base, it is tempting to use a key scheduling of K0, K1, αK1, α2K1, . . . ,
which omits the addition of K0 for all subsequent permutation calls. In matrix
form, this key scheduling would produce[

1 0 0 · · · 0

0 1 α · · · αw−1

]>
︸ ︷︷ ︸

A>

·

[
K0

K1

]
.

While the latter appears much simpler, after transposing its matrix form to w+
1 rows, it contains dependent rows. Let two dependent rows be denoted as Ai

and Aj in the key-scheduling matrix A such that they are linearly dependent,
i.e., Ai = αAj for some non-zero α ∈ {0, 1}n. Then, we have Li = αLj for
some α ∈ {0, 1}n \ {0n}. We use the idea of canceling dependent outputs
and thus reduce the distinguishing problem to that for single-key SoEM. Since
the steps are not intuitive, we illustrate the birthday-bound distinguisher of
CENCPP∗ in the following. First, we show that we can reduce the security of
CENCPP∗ to the security of SoEM with the key usage of (Li, αLi) for some
non-zero α ∈ {0, 1}n when Ai and Aj rows of A are linearly dependent. We
denote this variant of SoEM as SoEM′ def

= SoEM[Pi, Pj]Li,αLi
.

4.1 Reduction to SoEM′

Suppose, D is an information-theoretic distinguisher on SoEM′ and τ = {K}∪
τp ∪ τc is a transcript, consisting of the key, the primitive-query transcript τp
with qp primitive queries and their corresponding responses (U i, V i) to P1 and
(Xk, Y k) to P2 each, as well as the construction-query transcript τc with qc
construction queries and their corresponding responses (M j , Cj). After the
interaction, D is given τ , including the key K � Fn2 , and sees C = W ⊕ Z
where

W
def
= P1(M ⊕K)⊕K and Z

def
= P2(M ⊕ (α ·K))⊕ (α ·K) .

In comparison, a distinguisher D′ on CENCPP∗ [P0, Pi, Pj]K0,K1
with key

schedule as above can compute Ci⊕Cj = (Xi⊕X0)⊕(Xj⊕X0) = W⊕Z = C.
Thus,

AdvPRF
CENCPP∗(D

′) ≥ AdvPRF
SoEM′(D) ,

where D and D′ ask the same number of construction queries qc and primitive
queries qp to each of the primitives. Note that the distinguisher D′ knows the
values of i and j from the knowledge of the key-scheduling algorithm.

14 Arghya Bhattacharjee et al.

4.2 Birthday-bound Attack on SoEM′

Let U and V be two subspaces of Fn2 . Then, for every α ∈ Fn2 , U + V def
=

{u + v|u ∈ U , v ∈ V} and α · V def
= {α · v|v ∈ V} are also subspaces. We write

0 and 1 for the neutral elements of addition and multiplication, respectively.
If {x1, x2, · · · , xn/2} is a basis of V, then {α · x1, α · x2, · · · , α · xn/2} is also a
basis of α · V, where α 6= 0.

Fact 1. Let U and V be two subspaces of F2n . If their intersection contains
only the zero element U∩V = {0}, we say that U and V have zero intersection.
If both have zero intersection, it holds that dim(U + V) = dim(U) + dim(V).
Equivalently, one can say that the basis elements of U and V are linearly
independent.

Theorem 1 Let α 6∈ {0,1}. For every 1 ≤ i ≤ n/2, there exists a subspace
V ⊆ Fn2 with dim(V) = i such that V and α · V have zero intersection. In
particular, there is a subspace V of dimension n/2 such that V + α · V = Fn2 .

Proof. We prove Theorem 1 by induction on i. For i = 1, the statement is
obvious by choosing non-zero x1. For 1 ≤ i < n/2, suppose, we have picked
x1, x2, · · · , xi such that all elements from {x1, x2, · · · , xi, α ·x1, α ·x2, · · ·α ·xi}
are linearly independent. Let

Si
def
= span({x1, x2, · · · , xi, α · x1, α · x2, · · · , α · xi}) ,

i.e., its span. Moreover, we define Ti as short form of

Ti
def
= Si ∪

(
α−1 · Si

)
∪
(
(1 + α)−1 · Si

)
.

It holds that |Ti| ≤ 3 ·2n−2 < 2n. When we choose a new element xi+1 6∈ Ti, it
follows from the definition of Ti that xi+1, α · xi+1 and (1 + α) · xi+1 are not
in Si. Hence, the elements

{x1, x2, · · · , xi+1, α · x1, α · x2, · · · , α · xi+1}

are linearly independent, which concludes the proof. Note that such a basis
can be constructed efficiently, element by element.

Distinguisher on SoEM′: Next, we demonstrate a distinguisher on SoEM′.
Given the observation above, we can first construct a vector space X of di-
mension n/2 such that X + (1 + α) · X = Fn2 . Let M = (1 + α)−1 · X . So,
M+X = Fn2 and hence there exists X ∈ X and M ∈M with M +X = α ·K.
Let U = α−1 · X . Then

U = α−1 · (1 + α) · M = (1 + α−1) ·M .

Thus, M +K = α−1 ·X + (1 +α−1) ·M ∈ U and there exists M ∈M, U ∈ U ,
and X ∈ X such that M ⊕ U = K and M ⊕X = αK.

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 15

Let P1(U) = V and P2(X) = Y . Then, C = SoEM′(M) = (1⊕α) ·K⊕V ⊕Y .
We use shorthand notations V ⊕c, Y ⊕c and C⊕c to denote P1(U⊕c), P2(X⊕c)
and SoEM′(M ⊕ c) respectively for some non-zero c ∈ {0, 1}n. It is easy to see
that for any c, it holds that

C⊕c = (1⊕ α) ·K ⊕ V ⊕c ⊕ Y ⊕c

and hence C ⊕ C⊕c = (V ⊕ V ⊕c) ⊕ (Y ⊕ Y ⊕c). We use this observation to
complete our attack. Suppose that c and d are two distinct constants outside
of U , X , andM. Then, the distinguisher can proceed as follows:

1. It queries all values Ui ∈ U , Ui⊕c and Ui⊕d to its primitive oracle P1, and
stores them together with the corresponding responses Vi, V ⊕ci and V ⊕di .

2. Similarly, it queries all values Xi ∈ X , Xi ⊕ c and Xi ⊕ d to its primitive
oracle P2, and stores them together with the corresponding responses Yi,
Y ⊕ci and Y ⊕di .

3. Moreover, it queries all valuesMi ∈M,Mi⊕c andMi⊕d to its construction
oracle, and stores them together with the corresponding responses Ci, C⊕ci
and C⊕di .

4. After making all queries as described above, it looks for triple (i, j, k) such
that the following two equalities hold:
4.1 Ci ⊕ C⊕ci = (Vj ⊕ V ⊕cj)⊕ (Yk ⊕ Y ⊕ck).

4.2 Ci ⊕ C⊕di = (Vj ⊕ V ⊕dj)⊕ (Yk ⊕ Y ⊕dk).

5. If there exists such triple (i, j, k), it outputs real and random otherwise.

5 Security Analysis of CENCPP∗

This section studies the nE security of CENCPP∗. Prior, we briefly revisit that
of CENC.

5.1 Recalling the Security of CENC

The security of XORP: In [24], Iwata showed that CENC[w] is secure for
up to 22n/3/w message blocks as long as EK is a secure block cipher. At
Dagstuhl’07 [25], he added an attack that needed 2n/w queries, and showed
O(2n/w) security if the total number of primitive calls remained below σ <
2n/2. He conjectured that CENC may be secure for up to 2n/w blocks. In [26],
Iwata et al. confirmed that conjecture by a simple corollary from Patarin. We
briefly recall their conclusion.

In [39, Theorem 6], Patarin showed the indistinguishability for the sum of
multiple independent secret permutations under assumptions on the validity

16 Arghya Bhattacharjee et al.

of the Mirror Theory. [26] adapted this bound to upper bound the PRF security
of XORP:

AdvPRF
XORP(qc, t) ≤

w2q

2n
+ AdvPRP

E ((w + 1)qc, t). (2)

Theorem 3 in [26] conjectured for m being a multiple of w, where m is the
maximum number of message blocks queried:

AdvnE
CENC(qc,m, t) ≤

mwqc
2n

+ AdvPRP
E

(
w + 1

w
mqc, t

)
. (3)

Note that in Eqn. (2) and Eqn. (3), the authors considered computationally
bounded distinguishers for which we included the time parameter t. Thus,
CENC provided a convenient trade-off of w+1 calls per w message blocks with
security for up to 2n/w calls to EK . The proof sketch by [26] reduced the
security of CENC to the proof of the sum of two permutations. At that time,
the latter analysis relied on recursive arguments of Patarin’s Mirror Theory
that were subject to controversies. The work by Bhattacharya and Nandi [5]
proved similar security for the generalized sum of permutations and CENC
using the χ2 method [11].

5.2 The Security of CENCPP∗

In the following, let n,w be positive integers, P0, . . . , Pw � Perm(Fn2) be in-
dependent public permutations, K0,K1 � Fn2 be a pair of n-bit independent
secret keys which are sampled uniformly at random from Fn2 . Let A be the
key-scheduling matrix of dimension (w + 1) × 2 such that each entry is an
n-bit binary string. We write K = (K0,K1) and P = (P0, . . . , Pw) for brevity.
Again, we conduct a two-step analysis, where we consider (1) the PRF security
of XORPP∗ [P, w,A]K and (2) the nE security of CENCPP∗[P, w,A]K. Since
the matrix A is public, we omit it from the notation XORPP∗[P, w,A]K and
CENCPP∗[P, w,A]K and simply write XORPP∗[P, w]K and CENCPP∗[P, w]K,
respectively. For simplicity of notation, we write XORPP∗ [P, w]K as XORPP∗

and CENCPP∗[P, w]K as CENCPP∗.

Theorem 2 It holds that AdvnE
CENCPP∗(qp, qc,m) ≤ AdvPRF

XORPP∗
(
qp,

m
w qc

)
.

Proof. Recall that,m is the maximum number of message blocks in all queries.
Therefore, for a maximal number of message chunks ` = dm/we, CENCPP∗
consists of the application of ` instances of XORPP∗. We can replace XORPP∗

by a random function ρ at the cost of

AdvPRF
XORPP∗

(
qp,

m

w
qc

)
.

Since the resulting construction is indistinguishable from random bits, Theo-
rem 2 follows.

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 17

Fig. 4: Security of XORPP∗[w] when varying w, here with n = 64.

Theorem 3 Let A be a matrix of (w + 1) × 2 entries such that each of its
elements is an n-bit binary string and all its rows are pairwise linearly inde-
pendent. Let qp + (w + 1)qc ≤ 2n/2(w + 1). It holds that

AdvPRF
XORPP∗(qp, qc) ≤

(w + 1)2q2pqc

22n+1
+

4wq2pqc

22n
+

2wq2cqp
22n

+
w2q2cqp

22n
+

3w2q2pqc

22n+1

+
3w3q2pq

2
c

23n
+

(w + 1)2qc(qp + qc)
2

22n
.

The security for varying values of w is illustrated in Figure 4.

Corollary 1 CENCPP∗ security results by combining Theorem 2 and Theo-
rem 3 as follows:

AdvnE
CENCPP∗(qp, qc,m) ≤

2wmq2pqc

22n
+

4mq2pqc

22n
+

2qpm
2

w22n
+
qpm

2

22n
+

3wmq2pqc

22n+1

+
3wm2q2pq

2
c

23n
+

4wmqcq
2
p + 8m2qpq

2
c

22n
+

4m3q3c
w22n

,

where m is the maximum number of message blocks among all qc queries and
we used 2w ≥ w + 1.

Proof of Theorem 3. We fix a non-trivial information-theoretic deterministic
distinguisher D who is given access to (w + 2) oracles in either of the real
or ideal world. In the real world, D is given access to the construction ora-
cle XORPP∗[P, w]K where K = (K0,K1) is a pair of n-bit random keys and
P = (P0, P1, . . . , Pw) is a tuple of w+ 1 many n-bit independent random per-
mutations, and the primitive oracles P = (P0, . . . , Pw). In the ideal world, D
is given access to a random function, which answers each query of D by w
blocks of n bits uniform and independent random strings O = (O1, . . . , Ow)
and to the tuple of w + 1 many independent n-bit random permutations
P = (P0, P1, . . . , Pw). Query to the construction oracle is called the construc-
tion query and to that of the primitive oracle is called the primitive query. We
assume that D can ask exactly qc construction queries and qp primitive queries

18 Arghya Bhattacharjee et al.

to each of primitive oracle Pα, α ∈ [0..w]. For queries to each of the primitive
oracle Pα, D can either make a forward query Uα to its primitive oracle Pα
and receives response Vα or can make an inverse query Vα to P−1α and receives
response Uα. We summarize the interaction of the distinguisher D with the or-
acles in a transcript τ which is partitioned into τ = τc∪τ0∪. . .∪τw, where each
partial transcript captures the queries and responses from a particular oracle.
The construction transcript contains the queries to and responses from the
construction oracle: τc = {(I1,O1), . . . , (Iqc ,Oqc)}, where Oi = (Oi1, . . . , O

i
w).

The primitive transcripts τα = {(U1
α, V

1
α), . . ., (U

qp
α , V

qp
α)} contain exactly the

queries to and responses from permutation Pα for all α ∈ [0..w]. Since D is
non-trivial, we assume that τ does not contain duplicate elements. After the
interaction, we release the keys K0,K1 to the distinguisher before it outputs
its decision bit. In the real world (K0,K1) are the keys used in the construc-
tion, whereas in the ideal world they are sampled uniformly at random. Hence,
the transcript τ becomes τ = τc ∪ τ0 ∪ . . . ∪ τw ∪ {(K0,K1)}. With the help
of the transcript τ , D can compute the all the inputs Û iα to the permutations
Pα for qc construction queries using the following equation

Û iα
def
= Ii ⊕ aα,0 ·K0 ⊕ aα,1 ·K1 , (4)

where α ∈ [0..w] and i ∈ [qc]. We partition the set of all attainable transcripts
Att into two disjoint sets of GoodT and BadT that represent good and bad
transcripts.

Bad Events: Let τ = τc∪τ0∪ . . .∪τw∪{(K0,K1)} be an attainable transcript.
Since, the distinguisher is given the keysK, it can compute all the permutation
inputs (Û iα)i∈[qc],α∈[0..w] using Eqn. (4). Before defining the bad events for
XORPP∗, we give a brief rationale for them.

Rationale. For w+ 1 n-bit permutations (P0, . . . , Pw), we denote Pα(Û iα) as
V̂ iα for α ∈ [0..w]. Then the construction for i-th query leads to the following
system of equations:

Ei =


V̂ i0 ⊕ V̂ i1 = Oi1 ⊕ (a0,0 ⊕ a1,0) ·K0 ⊕ (a0,1 ⊕ a1,1) ·K1

V̂ i0 ⊕ V̂ i2 = Oi2 ⊕ (a0,0 ⊕ a2,0) ·K0 ⊕ (a0,1 ⊕ a2,1) ·K1

...
...

...
...

V̂ i0 ⊕ V̂ iw = Oiw ⊕ (a0,0 ⊕ aw,0) ·K0 ⊕ (a0,1 ⊕ aw,1) ·K1,

A trivial bad event is, if for i-th construction query, both inputs to the per-
mutation simultaneously collide with two primitive inputs, i.e., Û iα = U jα and
Û iβ = Ukβ for α 6= β ∈ [0..w]. If Û iα collides with U jα for some α ∈ [0..w], then
this event uniquely determines the value of the permutation output for the
remaining variables in Ei. In the real world, such a collision uniquely deter-
mines the rest of the variables, whereas this property does not hold in the
ideal world. A bad event occurs if any of such determined variables collides
with any primitive query output. Assume that the i-th and j-th construction

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 19

query, respectively, Û i0 and Û
j
0 , collide with some primitive input each. In turn,

this uniquely determines the value of the permutation output for the remain-
ing variables in the respective system of equations. A bad event occurs if any
two of such determined variables collide with each other. A similar situation
arises when for two construction queries, let them be the i-th and j-th con-
struction query, respectively, Û iα and Û jβ collide with some primitive input for
some α, β ∈ [0..w], and the determined variables collides. We say that τ is bad
if any of the following bad events hold.

1. Two inputs to the permutations for a construction query simultaneously
collide with the input of corresponding two primitive queries.
– bad1: ∃i ∈ [qc], j, k ∈ [qp], and distinct permutation indices α, β ∈ [0..w]

such that (Û iα = U jα) ∧ (Û iβ = Ukβ).

2. For a construction query, one of the inputs collides with the input of a
primitive query, which lets the output of another permutation call of the
same construction query collide with the output of another primitive query.

– bad2: ∃i ∈ [qc], j, k ∈ [qp], and permutation index α ∈ [w] such that
(Û i0 = U j0) ∧ (V j0 ⊕Oiα ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1 = V kα).

– bad3: ∃i ∈ [qc], j, k ∈ [qp], and permutation index α ∈ [w] such that
(Û iα = U jα) ∧ (V jα ⊕Oiα ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1 = V k0).

– bad4: ∃i ∈ [qc], j, k ∈ [qp], and distinct permutation indices α, β ∈ [w]

such that (Û iα = U jα) ∧ (V jα ⊕ Oiα ⊕ Oiβ ⊕ (aα,0 ⊕ aβ,0) · K0 ⊕ (aα,1 ⊕
aβ,1) ·K1 = V kβ).

3. For two construction queries i and j, one of the inputs of i-th construction
query collides with the input of a primitive query, and one of the inputs
of j-th construction query collides with the input of a primitive query, and
the output of any two permutation calls collide.
– bad5: ∃i, j ∈ [qc], k, l ∈ [qp], and permutation index α ∈ [w] such that

(Û i0 = Uk0) ∧ (Û j0 = U l0) ∧ (V k0 ⊕Oiα = V l0 ⊕Ojα).

– bad6: ∃i, j ∈ [qc], k, l ∈ [qp], and permutation index α ∈ [w] such that
(Û iα = Ukα) ∧ (Û jα = U lα) ∧ (V kα ⊕Oiα = V lα ⊕Ojα).

– bad7: ∃i, j ∈ [qc], k, l ∈ [qp], and distinct permutation indices α, β ∈ [w]

such that (Û iα = Ukα)∧ (Û jα = U lα)∧ (V kα ⊕Oiα ⊕Oiβ = V lα ⊕Ojα ⊕O
j
β).

– bad8: ∃i, j ∈ [qc], k, l ∈ [qp], and distinct permutation indices γ, β ∈ [w]

such that (Û i0 = Uk0) ∧ (Û jγ = U lγ) ∧ (V k0 ⊕ V lγ ⊕ Oiβ ⊕ Ojγ ⊕ Ojβ =
(a0,0 ⊕ aγ,0) ·K0 ⊕ (a0,1 ⊕ aγ,1) ·K1).

– bad9: ∃i, j ∈ [qc], k, l ∈ [qp], and distinct permutation indices α, γ ∈ [w]

such that (Û iα = Ukα)∧ (Û jγ = U lγ)∧ (V kα ⊕V lγ ⊕Oiα⊕Ojγ = (aα,0⊕aγ,0) ·
K0 ⊕ (aα,1 ⊕ aγ,1) ·K1).

20 Arghya Bhattacharjee et al.

– bad10: ∃i, j ∈ [qc], k, l ∈ [qp], and distinct permutation indices α, β, γ ∈
[w] such that (Û iα = Ukα)∧(Û jγ = U lγ)∧(V kα ⊕V lγ⊕Oiα⊕Oiβ⊕Ojγ⊕O

j
β =

(aα,0 ⊕ aγ,0) ·K0 ⊕ (aα,1 ⊕ aγ,1) ·K1).

Using the union bound, the probability that a transcript in the ideal world is
bad is at most

Pr [Θideal ∈ BadT] ≤
10∑
i=1

Pr[badi] . (5)

Lemma 5 It holds that

Pr [Θideal ∈ BadT] ≤
(w + 1)2q2pqc

22n+1
+

4wq2pqc

22n
+

2wq2cqp
22n

+
w2q2cqp

22n

+
3w2q2pqc

22n+1
+

3w3q2pq
2
c

23n
.

Proof. In the following, we study the probabilities of the individual bad events.
Before, we recall the key-scheduling matrix A as follows:

A =

[
a0,0 a1,0 a2,0 . . . aw,0

a0,1 a1,1 a2,1 . . . aw,1

]>
.

bad1: This event considers the collisions between two construction-query in-
puts and two primitive-query inputs. For this event, it must hold that

Ii ⊕ (aα,0 ·K0 ⊕ aα,1 ·K1) = U jα and Ii ⊕ (aβ,0 ·K0 ⊕ aβ,1 ·K1) = Ukβ ,

with [ai,0 ai,1] as the i-th row of the key-scheduling matrix. The two equations
can be seen as

A′ ·K =

[
aα,0 aα,1

aβ,0 aβ,1

]
·

[
K0

K1

]
=

[
Ii ⊕ U jα
Ii ⊕ Ukβ

]

Since all rows ofA are pairwise linearly independent,A′ is non-singular. More-
over,K0 andK1 are uniform random variables over {0, 1}n. Thus, we can apply
Lemma 3 and the probability of this event for a fixed choice of indices is 2−2n.
Since one can choose α and β in

(
w+1
2

)
ways, we obtain from the union bound

over all indices

Pr[bad1] =
∑
i∈[qc]

∑
j∈[qp]

∑
k∈[qp]

∑
0≤α<β≤w

Pr
[
Û iα = U jα ∧ Û iβ = Ukβ

]
≤
(
w+1
2

)
q2pqc

22n
.

(6)

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 21

bad2: This event considers the collision between the input of P0 corresponding
to a construction query and the input to P0 corresponding to a primitive
query, and the collision between the output of Pα corresponding to the same
construction query and the output of Pα corresponding to a primitive query.
For this event, it must hold that

Ii ⊕ (a0,0 ·K0 ⊕ a0,1 ·K1) = U j0 and

(V j0 ⊕Oiα ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1 = V kα) ,

The two equations can be seen as

A′ ·K =

[
a0,0 a0,1

(a0,0 ⊕ aα,0) (a0,1 ⊕ aα,1)

]
·

[
K0

K1

]
=

[
Ii ⊕ U j0

V kα ⊕ V
j
0 ⊕Oiα

]

Since all rows of A are pairwise linearly independent, A′ is non-singular, be-
cause det(A′) = (a0,0aα,1⊕a0,1aα,0) which is the determinant of the following
matrix

A′′ =

[
a0,0 a0,1

aα,0 aα,1

]

and A′′ is non-singular. Moreover, K0 and K1 are uniform random variables
over {0, 1}n. Thus, we can apply Lemma 3 and the probability of this event
for a fixed choice of indices is 2−2n. Since one can choose i in qc ways, j and k
in qp ways and α in w ways, we obtain from the union bound over all indices

Pr[bad2] ≤
wq2pqc

22n
. (7)

bad3: This event considers the collision between the input of Pα corresponding
to a construction query and the input to Pα corresponding to a primitive query
for α ∈ [w], and the collision between the output of P0 corresponding to the
same construction query and the output of P0 corresponding to a primitive
query. For this event, it must hold that

Ii ⊕ (aα,0 ·K0 ⊕ aα,1 ·K1) = U jα and

(V jα ⊕Oiα ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1 = V k0) .

The two equations can be seen as

A′ ·K =

[
aα,0 aα,1

(a0,0 ⊕ aα,0) (a0,1 ⊕ aα,1)

]
·

[
K0

K1

]
=

[
Ii ⊕ U jα

V k0 ⊕ V jα ⊕Oiα

]

Since all rows of A are pairwise linearly independent, A′ is non-singular, be-
cause det(A′) = (a0,1aα,0 ⊕ a0,0aα,1) which is the determinant of the matrix
A′′ as defined in bad2. Moreover, K0 and K1 are uniform random variables
over {0, 1}n. Thus, we can apply Lemma 3 and the probability of this event

22 Arghya Bhattacharjee et al.

for a fixed choice of indices is 2−2n. Since one can choose i in qc ways, j and k
in qp ways and α in w ways, we obtain from the union bound over all indices

Pr[bad3] ≤
wq2pqc

22n
. (8)

bad4: This event considers the collision between the input of Pα corresponding
to a construction query and the input to Pα corresponding to a primitive query
for α ∈ [w], and the collision between the output of Pβ corresponding to the
same construction query and the output of Pβ corresponding to a primitive
query for some β 6= α. For this event, it must hold that{

Ii ⊕ (aα,0 ·K0 ⊕ aα,1 ·K1) = U jα
(V jα ⊕Oiα ⊕Oiβ ⊕ (aα,0 ⊕ aβ,0) ·K0 ⊕ (aα,1 ⊕ aβ,1) ·K1 = V kβ).

The two equations can be seen as

A′ ·K =

[
aα,0 aα,1

(aα,0 ⊕ aβ,0) (aα,1 ⊕ aβ,1)

]
·

[
K0

K1

]
=

[
Ii ⊕ U jα

V kβ ⊕ V jα ⊕Oiα ⊕Oiβ

]
Since all rows of A are pairwise linearly independent, A′ is non-singular, be-
cause det(A′) = (aβ,1aα,0⊕aβ,0aα,1) which is the determinant of the following
matrix

A′′ =

[
aα,0 aα,1

aβ,0 aβ,1

]
and A′′ is non-singular. Moreover, K0 and K1 are uniform random variables
over {0, 1}n. Thus, we can apply Lemma 3 and the probability of this event
for a fixed choice of indices is 2−2n. Since one can choose i in qc ways, j and
k in qp ways and α and β in

(
w
2

)
ways, we obtain from the union bound over

all indices

Pr[bad4] ≤
(
w
2

)
q2pqc

22n
. (9)

bad5: This event considers the collision between the input of P0 for two con-
struction queries and the corresponding primitive input to P0 and the collision
between the output of Pα for some α ∈ [w] corresponding to the same two con-
struction queries. For this event, it must hold that

{
(a0,0 ·K0 ⊕ a0,1 ·K1) = Ii ⊕ Uk0 = Ij ⊕ U l0 (E.1)

(Oiα ⊕Ojα = V k0 ⊕ V l0) .

We can easily observe that

Pr[(E.1)] = Pr[Ii ⊕ Uk0 = Ij ⊕ U l0] · Pr[(E.1) | Ii ⊕ Uk0 = Ij ⊕ U l0] (10)

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 23

Let’s first fix a value for α and the choice of indices of the two construction
queries and the two primitive queries. We’ll break down the event into two
following cases.
Firstly, if the last among four queries is a backward primitive query (w.l.o.g.,
suppose it’s V k0 to obtain Uk0), then the probability of Equation (10) comes
out to be 1

2n .
1
2n . The first 1

2n comes from the randomness over Uk0 and the
second 1

2n comes from the randomness over a0,0 ·K0 ⊕ a0,1 ·K1. But in this
case, Pr[Oiα ⊕Ojα = V k0 ⊕ V l0] = 1.
Secondly, if the last among four queries is a forward positive query (w.l.o.g.,
suppose it’s Uk0 to obtain V k0) or a construction query (w.l.o.g., suppose it’s
Ii to obtain Oi), then the probability of Equation (10) comes out to be 1. 1

2n .
The 1

2n comes from randomness over a0,0 · K0 ⊕ a0,1 · K1. But in this case
Pr[Oiα⊕Ojα = V k0 ⊕ V l0] = 1

2n . The
1
2n comes from randomness over V k0 or Oiα

respectively.
Now, in case when the last query is a primitive query, then i and j can be
chosen in 2

(
qc
2

)
ways. But the value of the index corresponding to the last

primitive query gets fixed once one fixes the value of the index of the other
primitive query (This can be done in qp ways). Similarly, in case when the last
query is a construction query, then k and l can be chosen in q2p ways. But the
value of the index corresponding to the last construction query gets fixed once
one fixes the value of the index of the other construction query (This can be
done in qc ways). As one can choose α in w ways, we obtain from the union
bound over all indices

Pr[bad5] ≤ max

(
2w
(
qc
2

)
qp

22n
,
wqcq

2
p

22n

)
≤

2w
(
qc
2

)
qp

22n
+
wqcq

2
p

22n
. (11)

bad6: This event considers the collision between the input of Pα for two con-
struction queries and the corresponding primitive input to Pα for some α ∈ [w]
and the collision between the output of P0 corresponding to the same two con-
struction queries. For this event, it must hold that

{
(aα,0 ·K0 ⊕ aα,1 ·K1) = Ii ⊕ Ukα = Ij ⊕ U lα (E.1)

(Oiα ⊕Ojα = V kα ⊕ V lα) .

We’ll bound the probability of this event in a way similar to that of bad5. We
can easily observe that

Pr[(E.1)] = Pr[Ii ⊕ Ukα = Ij ⊕ U lα] · Pr[(E.1) | Ii ⊕ Ukα = Ij ⊕ U lα] (12)

Let’s first fix a value for α and the choice of indices of the two construction
queries and the two primitive queries. We’ll break down the event into two
following cases.

24 Arghya Bhattacharjee et al.

Firstly, if the last among four queries is a backward primitive query (w.l.o.g.,
suppose it’s V kα to obtain Ukα), then the probability of Equation (12) comes
out to be 1

2n .
1
2n . The first 1

2n comes from the randomness over Ukα and the
second 1

2n comes from the randomness over a0,0 ·K0 ⊕ a0,1 ·K1. But in this
case, Pr[Oiα ⊕Ojα = V kα ⊕ V lα] = 1.
Secondly, if the last among four queries is a forward positive query (w.l.o.g.,
suppose it’s Ukα to obtain V kα) or a construction query (w.l.o.g., suppose it’s
Ii to obtain Oi), then the probability of Equation (12) comes out to be 1. 1

2n .
The 1

2n comes from randomness over a0,0 · K0 ⊕ a0,1 · K1. But in this case
Pr[Oiα⊕Ojα = V kα ⊕V lα] = 1

2n . The
1
2n comes from randomness over V kα or Oiα

respectively.
Now, in case when the last query is a primitive query, then i and j can be
chosen in 2

(
qc
2

)
ways. But the value of the index corresponding to the last

primitive query gets fixed once one fixes the value of the index of the other
primitive query (This can be done in qp ways). Similarly, in case when the last
query is a construction query, then k and l can be chosen in q2p ways. But the
value of the index corresponding to the last construction query gets fixed once
one fixes the value of the index of the other construction query (This can be
done in qc ways). As one can choose α in w ways, we obtain from the union
bound over all indices

Pr[bad6] ≤ max

(
2w
(
qc
2

)
qp

22n
,
wqcq

2
p

22n

)
≤

2w
(
qc
2

)
qp

22n
+
wqcq

2
p

22n
. (13)

bad7: This event considers the collision between the input of Pα for two con-
struction queries and the corresponding primitive input to Pα for some α ∈ [w]
and the collision between the output of Pβ corresponding to the same two con-
struction queries for some β ∈ [w] with β 6= α. For this event, it must hold
that

{
(aα,0 ·K0 ⊕ aα,1 ·K1) = Ii ⊕ Ukα = Ij ⊕ U lα (E.1)

(Oiα ⊕Oiβ ⊕Ojα ⊕O
j
β = V kα ⊕ V lα) .

Again we’ll bound the probability of this event in a way similar to that of the
previous bad event. We can easily observe that

Pr[(E.1)] = Pr[Ii ⊕ Ukα = Ij ⊕ U lα] · Pr[(E.1) | Ii ⊕ Ukα = Ij ⊕ U lα] (14)

Let’s first fix the values for α and β and the choice of indices of the two
construction queries and the two primitive queries. We’ll break down the event
into two following cases.
Firstly, if the last among four queries is a backward primitive query (w.l.o.g.,
suppose it’s V kα to obtain Ukα), then the probability of Equation (14) comes
out to be 1

2n .
1
2n . The first 1

2n comes from the randomness over Ukα and the

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 25

second 1
2n comes from the randomness over a0,0 ·K0 ⊕ a0,1 ·K1. But in this

case, Pr[Oiα ⊕Oiβ ⊕Ojα ⊕O
j
β = V kα ⊕ V lα] = 1.

Secondly, if the last among four queries is a forward positive query (w.l.o.g.,
suppose it’s Ukα to obtain V kα) or a construction query (w.l.o.g., suppose it’s
Ii to obtain Oi), then the probability of Equation (14) comes out to be 1. 1

2n .
The 1

2n comes from randomness over a0,0 · K0 ⊕ a0,1 · K1. But in this case
Pr[Oiα⊕Oiβ⊕Ojα⊕O

j
β = V kα ⊕V lα] = 1

2n . The
1
2n comes from randomness over

V kα or Oiα ⊕Oiβ respectively.
Now, in case when the last query is a primitive query, then i and j can be
chosen in 2

(
qc
2

)
ways. But the value of the index corresponding to the last

primitive query gets fixed once one fixes the value of the index of the other
primitive query (This can be done in qp ways). Similarly, in case when the last
query is a construction query, then k and l can be chosen in q2p ways. But the
value of the index corresponding to the last construction query gets fixed once
one fixes the value of the index of the other construction query (This can be
done in qc ways). As one can choose α and β in 2

(
w
2

)
ways, we obtain from

the union bound over all indices

Pr[bad7] ≤ max

(
4
(
w
2

)(
qc
2

)
qp

22n
,

2
(
w
2

)
qcq

2
p

22n

)
≤

4
(
w
2

)(
qc
2

)
qp

22n
+

2
(
w
2

)
qcq

2
p

22n
. (15)

bad8: This event considers the collision between the input of P0 for i-th con-
struction query and a primitive input to P0, the collision between the input of
Pγ for j-th construction query and a primitive input to Pγ for some γ ∈ [w] and
the collision between the output of Pβ for i-th and j-th construction queries
for some β ∈ [w] with β 6= γ. For this event, it must hold that

(a0,0 ·K0 ⊕ a0,1 ·K1) = Ii ⊕ Uk0
(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U lγ
(a0,0 ⊕ aγ,0) ·K0 ⊕ (a0,1 ⊕ aγ,1) ·K1) = (V k0 ⊕ V lγ ⊕Oiβ ⊕Ojγ ⊕O

j
β).

Note that the system of equations above can be written equivalently as
(a0,0 ·K0 ⊕ a0,1 ·K1) = Ii ⊕ Uk0
(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U lγ
Ii ⊕ Ij ⊕ Uk0 ⊕ U lγ = (V k0 ⊕ V lγ ⊕Oiβ ⊕Ojγ ⊕O

j
β).

Let’s first fix the values for γ and β and the choice of indices of the two
construction queries and the two primitive queries. The probability of each of
the first two equations comes out to be 1

2n , which comes from the randomness
over a0,0 ·K0⊕ a0,1 ·K1 and aγ,0 ·K0⊕ aγ,1 ·K1 respectively. Since the matrix

[
a0,0 a0,1

aγ,0 aγ,1

]

26 Arghya Bhattacharjee et al.

is full-rank, the joint probability of the first two equations comes out to be 1
22n .

The probability of the third equation comes out to be 1
2n , but the random-

ness comes from different variables depending on the last query. The different
possible cases are as follows.

1. If the last among four queries is the construction query to obtain Oi from
Ii, then the randomness comes from Oiβ .

2. If the last among four queries is the construction query to obtain Oj from
Ij , then the randomness comes from Ojγ ⊕O

j
β .

3. If the last among four queries is the forward primitive query to obtain V k0
from Uk0 , then the randomness comes from V k0 .

4. If the last among four queries is the forward primitive query to obtain V lγ
from U lγ , then the randomness comes from V lγ .

5. If the last among four queries is the backward primitive query to obtain
Uk0 from V k0 , then the randomness comes from Uk0 .

6. If the last among four queries is the backward primitive query to obtain
U lγ from V lγ , then the randomness comes from U lγ .

Now, one can choose i and j together in 2
(
qc
2

)
ways and k and l in qp ways

each. Moreover, γ and β together can be chosen in 2
(
w
2

)
ways. Thus, we obtain

from the union bound over all indices

Pr[bad8] ≤
4
(
w
2

)(
qc
2

)
q2p

23n
. (16)

bad9: This event considers the collision between the input of Pα for i-th con-
struction queries and a primitive input to Pα, the collision between the in-
put of Pγ for j-th construction queries and a primitive input to Pγ for some
α 6= γ ∈ [w] and the collision between the output of P0 for i-th and j-th
construction queries. For this event, it must hold that

(aα,0 ·K0 ⊕ aα,1 ·K1) = Ii ⊕ Ukα
(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U lγ
(aα,0 ⊕ aγ,0) ·K0 ⊕ (aα,1 ⊕ aγ,1) ·K1) = (V kα ⊕ V lγ ⊕Oiα ⊕Ojγ) .

Note that the above system of equations can be equivalently written as
(aα,0 ·K0 ⊕ aα,1 ·K1) = Ii ⊕ Ukα
(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U lγ
Ii ⊕ Ij ⊕ Ukα ⊕ U lγ = (V kα ⊕ V lγ ⊕Oiα ⊕Ojγ) .

Using the similar reasoning while bounding bad8, we have

Pr[bad9] ≤
4
(
w
2

)(
qc
2

)
q2p

23n
. (17)

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 27

bad10: This event considers the collision between the input of Pα for i-th
construction queries and a primitive input to Pα, the collision between the
input of Pγ for j-th construction queries and a primitive input to Pγ for some
α 6= γ ∈ [w] and the collision between the output of Pβ for i-th and j-th
construction queries for some β ∈ [w] such that β 6= α, β 6= γ. For this event,
it must hold that

(aα,0 ·K0 ⊕ aα,1 ·K1) = Ii ⊕ Ukα
(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U lγ
(aα,0 ⊕ aγ,0) ·K0 ⊕ (aα,1 ⊕ aγ,1) ·K1) = (V kα ⊕ V lγ ⊕Oiα ⊕Oiβ ⊕Ojγ ⊕O

j
β).

Note that the above system of equations can be equivalently written as
(aα,0 ·K0 ⊕ aα,1 ·K1) = Ii ⊕ Ukα
(aγ,0 ·K0 ⊕ aγ,1 ·K1) = Ij ⊕ U lγ
Ii ⊕ Ij ⊕ Ukα ⊕ U lγ = (V kα ⊕ V lγ ⊕Oiα ⊕Oiβ ⊕Ojγ ⊕O

j
β).

Using the similar reasoning while bounding bad8, we have

Pr[bad10] ≤
2w(w − 1)(w − 2)

(
qc
2

)
q2p

23n
. (18)

The bound in Lemma 5 follows from Eqn. (5)-Eqn. (18).

Good Transcripts: It remains to study the interpolation probabilities of good
transcripts.

Lemma 6 Let qp + (w + 1)qc ≤ 2n/2(w + 1). For any good transcript τ =
τc ∪ τ0 ∪ . . . τw ∪ {K0,K1}, it holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1− (w + 1)2qc(qp + qc)

2

22n
.

Proof. Let Allreal(τ) denote the set of all oracles in the real world and Allideal(τ)
the set of all oracles in the ideal world that produce τ ∈ GoodT. Moreover, let
Compreal(τ) denote the fraction of oracles in the real world that are compatible
with τ and Compideal(τ) the corresponding fraction in the ideal world. It holds
that

Pr [Θreal = τ]

Pr [Θideal = τ]
=
|Compreal(τ)| · |Allideal(τ)|
|Compideal(τ)| · |Allreal(τ)|

.

We can easily bound the number for three out of four terms: |Allreal(τ)| =
(2n)2 · (2n!)w+1 since there exist (2n)2 keys and 2n! possible ways for each
of the w + 1 independent permutations Pα for α ∈ [0..w]. The same argu-
ment holds in the ideal world |Allideal(τ)| = (2n)2 · (2n!)w+1 · (2wn)2

n

, com-
bined with (2wn)2

n

random functions for construction queries’ answers. More-
over, |Compideal(τ)| = (2wn)2

n−qc ·
∏w
i=0(2n − qp)! compatible oracles exist

28 Arghya Bhattacharjee et al.

in the ideal world, where (2wn)2
n−qc are the oracles that produce the cor-

rect construction-query outputs for the 2n− qc remaining non-queried inputs,
and for all permutations, there exist (2n − qp)! compatible primitives each. It
remains to find |Compreal(τ)|. Note that

|Compreal(τ)| =

∣∣∣∣∣
{
P = (P0, . . . , Pw) : XORPP∗[P, w]K 7→ τc ∧

w∧
α=0

Pα 7→ τα

}∣∣∣∣∣ ,
where XORPP∗[P, w]K 7→ τc denotes that XORPP∗[P, w]K produces the con-
struction query transcript τc. Similarly, for all α ∈ [0..w], Pα 7→ τα denotes
that the permutation Pα produces the primitive query transcript τα. In other
words, if Domα denotes the set {U iα : (U iα, V

i
α) ∈ τα} and Ranα denotes the

set {V iα : (U iα, V
i
α) ∈ τα}, then Pα 7→ τα equivalently means Pα maps elements

from Domα to Ranα. Now, in order to compute |Compreal(τ)|, we regroup the
queries from τc, τ0, . . . , τw to τnew

c , τnew
0 , . . . , τnew

w . The new transcript sets
are initialized by their corresponding old parts, and reordered as follows:

1. if ∃i ∈ [qc], j ∈ [qp] such that Û i0 = U j0 , then

– τnew
c ← τnew

c \ {(Ii,Oi)} and

– for all α ∈ [w], τnew
α ← τnew

α ∪{(Û iα, V
j
0 ⊕Oiα⊕ (a0,0⊕aα,0) ·K0⊕ (a0,1⊕

aα,1) ·K1)}.

2. if ∃i ∈ [qc], j ∈ [qp], and α ∈ [w] such that Û iα = U jα, then

– τnew
c ← τnew

c \ {(Ii,Oi)} and

– τnew
0 ← τnew

0 ∪ {(Û i0, V jα ⊕Oiα ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1)}
and

– for all β ∈ [w] with β 6= α, τnew
β ← τnew

β ∪{(Û iβ , V jα ⊕Oiα⊕Oiβ ⊕ (aα,0⊕
aβ,0) ·K0 ⊕ (aα,1 ⊕ aβ,1) ·K1)}.

Note that such an addition of elements in Step (1) and Step (2) is sound. For
Step (1),

– since Û i0 collides with U j0 , Û
i
α cannot collide with any Ukα for α ∈ [w] due

to bad1.

– Similarly, (V j0 ⊕Oiα ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1) cannot collide
with any V kα for α ∈ [w] due to bad2.

– Moroever, (V j0 ⊕Oiα⊕ (a0,0⊕ aα,0) ·K0⊕ (a0,1⊕ aα,1) ·K1) is distinct due
to bad5 and bad8.

For Step (2),

– since Û iα collides with U jα for α ∈ [w], neither Û i0 can collide with any Uk0
nor Û iβ can collide with any Ukβ for β ∈ [w] with β 6= α due to bad1.

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 29

– Similarly, (V jα ⊕Oiα ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1) cannot collide
with any V k0 due to bad3.

– (V jα ⊕Oiα⊕Oiβ ⊕ (aα,0⊕ aβ,0) ·K0⊕ (aα,1⊕ aβ,1) ·K1) cannot collide with
V kβ for β ∈ [w] with β 6= α due to bad4.

– (V jα ⊕ Oiα ⊕ (a0,0 ⊕ aα,0) ·K0 ⊕ (a0,1 ⊕ aα,1) ·K1) is distinct due to bad6
and bad9.

– (V jα ⊕Oiα ⊕Oiβ ⊕ (aα,0 ⊕ aβ,0) ·K0 ⊕ (aα,1 ⊕ aβ,1) ·K1) is distinct due to
bad7 and bad10.

Also note that such an addition of elements (x, y) in the transcript τnew
α for

α ∈ [0..w] also updates the set Domα ← Domα ∪{x} and Ranα ← Ranα ∪{y}.
Now, given qc constructions queries and qp queries to each of the permutations
in the original transcript, let the numbers of queries moved from τc be r which
includes total sα many elements into the primitive partial transcripts τα for
α ∈ [0..w]. Thus, the number of queries in the new construction transcript is
denoted by q′ = qc − r and the w+ 1 sets of transcripts, (τnew

0 , τnew
1 , . . . , τnew

w)
define exactly (qp+s0, qp+s1, . . . , qp+sw) input-output tuples for (P0, . . . , Pw)
respectively. Therefore, it is easy to see that (s0+. . .+sw) = rw. Moreover, for
each α ∈ [0..w], sα ≤ r ≤ qc. Now, what remains is the counting of the number
of permutations (P0, . . . , Pw) that satisfy these (qp + s0, qp + s1, . . . , qp + sw)
tuples respectively. That could give the remaining transcript τnew

c , i.e., we are
interested to count the number of permutations (P0, . . . , Pw) that satisfies the
following system of equations:

Ei =


P0(Û i0)⊕ P1(Û i1) = Oi1 ⊕ (a0,0 ⊕ a1,0) ·K0 ⊕ (a0,1 ⊕ a1,1) ·K1

P0(Û i0)⊕ P2(Û i2) = Oi2 ⊕ (a0,0 ⊕ a2,0) ·K0 ⊕ (a0,1 ⊕ a2,1) ·K1

...
...

...
...

P0(Û i0)⊕ Pw(Û iw) = Oiw ⊕ (a0,0 ⊕ aw,0) ·K0 ⊕ (a0,1 ⊕ aw,1) ·K1 ,

where i ∈ [q′], U iα = Ii ⊕ (aα,0 · K0 ⊕ aα,1 · K1) for all {(Ii,Oi)} ∈ τnew
c ,

along with the fact that for each α ∈ [0..w], Pα maps Dα to Rα, where Dα =
{0, 1}n \ Domα and Rα = {0, 1}n \ Ranα. Note that

Domα
def
= {U iα : (U iα, V

i
α) ∈ τnew

α }

Ranα
def
= {V iα : (U iα, V

i
α) ∈ τnew

α }.

It is easy to see that |Dα| = |Rα| = (2n − qp − sα). Note that Ranα =
{0, 1}n \Rα, for α ∈ [0..w], as the set of range values of Pα that are prohibited
(basically these are the V values in τα). Now, for j = [0..q′ − 1], let

λj+1
def
=
∣∣∣{(P1

0, . . . ,P
j+1
0 , . . . ,P1

w, . . . ,P
j+1
w)

}∣∣∣ (19)

be the number of solutions that satisfy

30 Arghya Bhattacharjee et al.

(1) the system of equations E1 ∪ E2 ∪ . . . ∪ Ej+1

(2) ∀α ∈ [0..w], it holds that Pj+1
α 6∈ {P1

α, . . . ,P
j
α} ∪ Ranα.

Then, the goal is to define a recursive expression for λj+1 from λj such that a
lower bound can be found for the expression λj+1/λj . It holds that

|Compreal(τ)| = λq′ · (2n − (qp + s0 + q′))! · · · · · (2n − (qp + sw + q′))! ,

where the second term represents the number of permutations compatible with
P0 and the rightmost term contains the number of permutations compatible
with Pw. We obtain

Pr[Θreal = τ]

Pr[Θideal = τ]
=
λq′ ·

∏w
i=0(2n − (qp + si + q′))! · (2n)w·qc

((2n − qp)!)w+1
. (20)

Let B(1) denote the set of solutions that comply with only Condition (1) with-
out considering Conditions (2.0) through (2.w). Moreover, let B(2.ι:i) denote
the set of solutions compatible with Condition (1), but not with (2.ι : i), for
i = 1, . . . , j + |Ranι|. From the inclusion-exclusion principle, it follows that

λj+1 =
∣∣B(1)∣∣−

∣∣∣∣∣∣
(j+|Ran0|⋃

i=1

B(2.0:i)
)
∪ · · · ∪

(j+|Ranw|⋃
i=1

|B(2.w:i)|
)∣∣∣∣∣∣

≥
∣∣B(1)∣∣−

∣∣∣∣∣∣
j+|Ran0|∑
i=1

|B(2.0:i)|

∣∣∣∣∣∣− · · · −
∣∣∣∣∣∣
j+|Ranw|∑
i=1

|B(2.w:i)|

∣∣∣∣∣∣
+

j+|Ran0|∑
i=1

j+|Ran1|∑
i′=1

∣∣B(2.0:i) ∩ B(2.1:i′)∣∣︸ ︷︷ ︸
≥0

+ · · ·

+

j+|Ranw−1|∑
i=1

j+|Ranw|∑
i′=1

∣∣B(2.(w−1):i) ∩ B(2.w:i′)

∣∣︸ ︷︷ ︸
≥0

≥ 2n · λj −
j+|Ran0|∑
i=1

λj − · · · −
j+|Ranw|∑
i=1

λj .

It follows that λj+1 ≥ 2n · λj − (j + qp + s0) · λj − . . . − (j + qp + sw) · λj .
Therefore,

λj+1

λj
≥ 2n − (w + 1)j − (w + 1)qp −

w∑
α=0

sα

with λ0 = 1. It follows that Equation (20) can be written as

s0−1∏
t=0

2n

2n − qp − t
· . . . ·

sw−1∏
t=0

2n

2n − qp − t
·
q′−1∏
i=0

λi+1

λi
· (2n)w∏w

α=0(2n − qp − i− sα)

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 31

≥
q′−1∏
i=0

(
(2n − (w + 1)i− (w + 1)qp −

∑w
α=0 sα)∏w

α=0(2n − qp − i− sα)
· 2nw

)
. (21)

By substituting zi
def
= qp + i and setting pi,α

def
= (zi + sα)/2n, we get

(21) =

q′−1∏
i=0

(
(2n)w+1 − 2nw · ((w + 1)zi +

∑w
α=0 sα)∏w

α=0(2n − (zi + sα))

)
(22)

≥
q′−1∏
i=0

(
(2n)w+1 − 2nw · ((w + 1)zi +

∑w
α=0 sα)

2n(w+1)(1−
∑w
α=0 pi,α +

∑
0≤α<β≤w pi,αpi,β)

)
(23)

Note that 0 ≤ pi,α ≤ 1 and smax
def
= max{sα : 0 ≤ α ≤ w} and by applying

Lemma 4, we derived Eqn. (23) from Eqn. (22). Therefore, we have

(23) ≥
q′−1∏
i=0

(
1−

∑
α<β(zi + sα)(zi + sβ)

22n(1−
∑w
α=0 pi,α +

∑
0≤α<β≤w pi,αpi,β)

)

≥
q′−1∏
i=0

1−
(
w+1
2

)
(zi + smax)2

22n − 2n
w∑
α=0

(zi + sα) +
∑
α<β

(zi + sα)(zi + sβ)


(1)

≥
q′−1∏
i=0

(
1−

2 ·
(
w+1
2

)
· (qp + qc)

2

22n

)
(2)

≥
(

1− (w + 1)2q′(qp + qc)
2

22n

)
,(24)

where (1) follows from the fact that zi + smax = qp + i+ smax ≤ qp + q′ + r =
qp + qc. Moreover, 2n

∑w
α=0(zi + sα)−

∑
α<β(zi + sα)(zi + sβ) ≤ 22n/2, that

follows due to the fact that (qp + qc) ≤ (qp + (w + 1)qc) ≤ 2n/2(w + 1). (2)
holds due to Bernoulli’s inequality. Finally, we used qc ≥ q′ to derive the final
bound.

Our claim in Theorem 3 follows from Lemma 1, 5, and 6.

5.3 CENCPP: An Instantiation of CENCPP∗

A natural instantiation of CENCPP∗ can be realized by instantiating the key-
scheduling matrix A of dimension (w + 1)× 2 of XORPP∗ as follows:

L ·K =

[
1 α1 α2 · · · αw

1 α2 α4 · · · α2w

]>
·

[
K0

K1

]
,

where the elements are in Fn2 , and α ∈ Fn2 is a primitive element, which is
often α = 2, that is the polynomial x1 for practical values of Fn2 · p(x) is an
irreducible modulus polynomial in Fn2 . Note that any two rows of the matrix L
above are linearly independent. We refer to the instantiation of XORPP∗ with

32 Arghya Bhattacharjee et al.

Algorithm 2 Definition of CENCPP.
101: function CENCPP[P, w].EK(N,M)
102: (M1, . . . ,Mm)

n←−M
103: `← dm/we
104: for i← 0..`− 1 do
105: j ← i · w
106: (Sj+1 ‖ · · · ‖Sj+w)
107: ← XORPP∗ [P, w]K(N ‖ 〈i〉µ)
108: for k ← j + 1..j + w do
109: Ck ← msb|Mk|(Sk)⊕Mk

110: return (C1 ‖ · · · ‖Cm)

201: function CENCPP[P, w].DK(N,C)
202: return CENCPP[P, w].EK(N,C)

301: function XORPP[P, w]K(I)
302: (K0,K1)← K
303: (P0, . . . , Pw)← P
304: L0 ← K0 ⊕K1

305: Û0 ← I ⊕ L0

306: X̂0 ← P0(Û0)⊕ L0

307: for α← 1..w do
308: Lα ← (2α ·K0)⊕ (22α ·K1)

309: Ûα ← I ⊕ Lα
310: X̂α ← Pα(Ûα)⊕ Lα
311: Oα ← X̂α ⊕ X̂0

312: return (O1 ‖ · · · ‖Ow)

matrix L as XORPP. We define the concrete nonce- and public-permutation-
based encryption scheme CENCPP in Algorithm 2. Since any two rows in the
key-scheduling matrix of CENCPP are linearly independent, the security of
CENCPP follows from Theorems 2 and 3.

6 Domain-separated Variants

DS-SoEM is a sum of Even-Mansour constructions with d = 1 bit of domain
separation, i.e., it uses (n − 1)-bit message inputs and fixes the last bit to
encode domains that are distinct for each permutation. Let P ∈ Perm(Fn2) and
K

def
= (K0,K1) ∈ fieldn2)2. We define DS-SoEM[P]K0,K1

: (Fn2)2 × Fn−12 → Fn2
to compute DS-SoEM[P]K0,K1

(M), as listed in Algorithm 3. Note that we
use (n − 1) bits of the key in forward direction only, i.e., the domain is not
masked. For this construction, we set a zero bit for the call to the left and a
one bit for the domain input to the right permutation. An illustration is given
in Figure 5a.

DS-XORPP: We can define DS-XORPP[P,w] similarly. Here, d ≥ dlog2(w +

1)e bits are necessary to separate the domains. Let again K
def
= (K0,K1) ∈

(Fn2)2. We define DS-XORPP[P,w] : (Fn2)2 × Fn−d2 → (Fn2)w as given in Algo-
rithm 3 and shown in Figure 5b. The input domain is Fn−d2 . Again, we use
(n−d) bits of the key in forward direction only, i.e., the domain is not masked.

DS-CENCPP is then defined naturally. Let N def
= Fν+µ2 be a nonce space such

that ν + µ = n − d. Let N ∈ N be a nonce and M ∈ F∗2 be a message. Let
again K

def
= (K0,K1) ∈ (Fn2)2 and P ∈ Perm(Fn2). Then, the encryption and

decryption algorithms E and D of DS-CENCPP[P,w]K(N,M) are provided in
Algorithm 3.

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 33

Algorithm 3 Definition of DS-CENCPP, DS-XORPP, and DS-SoEM.
101: function DS-CENCPP[P,w].EK(N,M)
102: (M1, . . . ,Mm)

n←−M
103: `← dm/we
104: for i← 0..`− 1 do
105: j ← i · w
106: (Sj+1 ‖ · · · ‖Sj+w)
107: ← DS-XORPP[P,w]K(N ‖ 〈i〉µ)
108: for k ← j + 1..j + w do
109: Ck ← Sk ⊕Mk

110: return msb|M|(C1 ‖ · · · ‖Cm)

201: function DS-CENCPP[P,w].DK(N,C)
202: return DS-CENCPP[P,w].EK(N,C)

301: function DS-XORPP[P,w]K(I)
302: (K0,K1)← K
303: L0 ← K0 ⊕K1

304: Û0 ← (I ⊕msbn−d(L0)) ‖ 〈0〉d
305: X̂0 ← P (Û0)⊕ L0

306: for α← 1..w do
307: Lα ← (2α ·K0)⊕ (22α ·K1)

308: Ûα ← (I ⊕msbn−d(Lα)) ‖ 〈α〉d
309: X̂α ← P (Ûα)⊕ Lα
310: Oα ← X̂α ⊕ X̂0

311: return (O1 ‖ · · · ‖Ow)

401: function DS-SoEM[P,w]K(M)
402: (K0,K1)← K

403: Û0 ← (msbn−1(K0)⊕M) ‖ 〈0〉1
404: Û1 ← (msbn−1(K1)⊕M) ‖ 〈1〉1
405: V̂0 ← P (Û0)

406: V̂1 ← P (Û1)

407: return V̂0 ⊕ V̂1 ⊕K0 ⊕K1

M

P P

0 1K0 K1

K0 K1

m
sb
b

m
sb
b

Û0 Û1

V̂0 V̂1

C

(a) DS-SoEM[P]K0,K1
.

I

K0 ⊕K1

0m
sb
b

P

X̂0

Û0

V̂0

I

2K0 ⊕ 22K1

1m
sb
b

P

O1

X̂0

Û1

V̂1

X̂1

I

22K0 ⊕ 24K1

2m
sb
b

P

O2

X̂0

Û2

V̂2

X̂2

(b) DS-XORPP[P,w]K0,K1
.

Fig. 5: The domain-separated constructions, here with DS-XORPP[P, 2]. The trapezoids
represent truncation of the key masks at the input to their b = n − d most significant
bits. For DS-SoEM, the trapezoid truncates the key masks at the input to their n− 1 most
significant bits, whereas for DS-XORPP, it truncates n− 2 most significant bits.

7 Distinguishers on DS-SoEM and DS-XORPP

This section provides a distinguisher on DS-SoEM that matches our security
bound and distinguishers on variants that mask also the domain and use only
a single key. Thus, they show that our bound is tight (up to a logarithmic
factor) and explain our designs.

The existing distinguisher from [9, Proposition 2] on SoEM12 (one permuta-
tion, two independent keys) needed 3 · 2n/2 queries:

1. For i ← 1..2n/2, query M i = (〈i〉n/2 ‖ 0n/2) to get Ci, and M∗i = M i ⊕ 1

to get C∗i.

34 Arghya Bhattacharjee et al.

2. For j←1..2n/2, query M ′j = (0n/2‖〈j〉n/2) to get C ′j , and M ′∗j=M ′
j⊕1

for C ′∗j .

After 3 · 2n/2 queries, there exists one tuple (M i,M∗i,M ′
j
,M ′

∗j
) such that

M i⊕M ′j = M∗i⊕M ′∗j = K0⊕K1, which can be seen if Ci = C ′
j and C∗i =

C ′
∗j . Note that the fourth set of queriesM ′∗j is not new, but can be taken from

the other sets. For SoEM, the distinguisher exploited that one can find two
queries M and M ′ such that their inputs to the left and right permutation are
swapped. For DS-SoEM, this distinguisher does not apply since the domain
separation prevents that the permutation inputs can be swapped.

A working distinguisher can be constructed with significant advantage and
6c · 22n/3 queries, for small constant c ≥ 1. Let q = c · 22n/3.
1. For j ← 1..q, query a random M j without replacement, get Cj . Moreover,

query M∗j = M j ⊕ 〈1〉n−1 to get C∗j and store (Cj , C∗j).

2. For i ← 1..q, sample ui0 ∈ Fn−12 without replacement, query U i0 = (ui0 ‖
〈0〉1) to P , and obtain V i0 . Query U∗0

i = U i0 ⊕ 10n−1 to P to obtain V ∗0
i

and store (V i0 , V
∗
0
i).

3. For k ← 1..q, sample uk1 ∈ Fn−12 without replacement, query Uk1 = (uk1 ‖
〈1〉1) to P , and get V k1 . Query U∗1

k = Uk1 ⊕ 10n−1 to P to get V ∗1
k and

store (V k1 , V
∗
1
k).

With high probability, there exists a tuple (M j , U i0, U
k
1) such that

((M j ⊕msbn−1(K0)) ‖ 〈0〉1) = U i0 and ((M j ⊕msbn−1(K1)) ‖ 〈1〉1) = Uk1 .

If this is the case, check if

((M∗j ⊕msbn−1(K0) ‖ 〈0〉1) = U∗0
i and ((M∗j ⊕msbn−1(K1)) ‖ 〈1〉1) = U∗1

k

also holds. If yes, return real; return random otherwise.

Why not also mask the domain? If the keysK0 andK1 would be XORed also
to the domains, it could hold for DS-SoEM that lsb1(K0)⊕ 〈0〉1 = lsb1(K1)⊕
〈1〉1 . Similarly, it could hold for DS-XORPP for any distinct pair i, j ∈ [0..w]
that

lsbd(2iK0 ⊕ 22iK1)⊕ 〈i〉d = lsbd(2jK0 ⊕ 22jK1))⊕ 〈j〉d

This would counter the distinct domains. While the distinguisher from [9,
Proposition 2] would still be inapplicable, a slide attack (cf. [15,16]) could
become a threat. In the following, we consider a variant of DS-SoEM[P] with
the permutation inputs

U i0 ← (M i ‖ 〈0〉1)⊕K0 and U i1 ← (M i ‖ 〈1〉1)⊕K1.

Let K0,K1 � Fn2 , and lsb1(K0)⊕ lsb1(K1) = 1, i.e., their least significant bit
differs, which holds with probability 0.5. Let c ∈ Fn−12 be a non-zero constant.
Then:

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 35

1. For i← 1..2n/2, sample M i = (〈i〉n/2 ‖ 0n/2−1), obtain Ci and store it.

2. Derive M∗i = M i ⊕ c, and obtain its corresponding ciphertext C∗i.

3. Similarly, for j ← 1..2n/2−1, sampleM j = (0n/2 ‖ 〈j〉n/2−1), obtain Cj and
store it.

4. Derive M∗j = M j ⊕ c, and obtain its corresponding ciphertext C∗j .

5. If ∃i 6= j such that Ci = Cj and C∗i = C∗j , return real; return random
otherwise.

Then, there exists a pair s. t. M i ⊕M j = msbn−1(K0 ⊕K1). It follows that
U i0 = U j1 and U j0 = U i1, from which Ci = Cj follows. A similar argument holds
for C∗i = C∗j .

A distinguisher on a single-key variant shows that the tempting approach
of using a single-key domain-separated variant of DS-SoEM does not offer
sufficient security in practice. Since the domain differs in both permutation
calls, this would ensure distinct inputs on both sides of each query. However,
this construction would possess only n/2-bit PRF security. In the following,
we sketch a distinguisher, where we assume that both keys K0 and K1 are
replaced by a single key K.

1. For i ← 1..2n/2, sample M i = (〈i〉n/2 ‖ 0n/2−1) to obtain Ci and store
them. To eachM i, associate a plaintextM ′i = M i⊕(10n−2) and its output
C ′

i.

2. For j ← 1..2n/2−1, ask for the primitive encryption of U j0 = (〈0〉n/2 ‖
〈i〉n/2−1 ‖ 〈0〉1) to obtain V j0 . Query U ′0

j
= U j0 ⊕ (10n−1) to obtain V ′0

j .

3. Similarly, for j ← 1..2n/2−1, ask for the primitive encryption of U j1 =

(〈0〉n/2 ‖ 〈i〉n/2−1 ‖ 〈1〉1) to obtain V j1 . Query U ′1
j

= U j1 ⊕ (10n−1) to
obtain V ′1

j .

4. If there exists one tuple i, j s. t. Ci = V j0 ⊕V
j
1 and C ′i = V ′0

j⊕V ′1
j , output

real and output random otherwise.

With probability one, there will be one collision for the real construction,
whereas the probability of the event is negligible in the ideal world.

8 Security Analysis of DS-CENCPP and DS-SoEM

Here, we study the nE security of DS-CENCPP.

8.1 Security Result of DS-CENCPP

As before, let P � Perm(Fn2) and K0,K1 � K be independent secret keys;
we write K = (K0,K1) for brevity. Again, we conducted a two-step analysis,

36 Arghya Bhattacharjee et al.

where we consider (1) the PRF security of DS-XORPP[P,w] and (2) the nE secu-
rity of DS-CENCPP[P,w]. For simplicity of notation, we write DS-XORPP[P,w]
as DS-XORPP. Moreover, we write DS-CENCPP[P,w] as DS-CENCPP.

Theorem 4 It holds that

AdvnE
DS-CENCPP(qp, qc,m) ≤ AdvPRF

DS-XORPP

(
qp,

m

w
qc

)
.

The proof follows a similar argumentation as that of CENCPP∗.

Theorem 5 Let v def
= w + 1 and qc + v(qp + qc) ≤ 2n/2(w + 1). It holds that

AdvPRF
DS-XORPP(qp, qc) ≤

22dv2qcq
2
p

22n+1
+

2d+1wvqcq
2
p

22n
+

2dv3qcq
2
p

22n+1
+

22dw3q2cqp
22n

+
22d+1w3qcq

2
p

22n
+

22dw4q2cqp
22n

+
22d+1w4q2cq

2
p

23n

+
wqc
2n

+

(
w
2

)
qc

2n
+

4v4q3c + 4v4q2cqp + v4qcq
2
p

22n
.

Corollary 2 The Security of DS-CENCPP results from combining Theorem 4
and Theorem 5 as follows:

AdvnE
DS-CENCPP(qp, qc,m) ≤

22dvmqcq
2
p

22n
+

2d+1vmqcq
2
p

22n
+

2dv2mqcq
2
p

22n

+
22dwm2q2cqp

22n
+

22d+1w2mqcq
2
p

22n
+

22dw2m2q2cqp
22n

+
22d+1m2w2q2cq

2
p

23n
+
mqc
2n

+
mwqc
2n+1

+
4(w + 7)m3q3c + 16v2m2q2cqp + 2v3mqcq

2
p

22n
,

where m is the maximum number of message blocks among all qc queries.

For the bound in Corollary 2, we used that v2/w ≤ 2v and v4/w3 ≤ (w + 7)
and v4/w ≤ 2v3.

Proof of Theorem 5. We fix a non-trivial information-theoretic deterministic
distinguisher D that is given access to the oracle DS-XORPP[P,w]K and the
primitive oracle P , for a pair of n-bit random keys K = (K0,K1) and an n-bit
random permutation P , in the real world. In the ideal world, it is given access
to a random function, which answers each query of D by w blocks of n bits
uniform and independent random strings O = (O1, . . . , Ow) and to an n-bit
random permutation P . We assume that D can ask exactly qc construction
queries and q′p = (w+ 1)qp forward and backward primitive queries altogether
to the primitive P , where U iα is the i-th forward primitive query to the primi-
tive P whose last d bits is equal to 〈α〉d and V iα is the corresponding response
and vice versa. We summarize the interaction of the distinguisher D with
the oracles in a transcript τ which is partitioned into τ = τc ∪ τ0 ∪ . . . ∪ τw,

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 37

where the construction transcript τc contains the queries to and responses
from the construction oracle: τc = {(I1,O1), . . . , (Iqc ,Oqc)} and the primi-
tive transcripts τα = {(U1

α, V
1
α), . . ., (U

qp
α , V

qp
α)} contain exactly the queries

to and responses from permutation P such that the last d bits of U iα for all
i ∈ [qp] and for all α ∈ [0..w] is equal to 〈α〉d. Since D is non-trivial, τ does
not contain duplicate elements. After the interaction is over, we release the
keys K0,K1, which happens to be the keys used in the construction in the
real world, and sampled uniformly at random in the ideal world, to the dis-
tinguisher before it outputs its decision bit. Hence, the transcript τ becomes
τ = τc ∪ τ0 ∪ . . . ∪ τw ∪ {(K0,K1)}. With the help of the transcript τ , D
can compute the all the inputs Û iα to the permutations P for qc construction
queries using the following equation

Û iα
def
= Ii ⊕msbn−d(2α ·K0 ⊕ 22α ·K1) ‖ 〈α〉d , (25)

where α ∈ [0..w] and i ∈ [qc]. We partition the set of all attainable transcripts
Att into two disjoint sets of GoodT and BadT that represent good and bad
transcripts.

Bad Transcripts: Let τ = τc ∪ τ0 ∪ . . . ∪ τw ∪ {(K0,K1)} be an attainable
transcript. Since, the distinguisher is given the keys K, it can compute all the
permutation inputs (Û iα)i∈[qc],α∈[0..w] using Eqn. (25). We say that τ is bad if
any of the following bad events holds.

1. Two inputs to the permutations for a construction query simultaneously
collides with the input of corresponding two primitive queries.

– bad1: ∃i ∈ [qc], j, k ∈ [qp] and distinct permutation indices α, β ∈ [0..w]

such that. (Û iα = U jα) ∧ (Û iβ = U jβ).

2. For a construction query, one of the inputs collides with the input of a
primitive query, which makes the output of another permutation call of
the same construction query to collide with the output of another primitive
query.

– bad2: ∃i ∈ [qc], j, k ∈ [qp] and permutation indices α ∈ [w] and β ∈ [0..w]

such that (Û i0 = U j0)∧ (V j0 ⊕Oiα⊕ (2α⊕ 1) ·K0⊕ (22α⊕ 1) ·K1 = V kβ).

– bad3: ∃i ∈ [qc], j, k ∈ [qp] and permutation indices α ∈ [w] and β ∈ [0..w]

such that (Û iα = U jα)∧ (V jα ⊕Oiα⊕ (2α⊕ 1) ·K0⊕ (22α⊕ 1) ·K1 = V kβ).

– bad4: ∃i ∈ [qc], j, k ∈ [qp] and disinct permutation indices α, β ∈ [w]

and γ ∈ [0..w] such that (Û iα = U jα)∧ (V jα ⊕Oiα⊕Oiβ ⊕ (2α⊕ 2β) ·K0⊕
(22α ⊕ 22β) ·K1 = V kγ).

3. For two construction queries i and j, one of the inputs of i-th construction
query collides with the input of a primitive query, and one of the inputs
of j-th construction query collides with the input of a primitive query, and
the output of any two permutation calls collide.

38 Arghya Bhattacharjee et al.

– bad5: ∃i, j ∈ [qc], k, l ∈ [qp] and permutation indices β, γ ∈ [w] such
that (Û i0 = Uk0) ∧ (Û j0 = U l0) ∧ (V k0 ⊕Oiβ ⊕Ojγ ⊕ V l0 = (2β ⊕ 2γ) ·K0 ⊕
(22β ⊕ 22γ) ·K1).

– bad6: ∃i, j ∈ [qc], k, l ∈ [qp] and permutation index α ∈ [w] and per-
mutation indices β, γ ∈ [0..w] such that α 6= β, α 6= γ and (Û iα =

Ukα) ∧ (Û jα = U lα) ∧ (V kα ⊕ V lα ⊕Oiα ⊕Oiβ ⊕Ojα ⊕Ojγ = (2β ⊕ 2γ) ·K0 ⊕
(22β ⊕ 22γ) ·K1).

– bad7: ∃i, j ∈ [qc], k, l ∈ [qp] and permutation index α ∈ [w] and per-
mutation indices β ∈ [w] and γ ∈ [0..w] such that α 6= γ and (Û i0 =

Uk0) ∧ (Û jα = U lα) ∧ (V k0 ⊕ V lα ⊕ Oiβ ⊕ Ojα ⊕ Ojγ = (1 ⊕ 2α ⊕ 2β ⊕ 2γ) ·
K0 ⊕ (1⊕ 22α ⊕ 22β ⊕ 22γ) ·K1).

– bad8: ∃i, j ∈ [qc], k, l ∈ [qp] and distinct permutation indices α, β ∈ [w]
and permutation indices γ, ρ ∈ [0..w] such that α 6= γ, ρ 6= β and
(Û iα = Ukα)∧ (Û jβ = U lβ)∧ (V kα ⊕ V lβ ⊕Oiα⊕Oiγ ⊕O

j
β ⊕Ojρ = (2ρ⊕ 2α⊕

2β ⊕ 2γ) ·K0 ⊕ (22ρ ⊕ 22α ⊕ 22β ⊕ 22γ) ·K1).

– bad9: ∃i ∈ [qc] and a permutation index α ∈ [w] such that Oiα =
(K0 ⊕K1)⊕ (2αK0 ⊕ 22αK1).

– bad10: ∃i ∈ [qc] and distinct permutation indices α, β ∈ [w] such that
Oiα ⊕Oiβ = (2α ⊕ 2β) ·K0(22α ⊕ 22β) ·K1.

Lemma 7 It holds that

Pr [Θideal ∈ BadT] ≤
22d
(
w+1
2

)
qcq

2
p

22n
+

2d+1w(w + 1)qcq
2
p

22n
+

2d(w + 1)
(
w+1
2

)
qcq

2
p

22n

+
22dw3q2cqp

22n
+

22d+1w3qcq
2
p

22n
+

22dw4q2cqp
22n

+
22d+1w4q2cq

2
p

23n
+
wqc
2n

+

(
w
2

)
qc

2n
.

We provide the proof of Lemma 7 in Appendix A.

Good Transcripts: It remains to study the interpolation probabilities of good
transcripts.

Lemma 8 Let v def
= w + 1 and qc + v(qp + qc) ≤ 2n/2(w + 1). For any good

transcript τ = τc ∪ τ0 ∪ . . . τw ∪ {K0,K1}, it holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1−

4v4q3c + 4v4q2cqp + v4qcq
2
p

22n
.

The proof of Lemma 8 is defered to Appendix B. Our claim in Theorem 5
follows from Lemmas 1, 7, and 8.

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 39

8.2 Security Result of DS-SoEM

We consider DS-SoEM[P]K with d = 1, P � Perm(Fn2), K0,K1 � Fn2 , and
K = (K0,K1). For the simplicity of the notation, we write DS-SoEM[P]K as
DS-SoEM. Note that the security result of DS-SoEM can be trivially deduced
from the security result of DS-XORPP by putting the value of w = 1, d = 1 and
letting K ′0 = K0⊕K1 and K ′1 = 2K0⊕ 22K1 in Theorem 5, where K ′0 and K ′1
are the keys of DS-SoEM. It remains to argue that K ′0 and K ′1 are statistically
independent random variables. This is easy to see as the two equationsK0⊕K1

and 2K0⊕22K1 are linearly independent, where K0,K1 are uniformly sampled
two independent n-bit keys, i.e, for any pair of n bit string k′0, k′1,

Pr[K ′0 = k′0,K
′
1 = k′1] = 2−2n.

This holds true as

Pr[K ′0 = k′0,K
′
1 = k′1] = Pr[K0 ⊕K1 = k′0, 2K0 ⊕ 22K1 = k′1]

which can be equivalently written as

Pr


[

1 1

2 22

]
︸ ︷︷ ︸

A′

·

[
K0

K1

]
=

[
k′0

k′1

] . (26)

Since the matrix A′ is non-singular, using Lemma 3 we can deduce the prob-
ability in Eqn. (26) is exactly 2−2n. Moreover, it is also easy to see that

Pr[K ′0 = k′0] = Pr[K ′1 = k′1] = 2−n ,

which establishes the independence the round keys used in DS-SoEM. Thus,
the secrurity result of DS-SoEM is stated as follows:

Corollary 3 Let D be a distinguisher with exactly qc construction queries
and qp primitive queries. Let 2qp + 3qc ≤ 2n−2. Then

AdvPRF
DS-SoEM(D) ≤

56qcq
2
p

22n
+

100q2cqp
22n

+
64q3c
22n

+
qc
2n

+
8q2cq

2
p

23n
.

9 Conclusion

This work has proposed a variant of CENC from public permutations, CENCPP∗.
From that base, it is straightforward to obtain a nonce-based encryption
scheme or a fixed-input-length variable-output-length PRF with a security
bound of up to O(22n/3/w2) queries. Our result can be combined with a
beyond-birthday-secure MAC from public permutations to obtain an authen-
ticated encryption scheme. The doubling-based key schedule ensures pairwise

40 Arghya Bhattacharjee et al.

independent keys for all pairs of permutation inputs in XORPP∗ and DS-
XORPP. Although the key masks can be cached, for values of w ≤ 2, the
choice of keys can be improved in terms of computations. For w = 1, XORPP∗

degenerates to the SoEM construction and can simply use (K0,K1) for the
permutation calls. For w = 2, XORPP∗ can use (K0,K0 ⊕ K1,K1) for the
calls to the permutations to ensure independent keys without the need for
doubling. We see the recent summation-truncation-hybrid by Gunsing and
Mennink [20] to be similar to the sum of permutation, although it is based
on secret permutations. Adapting it to beyond-birthday-bound security with
public permutations seems an interesting future work.

References

1. Daniel J. Bernstein. Salsa20 specification. eSTREAM Project algorithm description,
2005.

2. Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Farfalle: parallel permutation-based cryptography. IACR Trans.
Symmetric Cryptol., 2017(4):1–38, 2017.

3. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the
Sponge: Single-Pass Authenticated Encryption and Other Applications. In Ali Miri and
Serge Vaudenay, editors, SAC, volume 7118 of LNCS, pages 320–337. Springer, 2011.

4. Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. Dumbo, Jumbo,
and Delirium: Parallel Authenticated Encryption for the Lightweight Circus. IACR
Trans. Symmetric Cryptol., 2020(1):5–30, 2020.

5. Srimanta Bhattacharya and Mridul Nandi. Revisiting Variable Output Length XOR
Pseudorandom Function. IACR Trans. Symmetric Cryptol., 2018(1):314–335, 2018.

6. Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici, and
Ingrid Verbauwhede. SPONGENT: A Lightweight Hash Function. In Bart Preneel and
Tsuyoshi Takagi, editors, CHES, volume 6917 of LNCS, pages 312–325. Springer, 2011.

7. Avik Chakraborti, Mridul Nandi, Suprita Talnikar, and Kan Yasuda. On the Compo-
sition of Single-Keyed Tweakable Even-Mansour for Achieving BBB Security. IACR
Trans. Symmetric Cryptol., 2020(2):1–39, 2020.

8. Shan Chen and John P. Steinberger. Tight Security Bounds for Key-Alternating Ci-
phers. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT, volume
8441 of LNCS, pages 327–350. Springer, 2014. Full version at https://eprint.iacr.
org/2013/222.

9. Yu Long Chen, Eran Lambooij, and Bart Mennink. How to Build Pseudorandom Func-
tions from Public Random Permutations. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, CRYPTO I, volume 11692 of LNCS, pages 266–293. Springer, 2019.

10. Benoît Cogliati and Yannick Seurin. Analysis of the single-permutation encrypted
Davies-Meyer construction. Des. Codes Cryptogr., 86(12):2703–2723, 2018.

11. Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-Theoretic Indistinguisha-
bility via the Chi-Squared Method. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO Part III, volume 10403 of LNCS, pages 497–523. Springer, 2017. Full version
at http://eprint.iacr.org/2017/537, latest version 20170616:190106.

12. Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Goutam Paul. Double-block Hash-
then-Sum: A Paradigm for Constructing BBB Secure PRF. IACR Trans. Symmetric
Cryptol., 2018(3):36–92, 2018.

13. Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Kan Yasuda. Encrypt or Decrypt?
To Make a Single-Key Beyond Birthday Secure Nonce-Based MAC. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO I, volume 10991 of LNCS, pages 631–661.
Springer, 2018.

14. Patrick Derbez, Tetsu Iwata, Ling Sun, Siwei Sun, Yosuke Todo, Haoyang Wang, and
Meiqin Wang. Cryptanalysis of AES-PRF and Its Dual. IACR Trans. Symmetric
Cryptol., 2018(2):161–191, 2018.

https://eprint.iacr.org/2013/222
https://eprint.iacr.org/2013/222
http://eprint.iacr.org/2017/537

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 41

15. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key Recovery Attacks on
3-round Even-Mansour, 8-step LED-128, and Full AES2. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT I, volume 8269 of LNCS, pages 337–356. Springer, 2013.

16. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptography: The
Even-Mansour Scheme Revisited. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT, volume 7237 of LNCS, pages 336–354. Springer, 2012.

17. Avijit Dutta and Mridul Nandi. BBB Secure Nonce Based MAC Using Public Permuta-
tions. In Abderrahmane Nitaj and Amr M. Youssef, editors, AFRICACRYPT, volume
12174 of LNCS, pages 172–191. Springer, 2020.

18. Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Permutation Based EDM: An Inverse
Free BBB Secure PRF. IACR Trans. Symmetric Cryptol., 2021(2):39, 2021. To appear.

19. Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Improved Mask-
ing for Tweakable Blockciphers with Applications to Authenticated Encryption. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT I, volume 9665 of LNCS,
pages 263–293. Springer, 2016.

20. Aldo Gunsing and Bart Mennink. The Summation-Truncation Hybrid: Reusing Dis-
carded Bits for Free. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO
I, volume 12170 of LNCS, pages 187–217. Springer, 2020.

21. Chun Guo, Yaobin Shen, Lei Wang, and Dawu Gu. Beyond-birthday secure domain-
preserving PRFs from a single permutation. Des. Codes Cryptogr., 87(6):1297–1322,
2019.

22. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of Lightweight
Hash Functions. In Phillip Rogaway, editor, CRYPTO, volume 6841 of LNCS, pages
222–239. Springer, 2011.

23. Viet Tung Hoang and Stefano Tessaro. Key-Alternating Ciphers and Key-Length Ex-
tension: Exact Bounds and Multi-user Security. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO I, volume 9814 of LNCS, pages 3–32. Springer, 2016.

24. Tetsu Iwata. New Blockcipher Modes of Operation with Beyond the Birthday Bound
Security. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS, pages 310–327.
Springer, 2006.

25. Tetsu Iwata. Tightness of the Security Bound of CENC. In Eli Biham, He-
lena Handschuh, Stefan Lucks, and Vincent Rijmen, editors, Symmetric Cryptogra-
phy, volume 07021 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

26. Tetsu Iwata, Bart Mennink, and Damian Vizár. CENC is Optimally Secure. IACR
Cryptology ePrint Archive, 2016:1087, 2016.

27. Tetsu Iwata and Kazuhiko Minematsu. Stronger Security Variants of GCM-SIV. IACR
Trans. Symmetric Cryptol., 2016(1):134–157, 2016.

28. Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In Antoine Joux, editor, FSE, volume 6733 of LNCS, pages 306–327.
Springer, 2011.

29. Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable Block Ciphers.
In Moti Yung, editor, CRYPTO, volume 2442 of LNCS, pages 31–46. Springer, 2002.

30. David A. McGrew and John Viega. The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In Anne Canteaut and Kapalee Viswanathan, editors,
INDOCRYPT, volume 3348 of LNCS, pages 343–355. Springer, 2004.

31. Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and Its Dual: Towards
Optimal Security Using Mirror Theory. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO, Part III, volume 10403 of LNCS, pages 556–583. Springer, 2017. Full version
at https://eprint.iacr.org/2017/473.

32. Bart Mennink and Samuel Neves. Optimal PRFs from Blockcipher Designs. IACR
Trans. Symmetric Cryptol., 2017(3):228–252, 2017.

33. Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseudoran-
dom Functions. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT,
volume 8441 of LNCS, pages 275–292. Springer, 2014.

34. Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Preneel,
and Ingrid Verbauwhede. Chaskey: An Efficient MAC Algorithm for 32-bit Microcon-
trollers. In Antoine Joux and Amr M. Youssef, editors, SAC, volume 8781 of LNCS,
pages 306–323. Springer, 2014.

https://eprint.iacr.org/2017/473

42 Arghya Bhattacharjee et al.

35. Yusuke Naito. Blockcipher-Based MACs: Beyond the Birthday Bound Without Message
Length. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT III, volume
10626 of LNCS, pages 446–470. Springer, 2017.

36. Mridul Nandi. Mind the Composition: Birthday Bound Attacks on EWCDMD and
SoKAC21. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT I, volume 12105
of LNCS, pages 203–220. Springer, 2020.

37. NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.
Federal Information Processing Standards (FIPS) Publication, 202, 2015.

38. Jacques Patarin. The "Coefficients H" Technique. In Roberto Maria Avanzi, Liam Keli-
her, and Francesco Sica, editors, SAC, volume 5381 of LNCS, pages 328–345. Springer,
2008.

39. Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of Linear Equal-
ities and Linear Non Equalities for Cryptography. IACR Cryptology ePrint Archive,
2010:287, 2010.

40. Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yumiko
Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher v1.1. 29 August 2015.
Second-round submission to the CAESAR competition.

41. Kan Yasuda. The Sum of CBC MACs Is a Secure PRF. In Josef Pieprzyk, editor,
CT-RSA, volume 5985 of LNCS, pages 366–381. Springer, 2010.

42. Kan Yasuda. A New Variant of PMAC: Beyond the Birthday Bound. In Phillip Rogaway,
editor, CRYPTO, volume 6841 of LNCS, pages 596–609. Springer, 2011.

43. Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. 3kf9: Enhancing 3GPP-MAC
beyond the Birthday Bound. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT,
volume 7658 of LNCS, pages 296–312. Springer, 2012.

A Analysis of Bad Transcripts of DS-XORPP

We restate the lemma to aid the reader.

Lemma 7 It holds that

Pr [Θideal ∈ BadT] ≤
22d
(w+1

2

)
qcq2p

22n
+

2d+1w(w + 1)qcq2p

22n
+

2d(w + 1)
(w+1

2

)
qcq2p

22n

+
22dw3q2cqp

22n
+

22d+1w3qcq2p

22n
+

22dw4q2cqp

22n
+

22d+1w4q2cq
2
p

23n
+
wqc

2n
+

(w
2

)
qc

2n
.

Proof. In the following, we study the probabilities of the individual bad events. Before that,
we recall the key-scheduling matrix A as follows:

A =

[
1 2 22 . . . 2w

1 22 24 . . . 22w

]>
.

bad1 This event considers the collision between the input of P corresponding to a con-
struction query whose last d bits is 〈α〉d and the input to P corresponding to a primitive
query whose last d bits is 〈α〉d, and a similar collision corresponding to construction and
primitive query whose last d bits is 〈β〉d. To bound the event, it must hold that

msbn−d(2α ·K0 ⊕ 22α ·K1) = Ii ⊕msbn−d(Ujα) and

msbn−d(2β ·K0 ⊕ 22β ·K1) = Ii ⊕msbn−d(Ukβ) .

with [2α 22α] and [2β 22β] as the (α+1)-th and the (β+1)-th row of A respectively. The
two equations can be seen as

msbn−d
(
A′ ·K

)
= msbn−d

([
2α 22α

2β 22β

]
·
[
K0

K1

])
=

[
Ii ⊕msbn−d(U

j
α)

Ii ⊕msbn−d(Ukβ)

]

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 43

Since all rows of A are pairwise linearly independent, A′ is non-singular. Moreover, K0

and K1 are uniform random variables over {0, 1}n. Thus, we can apply Lemma 3 and the
probability of this event for a fixed choice of indices is 2−2(n−d). Since one can choose α
and β in

(w+1
2

)
ways, we obtain from the union bound over all indices

Pr[bad1] ≤
22d
(w+1

2

)
qcq2p

22n
.

bad2 This event considers the collision between the input of P corresponding to a con-
struction query whose last d bits is 〈0〉d and the input to P corresponding to a primitive
query whose last d bits is 〈0〉d, and the collision between the output of P corresponding to
the same construction query whose last d bits is 〈α〉d and the output of P corresponding to
a primitive query whose last d bits is 〈β〉d for α ∈ [w] and β ∈ [0..w]. For this event, it must
hold that

msbn−d(K0 ⊕K1) = Ii ⊕msbn−d(U
j
0) and

(2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1 = Oiα ⊕ V
j
0 ⊕ V

k
β .

Note that the matrix

A′ =

[
1 1

2α ⊕ 1 22α ⊕ 1

]

is non-singular. Since K0 and K1 are uniform random variables over {0, 1}n, the probability
of this event for a fixed choice of indices is 2d/22n as follows from Lemma 2. Since one can
choose α in w ways and β in w + 1 ways, we obtain from the union bound over all indices

Pr[bad2] ≤
2dw(w + 1)qcq2p

22n
.

bad3 This event considers the collision between the input of P corresponding to a con-
struction query whose last d bits is 〈α〉d and the input to P corresponding to a primitive
query whose last d bits is 〈α〉d, and the collision between the output of P corresponding to
the same construction query whose last d bits is 〈0〉d and the output of P corresponding to
a primitive query whose last d bits is 〈β〉d for α ∈ [w] and β ∈ [0..w]. For this event, it must
hold that

msbn−d(2α ·K0 ⊕ 22α ·K1) = Ii ⊕msbn−d(Ujα) and

(2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1 = Oiα ⊕ V jα ⊕ V kβ .

Note that the matrix

A′ =

[
2α 22α

2α ⊕ 1 22α ⊕ 1

]

is non-singular. Since K0 and K1 are uniform random variables over {0, 1}n, the probability
of this event for a fixed choice of indices is 2d/22n as follows from Lemma 2. Since one can
choose α in w ways and β in w + 1 ways, we obtain from the union bound over all indices

Pr[bad3] ≤
2dw(w + 1)qcq2p

22n
.

44 Arghya Bhattacharjee et al.

bad4 This event considers the collision between the input of P corresponding to a con-
struction query whose last d bits is 〈α〉d and the input to P corresponding to a primitive
query whose last d bits is 〈α〉d, and the collision between the output of P corresponding to
the same construction query whose last d bits is 〈β〉d and the output of P corresponding to
a primitive query whose last d bits is 〈γ〉d for α and β ∈ [w] and γ ∈ [0..w]. For this event,
it must hold that

msbn−d(2α ·K0 ⊕ 22α ·K1) = Ii ⊕msbn−d(Ujα) and

(2α ⊕ 2β) ·K0 ⊕ (22α ⊕ 22β) ·K1 = Oiα ⊕Oiβ ⊕ V
j
α ⊕ V kγ .

Note that the matrix

A′ =

[
2α 22α

2α ⊕ 2β 22α ⊕ 22β

]

is non-singular. Since K0 and K1 are uniform random variables over {0, 1}n, the probability
of this event for a fixed choice of indices is 2d/22n as follows from Lemma 2. Since one can
choose α and β in

(w+1
2

)
ways and γ in w + 1 ways, we obtain from the union bound over

all indices

Pr[bad4] ≤
2d(w + 1)

(w+1
2

)
qcq2p

22n
.

bad5 This event considers the collision between the input of P corresponding to the i-th
construction query whose last d bits is 〈0〉d and to that of the input of corresponding prim-
itive query and the collision between the input of P corresponding to the j-th construction
query whose last d bits is 〈0〉d and to that of the input of corresponding primitive query and
the collision between the output of P corresponding to the i-th construction query whose
last d bits is 〈β〉d and the output of P corresponding to the j-th construction query whose
last d bits is 〈γ〉d for β, γ ∈ [w]. For this event, it must hold that


msbn−d(K0 ⊕K1) = Ii ⊕msbn−d(Uk0),
msbn−d(K0 ⊕K1) = Ij ⊕msbn−d(U l0),
(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V k0 ⊕Oiβ ⊕O

j
γ ⊕ V l0 .

Note that the system of equations above can be rewritten as

{
K0 ⊕K1 = Uk0 ⊕ (Ii‖〈x〉d) = U l0 ⊕ (Ij‖〈y〉d), (E.1)
(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V k0 ⊕Oiβ ⊕O

j
γ ⊕ V l0 ,

where x, y ∈ {0, 1}d. We can easily observe that

Pr[(E.1)] = Pr[Uk0 ⊕ (Ii‖〈x〉d) = U l0 ⊕ (Ij‖〈y〉d)]

· Pr[(E.1) | Uk0 ⊕ (Ii‖〈x〉d) = U l0 ⊕ (Ij‖〈y〉d)]. (27)

Let’s first fix the choice of indices of the two construction queries and the two primitive
queries, and the values of β, γ, x and y. Now in the first case, if the last among four queries
is a backward primitive query (w.l.o.g., suppose it’s V k0 to obtain Uk0), then the probability
of Equation (27) comes out to be 1

2n
. 1
2n

. The first 1
2n

comes from the randomness over Uk0
and the second 1

2n
comes from the randomness over K0 ⊕ K1. And in the second case, if

the last among four queries is a forward positive query (w.l.o.g., suppose it’s Uk0 to obtain
V k0) or a construction query (w.l.o.g., suppose it’s Ii to obtain Oi), then the probability of
Equation (27) comes out to be 1. 1

2n
. The 1

2n
comes from randomness over K0⊕K1. In both

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 45

the cases, Pr[(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V k0 ⊕Oiβ ⊕O
j
γ ⊕ V l0] =

1
2n

. The 1
2n

comes
from randomness over (2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1. Since the matrix

[
1 1

(2β ⊕ 2γ) (22β ⊕ 22γ)

]

is full-rank, the probability of the third equation, conditioned on the first two equations
comes out to be 1

2n
, and as a result, the joint probability of all the three equations corre-

sponding to bad5 comes out to be 1
23n

(in the first case) or 1
22n

(in the second case). In the
first case, one can choose i and j together in

(qc
2

)
ways, and k and l in qp ways each. In the

second case, if the last query is a forward primitive query, then i and j can be chosen in
2
(qc
2

)
ways. But the value of the index corresponding to the last primitive query gets fixed

once one fixes the value of the index of the other primitive query (This can be done in qp
ways). Similarly, if the last query is a construction query, then k and l can be chosen in
q2p ways. But the value of the index corresponding to the last construction query gets fixed
once one fixes the value of the index of the other construction query (This can be done in
qc ways). Moreover, β and γ together can be chosen in w2 ways. Thus, we obtain from the
union bound over all indices and all possible values of x and y,

Pr[bad5] ≤ max

(
22dw2

(qc
2

)
q2p

23n
,
22dw2

(qc
2

)
qp

22n
,
22dw2qcq2p

22n

)

≤
22dw2

(qc
2

)
q2p

23n
+

22dw2
(qc
2

)
qp

22n
+

22dw2qcq2p

22n
.

bad6 This event considers the collision between the input of P corresponding to the i-
th construction query whose last d bits is 〈α〉d and to that of the input of corresponding
primitive query and collision between the input of P corresponding to the j-th construction
query whose last d bits is 〈α〉d and to that of the input of corresponding primitive query
for some α ∈ [w] and the collision between the output of P corresponding to the i-th
construction query whose last d bits is 〈β〉d and the output of P corresponding to the j-th
construction query whose last d bits is 〈γ〉d for β, γ ∈ [0..w] such that α 6= β, α 6= γ. For
this event, it must hold that


msbn−d(2α ·K0 ⊕ 22α ·K1) = Ii ⊕msbn−d(Ukα),
msbn−d(2α ·K0 ⊕ 22α ·K1) = Ij ⊕msbn−d(U lα),
(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V kα ⊕ V lα ⊕Oiα ⊕Oiβ ⊕O

j
α ⊕Ojγ .

Note that the above system of equations can be rewritten as


2α ·K0 ⊕ 22α ·K1 = Ukα ⊕ (Ii‖〈x〉d),
2α ·K0 ⊕ 22α ·K1 = U lα ⊕ (Ij‖〈y〉d),
(2β ⊕ 2γ) ·K0 ⊕ (22β ⊕ 22γ) ·K1 = V kα ⊕ V lα ⊕Oiα ⊕Oiβ ⊕O

j
α ⊕Ojγ ,

where x, y ∈ {0, 1}d. Using the similar reasoning while bounding bad5, we have

Pr[bad6] ≤
22dw3

(qc
2

)
q2p

23n
+

22dw3
(qc
2

)
qp

22n
+

22dw3qcq2p

22n
.

46 Arghya Bhattacharjee et al.

bad7 This event considers the collision between the input of P corresponding to the i-
th construction query whose last d bits is 〈0〉d and to that of the input of corresponding
primitive query and collision between the input of P corresponding to the j-th construction
query whose last d bits is 〈α〉d and to that of the input of corresponding primitive query
for some α ∈ [w] and the collision between the output of P corresponding to the i-th
construction query whose last d bits is 〈β〉d and the output of P corresponding to the j-th
construction query whose last d bits is 〈γ〉d for β ∈ [w] and γ ∈ [0..w] such that α 6= γ. For
this event, it must hold that


msbn−d(K0 ⊕K1) = Ii ⊕msbn−d(Uk0) ,
msbn−d(2α ·K0 ⊕ 22α ·K1) = Ij ⊕msbn−d(U lα) ,
(1⊕ 2α ⊕ 2β ⊕ 2γ) ·K0 ⊕ (1⊕ 22α ⊕ 22β ⊕ 22γ) ·K1

= V k0 ⊕ V lα ⊕Oiβ ⊕O
j
α ⊕Ojγ .

Note that the above system of equations can be rewritten as


K0 ⊕K1 = Uk0 ⊕ (Ii‖〈x〉d) ,
2α ·K0 ⊕ 22α ·K1 = U lα ⊕ (Ij‖〈y〉d) ,
(1⊕ 2α ⊕ 2β ⊕ 2γ) ·K0 ⊕ (1⊕ 22α ⊕ 22β ⊕ 22γ) ·K1

= V k0 ⊕ V lα ⊕Oiβ ⊕O
j
α ⊕Ojγ ,

where x, y ∈ {0, 1}d. Let’s first fix the choice of indices of the two construction queries and
the two primitive queries, and the values of α, β, γ, x and y. The rank of the first two
equations over K0 and K1 is 2 and hence the joint probability of the first two equations
comes out to be 1

22n
. Once we bound the probability of the first two equations, K0 and

K1 gets fixed. The probability of the third equation depends on the randomness of different
variables depending on the last query.

1. If the last among four queries is the construction query to obtain Oi from Ii, then the
randomness comes from Oiβ , and the probability of the third equation comes out to be
1
2n

.
2. If the last among four queries is the construction query to obtain Oj from Ij , then the

randomness comes from Ojα ⊕Ojγ , and the probability of the third equation comes out
to be 1

2n
.

3. If the last among four queries is the forward primitive query to obtain V k0 from Uk0 ,
then the randomness comes from V k0 , and the probability of the third equation comes
out to be 1

2n
.

4. If the last among four queries is the forward primitive query to obtain V lα from U lα, then
the randomness comes from V lα, and the probability of the third equation comes out to
be 1

2n
.

5. If the last among four queries is the backward primitive query to obtain Uk0 from V k0 ,
then the probability of the third equation comes out to be 1.

6. If the last among four queries is the backward primitive query to obtain U lα from V lα,
then the probability of the third equation comes out to be 1.

Now, one can choose i and j together in 2
(qc
2

)
ways. If the last query is a construction query

or a forward primitive query, then one can choose k and l in qp ways each. but if the last
query is a backward primitive query, then the value of the index of the last primitive query
gets fixed once one fixes the value of the index of the other primitive query (This can be
done in qp ways). Moreover, β, γ can be chosen in w2 ways and α can be chosen in w ways.
Thus, we obtain from the union bound over all indices and all possible values of x and y,

Pr[bad7] ≤ max

(
22dw3

(qc
2

)
q2p

23n
,
22dw3

(qc
2

)
qp

22n

)
≤

22dw3
(qc
2

)
q2p

23n
+

22dw3
(qc
2

)
qp

22n
.

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 47

bad8 This event considers the collision between the input of P corresponding to the i-
th construction query whose last d bits is 〈α〉d and to that of the input of corresponding
primitive query for some α ∈ [w] and collision between the input of P corresponding to the
j-th construction query whose last d bits is 〈β〉d and to that of the input of corresponding
primitive query for some β ∈ [w] and the collision between the output of P corresponding
to the i-th construction query whose last d bits is 〈γ〉d and the output of P corresponding
to the j-th construction query whose last d bits is 〈ρ〉d for β ∈ [w] and γ, ρ ∈ [0..w] such
that α 6= γ and ρ 6= β. For this event, it must hold that


msbn−d(2α ·K0 ⊕ 22α ·K1) = Ii ⊕msbn−d(Ukα) ,
msbn−d(2β ·K0 ⊕ 22β ·K1) = Ij ⊕msbn−d(U lβ) ,
(2ρ ⊕ 2α ⊕ 2β ⊕ 2γ) ·K0 ⊕ (22ρ ⊕ 22α ⊕ 22β ⊕ 22γ) ·K1

= V kα ⊕ V lβ ⊕O
i
α ⊕Oiγ ⊕O

j
β ⊕O

j
ρ .

Note that the above system of equations can be rewritten as


2α ·K0 ⊕ 22α ·K1 = Ukα ⊕ (Ii‖〈x〉d) ,
2β ·K0 ⊕ 22β ·K1 = U lβ ⊕ (Ij‖〈y〉d) ,
(2ρ ⊕ 2α ⊕ 2β ⊕ 2γ) ·K0 ⊕ (22ρ ⊕ 22α ⊕ 22β ⊕ 22γ) ·K1

= V kα ⊕ V lβ ⊕O
i
α ⊕Oiγ ⊕O

j
β ⊕O

j
ρ ,

where x, y ∈ {0, 1}d. Using the similar reasoning while bounding bad7, we have

Pr[bad8] ≤
22dw4

(qc
2

)
q2p

23n
+

22dw4
(qc
2

)
qp

22n
.

bad9 To bound the event, it must hold that

(2α + 1) ·K0 ⊕ (22α + 1) ·K1 = Oiα .

Since K0 and K1 are uniform random variables over {0, 1}n, the probability of this event
for a fixed choice of indices is 2n. Since one can choose α in at most w ways and i in at most
qc ways, we obtain from the union bound over all indices

Pr[bad9] ≤
wqc

2n
.

bad10 To bound the event, it must hold that

(2α + 2β) ·K0 ⊕ (22α + 22β) ·K1 = Oiα +Oiβ .

Since K0 and K1 are uniform random variables over {0, 1}n, the probability of this event
for a fixed choice of indices is 2n. Since one can choose α and β in at most

(w
2

)
ways and i

in at most qc ways, we obtain from the union bound over all indices

Pr[bad10] ≤
(w
2

)
qc

2n
.

The bound in Lemma 7 follows from the sum of probabilities of the individual bad events.

48 Arghya Bhattacharjee et al.

B Analysis of Good Transcripts of DS-XORPP

It remains to consider the interpolation probability of good attainable transcripts. Again,
we restate the lemma to aid the reader.

Lemma 8 Let v def
= w + 1 and qc + v(qp + qc) ≤ 2n/2(w + 1). For any good transcript

τ = τc ∪ τ0 ∪ . . . τw ∪ {K0,K1}, it holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
≥ 1−

4v4q3c + 4v4q2cqp + v4qcq2p

22n
.

Proof. Let Allreal(τ) denote the set of all oracles in the real world, and Allideal(τ) the set
of all oracles in the ideal world. Let Compreal(τ) denote the fraction of oracles in the real
world that are compatible with τ and Compideal(τ) the corresponding fraction in the ideal
world. It holds that

Pr[Θreal = τ]

Pr[Θideal = τ]
=
|Compreal(τ)| · |Allideal(τ)|
|Compideal(τ)| · |Allreal(τ)|

.

We can easily bound three out of four terms:

|Allreal(τ)| = (2n)2 · (2n)!

since there exist (2n)2 keys and 2n! possible permutations. The same argument holds in the
ideal world, i.e.,

|Allideal(τ)| = (2n)2 · (2n)! · (2wn)2
n
,

combined with (2wn)2
n
random functions for the answers to the construction queries. More-

over,

|Compideal(τ)| = (2wn)2
n−qc · (2n − (w + 1) · qp)!

compatible oracles exist in the ideal world, where (2wn)2
n−qc are the random function

oracles that are compatible with the construction query transcripts and (2n − (w + 1)qp)!
permutation oracles that are compatible with primitive query transcripts. Now, it remains
to determine |Compreal(τ)|. Note that

|Compreal(τ)| =

∣∣∣∣∣
{
P : DS-XORPP[P,w]K 7→ τc ∧

w∧
α=0

P 7→ τα

}∣∣∣∣∣ .
For α ∈ [0..w], let Domα denotes the set {U iα : (U iα, V

i
α) ∈ τα} and Ranα denotes the set

{V iα : (U iα, V
i
α) ∈ τα}, then

∧w
α=0 P 7→ τα equivalently means that for each α ∈ [0..w], P

maps elements from Domα to Ranα. Now, in order to compute |Compreal(τ)|, we regroup the
queries from τc, τ0, . . . , τw to τnew

c , τnew
0 , . . . , τnew

w . Using the similar regrouping technique,
the new transcript sets are initialized by their corresponding old parts, and reordered as
follows:

1. if ∃i ∈ [qc], j ∈ [qp], such that Û i0 = Uj0 , then

– τnew
c ← τnew

c \ {(Ii,Oi)} and

– for all α ∈ [w], τnew
α ← τnew

α ∪ {(Û iα, V
j
0 ⊕Oiα ⊕ (2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1)}.

2. if ∃i ∈ [qc], j ∈ [qp], and α ∈ [w] such that Û iα = Ujα, then

– τnew
c ← τnew

c \ {(Ii,Oi)} and

– τnew
0 ← τnew

0 ∪ {(Û i0, V
j
α ⊕Oiα ⊕ (2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1)} and

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 49

– for all β ∈ [w] with β 6= α, τnew
β ← τnew

β ∪ {(Û iβ , V
j
α ⊕ Oiα ⊕ Oiβ ⊕ (2α ⊕ 2β) ·K0 ⊕

(22α ⊕ 22β) ·K1)}.

Note that the addition of elements in Steps (1) and (2) is sound. For Step (1),

– since Û i0 collides with Uj0 , Û
i
α cannot collide with any Ukα for α ∈ [w] due to bad1.

– Similarly, (V j0 ⊕ Oiα ⊕ (2α ⊕ 1) · K0 ⊕ (22α ⊕ 1) · K1) cannot collide with any V kβ for
β ∈ [0..w] due to bad2.

– Moroever, (V j0 ⊕Oiα ⊕ (2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1) is distinct due to bad5 and bad7.

For Step (2),

– since Û iα collides with Ujα for α ∈ [w], neither Û i0 can collide with any Uk0 nor Û iβ can
collide with any Ukβ for β ∈ [w] with β 6= α due to bad1.

– Similarly, (V jα ⊕Oiα⊕ (2α⊕ 1) ·K0⊕ (22α⊕ 1) ·K1) cannot collide with any V kβ for any
β ∈ [0..w] due to bad3 and

– (V jα ⊕ Oiα ⊕ Oiβ ⊕ (2α ⊕ 2β) · K0 ⊕ (22α ⊕ 22β) · K1) cannot collide with V kγ for any
γ ∈ [0..w] due to bad4.

– Moroever, (V jα ⊕Oiα ⊕ (2α ⊕ 1) ·K0 ⊕ (22α ⊕ 1) ·K1) is distinct due to bad6 and bad8.

Further note that such an addition of elements (x, y) in the transcript τnew
α for α ∈ [0..w] also

updates the set Domα ← Domα ∪{x} and Ranα ← Ranα ∪{y}. Now, given qc constructions
queries and q′p = (w+1)qp primitive queries to the permutation P in the original transcript,
let the numbers of queries moved from τc be r which includes total sα elements into the
primitive partial transcripts τα for α ∈ [0..w]. Thus, the number of queries in the new
construction transcript is denoted by q′ = qc−r. Moreover, we define q′′α = qp+sα, for all 0 ≤
α ≤ w and for each α ∈ [0..w], sα ≤ qc. The w+1 sets of transcripts, (τnew

0 , τnew
1 , . . . , τnew

w)
define exactly (q′′0 , q

′′
1 , . . . , q

′′
w) input-output tuples for P . What remains is the counting of

the number of permutations P that satisfy these q′′0 + . . . + q′′w tuples, and that could give
the remaining transcript τnew

c , i.e., we are interested to count the number of permutation P
that satisfies the following system of equations:

Ei =


P (Û i0)⊕ P (Û i1) = Oi1 ⊕ 2 ·K0 ⊕ 22 ·K1 ⊕K0 ⊕K1

P (Û i0)⊕ P (Û i2) = Oi2 ⊕ 22 ·K0 ⊕ 24 ·K1 ⊕K0 ⊕K1

...
...

...
...

P (Û i0)⊕ P (Û iw) = Oiw ⊕ 2w ·K0 ⊕ 22w ·K1 ⊕K0 ⊕K1,

where i ∈ [q′], U iα = Ii ⊕msbn−d(2α ·K0 ⊕ 22α ·K1) ‖ 〈α〉d for all {(Ii,Oi)} ∈ τnew
c , along

with the fact that for each α ∈ [0..w], P maps Dα to Rα, where Dα = {0, 1}n \ Domα and
Rα = {0, 1}n \ Ranα. Since τ is a good transcript, it follows that the constants in the right
hand side of each equation of Ei, i.e., Oiα ⊕ 2α ·K0 ⊕ 22α ·K1 ⊕K0 ⊕K1, is non-zero, for
α ∈ [w] (due to bad9). Similarly, due to bad10, we have all the constants in the right hand
side of equations Ei distinct from each other. Note that,

Domα
def
= {U iα : (U iα, V

i
α) ∈ τnew

α }

Ranα
def
= {V iα : (U iα, V

i
α) ∈ τnew

α }.

It is easy to see that |Dα| = |Rα| = (2n − qp − sα). Note that, for each α ∈ [0..w],
V out
α = {0, 1}n \ Rα is the set of range values of P that are prohibited (basically these are

the V values in τα). Now, for j = [0..q′ − 1], let

λj+1
def
=
∣∣∣{(P1

0, . . . ,P
j+1
0 , . . . ,P1

w, . . . ,P
j+1
w)

}∣∣∣ (28)

be the number of solutions that satisfy

50 Arghya Bhattacharjee et al.

(1) the system of equations E1 ∪ E2 ∪ . . . ∪ Ej+1.

(2) For all α ∈ [0..w], it holds that Pj+1
α 6∈ {P1

α, . . . ,P
j
α} ∪ Ran0 ∪ Ran1 ∪ . . . ∪ Ranw .

Then, the goal is to define a recursive expression for λj+1 from λj such that a lower bound
can be found for the expression λj+1/λj . It holds that

|Compreal(τ)| = λq′ ·
(
2n −

(
w∑
α=0

q′′α + (w + 1)q′

))
!

We obtain

Pr[Θreal = τ]

Pr[Θideal = τ]
=
λq′ · (2n − (

∑w
α=0 q

′′
α + (w + 1)q′))!

(2n − (w + 1)qp)!
· (2wn)qc . (29)

Let B(1) denote the set of solutions that comply with only Condition (1) without considering
Conditions (2.0) through (2.w). Moreover, let B(2.ι:i) denote the set of solutions compatible
with Condition (1), but not with (2.ι : i), for i = 1, . . . , j+

∑w
α=0 |Ranα|. From the inclusion-

exclusion principle, it follows that λj+1 can be written as

∣∣B(1)∣∣−
∣∣∣∣∣∣
(j+|Ran0|+...+|Ranw|⋃

i=1

B(2.0:i)
)
∪ · · · ∪

(j+|Ran0|+...+|Ranw|⋃
i=1

B(2.w:i)

)∣∣∣∣∣∣
≥
∣∣B(1)∣∣−

∣∣∣∣∣∣
j+|Ran0|+...+|Ranw|∑

i=1

|B(2.0:i)|

∣∣∣∣∣∣− · · · −
∣∣∣∣∣∣
j+|Ranw|+...+|Ranw|∑

i=1

|B(2.w:i)|

∣∣∣∣∣∣
≥ 2n · λj −

j+|Ran0|+...+|Ranw|∑
i=1

λj − · · · −
j+|Ran0|+...+|Ranw|∑

i=1

λj .

So, it follows that

λj+1 ≥ 2n · λj −
(
j +

w∑
α=0

q′′α

)
· λj − . . .−

(
j +

w∑
α=0

q′′α

)
· λj

where recall that q′′α = qp + sα for α ∈ [0..w]. Therefore,

λj+1

λj
≥ 2n − (w + 1)j − (w + 1)

(
w∑
α=0

q′′α

)
.

with λ0 = 1. Let s = s0 + . . .+ sw. It follows from Equation (29) that

(29) =
s−1∏
t=0

2n

2n − (w + 1)qp − t
·
q′−1∏
j=0

λj+1

λj
·

(2n)w∏w
α=0(2

n −
∑w
k=0 q

′′
k − jq′ − j)

≥
q′−1∏
j=0

(
(2n − (w + 1)j − (w + 1)

∑w
α=0 q

′′
α)∏w

α=0(2
n −

∑w
k=0 q

′′
k − jq′ − j)

)
2nw . (30)

We use qsum
def
=
∑w
k=0 q

′′
k and define p = (q′+ qsum)/2n. Note that, 0 ≤ p ≤ 1 and therefore

by applying Lemma 4 on Eqn. (30), we have

(30) ≥
q′−1∏
j=0

(
(2n)w+1 − (w + 1) · p · 2n(w+1)

(2n − p · 2n))w+1

)
(31)

CENCPP∗ – Beyond-birthday-secure Encryption from Public Permutations 51

≥
q′−1∏
j=0

(
1− (w + 1)p

1− (w + 1)p+
(w+1

2

)
p2

)
(32)

=

q′−1∏
j=0

(
1−

(w+1
2

)
p2

1− (w + 1)p+
(w+1

2

)
p2

)

=

q′−1∏
j=0

(
1−

(w+1
2

)
(q′ + qsum)2

22n − (w + 1)2n(q′ + qsum) +
(w+1

2

)
(q′ + qsum)2

)

≥
q′−1∏
j=0

(
1−

2
(w+1

2

)
(q′ + qsum)2

22n

)
(33)

≥
(
1−

(w + 1)2q′(q′ + qsum)2

22n

)
(34)

(1)

≥
(
1−

v2(q3c + 2q2cv(qc + qp) + qcv2(qc + qp)2)

22n

)
(35)

≥
(
1−

4v4q3c + 4v4q2cqp + v4qcq2p

22n

)
. (36)

Note that, (w+1)2n(q′+ qsum)−
(w+1

2

)
(q′+ qsum)2 ≤ 22n/2 as q′+ qsum = q′+

∑w
α=0 q

′′
α =

q′ + (w + 1)qp +
∑w
α=0 sα and for each α ∈ [0..w], sα ≤ qc and q′ ≤ qc, it follows that

qsum ≤ (w + 1)(qp + qc), and thereby q′ + qsum ≤ qc + (w + 1)(qp + qc) ≤ 2n/2(w + 1). (1)

follows due to v def
= w+1 and q′ ≤ qc and qsum ≤ v(qp+ qc). which concludes our proof.

	Introduction
	Preliminaries
	The CENCPP* Mode
	Birthday-bound Distinguisher on CENCPP* with Weak Key Scheduling
	Security Analysis of CENCPP*
	Domain-separated Variants
	Distinguishers on DS-SoEM and DS-XORPP
	Security Analysis of DS-CENCPP and DS-SoEM
	Conclusion
	Analysis of Bad Transcripts of DS-XORPP
	Analysis of Good Transcripts of DS-XORPP

