
Efficient and Fast Hardware Architectures for
SIKE Round 2 on FPGA

Rami Elkhatib1, Reza Azarderakhsh1, and Mehran Mozaffari-Kermani2

1Florida Atlantic University, Boca Raton, FL
{relkhatib2015,razarderakhsh}@fau.edu.

2University of South Florida, Tampa, FL mehran2@usf.edu.

Abstract. New primes were proposed for Supersingular Isogeny Key
Encapsulation (SIKE) in NIST standardization process of Round 2 af-
ter further cryptanalysis research showed that the security levels of the
initial primes chosen were over-estimated [1,3]. In this paper, we develop
a highly optimized Fp Montgomery multiplication algorithm and archi-
tecture that further utilizes the special form of SIKE prime compared to
previous implementations available in the literature. We then implement
SIKE for all Round 2 NIST security levels (SIKEp434 for NIST security
level 1, SIKEp503 for NIST security level 2, SIKEp610 for NIST secu-
rity level 3, and SIKEp751 for NIST security level 5) on Xilinx Virtex
7 using the proposed multiplier. Our best implementation (NIST secu-
rity level 1) runs 29% faster and occupies 30% less hardware resources in
comparison to the leading counterpart available in the literature [13] and
implementations for other security levels achieved similar improvement.

Keywords: hardware architectures, isogeny-based cryptography, Mont-
gomery multiplication, post-quantum cryptography, SIKE.

1 Introduction

Post-quantum cryptography (PQC) centers on identifying and understanding
new mathematical techniques upon which cryptography can be built that are
both resistant against quantum attacks and feasible to be implemented on to-
day’s widely used computerized devices. In a seminal paper [23], Peter Shor
showed that both RSA and ECC would be easily broken by employing a quan-
tum computer. The five main classes of quantum-hard problems are as follows
[25]: code-based cryptography, lattice-based cryptography, hash-based cryptog-
raphy, multivariate cryptography, and isogeny-based cryptography. The second
round of the NIST PQC standardization process features a greater emphasis on
evaluating the performance of candidates. NIST has anticipated that the second
round will conclude by June 2020 and the third round will begin after. During
the two final rounds, the PQC candidates will be scrutinized for their security
and performance.

When considering quantum-safe alternatives to ECC, isogeny-based cryp-
tography appears as an attractive replacement. The security of isogeny-based



Table 1. SIKE primes for post-quantum cryptography based on NIST Round 2 stan-
dardization process [3]

Security
Prime Form

Public Key Shared Key
Level Size (Bytes) Size (Bits)

NIST level 1 p434 = 22163137 − 1 330 128
NIST level 2 p503 = 22503159 − 1 378 192
NIST level 3 p610 = 23053192 − 1 462 192
NIST level 5 p751 = 23723239 − 1 564 256

cryptosystems such as Supersingular Isogeny Key Encapsulation (SIKE) scheme
is based on the problem of computing isogenies between elliptic curves. Improv-
ing the performance of isogeny-based cryptography is critical to ensuring that
it survives into subsequent rounds of standardization. Notably, the supersingu-
lar isogeny key encapsulation (SIKE) [3] scheme features the smallest public
key sizes [4,7] of known quantum-safe public key exchange algorithms. Although
isogeny-based cryptography is among the newest PQC candidates, SIKE offers
a conservative security analysis, no possibility of decryption errors, and similar
computations to well-established ECC. Small public key sizes are extremely ad-
vantageous in many different scenarios as it reduces the communication overhead
and storage necessary for secure communications. As an example, low commu-
nication overhead is critical to establishing and maintaining secure communica-
tions over long distances or in high interference environments. The smallest set
of SIKE parameters with key compression features keys of only 196 bytes, which
is only around three times larger than 57-byte NIST X448 or 67-byte NIST P-
521 public keys. SIKE offers all recommended security levels named SIKEp434,
SIKEp503, SIKEp610, and SIKEp751 for NIST level-1, -2, -3, -5, respectively.
Unfortunately, the main drawback of SIKE is that it is a few orders of magnitude
slower than ECC or other PQC schemes. However, recently researchers were able
to improve the computation time of SIKE by over an order of magnitude [15,16],
reducing the total time to under 20 milliseconds while adding protection against
active attacks. In this work, we show that there is still room for improvement
of intensive lower level computations. This paper is another step forward in this
direction which reduces the computation time to less than 10 milliseconds and
cuts the occupied number of hardware resources considerably when implemented
in FPGA. The goal of this paper is to develop efficient and high-performance
hardware architectures for SIKE. The contributions of this paper is itemized in
the following:

Our contributions:

– We develop a highly optimized Montgomery multiplication algorithm and
architecture that further utilizes the special form of SIKE prime. We ex-
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perimented various configurations for our high-radix design to find the best
choice for area-time trade-offs.

– We implement SIKE for NIST Round 2 primes; SIKEp434, SIKEp503, SIKEp610,
and SIKEp751 with the developed Montgomery multiplier architecture.

– We evaluate time and area performance of the proposed hardware architec-
ture benchmarked on an FPGA and compare with counterparts.

The organization of the paper is as follows. In Section 2, we give a literature
review of SIKE. In Section 3, we discuss the algorithm and architecture of our
highly optimized Montgomery multiplication. In Section 4, we propose our SIKE
architecture and compare our results with counterparts available in the litera-
ture. Finally, in Section 5, we give our final thoughts and discuss future work.

2 Preliminaries: SIKE Protocol

In this section, we provide an overview of the SIKE protocol. SIKE mainly
requires two operations: Isogeny and Shake256. The latter is part of the NIST
standardized hashing algorithm SHA-3 [24]. Isogeny operations are done over
Montgomery curve [8,19] using the efficient projective isogeny formulas [3] for
better performance.

2.1 SIKE Operations

A prime p is chosen of the form 2eA3eB − 1 where 2eA ≈ 3eB (Check Table 1
for standardized primes). For public parameters, we have a starting curve E0,
two points PA and QA of order 2eA and two points PB and QB of order 3eB

(standardized parameters are in SIKE specs [3]). Each pair of points with the
same order must be chosen such that there is Weil pairing so that P + [s]Q also
has an order of `e (the order of P and Q) for any s < `e.

Key Generation: In key generation, Bob chooses a random secret key sB ∈
[0, 3eB ) and computes the isogenous elliptic curve EBusing the isogeny φB with
kernel 〈PB + [sB ]QB〉. The elliptic curve EB along with φB(PA) and φB(QA)
make up Bob’s public key pkB .

Key Encapsulation: In key encapsulation, Alice chooses a secret message
m ∈ [0, 2ss_size) (where ss_size is the shared key size in Table 1) and hashes
{m, pkB} using Shake256 to generate her secret key r of size 2eA bits. She
can then compute her emphemeral public key {EA,φA(PB),φA(QB)} using the
isogeny φA : E0 → EB

∼= E0/ 〈PA + [r]QA〉. She also generates a key to encrypt
the message m by first computing the elliptic curve EAB under the isogeny
φAB : EB → EAB

∼= EB/ 〈φB(PA) + [r]φB(QA)〉. Then she computes the j-
invariant j(EAB) and hashes it with Shake256 to the same size of the message.
She encrypts the message m by XORing it with the key to generate c. She shares
the ciphertext ct = {pkA, c} publicly and, finally, generates the shared secret
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ssA of size ss_size by hashing {m, ct} with Shake256.

Key Decapsulation: In key decapsulation, Bob first computes the key used
to encrypt c by first computing the elliptic curve EBA under the isogeny φBA :
EA → EBA

∼= EA/ 〈φA(PB) + [sB ]φA(QA)〉 using Alice’s public key pkA. If he
receives Alice’s correct ciphertext, EBA should be isomorphic to EAB , a.k.a.
equal j-invariant. Therefore, he can compute the key by hashing the j-invariant
j(EBA) with Shake256. The message m′ can then be recovered by XORing c with
the key. He can recover Alice’s secret key r′ by hashing {m′, pkB} and then
generate Alice’s public key pk′A = {E′A, φ′A(PB), φ

′
A(QB)} under the isogeny

φ′A = E0 → E′A
∼= E0/ 〈PA + [r′]QA〉. He checks that Alice’s public key he com-

puted is equal to Alice’s actual public key. If they are equal, he outputs the
correct shared secret ssB by hashing {m, pkA, c}.
Isogeny Computations: The pyramid in Fig. 1 shows the breakdown of isogeny
computations. To compute the Isogeny E/ 〈P + [s]Q〉, the kernel point R =
P + [s]Q needs to be computed first using a three point ladder algorithm. The
fastest algorithm is in [11] which requires one point addition and one point dou-
bling per bit of the scalar s. For the large degree isogeny computation E/ 〈R〉,
we break it down into point multiplications and small isogeny evaluations and
computations following a specific strategy. When the kernel is of order 3eB , we
perform point tripling and 3-isogenies. When the kernel is of order 2eA , we per-
form point quadrupling and 4-isogenies as their formulas are more efficient than
point doubling and 2-isogenies. Note that for SIKEp610, since eA is odd, one
2-isogeny is performed at the beginning. The elliptic curve group operations are
built using Fp2 arithmetic which in turn is built using Fp arithmetic.

3 Proposed Efficient Lower Level Arithmetic Operations

In this section, we are going to discuss our low level arithmetic operations. For the
modular adder, we reused the modular adder in the leading hardware candidate
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Table 2. Optimal modular adder parameters

Prime a± b a± b∓ p

SIKEp434 L = 23, H = 3 L = 21, H = 3

SIKEp503 L = 20, H = 3 L = 26, H = 3

SIKEp610 L = 27, H = 3 L = 20, H = 3

SIKEp751 L = 25, H = 3 L = 20, H = 3

of SIKE [13], which utilizes the adder in [22], with more efficient parameters.
The parameter L indicates length of carry chain before going to the next level
compaction while the parameter H indicates the maximum level of compaction.
It is near impossible to obtain the optimal parameters for the adder as place and
route greatly changes for different parameters. However, going beyond H = 3
will add a significant routing delay and roughly L =

√
p is a good starting point

to test. We tested all L around √p for H = 1, 2, 3 for a ± b first and then for
a± b∓p. Table 2 shows optimal parameters for the modular adder we are using.

For the modular multiplication (a×b mod p), Montgomery multiplication is
a fast modular multiplication algorithm that transforms the expensive division
by p into a cheap division by power of 2 which is a simple shift right in software or
hardware. Word-by-word Montgomery multiplication algorithms were proposed
in [12,21]. Some hardware implementations can be found in [13,10,20,2,5,6,9].

Finely Integrated Operand Scanning (FIOS) Montgomery multiplication al-
gorithm is a word-by-word algorithm first proposed in [12]. The original imple-
mentation was suitable for software. In [10], the FIOS algorithm was re-purposed
for hardware implementation suitable for SIKE primes. We had two issues using
that implementation directly in SIKE. The first issue is that it was not fully
interleaved (a.k.a unused blocks in the multiplier unit can’t be used before the
multiplication is complete). Since SIKE has a lot of modular multiplication com-
putation that can be parallelized, the extra cycles from non-interleaving slows
down SIKE. The issue can be easily resolved by pushing each chunk of the mul-
tiplicand (b for example) into the corresponding processing element as soon as
it is needed instead of pushing all the chunks in one go. This technique will have
no impact on the total number of cycles. The second issue is that when plugged
in SIKE, the operating frequency is around 200MHz. This frequency makes the
implementation non-competitive.

3.1 Proposed Montgomery Multiplication Algorithm

We further optimized the Montgomery multiplication algorithm in [10] to min-
imize the number of operations in the critical path and the total number of
operations used specifically for SIKE primes. Our optimized algorithm is pro-
vided in Algorithm 1. The algorithm performs the following s (number of words)
times: an initial step, s− 1 multiplication-reduction steps and a final step.
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Algorithm 1: Optimized Montgomery Multiplication for SIKE Primes
Input : p = 2eA · 3eB − 1 < 2K , R = 2K , w, s, K = w · s, sA = b2eA/wc,

a, b < 2p− 1
Output: MontMult(a, b)

1 T ← 0
2 for i← 0 to s− 1 do
3 (C, S)← T [0] + a[i] · b[0]
4 m← S
5 for j ← 1 to sA − 1 do
6 (C, S)← T [j] + a[i] · b[j] + C
7 T [j − 1]← S

8 U [sA]← m+m · p[sA]
9 for j ← sA + 1 to s− 1 do

10 U [j]← m · p[j]
11 for j ← sA to s− 1 do
12 (C, S)← T [j] + U [j] + a[i] · b[j] + C
13 T [j − 1]← S

14 if p < 2K − 2 then
15 (C, S)← C
16 T [s− 1]← S

17 else
18 (C, S)← T [s] + C
19 T [s− 1]← S
20 T [s]← C

21 return T

PE Initial

sA-Mult

sB-Red0

sB-Red

sB-Mult

PE Final

The initial step begins by adding the first result chunk T [0] with a[i]× p[0].
The least significant word S is used to compute the quotient m and the carry C
is propagated to the first multiplication-reduction step. Because of the special
form of SIKE primes where p[0] is all 1s for any word w < eA, p′ = −p−1
mod 2w = 1. This leads to m = S · p′ mod 2w = S. Finally, a second carry Cr

is propagated to the first multiplication-reduction step. (Cr, S) = S +m · p[0] =
m+m · p[0] = (m, 0) =⇒ Cr = m. Our first change here is to keep the carries
separate instead of merging them together by adding them.

Each of the multiplication-reduction steps consists of addition of current
result chunk T [j], two parallel multiplications (a[i] · b[j] and m · p[j]), and the
carry from the previous step. The least significant word is stored in the previous
result chunk T [j−1] and the carry is propagated to the next step. Our approach
was to split the multiplication-reductions steps into two parts. In the first part
where 1 ≤ j < sA = b2eA/wc (sA-Mult), we notice that all the bits of p[j] are
1. The reduction operation m × p[j] can be skipped completely as (Cr, S) =
Cr + m × p[j] = (m, 0). Therefore, T [j − 1] is independent of the reduction
operation and we are always propagating m to the next step. In the second part
where sA ≤ j < s (sB-Mult and sB-Red), all operations of the multiplication-
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Fig. 2. Proposed Montgomery multiplication architecture.

reduction step are performed. In the first reduction operation (sB-Red0), we
add the carry Cr = m to the reduction operation m× p[sA] which will be added
to the first multiplication operation in sB-Mult and merged with the carry C
in subsequent steps. This means that in subsequent reduction operations only
m × p[j] is performed without adding Cr. Note that the carry C is 1 bit larger
(w + 1 bits total) after the merging.

In the final step, the carry C of the last multiplication-reduction step is
pushed into the final result chunk T [s− 1]. If the radix R = 2K = 2s·w is chosen
such that p < 2K−2, then C < 2w can fit in the result chunk. Otherwise, if
p = 2K−1, then an additional 1-bit register T [s] is used to process the extra bit
of C.
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Table 3. Breakdown of our proposed Montgomery multiplication architecture compared
to previous design (Dual Multiplier).

Block
Total Block Critical Arithmetic Total Arithmetic

Blocks Operation Path Operation Operations

El Khatib et al. [10] twice

PE initial 1 T [0] + a[i] · b[0] Mw + A2w Mw + A2w Mw + A2w

Mult-Red s− 1 T [i] + a[i] · b[j] + m · p[j] + CMw + 2A2w 2Mw + 3A2w (2s − 2)Mw + (3s − 3)A2w

PE final 1 C 0 0 0

Full design - - Mw + 2A2w - (2s − 1)Mw + (3s − 2)A2w

Proposed Design

PE initial 1 T [0] + a[i] · b[0] Mw + A2w Mw + A2w Mw + A2w

sA-Red sA − 2 C 0 0 0

sA-Mult sA − 1 T [i] + a[i] · b[j] + C Mw + A2w Mw + 2A2w (sA − 1)Mw + (2sA − 2)A2w

sB-Red0 1 m + m · p[j] Mw + A2w Mw + A2w Mw + A2w

sB-Red sB − 1 m · p[j] Mw Mw (sB − 1)Mw

sB-Mult sB T [i] + U[j] + a[i] · b[j] + C Mw + A2w Mw + 3A2w (sB)Mw + (3sB)A2w

PE final 1 C 0 0 0

Full design - - Mw + A2w - (s + sB)MW + (2s + sB)A2w

Note: sB = s− sA

The changes made to the algorithm cut sA − 1 multiplications and sA − 2
additions. Furthermore, sB-Red operations can be computed ahead of time which
will reduce the critical path delay in our architecture.

3.2 Proposed Architecture for Montgomery Multiplication

Fig. 2 shows our proposed architecture. Our design can perform two multipli-
cations in parallel and each block in our design is pipelined and performs one
operation in the algorithm. The first block PE initial computes the first mul-
tiplication carry C and the quotient m, which is also the reduction carry Cr

for Montgomery multiplication with SIKE primes. m is pushed to the reduc-
tion path (sA-Red→ sB-Red0→ sB-Red) where the reduction operations in the
algorithm are performed. The first multiplication carry C is pushed to the multi-
plication path (sA-Mult→ sB-Mult) where the multiplication operations in the
algorithm are performed and the result chunks are collected. Finally, PE final
receives the final carry from the multiplication path and is used to process the
final result chunk. Inside the main path (PE initial→Multiplication path→PE
final), carry C is propagated forward while S is propagated backward as S is
stored in previous result chunk T [j − 1] in the algorithm.

a1 and a2, the first operands for the dual multiplier, are pushed serially in
odd and even cycles, respectively, into PE initial and then propagated to the next
block in the multiplication path. The second operands for the dual multiplier,
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Table 4. DSP breakdown of our proposed Montgomery multiplication architecture
(Dual Multiplier)

Block DSP 1 DSP 2 Total DSPs

PE initial T [0] + a[i]× b[0] - 1

sA-Red - - -

sA-Mult a[i]× b[j] DSP1 + T [i] + C 2(sA − 1)

sB-Red0 m + m · p[j] - 1

sB-Red m · p[j] - sB − 1

sB-Mult U [j] + a[i]× b[j] DSP1 + T [i] + C 2sB

PE final - - 0

Full design - - 2s + sB − 1

b1 and b2, are pushed directly to their respective block. However, to achieve
interleaving and increase throughput, b1 and b2 are pushed in the first s cycles
with one cycle delay for the next word. On odd cycles, the odd blocks (1, 3, 5, . . .)
compute chunks for the first pair of operands (a1and b1) while the even blocks
(2, 4, 6, . . .) compute chunks for the second pair of operands (a2 and b2). On
even cycles, the blocks switch places where now the odd blocks work on the
second pair of operands and the even blocks work on the first pair of operands.
A reset is required to the register S that stores the result chunks during the first
s cycles. The final result is collected word-by-word over s cycles after 2s cycles
have passed since the start of the multiplier.

In the reduction path, sA-Red is completely eliminated in our algorithm and
therefore m is simply propagated to sB-Red0 after a certain delay. To shorten
the critical path, sB-Red blocks are processed one cycle in advance before the
result is pushed into their corresponding sA-Mult block.

Table 3 gives a breakdown of the total number of blocks required as well as
the critical path and the number of arithmetic operations used in comparison
to [10] (used twice for dual-multiplication). The critical path is shortened by
one addition and the design requires sA − 1 less multiplications and sA − 2 less
additions.

3.3 Implementation and Results

The FPGA we are using in our SIKE implementation is the Xilinx Virtex-7. The
DSP unit in this series of FPGA can perform fast multiply-and-add (a× b+ c)
or 3-input addition (a+ b+ c). Chaining the DSPs allow for complex arithmetic
operations with a small additional delay per DSP. Furthermore, DSPs support
dual input for one of the multiplicand (a × b1 + c or a × b2 + c) by exploiting
the pre-adder. This allows us to design a dual multiplier while fully utilizing
the DSP unit. Table 4 shows how to utilize a maximum of 2 DSPs per block. In
[10], the reduction and multiplication operations are not separated and therefore
require 3 chained DSPs to compute them and more DSPs for a dual-multiplier
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Table 5. Montgomery multiplication DSP and timing analysis

Reference
# Freq Latency (cc) Latency (ns)

DSP (MHz) Mult. Interleave Mult. Interleave

SIKEp434

Liu et al. [17]∗ 36 236 66 54 280 229

This work 65 294 81 52 276 177

SIKEp503

Koziel et al. [13] 88 171 70 49 409 286

Liu et al. [17]∗ 64 213 66 54 310 254

This work 75 294 93 60 316 204

SIKEp610

Liu et al. [17]∗ 81 191 66 54 346 283

This work 90 294 111 72 378 245

SIKEp751

Koziel et al. [13] 128 167 100 69 597 412

Liu et al. [17]∗ 144 161 66 54 410 335

This work 113 294 138 90 469 306

∗ LUT usage is 5-6× more than our design.

design. Thus, our design requires less number of DSPs in the critical path and
less total DSPs.

A few additional optimizations can be exploited by the DSP. The registers to
store the second operands b0 and b1 are used directly in the DSP. The DSP can
select whether to add 0 or one of the operands in the addition step. This is used
to replace the reset signal of the registers that hold the result chunks S. Another
optimization that can be utilized is to store a and b going to the multiplication
of each block in the DSP’s register. This will add one extra cycle but greatly
shorten the critical path. The start control signals and the even control signal
for b1 and b2 are stored one cycle in advance in the DSP’s control registers for
improved performance. The registers used to store C and S are stored in the
fabric outside the DSP as this will give the best performance.

Table 5 shows number of DSPs used and timing results of our implementa-
tions for each of the SIKE primes. Our design requires less DSP, has a higher
frequency, but require more clock cycles in comparison to [13]. However, the
higher frequency dominates the increased cycle count and the overall total time
to perform an operation is lower. In [17], a huge part of the computation is moved
from DSP to fabric. Their LUT usage for SIKEp434 is 6724 in comparison to
our LUT usage of 1,157. In addition, the design is not very scalable as SIKEp751
uses more DSP and 5× LUT in comparison to our design. We reserve further
comment until the design is plugged in SIKE.
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Fig. 3. Proposed Hardware Architecture for SIKE protocol.

4 FPGA Implementations of SIKE

The implementation is performed in Xilinx Vivado 2019.2 for Xilinx Virtex-7
FPGA xc7vx690tffg1157-3 to be able to fairly compare our proposed scheme
with the ones available in the literature. This FPGA includes 108,300 Slices
(each with four LUTs and eight flip-flops), 3,600 DSP blocks and 1,470 36kb
BlockRAMs. Each DSP slice contains a pre-adder, a 25×18 multiplier, an adder,
and an accumulator. Our design is based on the design in the leading literature
[13] with a modified ALU based on Section 3.

4.1 Proposed SIKE Architecture

The architecture for SIKE used in our design is illustrated in Fig. 3 which is
composed of field arithmetic logic unit (ALU), main SIKE controller/ROM,
program and strategy controller/ROM, memory unit, message buffer to hold
Alice’s message and ciphertext and Bob’s message, secret key buffer to hold
Alice’s secret key and Bob’s secret key, and hash unit based on Keccak-1088.

The ALU is the main core and performs operations in Fp while interacting
with the memory unit. Fp2 arithmetic is done using Fp architectures. For in-
stance, a Fp2 multiplication requires three Fp multiplications, two Fp additions
and three Fp subtractions, whereas a Fp2 squaring requires only two Fp mul-
tiplications, two Fp additions and one Fp subtraction. The ALU consists of a
Multiplication unit and adder/subtractor unit. The adder/subtractor unit com-
putes modular addition and subtraction ( mod 2p) as well as modular reduction
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( mod p) over the specified primes for SIKE. The multiplication unit consists
of n Dual-Multipliers based on the design proposed in Section 3. Since the mul-
tiplication unit is the critical resource, we use as many Dual-Multipliers as is
allowed for parallelization while trying to minimize Time-Area cost.

The memory unit is implemented using BlockRAM resources from the FPGA
device. The memory unit, secret key buffer, message buffer, and the hash unit
can share data with each other and can be accessed directly 64-bit at a time. The
SIKE controller/ROM includes main routines (fixed sequence of instructions) for
key generation, key encapsulation, and key decapsulation. On the other hand,
The strategy and program controller/ROM includes hand-optimized routines
for all the operations required for computing an isogeny (three-point ladder
and large-degree isogeny). The ROM units, similar to the memory unit, are
implemented using the BlockRam resources. Our design requires 32 BlockRAMs
for SIKEp434.

The sizes for various component of the SIKE architecture are different based
on the required security level. For the whole operation, first we pre-load public
parameters into the Memory unit. Secret keys are generated in the host CPU.
Following the SIKE protocol discussed in Section 2.1, key encapsulation and
decapsulation are performed and ssA and ssB are generated.

4.2 Implementation Results and Comparison

The proposed SIKE architectures for all NIST security levels were implemented
and tested using Xilinx Vivado 2019.2 and all the results were obtained af-
ter place-and-route. We report area, timing and area-time trade-off (number
of slices×time in ms) results of the design in Tables 6 and . For the best
performance, we chose 3 Dual-Multipliers (6 multipliers total) for SIKEp434,
SIKEp503 and SIKEp610 and 4 Dual-Multipliers for SIKEp751. We tested the
functionality of the design using known answers tests (KATs) available in SIKE
submission to NIST.

We compare our architecture results to the previous leading one [13] as well
as the Software-Hardware co-design [18] (fast implementation only) and some
of the previous Supersingular Isogeny Diffie-Hellman (SIDH) implementations.
The total latency is the summation of key encapsulation and key decapsulation
as key generation can be done offline. As one can see, for NIST level 1 security
(SIKEp434) in Virtex-7, our design requires 5,458 Slices (17,557 flip flops, 12,999
LUTs), 195 DSPs, and 32 BlockRAMs. It also runs 249.6 MHz and performs the
whole SIKE protocol in 8.8ms. The drop in frequency in comparison to the Mont-
gomery multiplier in Table 5 is caused by the strategy and program controller.
Our design is smaller (except for the BlockRAMs) and faster with area-time
trade-off being about 92% improved in comparison to the leading counterpart
[13]. For the remaining security levels in Virtex-7, a similar improvement can
be observed. It is to be noted that the design in [18] is one design for all SIKE
security levels. In addition, the design targets smaller area/lower performance
device so a direct comparison is not fair.
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Table 6. Area results of SIKE implementation in Xilinx Virtex-7

Reference # Mults # FFs # LUTs # Slices # DSPs # BRAMs

SIKEp434

MLGB [18] (F) - - - 7,408 162 38.0

Koziel et al. [13] 6 23,819 21,059 8,121 240 26.5

This work 6 18,271 12,818 5,527 195 32.0

SIKEp503

Koziel et al. [16]∗ 6 30,031 24,499 10,298 192 27

Koziel et al. [14]∗ 6 26,659 19,882 8,918 192 40

Koziel et al. [15]∗ 6 24,908 18,820 7,491 192 43.5

MLGB [18] (F) - - - 7,408 162 38.0

Koziel et al. [13] 6 27,609 23,746 8,907 264 33.5

This work 6 19,935 13,963 6,163 225 34.0

SIKEp610

MLGB [18] (F) - - - 7,408 162 38.0

Koziel et al. [13] 6 33,297 28,217 10,675 312 39.5

This work 6 26,757 16,226 7,461 270 38.5

SIKEp751

SIKE Team [3] 8 51,914 44,822 16,756 376 56.5

MLGB [18] (F) - - - 7,408 162 38.0

Koziel et al. [13] 8 50,079 39,953 15,834 512 43.5

This work 8 39,339 20,207 11,136 452 41.5

∗ SIDH

The improvements made in the design makes SIKE a feasible option for small
embedded devices. Note that SIKE already offers smallest key sizes which reduces
communication overhead in comparison to the other PQC submissions. Although
all of our computations and implementations in this paper are secure (based on
[13]) and constant-time, it is worth mentioning that this work mainly focuses
on the high-performance implementations of the isogeny-based candidate SIKE
in FPGA and investigating side-channel analysis attacks will be in our future
work.

5 Conclusion

Post-quantum crypto accelerator hardware cores offer chip-makers an easy-to-
integrate technology-independent solution, offering various NIST recommended
security levels. In this paper, we optimized the Montgomery multiplication al-
gorithm and architecture targeting SIKE primes. We also presented FPGA im-
plementations of supersingular isogeny key encapsulation (SIKE) for all NIST
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Table 7. Timing and Area-Time trade-off results of SIKE implementation in Xilinx
Virtex-7

Time Area×Time

Reference # Mults Freq Latency Total AT×10−3

(MHz) (cc× 106) time (ms)

SIKEp434

MLGB [18] (Fast) - 152.2 - 24.3 180

Koziel et al. [13] 6 168.4 1.91 11.3 92

This work 6 249.6 2.19 8.8 48

SIKEp503

Koziel et al. [16]∗ 6 177 5.97 33.7 347

Koziel et al. [14]∗ 6 181.4 3.80 20.9 186

Koziel et al. [15]∗ 6 202.1 3.34 16.5 124

MLGB [18] (Fast) - 152.2 - 28.7 212

Koziel et al. [13] 6 165.9 2.35 14.1 126

This work 6 243.7 2.88 11.8 73

SIKEp610

MLGB [18] (F) - 152.2 - 51.8 384

Koziel et al. [13] 6 165.8 3.59 21.6 231

This work 6 239.0 4.56 19.1 142

SIKEp751

SIKE Team [3] 8 198.0 6.60 33.4 560

MLGB [18] (F) - 152.2 - 60.8 450

Koziel et al. [13] 8 163.1 4.55 27.8 440

This work 8 232.7 5.93 25.5 284

∗ SIDH

Round 2 security levels. The designs are the fastest FPGA implementations of
SIKE over large prime characteristic fields for various NIST security levels. More
specifically, our design utilizes 36% less hardware area and is 12-20% faster than
the leading FPGA implementations. For NIST level 1, our proposed hardware
accelerator performs the SIKE protocol in 8.8 ms. We verified our architectures
by using the Known Answer Tests (KATs) from the SIKE submission and our
code will be available online for further improvements and evaluations.

Minimizing public key sizes are critical for reducing transmission and stor-
age requirements for internet applications as well as IoTs. Our future work will
involve implementing the key compression mechanism and bench-marking the
whole design with compressed keys for various security level required by NIST.
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