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Abstract. We introduce a new primitive named Delay Encryption, and
give an efficient instantation based on isogenies of supersingular curves
and pairings. Delay Encryption is related to Time-lock Puzzles and Verifi-
able Delay Functions, and can be roughly described as “time-lock identity
based encryption”. It has several applications in distributed protocols,
such as sealed bid Vickrey auctions and electronic voting.

We give an instantiation of Delay Encryption by modifying Boneh and
Frankiln’s IBE scheme, where we replace the master secret key by a
long chain of isogenies, as in the isogeny VDF of De Feo, Masson, Petit
and Sanso. Similarly to the isogeny-based VDF, our Delay Encryption
requires a trusted setup before parameters can be safely used; our trusted
setup is identical to that of the VDF, thus the same parameters can be
generated once and shared for many executions of both protocols, with
possibly different delay parameters.

We also discuss several topics around delay protocols based on isogenies
that were left untreated by De Feo et al., namely: distributed trusted
setup, watermarking, and implementation issues.
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1 Introduction

The first appearance of delay cryptography was in Rivest, Shamir and Wag-
ner’s [29] Time-lock Puzzle, an encryption primitive where the holder of a trap-
door can encrypt (or decrypt) “fast”, but where anyone not knowing the trapdoor
can only decrypt (or encrypt) “slowly”.

Recently, a revival of delay cryptography has been promoted by research on
blockchains, in particular thanks to the introduction of Verifiable Delay Func-
tions (VDF) [4]: deterministic functions f that can only be evaluated “sequen-
tially” and “slowly”, but such that verifying that y = f(x) is “fast”.

After their definition, VDFs quickly gained attention, prompting two inde-
pendent solutions in the space of a few weeks [34,27]. Both proposals are based
on repeated squaring in groups of unknown order, and are similar in spirit to
Rivest et al.’s Time-lock Puzzle, however they use no trapdoor.

One year later, another VDF, based on a different algebraic structure, was
proposed by De Feo, Masson, Petit and Sanso [17]. This VDF uses chains of
supersingular isogenies as “sequential slow” functions, and pairings for efficient
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verification. Interestingly, it is not known how to build a Time-lock Puzzle from
isogenies; in this work we introduce a new primitive, in some respects more
powerful than Time-lock Puzzles, that we are able to instantiate from isogenies.

Limitations of Time-lock Puzzles. Time-lock Puzzles allow one to “encrypt
to the future”, i.e., to create a puzzle w that encapsulates a message m for a set
amount of time T'. They have the following two properties:

— Puzzle generation is efficient: there exists an algorithm which, on input the
message m and the delay T, generates 7 in time much less than T

— Puzzle solving is predictably slow and sequential: on input 7, the message
m can be recovered by a circuit of depth approximately T', and no circuit of
depth less than T can recover m reliably.

Time-lock Puzzles can be used to remove trusted parties from protocols,
replacing them with a time-consuming puzzle solving. Prototypical applications
are auctions and electronic voting, we will use auctions as a motivating example.

In a highest bidder auction, the easy solution in presence of a trusted au-
thority is to encrypt bids to the authority, who then decrypts all the bids and
selects the winner. Lacking a trusted authority, the standard solution is to divide
the auction in two phases: in the bidding phase all bidders commit to their bids
using a commitment; in the tallying phase bidders open their commitments, and
the highest bidder wins. However, this design has one flaw in contexts where it is
required that all bidders reveal their bids at the end of the auction. For example,
in Vickrey auctions, the highest bidder wins the auction, but only pays the price
of the second highest bid. If at the end of the auction some bidders refuse to
open their commitment, the result of the auction may be invalid.

Time-lock Puzzles solve this problem: by having bidders encapsulate their
bid in a Time-lock Puzzle, it is guaranteed that all bids can be decrypted in the
tallying phase. However this solution becomes very expensive in large auctions,
because one puzzle per bidder must be solved: if several thousands of bidders
participate, the tallyers must strike a balance between running thousands of
puzzle solving computations in parallel, and having a tallying phase that is
thousands of times longer than the bidding phase. Since Time-lock Puzzles use
trapdoors for puzzle generation, a potential mitigation is to have the bidders
reveal their trapdoors in the tallying phase, thus speeding up decryption; however
this does not help in presence of a large number of uncollaborative bidders.

An elegant solution introduced in [25] is to use Homomorphic Time-lock
Puzzles (HTLP), i.e., Time-lock Puzzles where the puzzles can be efficiently
combined homomorphically. Using these, the tallyers can efficiently evaluate the
desired tallying circuit on the unopen puzzles, and then run only a single slow
puzzle-solving algorithm. Unfortunately, the only efficient HTLPs introduced
in [25] are simply homomorphic (either additively or multiplicatively), and they
are thus only useful for voting; fully homomorphic TLPs, which are necessary
for auctions, are only known from Fully Homomorphic Encryption [9] or from
Indistinguishability Obfuscation [25], and are thus unpractical.
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On top of that, it can be argued that Time-lock Puzzles are not the appro-
priate primitive to solve the problem: why do the tallyers need to run one of two
different algorithms to open the puzzles? Are trapdoors really necessary? In this
work, we introduce a new primitive, Delay Encryption, that arguably solves the
problem more straightforwardly and elegantly.

Delay Encryption. Delay Encryption is related to both Time-lock Puzzles
and VDFs, however it does not seem to be subsumed by either. It can be viewed
as a time-lock analogue of Identity Based Encryption, where the derivation of
individual private keys is sequential and slow.

Instead of senders and receivers, Delay Encryption has a concept of sessions.
A session is defined by a session identifier, which must be a hard to predict
string. When a session identifier id is issued, anyone knowing id can encrypt to
the session for id; decryption is however unfeasible without a session key, which
is to be derived from id. The defining feature of Delay Encryption is extraction:
the process of deriving a session key from a session identifier. Extraction must
be a sequential and slow operation, designed to run in time 7" and no less for
almost any id.

Since there are no secrets in Delay Encryption, anyone can run extraction.
It is thus important that session identifiers are hard to predict, and thrown
away after the first use, otherwise an attacker may precompute session keys and
immediately decrypt any ciphertext to the sessions.

Delay Encryption is different from known Time-lock Puzzles in that it has no
trapdoor, and from VDFs in that it provides a fast encryption, rather than just a
fast verification. It has similar applications to Homomorphic Time-lock Puzzles,
it is however more efficient and solves many problems more straightforwardly.

Applications of Delay Encryption. We already mentioned the two main
applications of Time-lock Puzzles. We review here how Delay Encryption offers
better solutions.

Vickrey auctions. Sealed bid auctions are easily implemented with standard
commitments: in the bidding phase each bidder commits to its bid; later, in the
tallying phase each bidder opens their commitment. However this solution is
problematic when some bidders may refuse to open their commitments.

Delay Encryption provides a very natural solution: at the beginning of the
auction an auction identifier is selected using some unpredictable and unbiased
randomness, e.g., coming from a randomness beacon. After the auction identifier
is published, all bidders encrypt to the auction as senders of a Delay Encryption
scheme. In the meantime, anyone can start computing the auction key using
the extraction functionality. When the auction key associated with the auction
identifier is known, anyone in possession of it can decrypt all bids and determine
the winner.
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Electronic voting. In electronic voting it is often required that the partial tally
of an election stays unknown until the end, to avoid influencing the outcome.

Delay Encryption again solves the problem elegantly: once the election iden-
tifier is published, all voters can cast their ballot by encrypting to it. Only after
the election key is published, anyone can verify the outcome by decrypting the
ballots.

Of course this idea can be combined with classical techniques for anonymity,
integrity, etc.

In both applications it is evident that the session/auction/election identifier
must be unpredictable and unbiased: if it is not, someone may start computing
the session key before anyone else can, and thus break the delay property. Fortu-
nately, this requirement is easily satisfied by using randomness beacons, which,
conveniently, can be implemented using VDF's.

Contributions. Our main contribution is the introduction of Delay Encryption:
we formally define the primitive and its security, then argue about its naturalness
by relating it to other well known primitives such as IBE and VDFs.

Building on Boneh and Franklin’s IBE scheme [6], and on a framework intro-
duced in [17] for VDF's, we give an instantiation of Delay Encryption from isogeny
walks in graphs of pairing friendly supersingular elliptic curves. We prove the
security of our instantiation using a new assumption, related to both the Bilinear
Diffie-Hellman assumption typical of pairing based protocols, and the Isogeny
Shortcut assumption used for isogeny based VDFs.

Additionally, we cover some topics related to isogeny-based delay functions
which apply to both our Delay Encryption and to VDFs, which were left un-
treated by [17]:

1. We show how to realize the trusted setup needed in all isogeny-based delay
protocols in a distributed manner, and propose an efficient implementation
based on a new zero-knowledge proof of isogeny knowledge —whose security
we are only able to prove heuristically using a non-falsifiable assumption.

2. We show how to claim “ownership” of a delay function evaluation (aka ex-
traction, in the Delay Encryption jargon), by attaching a “watermark” to
the result of the evaluation. Watermarking can be used in distributed con-
sensus protocols to reward the party who bears the load of evaluating the
delay function.

3. We provide new elliptic curve representations and isogeny formulas optimized
for the operations occurring in isogeny based delay functions. Based on these,
we estimate the length of the isogeny walk needed to achieve a certain delay,
and the size of the associated public parameters.

Plan. Delay Encryption is defined in Section 2, and our instantiation is given in
Section 3. Each of the following sections discusses one topic related to both Delay
Encryption and VDFs based on isogenies: Section 4 discusses the trusted setup,
Section 5 covers watermarking, Section 6 introduces the new isogeny formulas
and makes some practical considerations.
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2 Definitions

Our definition of Delay Encryption uses an API similar to a Key Encapsulation
Mechanism: it consists of four algorithms —Setup, Extract, Encaps and Decaps—
with the following interface.

Setup(\, T') — (ek, pk). Takes a security parameter X, a delay parameter T, and
produces public parameters consisting of an extraction key ek and an en-
cryption key pk. Setup must run in time poly(X,T'); the encryption key pk
must have size poly(A), but the evaluation key ek is allowed to have size
poly(\, 7).

Extract(ek, id) — idk. Takes the extraction key ek and a session identifier id €
{0,1}*, and outputs a session key idk. Extract is expected to run in time
exactly T, see below.

Encaps(pk,id) — (¢, k). Takes the encryption key pk and a session identifier id €
{0,1}*, and outputs a ciphertext ¢ € C and a key k € K. Encaps must run
in time poly ().

Decaps(pk, id, idk, ¢) — k. Takes the encryption key pk, a session identifier id, a
session key idk, a ciphertext ¢ € C, and outputs a key k € K. Decaps must
run in time poly(\).

When Encaps and Decaps are combined with a symmetric encryption scheme
keyed by k, they become the encryption and decryption routines of a hybrid
encryption scheme, which can then be used as in the applications described
previously. Alternatively we could have used a PKE-like API directly, however
we prefer the KEM one as it is closer to known instantiations.

A Delay Encryption scheme is correct if for any (ek, pk) = Setup(A,T) and
any id

idk = Extract(ek,id) A (¢, k) = Encaps(pk,id) = Decaps(pk, id,idk,c) = k.

The security of Delay Encryption is defined similarly to that of public key encryp-
tion schemes, and in particular of identity-based ones; however one additional
property is required of Extract: that for a randomly selected identifier id, the
probability that any algorithm outputs idk in time less than T is negligible. We
now give the formal definition.

The security game. It is apparent from the definitions that Delay Encryption has
no secrets: after public parameters (ek, pk) are generated, anyone can run any of
the algorithms. Thus, the usual notion of indistinguishability will only be defined
with respect to the delay parameter T: no adversary is able to distinguish a key
k from a random string in time T — o(T"), but anyone can in time T'. Properly
defining what is meant by “time” requires fixing a computation model. Here
we follow the usual convention from VDFs, and assume a model of parallel
computation: in this context, “time 77 may mean T steps of a parallel Turing
machine, or an arithmetic circuit of depth T'. Crucially, we do not bound the
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amount of parallelism of the Turing machine, or the breadth of the circuit, i.e.,
we focus on sequential delay functions.

We consider the following A-IND-CPA game. Note that the game involves
no oracles, owing to the fact that the scheme has no secrets.

Precomputation. The adversary receives (ek,pk) as input, and outputs an
algorithm D.

Challenge. The challenger selects a random id and computes a key encapsula-
tion (¢, ko) < Encaps(pk, id). It then picks a uniformly random k; € K, and
a random bit b € {0,1}. Finally, it outputs (¢, ks, id).

Guess. Algorithm D is run on input (e, kp, id). The adversary wins if D termi-
nates in time less than A, and the output is such that D(c, ks, id) = b.

We stress that the game is intrinsically non-adaptive, in the sense that no
computation is “free” after the adversary has seen the challenge.

We say a Delay Encryption scheme is A-Delay Indistinguishable under Cho-
sen Plaintext Attacks if any adversary running the precomputation in time
poly(\, T') has negligible advantage in winning the game. Obviously, the inter-
esting schemes are those where A =T — o(T).

Remark 1. Although it would be possible to define an analogue of chosen cipher-
text security for Delay Encryption, by giving algorithm D access to a decryption
oracle for id, it is not clear what kind of real world attacks this security notion
could model. Indeed, an instantaneous decryption oracle for id would go against
the idea that the session key idk needed for decryption is not known to anyone
before time T'.

Similarly, one could imagine giving D access to an extraction oracle, to allow
it instantaneous adaptive extraction queries after the challenge (note that in
the precomputation phase the adversary is free to run polynomially many non-
adaptive extractions). However it is not clear what component of a real world
system could provide such instantaneous extraction in practice, since extraction
is a public (and slow) operation.

2.1 Relationship with other primitives

Delay Encryption and Identity Based Encryption. Although there is no formal
relationship between Identity Based Encryption (IBE) and Delay Encryption,
the similarity is evident.

Recall that an IBE scheme is a public key encryption with three parties: a
dealer who possesses a master private/public key pair, a receiver who has an
identity that acts as its public key (e.g., its email address), and a sender who
wants to send a message to the receiver. In IBE, the dealer runs an eztraction on
the identity to generate the receiver’s secret key. The sender encrypts messages
to the receiver using both the identity and the master public key. The receiver
decrypts using the master public key and the private key provided by the dealer.

Delay Encryption follows the same blueprint, but has no secrets: there is no
master key anymore, but only a set of public parameters (ek, pk). Receiver identi-
ties become session identifiers id: public but unpredictable. The dealer is replaced
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by the public functionality Extract(ek,id): sequential and slow. Senders encrypt
messages to the sessions by using pk and id. After extraction has produced idk,
anyone can decrypt messages “sent” to id by using idk.

The similarity with IBE is not fortuitous. Indeed, the instantiation we present
next is obtained from Boneh and Franklin’s IBE scheme [6], by replacing the mas-
ter secret with a public, slow to evaluate, isogeny. This is analogous to the way
De Feo et al’s VDF [17] is obtained from the Boneh-Lynn—Shacham signature
scheme [7].

The similarity with IBE will be mirrored both in the reductions we discuss
next, and in the security proof of our instantiation.

Delay Encryption and Verifiable Delay Functions. Boneh and Franklin attribute
to Naor the observation that IBE implies signatures. The construction is straight-
forward: messages are encoded to identities; to sign a message id, simply output
the derived private key idk associated to it. To verify a signature (id,idk): run
encapsulation to id obtaining a random (¢, k), decapsulate (id, idk, ¢) to obtain
k', and accept the signature if k = k’. The signature scheme is existentially un-
forgeable if the IBE scheme is indistinguishable under chosen ciphertext attacks.

Precisely the same construction shows that Delay Encryption implies (se-
quential) Proof of Work. Furthermore, if we define extraction soundness as the
property that adversaries have negligible chance of finding idk # idk’ such that

Decaps(pk, id, idk, ¢) = Decaps(pk, id, idk’, ¢),

then we see that extraction sound Delay Encryption implies Verifiable Delay
Functions. It is easily verified that the derived VDF is A-sequential if the Delay
Encryption scheme is A-IND-CPA.

The signature scheme derived from Boneh and Franklin’s IBE is equivalent
to the Boneh—Lynn—Shacham scheme. Unsurprisingly, the instantiation of Delay
Encryption that we give in the next section is extraction sound, and the derived
VDF is equivalent to De Feo et al.’s VDF.

Delay Encryption and Time-lock Puzzles. Both Delay Encryption and Time-lock

Puzzles permit a form of encryption to the future: encrypt a message now, so that

it can only be decrypted at a set time in the future. There is no formal definition

of Time-lock Puzzles commonly agreed upon in the literature, it is thus difficult

to say what they exactly are and how they compare to Delay Encryption.
Bitansky et al. [3] define Time-lock Puzzles as two algorithms

— Gen(\,T,s) — Z that takes as input a delay parameter 7' and a solution
s € {0,1}*, and outputs a puzzle Z;
— Solve(Z) — s that takes as input a puzzle Z and outputs the solution s;

under the constraints that Gen runs in time poly(\, log T') and that no algorithm
computes s from Z in parallel time significantly less than T

One might be tempted to construct a Time-lock Puzzle from Delay Encryp-
tion by defining Gen as follows:
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Compute (ek, pk) « Setup(\, T);
Sample a random id € {0, 1}*;
Compute (c, k) < Encaps(pk, id);
Compute m = Ei(s);

Return (ek, pk, id, ¢, m);

Gt oo =

where Fj is a symmetric encryption scheme. Then Solve is naturally defined as

1. Compute idk + Extract(ek, id);
2. Compute k < Decaps(pk, id, idk, c);
3. Return s = Di(m);

where Dy, is the decryption routine associated to Fj.

However this fails to define a Time-lock Puzzle in the sense above, because
Setup can take time poly(A,T) instead of poly(\,logT). If we take Setup out
of Gen, though, we obtain something very similar to what Bitansky et al. call
Time-lock Puzzles with pre-processing, albeit slightly weaker.?

We see no technical obstruction to having Setup run in time poly(A,logT),
and thus being a strictly stronger primitive than Time-lock Puzzles. However
our instantiation does not satisfy this stronger notion of Delay Encryption, and,
lacking any other candidate, we prefer to keep our definitions steeping in reality.

To summarize, Delay Encryption is a natural analogue of Identity Based
Encryption in the world of time delay cryptography. It requires Proofs of Work
to exist, and a mild strengthening of it (which we are able to instantiate) implies
Verifiable Delay Functions. It also implies a weak form of Time-lock Puzzles,
and a strengthening of it (of which we know no instantiation) implies standard
Time-lock Puzzles. At the same time, no dependency is known between Time-
lock Puzzles and Verifiable Delay Functions, indicating that Delay Encryption
is possibly a stronger primitive than both.

3 Delay Encryption from isogenies and pairings

We instantiate Delay Encryption from the same framework De Feo, Masson,
Petit and Sanso used to instantiate Verifiable Delay Functions [17]. We briefly
recall it here for completeness.

An elliptic curve E over a finite field Fp» is said to be supersingular if the trace
of its Frobenius endomorphism is divisible by p, i.e., if #E(Fpn) = 1 mod p.
Over the algebraic closure of I, there is only a finite number of isomorphism
classes of supersingular curves, and every class contains a curve defined over Fpe.

We will only work with supersingular curves F /sz whose group of Fpe-
rational points is isomorphic to (Z/(p 4+ 1)Z)?. For these curves, if N is a divisor
of p+1, we will denote by E[N] the subgroup of F2-rational points of N-torsion,
which is isomorphic to (Z/NZ)*. We will write E[N]° for the subset of points

3 Bitansky et al. require pre-processing to run in sequential time 7T - poly(A), but
parallel time only poly(X,logT).
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in E[N] of order exactly N; when N is prime, this is simply a shorthand for
E[N]\ {O}.

However, among these curves some will be curves E/F,, defined over F,, seen
as curves over Fp2 (in algebraic jargon, with scalars extended from ), to F2). For
this special case, if IV is an odd divisor of p+1, the Fj2-rational torsion subgroup
E[N] contains two distinguished subgroups: the subgroup E[N]NE(F,) of points
of order N defined over F,, which we also denote by E[(N,7 — 1)]; and the
subgroup of points of order N not in E(F,), but with z-coordinate in F,, which
we denote by E[(N,n + 1)]. Again, we write E[(N, 7 — 1)]° and E[(N,n + 1)]°
for the subsets of points of order exactly N.

An isogeny is a group morphism of elliptic curves with finite kernel. In partic-
ular, isogenies preserve supersingularity. Isogenies can be represented by ratios
of polynomials, and, like polynomials, have a degree. Isogenies of degree ¢ are
also called f-isogenies; the degree is multiplicative with respect to composition,
thus deg ¢ o) = deg ¢ - deg 1p. The degree is an important invariant of isogenies,
roughly measuring the amount of information needed to represent them.

An isogeny graph is a graph whose vertices are isomorphism classes of elliptic
curves, and whose edges are isogenies, under some restrictions. Isogeny-based
cryptography mainly uses two types of isogeny graphs:

— The full supersingular graph of (the algebraic closure of) F,, whose vertices
are all isomorphism classes of supersingular curves over I, and whose edges
are all isogenies of a prime degree /¢; typically £ = 2, 3.

— The Fp-restricted supersingular graph, or supersingular CM graph of Fp,
whose vertices are all Fj,-isomorphism classes of supersingular curves over
F),, and whose edges are f-isogenies for all primes £ up to some bound; typ-
ically £ < Alog A, where X is the security parameter.

Any (-isogeny ¢ : E — E’ has a unique dual (-isogeny ¢ : E/ — E such that

en(0(P),Q) = en(P,9(Q)), (1)

for any integer N and any points P € E[N], Q € E’[N], where ey is the Weil
pairing on E, and ey the one on E’. The same equation, with the same QAS, also
holds for any other known pairing, such as the Tate and Ate pairings.

The framework of De Feo et al. uses chains of small degree isogenies as
delay functions, and the pairing equation (1) as an efficient means to verify
the computation. Formally, they propose two related instantiations of VDF,
following the same pattern: they both use the same base field [F),, where p is a
prime of the form p+1 = N - f with N prime, chosen so that discrete logarithms
in the group of N-th roots of unity in 2 (the target group G of the pairing)
are hard (ie., N ~ 22* and p ~ 2’\3). They have a common trusted setup,
independent of the delay parameter, and the usual functionalities of a VDF:

Trusted setup selects a random supersingular elliptic curve E over IF,,.
Setup takes as input p, N, F, a delay parameter T, and performs a walk in an
(-isogeny graph to produce a degree ¢7 isogeny ¢ : E — E'.
It also computes a point P € E(F,) of order N. It outputs ¢, E’, P, ¢(P).
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Evaluation takes as input a random point @ € E’[N] and outputs (;AS(Q)
Verification uses Eq. (1) to check that the value output by evaluation is ¢(Q)
as claimed.

The two variants only differ in the way the isogeny walk is set up, and in
minor details of the verification; these differences will be irrelevant to us.

The delay property of this VDF rests, roughly speaking, on the assumption
that a chain of T isogenies of small prime degree ¢ cannot be computed more
efficiently than by going through each of the isogenies one at a time, sequentially.
The case ¢ = 2 is very similar to repeated squaring in groups of unknown order
as used by other VDFs [34,27] and Time-lock Puzzles [29]: in groups, one iterates
T times the function z — z2, a polynomial of degree 2; in isogeny graphs, one
iterates rational fractions of degree 2. See Section 6 for more details.

It is important to remark that both setup and evaluation in these VDFs
are “slow” algorithms, indeed both need to evaluate an isogeny chain (either
¢, or (ﬁ) at one input point of order INV; this is in stark contrast with VDFs
based on groups of unknown order, where the setup, and thus its complexity, is
independent of the delay parameter T'.

3.1 Instantiation

The isogeny-based VDF of De Feo et al. can be understood as a modification on
the Boneh-Lynn—Shacham [7] signature scheme, where the secret key is replaced
by a long chain of isogenies: signing becomes a “slow” operation and thus realizes
the evaluation function, whereas verification stays efficient.

Similarly, we obtain a Delay Encryption scheme by modifying the IBE scheme
of Boneh and Franklin [6]: the master secret is replaced by a long chain of
isogenies, while session identifiers play the role of identities, so that producing
the decryption key for a given identity becomes a slow operation.

Concretely, setup is identical to that of the VDF. A prime of the form p =
4-N - f—1is fixed according to the security parameter, then setup is actually
split into two algorithms: a TrustedSetup independent of the delay parameter T’
and reusable for arbitrarily many untrusted setups, and a Setup which depends
onT.

TrustedSetup()). Generate a nearly uniformly random supersingular curve E/F,,
by starting from the curve y?> = 3 + 2 and performing a random walk in
the F,-restricted supersingular graph. Output E.

Setup(E,T).

1. Perform an f-isogeny walk ¢ : E — E’ of length T
2. Select a random point P € E(F,) of order N, and compute ¢(P);
3. Output ek := (E’, ¢) and pk := (E', P, $(P)).

We stress that known homomorphic Time-lock Puzzles [25] also require a
one-shot trusted setup. Furthermore, unlike constructions based on RSA groups,
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there is no evidence that trusted setup is unavoidable for isogeny-based de-
lay functions, and indeed removing this trusted setup is an active area of re-
search [12,24].

The isogeny chain ¢ in Setup can be generated by any of the two methods
proposed by De Feo et al., the difference will be immaterial for Delay Encryption;
as discussed in [17], a (deterministic) walk limited to curves and isogenies defined
over F,, will be more efficient, however a generic (pseudorandom) walk over F 2
will offer some partial protection against quantum attacks.

Before defining the other routines, we need two hash functions. The first,
Hy : {0,1}* — E’[N]°, will be used to hash session identifiers to points of
order N in E’/F,> (although the curve E’ may be defined over F,). The second,
Hj : Fp2 — {0,1}*, will be a key derivation function.

Extract(E, E', ¢,id).
1. Let Q = Hy(id);
2. Output g{)(Q)
Encaps(E, E', P, ¢(P),id).
1. Select a uniformly random r € Z/NZ;
2. Let Q = Hy(id);
3. Let k= ey (6(P), Q)"
4. Output (rP, Hy(k)).
Decaps(E, E', giA)(Q),rP).
1. Let k = en(rP, $(Q)).
2. Output Hy(k).

Correctness of the scheme follows immediately from Eq. (1) and the bilinear-
ity of the pairing.

Remark 2. Notice that two hashed identities @, Q' such that Q@ — Q' € (P) are
equivalent for encapsulation and decapsulation purposes, and thus an adversary
only needs to compute the image of one of them under qAS However, if we model H;
as a random oracle, the probability of two identities colliding remains negligible
(about 1/N).

Alternatively, if E’ is defined over F,, one can restrict the image of Hy to
E'[(N,7 + 1)], like in [17].

3.2 Security

To prove security of their VDF schemes, De Feo et al. defined the following
isogeny shortcut game:

Precomputation. The adversary receives N, p, E, E’, ¢, and outputs an algo-
rithm S (in time poly(A, T)).

Challenge. The challenger outputs a uniformly random @ € E’[N].

Guess. The algorithm & is run on input ). The adversary wins if S terminates
in time less than A, and S(Q) = ¢(Q).
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However, it is clear that the A-hardness of this game is insufficient to prove
A-IND-CPA security of our Delay Encryption scheme. Indeed, while the hard-
ness of the isogeny shortcut obviously guarantees that the output of Extract
cannot be computed in time less than A, there is at least one other way to
decapsulate a ciphertext rP, which consists in evaluating ¢(rP) and comput-
ing k = e/y(o(rP),Q). Computing ¢(rP) is expected to be at least as “slow”
as computing qﬁ(Q), however this fact is not captured by the isogeny shortcut
game.

Instead, we define a new security assumption, analogous to the Bilinear
Diffie-Hellman assumption used in standard pairing-based protocols. The bi-
linear isogeny shortcut game is defined as follows:

Precomputation. The adversary receives p, N, E, E’, ¢, and outputs an algo-
rithm S.

Challenge. The challenger outputs uniformly random R € E[(N,7 — 1)] and
Q € E'[N].

Guess. Algorithm S isrun on (R, Q). The adversary wins if S outputs S(R, Q) =
en(9(R),Q) = en(R, 9(Q)).

We say that the bilinear isogeny shortcut game is A-hard if no adversary
running the precomputation in time poly(A,T) produces an algorithm S that
wins in time less than A with non-negligible probability. The reduction to A-
IND-CPA of our Delay Encryption scheme closely follows the proof of security
of Boneh and Franklin’s IBE scheme.

Theorem 1. The Delay Encryption scheme presented above is A-IND-CPA
secure, assuming the A’-hardness of the bilinear isogeny shortcut game, with
Aec A —o(4"), when Hy and Hy are modeled as random oracles.

Concretely, suppose there is a A-IND-CPA adversary A with advantage € and
complezity poly(\,T'), making q queries to Hs (including the queries made by the
sub-algorithm D). Then there is a poly(\,T) algorithm B that wins the bilinear
isogeny shortcut game with probability at least 2¢/q and delay A" = A+q-poly(N).

Proof. In the precomputation phase, when B receives the parameters p, N, F,
E', ¢, it draws a random P € E(F,) of order N, and evaluates ¢(P). It then
passes p, N, E, E', ¢, P, $(P) to A for its own precomputation phase. Whenever
A makes calls to Hy or Hy, algorithm B checks whether the input has already
been requested, in which case it responds with the same answer previously given,
otherwise it responds with a uniformly sampled output and records the query.

When A requests its challenge, B does the same, receiving R € E[(N, 7 —1)]
and @ € E'[N]. If R or @ is the point at infinity, it outputs 1 and terminates.
Otherwise it draws a random string s € {0, 1}*, a random id € {0,1}* that was
not already queried to Hy, it programs the random oracle so that H(id) = @,
and challenges A with the tuple (R, s,id).

During the guessing phase, whenever A (actually, D) makes a call to Hy or
H,, algorithm B (actually, S) responds as before. Finally, when D outputs its
guess, S simply returns a random entry among those that were queried to Hs.
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Let H be the event that A (or D) queries Hy on input ey (R, $(Q)). We prove
that Pr(#H) > 2¢, which immediately gives the claim of the theorem. To this end,
we first prove that Pr(?) in the simulation is equal to Pr(#) in the real attack;
then we prove that Pr(#) > 2¢ in the real attack.

To prove the first claim, it suffices to show that the simulation is indistin-
guishable from the real world for A. Indeed, public parameters are distributed
identically to a Delay Encryption scheme, and the point R that is part of the
challenge is necessarily a multiple of P, since E[(N,n — 1)] is cyclic. The proof
that the two probabilities are equal, then proceeds as in [6, Lemma 4.3, Claim 1].

The proof that Pr(H) > 2e is identical to [6, Lemma 4.3, Claim 2]. This
proves the part of the statement on the winning probability of 5.

If Algorithm D runs in time less than A, algorithm S runs in the same
time, plus the time necessary for drawing the random string s and for answering
queries to Hy. Depending on the computational model, a lookup in the table
for Hy can take anywhere from O(1) (e.g., RAM model) to O(q) (e.g., Turing
machine). We err on the safe side, and estimate that S runs in time less than
A+ q - poly(A).

3.3 Known Attacks

We now shift our attention to attacks. As discussed in [17], there are three types
of known attacks: shortcut attacks, discrete logarithm attacks, and attacks on
the computation.

Parameters for a Delay Encryption scheme must be chosen so that all known
attacks have exponential difficulty in the security parameter A. Given that (total)
attacks successfully compute decapsulation in exponential time in A, it is evident
that the delay parameter T' must grow at most subexponentially in .

Shortcut attacks aim at computing a shorter path ¢ : E — E’ in the isogeny
graph from the knowledge of ¢ : E — E’. The name should not be confused with
the isogeny shortcut game described above, as shortcut attacks are only one of
the possible ways to beat the game.

De Feo et al. show that shortcut attacks are possible when the endomorphism
ring of at least one of E or E’ is known. Indeed, in this case, the isogeny ¢ can be
translated to an ideal class in the endomorphism ring, then smoothing techniques
similar to [22] let us convert the ideal to one of smaller norm, and finally to an
isogeny 1) : E — E’ of smaller degree.

The only way out of these attacks is to select the starting curve E as a
uniformly random supersingular curve over F,, then no efficient algorithm is
known to compute End(E), nor End(E’). Unfortunately, the only way we cur-
rently know to sample nearly uniformly in the supersingular class over F,, is,
paraphrasing [20], to choose the endomorphism ring first and then compute E
given End(FE).

Thus, the solution put forth in [17] is to generate the starting curve E via
a trusted setup that first selects End(F), and then outputs E and throws away
the information about its endomorphism ring. We stress that, given a random
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supersingular curve E, computing End(E) is a well known hard problem, upon
which almost most of isogeny-based cryptography is founded. We explain in the
next section how to mitigate the inconvenience of having a trusted setup, using
a distributed protocol.

As stressed in [17], there is no evidence that “hashing” in the supersingular
class, i.e., sampling nearly uniformly without gaining knowledge of the endomor-
phism ring, should be a hard problem. But there is no evidence it should be easy
either, and several attempts have failed already [12,24].

Another possibility hinted at in [17] would be to generate ordinary pairing
friendly curves with large isogeny class, as the shortcut attack is then thwarted
by the difficulty of computing the order of the class group of the endomorphism
ring. However finding such curves possibly seems an even harder problem than
hashing to the supersingular class.

Discrete logarithm attacks compute gZ;(Q) by directly solving the pairing equa-
tion (1). In our case, we can even directly attack the key encapsulation. In-
deed, knowing r P, we obtain r through a discrete logarithm, and then compute
k= eh(6(P), Q)"

Thanks to the efficiently computable pairing, the discrete logarithm can actu-
ally be solved in IF 2, which justifies taking p, N large enough to resist finite field
discrete logarithm computations. Obviously, this also shows that our scheme is
easily broken by quantum computers. See [17], however, for a discussion of how
a setup with pseudo-random walks over F,> resists quantum attacks in a world
where quantum computers are available, but much slower than classical ones.

Attacks on the computation do not seek to deviate from the description of the
protocol, but simply try to speed up Extract beyond the way officially prescribed
by the scheme. In this sort of attacks, the adversary may be given more resources
than the legitimate user: for example, it may be allowed a very large precompu-
tation, or it may dispose of an unbounded amount of parallelism, or it may have
access to an architecture not available to the user (e.g., a quantum computer).

These attacks are the most challenging to analyze, because standard com-
plexity-theoretical techniques are of little help here. On some level, this goal
is unachievable: given a sufficiently abstract computational model, and a suf-
ficiently powerful adversary, any scheme is broken. For example, an adversary
may precompute all possible pairs (@, ¢(Q)) and store them in a O(1)-accessible
RAM, then extraction amounts to a table lookup. However, such an adversary
with exponential precomputation, exponential storage, and constant time RAM
is easily dismissed as unreasonable. More subtle trade-offs between precomputa-
tion, storage and efficiency can be obtained, like for example RNS-based tech-
niques to attack group-based VDFs [1]. However the real impact of these theo-
retical algorithms has yet to be determined.

In practice, a pragmatic approach to address attacks on the computation is
to massively invest in highly specialized hardware development to evaluate the
“sequential and slow” function quickly, and then produce the best designs at
scale, so that they are available to anyone who wants to run the extraction. This
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is the philosophy of the competitions organized by Ethereum [33] and Chia [21],
targeting, respectively, the RSA based VDF and the class group based VDF.
We explore this topic more in detail in Section 6.

4 Distributed trusted setup

Trusted setup is an obvious annoyance to distributed protocols. A way to miti-
gate this negative impact is to distribute trust over several participants, ensuring
through a multi-party computation that, if at least one participant is honest,
then the setup can be trusted.

Ethereum is notoriously investing in the RSA-based VDF with Wesolowski’s
proof [33,34], which is known to require a trusted setup. To generate parameters,
the Ethereum network will need to run a distributed RSA modulus generation,
for which all available techniques essentially trace back to the work of Boneh
and Franklin [5].

Distributed RSA modulus generation is notoriously a difficult task: the cost
is relatively high, scales badly with the number of participants, and the attempts
at optimizing it have repeatedly led to subtle and powerful attacks [31,32]. Worse
still, specialized hardware for the delay function must be designed specifically
for the generated modulus, which means that little design can be done prior to
the distributed generation, and that if the distributed generation is then found
to be rigged, a new round of distributed-generation-then-design is needed.

On the contrary, distributed parameter generation for our Delay Encryption
candidate, or for the isogeny based VDF, is extremely easy. The participants
start from a well known supersingular curve with known endomorphism ring,
e.g., By : y? = 2% — x, and repeat, each at its own turn, the following steps:

1. Participant ¢ checks all zero-knowledge proofs published by participants that
preceded them;

2. They perform a pseudorandom isogeny walk ¢; : E;_1 — E; of length clog(p)
in the IF-restricted supersingular graph;

3. They publish F;, and a zero-knowledge proof that they know an isogeny
1/) : Ei—l — Ei-

The constant c is to be determined as a function of the expansion properties
of the isogeny graph, and is meant to be large enough to ensure nearly uniform
mixing of the walk. In practice, this constant is usually small, say ¢ < 10,
implying that each participant needs to evaluate a few thousands isogenies, a
computation that is expected to take in the order of seconds [11].

The setup is clearly secure as long as at least one participant is honest. Indeed
it is well known that computing a path from F; to Ey is equivalent to computing
the endomorphism ring of F; [22,18], and, since E; is nearly uniformly distributed
in the supersingular graph, the dishonest participants have no advantage in
solving this problem compared to a generic attacker.

This distributed computation scales linearly with the number of participants,
each participant needing to check the proofs of the previous ones. It can be left
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running for a long period of time, allowing many participants to contribute
trust without any need for prior registration. More importantly, it is updatable,
meaning that after the distributed generation is complete, the final curve E can
be used as the starting point for a new distributed trusted setup. This way the
trusted setup can be updated regularly, building upon the trust accumulated in
previous distributed generations.

Compared with the trusted setup for RSA, the outcome of the setup is much
less critical for the design of hardware. Indeed, the primes p, N can be publicly
chosen in advance, and hardware can be designed for them before the trusted
setup is performed. The trusted curve E only impacts the first few steps of the
“slow” isogeny walk ¢ : E — E’ generated by the untrusted setup, and can
easily be integrated in the hardware design at a later stage.

4.1 Proofs of isogeny knowledge

We take a closer look at the last step each participant takes in the trusted setup:
the proof of isogeny knowledge. Ignoring zero-knowledge temporarily, Eq. (1)
already provides a proof of knowledge of a non-trivial relation between F; 1 and
E;. Let F be a deterministic function which takes as input a pair of curves E;, E;
and outputs a pair of points in E;[(N,m — 1)]° x E;[(N,n + 1)]°. Also let e,
denote the Weil pairing on F;. The proof proceeds as follows

1. Map (E;_1, E;) to a pair of points (P, Q) «+ F(E;_1, E;);
2. Choose a random r € (Z/NZ)*,
3. Publish (R, S) « (r;(P),r:(Q)).

Then verification simply consists of:

1. Compute (P, Q) + F(E;_1, FE;),
2. Check that R € E;[(N,7—1)]° and S € E; 1[(N, 7+ 1)]%
3. Check that ei (R, Q) = eiy ' (P, S).

This proof is compact, requiring only four elements of IF,, and efficient be-
cause computing 1;(P), @El(Q) only adds a small overhead to the computation of
1, and verification takes essentially two pairing computations. Note that the re-
striction in step 2 of the verification implies that for any R there exists a unique
S satisfying the equation in step 3, and wice versa.

Remark 3. While we believe that an adversary not knowing an isogeny from F;
to F; has a negligible probability of convincing a verifier in the protocol above,
it is not clear what kind of knowledge is exactly proved by it. Ideally, we would
like to prove that, given an algorithm that passes verification with non negligible
probability, one can extract a description of some isogeny v’ : E;_1 — E;.

However, no such algorithm is currently known. Related problems have been
studied in the context of cryptanalyses of SIDH, under the name of “torsion point
attacks” [26,30,23], however these algorithms crucially rely on the knowledge of
the endomorphism ring of E;_1, something we cannot exploit here.
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The only way out is apparently to define a non-falsifiable “knowledge of
isogeny” assumption, which would tautologically state that the protocol above
is indeed a proof of knowledge of an isogeny. We defer investigation of this type
of assumptions to future work.

As stated, the proof above is clearly not zero-knowledge, because the values
r;(P) and r1;(Q) reveal a considerable amount of additional information on
;. To turn the proof into a zero-knowledge one, we use Pedersen commitments
to mask 7¢;(P) and 71;(Q), then prove their knowledge using standard Schnorr-
like proofs of knowledge.

Let F’ be a function with same domain and range as F (possibly F’ = F),
and let H be a cryptographic hash function with values in Z/NZ.

We compute P/, Q" + F'(E;, E;—1) and choose x,y € (Z/NZ)* secret, then
we publish a NIZK proof for (X,Y) satisfying

en(X,Qey  (P.Q)" = ey (P.Y)en (P, Q)".
More precisely, we publish:

— two Pedersen commitments X = P’ + ri;(P) € E;[(N,7 —1)] and ¥ =
yQ' +1ri(Q) € Ei1[(N, 7+ 1)],
— two “public keys” Y’ = ey '(P,Q")¥ and X' = e} (P',Q)", and
— a Schnorr-like proof of knowledge (c, s4, s) for  of X’ and y of Y’, where:
o s, =k —xcand s, =k — yc for a randomly chosen k € (Z/NZ)*, and
o c=H(ey ' (P.Q)en (P QIXIY el (P, Q) llex (P, Q"))

At this point, our verifier now checks

— that X € E;[(N,7 — )] and Y € E;_1[(N, 7 + 1)],

that el (X, Q)Y = ey H(P,Y) X/,

— non-triviality X’ # e (X, Q) and Y’ # ¢4 *(P,Y) of the commitments, and
the proofs of knowledge s,, s, using

e = H(ET (P.Q)lek (PL QXY (X) b (P Q)™ [(V)feis (P.Q/)™).

In this, we ask verifiers to compute four pairings, which only doubles the verifier
time.

The following lemma shows that this is a NIZK proof for the same statement
that was proven in the simple protocol revealing r; (P) and mﬁi(Q), and thus it
is a NIZK proof of isogeny knowledge, if we accept the non-falsifiable assumption
mentioned in Remark 3.

Lemma 1. Let E;_1,E; be a pair of isogenous elliptic curves, let (P,Q) =
F(FE;_1, E;). The protocol above is a NIZK proof of knowledge of a pair (R, S) of
points such that (R, Q) = eiil(P, S) # 1, assuming CDH in the target group
Gt CFp2, and modeling H as a random oracle.
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Proof. To simulate the proof, it is enough to choose X, Y, and X’ at random,
set Y/ = X'e'7H(P,Y) /el (X, Q), then use the simulator of the Schnorr proof to
simulate knowledge of the discrete logarithms of X’ and Y.

To extract (R, S) from a prover, we start by using the Schnorr extractor to
get x and y. Then, by hypothesis

i i—1
(X —ap, Q= MBS BT apy gy 21,

thus R =X — 2P’ and S =Y — yQ is the solution we were looking for.
Since the Schnorr proof is proven secure under CDH in the ROM, the same
hypotheses carry over.

For completeness, we also mention some other tools with which one might
prove knowledge of this isogeny in zero knowledge, although none seem to be
competitive with the technique above.

First, there exists a rapidly expanding SNARK toolbox from which one could
perform [, arithmetic inside the SNARK to check the verification of the second
and third conditions directly. As instantiating the delay function imposes re-
strictions on p, one cannot necessarily select p using the Cocks-Pinch method to
provide a pairing friendly elliptic curve with group order p, like in [8]. There are
optimisations for arithmetic in arbitrary F, however, especially using polynomial
commitments, like in [19].

Second, there are well known post-quantum isogeny-based proofs:

SIDH-style proofs [15] are very inconvenient, because they require primes of
a specific form, and severely limit the length of pseudo-random walks. On
top of that, they are very inefficient, and do not have perfect zero-knowledge.

SeaSign-style proofs [14] have sizes in the hundreds of kilobytes, and their
generation and verification are extremely slow (dozens of hours). Note that
several of the optimizations used for signatures, including the class group
order precomputation of CSI-FiSh [2], are not available in this context. More
research on the optimization of SeaSign-style proofs for this specific context
would be welcome.

SQISign-style proofs [16] are not compatible with our setting, because they
require knowledge of the endomorphism rings.

5 Watermarking

When delay functions are used in distributed consensus protocols, it is common
to want to reward participants who spend resources to evaluate the function. For
example, in the auction application the participants who compute the session
key may receive a percentage on the sale to compensate for the cost of running
the extraction routine.

This raises the question of how to prove that some participant did run the
computation, rather than simply steal the public output from someone else.
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In the context of VDFs based on groups of unknown order, Wesolowski [34]
introduced the concept of proof watermarking. The output of these VDF's consists
of two parts: a delay function output and a proof. Wesolowski’s idea is to attach
to the proof a watermark based on the identity of the evaluator, so that anyone
verifying the output immediately associates it to the legitimate participant. Since
producing the proof costs at least as much as evaluating the delay function, a
usurper who would like to claim an output for themself would need to do an
amount of work comparable to legitimately evaluating the delay function, which
strongly reduces the incentive for usurpation.

In the context of isogeny based VDF's, or of extraction in Delay Encryption,
proof watermarking is a meaningless concept, because there is simply no proof
to watermark. Nevertheless, it is possible to produce a watermark next to the
output of the delay function, giving evidence that the owner of the watermark
spent an amount of effort comparable to legitimately computing the output.
The idea is to publish a mid-point update on the progress of the evaluation, and
attach this mid-point to the identity of the evaluator.

Concretely, given parameters ¢ : E — E’ and (P, ¢(P)), the isogeny walk is
split into two halves of equal size ¢1 : E — FEyiq and ¢ : Enjq — E’ so that
¢ = ¢2 0 @1, and ¢1(P) is added to the public parameters. Each evaluator then
generates a secret key s € Z/NZ and a public key S = s¢(P). When evaluating
b= él o ¢o at a point Q € E’ [N], the evaluator:

1. Computes Qmiq = 52(62),
2. Computes and publishes sQumid, A A
3. Finishes off the computation by computing ¢(Q) = ¢1(Qmiq)-

A watermark can then be verified by checking that

eII{l/id((vbl (P)a SQmid) = 6/N(Sa Q)

Interestingly, this proof is blind, meaning that it can be verified even before the
work is finished.

Given (/S(Q), a usurper wanting to claim the computation for themselves
would need to either start from Q and compute ¢» (@), or start from ngS(Q) and

compute %(fl)). Either way, they would perform at least half as much work as
if they had legitimately evaluated the function.

This scheme is easily generalized to several equally spaced mid-points along
the isogeny evaluation chain: if the isogeny is split into n pieces of equal size, a
usurper would need to do at least (n —1)/n times as much work as a legitimate
evaluator, thus linearly decreasing the incentive for usurpation.

It is possible, nevertheless, for a usurper to target a specific evaluator, by
generating a random u € Z/NZ, and choosing us¢; (P) as public key. Then, any
proof sQmniq for the legitimate evaluator is easily transformed to a proof usQmiq
for the usurper. This attack is easily countered by having all evaluators publish
a zero-knowledge proof of knowledge of their secret exponent s, along with their

public key s¢1(P).
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6 Challenges in implementing isogeny-based delay
functions

For a delay function to be useful, there need to be convincing arguments as
to why the evaluation cannot be performed considerably better than with the
legitimate algorithm.

In this sense, repeated squaring modulo an RSA modulus is especially appeal-
ing: modular arithmetic has been studied for a long time, and we are reasonably
confident that we know all useful algorithms and hardware in this respect; and
the repeated application of the function x — 2 is so simple that one may hope
no better algorithm exists (see [1], though).

Repeated squaring in class groups, already, raises more skepticism, as the
arithmetic of class groups is a much less studied area. This clearly had an impact
on Ethereum’s choice to go with RSA-based VDFs, despite class group based
ones not needing a trusted setup.

For isogeny based delay functions, we argue that the degree of assurance
seems to be nearly as good as for RSA based ones, although more research is
certainly needed. To support this claim, we give here more details on the way
the evaluation of ¢ is performed, that were omitted by [17].

For a start, we must choose a prime degree . Intuitively, the smaller, the
better, thus we shall fix £ = 2, although ¢ = 3 also deserves to be studied. A
2-isogeny is represented by rational maps of degree 2, thus we expect one isogeny
evaluation to require at least one multiplication modulo p. Our goal is to get as
close as possible to this lower bound, by choosing the best representation for the
elliptic curves, their points, and their isogenies.

It is customary in isogeny based cryptography to use curves in Montgomery
form, and projective points in (X : Z) coordinates, as these give the best formulas
for arithmetic operations and isogenies [13,28]. Montgomery curves satisfy the
equation

E : y*=2%+ A2® 4z,

in particular they have a point of order two in (0,0), and two other points of
order two with z-coordinates o and 1/, where « is a root of the polynomial
22+ Ax+1, and possibly lives in [F2. These three points define the three possible
isogenies of degree 2 starting from F. The Montgomery form is almost unique,
there being only six possible choices for the A coeflicient for a given isomorphism
class, corresponding to the three possible choices for the point to send in (0,0)
(each taken twice).

In our case, all three points (in projective coordinates) (0 : 1), (« : 1) and
(1: @), are defined over F,,, we thus choose to distinguish one additional point
by writing the curves as

Ey : v =x(r—a)(z —1/a),

with a # 0, 1. We call this a semi-Montgomery form; although it is technically
equivalent to the Montgomery form, 2-isogeny formulas are expressed in it more
easily. Recovering the Montgomery form is easy via A = —a — 1/a.
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Using the formula of Renes [28], we readily get the isogeny with kernel gen-

erated by («: 1) as
¢O&($7y):<xma_l7"')’ (2)

r—«

and its image curve is the Montgomery curve defined by A = 2 — 4a?. By
comparing with the multiplication-by-2 map on E,, we obtain the dual map to

P (a+1)? )
S (3)

dax

Pa(2,y) = (

It is clear from this formula that the kernel of q@a is generated by (0,0).
This formula is especially interesting, as we verify that its projective version
in (X : Z) coordinates only requires 2 multiplications and 1 squaring;:

$a(X:2)= (X +2)*: 4aX Z), (4)

and the squaring can be performed in parallel with one multiplication. The
analogous formulas for ¢, /, are readily obtained by replacing o — 1/c in the
previous ones, and moving around projective coefficients to minimize work.

But, if we want to chain 2-isogenies, we need a way to compute the semi-
Montgomery form of the image curve. For the given A4 = 4a? — 2, direct calcu-
lation shows that the two possible choices are

a':2a<ai\/a2—1)—1:(a:t\/a2—1)>2. (5)

As we know that (0,0) generates the dual isogeny to ¢, neither choice of o’
will define a backtracking walk. Interestingly, Castryck and Decru [10] show that
when p =7 mod 8, if o € F), if ¢, is a horizontal isogeny (see definition in [10]),

and if o is defined as )
o = (a+ Va2 — 1))

where va? — 1 denotes the principal square root, then o € F,, and ¢, is hor-
izontal too. This gives a very simple algorithm to perform a non-backtracking
2-isogeny walk staying in the IFp-restricted isogeny graph, i.e., a walk on the
2-crater. Alternatively, if a pseudo-random walk in the full supersingular graph
is wanted, one simply takes a random square root of a? — 1.

Using these formulas, the isogeny walk ¢ : E — FE’ is simply represented by
the list of coefficients o encountered, and the evaluation of ¢ using Formula (4)
costs 2 multiplications and 1 parallel squaring per isogeny.

Implementation challenges. Following the recommendations of [17], for a
128-bits security level we need to choose a prime p of around 1500 bits, which
is comparable to the 2048-bits RSA arithmetic targeted by Ethereum, although
possibly open to optimizations for special primes.

In software, the latency of multiplication modulo such a prime is today
around lus. The winner of the Ethereum FPGA competition [33] achieved a



22 Jeffrey Burdges and Luca De Feo

latency of 25ns for 2048-bits RSA arithmetic. Assuming a pessimistic baseline of
50ns for one 2-isogeny evaluation, for a target delay of 1 hour we need an isogeny
walk of length = 7-10'°. That represents as many coefficients o to store, each
occupying & 1500 bits, i.e., = 12TiB of storage!

We stress that only the evaluation key ek requires such large storage, and thus
only evaluators (running extraction in Delay Encryption, or evaluating a VDF)
need to store it. However any FPGA or hardware design for the evaluation of
isogeny-based delay functions must take this constraint into account, and provide
fast storage with throughputs of the order of several GiB/s.

At present, we do not know any configuration that pushes these 2-isogeny
computations into being memory bandwidth bound. In fact, computational ad-
versaries only begin encountering current DRAM and CPU bus limits when
going an order of magnitude faster than the hypothetical high speeds above.

An isogeny-based VDF could dramatically reduce storage requirements by
doing repeated shorter evaluations, and simply hashing each output to be the
input for the next evaluation. We sacrifice verifier time by doing so, but verifiers
remain fast since they still only compute two pairings per evaluation. We caution
however that this trick does not apply to Delay Encryption.

In [17], De Feo et al. describe an alternative implementation that divides
the required storage by a factor of 1244, at the cost of slowing down evaluation
by a factor of at least log,(1244). While this trade-off could be acceptable in
some non-fully distributed applications, it seems incompatible with applications
where evaluators want to get to the result as quickly as possible, e.g., when
several evaluators are competing to compute the output.

It would be very interesting to find compact representations of very long
isogeny chains which do not come at the expense of efficiently evaluating them.

Optimality. Formula (4) is, intuitively, almost optimal, as we expect that a
2-isogeny in projective (X : Z) coordinates should require at least 2 multipli-
cations. And indeed we know of at least one case where a 2-isogeny can be
evaluated with 2 parallel multiplications: the isogeny of kernel (0 : 1) is given by

wie) = (), (6)

x
or, in projective coordinates,
$o(X : Z) = ((X - 2)*: XZ), (7)

which only requires one parallel multiplication and squaring.

We tried to construct elliptic curve models and isogeny formulas that could
evaluate 2-isogeny chains using only 2 parallel multiplications per step, however
any formula we could find had a coefficient similar to « intervene in it, and thus
bring the cost up by at least one multiplication.

Intuitively, this is expected: there are exponentially many isogeny walks,
and the coeflicients a must necessarily intervene in the formulas to distinguish
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between them. However this is far from being a proof. Even proving a lower
bound of 2 parallel multiplications seems hard.

It would be interesting to prove that any 2-isogeny chain needs at least 2
sequential multiplications for evaluation, or alternatively find a better way to
represent and evaluate isogeny chains.

7 Conclusion

We introduced a new time delay primitive, named Delay Encryption, related to
Time-lock Puzzles and Verifiable Delay Functions. Delay Encryption has some
interesting applications such as sealed-bid auctions and electronic voting. We
gave an instantiation of Delay Encryption using isogenies of supersingular curves
and pairings, and discussed several related topics that also apply to the VDF of
De Feo, Masson, Petit and Sanso.

Several interesting questions are raised by our work, such as, for example,
clarifying the relationship between Delay Encryption, Verifiable Delay Functions
and Time-lock Puzzles.

Like the isogeny-based VDF, our Delay Encryption requires a trusted setup.
We described an efficient way to perform a distributed trusted setup, however
the associated zero-knowledge property relies on a non-falsifiable assumption
which requires more scrutiny.

The implementation of delay functions from isogenies presents several prac-
tical challenges, such as needing very large storage for the public parameters.
On top of that, it is not evident how to prove the optimality of isogeny formulas
used for evaluating the delay function. While we gave here extremely efficient
formulas, these seem to be at least one multiplication more expensive than the
theoretical optimum. More research on the arithmetic of elliptic curves best
adapted to work with extremely long chains of isogenies is needed.

Finally, we invite the community to look for more constructions of Delay
Encryption, in particular quantum-resistant ones.
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