
1

Efficient Software Implementation of the SIKE
Protocol Using a New Data Representation

Jing Tian, Piaoyang Wang, Zhe Liu, Jun Lin, Zhongfeng Wang, and Johann Großschädl

Abstract—Thanks to relatively small public and secret keys, the Supersingular Isogeny Key Encapsulation (SIKE) protocol made it into
the third evaluation round of the post-quantum standardization project of the National Institute of Standards and Technology (NIST).
Even though a large body of research has been devoted to the efficient implementation of SIKE, its latency is still undesirably long for
many real-world applications. Most existing implementations of the SIKE protocol use the Montgomery representation for the
underlying field arithmetic since the corresponding reduction algorithm is considered the fastest method for performing
multiple-precision modular reduction. In this paper, we propose a new data representation for supersingular isogeny-based
Elliptic-Curve Cryptography (ECC), of which SIKE is a sub-class. This new representation enables significantly faster implementations
of modular reduction than the Montgomery reduction, and also other finite-field arithmetic operations used in ECC can benefit from our
data representation. We implemented all arithmetic operations in C using the proposed representation such that they have constant
execution time and integrated them to the latest version of the SIKE software library. Using four different parameters sets, we
benchmarked our design and the optimized generic implementation on a 2.6 GHz Intel Xeon E5-2690 processor. Our results show that,
for the prime of SIKEp751, the proposed reduction algorithm is approximately 2.61 times faster than the currently best implementation
of Montgomery reduction, and our representation also enables significantly better timings for other finite-field operations. Due to these
improvements, we were able to achieve a speed-up by a factor of about 1.65, 2.03, 1.61, and 1.48 for SIKEp751, SIKEp610,
SIKEp503, and SIKEp434, respectively, compared to state-of-the-art generic implementations.

Index Terms—Supersingular Isogeny Diffie-Hellman (SIDH) key exchange, Elliptic Curve Cryptography (ECC), modular reduction
operation, Montgomery representation, Barrett representation, Post-Quantum Cryptography (PQC).

F

1 INTRODUCTION

Due to recent progress in building quantum circuits, a
large-scale quantum computer might become reality within
the next 10 to 20 years. The hard mathematical prob-
lems underpinning the security of widely-used public-
key cryptosystems like the Rivest-Shamir-Adleman (RSA)
algorithm [1] and Elliptic-Curve Cryptography (ECC) [2]
could be easily solved by using Shor’s algorithm [3] on
a large-scale quantum computer. These recent develop-
ments have, in turn, accelerated the establishment of Post-
Quantum Cryptography (PQC), a relatively new sub-area
or cryptography concerned with the design and analysis
of cryptographic algorithms that will remain secure in the
dawning era of quantum computing. In 2017, the National
Institute of Standards and Technology (NIST) [4] has started
an initiative to evaluate and standardize post-quantum
cryptographic algorithms. The Supersingular Isogeny Key
Encapsulation (SIKE) protocol [5] is an alternate candidate
for public-key encryption and key-establishment in the third
round of the evaluation process. This protocol has the
advantage of relatively short public and secret key sizes,
making it highly compatible with conventional ECC pro-
tocols like ECDH key exchange. SIKE is based on the Su-

• J. Tian, P. Wang, J. Lin, and Z. Wang are with the School of Elec-
tronic Science and Engineering, Nanjing University, China. Email:
{tianjing, jlin, zfwang}@nju.edu.cn, piaoyang wang@smail.nju.edu.cn

• Z. Liu is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, China. Email:
zhe.liu@nuaa.edu.cn

• J. Großschädl is with the University of Luxembourg, L–4365 Esch-sur-
Alzette, Luxembourg. Email: johann.groszschaedl@uni.lu

(Corresponding author: Jun Lin and Zhongfeng Wang.)

persingular Isogeny Diffie-Hellman (SIDH) key exchange,
which was proposed by Jao and De Feo in 2011 [6] as a post-
quantum cryptosystem whose security rests on the difficulty
of finding isogenies between supersingular elliptic curves.
In essence, SIKE applies a Fujisaki-Okamoto transformation
from [7] on SIDH to obtain a Key-Encapsulation Mechanism
(KEM) that is secure against Chosen Ciphertext Attacks
(CCA) and shows increased robustness against physical
attacks [8], [9], [10]. State-of-the-art parameters for SIKE
use supersingular curves over prime fields of a length of
between 434 and 751 bits. The main drawback of SIKE is
high computational cost and long latency, caused mainly
by the serial computation of these isogenies, which forms
a serious bottleneck for practical applications. Therefore,
techniques to accelerate SIDH and SIKE are an important
topic in PQC research.

Over the past few years, many researchers have devised
optimizations for the SIDH/SIKE protocol for both soft-
ware [11], [12], [13], [14], [15], [16], [17] and hardware [18],
[19], [20], [21], [22], [23], [24] platforms. The very first
implementation of SIDH was introduced almost 10 years
ago by Jao [11]. It uses the GMP library for the field
arithmetic and has served as starting point and reference
for subsequent developments. The latest version provided
in [17] is commonly recognized as the fastest software
implementation and supports many state-of-the-art super-
singular isogeny cryptographic schemes. In addition, the
library in [17] covers implementations of SIKE on Intel
x64, ARM, and FPGA platforms, which also combine most
optimization techniques presented in the open literature.
In recent years, various improvements have been proposed

2

to speed up the SIKE protocol and make it more practical.
However, all these implementations are still more than one
order of magnitude slower than alternative PQC candidates.
It should be noted that almost all existing implementations
are based on the Montgomery representation for the field
arithmetic. The main reason is that the associated reduction
algorithm [25] is generally regarded as the most efficient
technique for performing modular reduction. Furthermore,
the Montgomery representation also allows efficient imple-
mentation of other field-arithmetic operations.

The finite fields used in supersingluar isogeny elliptic
curve cryptography are quadratic extension fields of a prime
field Fp given by a prime of the form p = f · aeAbeB ± 1,
where a and b are small primes (e.g., a = 2, b = 3), eA
and eB are positive integers, and f is a small cofactor.
Considering the special structure of these primes, various
research efforts have been made to improve the efficiency of
the reduction modulo p. In [26], Karmakar et al. proposed
a modular reduction technique for primes of the form
p = 2 · 2eA3eB − 1, where eA and eB must be even. They
represented the field elements in quadratic form based on
the unconventional radix R = 2eA/23eB/2, and derived an
efficient formula to replace the modulo-p operations by two
modulo-R operations. The implementation of these two re-
duction operations was inspired by Barrett’s technique [27]
and involves a special division algorithm. According to their
experiments, the new reduction method achieved better
performance than the original Barrett technique and also
outperformed Montgomery’s reduction method. Liu et al.
presented in [23] two improved variants of Barrett reduc-
tion based on the unconventional quadratic representation
from [26] and demonstrated their efficiency for hardware
implementation. Also Bos et al. [28] analyzed and com-
pared techniques to perform efficient arithmetic modulo the
special primes used in SIKE and came to the conclusion
that approaches based on Montgomery reduction are to be
preferred.

Our contributions: In this paper, we further explore the
data representation based on an unconventional radix for
the implementation of supersingular isogeny elliptic curve
cryptosystems. We transform the conventional structure of
primes and extend the orders from quadratic to any orders.
Based on this representation, we propose a low-complexity
method for modular reduction according to the improved
Barrett reduction algorithm. This new method shows a great
potential to outperform the best Montgomery reduction
algorithm. Furthermore, our special data representation is
also applicable to other field-arithmetic operations. We im-
plemented the proposed arithmetic algorithms in software
and integrated them to the SIKE protocol. The entire imple-
mentation has constant execution time in order to withstand
timing attacks.

The main contributions are summarized as follows:
1) A general data representation of field elements is pro-

posed for supersingular isogeny elliptic curves, which
can facilitate faster computations of the field arithmetic
operations.

2) An efficient modular reduction algorithm is derived
based on the proposed data representation with several
novel ideas. This new reduction method achieves a sig-
nificant complexity reduction and shows clear superi-

ority over the fastest Montgomery reduction algorithm
when adopting a high-order representation.

3) Other field operations are also deduced based on the
proposed data representation. The operations on the
new form require fewer computations than the conven-
tional ones.

4) A new SIKE implementation is presented by converting
the input parameters to the new data representation
and using the proposed field arithmetic algorithms.

We benchmark these implementations on a 2.6 GHz Intel
Xeon E5-2690 processor and set the order of representation
to 12. All tests of these algorithms using the parameters for
SIKEp751 (NIST security level 5) passed successfully. The
proposed modular reduction algorithm achieves a 2.61-fold
speed-up over the fastest Montgomery reduction algorithm
and also the other tested field-arithmetic operations are
computed faster than those in previous works. In addition,
the full implementation for SIKEp751 is roughly 1.65 times
faster than the optimized implementation provided in [17].

Paper organization: The rest of this paper is organized
as follows. Section 2 gives a brief review of the SIDH and
SIKE protocols, and the basic field-arithmetic operations.
The proposed data representation and the efficient modular
reduction algorithm are presented in Section 3. The finite-
field arithmetic algorithms based on the new data represen-
tation are derived in Section 4. In Section 5, experimental
results and comparisons are provided. Finally, Section 6
concludes the paper.

2 PRELIMINARIES

As mentioned in the last section, the SIKE protocol is a CCA-
secure KEM based on the SIDH key exchange of Jao and De
Feo [11]. By analyzing the operations of this protocol, it can
be easily found that the large-degree isogeny computations
dominate the overall execution time. Those computations
over elliptic curves can be divided into the basic arithmetic
operations in a quadratic extension field Fp2 , where p is a
prime of the form p = f · aeAbeB ± 1. The arithmetic in
Fp2 can be further subdivided into arithmetic operations in
the prime field Fp. Usually, arithmetic in Fp is implemented
using the Montgomery representation [25] since the asso-
ciated reduction algorithm is considered to have the best
performance.

2.1 The SIDH Protocol
The SIDH key-exchange protocol allows two parties, e.g.
Alice and Bob, to securely communicate with each other
based on a shared secret key negotiated through public
communication. This shared secret is the j-invariant of two
isomorphic supersingular elliptic curves obtained from a
public supersingular elliptic curve E. The main steps of this
protocol are summarized in Alg. 1, where the operations
in the left column are computed by Alice and those in the
right column by Bob. The public supersingular elliptic curve
is usually given as a Montgomery curve of the form

E/Fp2 : Dy2 = x3 + Cx2 + x, (1)

where C,D ∈ Fp2 , D(C2 − 4) 6= 0, and p = f · aeAbeB ±
1. The two pairs of independent public points {PA, QA}

3

Algorithm 1: The SIDH key-exchange protocol [6].

Input: Public parameters: E, {PA, QA}, and {PB , QB}.
Alice Bob

1: Generate both parties’ public and secret keys with the
corresponding public parameters
skA

$←− {0, 1}eA skB
$←− {0, 1}eB

pkA ←− isogenA(skA) pkB ←− isogenB(skB)

2: Exchange the public keys and compute the shared secret key
j ←− isoexA(pkB , skA) j ←− isoexB(pkA, skB)
ss←− H(j,M) ss←− H(j,M)

3: Communicate with each other by using the shared secret key
mA ∈ {0, 1}M mB ∈ {0, 1}M
cA ←− ss⊕mA cB ←− ss⊕mB

mB ←− cB ⊕ ss mA ←− cA ⊕ ss
Output: Alice’s received message mB and Bob’s received message

mA.

and {PB , QB} are all on E/Fp2 and satisfy < PA, QA >=
E[aeA] and < PB , QB >= E[beB], respectively.

In the first step, both parties generate their public and
secret keys with the corresponding public parameters. Al-
ice randomly chooses her secret key skA in the keyspace
{0, 1, ..., 2eA − 1}. Her public key pkA is obtained by using
the isogenA function, which is described in detail in the
SIKE protocol specification document [29] along with the
other three isogeny computation functions. The isogenA
function for Alice is used to iteratively calculate isogenous
curves based on points PA and QA via Vélu’s formulas [30]
and find the images of points QB and PB on these curves.
The pair of images over the isogenous curve in the last
iteration is output as public key. Analogously, Bob gets his
secret and public keys in the same way by using his cor-
responding parameters. In the second step, they exchange
their public keys and calculate their shared secret key j
separately with the isoexl (l = A or B) function. The isoexl
function is similar to isogenl and also requires to compute
isogenous curves iteratively. However, they differ in their
initial parameters and the outputs. The isoexl function is
initialized with the pair of points of the opposite party and
only needs to output the j-invariant of the last isogenous
curve, computed as:

j =
256(C2 − 3)3

C2 − 4
. (2)

Assuming the plaintext isM bits long, the shared secret ss is
derived from the j-invariant with the help of a hash function
H in such a way that ss has a length of M bits. Alice and
Bob can now securely communicate with each other thanks
to their shared secret key as shown in Step 3: One party
encrypts a plaintext into a ciphertext by XORing it with ss
and sends it to the other party. The other party recovers the
plaintext by applying the XOR operation on the ciphertext
and ss.

2.2 The SIKE Protocol
Though SIDH is able to resist quantum cryptanalysis, it
becomes insecure when one party reuses its secret key and
is also a relatively easy target for physical attacks [8], [9],
[10]. SIKE overcomes these weaknesses with the help of a
variant of the Fujisaki-Okamoto transform [7], which turns

the original SIDH key exchange protocol into a CCA-secure
KEM protocol [29]. Both protocols are very similar from an
arithmetic point of view, but only SIKE remains secure with
static keys and provides indistinguishability in the CCA
scenario.

Algorithm 2: The SIKE protocol as specified in [29].

Input: Public parameters: E, {PA, QA}, and {PB , QB}.
Alice Bob

1: Generate both parties’ public and secret keys, Alice’s message,
and Bob’s fake message

skB
$←− {0, 1}eB

pkB ←− isogenB(skB)
mA ∈ {0, 1}M fmB ∈ {0, 1}M
skA ←− H({mA, pkB}, eA)
pkA ←− isogenA(skA)

2: Exchange the public keys and compute the shared secret key
j ←− isoexA(pkB , skA) j ←− isoexB(pkA, skB)
ss←− H(j,M) ss←− H(j,M)

3: Send the ciphertext from Alice to Bob by using the shared
secret key and compute the output plaintext by Bob with the
help of fake message
cA ←− ss⊕mA

m′
A ←− cA ⊕ ss

sk′A ←− H({m′
A, pkB}, eA)

pk′A ←− isogenA(sk′A)
sm← H({mA, pkA, cA},K) sm′ ← H({m′

A, pk
′
A, cA},K)

sm′
B ← H({fmB , pkA, cA},K)

smAB =

{
sm′, pk′A = pkA

sm′
B , pk

′
A 6= pkA

Output: Bob’s calculated message smAB .

The main course of SIKE is specified in Alg. 2, whereby
it is assumed that Alice sends a message to Bob. Similarly as
before, we divide this protocol into three main steps, but in
order to guarantee security, some extra operations are added
compared to SIDH. In the first step, Bob generates his secret
and public key in the same way as in SIDH (but contrary
to SIDH, the secret key can be securely used repeatedly).
The keys of Alice are produced dynamically, based on the
delivered message and Bob’s public key. Furthermore, Bob
generates a fake message for use in the third step. The
second step is exactly the same as in SIDH, namely the j-
invariant is obtained by a computation that uses one’s own
secret key and the other party’s public key as input. Both
Alice and Bob hash the j-invariant to get the shared secret
ss. Then, in the third step, Alice encrypts her message in
two ways, namely once with the shared secret ss as cA and
the second time with the hash output H({mA, pkA, cA},K)
as sm, where K represents the number of (classical) bits of
security. She keeps sm as their new shared key and sends
the ciphertext cA to Bob. After receiving cA, Bob recovers
Alice’s message and computes her secret and public key,
respectively. Then, he encrypts the recovered message m′A
and the fake message fmB in the same way as Alice to
obtain sm′ and sm′B , respectively. He chooses sm′ or sm′B
as the output by judging whether Alice’s recovered public
key is equal to the received public key. This protocol has
been proven CCA secure and can be protected effectively
against side-channel attacks as demonstrated by Zhang et
al. in [31].

4

2.3 Finite-Field Arithmetic Operations for SIDH/SIKE

The finite-field operations that are most relevant for SIDH
and SIKE are modular addition, modular subtraction, mod-
ular negation, modular multiplication, modular division,
and modular inversion. Among these operations, the first
three are usually far simpler to implement than the latter
three. The modular division can be composed of a modu-
lar multiplication and a modular inversion. According to
Fermat’s little theorem [32], a modular inversion can be
carried out by computing A−1 ≡ Ap−2 mod p, which boils
down to a sequence of modular multiplications. Therefore,
improving the execution time of the field multiplication is
an effective way to accelerate more complicated operations,
especially when they involve many multiplications. The
four isogen-functions of SIDH and SIKE exactly belong to
this category.

A modular multiplication can be divided into two parts:
multiplication and modular reduction. For the multiplica-
tion part, a number of algorithms with lower complexity
than the schoolbook method have been proposed, e.g. the
algorithm of Karatsuba [33], Toom-Cook [34], Schönhage-
Strassen [35], and Fürer [36], which are suitable for im-
plementation when the operands are sufficiently large. On
the other hand, for the modular reduction operation, there
exist two well-known algorithms, namely the Montgomery
reduction [25] and Barrett’s reduction technique [27].

Since implementing a multiplication for operands of a
large bit-length N requires many multiply and add instruc-
tions (much more than for a modular addition or subtrac-
tion), we will mainly use the number of executed multiply
instructions to analyze the complexity of an algorithm.

2.3.1 Montgomery Reduction Algorithm

The original Montgomery reduction algorithm [25] is shown
in Alg. 3, whereby the input operand c to be reduced has to
satisfy 0 ≤ c < Rp and the Montgomery radix R must be
relatively prime to p, i.e. gcd(p,R) = 1. When implemented
on a processor with a word-size of w bits, the prime p
consists of u = dN/we digits and we have uw ≥ N .
Computing the reduction as shown in Alg. 3 requires 2u2

digit-multiplications.

Algorithm 3: Montgomery reduction [25].

Input: An operand c ∈ [0, Rp), a modulus p with
2N−1 < p < 2N = R, and a pre-computed constant
p′ = (−p−1) mod R.

1: t = ((c mod R) · p′) mod R
2: r = (c+ t · p)/R
3: if r ≥ p then
4: r = r − p
5: end if

Output: The residue r = cR−1 mod p.

The multi-precision version of Montgomery reduction,
first described in [25] and then further improved in [37], has
lower complexity than the standard Montgomery reduction
and needs only u2 + u digit-multiplications. Alg. 4 speci-
fies the multi-precision Montgomery reduction, which uses
R = 2uw as Montgomery radix and replaces all operations

Algorithm 4: Multi-precision Montgomery reduc-
tion [37].

Input: An operand c ∈ [0, Rp), a modulus p with
2N−1 < p < 2N ≤ 2uw = R, and a pre-computed
constant p′ = (−p−1) mod 2w.

1: for i = 0 to u− 1 do
2: t = ((c mod 2w) · p′) mod 2w

3: c = (c+ t · p)/2w
4: end for
5: r = c
6: if r ≥ p then
7: r = r − p
8: end if

Output: The residue r = cR−1 mod p.

by R in Alg. 3 with a loop performing operations by 2w. As
mentioned earlier, the prime p used in SIDH and SIKE has
usually the form p = f ·aeAbeB±1. If a = 2 and w ≤ eA, we
have p mod 2w = ±1. Therefore, the constant p′ is equal to
∓1 and the multiplication by p′ in line 3 can be omitted,
which reduces the number of digit-multiplications to u2.
When w is the word size of the target processor architecture,
we usually havew � eA. This observation makes it possible
to further reduce the complexity by refining the second mul-
tiplication to get rid of a loop-carried dependence, which
was studied in full detail in [15] and [28]. More concretely,
the complexity can be cut down to u(u− δ), where δ is close
to u/2. For example, when p = 23723239 − 1 and w = 64,
we have u = 12 and δ = 5, and the number of digit-
multiplications decreases from 144 to only 84. Note that this
method has been adopted by the designer of SIKE [17].

The output of the Montgomery reduction is not c mod p
but cR−1 mod p, i.e. the result carries the factor R−1. This
makes necessary to convert the involved operands into the
so-called Montgomery form at the beginning of an arith-
metic operation, which is done by multiplying each operand
by R. It has been shown that all prime-field operations can
be carried out in Montgomery form in the same way as
when using the normal representation. At the end of the
arithmetic operation, the output has to be re-converted by
dividing it by R.

2.3.2 Barrett Reduction Algorithm

The basic form of the Barrett reduction algorithm [27] is
presented in Alg. 5, where γ is an arbitrary integer. When
the absolute value of γ is small, this algorithm needs about
3u2 digit-multiplications.
The authors of [38] improved Barrett’s model for the quo-
tient q (in Step 1 of Alg. 5) by introducing two variable
parameters σ and ρ. The quotient is written as:

q =
⌊ c
p

⌋
=
⌊ c

2N+ρ
2N+σ

p

2σ−ρ

⌋
≥
⌊b c

2N+ρ cb 2
N+σ

p c
2σ−ρ

⌋
(3)

Assuming the estimation of the quotient is q̂ =

bb c
2N+ρ cb 2

N+σ

p c/2
σ−ρc, the maximum error on the esti-

mated quotient can be deduced according to the following
formula from [39]:

5

Algorithm 5: Barrett reduction [27].

Input: An operand c ∈ [0, 22N+γ), a modulus p with
2N−1 < p < 2N , and a pre-computed constant
λ = b22N+γ/pc.

1: q = b c·λ
22N+γ c

2: r = c− q · p
3: if r ≥ p then
4: r = r − p, q = q + 1
5: end if

Output: The quotient q = bc/pc and the remainder
r = c mod p.

q ≥ q̂ > q − c

2N+σ
− 2N+ρ

p
+ 2ρ−σ − 1. (4)

Note that 0 ≤ c < 22N+γ and 2N−1 < p < 2N . Thus, this
equation satisfies:

q ≥ q̂ > q − 22N+γ

2N+σ
− 2N+ρ

2N−1
+ 2ρ−σ − 1 (5)

= q − 2N+γ−σ − 2ρ+1 + 2ρ−σ − 1.

It can be easily shown that when σ ≥ N + γ + 1 and
ρ ≤ −2, the estimation error is no larger than 1. The equality
symbols in the previous equations were adopted to simplify
the formulae. In this way, the modified equation for the
estimated quotient becomes:

q̂ = b
b c
2N−2 cb 2

2N+γ+1

p c
2N+γ+3

c. (6)

When the absolute value of γ is small, this improved Barrett
reduction costs about 2u2 digit-multiplications, which is
close to the original Montgomery reduction, but still inferior
to the best Montgomery variant.

2.3.3 Improved Barrett Reduction Algorithm for 2x3y

Karmakar et al. refined in [26, Section 2.4] the original Barrett
method (Alg. 5) to obtain an efficient division and reduction
technique for moduli of the form 2x3y (where x and y
are positive integers and x ≈ log2(3

y)), which is a sub-
operation of their special modular reduction algorithm for
isogeny-based cryptography. Our new reduction algorithm
adopts the approach from [26], as will be detailed in the next
section.

The Improved Barrett Reduction (IBR) shown in Alg. 6
combines ideas from [26], [38], and [40]. More concretely, the
splitting method in Step 1 is based on [26], the estimation
method for the quotient in Step 2 is taken from [38], and the
simplifications in Steps 3, 4, and 8 were originally described
in [40]. The modulus is denoted as m (to distinguish it from
the prime p) and the bit-length of the input c is assumed to
be 2W + γ. It can be seen that the first multiplication (Step
2) is a (W + γ+2)× (W + γ+1)-bit multiplication and the
second one (Step 3) a (W2+1)×W2-bit multiplication. When
the absolute value of γ is small and W1 ≈ W2 ≈ W/2, the
IBR has a cost of 1.25 W ×W -bit multiplications. It should
be noted that the IBR is not directly used as independent

Algorithm 6: Improved Barrett reduction (IBR).

Input: An operand c ∈ [0, 22W+γ); a modulus m = 2x3y ,
where W1 = x, W2 = dlog2(3y)e, W1 +W2 =W , and
m′ = 3y ; and a pre-computed constant
λ = b22W+γ+1/mc.

1: t = bc/2W1c, s = c mod 2W1

2: q = b
b t

2W2−2 c·λ
2W+γ+3 c

3: t1 = (q mod 2W2+1) ·m′
4: r = ((t mod 2W2+1)− (t1 mod 2W2+1)) mod 2W2+1

5: if r ≥ m′ then
6: r = r −m′, q = q + 1
7: end if
8: r = r · 2W1 + s

Output: The quotient q = bc/mc and the remainder
r = c mod m.

reduction algorithm for the SIKE protocol, but as a sub-
operation to compute the quotient and remainder. There-
fore, it can not be easily replaced by a Montgomery-based
modular reduction algorithm. Table 1 shows a comparison
of the complexity (in terms of the normalized number of
W + W -bit additions and W × W -bit multiplications) of
different Barrett-based reduction algorithms, where γ is
approximated to zero and W1 ≈ W2 ≈ W/2. We can see
that the proposed IBR is the most efficient algorithm for
moduli of the form 2x3y .

TABLE 1
Comparison of the Normalized Number of W +W -bit Additions and
W ×W -bit Multiplications of Different Barrett-Based Reduction

Algorithms

Reference [27] [38] [26] [40] IBR
Norm.

(W +W) 3 3 2.5 1.5 1

Norm.
(W ×W) 3 2 2 1.75 1.25

3 PROPOSED DATA REPRESENTATION FOR SU-
PERSINGULAR ISOGENY BASED CRYPTOGRAPHY

3.1 Preview of the New Data Representation

Firstly, we rewrite the modulus p as:

p = f · aeAbeB ± 1

= f · a−αb−βaeA+αbeB+β ± 1

= f ′ ·Rn ± 1, (7)

where f ′ = f · a−αb−β , α and β are small positive integers,
n = gcd(eA + α, eB + β), n ≥ 1, and R = a

eA+α

n b
eB+β

n . We
represent a field element A ∈ Fp using the unconventional
radix R as

A =
n−1∑
j=0

aj ·Rj , (8)

where aj ∈ [0, R− 1] for 0 < j < n− 1, an−1 ∈ [0, f ′R− 1],
and a0 ∈ [0, R ± 1], with the actual sign corresponding to
the sign in the equation for p, i.e. Eq. (7). The correctness of
this representation can be easily validated.

6

Our goal is to build a mapping that is defined for all
elements of Fp. When p = f · aeAbeB − 1, the expression for
A in Eq. (8) satisfies 0 ≤ A ≤ p, whereas any elementA ∈ Fp
has to be in [0, p−1], i.e. 0 ≤ A < p. Therefore, except for the
largest value p, the values of the representation given by Eq.
(8) can be exactly mapped to elements of Fp. Similarly, when
p = f · aeAbeB + 1, the new representation can also express
all elements of Fp, but there is no one-to-one mapping
in some cases. The proposed data representation can be
regarded as a kind of redundant number system. We utilize
the advantages of this representation for the reduction using
the special form of the prime. All field-arithmetic operations
needed for SIKE can be correctly performed using this new
data representation. In the following, we will demonstrate
how the proposed representation facilitates the implemen-
tation of arithmetic operations.

3.2 Deduction of A Low-Complexity Modular Reduction
Algorithm
As mentioned before, the modular reduction is the most
important of the basic arithmetic operations, and therefore
we focus on it first. Let us consider the two field elements
A =

∑n−1
j=0 aj · Rj and B =

∑n−1
j=0 bj · Rj , where aj and bj

are the order-j coefficients of A and B, respectively. When
multiplying the two integers, we have:

C = A×B =
n−1∑
j=0

aj ·Rj ×
n−1∑
j=0

bj ·Rj

=
n−1∑
j=0

j∑
i=0

aibj−i ·Rj +
2n−2∑
j=n

n−1∑
i=j−n+1

aibj−i ·Rj

=
n−1∑
j=0

cj ·Rj +
2n−2∑
j=n

cj ·Rj

= cn−1 ·Rn−1 +
n−2∑
j=0

(cj + cn+jR
n)Rj

= cn−1 ·Rn−1 +
n−2∑
j=0

(cj +
cn+j
f ′

((f ′Rn ± 1)∓ 1))Rj , (9)

where cj for 0 ≤ j ≤ 2n − 2 is made up of multiply-
accumulate terms based on the coefficients of A and B. For
the modulus p = f ′ ·Rn ± 1, C mod p is congruent to

C ≡ cn−1Rn−1 +
n−2∑
j=0

(cj ∓
cn+j
f ′

) ·Rj mod p. (10)

The reduction operation also involves a conversion of the
coefficients to bring them to the standard ranges as defined
in Eq. (8). It should be noted that this equation is a general
formula for any p of the form given by Eq. (7). For example,
when f ′ = 2, n = 2, and p = 2 · R2 − 1, this result
is equivalent to the equation derived by Karmakar et al.
for their finite-field multiplication [26], which has been
proven less efficient than the two multiplication techniques
from [40]. As analyzed in [41], it seems that the larger n, the
faster multiplication speeds can be achieved.

Note that the constant modular division 1
f ′ mod p,

whose result ranges in (0, p), can be pre-computed. Clearly,
when f ′ is restricted to an integer, the ideal case is f ′ = 1.

The other cases would add a multiplication to each term and
make the raw coefficient values large, which will increase
the overall complexity of the reduction. When assuming
f ′ = 1, we have p = Rn ± 1. Since the modulus p must be
prime, the minus sign is not possible for n > 1. However,
the existing SIKE parameters adopt primes of the form
p = 2eA3eB − 1, where eA and eB are co-prime. When we
directly use f ′ = 1 for the formula of Eq. (10), the modular
reduction will not be very efficient since n can only be set to
1. In the following, we will demonstrate that this equation
can become very simple for the primes of the SIKE when
with n > 1.

Our goal is to make the modular division 1
f ′ mod p sim-

ple and fast. Obviously, the above approach is not efficient
enough for the existing SIKE parameters. However, when
we assume that f ′ is not an integer but a fraction with the
numerator equal to 1, this problem can be easily solved. We
found that, when small positive integers α and β are added
to the exponents eA and eB (and f ′ is adapted accordingly),
the exponents will not be co-prime and the greatest com-
mon divisor will usually be larger than 2 (specified by the
parameter n in the fifth row of Table 3). In this case, we
have f ′ = 2−α3−β and f as defined in Eq. (7) equals 1.
When going back to Eq. (10) with p = 2−α3−β ·Rn − 1, we
get

C ≡ cn−1Rn−1 +
n−2∑
j=0

(cj + cn+j2
α3β)Rj mod p. (11)

3.2.1 Multiplication Part
Equation (11) can be unfolded to

C ≡
n−1∑
i=0

aibn−i−1 ·Rn−1 + (12)

n−2∑
j=0

(j∑
i=0

aibj−i +
n−1∑
i=j+1

aibj−i+n · 2α3β
)
·Rj mod p.

Here, the process of computing the raw coefficients is de-
fined as the integer multiplication operation. It should be
noted that these multiply-accumulate terms look the same
as those of the traditional unfolded multiplication, but their
radices are different and the bit width of a coefficient in our
algorithm equals dNn e. Since the coefficients are independent
from each other, our algorithm does not need to propagate
carries from lower-order to higher-order coefficients. Addi-
tionally, as the coefficients are relatively small, a one-level
Karatsuba-like optimization technique can be straightfor-
wardly applied to the coefficient-product combinations of
the form aibj + ajbi (i 6= j) since

aibj + ajbi = (ai + aj)(bi + bj)− aibi − ajbj . (13)

Note that the number of such combinations is (n2 − n)/2.
By using this method, the number of coefficient-products is
reduced from n2 to (n2 − n)/2 + n = n(n + 1)/2. Since
α and β are generally very small (typically either 0 or 1),
the constant multiplications in Eq. (12) boil down to simple
additions and shift operations.

Microsoft’s SIDH/SIKE library [17] implements the inte-
ger multiplication based on Comba’s technique [42], which
is a special scheduling method to effectively execute the

7

multiplication and accumulation of partial products. The
analysis in [15] deems this technique more promising than
the Karatsuba algorithm when the length of the operands
is small to moderate. However, the number of multiply
instructions to be executed is not reduced by Comba’s
scheduling method. In addition, a large number of carries
have to be handled in the iterations. Thus, it is reasonable
to assume that the proposed multiplication method can be
faster than the previous one. Moreover, it should be noted
that our multiplication method is naturally more suitable
for massively-parallel implementations to achieve higher
speed.

3.2.2 Low-Complexity Modular Reduction Algorithm
Regardless of which method is used to compute the raw co-
efficients of the product, the procedure of modular reduction
for these coefficients is almost the same. Without loss of gen-
erality, we use a prime of the form p = 2eA3eB−1 to explain
the reduction. Suppose an integer C =

∑n−1
j=0 cj · Rj with

raw coefficients cj computed via Eq. (12). All coefficients of
the final result are required to be in the defined ranges, i.e.
cj ∈ [0, R− 1] for 0 ≤ j < n− 1 and cn−1 ∈ [0, f ′R− 1]. To
achieve this, the coefficients with index 0 ≤ j < n−1 have to
be reduced by modulo R, whereby the remainders are kept
as the corresponding new coefficients and the quotients are
added to the adjacent higher-order coefficients. The (n− 1)-
th term requires a reduction modulo f ′R, which can be
performed according to the formula

cn−1 ·Rn−1 mod p

≡ ((cn−1R
n−1 mod (f ′R ·Rn−1)) + bcn−1R

n−1

f ′Rn
c) mod p

≡ ((cn−1 mod f ′R) ·Rn−1 + bcn−1
f ′R
c) mod p. (14)

The obtained quotient has to be merged with the lowest
term. Thereafter, several additions and subtractions are
needed to adjust the final result. We execute (n + 1) IBR
functions (presented in Alg. 6) to perform these modulo
operations. The proposed fast reduction algorithm can be
summarized as follows:

1) Compute (q0, r0) = IBR(c0, R);
2) Calculate (qj , rj) = IBR(cj+qj−1, R) for 0 < j < n−1;
3) Compute (qn−1, rn−1) = IBR(cn−1 + qn−2, f

′R);
4) Calculate (q0, c0) = IBR(r0 + qn−1, R), where q0 be-

comes very small;
5) For 0 < j ≤ n−1, compute the addition dj = rj+ qj−1

and then the subtraction ej = dj − R, whereby R is
replaced by f ′R for j = n− 1. The updated quotient qj
is set as ej ’s sign bit xored with 1. If qj is equal to 0, the
output cj will be set to dj ; otherwise, cj will be set to
ej . Finally, compute c0 = r0 + qn−1.

It should be noted that the complexity of an IBR is
directly related to the input c. Hence, the IBR functions can
be optimized with respect to the corresponding largest input
integers. Additionally, we adopt a “lazy” reduction tech-
nique for c0, with a range of [0, R], to reduce the required
number of additions and subtractions. This trick is also used
for the modular addition and subtraction presented in the
next section.

The complexity of this new reduction algorithm can be
evaluated via the number of multiply instructions. It should

be noted that multiplications are only performed by the IBR
functions. The IBR in Step 4 could be specifically optimized
and become less costly than the other IBRs. For the sake
simplicity, we use ((n − 1)2α3β + 1)(R − 1)2 as the largest
input value for the IBR, whose bit width equals log2((n −
1)2α3β+1)(R−1)2 = log2((n−1)2α3β+1)+2·log2(R−1).
When n is relatively small, the bit width of this value is
about 2dN/me. A single IBR takes 1.25 dN/me × dN/me-
bit multiplications and the overall cost of the proposed
reduction algorithm amounts to 1.25(n+1) dN/me×dn/me-
bit multiplications.

When dN/ne is equal to the word size w, n will be equal
to u. However, dN/ne is usually not exactly equal to w,
while n still equals u. Taking SIKEp751 and w = 64 as
example, we have n = u = 12, but dN/me = d751/12e = 63
(this means about 1.25(n+ 1) = 16.25 w × w-bit multipli-
cations are needed). As explained in the previous section,
the absolute value of λ is generally small. Consequently, the
ratio of the best Montgomery reduction used in the SIKE li-
brary (which requires about 0.5n2 w×w-bit multiplications)
to our reduction is approximately 0.4n2/(n + 1) in terms
of multiplications. When n > 3, the proposed reduction
algorithm may achieve better performance than the fastest
Montgomery-based variant. The larger n, the faster speeds
can be achieved, though this trend might weaken when
targeting platforms with specific word sizes. Considering
the small sizes of the IBR input operands, optimization
methods like Karatsuba or Toom-Cook can be easily applied
to the multiplication by utilizing the redundant representa-
tion. Finally, it should be noted that our reduction algorithm
could be further accelerated by executing the IBR operations
in parallel.

4 PROPOSED FIELD ARITHMETIC ALGORITHMS
BASED ON THE NEW DATA REPRESENTATION

The supersingular elliptic curves used for the SIDH or SIKE
are usually defined over the quadratic field Fp2 which is
extended from the base field Fp with i2 + 1 = 0. Therefore,
the field arithmetic operations should be considered and
implemented for the two finite fields. In the following, we
will propose the basic field arithmetic algorithms based on
the new data representation for both fields, respectively.

4.1 Arithmetic Operations Over Fp
4.1.1 Modular Multiplication and Squaring

As the multiplication part and the modular reduction have
been presented based on the new data representation in
the previous section, we can directly obtain a new modular
multiplication algorithm, named as General IFFM (G-IFFM)
algorithm. It can be summarized in the following two steps:

• Step 1: Compute multiply-accumulate terms in
Eq. (12) and get the raw coefficients.

• Step 2: Apply the proposed low-complexity reduc-
tion algorithm to these raw coefficients and output
the standard coefficients.

As analyzed above, both of the multiplication and modular
reduction could be more efficient than the conventional

8

methods. The G-IFFM can, therefore, achieve better per-
formance than the state-of-the-art method in [17]. When
considering a specific software or hardware platform like
FPGA, the IBRs in the G-IFFM can be computed in parallel
to further improve the efficiency, similar to the strategy used
in [26]. The final output can be adjusted by using a low-
latency post-processing module.

The modular squaring in our implementation is sepa-
rately designed since Eq. (13) equals 2aiaj , which does not
need the extra additions and subtractions, and thus is more
efficient than that formula.

4.1.2 Modular Addition
For the modular addition, we can split it into two steps.
Assume two field elements A and B are represented as in
Eq. (8). In the first step, we directly compute the additions
as:

C =
n−1∑
j=0

(aj + bj) ·Rj =
n−1∑
j=0

cj ·Rj . (15)

Only n additions are cost without carries propagated in the
neighbor orders. In the second step, we reduce C to the
standard representation. It can be noticed that we have 0 ≤
cj < 2R − 1 for 0 ≤ j < n − 1 and 0 ≤ cn−1 < 2f ′R − 1.
When R ≤ cj < 2R − 1 for 0 ≤ j < n − 1, we can reduce
this coefficient cj by using the formula:

cj+1 ·Rj+1 + cj ·Rj (16)
= (cj+1 + 1) ·Rj+1 + (cj −R) ·Rj .

Note that this step is similar to the ripple effect of standard
carry propagation. If the condition is satisfied, one addition
and one subtraction are required.

For the coefficient cn−1, we can use the following for-
mula:

cn−1 ·Rn−1 + c0 mod p (17)
≡ cn−1 ·Rn−1 − (f ′Rn − 1) + c0 mod p
= (cn−1 − f ′R) ·Rn−1 + (1 + c0) mod p.

When satisfying f ′R ≤ cn−1 < 2f ′R − 1, one addition
and one subtraction are needed. Thus, in the worst case,
the reduction for these coefficients costs n additions and n
subtractions. Note that the output coefficient c0 ranges in
[0, R], which does not need to be adjusted right now. In
total, it takes 2n additions and n subtractions.

In the traditional method, two N -bit additions and
one N -bit subtraction are cost by the modular addi-
tion. An N -bit addition/subtraction requires u w-bit ad-
ditions/subtractions with carries/borrows, for which at
least 2u addition/subtraction instructions are needed.
Considering the overflow situation for each word addi-
tion/subtraction, it could be more complex than we count.
Hence, at least 4u addition and 2u subtraction instructions
are required for the modular addition. When dNn e ≈ w and
n = u, our modular addition could be at least twice faster
than the traditional method.

It seems that the serial propagation in reduction would
limit the parallelism when considering a hardware platform
like FPGA. In fact, we can still easily make it in parallel
since the candidates for the final output are certain. For
example, for the reduction, there are four candidates of

the i-th coefficient, i.e., ci, ci + 1, ci − R, and ci − R + 1.
We can compute all of those candidates in parallel and
select the right outputs by using the corresponding one-bit
propagated quotients which consume very low latency for
the propagation.

4.1.3 Modular Subtraction

Similar to the modular addition, we can split the modular
subtraction into two steps. Assume two field elements A
andB are expressed as in Eq. (8). In the first step, we directly
compute the subtractions as:

C =
n−1∑
j=0

(aj − bj) ·Rj =
n−1∑
j=0

cj ·Rj . (18)

Only n subtractions are cost without borrows propagated in
the neighbor orders. In the second step, we reduce C to the
standard representation. Notice that we have−R+1 ≤ cj ≤
R − 1 for 0 ≤ j < n − 1 and −f ′R + 1 ≤ cn−1 ≤ f ′R − 1.
When−R+1 ≤ c0 ≤ 0 or−R+1 ≤ cj < 0 for 0 < j < n−1,
we can reduce them by using the formula:

cj+1 ·Rj+1 + cj ·Rj (19)
= (cj+1 − 1) ·Rj+1 + (cj +R) ·Rj .

For the coefficient cn−1 with −f ′R+ 1 ≤ cn−1 < 0 , we can
use the following formula:

cn−1 ·Rn−1 + c0 mod p (20)
≡ cn−1 ·Rn−1 + (f ′Rn − 1) + c0 mod p
= (cn−1 + f ′R) ·Rn−1 + (c0 − 1) mod p.

The output coefficients cj for 0 < j ≤ n − 1 are in
the standard ranges and c0 falls in [0, R]. Our modular
subtraction costs about n additions and 2n subtractions. In
the conventional method, one N -bit addition and one N -
bit subtraction are consumed for the modular subtraction.
About 2u addition and 2u subtraction instructions are used.
When dNn e ≈ w and n = u, our modular subtraction could
at least be 1.33 times faster than the traditional modular
subtraction.

It can be seen that the reduction step is similar to the
ripple effect of standard borrow propagation. Similarly, we
can obtain a high degree of parallelism in hardware imple-
mentation by computing all the candidates in parallel and
only propagating the one-bit borrows.

4.1.4 Modular Negation

Let C be represented as in Eq. (8). We can compute the
modular negation as follows:

(−C) mod p ≡ (P − C) mod p (21)

= (f ′R− cn−1 − 1) ·Rn−1 +
n−2∑
j=0

(R− cj − 1) mod p.

It can be seen that 2n subtractions are required in total. In
the conventional method, except the 2u subtractions, more
operations are needed for the borrows.

9

4.1.5 Modular Inversion
According to the Fermat’s little theorem [32], the general
modular inversion can be computed as A−1 ≡ Ap−2 mod p,
which could be calculated by using the modular multiplica-
tion and squaring operations in chains. As analyzed before,
these two operations could be better than the conventional
method, so the modular inversion could also obtain faster
speed than the previous work.

Modular Division by Two: Besides the general case,
we have also derived the modular division by two, i.e.,
A
2 mod p. In all cases, this modular division equals:

A

2
mod p ≡


A

2
, A is even,

A+ p

2
, A is odd.

(22)

When A =
n−1∑
j=0

aj · Rj , we have A
2 mod p =

n−1∑
j=0

aj
2 ·

Rj mod p. We also separately compute the even and odd
cases of these coefficients. If an aj for 0 < j ≤ n− 1 is even,
only a right shift is needed. Otherwise, we can compute it
with the following decomposition:

aj
2 ·R

j = (
aj − 1

2
+

1

2
) ·Rj (23)

= (
aj − 1

2
) ·Rj + R

2
·Rj−1.

For the odd a0, we have:

a0
2

= (
a0 − 1

2
) +

1

2
. (24)

The modular inversion
1

2
mod p can be presented as:

1

2
mod p ≡ (

p+ 1

2
) mod p (25)

= (
f ′Rn

2
) mod p =

f ′R

2
·Rn−1 mod p.

Therefore, our modular division by two can be summarized
as follows.

First, we compute the intermediate variables bj and cj
as:

bj =


aj
2
, aj is even,

aj − 1

2
, aj is odd,

for 0 ≤ j ≤ n− 1; (26)

cj =


0, aj+1 is even,
R

2
, aj+1 is odd,

for 0 ≤ j ≤ n− 2, (27)

and

cn−1 =


0, a0 is even,

f ′R

2
, a0 is odd.

(28)

Then, the division by two is computed as:

n−1∑
j=0

aj
2
·Rj mod p ≡

n−1∑
j=0

(bj + cj) ·Rj mod p. (29)

The parameters
f ′R

2
and

R

2
can be precomputed. Thus,

this algorithm takes n subtractions, additions, and right
shifts. The conventional method using Eq. (22) needs 2u
additions with carries and u right-shift instructions. When
n = u, they may cost similar number of cycles.

4.2 Arithmetic Operations Over Fp2

An element A in Fp2 is represented as A = A0 + A1i,
where A0, A1 ∈ Fp. Assuming two elements A,B ∈ Fp2 ,
the arithmetic computing over this field can be represented
as:

A+B = (A0 +B0) + (A1 +B1)i mod p, (30)
A−B = (A0 −B0) + (A1 −B1)i mod p,
A×B = (A0B0 −A1B1) + ((A0 +A1)(B1 +B0)

−A0B0 −A1B1)i mod p,
A2 = (A0 +A1)(A0 −A1) + (A0A1 +A0A1)i mod p,
A−1 = A0(A

2
0 +A2

1)
−1 + (−A1(A

2
0 +A2

1)
−1)i mod p.

where the real part and imaginary part are computed sep-
arately. Each of the operations over Fp2 includes several
kinds of operations over Fp, as summarized in Table 2,
where operations are in abbreviation for brevity. Since all
of the involved operations over Fp can be better than the
conventional methods, the arithmetic operations over Fp2
can also achieve better performance than the previous work.
Additionally, it can be seen that the multiplication over Fp
is widely used and dominates the computations.

TABLE 2
The Numbers of Operations in Fp Covered by

Operations in Fp2

Fp2 / Fp Add. Sub. Mul. Sqr. Inv.
Add. 2 0 0 0 0
Sub. 0 2 0 0 0
Mul. 2 3 3 0 0
Sqr. 2 1 2 0 0
Inv. 1 1 2 2 1

In fact, the multiplications, squaring, and inversion op-
erations over Fp2 can be further optimized by separating
the integer operations from the modular reductions. The
integer multiplication, squaring, and addition operations
can be directly used, while the integer subtraction should
be specifically designed since the input of the modular
reduction is nonnegative. In the following, we will mainly
focus on the optimization of the modular multiplication
over Fp2 .

Modular Multiplication: The formula of multiplication
in Eq. (30) shows that the real part contains a large subtrac-
tion. Thanks to the feature of modulo operation, the result

of (A0B0 − A1B1 = C0 − C1 =
n−1∑
j=0

(c0,j − c1,j) · Rj) can

be made positive by adding the multiple of p = f ′Rn − 1.

10

Thus, we can reduce it by using the formula:

n−1∑
j=0

(c0,j − c1,j) ·Rj mod p (31)

≡
n−1∑
j=0

(c0,j − c1,j) ·Rj + xR(f ′Rn − 1) mod p

= (c0,n−1 − c1,n−1 + xR(f ′R− 1))Rn−1 +
n−2∑
j=0

(c0,j − c1,j + xR(R− 1)) ·Rj mod p,

where x is a small parameter to make all of these coefficients
positive. As analyzed above, the raw coefficients are no
larger than ((n − 1)2α3β + 1)(R − 1)2, so x can be set
close to (n − 1)2α3β . The parameters xR(f ′R − 1) and
xR(R − 1) can be precomputed. We need to use extra n
additions to aid this modular reduction. In the conventional
method, the parameter 2N ·p is added to help this reduction,
which consumes a similar number of addition instructions
but more carries.

4.3 Transformation of Data Representation
The above analyses have demonstrated that the field arith-
metic operations can be normally computed based on our
data representation. In fact, for a computing system, we can
transform all the inputs into the new representation at the
beginning, and inversely transform the final results back to
normal as the output in the end. The forward and backward
transformation algorithms are presented below.

4.3.1 From Normal to Unconventional Radix (N2U)
For a field element A ∈ Fp, we can use Alg. 7 to transform
this element into our data representation. In fact, it can be

Algorithm 7: From Normal to Unconventional
radix (N2U).

Input: An operand A ∈ Fp, the radix R, and the modulus
p = f ′Rn − 1.

1: for j ← 0 to n− 2 do
2: cj ← A mod R
3: A ← bARc
4: end for
5: cn−1 ← A

Output: The result C =
n−1∑
j=0

cj ·Rj = A mod p.

calculated by calling the IBR function with modulus R in
n− 1 times. A vector of λ with n− 1 values is precomputed
for these callings.

4.3.2 From Unconventional Radix Back to Normal (U2N)

Suppose an integer A =
n−1∑
j=0

aj · Rj as defined in Eq. (8).

Algorithm 8 is proposed to make the integer A from the
unconventional radix back to the normal representation.
Note that since the results in our representation cover the
integers p and p+ 1, they should be checked out and set to
zeros and ones, respectively.

Algorithm 8: From Unconventional radix back to
Normal (U2N).

Input: An operand A =
n−1∑
j=0

aj ·Rj , the radix R, and the

modulus p = f ′Rn − 1.
1: C = an−1
2: for j ← n− 2 to 0 do
3: C ← C ·R+ aj
4: end for
5: If C = p, set C to 0.
6: If C = p+ 1, set C to 1.

Output: The result C ∈ Fp = A mod p.

5 IMPLEMENTATION AND BENCHMARK RESULTS

The publicly available implementation library of SIKE called
SIDH v3.2 is widely considered as the state-of-the-art soft-
ware library, which has been substantially supplemented
and improved since the SIKE protocol was submitted to
the NIST. The library includes four folders: KAT (known
answer test files for the KEM), src (source files including
C, assembly, and header files), tests (test files), and Visual
Studio (Visual Studio 2015 files for compilation in Windows).
In the src folder, the generic implementations1 (in opti-
mized portable C code) and optimized x64 implementa-
tions (in x64 assembly code for x64 platforms) for p434,
p503, p610, and p751 are respectively provided and the
optimized ARMv8 implementations (in ARMv8 assembly
code for 64-bit ARMv8 platforms) for p503 and p751 are
also covered. The difference between the three kinds of
implementation lies in implementing the field arithmetic.
The x64 and ARMv8 implementations both are to exploit
assembly optimizations in different platforms based on the
generic implementation.

In this work, we try to propose new field arithmetic
algorithms to replace the old ones, aiming to speed up the
whole SIKE protocol. We rely on the generic implementa-
tion software library (with no compression) and integrate
the proposed field arithmetic functions into it to show a
more complete picture of the SIKE protocol acceleration
brought by the new techniques. The optimization for the
x64 or ARM platform is not considered in this paper.

5.1 Parameters Breakdown for the SIKE Protocol
The four groups of primes for SIKE all have the form of
2eA3eB−1 with coprime factors eA and eB . According to our
aforementioned method, they can be easily broken down
with the parameters listed in Table 3. The bit widths of the
obtained unconventional radices are appended in the fourth
row. The digits u required in [17] are added in the fifth
row. It can be seen that when the unconventional radix R
is larger than 264, the polynomial order n is usually smaller
than u. For example, for SIKEp434, n = 6 but u = 7; for
SIKEp610, n = 6 but u = 10. Though the word length of
a coefficient increases to 2, the order is reduced to some

1. It is implemented in optimized portable C code without using the
GMP library. The original portable code using the GMP library, named
”reference implementation” on the website of https://sike.org/, is not
covered in this library.

11

degree. However, those cases for complexity estimation are
uncertain. So we just take a certain case (n = u) to show the
trend in the above sections. The parameters in the table can
also be changed by using different values of f ′.

The parameters of SIKEp751 are selected as an example
to show the efficiency of the proposed field arithmetic
algorithms in this paper. The overall results of the four
parameters will also be added as supplemental experiments.
We coded our design in C language and benchmarked
it on an Intel Xeon E5-2690 processor with a 64-bit op-
erating system. The generic implementation in C code of
the SIKE library [17] was also run on this processor for
a fair comparison. The TurboBoost was disabled during
all the tests. Our code is available at: https://github.com/
FastSIKE2019/generic.

5.2 Analysis of Finite Field Arithmetic Computing

As introduced in Section 2, the basic arithmetic operations
are the cornerstones of the SIKE protocol. We have counted
those operations and calculated the proportions of clock
cycles of them in the SIKEp751 for our and the previous im-
plementations, respectively. Some of them are selected and
listed in Table 4. The running time will be reported in the
following. It should be noted that the numbers of operations
are close to but not the same in many cases between the two
implementations because of the adopted different methods.
It can be seen that the modular reduction and the integer
multiplication operations have a dominant position in both
libraries. Optimizing the two operations is very effective
to accelerate the whole protocol. Note that the modular
reduction and the integer multiplication are not merely used
in the modular multiplications as analyzed in the previous
section. The modular addition and subtraction operations
over Fp take up about half of the rest of the proportion. The
other operations, like the hash function and the modular
negation, are trivial for the whole system. Meanwhile, we
can find that the proportion of modular reduction is reduced
in our work while that of the multiplication goes up. This
is because we have achieved more simplification on the
former than the latter. More results will be provided in the
following to explain this phenomenon.

Table 5 shows the running time (average clock cycles)
of operations over the selected base field and its quadratic
field, where the Acceleration Factors (AF) are also given in
the right-most column. It can be seen that all of these basic
arithmetic operations of our work achieve faster speed than
those in [17] over either field.

5.2.1 Impact of the Optimized Modular Multiplication Over
Fp
The multiplication over Fp is composed of modular re-
duction and integer multiplication. For the reduction part,
based on our analysis in Section 3, by using the proposed
reduction algorithm, about 77% reduction in multiplications
would be obtained. However, we cannot take full advan-
tage of every bit. The computations in software usually
are predefined as instructions with fixed word sizes. Take
the proposed modular reduction algorithm for an exam-
ple, compared with the Montgomery one proposed in [17],
benchmarked on a 64-bit operating system for the SIKEp751.

We will analyze the numbers of required multiplication
instructions of them, respectively. In [17], the MUL function
(a digital multiplication) is called 12 × 7 = 84 times and
thus 84 × 4 = 336 multiplication instructions are needed.
In our algorithm, the IBR function is called 12 + 1 = 13
times. The maximum data width of the input c of the IBR
is 132 (2 × 63 + 6) and the sizes of the two multiplications
are 72 × 72 and 32 × 32, respectively. For the first multi-
plication, we divide the inputs into three digits and use 6
multiplication instructions to implement it. Thus, 7 multipli-
cation instructions are adopted for one IBR, and therefore,
13×7 = 91 multiplication instructions are consumed. About
73% of the multiplication instructions are reduced by our
method. It should be noted that the other instructions (like
the addition, subtraction, or shift) may not have such much
reduction. In brief, the proposed reduction algorithm saves
more than 60% cycles (i.e., about 2.61x speedup shown in
Table 5) compared to the one used in [17].

For the integer multiplication part, the proposed algo-
rithm has two aspects of optimization to reduce the com-
putation complexity, compared to the multi-precision comb
multiplication algorithm used in [17]. On one hand, there
are no carries to be propagated in the adjacent orders; on the
other hand, the coefficient multiplication terms aibj + ajbi
(i 6= j) can be easily simplified. For the SIKEp751, the
bit width of a coefficient is no larger than 63, we can
simply use the one-level Karatsuba-like method to reduce
the complexity. With this help, the number of calling the
64 × 64 multiplication function is reduced from 144 to
78. According to Eq. (12), more additions are required to
merge the higher-order terms with the corresponding lower-
order terms. Meanwhile, the higher-order terms need to be
multiplied with a small constant. For the SIKEp751, this
constant is equal to 3. The constant multiplication can be
replaced by a 1-bit left-shift and an addition. Hence, the
speedup of the multiplication is cut down, only a factor of
1.32.

As shown in Table 5, combining the modular reduction
with integer multiplication, the proposed modular multipli-
cation over Fp is 1.65x superior to the previous implemen-
tation.

The modular squaring is further optimized based on the
modular multiplication with a speedup of 2.26x. Since the
modular inversion is made up the modular multiplications
and squaring, this operation also has a factor of 2.14x
speedup.

5.2.2 Impact of the Optimized Modular Addition and Sub-
traction Over Fp
From Table 5, we can see that the AFs of modular addition
and subtraction both are drastically larger than the ratios
estimated in Section 4. It means that the generic version
in [17] consumes many more extra operations to handle
the carry or borrow. Those may be greatly simplified by
implementing on an x64 or ARM platform in assembly code.
Nevertheless, it can still believe that the proposed modular
addition/subtraction is able to outperform the previous
one when running on the same platform. Additionally, this
attenuation in acceleration here would not affect the whole
SIKE implementation so significantly as the running time

https://github.com/FastSIKE2019/generic
https://github.com/FastSIKE2019/generic

12

TABLE 3
Breaking Down the Parameters of the Primes Provided in [17] with Our Method

Prime SIKEp434 SIKEp503 SIKEp610 SIKEp751
Security Level 1 Level 2 Level 3 Level 5

Form 22163137 − 1 22503159 − 1 23053192 − 1 23723239 − 1
R 236323 (73 bits) 225316 (51 bits) 251332 (102 bits) 231320 (63 bits)
n/u 6/7 10/8 6/10 12/12
f ′ 1

3
(α = 0, β = 1) 1

3
(α = 0, β = 1) 1

2
(α = 1, β = 0) 1

3
(α = 0, β = 1)

TABLE 4
The Statistics of Selected Basic Arithmetic Operations in the

SIKEp751 Library

Operation Number of Operation Proportion in Protocol
[17] Our work [17] Our work

Reduc. 234,209 234,175 32.23% 20.18%
Mul. 307,888 307,986 61.05% 76.88%
Add. 87,814 168,310 1.77% 1.01%
Sub. 130,638 130,638 1.68% 0.76%

of modular addition and subtraction is not the bottleneck
according to the statistics in Table 4.

5.2.3 Impact of the Optimized Operations Over Fp2
The operations over Fp2 are mainly constituted by the
corresponding operations over Fp as shown in Table 2.
It can be observed that except the modular squaring, the
other operations show a similar trend of a speedup as
the corresponding operations over Fp. That is because the
modular squaring over Fp2 is mainly decomposed into not
modular squaring but multiplication operations over Fp.

5.3 Performance comparison of the SIKE Protocol
The overall comparison results of the three phases (KeyGen,
Encaps, Decaps) for SIKEp751 are shown in Table 6. In all
cases, we are able to achieve about 1.65x speedup. The total
design is also about 1.65x faster than the method imple-
mented in the SIDH v3.2 library. Note that these AF values
are very close to the AF values of modular multiplication
over Fp (1.65x). This result, in return, demonstrates the dom-
inant position of the modular multiplication. We have also
implemented the software for the other three parameters
and tested the running time as shown in Tables 7, 8, and 9.
It can be seen that our implementations obtain speedups
of about 2.03x, 1.61x, and 1.48x over the previous works,
respectively, which further demonstrates the effectiveness
of our method.

6 CONCLUSIONS

In this paper, we have presented a faster software imple-
mentation of the SIKE protocol based on our proposed data
representation. This new data representation is a general
form for the supersingular isogeny-based elliptic curves,
which can facilitate faster finite field arithmetic computing
than prior arts. With the help of this representation, we have
derived a low-complexity modular reduction algorithm for
the prime of p = 2eA3eB − 1, which is usually considered
in the SIKE implementation. Besides, the other basic field
arithmetic algorithms are deduced and discussed. We have
applied these proposed algorithms to the SIKE protocol

and successfully validated all of them. When benchmarked
on an Intel Xeon E5-2690 processor and compared with
the state-of-the-art software implementations, the new SIKE
implementation achieves 1.65x and 1.61x speedup for the
SIKEp751 and the SIKEp503, respectively. It should be noted
that higher acceleration factors are obtained for most of the
proposed field operations.

Though these improvements are significant, it still has a
big gap between the SIKE protocol and some other popular
candidates. As analyzed above, the proposed algorithms for
SIKE are very suitable for high-parallel design thanks to
the independent coefficients computing. This is completely
different from conventional methods. When fully adopting
the parallelism strategy, the running time of the new im-
plementation is very likely to be accelerated in multiples,
perhaps with a factor of n. Recently, we have preliminarily
completed the modular multiplication, addition, and sub-
traction on an FPGA and almost achieved the expected
results. Our future work will mainly focus on those points
to further bridge the gap.

ACKNOWLEDGEMENT

The authors would like to thank the reviewers for their
comments. This work is supported in parts by the National
Natural Science Foundation of China (Grant No.61802180
and No.61774082), the Fundamental Research Funds for the
Central Universities (Grant 021014380065), and the Key Re-
search Plan of Jiangsu Province of China (Grant BE2019003-
4).

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications
of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[2] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference
on the theory and application of cryptographic techniques. Springer,
1985, pp. 417–426.

[3] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM review,
vol. 41, no. 2, pp. 303–332, 1999.

[4] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta,
R. Perlner, and D. Smith-Tone, Report on post-quantum cryptography.
US Department of Commerce, National Institute of Standards and
Technology, 2016, vol. 12.

[5] R. Azarderakhsh, M. Campagna, C. Costello, L. Feo, B. Hess,
A. Jalali, D. Jao, B. Koziel, B. LaMacchia, P. Longa et al., “Su-
persingular isogeny key encapsulation,” Submission to the NIST
Post-Quantum Standardization project, 2017.

[6] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies,” in International Work-
shop on Post-Quantum Cryptography. Springer, 2011, pp. 19–34.

[7] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis
of the fujisaki-okamoto transformation,” in Theory of Cryptography
Conference. Springer, 2017, pp. 341–371.

13

TABLE 5
Timing Performance of Selected Base Field and Quadratic Field Operations of

SIKEp751. Timings Are Reported in Clock Cycles

Field Operation [17] Our work AF

Fp

Mul.
(Reduc. & Int.Mul.)

4808
(1981 & 2827)

2906
(760 & 2146)

1.65
(2.61 & 1.32)

Sqr. 4997 2207 2.26
Add. 286 52 5.50
Sub. 191 48 3.98
Inv. 4,490,413 2,097,965 2.14

Fp2

Mul. 13141 8288 1.59
Sqr. 10047 5933 1.69

Add. 572 103 5.55
Sub. 389 91 4.27

TABLE 6
Overall Timing Comparisons of the SIKEp751

Software Implementations. Timings Are Reported in
Clock Cycles

Phase [17] Our work AF
KeyGen 330,394,357 200,167,938 1.651
Encaps 535,098,458 324,778,282 1.648
Decaps 575,180,241 348,305,883 1.651

Total 1,440,673,056 873,252,103 1.650

TABLE 7
Overall Timing Comparisons of the SIKEp610

Software Implementations. Timings Are
Reported in Clock Cycles

Phase [17] Our work AF
KeyGen 186,213,290 92,155,578 2.02
Encaps 168,786,347 172,206,327 2.03
Decaps 344,433,945 170,012,117 2.03

Total 872,717,924 430,954,042 2.03

[8] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti, “On the security of
supersingular isogeny cryptosystems,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2016, pp. 63–91.

[9] A. Gélin and B. Wesolowski, “Loop-abort faults on supersingular
isogeny cryptosystems,” in International Workshop on Post-Quantum
Cryptography. Springer, 2017, pp. 93–106.

[10] Y. B. Ti, “Fault attack on supersingular isogeny cryptosystems,” in
International Workshop on Post-Quantum Cryptography. Springer,
2017, pp. 107–122.

[11] D. Jao, “Software for “towards quantum-resistant cryptosys-

TABLE 8
Overall Timing Comparisons of the SIKEp503

Software Implementations. Timings Are Reported
in Clock Cycles

Phase [17] Our work AF
KeyGen 99,448,697 61,837,086 1.608
Encaps 163,759,088 101,847,565 1.608
Decaps 174,201,386 108,200,191 1.610

Total 437,409,171 271,884,842 1.609

TABLE 9
Overall Timing Comparisons of the SIKEp434

Software Implementations. Timings Are
Reported in Clock Cycles

Phase [17] Our work AF
KeyGen 66,056,313 44,205,016 1.49
Encaps 106,052,319 71,809,157 1.48
Decaps 113,185,503 76,820,145 1.47

Total 285,294,135 192,834,318 1.48

tems from supersingular elliptic curve isogenies”,” 2011,
https://github.com/defeo/ss-isogeny-software.

[12] R. Azarderakhsh, D. Fishbein, and D. Jao, “Efficient implementa-
tions of a quantum-resistant key-exchange protocol on embedded
systems,” Citeseer, 2014.

[13] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi,
“Key compression for isogeny-based cryptosystems,” in Proceed-
ings of the 3rd ACM International Workshop on ASIA Public-Key
Cryptography. ACM, 2016, pp. 1–10.

[14] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for
supersingular isogeny Diffie-Hellman,” in Annual International
Cryptology Conference. Springer, 2016, pp. 572–601.

[15] A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodrı́guez-
Henrı́quez, “A faster software implementation of the supersingu-
lar isogeny Diffie-Hellman key exchange protocol,” IEEE Transac-
tions on Computers, vol. 67, no. 11, pp. 1622–1636, 2017.

[16] G. H. Zanon, M. A. Simplicio, G. C. Pereira, J. Doliskani, and
P. S. Barreto, “Faster key compression for isogeny-based cryp-
tosystems,” IEEE Transactions on Computers, vol. 68, no. 5, pp. 688–
701, 2018.

[17] C. Costello, P. Longa, and M. Naehrig, “PQCrypto-SIDH,” 2020,
https://github.com/Microsoft/PQCrypto-SIDH.

[18] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-
quantum cryptography on FPGA based on isogenies on elliptic
curves,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 1, pp. 86–99, 2017.

[19] B. Koziel, R. Azarderakhsh, and M. M. Kermani, “A high-
performance and scalable hardware architecture for isogeny-based
cryptography,” IEEE Transactions on Computers, vol. 67, no. 11, pp.
1594–1609, 2018.

[20] H. Seo, Z. Liu, P. Longa, and Z. Hu, “SIDH on ARM: faster modu-
lar multiplications for faster post-quantum supersingular isogeny
key exchange,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 1–20, 2018.

[21] A. Jalali, R. Azarderakhsh, and M. M. Kermani, “NEON SIKE:
supersingular isogeny key encapsulation on ARMv7,” in Inter-
national Conference on Security, Privacy, and Applied Cryptography
Engineering. Springer, 2018, pp. 37–51.

[22] A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Towards
optimized and constant-time CSIDH on embedded devices,” in
International Workshop on Constructive Side-Channel Analysis and
Secure Design. Springer, 2019, pp. 215–231.

[23] W. Liu, J. Ni, Z. Liu, C. Liu, and M. O’Neill, “Optimized modular
multiplication for supersingular isogeny Diffie-Hellman,” IEEE
Transactions on Computers, pp. 1–1, 2019.

[24] B. Koziel, A.-B. Ackie, R. E. Khatib, R. Azarderakhsh, and
M. Mozaffari-Kermani, “SIKE’d Up: Fast and secure hardware
architectures for supersingular isogeny key encapsulation,” Cryp-
tology ePrint Archive, Report 2019/711, 2019, https://eprint.iacr.
org/2019/711.

[25] P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of computation, vol. 44, no. 170, pp. 519–521,
1985.

[26] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Ef-
ficient finite field multiplication for isogeny based post quantum
cryptography,” in International Workshop on the Arithmetic of Finite
Fields. Springer, 2016, pp. 193–207.

[27] P. Barrett, “Implementing the Rivest Shamir and Adleman public
key encryption algorithm on a standard digital signal processor,”

https://github.com/defeo/ss-isogeny-software
https://github.com/Microsoft/PQCrypto-SIDH
https://eprint.iacr.org/2019/711
https://eprint.iacr.org/2019/711

14

in Conference on the Theory and Application of Cryptographic Tech-
niques. Springer, 1986, pp. 311–323.

[28] J. Bos and S. Friedberger, “Arithmetic considerations for isogeny
based cryptography,” IEEE Transactions on Computers, pp. 1–1,
2018.

[29] D. Jao et al., “Supersingular isogeny key encapsulation (SIKE),”
Submission to NIST Post-Quantum Cryptography Standardization,
2017.

[30] J. Vélu, “Isogénies entre courbes elliptiques,” CR Acad. Sci. Paris,
Séries A, vol. 273, pp. 305–347, 1971.

[31] F. Zhang, B. Yang, X. Dong, S. Guilley, Z. Liu, W. He, F. Zhang,
and K. Ren, “Side-channel analysis and countermeasure design
on arm-based quantum-resistant sike,” IEEE Transactions on Com-
puters, vol. 69, no. 11, pp. 1681–1693, 2020.

[32] E. W. Weisstein, “Fermat’s little theorem,” From MathWorld–A
Wolfram Web Resource, 2004, https://mathworld.wolfram.com/
FermatsLittleTheorem.html.

[33] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital
numbers by automatic computers,” in Doklady Akademii Nauk, vol.
145, no. 2. Russian Academy of Sciences, 1962, pp. 293–294.

[34] S. A. Cook and S. O. Aanderaa, “On the minimum computation
time of functions,” Transactions of the American Mathematical Society,
vol. 142, pp. 291–314, 1969.

[35] A. Schönhage and V. Strassen, “Schnelle multiplikation grosser
zahlen,” Computing, vol. 7, no. 3-4, pp. 281–292, 1971.

[36] M. Fürer, “Faster integer multiplication,” SIAM Journal on Comput-
ing, vol. 39, no. 3, pp. 979–1005, 2009.

[37] S. R. Dussé and B. S. Kaliski, “A cryptographic library for the
motorola DSP56000,” in Workshop on the Theory and Application of
of Cryptographic Techniques. Springer, 1990, pp. 230–244.

[38] J.-F. Dhem and J.-J. Quisquater, “Recent results on modular mul-
tiplications for smart cards,” in International Conference on Smart
Card Research and Advanced Applications. Springer, 1998, pp. 336–
352.

[39] Y. Kong, “Optimizing the improved Barrett modular multipliers
for public-key cryptography,” in 2010 International Conference on
Computational Intelligence and Software Engineering, Dec 2010, pp.
1–4.

[40] J. Tian, J. Lin, and Z. Wang, “Ultra-fast modular multiplication
implementation for isogeny-based post-quantum cryptography,”
in 2019 IEEE Workshop on Signal Processing Systems (SiPS), 2019.

[41] B. Wu, J. Tian, X. Hu, and Z. Wang, “A novel modular multiplier
for isogeny-based post-quantum cryptography,” in 2020 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2020,
pp. 334–339.

[42] P. G. Comba, “Exponentiation cryptosystems on the IBM PC,” IBM
systems journal, vol. 29, no. 4, pp. 526–538, 1990.

Jing Tian received her B.S. degree in microelec-
tronics and Ph.D. degree in information and com-
munication engineering from Nanjing University,
Nanjing, China, in 2015 and 2020, respectively.
She is now an associate researcher in Nanjing
University. Her research interests include VLSI
design for digital signal processing and crypto-
graphic engineering.

Piaoyang Wang received his B.S. degree in
electronic information science and technology
from Nanjing University, Nanjing, China, in 2016,
where he is currently pursuing the M.S. degree
in Electronic and Communication Engineering.
His research interests include VLSI design and
cryptographic engineering.

Zhe Liu is a professor in the College of Com-
puter Science and Technology, Nanjing Univer-
sity of Aeronautics and Astronautics, China. He
received the B.S. and M.S. degrees from Shan-
dong University, China, in 2008 and 2011, re-
spectively, and the Ph.D. degree from the Lab-
oratory of Algorithmics, Cryptology and Security,
University of Luxembourg, Luxembourg, in 2015.
His research interests include security, privacy
and cryptography solutions for the Internet of
Things. He has co-authored over 100 research

peer-reviewed journal and conference papers. He was a recipient of the
prestigious FNR Outstanding Ph.D. Thesis Award in 2016, ACM CHINA
SIGSAC Rising Star Award in 2017, as well as DAMO Academy Young
Fellow in 2019. He has served as program committee member of more
than 50 international conferences.

Jun Lin received the B.S. degree in physics and
the M.S. degree in microelectronics from Nanjing
University, Nanjing, China, in 2007 and 2010,
respectively, and the Ph.D. degree in electrical
engineering from the Lehigh University, Bethle-
hem, in 2015. From 2010 to 2011, he was an
ASIC design engineer with AMD. During sum-
mer 2013, he was an intern with Qualcomm Re-
search, Bridgewater, NJ. In June 2015, he joined
the school of electronic science and engineering
of Nanjing University, where he is an associate

professor. He is a member of the Design and Implementation of Signal
Processing Systems (DISPS) Technical Committee of the IEEE Signal
Processing Society.

His current research interests include low-power high-speed VLSI
design, specifically VLSI design for digital signal processing and cryp-
tography. He was a co-recipient of the Merit Student Paper Award at the
IEEE Asia Pacific Conference on Circuits and Systems in 2008. He was
a recipient of the 2014 IEEE Circuits & Systems Society (CAS) student
travel award.

Zhongfeng Wang received both BS and MS de-
grees from Tsinghua University. He obtained the
Ph.D. degree from the University of Minnesota,
Minneapolis, in 2000. He has been working for
Nanjing University, China, as a Distinguished
Professor since 2016. Previously he worked for
Broadcom Corporation, California, from 2007 to
2016 as a leading VLSI architect. Before that, he
worked for Oregon State University and National
Semiconductor Corporation.

Dr. Wang is a world-recognized expert on
Low-Power High-Speed VLSI Design for Signal Processing Systems.
He has published over 200 technical papers with multiple best paper
awards received from the IEEE technical societies, among which is
the VLSI Transactions Best Paper Award of 2007. He has edited one
book “VLSI” and held more than 20 U.S. and China patents. In the
current record, he has had many papers ranking among top 25 most
(annually) downloaded manuscripts in IEEE Trans. on VLSI Systems.
In the past, he has served as Associate Editor for IEEE Trans. on
CAS-I, T-CAS-II, and T-VLSI for many terms. He has also served as
TPC member and various chairs for tens of international conferences.
Moreover, he has contributed significantly to the industrial standards.
So far, his technical proposals have been adopted by more than fifteen
international networking standards. In 2015, he was elevated to the
Fellow of IEEE for contributions to VLSI design and implementation of
FEC coding. His current research interests are in the area of Optimized
VLSI Design for Digital Communications and Deep Learning.

https://mathworld.wolfram.com/FermatsLittleTheorem.html
https://mathworld.wolfram.com/FermatsLittleTheorem.html

15

Johann Großschädl is a research (and devel-
opment) specialist in the Laboratory of Algo-
rithmics, Cryptology and Security (LACS) of the
University of Luxembourg. His research inter-
ests lie at the intersection between theory and
practice of modern cryptography, with a special
focus on lightweight cryptography for the Internet
of Things (IoT). Before joining the University of
Luxembourg in 2009, he was a research asso-
ciate in the Computer Science Department of
the University of Bristol, United Kingdom. He has

published more than 100 papers in international, peer-reviewed journals
and conference proceedings, including more than 10 papers at the
IACR Workshop on Cryptographic Hardware and Embedded Systems
(CHES).

	Introduction
	Preliminaries
	The SIDH Protocol
	The SIKE Protocol
	Finite-Field Arithmetic Operations for SIDH/SIKE
	Montgomery Reduction Algorithm
	Barrett Reduction Algorithm
	Improved Barrett Reduction Algorithm for 2x3y

	Proposed Data Representation for Supersingular Isogeny Based Cryptography
	Preview of the New Data Representation
	Deduction of A Low-Complexity Modular Reduction Algorithm
	Multiplication Part
	Low-Complexity Modular Reduction Algorithm

	Proposed Field Arithmetic Algorithms Based on the New Data Representation
	Arithmetic Operations Over Fp
	Modular Multiplication and Squaring
	Modular Addition
	Modular Subtraction
	Modular Negation
	Modular Inversion

	Arithmetic Operations Over Fp2
	Transformation of Data Representation
	From Normal to Unconventional Radix (N2U)
	From Unconventional Radix Back to Normal (U2N)

	Implementation and Benchmark Results
	Parameters Breakdown for the SIKE Protocol
	Analysis of Finite Field Arithmetic Computing
	Impact of the Optimized Modular Multiplication Over Fp
	Impact of the Optimized Modular Addition and Subtraction Over Fp
	Impact of the Optimized Operations Over Fp2

	Performance comparison of the SIKE Protocol

	Conclusions
	References
	Biographies
	Jing Tian
	Piaoyang Wang
	Zhe Liu
	Jun Lin
	Zhongfeng Wang
	Johann Großschädl

