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Abstract. In ICISC-05, and in the ePrint 2010/287, Patarin claimed a
lower bound on the number of 2q tuples of n-bit strings (P1, . . . , P2q) ∈
({0, 1}n)2q satisfying P2i−1⊕P2i = λi for 1 ≤ i ≤ q such that P1, P2, . . .,
P2q are distinct and λi ∈ {0, 1}n \ {0n}. This result is known as Mirror
theory and widely used in cryptography. It stands as a powerful tool to
provide a high-security guarantee for many block cipher-(or even ideal
permutation-) based designs. In particular, Mirror theory has a direct
application in the security of XOR of block ciphers. Unfortunately, the
proof of Mirror theory contains some unverifiable gaps and several mis-
takes. This paper provides a simple and verifiable proof of Mirror theory.

Keywords: Mirror theory, Sum of Permutations, PRP, PRF, H-Coefficient
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1 Introduction

Block ciphers, the workhorses of symmetric-key cryptography, are used in dif-
ferent modes of operations to provide solutions for data confidentiality, data
integrity and authenticity etc. As most of the modes do not exploit the invert-
ible property of the block cipher [2,6,23,36], pseudo random function (or PRF)
seems to be a more natural choice in such modes of operation. But unlike block
ciphers, practical candidates for PRFs are rarely available. Although a block
cipher is a good PRF, it can guarrantee only birthday bound security due to
the PRF-PRP switching lemma [4, 7, 37]. To address the problem of converting
a pseudorandom permutation (PRP) into a highly secure PRF, Bellare et al. [3]
have designed several PRFs out of block ciphers in the name of Luby-Rackoff
backwards. Among many such alternatives, xoring the outputs of two indepen-
dent n-bit permutations, namely XOR2(x) := πππ(x)⊕πππ′(x), is one of them, where
πππ and πππ′ denote two n-bit independent random permutations, sampled uniformly
and independently from the set of all permutations over the set {0, 1}n. Note
that a random permutation is the ideal counter part of a block cipher, whereas a
random function, (i.e., a function chosen randomly from the set of all functions
over a finite domain and range), is the ideal counter part of a PRF. However,
the authors of [3] did not give the security analysis of XOR2 and its single-keyed
variant XOR1(x) := πππ(0‖x) ⊕ πππ(1‖x). Popularity of these constructions have
started gaining attention in the cryptographic community in the last few years
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due to their use in many important block cipher and tweakable block cipher-
based designs that includes constructions like [11,12,15,16,18–21,27,28,38–40].

History of XOR Function. In an unpublished work [1], Bellare et al. first
showed that XOR1 is a secure PRF up to 2n/n queries. However, their analysis
is incomplete and hard to verify. In [22], Lucks proved that XOR2 achieves 2n/3
bit PRF security. Afterwards, in a series of papers [33–35], Patarin claimed that
XOR construction (i.e., both XOR1 and XOR2) is secured upto O(2n) queries.
However, the correctness of the solutions proposed in [33–35] is debated in the
community [10, 15]. In 2017, Dai et al. [10] have shown that XOR1 and XOR2

are optimally secure PRFs using the χ2-method. In a related work, Cogliati et
al. [8] have shown that XORk, i.e., xor of k independent permutations, for k ≥ 2,
achieves kn/(k + 1)-bit PRF security.

Following Patarin’s analysis, XOR2 (resp. XOR1) construction yields the fol-
lowing system of bivariate affine equations:

Eλ = {P1 ⊕ P2 = λ1, P3 ⊕ P4 = λ2, . . . , P2q−1 ⊕ P2q = λq},

where q ≥ 1 and λ := (λ1, . . . , λq) is a tuple of n-bit binary strings (for the XOR1

construction, we additionally require that λ1, . . . , λq are non-zero n-bit binary
strings). The entire security analyses for both constructions stand on finding a
good lower bound on the number of solutions (P1, . . . , P2q)

1 to Eλ such that (i)
for XOR1 construction, we require that Pi 6= Pj for i 6= j, while (ii) for XOR2

construction, we require that (a) Pi 6= Pj for i 6= j, where i, j both are odd,
and (b) Px 6= Py for x 6= y, where x and y both are even. Note that during the
process of finding the solutions of Eλ, assigning values to a variable Pi in Eλ fixes
the value of exactly one variable (which is Pi+1 if i is odd and Pi−1 otherwise) in
Eλ. However, for a generic bivariate system of affine equations, one can see that
assigning value to a single variable Pi might fix the values of more than just one
other variable, say at most k ≥ 1 variables in the set of equations. Patarin [34]
named this notion the block maximality in a system of bivariate affine equations,
denoted as ξmax. It is natural to see that the block maximality of the system
of equations Eλ is 2 and thus the security analysis of the XOR construction is
reduced to establish the following result.

“For a given system of bivariate affine equations over a finite group with
non-equalities among the variables and ξmax = 2, the number of distinct
solutions is always greater than the average number of solutions.”.

Patarin named this result as Theorem Pi ⊕ Pj for ξmax = 2 [30] (and later
in [34], renamed it to Mirror theory). This theorem was stated as a conjecture
in [29] and proved in [30]. However, in this paper, we refer to this result as Mirror
theory for ξmax = 2. This result has been acknowledged in the community as
a potential and a strong approach to establish the optimal security of XOR
constructions (i.e., XOR1 and XOR2) [10].

1 Abusing the notation, we use the same symbol to denote the variables and the
solution of a given system of equations.
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1.1 Mirror theory for ξmax = 2

Let q ≤ 2n/134 and λ1, . . . , λq be non-zero n-bit strings. Patarin [34] showed that
the number of solutions of distinct values to P1, . . . , P2q satisfying the bivariate

affine equations Eλ is at least (2n)2q

2nq , where ab := a(a − 1) · · · (a − b + 1) for
two positive integers a ≥ b. Patarin [33] also showed that for any choice of
n-bit strings λ1, λ2, . . . , λq, the number of solutions to the system of bivariate
affine equations Eλ such that P1, P3, . . . , P2q−1 are distinct and P2, P4, . . . , P2q

are distinct is at least (
(2n)q

)2
2nq

× (1−O(
q

2n
)).

Beside these two results, Patarin [30] also claimed the generic result for a general
ξmax > 2, that the number of distinct solutions to a system of q bivariate affine
equations with ξmax > 2 and with non-equality among the variables is always
larger than the average number of solutions provided q ≤ 2n/67 · (ξmax − 1).
Patarin named this result the “Theorem Pi ⊕ Pj for any ξmax”. This result
was stated as a conjecture (Conjecture 8.1 of [29]) in the context of analysing
the security of the Feistel cipher. Only a couple of years later, this result was
articulated in many follow-up works for analysing the security of the xor of two
permutations, and it took a few articles [30, 33–35] for his result and security
argument to evolve. Later, in 2017, this work culminated in a book [26] called
Feistel Ciphers: Security Proofs and Cryptanalysis by Nachef et al. However, the
proofs in most of these works are very sketchy, involve giants equations and are
missing most of details.

1.2 Applications of Theorem Pi ⊕ Pj for any ξmax

Over the years, the Theorem Pi⊕Pj for any ξmax has been proven to be a signifi-
cant result in the context of analysing security bounds of numerous cryptographic
designs. Apart from the stand-alone value of XOR2 or XOR1 constructions, they
are used as a major component in many important block cipher and tweakable
block cipher-based designs that includes [11,12,28,38–40]. However, the security
proofs of most of these designs reveals the intermediate inputs of the construc-
tion to the distinguisher to get rid of the adaptive nature of the adversary. Hence
the proof cannot use the fact that the sum function is a PRF. Instead, these se-
curity proofs require (by application of the H-Coefficient technique [31]) a good
lower bound on the number of distinct solutions to a system of bivariate affine
equations with a general ξmax and therein comes the role of the result “Theo-
rem Pi⊕Pj for any ξmax”. It has also been used in proving the beyond birthday
bound security of many nonce based MACs including [5,13–15,25]. Mennink [24]
showed the optimal security bound of EWCDM using this result as the primary
underlying tool, and Iwata et al. [17] also used it to show the optimal security
bound of CENC. Despite the debate in the community regarding the correctness
of the proof of “Theorem Pi ⊕ Pj for any ξmax” [30, 34], several authors have
used this precarious result to derive an optimal bound for some constructions
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such as [17, 24, 41]. This triggers the need for a correct and verifiable proof of
these two results, which will eventually help to correctly establish the security
proof of the above constructions and improve their security.

Motivation. Bearing in mind the usefulness and the importance of this result
in cryptography, this paper aims to fill in the gaps in the proof of Mirror theory
(i.e., Theorem Pi ⊕ Pj for ξmax = 2), and thereby provide a complete proof.
Although a verifiable proof for the Theorem Pi ⊕ Pj for any ξmax would have
been more useful in the cryptographic context, we believe that a correct proof
for the Mirror theory will pave the way for a complete proof for general ξmax,
which we leave as a future open problem. Recently, Cogliati and Patarin [9] have
done a similar work. However, their approach and presentation is different from
ours. We believe that two different proofs will help build confidence in the proof
of Mirror theory.

1.3 H-Coefficient Technique

H-Coefficient technique serves as a “systematic” tool to upper bound the distin-
guishing advantage of any deterministic and computationally unbounded distin-
guisher A in distinguishing the real oracle O1 (construction of interest) from the
ideal oracle O0 (idealized version). The collection of all the queries and responses
that A made and received to and from the oracle, is called the transcript of A,
denoted as τ . Sometimes, we allow the oracle to release more internal informa-
tion to A only after A completes all its queries and responses, but before it
outputs its decision bit. We write AO1 ⇒ 1 (resp. AO0 ⇒ 1) to denote that A

output decision bit 1 after it has completed its interaction with the oracle O1

(resp. O0). Note that, revealing extra informations will only increase the advan-
tage of the distinguisher. We state the result of the H-Coefficient technique in
upper bounding the PRF advantage of some keyed constructions, which will be
used later in proving the PRF security of XOR1 and XOR2 constructions. Let X

be any abirtrary countably infinite set and let Func(X, {0, 1}n) be the set of all
functions from X to {0, 1}n. We denote the real oracle O1 to be some family of
keyed construction F from X to {0, 1}n and O0 to be the random function RF
uniformly sampled from Func(X, {0, 1}n). Let Xre and Xid denote the transcript
random variable induced by the interaction of A with the real oracle and the
ideal oracle respectively. The probability of realizing a transcript τ in the ideal
oracle (i.e., Pr[Xid = τ ]) is called the ideal interpolation probability. Similarly,
one can define the real interpolation probability. A transcript τ is said to be at-
tainable with respect to A if the ideal interpolation probability is non-zero (i.e.,
Pr[Xid = τ ] > 0). We denote the set of all attainable transcripts by Ω. Following
these notations, we state the main result of H-Coefficient technique in Theorem
1. The proof of this theorem can be found in [32].

Theorem 1. Suppose for some Ωbad ⊆ Ω, which we call the bad set of tran-
scripts, the following conditions hold:

1. Pr[Xid ∈ Ωbad] ≤ ε1,
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2. For any good transcript τ ∈ Ω\Ωbad, we have Pr[Xre = τ ] ≥ (1−ε2)·Pr[Xid =
τ ].

Then, for any adversary A, we have

AdvPRF
F (A)

def
= |Pr[AFK ⇒ 1]− Pr[ARF ⇒ 1]|
≤ ε1 + ε2, (1)

where the first probability is calculated over the randomness of K ←$K and the
second probability is calculated over the randomness of RF←$Func(X, {0, 1}n).

1.4 Our Contribution

The main contribution of this paper is to prove Mirror theory in a simplified and
verifiable form. We prove two theorems of Mirror theory which are essentially
restatements of its counting version in the terminology of probability. In the
foregoing discussions, we assume that πππ and πππ′ are two independently sampled
n-bit uniform random permutations.

Theorem 2 (Single Permutation Mirror theory). Let γ1, . . ., γq be any
non-zero n-bit strings and x1, .x2, . . . , xq be distinct (n − 1)-bit strings, where
n ≥ 12 and q ≤ 2n/58. Then the probability that

πππ(x1‖0)⊕ πππ(x1‖1) = γ1

πππ(x2‖0)⊕ πππ(x2‖1) = γ2
...

...
...

πππ(xq‖0)⊕ πππ(xq‖1) = γq

holds is at least 2−nq.

As an immediate application of the H-Coefficient technique [31] to the above
theorem, one can see that the XOR1 function behaves almost like a random
function. For a distinguisher A, the PRF advantage of a construction F , denoted
as Advprf

F (A), denotes the distinguishing advantage from F to a function that
returns random outputs on distinct queries.

Corollary 1. For all q ≤ 2n/58, n ≥ 12 and a distinguisher A making at most
q queries, we have

AdvPRF
XOR1

(A) ≤ 1−
(

1− 1

2n

)q
.

We defer the proof of the above corollary in Sect. 3.3, which actually gives a tight
PRF bound 1− (1− 2−n)q of the XOR1 construction. A simple distinguisher A

returns 1 whenever it observes 0n in any of the outputs. In the case of a random
function, A returns 1 with probability exactly 1− (1−2−n)q, whereas A returns
1 with probability zero for the XOR1 construction as the construction never
returns 0.

As second contribution of the paper, we state the Mirror theory result for a
pair of independent permutations as follows:
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Theorem 3 (Independent Permutations Mirror theory). Let γ1,, . . ., γq
be any non-zero n-bit strings and x1, . . . , xq be distinct n-bit strings where n ≥ 7
and q ≤ 2n/17. Then the probability that

πππ(x1)⊕ πππ′(x1) = γ1

πππ(x1)⊕ πππ′(x1) = γ1
...

...
...

πππ(xq)⊕ πππ′(xq) = γq

holds is at least
(

1− 19q2

22n −
8n3

22n

)
1

2nq .

As an application of H-Coefficient technique to Theorem 3, one can see that the
XOR2 function also behaves almost like a random function for all q ≤ 2n/17,
where n ≥ 7, as stated in the following corollary, proof of which is deferred in
Sect. 6.2. This shows that the PRF advantage of the XOR2 construction is at
most 19q2/22n + 8n3/22n.

Corollary 2. For all q ≤ 2n/17, n ≥ 7 and a distinguisher A making at most
q queries, we have

AdvPRF
XOR2

(A) ≤ 19q2/22n + 8n3/22n.

Unlike the XOR1 construction, we do not know of any tight matching attack for
the XOR2 construction. However, a simple distinguisher for XOR2 (that makes
2n distinct queries) returns 0 whenever it observes that the xor of the replies to
its 2n distinct queries is 0n, and returns 1 otherwise.

Note that our proven PRF bound of XOR2 is better than the existing bound
already established in [33,35]. In fact, it also supersedes the bound (q/2n)1.5, q ≤
2n/16, as proven by Dai et al. [10]. However, our bound is not yet proved tight
because there is no known attack against XOR2 that uses less than 2n queries.

2 Recursive Inequality Lemma

For all positive integer j, ej ≥ jj

j! and so 1/j! ≤ (e/j)j . Thus, for all j ≥ m/2,
we have (

m

j

)
≤ mj

j!
≤ (em/j)j ≤ (2e)j . (2)

Lemma 1 (Recursive Inequality Lemma).
Suppose ad,` ≥ 0 such that ad,k := 0 for all k < 0 and for all 0 ≤ d ≤ 2n we
have

ad,` ≤
(

1

4e

)d
(3)

ad,` ≤ ad,`−1 + ad+1,`+1 +
C

2n
·
(

1

4e

)d
(4)
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)j
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+
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Fig. 2.1: The proof idea of the Recursive Inequality Lemma. The white terms in the
black squares, in this pascal tree like structure are equal to zero. However, we keep them
to achieve a compact coefficient

(
d0
i

)
due to our condition on the double sequence.

for some C > 0. Then

a0,0 ≤
4C + 2

2n
.

Proof Idea. The initial bound, i.e., Eqn. (3) of ad,` says that a0,0 ≤ 1. However,
due to the recursive inequality, i.e., Eqn. (4), we show that a0,0 has to be very
small. The recursive inequality gives us a0,0 = a1,1 + O(2−n). However, initial
bound ensures a1,1 ≤ 1/4e. Therefore, a single application of recursive inequality
is not sufficient to conclude the desired bound. However, if we apply the recursive
inequality twice before applying the initial bound, we have

a0,0 = a1,0 + a2,2 +O(2−n)

= a2,1 + a2,2 +O(2−n) = 2(1/4e)2 +O(2−n).

So, we apply the recursive inequality several times before applying the bounds
on a terms and we get an upper bound of a0,0 of the form Md/(4e)

d + O(2−n)
for some Md. In the detailed proof we show that the constant term present in
O(2−n) do not blow up and the value of Md/(4e)

d = O(2−n) for d = 2n.

Proof of Lemma 1. We first state the following claim, which follows from
iterated applications of the recursive inequality. A proof of the claim is deferred
to the end of this section.
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Claim 1. For any 0 ≤ d0 ≤ 2n, we have

a0,0 ≤
d0∑

i=d d02 e

(
d0
i

)
ai,2i−d0 +

C

2n

d0−1∑
i=0

i∑
j=d i2e

(
i

j

)(
1

4e

)j
. (5)

By plugging in the bound of each a-term from Eqn. (3) into the right hand side
of Eqn. (5) and then using Eqn. (2) for each of the binomial coefficients, we get
the following bound for all d ≤ 2n.

a0,0 ≤
d∑

i=d d2 e

(
2e · 1

4e

)i
+
C

2n

d−1∑
i=0

i∑
j=d i2e

(
2e · 1

4e

)j
.

Now by using the inequality
∑
a≥i r

a ≤ ri

1−r , we obtain

a0,0 ≤ 2 · 2−d/2 +
2C

2n

d−1∑
i=0

2−i/2 ≤ 2 · 2−d/2 +
4C

2n
.

By replacing d = 2n, we complete the proof of the lemma.
Proof of the Claim : We prove the claim by induction on d0. The result
holds trivially for d0 = 1 (by applying d = ` = 0 in Eqn. (4)). Now we prove the
statement for d0 + 1, assuming it true for d0. Therefore, we have

a0,0 ≤
d0∑

i=d d02 e

(
d0
i

)
ai,2i−d0 +

C

2n

d0−1∑
i=0

i∑
j=d i2e

(
i

j

)(
1

4e

)j

≤
d0∑

i=d d02 e

(
d0
i

)(
ai,2i−d0−1 + ai+1,2i−d0+1 +

C

2n
·
(

1

4e

)i)

+
C

2n

d0−1∑
i=0

i∑
j=d i2e

(
i

j

)(
1

4e

)j
. (6)

For i < d(d0 + 1)/2e, 2i − (d0 + 1) < 0, and hence ai,2i−(d0+1) = 0. For i >

d(d0 + 1)/2e, the coefficient of ai,2i−(d0+1) in the above sum will be
(
d0
i−1
)

+
(
d0
i

)
,

which is same as
(
d0+1
i

)
(see Fig. 2.1 for the recursive growth of coefficients). For

i =
⌈
d0+1

2

⌉
, the coefficient of ai,2i−d0−1 will be{(

d0
i

)
if d0 ≡ 1 (mod 2)(

d0
i−1
)

+
(
d0
i

)
if d0 ≡ 0 (mod 2).

In both cases, the coefficient of ai,2i−d0−1 for i =
⌈
d0+1

2

⌉
is at most

(
d0+1
i

)
. Using

the above observation in Eqn. 6 the inductive step is proved.

Remark 1. The similar result is also achieved when the initial bound (i.e., Eqn. (3))
is replaced by ad,` ≤ βd for any constant 0 < β < 1. However, we need that
Eqn. (3) and Eqn. (4) hold for all d ≤ 2n/ log( 1

2eβ ).
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3 Mirror theory for Single Permutation

In this section we prove Theorem 2. To do this, we first define a few notations,
the notion of label and the probability of distinctness event. Followed by that, we
state the main result of mirror theory for single permutation case (i.e., Lemma 2),
which we used to prove Theorem 2. Finally, we conclude the section with a proof
of Corollary 1.

Notations. For integers a ≤ b, the set {a, a + 1, · · · , b} is denoted as [a . . . b]
(or simply [b], when a = 0 and (b] when a = 1). We write X←$S to mean that X
is sampled uniformly from S and independent to all random variables defined so
far. Similarly, we write X1, . . . ,Xs←$S to mean that X1, . . . ,Xs are uniformly
and independently distributed over S.

We write γq := (γ1, . . . , γq) to denote a tuple of q elements and (γ0, γ
q) to

denote a tuple of (q+1) elements respectively. For any tuple γq, we write |γq| = q
to denote its number of elements. For i ∈ (q], we denote γq−i to represent the
tuple obtained after removing the i-th element γi from γq. Sometimes, we write
a tuple simply as γ (instead of γq) without explicitly mentioning its number of
elements. For two tuples γ, γ′, we write γ′ ⊆ γ (we also call γ′ is a sub-tuple
of γ), if there are indices i1, i2, . . . , iβ with 1 ≤ i1 < · · · < iβ ≤ |γ| such that
γ′ = (γi1 , . . . , γiβ ).

3.1 Probability of Distinctness Event

Let S := {ρ1, . . . , ρ`} be a set (possibly empty, i.e. ` = 0) of non-zero n-bit
strings and γq = (γ1, . . . , γq) be a tuple of non-zero n-bit strings. We call the pair
τ = (γq,S) an (`-linked) label. The elements of γq will be called the base elements
and that of S will be called the linked elements. Let R0,R1, . . . ,Rq ←$ {0, 1}n and

R′i
def
= Ri ⊕ γi for all i ∈ (q]. We now define the distinctness event dist(τ) (or

dist(τ | (R0,R
q)) to emphasize the random source) corresponding to the label τ

as follows:

1. Case S 6= ∅: dist(τ) is true if the following elements are distinct

R0, . . . ,Rq,R
′
1, . . . ,R

′
q,R0 ⊕ ρ1, . . . ,R0 ⊕ ρ`.

2. Case S = ∅: dist(τ) is true if R0, . . . ,Rq,R
′
1, . . . ,R

′
q are distinct. Alterna-

tively, we call τ = (γq,∅) as a 0-linked label.

We write the probability of the distinctness event as follows:

P(τ) := Pr(dist(τ | (R0,R
q))).

1-linked label. A 1-linked label τ = (γq,S = {ρ1}) with q base elements
is simply represented by a tuple (ρ1, γ1, . . . , γq). Similarly, a tuple γq can be
equivalently viewed as a 1-linked label τ = (γq−1, {γ1}). A tuple γ1 = (γ1) is
viewed as a 1-linked label τ = (∅, {γ1}) consisting of zero base element and one
link element γ1. It is easy to see that the probability of distinctness P(γq,S) and
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P(γq) (for 1-linked label) do not depend on the order of the tuple γ. Moreover,
it is also to be noted that the distinctness event for a zero-linked label (γq,∅)
and a 1-linked label γq are not same and thus the presence of the empty set
is crucial. Having defined the notion of probability of distinctness and 1-linked
label, we are now ready to state the main theorem of mirror theory for the single
permutation case.

R
0
⊕

S

R1 R′1 R2 R′2 Rq R′q
R0γ1 γ2 γq

ρ 1

ρ2

ρ
`−1ρ

`

Fig. 3.1: Graphical representation of the distinctness event for an `-linked label τ =
(γq,S), where S = {ρ1, · · · , ρ`}. The vertices are the random variables and the label
of edges are the base elements and link elements. The black vertices denote the n-bit
numbers sampled independently and uniformly at random and the white vertices are
the derived random variables. Thus, the graph actually represents dist(τ) as all the
vertices are distinct.

Lemma 2 (Main Result for Single Permutation). For all 1 ≤ q ≤ 2n/58,
n ≥ 12 and 1-linked label γq, we have

P(γq) ≥ (2n)2q

(2n)2q
. (7)

3.2 Proof of Theorem 2

Using Lemma 2, we can now prove Theorem 2. Let γ1, . . ., γq be any non-zero
n-bit strings and x1, x2, . . . , xq be distinct (n− 1) bits strings where n ≥ 12 and
q ≤ 2n/58. Let

P := Pr(πππ(x1‖0)⊕ πππ(x1‖1) = γ1, . . . ,πππ(xq‖0)⊕ πππ(xq‖1) = γq),

where πππ denotes an n-bit random permutation. Let A be the set of all z :=
(z1, · · · , zq) ∈ ({0, 1}n)q such that z1, z1 ⊕ γ1, · · · , zq, zq ⊕ γq are all distinct.

Then we have P = |A|
(2n)2q

. Moreover, we also have P(γq) = |A|
2nq . Combining these

two, Theorem 2 immediately follows from Lemma 2.

3.3 Proof of Corollary 1

Let τ = {(x1, y1), (x2, y2), . . . , (xq, yq)} be the transcript that result from the
interaction between A and the corresponding oracle, where xi ∈ {0, 1}n−1 is the
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i-th query of A and yi is the corresponding response. We call τ a bad transcript
if there exists at least one i ∈ [q] such that yi = 0n. Otherwise, τ is said to be a
good transcript.

According to the H-Coefficient technique, we bound the probability of the
occurence of bad transcripts in the ideal world. Let Xre (resp. Xid) be the random
variable that takes the transcript induced by the real world (resp. ideal world)
distribution. Let Ωbad denotes the set of all bad transcripts. Then, we have

Pr[Xid ∈ Ωbad] = Pr[∃i such that yi = 0n]

= 1− Pr[∀i such that yi 6= 0n]

(1)
= 1− (1− 2−n)q, (8)

where (1) follows as the yi’s are independently and uniformly sampled in the
ideal world. Therefore, for a good transcript τ , each yi is a non-zero n-bit string.
Therefore, for a good transcript τ = {(x1, y1), (x2, y2), . . . , (xq, yq)}, which is
realized in the real world, we can write

E =


πππ(0‖x1)⊕ πππ(1‖x1) = y1

πππ(0‖x2)⊕ πππ(1‖x2) = y2
...

...
...

...

πππ(0‖xq)⊕ πππ(1‖xq) = yq.

Computing the real interpolation probability for a good transcript τ , i.e., com-
puting Pr[Xre = τ ], is equivalent to counting the number of permutations πππ sat-
isfying E. Note that, as τ is a good transcript, this number is at least (2n)2q/2

nq

that follows from our main theorem of the paper as we are dealing with ξmax = 2.
Therefore,

Pr[Xre = τ ] ≥ 1

2nq
= Pr[Xid = τ ].

Thus, the ratio of real to ideal interpolation probability becomes at least 1.
Hence, by the result of H-Coefficient technique,

Advprf
XOR1

(A) ≤ 1− (1− 2−n)q,

which proves the result.

4 Proof of Lemma 2

To complete the proof of the Mirror theory for the single permutation case, it
now only remains to prove Lemma 2. To do this, we first establish the relation-
ship between the probabilities of the distinctness event between related labels
through Lemma 3 and Lemma 4. Followed by that, we introduce the notion
of “link-deletetion operation” and the “Link-Deletion Lemma”(i.e., Lemma 5),
which enables us to express the probability of the distinctness event of a `-linked
label in terms of the probability of the distinctness event of (`− 1)-linked label.
These results together will suffice for stating the “Core Lemma”, which will be
used to prove Lemma 2.
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4.1 Probabilities of Distinctness for Related Labels

In this section, we establish the relationship of the probabilities of distinctness
between a 0-linked label (γq,∅) and a 1-linked label γq. We also establish the
relationship of the probabilities of distinctness between two 1-linked labels such
that one is a sub-tuple of the other. Note that, for the 0-linked label, the dis-
tinctness event implies R0,R1,R1 ⊕ γ1, . . . ,Rq,Rq ⊕ γq are distinct, whereas for
the 1-linked label γq, the distinctness event implies R1,R1 ⊕ γ1, . . . ,Rq,Rq ⊕ γq
are distinct 2. Thus, dist((γq,∅) | (R0,R

q)) holds if and only if dist(γq | Rq) and
R0 6∈ {R1,R

′
1, . . . ,Rq,R

′
q}. By using the independence of R0, the following result

follows.

Lemma 3 (1-link-0-link). Let τ = (γq,∅) be a 0-linked label and γq be a
1-linked label. Then

P(γq,∅) =

(
1− 2q

2n

)
· P(γq).

Lemma 4 (1-link-1-link). Let λq be a 1-linked label and let γq−d be a 1-linked
label such that γq−d ⊆ λq. Then

P(γq−d) ≤ P(λq)/

(
1− 4q

2n

)d
. (9)

Let τ = (γq−d,S) be a label such that there exists x, y ∈ S with (γ0, γ
q−d) ⊆ λq

with γ0 = x⊕ y. Then

P(γq−d,S) ≤ P(λq)/

(
1− 4q

2n

)d−1
. (10)

Proof. If d = 0, the statement is trivial, because the tuple γq is a reordering of
the tuple λq and hence we have P(γq) = P(λq). For d > 0, we prove the statement
as follows. Since γq−d ⊆ λq, there exists 1 ≤ i1 < i2 < · · · < iq−d ≤ q, such
that γq−d = (λi1 , · · · , λiq−d). We take any z ∈ λq \ γq−d, that is any z = λi for

i 6= i1, · · · , iq−d. By setting γ0 = z, we compare P(γq−d) and P((γ0, γ
q−d)). Given

that the event dist(γq−d | Rq−d) holds, the event dist((γ0, γ
q−d) | (R0,R

q−d))
holds true if and only if both R0 and R0 ⊕ γ0 are not the members of the set

{R1,R
′
1, . . . ,Rq−d,R

′
q−d}.

2 Note that as per the definition of an 1-linked label, γq is defined as γq =
((γ2, γ3, . . . , γq), {γ1}) and therefore dist(γq) is the event that (R0,R1, . . . ,Rq−1,R1⊕
γ2, . . . ,Rq−1 ⊕ γq−1,R0 ⊕ γ1) are all distinct. Note that, this representation of the
event dist(γq) is equivalent to the event defined here. We have sampled q random val-
ues R1, . . . ,Rq such that all of them are distinct and also (R2⊕γ2, . . . ,Rq⊕γq,R1⊕γ1)
are also distinct.
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Therefore, for a given choice of values assigned to R1, . . . ,Rq−d, the number of
choices of value assigned to R0 is at least 2n − 4(q − d). Hence,

P((γ0, γ
q−d)) ≥ P(γq−d)×

(
1− 4(q − d)

2n

)
≥ P(γq−d)×

(
1− 4q

2n

)
. (11)

By inserting d elements of the tuple λq \ γq−d, one by one in the above manner,
into γq−d, we obtain a re-ordered copy of λq, which has the same probability of
distinctness as λq. Thus the first part of the lemma (i.e., Eqn. (9)) immediately
follows from Eqn. (11) by applying it successively for d times.

To prove the second part of the lemma, we would like to note that

P(τ) ≤ P(γq−d, {x, y})) ≤ P(γq−d, {x⊕ y}). (12)

If R0,R1, · · · ,Rq−d are uniformly and independently distributed over {0, 1}n,
then for any x ∈ {0, 1}n, R0 ⊕ x,R1, · · · ,Rq−d are also uniformly and inde-
pendently distributed over {0, 1}n. Letting R∗0 := R0 ⊕ x, dist(γq−d, {x, y}) is
the event of distinctness of R1,R

′
1, · · · ,Rq−d,R′q−d,R∗0,R∗0 ⊕ x,R∗0 ⊕ x⊕ y, while

dist(γq−d, {x⊕y}) is the event of distinctness of R1,R
′
1, · · · ,Rq−d,R′q−d,R∗0,R∗0⊕

x ⊕ y. Thus, dist(γq−d, {x, y}) ⊆ dist(γq−d, {x ⊕ y}). Hence, we have the sec-
ond inequality of Eqn. (12). Since (γq−d, x ⊕ y) ⊆ λq is a 1-linked label, of size
(q − d+ 1), the second part now follows from the first part of the lemma.

Link-Deletion Operation. Let τ = (γq,S) be an `-linked label with ` ≥ 1.
For every x ∈ S, we define the following set:

Ix,τ := {i ∈ (q] : γi ⊕ x 6∈ S ∪ 0n}. 3

Now, for every x ∈ S and for every i ∈ Ix,τ , we define the following set:

Sx,i := S ∪ {x⊕ γi}.

For a given `-linked label τ = (γq,S) and for i ∈ Ix,τ , we define (` + 1)-linked
label τi→x := (γq−i,Sx,i), which signifies the deletion of the i-th base element and
xor it with the link element x and finally included the result in S. Similarly, for
x ∈ S, we define the label τ−x to denote the pair (γq,S\{x}), which signifies the
deletion of a link element from S. A graphical representation of both of these
notions are depicted in Fig. 4.1.

Lemma 5 (Link-Deletion Lemma). Let τ be an `-linked label. Then, for all
x ∈ S and following the above notations, we have

P(τ) = P(τ−x)− 1

2n−1

∑
i∈Ix

P(τi→x)

3 We often write the set as Ix, omitting the label τ , whenever it is clear from the
context.
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Fig. 4.1: Upper part of the figure depicts the graphical view of a linked label, which
is made up of a finite collection of disjoint edges, called the base edges and a star
component, whose edges are called the linked edges. Middle part of the figure depicts
the graphical view when the bold link edge of the star component with label ρk, is
removed. The lower part of the figure depicts the graph when the hollow base edge
with label γi is deleted and a bold link edge with label γi ⊕ ρk is added to the star
component.

Proof. From the definition, it is obvious that dist(τ−x) is true whenever dist(τ)
is true. So dist(τ−x) \ dist(τ) 4 holds if and only if dist(τ−x) holds and for some
i ∈ Ix, R0 ⊕ x ∈ {Ri,R′i}. Clearly, these cannot happen simultaneously for more
than one i and so we can write

Pr (dist(τ−x) \ dist(τ)) = P(τ−x)− P(τ)

=
∑
i∈Ix

Pr(dist(τ−x) ∧ Ri ⊕ R0 = x︸ ︷︷ ︸
Ei

)

+Pr(dist(τ−x) ∧ R′i ⊕ R0 = x︸ ︷︷ ︸
E′i

). (13)

Note that the event Ei implies that the elements of R0 ⊕ (S \ x) and the ele-
ments R0 ⊕ x,R0 ⊕ x ⊕ γi, Rj ,R′j for j ∈ {1, 2, . . . , q} \ i are distinct. In other
words, Ei is equivalent to the event that (1) dist(γq−i,Sx,i) holds for the random
source R0,R1, . . . ,Ri−1,Ri+1, . . . ,Rq and (2) Ri = R0⊕x. Since these two events
are independent we have Pr(Ei) = Pr(dist(τi→x)) × 2−n. Similarly, we have the
probability for the event E′i and this proves the lemma.

4 This notation denotes the set difference of two events dist(τ−x) and dist(τ).
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By applying Lemma 5 to a 1-linked label τ = (γq, {γ0}) (equivalently τ =
(γ0, γ

q)), we have

P((γ0, γ
q)) = P(γq,∅)− 1

2n−1

∑
i∈Iγ0

P((γ0, γ
q)i→γ0). (14)

Multiplicity. Given x ∈ {0, 1}n and a tuple γ of n-bit strings, we define the
following two quantities:

(a) δγ(x) = #{i ∈ (|γ|] | γi = x}, (b) ∆γ := max
x∈{0,1}n

δγ(x).

In words, (a) refers to the multiplicity of the element x in the tuple γ and (b)
refers to the maximum multiplicity of the tuple γ, where the maximum is taken
over all the n-bit strings. We now state the “Core Lemma”, which is used to
prove our main theorem. We defer its proof in Sect. 5.

Lemma 6 (Core Lemma). Let (γ0, γ
q) with q ≥ 2n be any 1-linked label.

Then, following the notations above, we have

P((γ0, γ
q)i→γ0) ≤ P(γq,∅)

(
1 +

29∆(γ0,γq)

2n

)
. (15)

4.2 Resuming the Proof of Lemma 2

Having stated the Core Lemma and the Link-Deletion Lemma, our stage is
now set for proving Lemma 2. Note that for any non-zero n-bit binary string
γ1, the 1-linked label γ1 is viewed as having zero base element and one link
element γ1. Therefore, P(γ1) implies the probability that the random variables

R0 and R′0
def
= R0 ⊕ γ1 are distinct, which occurs with probability 1 and hence

P(γ1) = 1 and so the statement is true for q = 1, which proves the base case
of the induction. We now show that for each q such that 1 ≤ q ≤ 2n/58, the
following inequality holds:

P(γq+1)

P(γq)
≥
(

1− 2q

2n

)(
1− 2q + 1

2n

)
=

(2n − 2q)(2n − 2q − 1)

22n
.

For the notational purpose, we prove the following inequality as we know that
the probability of distinctness for 1-linked label does not depend on the order of
the tuple.

P((γ0, γ
q))

P(γq)
≥
(

1− 2q

2n

)(
1− 2q + 1

2n

)
.

We prove the inequality in two steps. In the first step, we prove it for all q ≤ 2n
and in the second step we prove for all q such that 2n ≤ q ≤ 2n/58 holds.
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First Step: By setting d = 0 in Eqn. (11), we have

P((γ0, γ
q))

P(γq)
≥
(

1− 4q

2n

)
≥
(

1− 2q

2n

)(
1− 2q + 1

2n

)
,

where the last inequality follows from the condition q ≤ 2
n
2−1 − 1. Note that

n ≥ 12 implies 2n < 2n/2−1 and so our claim is true for all q ≤ 2n.

Second Step: Let (γ0, γ
q) be a 1-linked label with q base elements such that

q ≥ 2n. Recall that, Iγ0 is the set of all i ∈ (q] such that γi 6= γ0. As the probabil-
ity of distinctness does not depend on the order of the elements of the label, we
rearrange the elements in the label in such a way so that ∆ := ∆(γ0,γq) = δ + 1
is achieved. Let |Iγ0 | = q − ∆ + 1, where δ := δγq (γ0). By applying Eqn. (14)
and Lemma 6, we can bound P((γ0, γ

q)) from below as follows:

P((γ0, γ
q))

(a)
= P(γq,∅)− 1

2n−1

∑
i∈Iγ0

P((γ0, γ
q)i→γ0)

(a)

≥ P(γq,∅)− 1

2n−1

∑
i∈Iγ0

P(γq,∅)(1 + 29∆/2n)

= P(γq,∅)

(
1− q −∆+ 1

2n−1

(
1 +

29∆

2n

))
(b)

≥ P(γq)

(
1− 2q

2n

)(
1− q −∆+ 1

2n−1

(
1 +

29∆

2n

))
≥ P(γq)

(
1− 2q

2n

)(
1− 2q + 1

2n

)
,

where (a) follows from Eqn. 14, (b) follows from Lemma 6 and (c) follows from
Lemma 3. Moreover, the last inequality follows as q ≤ 2n

58 , ∆ ≥ 1 and the
simplification as given below

q −∆+ 1

2n−1

(
1 +

29∆

2n

)
≤ 2q + 1

2n
.

5 Proof of Core Lemma (Lemma 6)

To prove the Core Lemma, it is sufficient to prove the following upper bound

|P((γ0, γ
q)i→γ0)− P(γq,∅)| ≤

29∆(γ0,γq) · P(γq,∅)

2n
, (16)

where (γ0, γ
q) is a 1-linked label. Before we prove Eqn. (16), we first identify

the relationship between (γ0, γ
q)i→γ0 = (γq−i, {γ0, γ0 ⊕ γi}) and (γq,∅). The

label (γ0, γ
q)i→γ0 contains two linked elements γ0 and γ0 ⊕ γi whose sum is

γi. Now, if we remove these two linked elements and include their xor to the
tuple of the base elements, we obtain (γq,∅). We generalize the above notion
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for any `-linked label τ = (λα,S). In order to do this, we introduce the notion
of double-link separation as follows:

Double Link Separation Operation. For a given `-linked label τ = (λα,S)
such that x, y ∈ S, we define the double-link separation operation (see Fig. 5.1)
as

τ−(x,y) := ((λ1, . . . , λα, λα+1 := x⊕ y),S \ {x, y}).
The notion of double-link separation operation leads us to define the “differential
term” as follows:

Definition 1 (Differential Term). For a positive integer q, for all ` ≥ 0 and
1 ≤ α ≤ q, we define

D(α, `) = max
τ,x,y

∣∣P(τ)− P(τ−(x,y))
∣∣, (17)

where the maximum is taken over all τ := (λα−1,S) and x, y ∈ S such that
|S| = `+ 2 and (λ1, . . . , λα−1, x⊕ y) ⊆ γq. For all ` < 0, we define D(α, `) = 0.

γ2

z
x

y
γ2

x

y

z
x

yz ⊕ γ2

γ2 x ⊕ y
z

γ2 x ⊕ y x ⊕ y
z

z ⊕ γ2

τ τ−z τ2→z

τ ′ τ ′−z τ ′2→z

−(x, y) −(x, y) −(x, y)

Fig. 5.1: Graphical view of the double-link separation. The extreme left figure depicts
the separation of double-links (x, y) results to a graph with a star component having
no link-edges with label x and y and include their xor (i.e., x⊕y) as the label of a base
edge. A similar view is depicted for the middle and the extreme right figures.

We recall that for a fixed integer q ≥ 2n, (γ0, γ
q) is a 1-linked label. Let β :=

2q/2n, and for all 0 ≤ d ≤ q, and ` ≤ 2d − 1, we write α = q − d. Finally, we
define a double sequence ad,` as follows:

ad,` :=
βd

2P(γq)
×D(α, `).



18 Avijit Dutta and Mridul Nandi and Abishanka Saha

Now we state the following claim which establishes the following upper bound
on a0,0 as follows:

Claim.

a0,0 ≤
14∆(γ0,γq)

2n
. (18)

Proof of Eqn. (16). We complete the proof of Eqn. (16) using the above claim
as follows:

|P((γ0, γ
q)i→γ0)− P(γq,∅)| ≤ D(q, 0)

≤
28∆(γ0,γq) · P(γq)

2n

≤
29∆(γ0,γq) · P(γq,∅)

2n
,

where the second inequality follows since D(q, 0) = a0,0 × 2P(γq) and the last
inequality follows since P(γq) = P(γq,∅)/(1−2q/2n) ≤ 29

28 ·P(γq,∅) and q/2n ≤
1/58.

5.1 Proof of the Claim (Equation (18))

We prove the claim using recursive inequality lemma. Let τ = (λα−1,S) be any

label, where x, y ∈ S such that |S| = `+ 2 and λα
def
= (λ1, . . . , λα−1, x⊕ y) ⊆ γq

be a 1-linked label. By using the second part of Lemma 4 on label τ , we have

P(τ) ≤ P(γq)/(1− 4q/2n)q−α, (19)

and by using the first part of Lemma 4 on label τ , we have

P(τ−(x,y)) ≤ P(λα) ≤ P(γq)/(1− 4q/2n)q−α. (20)

Using Eqn. (19), Eqn. (20), and Defn. 1, we have

D(α, `) ≤ 2P(γq)/(1− 4q/2n)q−α, (21)

where the above inequality holds due to the fact that for two positive integers a
and b, one has |a− b| ≤ |a+ b|. Using the definition of ad,` and from Eqn. (21),
the double sequence 〈ad,`〉 satisfies

ad,` ≤
(

β

1− 2β

)d
≤
(

1

4e

)d
, (22)

where the last inequality follows from the assumption that q ≤ 2n/59. Note that,
the above bound (i.e., Eqn. (22)) is same as the initial bound of our Recursive
Inequality Lemma (i.e., Lemma 1). Now, it only remains to establish the recursive
inequality of the double sequence 〈ad,`〉. To establish the recursive inequality, we
need to establish a recursive inequality on D-terms.
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Lemma 7 (Recursive Inequality of D-Term). For any α ≤ q, ` ≥ 0,

D(α, `) ≤ D(α, `− 1) +
2q

2n
D(α− 1, `+ 1) +Θ,

where Θ
def
=

6∆(γ0,γ
q)P(γ

q)

2n(1−4q/2n)q−α .

Proof. Let τ = (γα−1,S) be any label such that γα−1 ⊆ λq and |S| = ` +
2. For such a given τ = (γα−1,S), let x, y ∈ S such that τ ′ := τ−(x,y) =
(γα,S′ := S \ {x, y}) be a `-linked label which is double-link separated from τ .
Now, we consider the label τ = (λα−1,S) and x, y ∈ S with |S| = ` + 2 and
(λ1, . . . , λα−1, x⊕y) ⊆ γq, such that |P(τ)−P(τ ′)| is maximum. Hence, for such
a label τ , we prove the result in two cases: (a) when ` = 0 and (b) ` > 0 as
follows:

Case-I: ` = 0: In this case, we consider the label τ = (λα−1, {x, y}), where
(λ1, . . . , λα−1, x ⊕ y) ⊆ γq, such that |P(τ) − P(τ ′)| is maximum, where recall
that τ ′ = τ−(x,y) = ((λα−1, x⊕ y),∅). From the label τ , we define another label
τ∗ = (λα−1, {x, x⊕ y}) from τ . It is easy to see that P(τ) = P(τ∗). By applying
Lemma 5 on the label τ∗, we have

P(τ∗) = P(τ∗−x)− 1

2n−1

∑
i∈Ix

P(τ∗i→x), (23)

where τ∗−x = (λα−1, {x⊕ y}) and τ∗i→x = (λα−2, {x, x⊕ y, x⊕λi}). Similarly, by
applying Lemma 3 on the label τ ′, we have

P(τ ′) =

(
1− 2α

2n

)
P(λα−1, {x⊕ y}). (24)

It is to be noted here that the label (τ∗i→x)−(x,x⊕λi) = (λα−1, {x⊕y}). Therefore,
by substracting Eqn. (23) from Eqn. (24) and by having |Ix| ≥ (α− 3∆(γ0,γq)),
we have

D(α, `) = |P(τ)− P(τ ′)| = |2α
2n

P(γα−1, {x⊕ y})

− 2

2n

∑
i∈Ix

P(γα−2, {x, x⊕ y, x⊕ λi})|

≤ 2α

2n
D(α− 1, `+ 1) +

6∆(γ0,γq)P(γq)

2n(1− 2β)q−α
, (25)

which completes the proof for the first case.

Case-II: ` > 0: To prove the second case, i.e., ` > 0, we consider the label
τ = (λα−1,S) and x, y ∈ S with |S| = `+ 2 and (λ1, . . . , λα−1, x⊕y) ⊆ γq, such
that |P(τ) − P(τ ′)| is maximum. Fix any z ∈ S′ and apply the Link-Deletion
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Lemma (i.e., Lemma 5) for τ and τ ′ by removing z from them. In particular, we
have

(a) P(τ) = P(τ−z)−
∑
i∈Iz

P(τi→z)

2n−1
,

(b) P(τ ′) = P(τ ′−z)−
∑
i∈I′z

P(τ ′i→z)

2n−1
, ,

where Iz = {i ∈ (α − 1] | γi ⊕ z 6∈ S ∪ {0n}} and I ′z = {i ∈ (α] | γi ⊕ z 6∈
S∪{0n} \ {x, y}}. Thus, Iz ⊆ I ′z. Moreover, i ∈ I ′z \ Iz, implies that either i = α
or γi ⊕ z ∈ {x, y}. The number of i’s such that γi = z ⊕ x (similarly for z ⊕ y)
is at most ∆γα ≤ ∆(γ0,γq). So, |I ′z \ Iz| ≤ 2∆(γ0,γq) + 1 ≤ 3∆(γ0,γq). Clearly, (1)
(τ−z)−(x,y) = τ ′−z and (2) for every i ∈ Iz, (τi→z)−(x,y) = τ ′i→z = (γα−1,S) with
|S| = `+ 2. Hence, for such a label τ , we have the following:

D(α, `) = |P(τ)− P(τ ′)|
≤
∣∣P(τ−z)− P(τ ′−z)

∣∣+ 2−n+1
∑

i∈I′z\Iz

P(τ ′i→z)

+ 2−n+1
∑
i∈Iz

∣∣P(τi→z)− P(τ ′i→z)
∣∣

≤ D(α, `− 1) +
2α

2n
D(α− 1, `+ 1)

+ 2−n+1
∑

i∈I′z\Iz

P(τ ′i→z)

≤ D(α, `− 1) + βD(α− 1, `+ 1)

+
∑

i∈I′z\Iz

P(γq)

2n−1(1− 4q/2n)q−α

≤ D(α, `− 1) + βD(α− 1, `+ 1)

+
6∆(γ0,γq)P(γq)

2n(1− 2β)q−α
.

This completes the proof of the lemma.

Following the definition of ad,` and β/(1 − 2β) ≤ 1/4e, we have the recursive
inequality

ad,` ≤ ad,`−1 + ad+1,`+1 +
3∆(γ0,γq)

2n
·
(

1

4e

)d
. (26)

Therefore, applying the recursive inequality lemma, i.e., Lemma 1 on Eqn. (22)
and Eqn. (26) with C = 3∆(γ0,γq), we have

a0,0 ≤
12∆(γ0,γq) + 2

2n
≤

14∆(γ0,γq)

2n
.
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6 Mirror theory for Independent Permutations

Let S := {ρ1, . . . , ρ`} and S′ := {ρ′1, . . . , ρ′`′} be two sets of (possibly empty, i.e.
` = 0, `′ = 0) n-bit strings satisfying 0 ≤ |S′| − |S| ≤ 1. Let γq = (γ1, . . . , γq)
be an ordered tuple of n-bit strings. We call the pair τ = (γq,S,S′) an L-
linked label (where L = |S| + |S′| = ` + `′) or simply label. The elements of γq

will be called the base elements and those of S and S′ the linked elements. Let
R0,R1, . . . ,Rq ←$ {0, 1}n and R′i = Ri ⊕ γi for all i ∈ (q]. We now define the
distinctness event dist(τ) corresponding to the label τ as follows:

1. Case S,S′ 6= ∅: dist(τ) is true if R0, . . . ,Rq,R0 ⊕ ρ1, . . . ,R0 ⊕ ρ` are all
distinct and R′1, . . . ,R

′
q,R0 ⊕ ρ′1, . . . ,R0 ⊕ ρ′`′ are all distinct.

2. Case S = ∅,S′ = {ρ′1}: dist(τ) is true if R0, . . . ,Rq are all distinct and

R′1, . . . ,R
′
q,R0 ⊕ ρ′1 are all distinct. In this case we call τ a 1-linked label.

3. Case S = S′ = ∅: dist(τ) is true if R0, . . . ,Rq are all distinct and R′1, . . . ,R
′
q

are all distinct. In this case, we call τ a 0-linked label.

R0 ⊕S

R0 ⊕S′

R1 R′1 R2 R′2 Rq R′q
R0

γ1 γ2 γq

ρ`

ρ2
ρ1

ρ′`′
ρ′2

ρ′1

Fig. 6.1: Graphical representation of the distinctness event for an (`+ `′)-linked label
τ = (γq,S,S′), where S = {ρ1, · · · , ρ`} and S′ = {ρ′1, · · · , ρ′`′}. The vertices are
the random variables and the label of edges are the base elements and link elements.
The solid vertices denote the n-bit numbers sampled independently and uniformly at
random and the hollow vertices are the derived random variables. When dist(τ) holds,
all the circular vertices are distinct and all the triangular vertices are distinct.

1-linked Label. A 1-linked label τ = (γq,S = ∅,S′ = {ρ}) with q many
base elements is equivalently represented by (γ0, γ

q) := (γ0, γ1, . . . , γq), where
γ0 = ρ. Similarly, a tuple γq can be equivalently viewed as a 1-linked label
τ = (γq−1,∅, {γ1}). As before, the distinctness event for a zero-linked label
(γq,∅,∅) and a 1-linked label γq are not same. We write the distinctness event
as dist(τ | (R0,R

q)) to explicitly denote the random sources involved in the event.
We denote the probability

P(τ) := Pr(dist(τ | (R0,R
q))).
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It is easy to observe that the probability P(γ,S,S′) does not depend on the
order of the tuple γ. In other words, if γ′ is a permutation of the tuple γ then
P(γ,S,S′) = P(γ′,S,S′). Having defined the notion of probability of distinct-
ness and 1-linked label, we are now ready to state the main theorem of mirror
theory for the independent permutations case.

Lemma 8 (Main Result for Independent Permutations). For n ≥ 7 and
any 1-linked label γq with 1 ≤ q ≤ 2n/17, we have

P(γq) ≥ ((2n)q)2

(2n)2q

(
1− 8n3

22n
− 19q2

22n

)
. (27)

6.1 Proof of Theorem 3

Using Lemma 8, we can now prove Theorem 3, which is stated as follows: let
γ1, . . ., γq be any n-bit strings and x1, x2, . . . , xq be distinct n-bit strings where
q ≤ 2n/17. Then,

I := Pr(πππ1(x1)⊕ πππ2(x1) = γ1, . . . ,πππ1(xq)⊕ πππ2(xq) = γq),

where πππ1 and πππ2 are two independent n-bit random permutations. Let A be the
set of all z := (z1, · · · , zq) ∈ ({0, 1}n)q such that z1, z2, . . . , zq are all distinct

and z1⊕γ1, z2⊕γ2, . . . , zq⊕γq are all distinct. Then, we have I = |A|
(2n)q(2n)q and

P(γα) = |A|
2nq . Therefore, Theorem 3 immediately follows from Lemma 8.

6.2 Proof of Corollary 2

In this proof, there is no bad transcript. Therefore, for any transcript τ , probabil-
ity of realizing it in the real world is equivalent to count the number of distinct so-
lutions to the following system of equations: E = {πππ1(x1)⊕πππ2(x1) = y1,πππ1(x2)⊕
πππ2(x2) = y2, . . . ,πππ1(xq)⊕πππ2(xq) = yq}, which is (2n)q · (2n)q/2

nq · (1− ε), where
ε = 19q2/22n + 8n3/22n that follows from our main theorem of the paper as we
are dealing with ξmax = 2. Therefore,

Pr[Xre = τ ] ≥ 1

2nq
·
(

1− 19q2

22n
− 8n3

22n

)
.

Hence, by the result of H-Coefficient technique, our result follows.

7 Proof of Lemma 8

To complete the proof of the Mirror theory for the independent permutations
case, it now only remains to prove Lemma 8. Similar to the proof of Lemma 2,
we first exploit the properties of the probabilities of the distinctness event be-
tween related labels for independent permutations case through Lemma 9 and
Lemma 10. Similar to the single permutation case, we introduce the notion of the
link-deletion operation and the Link-Deletion Lemma (i.e., Lemma 11). These
results together will allows us to state the Core-Lemma (i.e., Lemma 12), which
allows us to prove Lemma 8.
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7.1 Properties of Probability of Distinctness for Pairwise
Independent Permutation

Similar to Lemma 3, we establish the relationship between probabilities of dis-
tinctness for a 0-linked label (γq,∅,∅) and for a 1-linked label γq in Lemma 9.
In Lemma 10, we establish the relationship between probabilities of distinctness
for two 1-linked labels such that one is a sub-tuple of the other.

Lemma 9 (1-link-0-link). P(γq,∅,∅) = P(γq)(1− q
2n ).

Proof. The event dist(γq,∅,∅ | (R0,R
q)) holds if and only if dist(γq | (R0,R

q))
and R0 6∈ {R1, . . . ,Rq}. By using the independence of R0, the result follows.

Lemma 10 (1-link-1-link). Let γq−d be a 1-linked label such that γq−d ⊆ λq.
Then,

P(γq−d) ≤ P(λq)/

(
1− 2q

2n

)d
. (28)

Let τ = (γq−d,S,S′) be a label such that there exists x ∈ S and y ∈ S′ with
(γ0, γ

q−d) ⊆ λq where γ0 = x⊕ y. Then,

P(τ) ≤ P(λq)/

(
1− 2q

2n

)d−1
. (29)

The proof of this lemma is similar to that of Lemma 4 and hence we omit its
proof.

Link-Deletion Operation. Let τ = (γq,S,S′) be an `-linked label with
` ≥ 1. Unlike single permutation case, we remove the links alternately from S

and S′ in the following manner: If ` ≡ 0 (mod 2), then we remove a link element
x ∈ S, otherwise, we remove a link element x ∈ S′. Thus, for every x ∈ S, we
define the following set:

I ′x = {i ∈ (q] : γi ⊕ x 6∈ S′},

and for every x ∈ S′, we define the following set:

Ix = {i ∈ (q] : γi ⊕ x 6∈ S}.

Now, for every x ∈ S and for every i ∈ I ′x, we define the set:

S′x,i = S′ ∪ {x⊕ γi},

and for every x ∈ S′ and for every i ∈ Ix, we define the set

Sx,i = S ∪ {x⊕ γi}.

For a given `-linked label τ = (γq,S,S′), for x ∈ S and for i ∈ Ix, we define
(` + 1)-linked label τ ′i→x := (γq−i,S,S

′
x,i). Similarly, for x ∈ S′ and for i ∈ Ix,

we define (` + 1)-linked label τi→x := (γq−i,Sx,i,S
′). Similarly, for x ∈ S, we

define the label τ−x to denote (γq,S \x,S′) and τ−x to denote (γq,S,S′ \x) for
x ∈ S′.
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Lemma 11 (Link-Deletion Lemma). Let τ = (γq,S,S′) be a `-linked label
with ` ≥ 1. Then, using the above notations, we have the followings:

P(τ) = P(τ−x)−
∑
i∈I′x

P(τ ′i→x)

2n
( for ` ≡ 0 (mod 2)).

P(τ) = P(τ−x)−
∑
i∈Ix

P(τi→x)

2n
( for ` ≡ 1 (mod 2)).

The proof of this lemma is similar to that of Lemma 5 and hence we omit it.
We would just want to point out, that the reason of two different cases here
stems from the requirement that 0 ≤ |S′| − |S| ≤ 1. If ` ≡ 0 (mod 2), then
|S| = |S′|, and then the link is removed from S, otherwise, if ` ≡ 1 (mod 2),
then |S′| = |S|+ 1, and then the link is removed from S′.

By applying Lemma 11 to a 1-linked label τ = (γq,∅, {γ0}) (equivalently τ =
(γ0, γ

q)), we have

P((γ0, γ
q)) = P(γq,∅,∅)− 1

2n

∑
i∈Iγ0

P(γqi→γ0). (30)

We now state the “Core Lemma for the pairwise independent permutations”,
which is used to prove our main theorem. We defer its proof in Subsect. 7.3.

Lemma 12 (Core Lemma). Let (γ0, γ
q) = (γ0, γ1, . . . , γq) with q ≥ 2n be any

1-linked label. Then, we have

P((γ0, γ
q)i→γ0) ≤ P(γq,∅,∅)

(
1 +

17∆(γ0,γq)

2n

)
.

7.2 Resuming the Proof of Lemma 8

We prove the result in two steps. In the first step, we prove that

P(γ2n) ≥ ((2n)2n)2

(2n)4n

(
1− 8n3

22n

)
, (31)

and in the second step we prove that

P(γq) ≥ P(γ2n)× ((2n − 2n)q−2n)2

(22n)q−2n

(
1− 19q2

22n

)
(32)

holds. Combining Eqn. (31) and Eqn. (32), we have our result,

P(γq) ≥ ((2n)q)2

(2n)2q
×
(

1− 19q2

22n

)(
1− 8n3

22n

)
≥ ((2n)q)2

(2n)2q
×
(

1− 19q2

22n
− 8n3

22n

)
.
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First Step: For any q ≤ 2n−1, we take an arbitrary 1-linked label τ = (γ0, γ
q)

with q base elements. So

P((γ0, γ
q)) ≥ P(γq)×

(
1− 2q

2n

)
= P(γq)×

(
1− q

2n

)2(
1− q2/22n

(1− q/2n)
2

)
.

Since ordering of elements does not affect the probability of distinctness, we have

P(γq+1)

P(γq)
≥
(

1− q

2n

)2(
1− q2/22n

(1− q/2n)
2

)
. (33)

Let us denote ζ(q) = q2/22n

(1−q/2n)2 . Note that, ζ(q) is an increasing function and

(1− ζ(q))q ≥ 1− q · ζ(q). Therefore, by multiplying Eqn. (33) for 1 ≤ q ≤ 2n−1,
we get

P(γ2n) ≥ ((2n)2n)2

(2n)4n

(
1− (2n− 1)3/22n

(1− (2n− 1)/2n)
2

)

≥ ((2n)2n)2

(2n)4n

(
1− 8n3

22n

)
,

where the last inequality holds because 1 − (2n−1)3/22n

(1−(2n−1)/2n)2 ≥ 1 − 8n3/22n for

n ≥ 7.

Second Step. In the second step, we prove that for all α with 2n ≤ α ≤ 2n/17,
the following

P(γα+1)

P(γα)
≥ (2n − α)2

22n
(1− η(α)) (34)

holds, where η(α) := 17α/22n

1−α/2n . Note that, η(α) is a non-decreasing function,

and (1 − η(q − 1))q ≥ 1 − (q − 1)η(q − 1) ≥ 1 − q · η(q). Moreover, for all
q ≤ 2n/17, we have 17/(1− q/2n) ≤ 19. Therefore, by multiplying Eqn. (34) for
all 2n ≤ α ≤ q − 1, we have Eqn. (32).

Since the ordering of the elements does not matter, for notational simplicity,
we prove the following statement, which is equivalent to Eqn. (34):

P((γ0, γ
α))

P(γα)
≥ (2n − α)2

22n
(1− η(α)).

Let (γ0, γ
α) be a 1-linked label with α base elements. As the probability of dis-

tinctness does not depend on the order of the elements of the label, we rearrange
the elements in the label in such a way so that ∆ := ∆(γ0,γα) = δ + 1, where
δ := δγα(γ0), is achieved. Let Iγ0 := {i ∈ (α] | γi 6= γ0} be the set of all indices i
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for which γi does not collide with γ0. It is easy to see that |Iγ0 | = α−∆+ 1. By
applying Eqn. 30 and Lemma 12, we can bound P(γ[α]) from below as follows:

P((γ0, γ
α)) = P(γα,∅,∅)− 1

2n

∑
i∈Iγ0

P(γαi→γ0)

≥ P(γα,∅,∅)− 1

2n

∑
i∈Iγ0

P(γα,∅,∅)

(
1 + 17

∆

2n

)

≥ P(γα,∅,∅)

(
1− α− δ

2n

(
1 +

17(δ + 1)

2n

))
[1]

≥ P(γα,∅,∅)

(
1− α

2n
− 17α

22n

)
[2]

≥ P(γα)× (2n − α)2

22n
(1− η(α))

where [1] follows from the calculation

α− δ
2n

(
1 +

17(δ + 1)

2n

)
≤ α

2n
+

17α

22n
− δ

2n

(
1− 17α

2n

)
≤ α

2n
+

17α

22n
,

and [2] follows from Lemma 9.

7.3 Proof of Core Lemma (Lemma 12)

To prove the Core Lemma, it is sufficient to prove the following upper bound

|P((γ0, γ
q)i→γ0)− P(γq,∅,∅)| ≤

17∆(γ0,γq) · P(γq,∅,∅)

2n
. (35)

As before, we first identify the relationship between (γ0, γ
q)i→γ0 = (γq−i, {γi ⊕

γ0}, {γ0}) and (γq,∅,∅). The label (γ0, γ
q)i→γ0 contains one linked element

γ0⊕ γi in S and the linked element γ0 in S′ whose sum is γi. Now, if we remove
these linked element from S and S′ and include their xor to the tuple of the
base elements, we obtain (γq,∅,∅). We generalize this notion for any `-linked
label τ = (λα,S,S′) and call it the double-link separation.

Double Link Separation Operation. Let τ = (λα,S,S′) and x ∈ S, y ∈ S′.
We define

τ−(x,y) := ((λ1, · · · , λα, λα+1 := x⊕ y),S \ {x},S′ \ {y}),

When we write τ−(x,y), it is implicitly assumed that x ∈ S and y ∈ S′ are linked
elements of τ .

The notion of double-link separation operation leads us to define the “differ-
ential term” as follows:
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Definition 2 (Differential Term). For a positive integer q, for all ` ≥ 0 and
1 ≤ α ≤ q, we define

D(α, `) = max
τ,x,y

∣∣P(τ)− P(τ−(x,y))
∣∣, (36)

where the maximum is over all τ := (λα−1,S,S′) and x ∈ S, y ∈ S′ such that
|S| + |S′| = ` + 2 and (λ1, . . . , λα−1, x ⊕ y) ⊆ γq. For all ` < 0, we define
D(α, `) = 0.

Recall that for q ≥ 2n, (γ0, γ
q) = (γ0, γ1, . . . , γq) is an 1-linked label. Let β :=

q/2n 5. For all 0 ≤ d ≤ q, and ` ≤ 2d− 1, we write α = q − d and define

ad,` :=
βdD(α, `)

2P(γq)
.

Now we state the following claim which establishes the following upper bound
on a0,0 as follows:

Claim.

a0,0 ≤
8∆(γ0,γq)

2n
. (37)

Proof of Eqn. (35). We complete the proof of the Core Lemma, using the
above claim.

|P((γ0, γ
q)i→γ0)− P(γq,∅,∅)| ≤

16∆(γ0,γq) · P(γq)

2n

≤
17∆(γ0,γq)

2n
· P(γq,∅,∅),

where the second inequality follows since D(q, 0) = a0,0 × 2P(γq) and the last
inequality follows since P(γq) = P(γq,∅,∅)/(1 − q/2n) ≤ 17

16 · P(γq,∅,∅) and
q/2n ≤ 1/17.

7.3.1 Proof of the Claim (Equation (37)) Let τ = (γα−1,S,S′) be any
label, where x ∈ S and y ∈ S′ such that |S|+ |S′| = `+ 2 and (γ1, . . . , γα−1, x⊕
y) ⊆ γq. Then using Lemma 10 and Defn. 2, we have

D(α, `) ≤ 2P(γq)

(1− 2q/2n)q−α
. (38)

Using the definition of ad,` and from Eqn. (38), the double sequence 〈ad,`〉 sat-
isfies

ad,` ≤
(

β

1− 2β

)d
≤
(

1

4e

)d
, (39)

where the last inequality follows from the assumption that q ≤ 2n/17. Note that,
the above bound (i.e., Eqn. (39)) is same as the initial bound of our Recursive
Inequality Lemma (i.e., Lemma 1). Now, it only remains to establish the recursive
inequality of the double sequence 〈ad,`〉.
5 For the single permutation case, we defined β to be 2q/2n
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Lemma 13 (Recursive Inequality of D-Term). For any α ≤ q and ` ≥ 0,

D(α, `) ≤ D(α, `− 1) +
q

2n
·D(α− 1, `+ 1)

+
3∆(γ0,γq)

2n
× P(γq)

(1− 2q/2n)q−α
.

Proof. We prove the lemma for the case when ` ≡ 1 (mod 2). Other case can
be proved in exactly the same way. Let τ = (γα−1,S,S′) be any label such that
γα−1 ⊆ λq and |S|+ |S′| = `+ 2. For such a given τ = (γα−1,S,S′), let x ∈ S

and y ∈ S′ such that τ ′ := τ−(x,y) = (γα,S \ {x},S′ \ {y}) be a `-linked label
which is double-link separated from τ . Now, we fix any z ∈ S′ and apply the link
deletion lemma (Lemma 5) for τ and τ? = τ−(x,y) by removing z from them. In
particular, we have

(a) P(τ) = P(τ−z)−
∑
i∈Iz

P(τi→z)

2n
,

(b) P(τ?) = P(τ?−z)−
∑
i∈I?z

P(τ?i→z)

2n
, (40)

where Iz = {i ∈ (α] | γi⊕z 6∈ S∪{0n}}, I?z = {i ∈ (α+1] | γ?i ⊕z 6∈ S?∪{0n}}.
Thus, Iz ⊆ I?z . Also counting in precisely the same way as we did in the proof of
Lemma 7, we have |I?z \ Iz| ≤ 2∆(γ0,γq) + 1 ≤ 3∆γq . Hence, by subtracting the
above two link deletion relations and doing the similar calculations as we did in
the proof of Lemma 7, we obtain the result.

Following the definition of ad,` and β/(1 − 2β) ≤ 1/4e, we have the recursive
inequality

ad,` ≤ ad,`−1 + ad+1,`+1 +
1.5∆(γ0,γq)

2n
·
(

1

4e

)d
. (41)

Therefore, applying the recursive inequality lemma on Eqn. (39) and Eqn. (41)
with C = 1.5∆(γ0,γq), we have the result.

8 Conclusion and Future Work

In this paper, we provide a complete and verifiable proof of Mirror theory for the
single permutation case and pair of independent permutations case. Our result on
Mirror theory for the single permutation case directly gives an optimal and tight
PRF security on the XOR1 construction, whereas our result on Mirror theory for
a pair of independent permutations gives a security bound of O(q2/22n) for the
XOR2 construction. However, our bound for XOR2 is not known to be tight and
hence it leaves room for the bound to be improved. Also, our result is applicable
only for ξmax = 2, whereas Patarin[Theorem 6, [34]] claimed that the same result
holds for a general ξmax > 2 with θ = 134, and α ≤ 2n

(ξmax−1)·θ . Unfortunately,
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there is no proof available in support of this claim (only a very high-level sketchy
proof can be found in [34]). One can inevitably notice from our proof that the
analysis of the same for general ξmax is a lot more complicated. Nevertheless, this
is an interesting problem to address. In fact, coming up with a concrete security
proof for general ξmax result would eventually help to correctly establish the
improved security bounds of many cryptographic constructions.
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