
An airdrop that preserves recipient privacy

Riad S. Wahby? Dan Boneh? Christopher Jeffrey◦ Joseph Poon†

?Stanford University ◦Purse.io †Unaffiliated

Abstract. A common approach to bootstrapping a new cryptocurrency
is an airdrop, an arrangement in which existing users give away currency
to entice new users to join. But current airdrops offer no recipient privacy:
they leak which recipients have claimed the funds, and this information
is easily linked to off-chain identities.
In this work, we address this issue by defining a private airdrop and de-
scribing concrete schemes for widely-used user credentials, such as those
based on ECDSA and RSA. Our private airdrop for RSA builds upon
a new zero-knowledge argument of knowledge of the factorization of a
committed secret integer, which may be of independent interest. We also
design a private genesis airdrop that efficiently sends private airdrops to
millions of users at once. Finally, we implement and evaluate. Our fastest
implementation takes 40–180 ms to generate and 3.7–10 ms to verify an
RSA private airdrop signature. Signatures are 1.8–3.3 kiB depending on
the security parameter.

Keywords: Cryptocurrency · Airdrop · User privacy · Zero-knowledge
proof of knowledge of factorization of an RSA modulus

1 Introduction

Newly-created cryptocurrencies face a chicken-and-egg problem: users appear
to prefer currencies that already have a thriving ecosystem [64]. For general-
purpose cryptocurrencies, this might entail a healthy transaction volume. For
currencies supporting distributed applications, it could mean having a critical
mass of clients already using the provided functionality. In both cases, the bottom
line is: to attract users, you must already have some.

This problem is well known in practice. One response is an airdrop, an ar-
rangement in which the existing users of a cryptocurrency give value in their
currency to non-users, at no cost, to entice them to become users. Airdrops
have become increasingly popular [2,23,25,83], with recent high-profile examples
including Stellar [131] and OmiseGO [111].

As the name implies, an airdrop is designed to transfer value to passive recip-
ients. To be most effective at recruiting new users, an airdrop should not require
recipients to enroll ahead of time—or, in the best case, even to know about the
airdrop in advance. This is effected by leveraging existing cryptographic infras-
tructure. Commonly, recipients claim their airdropped value on a new blockchain
by reusing their identities from some other, well-established blockchain.

While airdrops to existing blockchains are convenient, using other crypto-
graphic infrastructure may be more effective at recruiting desirable users. A
very interesting example is GitHub, since it has tens of millions of users [70],
many of whom use SSH keys to access repositories and PGP keys to sign com-
mits. GitHub publishes users’ public keys [71,72], which allows cryptocurrencies
to design airdrops intended for developers by allowing them to claim airdropped
funds using keys from GitHub. The PGP web of trust [116], Keybase [88], Git-
Lab [73], and the X.509 PKI [46] are interesting for similar reasons.

Yet, no matter the infrastructure they target, airdrops have a serious flaw:
they offer no privacy to their recipients. This means that an observer can easily
learn whether or not any given recipient has claimed her airdropped value. Even
cryptocurrencies that provide anonymity mechanisms for on-chain transactions
(e.g., [30,16]; §8) do not prevent this leakage, because a recipient must first use
her existing identity to claim the airdropped funds. And using cryptographic
infrastructure like GitHub exacerbates this privacy leak since GitHub accounts,
PGP keys, etc., are often tied to software projects and professional activities. All
told, these issues act as a disincentive for privacy-conscious recipients to redeem
their awards, which reduces the airdrop’s effectiveness in recruiting new users.

Existing solutions fall short of addressing this issue. The simplest possible
approach—sending each recipient a fresh secret key for claiming her funds—
carries an even stronger disincentive: it requires recipients to trust the sender.
Both the sender and recipient know the secret key, so either can take the funds,
but neither can prove who did. Meanwhile, a dishonest sender might garner free
publicity with an airdrop, only to claw back the funds; or an incompetent one
might accidentally disclose the secret keys. To avoid this trust requirement, a
workable solution must allow only the recipient to withdraw the funds.

A more plausible approach is to have recipients claim airdrop funds by prov-
ing their identities in zero knowledge. Concretely, a recipient proves that she
knows the secret key for some pre-existing public key (say, the RSA public key of
her GitHub credential), and that no prior airdrop claim has used this public key.
To preserve her privacy, she must do so without revealing which public key she is
using. But proving knowledge of one secret key among a large list of RSA keys us-
ing general-purpose zero-knowledge proof systems [37,137,3,39,69,31,20,114,15]
is too expensive: infeasible computational cost, enormous proofs, and/or a setup
phase whose incorrect execution allows proving false statements (see §8).

Meanwhile, infrastructures like GitHub are primarily based on RSA because
it is, anecdotally, the most widely-supported key type for both SSH [130] and
PGP [77]. This means that taking advantage of these infrastructures effectively
requires support for airdrops to RSA keys.

Our contributions. This work builds an efficient and practical private airdrop
system using special-purpose zero-knowledge proofs designed for this task.

First, we define precisely the required functionality and security properties
for a private airdrop scheme (§2.1). Second, we exhibit practical private airdrop
schemes designed to work with ECDSA (§3) and RSA (§4) credentials. Our
ECDSA scheme extends in a straightforward way to Schnorr [127], EdDSA [21],

2

and similar credentials. To construct our RSA scheme, we devise a new succinct
zero-knowledge proof of knowledge (ZKPK) of the factorization of a committed
secret integer, which we prove secure in the generic group model for groups of
unknown order [128,50]. This new ZKPK may be of independent interest.

Third, we carefully describe how to use private airdrops to bootstrap a new
cryptocurrency, a scheme we call a private genesis airdrop (§5). This scheme is
designed to handle millions of recipients, each of whom has hundreds of keys of
mixed types (some RSA, some ECDSA, etc.) and who may potentially have lost
one or more of their keys. The scheme lets the airdrop’s sender prove the total
value of the airdrop, while enabling airdrop recipients to prove non-payment in
case the sender was dishonest.

Fourth, we implement and evaluate our schemes (§6). Our evaluation focuses
on the private airdrop scheme for RSA (which is more costly than the one for
ECDSA) and the private genesis airdrop. Depending on the security parameter,
our fastest implementation takes 40–180 ms for an airdrop recipient to generate
an RSA-based private airdrop signature comprising 1.8–3.3 kiB. The signature
takes miners 3.7–10 ms to verify. The scheme requires a trusted setup to gener-
ate one global RSA modulus with an unknown factorization. Eliminating trusted
setup, by using class groups of unknown order, increases signing and verifying
times by 9–13× in our reference implementation. Compared with a private air-
drop to one recipient, a private genesis airdrop to one million users, each with
one thousand public keys, increases signature size by less than 1.8× in the worst
case. Our reference implementation is available as open source (§6).

2 Background and definitions

[`] denotes the set of integers {0, 1, . . . , ` − 1}. λ is a security parameter (e.g.,
λ = 128); we generally leave λ implicit. Primes(2λ) is the set of the smallest 22λ

odd primes; this is roughly the primes up to 2λ+ log(2λ) bits in length.
Detailed knowledge of blockchains and cryptocurrencies is not required to

understand this work. For now, we regard a blockchain simply as an append-
only log of transactions. We give slightly more detail in Section 5; curious readers
should consult the survey of Bonneau et al. [29] for further information.

2.1 Private airdrop scheme

High-level description. In a private airdrop, a sender S creates a token and a
secret for a recipient R whose public key is pk . The sender sends the secret to
R1 and records the token in a blockchain transaction. To claim the airdrop, R
uses the token, the secret, and her secret key sk (i.e., corresponding to pk) to
sign a new transaction. Any verifier V (i.e., other blockchain stakeholders) can
verify this signature using the token, and does not learn the recipient’s pk .

1 This is usually accomplished by encrypting the secret to the recipient’s pk and
publishing the resulting ciphertext, so no explicit private channel is necessary.

3

Syntax. Let SIG := (genSIG, signSIG, verifySIG) be a signature scheme secure against
existential forgery under a chosen message attack. The derived private airdrop
scheme PAD with implicit security parameter λ is a tuple of four algorithms:
setup(1λ)→R pp: Output pp, which is an implicit input to the other algorithms.
send(pk)→R (c, s): Compute and output token c and secret s for public key pk ,
where (pk , sk) ←R genSIG(). Here c is a public airdrop token that can later be
claimed by a recipient whose public key is pk . The element s is a secret that
the recipient will use, along with sk , to claim the token c.
sign(sk , (c, s),msg)→R sig: Sign message msg ∈ {0, 1}? under token-secret pair
(c, s) using secret key sk , where (pk , sk)←R genSIG() and (c, s)←R send(pk). An
airdrop recipient uses this algorithm to claim the airdrop token c.
verify(c,msg , sig)→ {OK,⊥}: OK if sig is valid for msg and token c, else ⊥.
This algorithm is used to verify a claim for the token c.

PAD may also be validatable, in which case it has an additional algorithm:
validate(pk , (c, s))→ {OK,⊥}: This algorithm outputs OK if token c with se-
cret s granted to public key pk is valid, else it outputs ⊥.

For schemes that are not validatable, we let validate(·, ·) output OK for all inputs.

Functionality. We require that, for all messages msg ∈ {0, 1}?,

Pr

 verify(c,msg , sig) = OK ∧ validate(pk , (c, s)) = OK
where pp ←R setup(1λ) (pk , sk) ←R genSIG()

(c, s) ←R send(pk) sig ←R sign(sk , (c, s),msg)

 ≥ 1− negl(λ)

Security. PAD is secure if it is anonymous, unforgeable, and orthogonal to SIG.
Anonymity means, informally, that c and sig reveal nothing about pk or sk , other
than a well-defined leakage given by a function Λ. This ensures that claiming a
token c does not reveal the claimant’s identity, as required for privacy.

Definition 1. PAD is Λ-anonymous if there is a leakage function Λ such that
for all PPT adversaries A there exists a simulator Sim such that the following
two distributions are statistically indistinguishable, letting pp←R setup(1λ):

Dr =


(pk , sk) ←R genSIG()

(c, s) ←R send(pk)
(msg , st) ←R A(c)

sig ←R sign(sk , (c, s),msg)

output (pk , c,msg , sig , st)

 ; Ds =


(pk , sk) ←R genSIG()

H ←R Λ(pk , sk)
(c,msg , sig , st) ←R Sim(H)

output (pk , c,msg , sig , st)


Remark 1. Sim sees only H (not pk), yet simulates (c,msg , sig , st). This means
that this 4-tuple reveals nothing about the challenge pk except the leakage H =
Λ(pk , sk). A does not learn s because in an airdrop only the sender and recipient
do, and the goal is to keep other parties from learning the recipient’s identity.

Remark 2. Sim appears to forge a valid signature (see Def. 2), but this does not
result in a real-world attack on our private airdrop schemes (§3, §4). The reason
for this is that we instantiate these schemes in the random oracle model [12],
and Sim is allowed to program the random oracle.

4

Remark 3. A slightly stronger definition of anonymity also includes sk in the
output of both distributions. Anonymity under this definition implies, roughly
speaking, that even knowledge of the key sk corresponding to a token c is not
sufficient to connect sig to pk . The schemes in the following sections meet this
stronger notion, but it does not appear necessary in practice.

Unforgeability means, roughly speaking, that without sk one cannot generate
a valid PAD signature for any message, even given valid PAD signatures for
other messages and valid signatures in the underlying SIG for arbitrary messages.
Consider Forge, a game between adversary A and challenger C:
Setup: C sets pp←R setup(1λ), (pk , sk)←R genSIG(), and (c, s)←R send(pk), then
sends pk , (c, s) to A.
Query: A makes any number of queries of type Q1 and Q2, in any interleaving.
Q1: A sends msgSIG

i to C, who replies with sigSIG
i ←R signSIG(sk ,msgSIG

i).
Q2: A sends msgj to C, who replies with sigj ←R sign(sk , (c, s),msgj).
Forge: A outputs (m̂, ŝ), winning if verify(c, m̂, ŝ)=OK ∧

∧
j m̂6=msgj .

Definition 2. Let adversary A’s advantage in Forge be AdvForge
A = Pr [A wins].

PAD is unforgeable if, for any PPT A, AdvForge
A ≤ negl(λ).

Orthogonality means, informally, that PAD signatures do not help to create a SIG
forgery. In other words, the airdrop scheme does not weaken the user’s credential
(e.g., for authenticating to GitHub). Consider Ortho, a game between adversary
A and challenger C:
Setup: C sets pp←R setup(1λ) and (pk , sk)←R genSIG(), then sends pk to A, who
chooses (c, s) and sends them to C. Finally, C aborts if validate(pk , (c, s)) = ⊥.
Query: A makes any number of queries of type Q1 and Q2, in any interleaving.
Q1: A sends msg i to C, who replies with sig i ←R signSIG(sk ,msg i).
Q2: A sends msgPAD

j to C, who replies with sigPAD
j ←R sign(sk , (c, s),msgPAD

j).
Forge: A outputs (m̂, ŝ), winning if verifySIG(pk , m̂, ŝ)=OK ∧

∧
i m̂6=msg i.

The game wkOrtho is similar, but further requires
∧
j m̂6=msgPAD

j for A to win.

Definition 3. Let adversary A’s advantage in Ortho be AdvOrtho
A = Pr [A wins].

PAD is orthogonal to SIG if, for any PPT adversary A, AdvOrtho
A ≤ negl(λ).

PAD is weakly orthogonal if Ortho is replaced with wkOrtho in this definition.

Remark 4. The PAD scheme of Section 4 gives orthogonality, while the scheme of
Section 3 gives only weak orthogonality. In practice, weak orthogonality suffices
as long as messages signed in the PAD scheme cannot be confused with messages
signed in the SIG scheme; this appears to be true in our applications.

2.2 Zero-knowledge proofs in generic groups

In this section we briefly review the notion of a generic group of unknown order
and zero-knowledge proof systems with respect to such groups, following [27].

5

Generic groups. We use the generic group model for groups of unknown order
as defined by Damgård and Koprowski [50]. The group is parameterized by two
integer public parameters A,B. The order of the group is sampled uniformly from
[A,B]. The group G is defined by a random injective function σ : Z|G| → {0, 1}`,
for some ` where 2` � |G|. The group elements are σ(0), σ(1), . . . , σ(|G| − 1). A
generic group algorithm A is a probabilistic algorithm. Let L be a list that is
initialized with the encodings given to A as input. The algorithm can query two
generic group oracles:
• O1 samples a random r ∈ Z|G| and returns σ(r), which is appended to the

list of encodings L.
• When L has size q, the second oracle O2(i, j,±) takes two indices i, j ∈
{1, . . . , q} and a sign bit, and returns σ(xi ± xj), which is appended to L.

Note that unlike Shoup’s generic group model [128], the algorithm is not given
|G|, the order of the group G.

The representation extraction lemma. Let A be an algorithm that outputs a
generic group element u ∈ G. The following lemma from [57] shows that there is
an extractor that can extract from A an integer representation of u relative to a
supplied set of group generators. Moreover, this integer representation is unique.

Lemma 1 (Unique representation extraction in generic groups). Let G
be a generic group of unknown order where |B − A| is super-polynomial in λ.
Let A1,A2 be two randomized algorithms that interact with group oracles for G
and make at most a polynomial in λ queries to these oracles. Suppose that each
algorithm makes at most q type-1 queries and let g1, . . . , gq ∈ G be the returned
random group elements. Each of A1 and A2 eventually outputs some ui ∈ G.

Then there is an extractor B that emulates the generic group oracles for Ai
i ∈ {1, 2} such that when B interacts with Ai the following holds with overwhelm-
ing probability: if Ai outputs ui ∈ G then the extractor Bi outputs a representa-
tion αi,1, . . . , αi,q ∈ Z such that ui = g

αi,1

1 · · · gαi,q
q . Moreover, if u1 = u2 then

the two representations are the same, namely α1,j = α2,j for j = 1, . . . , q.

Argument systems. An argument system for a relation R ⊂ X ×W is a triple
of randomized polynomial time algorithms (Pgen,P,V), where Pgen takes an
implicit security parameter λ and outputs a common reference string (crs) pp.
If the setup algorithm uses only public randomness we say that the setup is
transparent and that the crs is unstructured. The prover P takes as input a
statement x ∈ X , a witness w ∈ W, and the crs pp. The verifier V takes as
input pp and x and after interaction with P outputs 0 or 1. We denote the
transcript between the prover and verifier by 〈V(pp, x),P(pp, x, w)〉 and write
〈V(pp, x),P(pp, x, w)〉 = 1 to indicate that the verifier accepted the transcript.
If V uses only public randomness we say that the protocol is public coin.

Definition 4 (Completeness). An argument system (Pgen,P,V) for a rela-
tion R is complete if for all (x,w) ∈ R:

Pr
[
〈V(pp, x),P(pp, x, w)〉 = 1 : pp←R Pgen(1λ)

]
= 1.

6

We now define soundness and knowledge extraction for our protocols. The ad-
versary is modeled as two algorithms A0 and A1, where A0 outputs the instance
x ∈ X after Pgen is run, and A1 runs the interactive protocol with the verifier
using a state output by A0. In slight deviation from the soundness definition
used in statistically sound proof systems, we do not universally quantify over
the instance x (i.e. we do not require security to hold for all input instances x).
This is due to the fact that in the computationally-sound setting the instance
itself may encode a trapdoor of the crs pp (e.g. the order of a group of unknown
order), which can enable the adversary to fool a verifier. Requiring that an ef-
ficient adversary A0 outputs the instance x prevents this. For soundness, no
efficient adversary A1 can make the verifier accept when no witness for x exists.
For an argument of knowledge, there should be an extractor that can extract a
valid witness whenever A1 is convincing.

Definition 5 (Arguments (of Knowledge)). An argument system (Pgen,P,V)
is sound if for all PPT adversaries A = (A0,A1):

Pr

[
〈V(pp, x),A1(pp, x, state)〉 = 1 ∧ @w (x,w) ∈ R

where pp←R Pgen(1λ), (x, state)←R A0(pp)

]
≤ negl.

Additionally, the argument system is an argument of knowledge if for all
PPT adversaries A1 there exists a PPT extractor Ext such that for all PPT
adversaries A0:

Pr


〈V(pp, x),A1(pp, x, state)〉 = 1 ∧ (x,w′) 6∈ R

where pp ←R Pgen(1λ)
(x, state) ←R A0(pp)

w′ ←R Ext(pp, x, state)

 ≤ negl.

Any argument of knowledge is also sound. In some cases we may further
restrict A in the security analysis, in which case we would say the system is an
argument of knowledge for a restricted class of adversaries. For example, in this
work we construct argument systems for relations that depend on a group G of
unknown order. In the analysis we replace G with a generic group and restrict A
to a generic group algorithm that interacts with the oracles for this group. We
say that the protocol is an argument of knowledge in the generic group model.

Definition 6 (Zero Knowledge). We say an argument system (Pgen,P,V)
for R has statistical zero-knowledge if there exists a PPT simulator Sim such
that for (x,w) ∈ R the following distribution are statistically indistinguishable:

Dreal =

{
〈P(pp, x, w),V(pp, x)〉
where pp←R Pgen(1λ)

}
; Dsim =

{
Sim(pp, x,V(pp, x))
where pp←R Pgen(1λ)

}
Definition 7 (Non interactive arguments). A non-interactive argument
system is an argument system where the interaction between P and V consists
of only a single round. We write the prover P as P(pp, x, w)→ π and the verifier
as V(pp, x, π)→ {0, 1}.

7

The Fiat-Shamir heuristic [54] and its multi-round generalization [19] transform
public coin arguments into non-interactive ones, in the random oracle model [12].

3 Warm-up: A private airdrop to ECDSA keys

Let H with generator ĝ be a cyclic group of prime order q̂. Let the ECDSA
signature scheme inH be the triple (genDSA

H ()→R (pk , sk), signDSA
H (sk ,msg)→R sig ,

verifyDSA
H (pk ,msg , sig)→ {OK,⊥}); (pk , sk) = (ĝx, x) is an ECDSA key pair.

We now define PAD-DSA, a private airdrop scheme to ECDSA keys. Intuitively,
the token c in this scheme is a fresh ECDSA public key derived from an existing
key, such that only that key’s owner can compute the corresponding secret. In
particular, PAD-DSA leverages the fact that c = pks = ĝx·s ∈ H is an ECDSA
public key whose corresponding secret key is sk · s = x · s ∈ Zq̂. Further, if s is
chosen at random, pks is independent of pk , so c reveals nothing about pk .

Thus, PAD-DSA is the validatable private airdrop scheme given by:

setup(1λ)→ pp: Output ⊥; this scheme uses no public parameters.
send(pk)→R (c, s): Choose s←R [q̂] \ {0}, set c← pks ∈ H, and output (c, s).
sign(sk , (c, s),msg)→R sig: Output signDSA

H (sk · s ∈ Zq̂, (c,msg)).
verify(c,msg , sig)→ {OK,⊥} : Output verifyDSA

H (c, (c,msg), sig).
validate(pk , (c, s))→ {OK,⊥}: OK if s ∈ [q̂] \ {0} ∧ c = pks ∈ H, else ⊥.

Theorem 1. PAD-DSA is anonymous (Def. 1), with no leakage.

Proof. Let ΛDSA(·, ·) := ⊥. For an adversary A, the simulator SimDSA
A (·), which

ignores its input, works as follows: (1) compute (pk ′, sk ′)←R genDSA
H (), (2) run the

adversaryA on input pk ′ to obtain (msg , st), (3) compute sig ←R signDSA
H (sk ,msg),

and (4) output (pk ′,msg , sig , st). (Notice that pk ′ plays the role of the token c.)
We now show that SimDSA

A (·) induces a distribution Dsim that is statistically
indistinguishable from Dreal. By inspection, pk has the same distribution in both
views. In the real view, s is uniform in {1, . . . , q̂ − 1}, so (c = ĝx·s, x · s) in the
real view is a uniformly random ECDSA key. This is also true of (pk ′, sk ′) in
simulation, so c, msg , and st are all statistically indistinguishable. Finally, sig is
valid and identically distributed in both views by the definition of signDSA

H . ut

Definition 8 (Idealized ECDSA [35,52]). The triple (genDSA
H , signDSA

H , verifyDSA
H)

is the idealized ECDSA algorithm if the two hash functions called as subrou-
tines by signDSA

H and verifyDSA
H are modeled as random oracles.

Theorem 2. PAD-DSA is unforgeable (Def. 2) when (genDSA
H , signDSA

H , verifyDSA
H)

is modeled as the idealized ECDSA algorithm.

Theorem 3. PAD-DSA is weakly orthogonal to ECDSA in H (Def. 3) when
(genDSA

H , signDSA
H , verifyDSA

H) is modeled as the idealized ECDSA algorithm.

8

Dauterman et al. [52, Thm. 5, Appx. C] prove a statement equivalent to
Theorem 2. PAD-DSA is, in effect, a signature under a related key; Theorem 3
captures the required security against related-key attacks. Morita et al. [105,
Thm. 2] prove a statement equivalent to this theorem, and also suggest a tweak
to DSA whose use would give full (rather than weak) orthogonality for PAD-DSA.

An alternative to the above scheme is to use c = pk · ĝs = ĝx+s, with signing
key x + s ∈ Zq̂, similarly to hierarchical deterministic wallets [139]. PAD-DSA
also extends naturally to Schnorr [127], EdDSA [21], and related schemes.

4 A private airdrop to RSA keys

Let G be a group of unknown order (§2.2) with generators g, h having unknown
discrete-log relation. Let H be an auxiliary cyclic group of known prime order
q̂ with generators ĝ, ĥ having unknown discrete-log relation. Let n ∈ [N] be
a secret integer where N is a public upper bound on n and N > |G| · 2λ. Let
c := gn · hs ∈ G be a Pedersen commitment to n with opening s←R [N].

In this section we construct a private airdrop to RSA keys. We proceed in
two steps: we first construct an interactive zero-knowledge proof of knowledge
(ZKPK) of the factorization of an RSA modulus n ∈ Z given a public Pedersen
commitment [115] to this n (see §4.1 and §4.2). We then make this protocol non-
interactive via the Fiat-Shamir heuristic [54], yielding a private airdrop (§4.3).

One way to prove knowledge of the factorization of a committed n is for the
prover to commit to integers p and q, and then prove that they are nontrivial
factors of n. We instantiate this approach in Section 4.1, but verifying the proof
is costly: it requires an exponentiation by a several thousand–bit exponent.

To address this, in Section 4.2 we describe a second ZKPK that reduces the
verifier’s work by roughly 5× and gives ≈13–49% shorter proofs. The resulting
protocol leaks a small amount of information about n: at most two bits, This
can be reduced to just one leaked bit under a mild assumption (Cor. 1, §4.3).

Remark 5. The protocols of this section are insecure if the group G contains
a non-identity element of known order. In the group Z×m the element −1 has
order 2, and hence this group is unsuitable for our protocols. Instead, we work in
the quotient group G := Z×m/{±1}, where elements are represented as integers in
the interval [1,m/2] and the product of x and y is defined as x ·y = min(z,m−z)
where z = (x · y mod m). In this group −1 is the same as 1, and presumably
there are no other known elements of known order other than the identity. We
discuss the group G further in Section 7.

4.1 PoKF1: ZKPK of factorization of a committed integer

To prove knowledge of the factorization of n, the prover establishes the relation

R′g,h :=

{ (
c ∈ G, (n, p, q, s) ∈ [N]× Z3

)
, where

c = gn · hs, p · q = n, p 6∈ {±1,±n}

}
(1)

9

where c is the statement and (n, p, q, s) is the witness. At a high level, the proof
works as follows: the prover P sends the verifier V two Pedersen commitments
cp and cq to p and q, respectively, then proves that p · q = n and p /∈ {±1,±n}.
For this purpose, we combine folklore sigma protocols [127,41,110,49,8,96] with
recent work extending such protocols to generic groups of unknown order [27].

To efficiently prove that p /∈ {±1,±n} we make use of the auxiliary group H.
Recall that V has commitments to p and n, and could therefore prove that
p /∈ {±1,±n} by proving that (p2 − 1)(p2 − n2) 6= 0 as integers. However, this
requires a relatively large proof containing multiple elements of G.

To sidestep this issue, we take a different approach: rather than execute the
proof in G, our P and V execute it in a much smaller group H of known prime
order (say, an elliptic curve group). For RSA moduli at practical security levels
the order of H is all but certainly coprime to p, p± 1, and p± n, so this suffices
to convince V that p /∈ {±1,±n} in Z for essentially any n.

The prover P provides a commitment ĉp2 ∈ H to p2, from which V can
compute a commitment to p2 − 1 as ĉp2/ĝ ∈ H. To do the same for p2 − n2

the verifier V needs a commitment ĉn2 ∈ H to n2. Fortunately, in the airdrop
context this is easy to arrange, by requiring the sender S to compute the token
as (c, ĉn2) with corresponding secret (s, s2). This gives the modified relation

R′′
g,h,ĝ,ĥ

:=


(

(c, ĉn2) ∈ G×H, (n, p, q, s, s2) ∈ [N]× Z3 × [q̂]
)
,

where c = gn · hs, ĉn2 = ĝ(n
2) · ĥs2 ,

p · q = n, p 6∈ {±1,±n} mod q̂

 (2)

for statement (c, ĉn2) and witness (n, p, q, s, s2). We now give an interactive
ZKPK for the above relation. This protocol uses three sub-protocols, ProdG,
ProdH, and Square, which we describe in Appendix B.

Protocol PoKF1 for relation (2) between prover P and verifier V works as
follows. V’s input is (c, ĉn2) ∈ G×H, and P’s input is (n, p, q, s, s2) ∈ [N]4× [q̂].
(1) P sends V the following commitments:

• cp, cq ∈ G to p and q,
• ĉp, ĉp2 ∈ H to p and p2, and
• ĉp1′ , ĉpn′ ∈ H to (p2 − 1)−1 mod q̂ and (p2 − n2)−1 mod q̂.
V then computes ĉp1 = ĉp2 · ĝ−1 ∈ H and ĉpn = ĉp2 · ĉ−1n2 ∈ H, which are
commitments to p2 − 1 = (p− 1)(p+ 1) and p2 − n2 = (p− n)(p+ n).

(2) P and V execute ProdG (Appx. B.2) on (cq, cp, c), which convinces V that
p · q = n and P can open cq and c.

(3) P and V execute Square (Appx. B.3) on (cp, ĉp, ĉp2), which convinces V that
ĉp commits to p, ĉp2 commits to p2, and P can open all three commitments.

(4) P and V execute two instances of ProdH (Appx. B.1), one on (ĉp1′ , ĉp1, ĝ)
and one on (ĉpn′ , ĉpn, ĝ). (Note that ĝ is a commitment to 1 with opening
0.) This convinces V that p2 − 1 and p2 − n2 are invertible mod q̂ (i.e., that
they are nonzero) and that P can open ĉp1′ , ĉpn′ , and ĉn2 .

10

Soundness and zero knowledge of PoKF1 follow from the properties of the
sub-protocols (Appx. B). Verification cost is dominated by Square, which entails
an exponentiation in G with an exponent of size λ + log q̂ + logN bits. Recall
that N is an upper bound on n; typically N ≈ 24096 so that n can be a 4096-
bit RSA modulus, so this exponentiation is very expensive. One could instead
prove relation (1) directly via five invocations of ProdG (one to establish that
p · q = n and four more to establish that p /∈ {±1,±n}). Roughly speaking,
this would trade a reduction in verification cost for a commensurate increase in
communication cost. We discuss costs in more detail in Appendix B.4.

4.2 PoKF2: reducing costs by allowing (1-bit) leakage

As discussed above, PoKF1 suffers from high verification cost. In this section, we
give a protocol that reduces both verification and communication cost compared
to PoKF1, but leaks one bit about n. As we discuss in Section 7, this leakage is
acceptable in the private airdrop application.

To prove knowledge of factorization of n, the prover establishes the following
relation for w ∈ [N] where w2 ≡ t (mod n) and t ∈ Z is prime, 2 ≤ t < λ.
(Recall that computing square roots modulo n is equivalent to factoring n).

Rg,h :=


(

(c, t) ∈ G×[λ], (n, s, w, a) ∈ [N]4
)
, where

c = gn · hs ∈ G, w2 = t+ a · n ∈ Z, 2 ≤ t < λ a prime

 (3)

Here (c, t) is the statement and (n, s, w, a) is the witness. The integer relation
w2 = t+ a · n proves that w2 ≡ t (mod n), as required.

Remark 6. Common hardware security tokens for RSA keys (e.g., [141]) imple-
ment a signing oracle abstraction. This means that the device’s owner has access
to (at best) an eth root in Zn for (n, e) = pk—and not to the factorization of n.
Furthermore, these security tokens often fix e = 65537. In principle, it is possible
to adapt our ZKPK to a relation analogous to (3) for w? a 65537th root of t. This
proof would be an order of magnitude longer, but would eliminate the leakage
about n, and support security tokens. We leave to future work the problem of
devising a concretely small ZKPK supporting these security tokens.

We now give an interactive ZKPK for Relation (3), building on the results
of Boneh et al. [27]. This relation leaks that t ∈ Z is a quadratic residue modulo
the committed n. As discussed below (Cor. 1, §4.3), this leakage amounts to one
bit under a standard cryptographic assumption.

Protocol PoKF2 for relation (3) between prover P and verifier V works as
follows. V’s input is (c, t) ∈ G×[λ] with t prime, and P’s input is (c, t, n, s, w, a) ∈
G × [N]5. To start, P chooses two random integers s1, s2 ←R [N] and computes
c1 ← gw · hs1 ∈ G and c2 ← ga · hs2 ∈ G. Next, define a homomorphism
φ : Z8 → G4 × Z parameterized by g, h, c, c1, c2:

φ

(
w,w2 , s1 , a,
na, s1w , sa, s2

)
:=

(
gw · hs1 , ga · hs2 , gw2 · hs1w/cw1 ,
gna · hsa/ca, w2 − na

)
(4)

11

It is easy to see that φ is a group homomorphism whose range is the group
G4 × Z. We will write the group operation in this group multiplicatively. That
is, if (ai, bi, ci, di, ei) ∈ G4 × Z for i ∈ {1, 2}, then

(a1, b1, c1, d1, e1) · (a2, b2, c2, d2, e2) := (a1a2, b1b2, c1c2, d1d2, e1 + e2).

To prove knowledge of a witness for relation (3), it suffices for P to prove
that it knows a φ-preimage of T := (c1, c2, 1, 1, t) ∈ G4 × Z. In other words, we
need a ZKPK for a vector v′ = (w′,w2 ′, s1′, a′,na ′, s1w ′, sa ′, s2′) ∈ Z8 such that

φ(v′) = T = (c1, c2, 1, 1, t) ∈ G4 × Z. (5)

This proves that c1 is a commitment to w′ ∈ Z, c2 is a commitment to a′ ∈ Z,
w2 ′ = (w′)2, and na ′ = a′ · n for some integer a′. The fifth term in (5) proves
that (w′)2 − a′ · n = t ∈ Z, as required.

We design a ZKPK for a φ-preimage using a zero-knowledge protocol due to
Boneh et al. [27, Appx. A]. Here, the verifier V is given T ∈ G4 × Z and the
prover P is given T and v ∈ Z8 where φ(v) = T . The protocol works as follows:
(1) P sets r := (rw, rw2 , rs1 , ra, rna , rs1w , rsa , rs2) ∈ Z8 where

rw, rw2 , rna , ra ←R [22λ+log(2λ) · 2λ] and rs1 , rs1w , rsa , rs2 ←R [N · 22λ+log(2λ)].
P then computes R← φ(r) ∈ G4 × Z and sends (c1, c2,R) to V.

(2) V chooses challenges ch ←R [2λ] and `←R Primes(2λ),2 and sends them to P.
(3) P computes z← (ch · v + r) ∈ Z8, z` ← (z mod `) ∈ [`]8, zq ← bz/`c ∈ Z8,

and Zq ← φ(zq); and sends (Zq, z`) ∈ (G4 × Z)× [`]8 to V.
(4) V accepts if Z`q · φ(z`) = T ch ·R in G4 × Z.

Verification cost is dominated by evaluation of Z`q · φ(z`), which entails four
multi-exponentiations with exponents of size at most 2λ+ log(2λ) bits (i.e., the
bit length of `; §2). For λ = 128 and N ≈ 24096, this is roughly 5× less expensive
than the cost of exponentiations in protocol PoKF1 of the prior section. As we
discuss in Appendix B.4, PoKF2 also yields smaller proofs than PoKF1.

Remark 7. The commitment c2 to the integer a is necessary for soundness, and
in particular to ensure that a is an integer. If c2 along with s2 and the second
coordinate of φ are eliminated then there is an attack where an adversarial prover
can prove knowledge of (

√
3 mod n) using a = 1/n and w = 2.

Theorem 4. Protocol PoKF2 is a zero-knowledge protocol for Rg,h from (3).

Definition 9. Algorithm G is an honest instance generator for Rg,h (eq. (3))
if it chooses integers n, s, t, and outputs (c, t) where c := gn ·hs ∈ G and t ∈ [λ].

Theorem 5. Protocol PoKF2 is an argument of knowledge for the relation Rg,h

in (3) for instances (c, t) generated by an honest instance generator G, when the
group G is a modeled as a generic group of unknown order.

We prove Theorems 4 and 5 in Appendix C.
2 In an interactive protocol, `←R Primes(λ) would suffice for soundness. Applying the
Fiat-Shamir heuristic causes a loss in security, thus requiring a larger ` [26, §3.3].

12

4.3 PAD-RSA: a private airdrop for RSA keys

We construct PAD-RSA by applying the Fiat-Shamir heuristic [54] to the inter-
active ZKPK PoKF2 from Section 4.2. We give optimizations in Section 4.4.

Let (genRSA()→R (pk , sk), signRSA(sk ,msg)→R sig , verifyRSA(pk ,msg , sig)→ {OK,⊥})
be an RSA signature scheme, e.g., RSA-FDH [12]. Then PAD-RSA is given by:
setup(1λ)→R pp: Select a group of unknown order G generated by g and h, and
N > |G| · 2λ an upper bound on the size of RSA moduli that can be used with
these parameters. Output pp = (G, g, h,N, λ). We discuss G candidates below.
send(pk)→R (c, s): For (n, e) = pk , s←R [N], c← gn · hs ∈ G, output (c, s).
sign(sk , (c, s),msg)→R sig: For (n, p, q) = sk , do:
(1) choose a random prime 2 ≤ t < λ such that t is a quadratic residue in Zn,
(2) find integers (w, a) such that w2 = t+ an in Z (i.e. w2 ≡ t mod n),

(3) choose a random s1 ←R [N] and compute c1 ← gw · hs1 ∈ G,

(4) choose a random s2 ←R [N] and compute c2 ← ga · hs2 ∈ G,

(5) compute v← (w,w2, s1, a, n · a, s1 · w, s · a, s2),

(6) set r := (rw, rw2 , rs1 , ra, rna , rs1w , rsa , rs2) ∈ Z8 where
rw, rw2 , rna , ra ←R [22λ+log(2λ) · 2λ] and rs1 , rs1w , rsa , rs2 ←R [N · 22λ+log(2λ)],

(7) compute R← φ(r) ∈ G4×Z, where φ is the homomorphism defined in (4),

(8) compute (ch, `) ← Hash(msg ,G, g, h, c, c1, c2, t,R), where ch ∈ [2λ] and
` ∈ Primes(2λ) (e.g., by treating the hash output as a PRG seed),

(9) compute z ← (ch · v + r) ∈ Z8, z` ← (z mod `) ∈ [`]8, zq ← bz/`c ∈ Z8,
Zq ← φ(zq) ∈ G4 × Z,

(10) output the signature sig = (c1, c2, t, ch, `,Zq, z`).
verify(c,msg , sig)→ {OK,⊥} : For (c1, c2, t, ch, `,Zq, z`) = sig ,
(1) output ⊥ if t /∈ [λ] or not prime, c1, c2 /∈ G, Zq /∈ G4 × Z, or z` /∈ [`]8.

(2) with T := (c1, c2, 1, 1, t) ∈ G4×Z, compute R′ ← Z`q ·φ(z`)/T
ch ∈ G4×Z,

(3) compute (ch ′, `′)← Hash(msg ,G, g, h, c, c1, c2, t,R′), where ch ′ ∈ [2λ] and
`′ ∈ Primes(2λ),

(4) output OK if ch ′ = ch and `′ = `, else output ⊥.
validate(pk , (c, s))→ {OK,⊥}: Output OK if s ∈ [N]∧ c = gn ·hs ∈ G, else ⊥.

As discussed in Remark 5, the security of PAD-RSA relies crucially on G
containing no elements of known order other than the identity. Z×m/{±1} for
m an RSA modulus with unknown factorization is a convenient choice, but it
requires a trusted setup (to generate m without leaking its factorization). A
candidate G that does not require trusted setup is the class group of imaginary
quadratic order [36]. One of our implementations (§6) supports these groups. We
discuss further in Section 7.

Since the ZKPK of Section 4.2 is complete, PAD-RSA is a valid scheme. The
following theorems establish the security properties of PAD-RSA. Corollary 1 and

13

Theorem 8 rely on the quadratic residuosity assumption (QRA), below; infor-
mally, for RSA modulus m with unknown factorization, distinguishing between
a square modulo m and a non-square with Jacobi symbol +1 is infeasible.

Definition 10 (Quadratic residuosity assumption (QRA) [24]).
Let m←R mGen(ρ) output a random RSA modulus with security parameter ρ, let
QR(m) denote the set of quadratic residues modulo m, and let Z∗m[+1] denote
the elements of Z∗m with Jacobi symbol +1.

The following two distributions are computationally indistinguishable:

DQR =

{
(a,m) : m← mGen(ρ),
a←R QR(m)

}
; DNQR =

{
(a,m) : m← mGen(ρ),
a←R Z∗m[+1] \QR(m)

}
Theorem 6. PAD-RSA is ΛRSA-anonymous (Def. 1) in the ROM. ΛRSA reveals
two bits about (n, e) = (pk , sk), namely, a small prime quadratic residue mod n.

Proof. For (n, e) = pk , let ΛRSA(pk , sk) output a random prime quadratic residue
modulo n, 2 ≤ t < λ. For adversary A, the simulator SimRSA

A (t) works as
follows: (1) sample c uniformly at random from G, (2) run the adversary A
on input c to obtain (msg , st), (3) generate a transcript (c1, c2,R, `, ch,Zq, z`)
for input (c, t) using the simulator of Theorem 4, (4) program the random
oracle to output (ch, `) on input (msg ,G, g, h, c, c1, c2, t,R), and (5) output
(c,msg , (c1, c2, t, ch, `,Zq, z`), st).

SimRSA
A (t) induces a distribution Dsim that is statistically indistinguishable

from Dreal. By inspection, pk has the same distribution in both views. In the
real view, c is a Pedersen commitment, so in both views c is a uniformly random
element of G. Since A cannot distinguish the real c from the simulated one, msg
and st are indistinguishable in the two views. Finally, t is a small random prime
QR modulo n in both views, and the simulated sig is valid on msg for (c, t), and
indistinguishable from the real sig by Theorem 4.

Since t is a QR modulo n = pq, the Jacobi symbols (t/n) = (t/p) = (t/q) = 1.
Quadratic residuosity of a random integer modulo a prime is essentially a coin
flip, so for random RSA modulus n′ = p′q′, the probability that t is a quadratic
residue modulo both p′ and q′ is 1/4. This means that knowing t quarters the
number of candidate RSA moduli n′, i.e., it reveals two bits. ut

Corollary 1. Under QRA, ΛRSA(pk , sk) leaks one bit about pk with respect to
any RSA modulus of unknown factorization, to any PPT observer.

Proof. Under QRA, an observer who does not know the factorization of n′ =
p′q′ can check whether (t

′
/p′) = (t

′
/q′) for any t′, but cannot feasibly determine

whether t′ is square. Revealing that t is square mod n thus halves the number of
candidate RSA moduli n′ of unknown factorization, i.e., it reveals one bit. ut

To show unforgeability, we first restate the following lemma in terms of PAD-RSA:

Lemma 2 (Forking lemma [120,121,11]). Let A∗ be a PPT algorithm given
only PAD-RSA public data pk , (c, s) as input. Suppose A∗ can produce a valid

14

signature sig = (c1, c2, t, ch, `,Zq, z`) on some message msg with non-negligible
probability. Then A∗ can be re-run with the same random tape and a different
random oracle to produce either of sig ′ or sig ′′ with non-negligible probability.
Here, sig ′ = (c1, c2, t, ch

′, `,Z′q, z
′
`) and sig ′′ = (c1, c2, t, ch

′, `′,Z′q, z
′
`) are both

valid signatures, and ch 6= ch ′, ` 6= `′,Zq 6= Z′q, z` 6= z′`.

Theorem 7. PAD-RSA is unforgeable in the random oracle model if computing√
t ∈ Zn from RSA public key (n, e) = pk is hard, 2 ≤ t < λ a prime.

Proof. We show how to use an adversary A who wins Forge (§2.1) with non-
negligible probability to compute a non-trivial square root modulo an RSA mod-
ulus n of unknown factorization. Since this is hard by assumption, no adversary
wins Forge except with negligible probability, i.e., PAD-RSA is unforgeable.

We first construct an algorithm A∗ that uses A as a subroutine to construct
a PAD-RSA forgery using only pk and (c, s), which A knows in Forge.

To respond to A’s PAD-RSA signing queries (Q2), A fixes a random prime
2 ≤ t < λ where (t/n) = +1, then uses the simulator from the proof of Theorem 4.
If A or the simulator fails, A∗ chooses a new t and restarts. Since t can take
fewer than λ values, this negligibly affects success probability and runtime.

Following Bellare and Rogaway [12,13], we construct a simulator for RSA
signing queries (Q1). We describe a simulator for RSA-FDH [12]; RSA-PSS [13]
and others are similar. The simulator works as follows: when A makes a call to
the RSA-FDH random oracle with new input m, A∗ samples y ←R [n], computes
y′ = ye mod n, records the tuple (m, y, y′), and returns y′. When A makes a call
to the RSA-FDH signing oracle on new message m, A∗ simulates the random
oracle if necessary, then retrieves the corresponding tuple (m, y, y′) and returns
y. For inputs it has already seen, A∗ returns the previously-returned value. This
simulation is indistinguishable by inspection.

Since A∗ simulates query responses indistinguishably, it can use A to output
a forgery with non-negligible probability. Lemma 2 thus lets us extract polyno-
mially many accepting transcripts. Feeding these transcripts to the extractor of
the proof of Theorem 5 produces (n, s, w, a), where w =

√
t. ut

Remark 8. Theorem 5 defines an extractor for honest instances (Def. 9). This
does not affect the above proof because the instance in Forge is generated by C.
Concretely, we only need to defend against forgeries for honest instances, because
R can reject dishonestly-generated ones using validate(). Section 5.2 discusses a
further mechanism that keeps the instance generator honest in practice.

Theorem 8. PAD-RSA is orthogonal to RSA under QRA in the ROM.

Proof. We prove orthogonality by constructing a sequence of modifications to
the Ortho game and, for each, bounding the probability that A wins. Recall
(§2.1) that AdvOrtho

A = Pr [A wins], and let (n, e) = pk . We assume WLOG that
all adversaries make at least one query of type Q2 in Ortho.

For the game Ortho1, C responds to queries of type Q2 by simulating a signa-
ture, as follows: (1) choose a random prime residue modulo n, 2 ≤ t < λ, (2) run

15

the simulator of Theorem 4 on (c, t) to obtain (c1, c2,R, `, ch,Zq, z`), (3) program
the random oracle to output (ch, `) on input (msgPAD,G, g, h, c, c1, c2, t,R), and
(4) return (c1, c2, t, ch, `,Zq, z`). Since the simulated signature is statistically in-
distinguishable from the real signature, A’s ability to distinguish between Ortho
and Ortho1 is negligible, i.e., there exists a negligible function negl1 such that
|Pr [A wins Ortho]− Pr [A wins Ortho1]| ≤ negl1(λ).

For the game Ortho2, C responds to queries of type Q2 as in Ortho1, except
that in the first step it chooses a random prime 2 ≤ t < λ where (t/n) = +1. If
t is not a QR modulo n, by QRA A has negligible probability of distinguishing
between Ortho1 and Ortho2. Thus, there exists a negligible function negl2 such
that |Pr [A wins Ortho1]− Pr [A wins Ortho2]| ≤ negl2(λ).

In Ortho2, A can perfectly simulate C’s responses to queries of type Q2, which
reduces Ortho2 to the EUF-CMA game for RSA. Thus, if A can win Ortho2 with
some probability, it can generate an RSA forgery with that same probability. In
other words, Pr [A wins Ortho2] = Pr [A forges RSA], which in turn implies that
|Pr [A wins Ortho]− Pr [A forges RSA]| ≤ negl1(λ) + negl2(λ). Since forging an
RSA signature is hard, Pr [A wins Ortho] ≤ negl(λ), so PAD-RSA is orthogonal
to the underlying RSA signature scheme. ut

4.4 PAD-RSA optimizations

We describe two optimizations that reduce verification time for PAD-RSA (§4.3),
and one that reduces the size of the secret s.

In the first optimization, we leverage the fact that ` is included in the signa-
ture to reduce primality testing cost. To start, when deriving ch and `, the signer
records the index i` into PRG(seed) at which she found the (purported) prime
`.3 If i` ≥ 4λ, which happens rarely (less than 1% of the time), the signer chooses
a new r, re-computes R and seed , and derives a new ch and `.4 Otherwise, the
signer appends i` to the signature.

Now, the verifier rejects if i` ≥ 4λ; otherwise, he generates ch ′, seeks PRG(seed)
to index i` to generate `′, and accepts if ch ′ = ch, `′ = `, and ` is prime. This
saves the verifier the cost of checking all prime candidates at indices less than i`.
The soundness loss is minimal: at worst, the signer can choose among the primes
at indices i < 4λ of the PRG(seed). In expectation, this is just a few values, so
the signer’s ability to influence the challenge ` is essentially unchanged.

The second small trick improves the verifier’s exponentiation time when in-
versions in G are expensive (e.g., in an RSA group). Notice that computing R′ in
verify(·, ·, ·) requires inverting at least one element of G., meaning that the veri-
fier can compute extra inversions nearly for free using Montgomery’s trick [104].
So it should invert all elements of G that are to be (multi-)exponentiated and
then use signed-digit exponent recoding to speed up these operations [102,103].
3 By the jth index into PRG(seed) we mean the jth candidate prime. For example,
to generate a candidate member of Primes(2λ), one would extract 2λ+ log(2λ) bits
from PRG(seed); so the jth index starts at bit j · (2λ+ log(2λ)).

4 In fact, the signer need not choose an entirely new r—simply choosing a new rs1
(§4.2) is sufficient, and only entails recomputing one group element of R.

16

To shrink the size of s in PAD-RSA (§4.3), and thus the size ofmsgTsig,R
(§5.1),

first fix some public hash function HN : {0, 1}2λ → [N], which we model as a
random oracle. The sender executes the following modified version of send(·):
send(pk)→ (c, s): For (n, e) = pk , sample s ←R {0, 1}2λ, compute c ← gn ·
hHN (s) ∈ G, and output (c, s).

This modification makes c computationally rather than perfectly hiding, but this
does not interfere with the security argument.

5 Private genesis airdrops

Our motivating problem (§1) is attracting users to a blockchain while preserving
their privacy. Specifically, we want private airdrops, to millions of recipients,
that don’t require registration or otherwise interacting with the sender.

Our goal of handling millions of recipients is inspired by the sizes of existing
public key collections: the PGP web of trust (tens of thousands [116]), Keybase
(hundreds of thousands [88]), GitHub (millions [71]), and the X.509 PKI (tens
of millions [91]). Because these collections represent a mixture of different types
of keys (e.g., GitHub supports at least RSA, EdDSA, and ECDSA keys), and
because recipients may have lost some of their secrets, our goal is an airdrop
that supports claims using any one of a recipient’s keys.5 This leads us to the
following design requirements for a private genesis airdrop:

• Small burden on the blockchain: the on-chain state required to verify claims
should be concretely small and deeply sublinear in airdrop size.
• Small burden on verifiers: tracking which airdrops have been claimed should

have costs on par with tracking other kinds of transactions, and verifying
claims should be concretely fast and deeply sublinear in airdrop size.
• Per-recipient (rather than per-key) payments: recipients should not be able

to claim twice with different keys, even keys of different types.
• Provable non-inflation: the sender must commit to the total airdrop amount,

and cannot thereafter change it.
• Anonymity, unforgeability, and orthogonality (§2.1): claiming an airdrop

should not reveal recipients’ identities, and forgeries should be infeasible.
• Enforcement of sender honesty: recipients who were promised funds but did

not receive them should be able to accuse the sender and furnish proof.

Blockchains, in brief. A blockchain is an append-only log of transactions. Each
transaction is uniquely identified by a tx-id, and specifies that funds from one
or more inputs should be paid to one or more outputs; the number of inputs
and outputs in a transaction has some fixed upper bound. Outputs are tuples
(value, condition) indicating the value to be transferred once a condition is ful-
filled. Inputs are tuples (tx-id, tx-witness). A transaction is valid only if each
5 A related but more difficult problem is that one or more of a recipient’s keys may
have been compromised. Our scheme is not designed to handle this problem.

17

tx-witness fulfills an output condition in the transaction identified by the corre-
sponding tx-id and that output has not already been claimed.

A block is a group of transactions. Each block contains a cryptographic hash
of the immediately preceding block. For a block to be valid, its predecessor and
all of the transactions in the block must be valid. This definition is recursive; its
base case is the genesis block, which specifies the blockchain’s initial state.

To initiate a private airdrop to one recipient, a sender specifies a token in the
output condition of a transaction. To claim this airdrop, the recipient creates
a PAD signature for that token on a message containing (say) the tx-id, the
destination for the payment, etc., then posts a new transaction with an input
whose tx-witness comprises this message and PAD signature.

Unfortunately, airdropping to multiple recipients with multiple keys using
this method requires a number of transactions proportional to the total number
of recipients’ keys, which does not meet our requirements, e.g., for efficiency
or per-recipient payments. In Section 5.1 we describe a design that meets all
requirements other than enforcing sender honesty. Section 5.2 extends the design
to handle that requirement. We discuss this design further in Section 7.

5.1 Multi-key airdrops

Our starting point is a simple design which we progressively enhance until it
meets the above requirements. To begin, we require that, when S publishes any
message related to the airdrop, he signs it using his well-known signing key.

One key per recipient, same value for all recipients. To start, assume that each
recipient has one key, that all keys are of the same type, and that the sender
gives each recipient the same airdrop value. Then a straightforward solution is
to encode in the output of a transaction or in the genesis block (§2) the root
of the Merkle tree TAD wherein leaves are recipients’ airdrop tokens in shuffled
order; publish a list of all airdrop tokens off-chain; and send to each recipient
her corresponding airdrop secret s (say, by encrypting it to her private key).

To claim an airdrop, a recipient uses the public list of tokens to materialize
a path from her token to the root of TAD; generates a tx-witness including this
path, a destination address, etc.; computes a PAD signature on this tx-witness
for the token; and posts the tx-witness and signature. To verify, a verifier checks
the token using the Merkle path; checks that no prior claim has already used
this token; and checks the PAD signature for the tx-witness and token.

Per-recipient airdrop values and non-inflation. In the above scheme, the total
number of recipients is given by the public list of tokens, and S fixes the value
paid to all recipients; together this ensures non-inflation. In some cases, how-
ever, the sender may wish to issue per-recipient values, for example, to send
more funds to higher-value recipients. To do so, S makes one small change: after
computing each recipient’s token, construct the tuple (token, value), compute
the root of the Merkle tree T val

AD whose leaves are these tuples, encode T val
AD’s

18

root in the genesis block, and publish all of the tuples. Since all values are pub-
licly known, this approach still guarantees non-inflation. Signing and verifying
proceed analogously to the basic scheme.

Multiple keys per recipient. To support multiple keys of different types, sender
S first publishes a pledge comprising a list of tuples, each corresponding to a
recipient and containing all of the public keys that recipient can use to claim
her funds. Next, S computes an airdrop key (defined below) corresponding to
each recipient’s tuple in the pledge. S then encodes in the genesis block the
root of the Merkle tree T val

AD as described above, except with leaves the tuples
(airdrop key, value) for each recipient. Finally, S publishes all tuples.

An airdrop key is essentially a Merkle signature public key [100]. To generate
this key for recipient R with #κ keys {pk i}i∈[#κ] in the pledge, S computes
corresponding airdrop tokens {ci}i∈[#κ], then constructs a Merkle tree Tsig,R
whose leaves are hashes of these tokens. The root of Tsig,R is R’s airdrop key. S
sends R her tokens and secrets (see “Details,” below).

Claiming and verifying are analogous to the basic scheme. R’s tx-witness
now includes two Merkle paths, one for T val

AD and one for Tsig,R. In addition to
checking the signature and Merkle paths, the verifier checks that no prior claim
has used the airdrop key—rather than the token. This ensures that a claim using
any one of a recipient’s airdrop tokens invalidates all of that recipient’s tokens.

With this approach, the recipient can produce a valid signature using any
one of the secret keys corresponding to public keys that S used to produce
the airdrop key—forgetting other keys is not a problem. Moreover, leaves of
Tsig,R are not restricted to any particular signature scheme, meaning that airdrop
tokens for different key types can be mixed. However, because PAD signatures are
distinguishable by key type, a tx-witness reveals what type of key the recipient
used; we discuss this leakage in Section 7.

A path through Tsig,R reveals how many keys recipient R has, which is easily
correlated against the pledge. We address this by padding all signature trees to
a fixed size #κmax using random leaves; details are given immediately below.

Details. A few modifications make the scheme of Section 5.1 more practical.
• As mentioned above, S hides the number of keys a recipient has by padding

the recipient’s Merkle signature tree with random values. To do so, S samples
seedR for recipientR, then uses PRG(seedR) both to generate padding leaves
and to shuffle together the padding and non-padding leaves. This shuffle gives
the leaf order for Tsig,R (whose root is R’s airdrop key).
• To allow recipientR to materialize paths through Tsig,R, S creates a message
msgTsig,R

comprising seedR, hashes of R’s airdrop tokens {H(ci}i∈[#κ]}, and
the corresponding airdrop secrets {si}i∈[#κ]. R can reconstruct ci from si
and pk i (§3, §4.3). S samples kTsig,R and uses it to encrypt msgTsig,R

to
obtain ctTsig,R . S publishes ctTsig,R in a well-known location.

• To send kTsig,R to R, S creates a message msgpk containing kTsig,R . For
each of R’s keys pk i, S encrypts msgpk to obtain ciphertext ctpki

, which S
publishes in a well-known location.

19

• To help R quickly find ctTsig,R , S includes H(ctTsig,R) in msgpk . To associate
each ctpki

with pk i, S publishes the pairs (pk i, ctpki
).6

• To identify double spending, verifiers must remember all airdrop keys that
have been claimed. A proposed method of tracking Bitcoin transactions [45]
is an efficient solution: verifiers initialize a bit vector Vspent to all zeros, then
set Vspent[i] = 1 when the ith leaf of T val

AD has been claimed. (Notice that
the index i is implicit in the path to the root of T val

AD from the tx-witness.)
This bookkeeping is not too costly: for one million recipients, Vspent occupies
about 125 kiB, or about one-eighth the size of a Bitcoin block [94].

We give step-by-step sending, claiming, and verifying procedures in Appendix A.

Security. Unforgeability of tx-witnesses is immediate from unforgeability of the
PAD. Also, a secure PAD is orthogonal to the underlying signature scheme, so
tx-witnesses do not help to forge a signature under R’s public key.

We now argue informally that an airdrop claim does not reveal anything
about the recipient except the leakage Λ from the PAD signature. For the Merkle
paths, every Tsig has the same number of leaves and all leaves are random values
(either a PRG output or the hash of a token), so the Merkle paths reveal nothing
other than the position of a leaf. All leaves are shuffled, so this reveals nothing
about the recipient. The information that S publishes off-chain reveals no infor-
mation beyond what is contained in the pledge as long as S uses semantically-
secure encryption: each ctpki

corresponds to a public key in the pledge and has
constant size; each ctTsig,Rj

corresponds to a tuple in the pledge and has size
given by the length of the tuple; and airdrop keys are random strings.

Finally, we note that per-recipient values are associated with airdrop keys,
which we have just argued are unlinkable to recipients’ off-chain identities. This
means that even if each recipient receives a unique airdrop value, that fact does
not in itself reveal additional information about the user.

5.2 Keeping the sender honest

A dishonest sender S might falsely claim to have created a private genesis air-
drop: S might publish garbage instead of the prescribed ciphertexts, preventing
recipients from claiming funds, or S might swap recipients’ keys for his own.7
We now show how recipients can convince verifiers that a sender is dishonest.

For this purpose, we require S to use committing encryption [68] to produce
the ciphertexts ctpki

from msgpk (§5.1, “Details”). Informally, a committing en-
cryption scheme is one in which it is infeasible to produce two message-key pairs
that encrypt to the same ciphertext. For concreteness, this section discusses
RSA-OAEP [129], which is committing [68, §3]; other schemes are similar.

6 Alternatively, note that S’s pledge provides an implicit ordering of all the public
keys in the airdrop. S can publish the corresponding ciphertexts using this ordering.

7 Here, we assume that S’s pledge includes the correct recipient keys. After all, if S
publicly pledged to airdrop to himself, he is hardly cheating if he does so!

20

If S did not send an airdrop to R under pk as pledged, then some step in
R’s claim process—decrypting one of the ciphertexts, constructing Tsig,R, or
matching it against a published airdrop key—will fail. In particular, one of the
following must have happened:8

(1) ctpk is an invalid RSA-OAEP ciphertext (i.e., msgpk does not exist),

(2) msgpk exists, but it does not correspond to any ctTsig , or

(3) msgpk corresponds to ctTsig,R , but reconstructing Tsig,R using the decryption
msgTsig,R

and the tuple corresponding to R in S’s pledge (which is uniquely
identified by pk) does not yield any of the airdrop keys that S published in
the leaves of T val

AD (§5.1, “Multiple keys per recipient”).
In case (2) or (3), R accuses S by revealing msgpk and a decommitment that

establishes (via the committing property of RSA-OAEP) that msgpk is the true
decryption of ctpk . Then, in case (2), any verifier V can check that msgpk does
not correspond to any ctTsig,R . In case (3), V uses msgpk to decrypt ctTsig,R

and reveal msgTsig,R
, uses this message plus S’s pledge to reconstruct Tsig,R

(following the claim procedure; §5.1), and checks R’s accusation that Tsig,R
does not correspond to a published airdrop key.9

The remaining case is (1). If S published an invalid ciphertext ctpk for key
(n, e) = pk ,R can reveal m̂ where ctpk = m̂e mod n. V should believe that S was
dishonest if m̂ is not a valid RSA-OAEP–encoded value and gcd(m̂, n) = 1.10

S’s signatures over his published messages (§5.1) ensure non-repudiation.

Toward a stronger honesty guarantee. Using the above scheme, a recipient can
reveal a dishonest sender’s misbehavior—but by the time she does so, the sender
may already have stolen her funds. A potential fix is for the sender to use a
verifiable shuffle [40,61,107,78,81,9,37], a protocol that takes as input a list of
commitments, and produces as output the same commitments, shuffled and re-
randomized, plus a proof that the shuffle was done correctly.

To illustrate, we assume each recipient has exactly one RSA key. The sender
commits (in G) to each recipient’s RSA modulus and uses these commitments
as the input to a verifiable shuffle. The output of the shuffle is a new list of
commitments that have been reordered and re-randomized; these are the recipi-
ents’ PAD-RSA tokens. The sender publishes the inputs and outputs of the shuffle
along with the proof, plus one ciphertext per recipient containing that recipient’s
PAD-RSA secret. Any verifier can check the proof and check that the inputs to
the shuffle correspond to the keys in the sender’s pledge. And the sender cannot

8 We ignore the case where S computed the root of T val
AD dishonestly, since this is imme-

diately detected using only public information, viz., the tuples (airdrop key, value).
9 Note that if S can construct a token c such that two different public keys can be
used to generate a valid PAD signature using c, S can pass this test but steal R’s
airdrop. Constructing such tokens is infeasible for the schemes of §3–§4.

10 The latter check ensures that m̂ ∈ Z∗n, i.e., that m̂ uniquely corresponds to ctpk .
This check is a formality: if R reveals m̂ such that gcd(m̂, n) 6= 1, she has revealed
a factor of n and thus broken her own key.

21

steal recipients’ funds: at worst, the sender can prevent a recipient from claiming
her funds by encrypting the wrong secret in her ciphertext.

This scheme also works for the case that recipients have multiple keys of one
type. Extending it to work with keys of different types is future work.

6 Evaluation

In this section, we evaluate PAD-RSA (§4.3) and the private genesis airdrop
scheme (§5), asking the following questions:
• What is the cost of the privacy that PAD-RSA provides? (§6.1.)

Specifically, how much does PAD-RSA cost in terms of signature size, signing
time, and verifying time; and how does this compare to a standard RSA
signature? We focus on PAD-RSA because PAD-DSA (§3) has essentially no
overhead compared to the underlying signature scheme.

• How much overhead does the private genesis airdrop impose? (§6.2.)
Specifically, how much larger is an airdrop tx-witness than a PAD-RSA sig-
nature? We focus on message size because PAD-RSA dominates runtime.
We find that a PAD-RSA signature is 1.8 kiB when G = Z∗m/{±1}, m a 2048-

bit RSA modulus. In our C implementation and for the same G, if the recipient’s
RSA key has a 4096-bit modulus, send takes 3.6 ms, sign takes 74 ms, and verify
takes 3.8 ms. This is 3.6× larger, 19× slower to sign, and 63× slower to verify
than an RSA signature over a 4096-bit modulus; higher security G has larger
signatures and higher overhead. For our reference implementation and G an
imaginary quadratic class group, signing and verifying are 9–13× slower than
an RSA group at similar security. For the private genesis airdrop scheme, a tx-
witness for an airdrop with one millions recipients, each with up to one thousand
keys, adds ≈75% overhead to the size of a PAD-RSA signature in the worst case.
We discuss our evaluation results further in Section 7.

Implementation Our reference implementation of PAD-RSA (§4.3), written in
about 1300 lines of Python, supports G either an imaginary quadratic class
group [36] or Z∗m/{±1} for RSA modulus m. Our production implementation
of the full airdrop scheme is a native Node.js [108] module, written in about
5500 lines of C that links against GMP [74] and/or mini-GMP, depending on
the platform on which it is built. For platforms on which we cannot build the
C code, we include a fallback implementation written in about 1200 lines of
pure Javascript. This module supports RSA groups for G in PAD-RSA. It also
implements versions of PAD-DSA for both ECDSA and EdDSA keys. In both
implementations, we set λ = 128 and use SHA-256 to instantiate the random
oracle. Our implementations are available under open-source licenses [76,82].

6.1 The cost of privacy

In this section we compare PAD-RSA (§4.3) to standard (non-private) RSA sig-
natures, in terms of size, signing time, and verifying time.

22

Testbed. We run experiments on Amazon EC2 [6], using a c5.xlarge instance
(8 GiB of RAM, 2 Xeon Platinum 8124M cores, 2 threads per core, 3.0 GHz). Our
testbed machine runs Ubuntu 19.10 [134]. We compile C with GCC 9.2.1 [65], run
Python code using PyPy 7.1.1 [123], and run Javascript with Node.js 10.15.2 [108].
We link our C code against GMP 6.1.2 [74]. For RSA timing experiments, we
use OpenSSL 1.1.1c [112].

Benchmarks, baseline, and method. Our baseline is a standard RSA signature,
computed using the OpenSSL benchmarking utility [113]. We benchmark our C,
Python, and Javascript implementations (§6) for signers’ keys pk with 2048- and
4096-bit moduli. We evaluate over several different groups of unknown order G:
• GRSA-2048, Z∗m/{±1} for m the RSA-2048 2048-bit challenge number [87],
• GRSA-4096, Z∗m/{±1} for m the 4096-bit modulus of the “AOL Time Warner

Root Certification Authority” certificate, which is now defunct [5],11

• GIQ-1024, an imaginary quadratic class group with a 1024-bit determinant,
i.e., slightly lower conjectured security than 2048-bit RSA [36, Table 1], and
• GIQ-2048, an imaginary quadratic class group with a 2048-bit determinant,

i.e., slightly higher conjectured security than 4096-bit RSA.
We evaluate all three implementations on GRSA-2048 and GRSA-4096, but only
our Python implementation supports GIQ-1024 and GIQ-2048. We execute each
benchmark 64 times on the testbed machine (described above), record execution
times, and report the average; variance is negligible.

Signature size. A PAD-RSA signature is 6 elements in G, an integer of ≈λ bits,
t, ch, `, and z`∈[`]8. λ = 128 (§6), so ch is 128 bits, ` is 264 bits, and t is 8 bits;
the non–group elements thus comprise 330 bytes. Our implementations serialize
elements of GRSA-M1

as an M1-bit integer, elements of GIQ-M2
as a pair of M2-

bit integers.12 GRSA-2048 and GIQ-1024 signatures are thus 1866 bytes; GRSA-4096
and GIQ-2048 are 3402 bytes. Signature sizes are independent of the signer’s RSA
modulus (as is necessary for anonymity of PAD-RSA; §2.1).

For recipient’s RSA modulus |pk | = 2048 bits, a PAD-RSA signature is 7–13×
larger than a standard signature under pk . For |pk | = 4096 bits the overhead is
halved (the PAD-RSA signature is the same, but the RSA signature is 2× larger).

Signing and verifying time. Figure 1 gives PAD-RSA runtimes for our C, Javascript,
and Python implementations (§6), versus group of unknown order G and |pk |,
the recipient’s RSA modulus size. For send and sign (Figs. 1a, 1b, 1d, 1e) we
show in dashed lines the time OpenSSL takes to compute an RSA signature for
the recipient’s pk ; for verify (Figs. 1c, 1f) we give OpenSSL’s verification time.

For 4096-bit |pk | (Figs. 1d, 1e, and 1f), our C implementation of send has
cost roughly comparable to generating a standard RSA signature, while the cost

11 This appears to be the oldest 4096-bit root certificate that saw widespread use.
12 For GIQ-M2 , this can be shrunk by about 2×: an element can be uniquely represented

in ≈M2 bits. We ignore this optimization to simplify the presentation.

23

RSA-4096 RSA-2048 IQ-2048 IQ-1024
0.01

0.1

1

10

100

103

104
tim

e,
 m

illi
se

co
nd

s (
lo

we
r i

s b
et

te
r)

6.1
1.1

22
5.1

250 180
51

8.5

RSA sign: 0.59 ms

C
Python
JS

(a) send, 2048-bit pk
RSA-4096 RSA-2048 IQ-2048 IQ-1024

0.01

0.1

1

10

100

103

104

tim
e,

 m
illi

se
co

nd
s (

lo
we

r i
s b

et
te

r)

120
40

420
150

5300
19001000

330

RSA sign: 0.59 ms

(b) sign, 2048-bit pk
RSA-4096 RSA-2048 IQ-2048 IQ-1024

0.01

0.1

1

10

100

103

104

tim
e,

 m
illi

se
co

nd
s (

lo
we

r i
s b

et
te

r)

10
3.7

47
22

510
21092

32

RSA verify: 0.02 ms

(c) verify, 2048-bit pk

RSA-4096 RSA-2048 IQ-2048 IQ-1024
0.01

0.1

1

10

100

103

104

tim
e,

 m
illi

se
co

nd
s (

lo
we

r i
s b

et
te

r)

6.4 3.6

23 16

700
280

53 28

RSA sign: 4.0 ms

C
Python
JS

(d) send, 4096-bit pk
RSA-4096 RSA-2048 IQ-2048 IQ-1024

0.01

0.1

1

10

100

103

104

tim
e,

 m
illi

se
co

nd
s (

lo
we

r i
s b

et
te

r)

180
74

730 370

9300
33001600

740

RSA sign: 4.0 ms

(e) sign, 4096-bit pk
RSA-4096 RSA-2048 IQ-2048 IQ-1024

0.01

0.1

1

10

100

103

104

tim
e,

 m
illi

se
co

nd
s (

lo
we

r i
s b

et
te

r)

10
3.8

47
22

510
21092

32

RSA verify: 0.06 ms

(f) verify, 4096-bit pk

Fig. 1: Execution time for PAD-RSA to send, sign, and verify in each imple-
mentation (§6), for groups GRSA-4096, GRSA-2048, GIQ-2048, and GIQ-1024 (§6.1).
The recipient’s RSA public key pk has either a 2048-bit (Figs. 1a–1c) or 4096-bit
(Figs. 1d–1f) modulus. Dashed lines indicate time for RSA signing and verifying.

of sign has 19–45× overhead; verify has cost roughly comparable to generating
an RSA signature, but 63–170× higher than verifying an RSA signature. Our C
implementation is less competitive versus a 2048-bit |pk | (Figs. 1a, 1b, and 1c):
2–10× for send, 68–200× for sign, and 190–500× for verify. In all cases, our
Javascript and Python implementations are slower, as expected.

For G an imaginary quadratic class group (which only our Python imple-
mentation supports), overhead increases by an additional 9–13× for signing and
verification, and 11–35× for token generation, when compared to an RSA group
at a comparable security level. We discuss further in Section 7.

6.2 Private genesis airdrop overhead

We now turn to the overhead of a private genesis airdrop (§5). We focus on
message size, because signing and verifying times are dominated by PAD-RSA.
A private genesis airdrop tx-witness comprises a PAD-RSA signature, an airdrop
token c, and Merkle paths from c to the airdrop key and from the airdrop key
to the root of T val

AD (§5.1). c is one element of G (sizes are given in §6.1) and
H() is SHA-256, i.e., each hash costs 32 bytes. The total Merkle path size is
dlog #Re+ dlog #κmaxe ≈ log (#R ·#κmax).

For a small genesis airdrop, the Merkle paths have negligible cost, so c dom-
inates the the overhead on top of the size of the PAD-RSA signature; concretely,
the overhead is ≈15%. For a huge airdrop, say log (#R ·#κmax) = 30, the
Merkle paths cost about 1 kiB, i.e., ≈30–60% of the PAD-RSA signature size. In

24

other words, even in an extreme case the overhead of the private genesis airdrop
is at worst ≈75% of a PAD-RSA signature. Thus, eliminating the tx-witness’s
logarithmic dependence on airdrop size would save less than a factor of 2.

7 Discussion

Results in context. In the blockchain context, the primary concerns are proof
size and verification time: tokens and proofs are generated once, but proofs take
up space on the blockchain and are verified many times. Our evaluation (§6.1)
shows that these costs are much higher for PAD-RSA than for standard RSA
signatures, especially if trusted setup must be avoided (we discuss G below). But
this overhead may be acceptable, since airdrops are intended as a one-time cost
per user. Indeed, an airdrop inherently gives something of value to attract new
users—and in some cases, attracting privacy-conscious users may be valuable
enough to justify these costs.

To limit the effect of PAD-RSA costs on block verification time, one can cap
the number of claims allowed in a block. Of course, it would be useful to further
reduce costs. One possibility is to use batch verification (i.e., verifying many
proofs at once in order to amortize some of the costs). PAD-RSA does not sup-
port batch verification as described, but doing so is straightforward, at the cost
of doubling the proof size (in short, replace ch and ` with R in the proof). Al-
ternatively, proof aggregation (i.e., constructing one proof of several statements
from several proofs) could significantly improve costs. These are future work.

The group G. The protocols of Section 4 and Appendix B are secure when
G is modeled as a generic group of unknown order. This is a heavyweight
requirement, but it appears necessary to sidestep impossibility results for Σ-
protocols in groups of unknown order [7,132]. Recent works on verifiable delay
functions [138,117,26] and on cryptographic accumulators [27] rely on the same
model or on closely related assumptions. Our choices of G follow those works.

Using Z∗m/{±1} for m an RSA modulus is both convenient and reasonably
fast (§6.1), but because it requires a trusted setup this choice may be untenable
in some applications. As mentioned in Section 4.3, class groups of imaginary
quadratic order are conjectured to be an alternative for G that requires no
trusted setup [36]. Class groups have lately seen resurgent interest, including
attempts to improve both known attacks and implementations [43]. We are opti-
mistic that these efforts will help to reduce the associated performance penalties.

An alternative that is seeing renewed interest is using a multiparty computa-
tion to generate an RSA modulus, where no party learns the factorization [28,55].
This avoids both trusted setup and the performance cost of class groups.

Private genesis airdrop. Our private genesis airdrop design (§5) meets the stated
requirements, but there are multiple ways in which future work can improve it.

First, while our design hides the number of keys a recipient has, it does not
hide the type of key used to claim an airdrop. This allows distinguishing between

25

users based on key type, which splits the anonymity set of the airdrop. The
anonymity set for RSA keys is further reduced by the leakage of t, a quadratic
residue modulo the signer’s RSA modulus (§4.2). In large airdrops, however, the
key type and quadratic residue give an observer very little information.

Second, tx-witnesses in our genesis airdrop scheme have size logarithmic both
in the number of recipients and in the number of keys per recipient. Our eval-
uation shows that resulting overhead is less than 2× compared to a PAD-RSA
signature, even for millions of recipients each with hundreds of keys (§6). Here
PAD-RSA is a best case, though, because PAD-RSA signatures are long. PAD-DSA
gives much shorter signatures, so tx-witness overhead is 3–5×. Ideally, we would
like constant-sized, concretely short signatures.

Finally, in Section 5.2 we show how a recipient can reveal a dishonest sender’s
misbehavior and suggest a path toward requiring a sender to prove his honesty;
further work is needed to support multiple key types. We note, however, that
requiring a proof of honesty may be overkill: in many cryptocurrency settings,
security against a rational adversary suffices—in which case, the mere threat of
being exposed as dishonest may be sufficient inducement to honesty.

8 Related work

Anonymity and privacy for cryptocurrencies. Our work relates broadly to pri-
vacy for cryptocurrency users, but it attacks a different problem than prior work.
We very briefly rehearse that work for context. Following Bünz et al. [37], we
separate prior work into anonymity, hiding associations between identities and
transactions, and confidentiality, hiding contents of transactions.

While Bitcoin was intended to provide anonymity [106], in practice it does
not [99,4]. Early responses to this issue hide transaction history by shuffling to-
gether unrelated transactions [97,125]. More recent work uses cryptographic ma-
chinery to give stronger guarantees [16,109,126]. CryptoNote stealth addresses [126]
are similar to a PAD in that they allow a sender to derive an anonymous iden-
tity from a recipient’s public key. But this scheme requires a special public key
format, is incompatible with RSA keys, and has no formal security statement.

A related line of work deals with confidentiality. Maxwell showed how to
construct transactions whose inputs and outputs are hidden in cryptographic
commitments, and which include zero-knowledge proofs attesting to validity [98].
Later work built upon and refined this approach [119,86,118,58]. Most recently,
Bünz et al. [37] showed how to significantly improve the costs of the zero-
knowledge proofs on which confidential transactions are built.

Efficient airdrops. MerkleMine [101] and pooled payments [122] are methods for
compressing airdrops using Merkle trees. These are similar to the private genesis
airdrop of Section 5, with the key difference that they are simpler because they do
not aim to preserve the privacy of recipients, support multiple keys per recipient,
or allow recipients to accuse the sender of dishonesty.

A recent survey of airdrops [56] discusses the cost of these and other methods.

26

General-purpose zero-knowledge proofs and private smart contracts. Several lines
of work have produced frameworks for constructing zero-knowledge proofs for
general NP statements; other work has applied these ideas to constructing smart
contracts. We now discuss general-purpose zero-knowledge proof frameworks,
and roughly compare costs to the special-purpose ZKPK of Section 4. For brevity
we omit a full treatment in favor of focusing on the most relevant work; Wahby
et al. [137] give a more comprehensive overview.

One line of work builds zero-knowledge succinct non-interactive arguments
of knowledge (zkSNARKs) by combining linear PCPs [84,66] with cryptographic
machinery [22,79,80,93]. Pinocchio [114] is the basis for essentially all practical
zkSNARK systems; the most widely used is libsnark [92,20]. These give short
proofs and fast verification, but proving is slow and requires a costly setup phase
whose incorrect execution allows proving false statements. This setup can be
implemented as a multiparty computation to improve trustworthiness [17,32,33].

ZCash [16] builds an anonymous cryptocurrency out of zkSNARKs, while
C∅C∅ [89] and Hawk [90] use zkSNARKs to build private smart contracts and
related primitives. The latter two are the most closely related in this line to pri-
vate airdrops, because they use zkSNARKs to construct anonymous RSA-based
credentials. Proofs are short (≈300 bytes) and verification is fast (≈10 ms), but
proving takes tens to hundreds of seconds and public parameters are hundreds of
megabytes long. In contrast, private airdrop signatures for RSA take hundreds
of milliseconds to create (§6.1) and public parameters are a few kilobytes.

Several recent systems, including Sonic [95], AuroraLight [62], PLONK [63],
and Marlin [44], require a trusted setup similar to zkSNARKs, but allow later
re-randomizations of the setup’s result. This is, roughly, an improved method of
using (slow-motion) multiparty computation to improve trustworthiness. These
systems all have large public parameters (tens to hundreds of megabytes) and
short proofs (hundreds to a few thousand bytes). For efficiency, Sonic and Au-
roraLight must amortize verification cost over a batch of proofs; PLONK and
Marlin give fast verification for individual proofs, as do our private airdrop sig-
natures for RSA. Proving time in all of these systems is roughly comparable to
the Pinocchio-based proofs described above, and much slower than our scheme.

Several other general-purpose proof schemes avoid trusted setup, but their
generality results in higher costs than our scheme. The zero-knowledge scalable
transparent arguments of knowledge (zkSTARKs) of Ben-Sasson et al. [15] and
Aurora [18] have proving speed roughly comparable to zkSNARKs and proofs
several hundred kilobytes long; zkSTARKs have fast verification (tens to hun-
dreds of milliseconds). In contrast, private airdrop signatures for RSA are at
most a few kilobytes (§6.1), and proving is much faster.

The Bulletproofs of Bünz et al. [37] are very short (concretely, about one
kilobyte), but proving and verification have cost linear in the size of the state-
ment, and are concretely slow for large statements. In particular, verifying one
SHA-256 preimage proof costs about 700 ms; extrapolating to the optimized
RSA-based credentials of Kosba et al. [89] (conservatively, a 20× larger state-

27

ment) implies well over ten seconds for verification. In contrast, private airdrop
signatures for RSA take at most a few hundred milliseconds to verify (§6.1).

ZKBoo [69] and ZKB++ [39] build on the multiparty computation–in-the-
head paradigm of Ishai et al. [85]. These schemes give concretely fast proving
and verifying, but yield large proofs that scale linearly with statement size. Con-
cretely, for SHA-256 preimage, proofs are 400–600 kiB; we estimate that porting
Kosba et al.’s RSA-based anonymous credentials to these schemes would yield
proofs approaching 10 MiB. Ligero [3] also builds upon the MPC-in-the-head
paradigm, has concretely fast proving and verifying very roughly comparable to
ZKB++, and gives asymptotically and concretely shorter proofs than the lat-
ter. But extrapolating from the authors’ evaluation, proofs for the RSA-based
anonymous credentials of Kosba et al. would still be ≈100 kiB.

Hyrax [137], Zhang et al. [142], and Libra [140] build zero-knowledge proofs
by combining a line of efficient interactive proofs [75,47,133,136] with the commit-
and-prove paradigm of Ben-Or et al. [14] and Cramer and Damgård [48]. It is
difficult to extrapolate for these systems because their costs are, roughly speak-
ing, very sensitive to the amount of parallelism in the statement. Still, the Hyrax
and Libra evaluations shows that proofs are tens of kilobytes even for small state-
ments, and verification in Hyrax takes more than one second in most cases.

Group signatures, ring signatures, etc. In a group signature scheme [42,10],
users join a group by registering with an administrator; thereafter, any user
can sign for the group. This signature does not reveal which user signed, just
that one member of the group did. Private airdrops are vaguely similar to group
signatures, but they disconnect the anonymity set (all users who own a certain
key type) from the signing set (exactly one user, designated by the sender). Our
private genesis airdrop scheme (§5) is very roughly a “one-time-per-user” group
signature with additional properties tailored to our application.

Ad-hoc anonymous identification schemes [53] and ring signatures [124], un-
like group signatures, have no administrator. Instead, users create ad-hoc anonymity
sets out of existing keys, then create signatures which reveal only that one user
in the anonymity set was the signer. Private airdrops are similar to ring signa-
tures in that they do not require users to register with an administrator, but an
administrator (the sender) is nevertheless required.

The ring signature scheme of Abe et al. [1] admits signatures whose ad-
hoc anonymity sets mix keys of different types. In this scheme, signing and
verifying time and signature size are all linear in the size of the anonymity set.
Our private genesis airdrop scheme also allows signatures with anonymity sets
having mixed key types; it has logarithmic and concretely small cost in the size
of the anonymity set, but requires a sender to set up the scheme.

Anonymous proxy signatures [59] let a delegator give signing privileges to a
proxy. The delegator’s role is faintly reminiscent of the sender’s in a private air-
drop; and like the recipient, the proxy’s identity is kept secret. But the delegator
retains signing privileges after designating a proxy, whereas the private airdrop
sender permanently transfers signing privileges for a given token to its recipient.

28

Proving knowledge of factorization of an RSA modulus. A large body of work
deals with proving knowledge of factorization of RSA moduli. Much of this is
in the setting where the modulus n is public (e.g., [135,34,60,67]) and is thus
unsuitable for our application, since revealing n would violate anonymity.

Camenisch and Michels [38] give a protocol for proving that a · b ≡ d mod
n for committed values a, b, d, and n, that is secure under the discrete log
assumption. This is considerably milder than our modeling G as a generic group
of unknown order (§4.2, §7). On the other hand, as a consequence of impossibility
results for Σ-protocols in groups of unknown order [7,132], the protocol requires
k repetitions for soundness 2−k, wherein each repetition requires five range proofs
and five proofs of knowledge of a commitment’s opening. This means that proofs
are orders of magnitude larger and costlier to verify than in our scheme.

9 Conclusion

We have defined private airdrops, which allow users to create signatures us-
ing their cryptographic credentials without revealing those credentials, and we
have described concrete private airdrop schemes for ECDSA and RSA keys. To
construct private airdrops for RSA, we defined a new zero-knowledge argument
of knowledge of the factorization of a committed integer, in generic groups of
unknown order.

We have also described how to use these private airdrops to bootstrap a
new cryptocurrency, using a design we call a private genesis airdrop. Private
genesis airdrops handle millions of recipients, each having hundreds of public
keys, potentially of different types. The creator of a private genesis airdrop can
prove the total value he has airdropped; if he created the airdrop dishonestly,
recipients can prove that they did not receive the promised funds.

Finally, we have implemented and evaluated our schemes. In our fastest im-
plementation, private airdrop signatures for RSA keys take tens to hundreds of
milliseconds to create and milliseconds to verify, and they comprise at most a few
kilobytes. The private genesis airdrop scheme increases signature size by about
a kilobyte for an airdrop to millions of users, each having hundreds of keys; its
computational overhead is negligible. While these costs are expensive compared
to plain RSA signatures, we believe that may be justified, in the airdrop setting,
by the improvement in recipient privacy.

Our implementations are available under open-source licenses [76,82].

Acknowledgments

This work was supported in part by the NSF, the ONR, the Simons Founda-
tion, the Stanford Center for Blockchain Research, and the Ripple Foundation.
The authors thank Fraser Brown, Henry Corrigan-Gibbs, and Dmitry Kogan
for helpful conversations, and David Mazières for pointing out the need for the
orthogonality property.

29

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: ASIACRYPT (Dec 2002)

2. Airdrop Alert. https://airdropalert.com/
3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight

sublinear arguments without a trusted setup. In: ACM CCS (Oct / Nov 2017)
4. Androulaki, E., Karame, G., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating

user privacy in Bitcoin. In: FC (Apr 2013)
5. Remove AOL Time Warner root certs. https://bugzilla.mozilla.org/show_

bug.cgi?id=605187
6. AWS EC2. https://aws.amazon.com/ec2/instance-types/
7. Bangerter, E., Camenisch, J., Krenn, S.: Efficiency limitations for S-protocols for

group homomorphisms. In: TCC (Feb 2010)
8. Bangerter, E., Camenisch, J., Maurer, U.: Efficient proofs of knowledge of discrete

logarithms and representations in groups with hidden order. In: PKC (Jan 2005)
9. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.

In: EUROCRYPT (Apr 2012)
10. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: For-

mal definitions, simplified requirements, and a construction based on general as-
sumptions. In: EUROCRYPT (May 2003)

11. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a
general forking lemma. In: ACM CCS (Oct / Nov 2006)

12. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS (Nov 1993)

13. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign
with RSA and Rabin. In: EUROCRYPT (May 1996)

14. Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Ro-
gaway, P.: Everything provable is provable in zero-knowledge. In: CRYPTO (Aug
1990)

15. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: CRYPTO (Aug 2019)

16. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: IEEE S&P
(May 2014)

17. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: IEEE S&P (May 2015)

18. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: EUROCRYPT (May 2019)

19. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: TCC
(Oct / Nov 2016)

20. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: USENIX Security (Aug 2014)

21. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. In: CHES (Sep / Oct 2011)

22. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: TCC (Mar 2013)

23. Bjorøy, T.V.: The latest crypto PR craze: ‘airdropping’ free coins into your wallet.
VentureBeat (Sep 2017)

30

https://airdropalert.com/
https://bugzilla.mozilla.org/show_bug.cgi?id=605187
https://bugzilla.mozilla.org/show_bug.cgi?id=605187
https://aws.amazon.com/ec2/instance-types/

24. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gen-
erators. In: CRYPTO (1982)

25. Bogart, S.: The trend that is increasing the urgency of owning Bitcoin and
Etherium. Forbes (Oct 2017)

26. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptol-
ogy ePrint Archive, Report 2018/712 (2018), https://eprint.iacr.org/2018/
712

27. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: CRYPTO (Aug 2019)

28. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys (extended
abstract). In: CRYPTO (Aug 1997)

29. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE
S&P (May 2015)

30. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: Anonymity for bitcoin with accountable mixes. In: FC (Mar 2014)

31. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: EUROCRYPT
(May 2016)

32. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. In: FC Workshops (Mar 2019)

33. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017), http://eprint.iacr.org/2017/1050

34. Boyar, J., Friedl, K., Lund, C.: Practical zero-knowledge proofs: Giving hints and
using deficiencies. In: EUROCRYPT (Apr 1990)

35. Brickell, E.F., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for
discrete logarithm based signature schemes. In: PKC (Jan 2000)

36. Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: Public-Key Cryp-
tography and Computational Number Theory (Sep 2000)

37. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: Short proofs for confidential transactions and more. In: IEEE S&P (May
2018)

38. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: EUROCRYPT (May 1999)

39. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: ACM CCS (Oct / Nov 2017)

40. Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2), 84–90 (Feb 1981)

41. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO (Aug
1993)

42. Chaum, D., van Heyst, E.: Group signatures. In: EUROCRYPT (Apr 1991)
43. Chia VDF competition. https://github.com/Chia-Network/vdf-competition
44. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-

cessing zkSNARKs with universal and updatable SRS. Cryptology ePrint Archive,
Report 2019/1047 (2019), https://eprint.iacr.org/2019/1047

45. Cohen, B.: The TXO bitfield. https://marc.info/?l=bitcoin-dev&m=
152437899123485 (Mar 2017)

31

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
http://eprint.iacr.org/2017/1050
https://github.com/Chia-Network/vdf-competition
https://eprint.iacr.org/2019/1047
https://marc.info/?l=bitcoin-dev&m=152437899123485
https://marc.info/?l=bitcoin-dev&m=152437899123485

46. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Inter-
net X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. Tech. Rep. RFC5280, IETF (May 2008)

47. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: ITCS (Jan 2012)

48. Cramer, R., Damgård, I.: Zero-knowledge proofs for finite field arithmetic; or:
Can zero-knowledge be for free? In: CRYPTO (Aug 1998)

49. Cramer, R.J.F.: Modular design of secure yet practical cryptographic protocols.
Ph.D. thesis, Universiteit van Amsterdam (Jan 1997)

50. Damgård, I., Koprowski, M.: Generic lower bounds for root extraction and signa-
ture schemes in general groups. In: EUROCRYPT (Apr / May 2002)

51. Damgård, I., Luo, J., Oechsner, S., Scholl, P., Simkin, M.: Compact zero-
knowledge proofs of small hamming weight. In: PKC (Mar 2018)

52. Dauterman, E., Corrigan-Gibbs, H., Mazières, D., Boneh, D., Rizzo, D.: True2F:
Backdoor-resistant authentication tokens. In: IEEE S&P (May 2019)

53. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: EUROCRYPT (May 2004)

54. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO (Aug 1987)

55. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key
generation for semi-honest and malicious adversaries. In: CRYPTO (Aug 2018)

56. Fröwis, M., Böhme, R.: The operational cost of Ethereum airdrops.
arXiv:1907.12383 (2019), https://arxiv.org/abs/1907.12383

57. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: CRYPTO (Aug 2018)

58. Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: A cryptographic
investigation of Mimblewimble. In: EUROCRYPT (May 2019)

59. Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: SCN (Sep
2008)

60. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: CRYPTO (Aug 1997)

61. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: CRYPTO
(Aug 2001)

62. Gabizon, A.: AuroraLight: Improved prover efficiency and SRS size in a sonic-like
system. Cryptology ePrint Archive, Report 2019/601 (2019), https://eprint.
iacr.org/2019/601

63. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptol-
ogy ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/
953

64. Gandal, N., Halaburda, H.: Competition in the cryptocurrency market. Tech.
Rep. DP10157, Center for Economic Policy Research (Sep 2014)

65. GCC, the GNU compiler collection. https://gcc.gnu.org/
66. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and

succinct NIZKs without PCPs. In: EUROCRYPT (May 2013)
67. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical

zero-knowledge proof system for quasi-safe prime products. In: ACM CCS (Nov
1998)

68. Gertner, Y., Herzberg, A.: Committing encryption and publicly-verifiable sign-
cryption. Cryptology ePrint Archive, Report 2003/254 (2003), http://eprint.
iacr.org/2003/254

32

https://arxiv.org/abs/1907.12383
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://gcc.gnu.org/
http://eprint.iacr.org/2003/254
http://eprint.iacr.org/2003/254

69. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean
circuits. In: USENIX Security (Aug 2016)

70. GitHub: About. https://github.com/about
71. GitHub: User public keys. https://developer.github.com/v3/users/keys/
72. GitHub: User GPG keys. https://developer.github.com/v3/users/gpg_keys/
73. GitLab: Users API. https://docs.gitlab.com/ce/api/users.html
74. The GNU Multi-Precision arithmetic library. https://gmplib.org/
75. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive

proofs for muggles. In: ACM STOC (May 2008)
76. GooSig: short signatures from RSA that hide the signer’s public key. https:

//github.com/kwantam/GooSig
77. GnuPG frequently asked questions. https://www.gnupg.org/faq/gnupg-faq.

html#default_rsa2048
78. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: PKC (Jan

2003)
79. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In:

ASIACRYPT (Dec 2010)
80. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-

CRYPT (May 2016)
81. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuf-

fle. In: EUROCRYPT (Apr 2008)
82. handshake-org/goosig: Anonymous RSA signatures. https://github.com/

handshake-org/goosig/
83. ICO Drops. https://icodrops.com/
84. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.

In: CCC (Jun 2007)
85. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant

computational overhead. In: ACM STOC (May 2008)
86. Jedusor, T.E.: Mimblewimble. Tech. rep. (Jul 2016), https://github.com/

mimblewimble/docs/wiki/MimbleWimble-Origin
87. Kaliski, B.: RSA factoring challenge. In: Encyclopedia of Cryptography. Springer

(2005)
88. Keybase.io. https://keybase.io/
89. Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, T.H.H., Papamanthou, C., Pass,

R., shelat, a., Shi, E.: C∅C∅: A framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093 (2015), https://eprint.
iacr.org/2015/1093

90. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: IEEE S&P
(May 2016)

91. Let’s Encrypt Stats. https://letsencrypt.org/stats/
92. libsnark. https://github.com/scipr-lab/libsnark
93. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive

zero-knowledge arguments. Cryptology ePrint Archive, Report 2011/009 (2011),
http://eprint.iacr.org/2011/009

94. Lombrozo, E., Lau, J., Wuille, P.: BIP 141: Segregated witness. https://github.
com/bitcoin/bips/blob/master/bip-0141.mediawiki (Dec 2015)

95. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: ACM CCS (Nov 2019)

33

https://github.com/about
https://developer.github.com/v3/users/keys/
https://developer.github.com/v3/users/gpg_keys/
https://docs.gitlab.com/ce/api/users.html
https://gmplib.org/
https://github.com/kwantam/GooSig
https://github.com/kwantam/GooSig
https://www.gnupg.org/faq/gnupg-faq.html#default_rsa2048
https://www.gnupg.org/faq/gnupg-faq.html#default_rsa2048
https://github.com/handshake-org/goosig/
https://github.com/handshake-org/goosig/
https://icodrops.com/
https://github.com/mimblewimble/docs/wiki/MimbleWimble-Origin
https://github.com/mimblewimble/docs/wiki/MimbleWimble-Origin
https://keybase.io/
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://letsencrypt.org/stats/
https://github.com/scipr-lab/libsnark
http://eprint.iacr.org/2011/009
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

96. Maurer, U.M.: Unifying zero-knowledge proofs of knowledge. In: AFRICACRYPT
(Jun 2009)

97. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. https://bitcointalk.
org/index.php?topic=279249 (Aug 2013)

98. Maxwell, G.: Confidential transactions. Tech. rep. (2016), https://people.xiph.
org/~greg/confidential_values.txt

99. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of Bitcoins: Characterizing payments among men with
no names. In: IMC (Oct 2013)

100. Merkle, R.C.: A certified digital signature. In: CRYPTO (Aug 1990)
101. MerkleMine specification. https://github.com/livepeer/merkle-mine/blob/

master/SPEC.md
102. Miyaji, A., Ono, T., Cohen, H.: Efficient elliptic curve exponentiation. In: ICICS

97 (Nov 1997)
103. Möller, B.: Algorithms for multi-exponentiation. In: SAC (Aug 2001)
104. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factoriza-

tion. Math. Comp. 48(177), 243–264 (1987)
105. Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security

of the schnorr signature scheme and DSA against related-key attacks. In: ICISC
(Nov 2016)

106. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
107. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM

CCS (Nov 2001)
108. Node.js. https://nodejs.org/en/
109. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1 (2016)
110. Okamoto, T.: Provably secure and practical identification schemes and corre-

sponding signature schemes. In: CRYPTO (Aug 1993)
111. OmiseGO airdrop update. https://www.omise.co/omisego-airdrop-update

(Aug 2017)
112. OpenSSL: Cryptography and SSL/TLS toolkit. https://www.openssl.org/
113. OpenSSL speed. https://www.openssl.org/docs/manmaster/man1/speed.html
114. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical veri-

fiable computation. In: IEEE S&P (May 2013)
115. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: CRYPTO (Aug 1992)
116. Penning, H.P.: Analysis of the strong set in the PGP web of trust. https://pgp.

cs.uu.nl/plot/ (Dec 2018)
117. Pietrzak, K.: Simple verifiable delay functions. In: ITCS (Jan 2019)
118. Poelstra, A.: Mimblewimble. Tech. rep. (Oct 2016), https://scalingbitcoin.

org/papers/mimblewimble.pdf
119. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential

assets. Tech. rep. (Apr 2017), https://blockstream.com/bitcoin17-final41.
pdf

120. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: EURO-
CRYPT (May 1996)

121. Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. Journal of Cryptology 13(3), 361–396 (Jun 2000).
10.1007/s001450010003

122. Pooled payments (scaling solution for one-to-many transactions).
https://ethresear.ch/t/pooled-payments-scaling-solution-for-one-
to-many-transactions/590

34

https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/livepeer/merkle-mine/blob/master/SPEC.md
https://github.com/livepeer/merkle-mine/blob/master/SPEC.md
https://nodejs.org/en/
https://www.omise.co/omisego-airdrop-update
https://www.openssl.org/
https://pgp.cs.uu.nl/plot/
https://pgp.cs.uu.nl/plot/
https://scalingbitcoin.org/papers/mimblewimble.pdf
https://scalingbitcoin.org/papers/mimblewimble.pdf
https://blockstream.com/bitcoin17-final41.pdf
https://blockstream.com/bitcoin17-final41.pdf
https://doi.org/10.1007/s001450010003
https://ethresear.ch/t/pooled-payments-scaling-solution-for-one-to-many-transactions/590
https://ethresear.ch/t/pooled-payments-scaling-solution-for-one-to-many-transactions/590

123. PyPy. https://pypy.org/
124. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: ASIACRYPT

(Dec 2001)
125. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: Practical decentralized

coin mixing for bitcoin. In: ESORICS (Sep 2014)
126. van Saberhagen, N.: CryptoNote v 2.0. Tech. rep. (Oct 2013)
127. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: CRYPTO

(Aug 1990)
128. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: EURO-

CRYPT (May 1997)
129. Shoup, V.: OAEP reconsidered. Journal of Cryptology 15(4), 223–249 (Sep 2002).

10.1007/s00145-002-0133-9
130. ssh-keygen(1): OpenBSD manual pages. https://man.openbsd.org/ssh-

keygen
131. We’re distributing 16 billion Lumens to Bitcoin holders. https://www.stellar.

org/blog/bitcoin-claim-lumens-2/ (Mar 2017)
132. Terelius, B., Wikström, D.: Efficiency limitations of S-protocols for group homo-

morphisms revisited. In: SCN (Sep 2012)
133. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: CRYPTO

(Aug 2013)
134. Ubuntu. https://www.ubuntu.com/
135. van de Graaf, J., Peralta, R.: A simple and secure way to show the validity of

your public key. In: CRYPTO (Aug 1988)
136. Wahby, R.S., Ji, Y., Blumberg, A.J., shelat, a., Thaler, J., Walfish, M., Wies, T.:

Full accounting for verifiable outsourcing. In: ACM CCS (Oct / Nov 2017)
137. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-

SNARKs without trusted setup. In: IEEE S&P (May 2018)
138. Wesolowski, B.: Efficient verifiable delay functions. In: EUROCRYPT (May 2019)
139. Wuille, P.: BIP 32: Hierarchical deterministic wallets. https://github.com/

bitcoin/bips/blob/master/bip-0032.mediawiki (Feb 2012)
140. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-

knowledge proofs with optimal prover computation. In: CRYPTO (Aug 2019)
141. The YubiKey. https://www.yubico.com/products/yubikey-hardware/
142. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-

knowledge version of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017),
https://eprint.iacr.org/2017/1146

35

https://pypy.org/
https://doi.org/10.1007/s00145-002-0133-9
https://man.openbsd.org/ssh-keygen
https://man.openbsd.org/ssh-keygen
https://www.stellar.org/blog/bitcoin-claim-lumens-2/
https://www.stellar.org/blog/bitcoin-claim-lumens-2/
https://www.ubuntu.com/
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://www.yubico.com/products/yubikey-hardware/
https://eprint.iacr.org/2017/1146

A Step-by-step private genesis airdrop procedures

In this section, we give step-by-step procedures for sending, claiming, and veri-
fying in a private genesis airdrop. Let #κmax denote the smallest power of two
at least as large as the number of keys of any recipient.

Sending. Sender S starts by creating the pledge, i.e., a list of tuples where each
tuple corresponds to all of one recipient’s public keys.
Then, for each recipient R, sender S:
(1) samples seedR and kTsig,R ,

(2) for each of R’s keys {pk i}i∈[#κ], generates (ci, si)← send(pk i),

(3) generates #κmax −#κ padding leaves using PRG(seedR),

(4) shuffles the padding leaves with {ci}i∈[κ] using PRG(seedR),

(5) computes R’s airdrop key, the root of the Merkle tree Tsig,R whose leaf
ordering is the result of the above shuffle,

(6) constructs msgTsig,R
from seedR, {H(ci)}i∈[#κ], and {si}i∈[#κ],

(7) computes ctTsig,R , the encryption of msgTsig,R
under kTsig,R ,

(8) constructs msgpk = (kTsig,R ,H(ctTsig,R)), and

(9) for each of R’s keys {pk i}i∈[#κ], computes ctpki
, the encryption of msgpk

under pk i.
S shuffles all (airdrop key, value) tuples to give the leaf ordering of the Merkle
tree T val

AD, whose root S encodes in the genesis block. S then publishes the pairs
(pk i, ctpki

), all ctTsig , the (airdrop key, value) tuples, and the pledge. Finally, S
publishes a signature over all of the above.

Claiming. To claim her airdrop using key (pk j , sk j), recipient R
(1) retrieves ctpkj

and decrypts it to reveal (kTsig,R ,H(ctTsig,R)),

(2) uses H(ctTsig,R) to retrieve ctTsig,R , and decrypts to reveal seedR, {H(ci)}i∈[#κ],
and {si}i∈[#κ],

(3) reconstructs her token cj from secret sj and key pk j ,

(4) uses PRG(seedR) to reconstruct the padding and the leaf ordering for Tsig,R,

(5) materializes a path from cj to the Tsig,R root (her airdrop key),

(6) materializes a path from her (airdrop key, value) tuple to the root of T val
AD

using the published tuples,

(7) creates msgclaim comprising cj and both paths, plus destination address, etc.,
and

(8) publishes msgclaim and sig ← sign(sk j , (cj , sj),msgclaim).

36

Verifying. To verify and process a claim, verifier V
(1) parses token c and paths through Tsig,R and T val

AD from msgclaim,

(2) checks both Merkle paths, returning ⊥ if either is invalid,

(3) extracts index i from the Merkle path through T val
AD and returns⊥ if Vspent[i] = 1,

(4) returns ⊥ if verify(c,msgclaim, sig) = ⊥,
(5) sets Vspent[i] = 1, and

(6) updates V’s view of the blockchain’s state using the transaction correspond-
ing to msgclaim.

B PoKF1 details

Here, we detail ProdG, ProdH, and Square, and discuss the costs of PoKF1 (§4.1).

B.1 ProdH: ZKPK of product relation on committed values in H

We describe a folklore sigma protocol (e.g., [96,51]) for proving that commit-
ments ĉu, ĉv, ĉw to u, v, w satisfy the relation u · v = w. The protocol of this
section works in a group H of prime order q̂ in which the discrete log problem is
hard, generated by ĝ and ĥ with unknown discrete-log relation.

Let ĉu := ĝu · ĥsu , ĉv := ĝv · ĥsv , ĉw := ĝw · ĥsw . The protocol ProdH is:
(1) P sets r1, r2, r3 ←R [q̂] and computes and sends the following values to V:

X ← ĝr1 · ĥr2 Y ← ĉr1v · ĥr3

(2) V chooses ch ←R [q̂] and sends ch to P.
(3) P computes and sends the following values (in Zq̂) to V:

z1 ← ch · u+ r1 z2 ← ch · su + r2 z3 ← ch (sw − u · sv) + r3

(4) V accepts if the following hold, else it rejects:

X · ĉchu
?
= ĝz1 · ĥz2 Y · ĉchw

?
= ĉz1v · ĥz3

Theorem 9. ProdH is a complete, honest verifier perfect ZK argument of knowl-
edge of u and su under the discrete log assumption in H. Moreover, if P sepa-
rately proves knowledge of the opening of either ĉv or ĉw, ProdH is an argument
of knowledge of the opening of the other.

Proof (sketch). ProdH is complete by inspection.
The simulator takes ĉu, ĉv, ĉw as input and simulates a transcript by sampling

z1, z2, z3, ch ←R [q̂] and computing X ← ĝz1 · ĥz2/ĉchu and Y ← ĉz1v · ĥz3/ĉchw .
The simulated transcript is accepting by inspection, and its proof elements are
uniformly random, matching the distribution in a real proof.

37

The extractor interacts with the prover to obtain two convincing transcripts,
(X,Y, ch, z1, z2, z3) and (X,Y, ch ′, z′1, z

′
2, z
′
3). This gives u = (z1− z′1)/(ch − ch ′)

and su = (z2−z′2)/(ch−ch ′). If P furnishes a proof of knowledge of the opening of
ĉv or ĉw, the ProdH extractor invokes the corresponding extractor to obtain v, sv
or w, sw. The extractor then computes the opening to the other commitment
using the equalities in the exponent of the second verification equation, i.e.,
sw − u · sv = (z3 − z′3)/(ch − ch ′) and w = v · (z1 − z′1)/(ch − ch ′) = v · u. ut

Applying Fiat-Shamir. P hashes (H, ĝ, ĥ, ĉu, ĉv, ĉw, X, Y) to produce ch, then
computes z1, z2, z3. The proof is (ch, z1, z2, z3) ∈ Z4

q̂. To verify, V reconstructs
X ′ and Y ′ and checks that hashing (H, ĝ, ĥ, ĉu, ĉv, ĉw, X ′, Y ′) yields ch.

B.2 ProdG: ZKPK of product relation on committed values in G

We adapt the ProdH protocol of Appendix B.1 to the generic group G of unknown
order via the zero-knowledge protocol of Boneh et al. [27, Appx. A] for proving
knowledge of a group homomorphism preimage, following the observation of
Maurer [96, §6.7] that the relation underpinning ProdH is such a homomorphism.

Let G be a group of unknown order generated by g and h with unknown
discrete log relation, cu := guhsu , cv := gvhsv , and cw := gwhsw . Let φProdG :
Z3 → G2 be a group homomorphism parameterized by g, h, and cv,

φProdG (u′, su′, sw′) :=
(
gu

′
· hsu

′
, cu

′

v · hsw
′
)

P can convince V that the product relation u ·v = w holds by proving knowledge
of (u′ = u, su′ = su, sw

′ = sw − u · sv) such that φProdG(u′, su′, sw′) = (cu, cw).
In more detail, the protocol ProdG works as follows:

(1) P sets r := (r1, r2, r3)←R [N · 22λ+log(2λ)]3 and sends R← φProdG(r) to V.
(2) V chooses ch ←R [2λ] and `←R Primes(2λ), and sends both to P.
(3) P computes z := (z1, z2, z3) ∈ Z3, where

z1 ← ch · u+ r1 z2 ← ch · su + r2 z3 ← ch (sw − u · sv) + r3

then computes and sends z` ← z mod ` ∈ [`]3 and Zq ← φProdG(bz/`c) ∈ G2.

(4) V accepts if Z`q · φProdG(z`)
?
= (cu, cw)ch ·R, else it rejects.

Theorem 10. ProdG is a complete, honest verifier statistical ZK argument of
knowledge of u and su when G is modeled as a generic group of unknown order.
Moreover, if P separately proves knowledge of the opening of cv, ProdG is also
an argument of knowledge of w and sw.

Proof (sketch). ProdG is complete by inspection.
The simulator takes cu, cv, cw as input and simulates a transcript by sam-

pling Zq ←R G2, ch ←R [2λ], ` ←R Primes(2λ), and z` ←R [`]3 and computing
R ← Z`q · φProdG(z`)/(cu, cw)ch . The transcript (R, `, ch,Zq, z`) is accepting by

38

construction, and ` and ch are distributed identically to values in a real tran-
script. Further, for ri ←R [N · 22λ+log(2λ)], i ∈ {1, 2, 3}, since ` ∈ Primes(2λ) ≤
22λ+log(2λ) and N > |G| · 2λ, it is the case that

(
bri/`c mod |G| , ri mod `

)
is

statistically close to uniform in [|G|]× [`]. Thus, in a real transcript Zq and z`
are masked by values statistically close to uniform, meaning that the simulated
values are statistically close to the real ones. Finally, since the simulated tran-
script is accepting and all values other than R are statistically close to a real
transcript, the simulated R must be statistically close to the real one.

We now describe the extractor. First, we note that ProdG contains an in-
stance of Protocol ZKPoKRep [27, Appx. A.4] for cu to bases g and h. Thus,
the extractor gets the values u and su by invoking the ZKPoKRep extractor as a
subroutine. If P furnishes a proof of knowledge of the opening of cv, the ProdG
extractor invokes the cv extractor to obtain v and sv such that cv = gvhsv , then
extracts w and sw as follows.

First, it rewinds the prover to obtain two accepting transcripts (R, `, ch,Zq, z`)
and (R, `, ch ′,Z′q, z

′
`). Dividing the verification equations, we have that(
Zq/Z

′
q

)` · φProdG(z` − z′`) = (cu, cw)ch−ch
′

(6)

Define (Zq1, Zq2) := Zq/Z
′
q ∈ G2, (∆z`1, ∆z`2, ∆z`3) := z`−z′` ∈ Z3, and∆ch :=

ch − ch ′ ∈ Z. By the uniqueness of representations in generic groups (Lemma 1)
and since the extractor knows u, v, su, sv, we have that Zqi = gαihβicγiw

∏q
j=1 g

ζj,i
j

where the extractor knows all exponents and g1, . . . , gq ∈ G are responses to
generic group oracle queries. Moreover, by Equation (6) and the definitions of
φProdG , cu, cv, and cw, the following relations hold over the integers:

` · (α1 + γ1 · w) +∆z`1 = u ·∆ch

` · (α2 + γ2 · w) + v ·∆z`1 = w ·∆ch

` · (β2 + γ2 · sw) + sv ·∆z`1 +∆z`3 = sw ·∆ch

Reducing modulo `,

∆z`1 ≡ u ·∆ch (mod `) (7)
v ·∆z`1 ≡ w ·∆ch (mod `) (8)

sv ·∆z`1 +∆z`3 ≡ sw ·∆ch (mod `) (9)

Since the extractor knows all values except w and sw, it can compute w mod `
and sw mod `. By constructing polynomially many accepting pairs of transcripts
where the transcripts in each pair have the same ` and different ch, the extrac-
tor can reconstruct w, sw ∈ Z from congruences (8) and (9) using the Chinese
remainder theorem. Finally, since congruences (7) and (8) hold modulo random
` ∈ Primes(2λ), w = u · v ∈ Z with overwhelming probability. ut

Applying Fiat-Shamir. P hashes (G, g, h, cu, cv, cw,R) to get ch and `. The proof
is (ch, `,Zq, z`) ∈ [2λ]×Primes(2λ)×G2× [`]3. To verify, V reconstructs R′ and
checks that hashing (G, g, h, cu, cv, cw,R′) yields ch and `.

39

B.3 Square: ZKPK of square relation on committed values in G,H
We now describe a sigma protocol by which P proves, for commitments cp ∈ G
and ĉp, ĉp2 ∈ H, that P can open cp and ĉp to p, and ĉp2 to p2. In other words,
this proof combines a proof of knowledge of opening with a proof of product
relation. G, g, h and H, ĝ, ĥ are as defined in prior sections. Let cp := gphsp ,
ĉp := ĝpĥŝp , and ĉp2 := ĝp

2

ĥsp2 . The protocol Square works as follows:
(1) P sets r1, r2 ←R [N · q̂ · 2λ] and r3, r4 ←R [q̂], then computes

X ← gr1 · hr2 ∈ G Y ← ĝr1 · ĥr3 ∈ H Z ← ĉr1p · ĥr4 ∈ H

(2) V chooses ch ←R [q̂] and sends ch to P.
(3) P computes and sends the following values to V:

z1 = ch · p+ r1 ∈ Z z2 = ch · sp + r2 ∈ Z
z3 = ch · ŝp + r3 ∈ Zq̂ z4 = ch

(
sp2 − p · ŝp

)
+ r4 ∈ Zq̂

(4) V accepts if the following hold, else it rejects:

X · cchp
?
= gz1 · hz2 Y · ĉchp

?
= ĝz1 · ĥz3 Z · ĉchp2

?
= ĉz1p · ĥz4

Theorem 11. Square is a complete argument of knowledge of p, sp, ŝp, sp2 when
G is modeled as a generic group of unknown order and under the discrete log
assumption in H. It is honest verifier statistical zero knowledge when |p| < N .

Proof (sketch). Square is complete by inspection.
The simulator takes cp, ĉp, ĉp2 , samples z1, z2 ←R [N · q̂ · 2λ] and z3, z4, ch ←R

[q̂], and computes X ← gz1 · hz2/cchp , Y ← ĝz1 · ĥz3/ĉchp , and Z ← ĉz1p · ĥz4/ĉchp2 .
The simulated transcript is accepting by inspection. In a real proof for which
|p| < N , z1 has negligible statistical distance from uniform in [N · q̂ · 2λ] since
r1 � ch · |p| with overwhelming probability; the simulated and real z1 values
are thus statistically close (and likewise for z2 and r2). In addition, the real and
simulated distributions of z3 and z4 are identical.

The extractor interacts with the prover to obtain two accepting transcripts,
(X,Y, Z, ch, z1, z2, z3, z4) and (X,Y, Z, ch ′, z′1, z

′
2, z
′
3, z
′
4). Then, by Lemma 1 and

the definition of cp, the following relations hold over the integers:

z1 − z′1 = p
(
ch − ch ′

)
z2 − z′2 = sp

(
ch − ch ′

)
Furthermore, ch − ch ′ must divide z1 − z′1 and z2 − z′2. By the second and third
verification equations,

ŝp =
z3 − z′3
ch − ch ′

sp2 =
z4 − z′4
ch − ch ′

+ p · ŝp

Finally, by the second verification equation, ĉp is a commitment to p ∈ Zq̂.
This means that, by the third verification equation, ĉp2 is a commitment to
p · (z1 − z′1)/(ch − ch ′) = p2 ∈ Zq̂. ut
Remark 9. The simulator relies on |p| < N , but completeness and knowledge
soundness hold for p ∈ Z. In any accepting PoKF1, p divides n < N , so |p| < N .
Thus, this restricted simulator suffices to simulate an accepting PoKF1 transcript.

40

Applying Fiat-Shamir. P hashes (G, g, h,H, ĝ, ĥ, cp, ĉp, ĉp2 , X, Y, Z) to obtain ch.
The proof is (z1, z2, z3, z4, ch) ∈ [N · q̂2]2 ×Z3

q̂. To verify, V reconstructs X ′, Y ′,
and Z ′, and checks that hashing (G, g, h,H, ĝ, ĥ, cp, ĉp, ĉp2 , X ′, Y ′, Z ′) yields ch.

B.4 Putting it all together

Recall (§4.1) that, to execute PoKF1, P first sends the commitments cq, cp, ĉp,
ĉp2 , ĉp1′ , ĉpn′ and V computes ĉp1 and ĉpn (all of these are defined in §4.1). PoKF1

comprises one invocation of ProdG (Appx. B.2) on (cq, cp, c); one invocation of
Square (Appx. B.3) on (cp, ĉp, ĉp2); and two invocations of ProdH (Appx. B.1),
one on (ĉp1′ , ĉp1, ĝ) and the other on (ĉpn′ , ĉpn, ĝ).
P must convince V that it can open all of the mentioned commitments, which

it does as follows: Square proves that P can open cp, ĉp, and ĉp2 ; ProdG proves
that P can open cq and c; and the two ProdH invocations prove that P can open
ĉp1, ĉp1′ , ĉpn, and ĉpn′ . Since P can open ĉp2 and ĉpn, it can also open ĉn2 .

Proof size. We apply the Fiat-Shamir heuristic as described in each of the prior
sections to make all sub-protocols non-interactive. In sum, the proofs comprise
4 elements of G (cp, cq, and Zq from ProdG); 4 elements of H (ĉp, ĉp2 , ĉp1′ , and
ĉpn′); 1 integer of λ bits (ch from ProdG); 1 element of Primes(2λ) and 3 integers
mod this value, all 2λ + log(2λ) bits (ProdG); 11 integers of log q̂ bits (ProdH
twice and Square); and 2 integers of λ+ log q̂ + logN bits (ProdG).

Compared to the PAD-RSA signatures evaluated in Section 6.1, these signa-
tures are larger. In particular, assume that λ = 128, N ≈ 24096 (i.e., sized to
accommodate 4096-bit RSA moduli), q̂ ≈ 2256, and elements of H can be serial-
ized in 256 bits. Then signatures based on PoKF1 using GRSA-2048 or GIQ-1024 are
2772 bytes, i.e., ≈49% larger than PAD-RSA signatures over the same groups.
For GRSA-4096 or GIQ-2048, signatures are 3828 bytes, or ≈13% larger than the
corresponding PAD-RSA signatures.

Verification time. Verification time is relatively fast for the protocols of Appen-
dices B.1 and B.2: V’s work is dominated by exponentiations with exponents
of size roughly 2λ bits. While the exponentiations for verifying ProdG are over
G, and thus costly, these costs are directly comparable to V’s work verifying
PAD-RSA signatures (§4.3, §6.1). Operations in H are relatively inexpensive.

The main cost for V is the Square protocol of Appx. B.3. Here, V computes
multi-exponentiations in G with exponents of size λ + log q̂ + logN bits. For
λ = 128 and N ≈ 24096 as above, this is ≈16× more expensive than a multi-
exponentiation with 2λ + log(2λ)–bit exponents. Adding in the cost of ProdG,
the upshot is that PoKF1 is roughly 5× more expensive for V than PoKF2 (§4.2).

C PoKF2 proofs

C.1 Proof of Theorem 4

Proof. The simulator takes (c, t) as input and outputs the simulated transcript
(c1, c2,R, `, ch,Zq, z`) as follows:

41

(1) sample c1, c2 ←R G, `←R Primes(2λ), and ch ←R [2λ],

(2) sample z` ←R [`]8,

(3) sample Z1, Z2, Z3, Z4 ←R G,

(4) sample r̂w2, r̂na ←R [22λ+log(2λ) · 2λ]

and set Z5 ← b(t · ch)/`c+ br̂w2/`c − br̂na/`c ∈ Z,

(5) set Zq := (Z1, Z2, Z3, Z4, Z5) ∈ G4 × Z and T := (c1, c2, 1, 1, t) ∈ G4 × Z,

(6) compute R← Z`q · φ(z`)/T
ch ∈ G4 × Z,

(7) output (c1, c2,R, `, ch,Zq, z`).

We show the simulated transcript is distributed statistically close to an ac-
cepting transcript of a real protocol execution. In a real transcript we know
that c1 and c2 are uniform in G. Hence, observe that the simulated c1, c2, `, ch
are all distributed exactly as in a real transcript. It remains to show that the
same holds for z`,Zq, and R. In an interaction with a real prover the quanti-
ties rs1 , rs1w , rsa , rs2 are chosen uniformly in [N · 22λ+log(2λ)]. Consider one such
value r ←R [N · 22λ+log(2λ)], recalling that N > |G| · 2λ and ` ∈ Primes(2λ) ≤
22λ+log(2λ). BecauseN ·22λ+log(2λ) is much larger than |G|·` we know that the pair(
br/`c mod |G|, r mod `

)
is statistically close to uniform in [|G|]× [`]. Similarly,

in a real transcript each of rw, rw2 , rna , ra is chosen uniformly in [22λ+log(2λ) · 2λ]
and therefore each of these four values modulo ` is statistically close to uniform
in [`]. It follows that z`, which is masked by (r mod `) in a real transcript, is
statistically close to uniform in [`]8, as in step (2) in the simulation.

Zq ∈ G4×Z is simulated correctly. In a real transcript, the first four compo-
nents of Zq are group elements in G randomized by hbrs1/`c, hbrs2/`c, hbrs1w/`c,
and hbrsa/`c, respectively. Since these exponents modulo |G| are close to uniform
in [|G|] and are independent of everything else in the transcript, it follows that
in a real transcript Z1, Z2, Z3, Z4 are independent and close to uniform elements
of G. This is precisely how these elements are chosen in step (3) of the simulation.

It remains to show that Z5 ∈ Z is simulated correctly. In a real transcript,
Z5 := b(w2 · ch + rw2)/`c − b(na · ch + rna)/`c. Because w2 − na = t, in a real
transcript Z5 = b(t · ch)/`c + brw2/`c − brna/`c + ∆, where ∆ ∈ {0,±1}. In a
real transcript brw2/`c and brna/`c are statistically close to fresh uniform values
in [22λ+log(2λ) · 2λ/`], as is the simulated Z5 in step (4). The only difference is
that the real distribution is shifted by ∆ where as the simulated distribution is
not. However this ∆ only negligibly affects the statistical distance between the
real and simulated distributions. The reason is that in both distributions, every
possible value in the range of Z5, except possibly at the edges, is obtained from
the same number of values for the pair (rw2, rna). We conclude that Z5 simulated
in step (4) is statistically close to its real distribution.

Finally, because the simulated c1, c2, `, ch,Zq, z` are all distributed statisti-
cally close to a real transcript, it must be the case that the computed R in
step (6) is also distributed as in a real transcript. ut

42

C.2 Proof of Theorem 5

Proof. We construct an extractor that given an instance (c, t) generated by G,
interacts with a convincing prover and outputs a witness (n, s, w, a) for the rela-
tion Rg,h in (3). The protocol transcript is (c1, c2,R, `, ch,Zq, z`). The extractor
rewinds the prover and obtains accepting transcripts T1 := (c1, c2,R, `, ch,Zq, z`)
and T2 := (c1, c2,R, `, ch

′,Z′q, z
′
`). Dividing the corresponding verification equa-

tions one by the other we obtain

(Zq/Z
′
q)
` · φ(z` − z′`) = T ch−ch′

.

Let z` − z′` =
(
∆w, ∆w2 , ∆s1 , ∆a, ∆na, ∆s1w , ∆sa, ∆s2

)
∈ Z8 and let

∆ch = ch − ch ′ ∈ Z. Then plugging this into the definition of φ we obtain

(Zq/Z
′
q)
` ·
(
g∆w · h∆s1 , g∆a · h∆s2 , g∆w2 · h∆s1w/c∆w1 ,
g∆na · h∆sa/c∆a, ∆w2 −∆na

)
= (c1, c2, 1, 1, t)

∆ch

(10)

Let Zq/Z
′
q = (z1, z2, z3, z4, z5) where z1, z2, z3, z4 ∈ G and z5 ∈ Z. In a generic

group G, the group elements z1, z2, z3, z4 must satisfy zi = gαihβicγi
∏q
j=1 g

δi,j
j

for i = 1, 2, 3, 4, and c1 = gαhβcγ
∏q
j=1 g

δj
j , and c2 = gα0hβ0cγ0

∏q
j=1 g

δ0,j
j ,

where the extractor knows all the listed integer exponents. Here g1, . . . , gq ∈ G
are random group elements produced in response to a generic group oracle query
for a random group element.

It now follows from (10), from c = gnhs, and by uniqueness of representation
in generic groups (Lemma 1), that the following must hold over the integers:

` · (α1 + n · γ1) +∆w = (α+ n · γ) ·∆ch

` · (β1 + s · γ1) +∆s1 = (β + s · γ) ·∆ch

` · (α2 + n · γ2) +∆a = (α0 + n · γ0) ·∆ch

` · (β2 + s · γ2) +∆s2 = (β0 + s · γ0) ·∆ch

` · (α3 + n · γ3) +∆w2 = (α+ n · γ) ·∆w
` · (β3 + s · γ3) +∆s1w = (β + s · γ) ·∆w
` · (α4 + n · γ4) +∆na = n ·∆a
` · (β4 + s · γ4) +∆sa = s ·∆a
` · z4 +∆w2 −∆na = t ·∆ch

The extractor knows all these values except for n and s. Reducing modulo `,

∆w ≡ (α+ n · γ) ·∆ch (mod `) (11)
∆s1 ≡ (β + s · γ) ·∆ch (mod `) (12)
∆a ≡ (α0 + n · γ0) ·∆ch (mod `) (13)
∆s2 ≡ (β0 + s · γ0) ·∆ch (mod `) (14)

43

∆w2 ≡ (α+ n · γ) ·∆w (mod `) (15)
∆s1w ≡ (β + s · γ) ·∆w (mod `) (16)
∆na ≡ n ·∆a (mod `) (17)
∆sa ≡ s ·∆a (mod `) (18)

∆w2 −∆na ≡ t ·∆ch (mod `) (19)

Consider equalities (11) and (13). Define w := α + n · γ ∈ Z and a :=
α0 + n · γ0 ∈ Z. For any pair of accepting transcripts like (T1, T2), it must be
the case that ∆w ≡ w ·∆ch (mod `) and ∆a ≡ a ·∆ch (mod `). The extractor
knows ∆w, ∆a, and ∆ch. Hence, by constructing polynomially many accepting
transcript pairs, the extractor can recover w, a ∈ Z using the Chinese remainder
theorem.

Next, consider equality (15). Using w = α+n ·γ and ∆w ≡ w ·∆ch (mod `)
gives ∆w2 ≡ w2 ·∆ch (mod `). Using ∆w2 ≡ w2 ·∆ch (mod `) in equality (19)
gives ∆na ≡ (w2− t) ·∆ch (mod `). Finally, equality (17) gives (w2− t) ·∆ch ≡
n·∆a (mod `). Using∆a ≡ a·∆ch (mod `) we obtain that the extracted integers
w and a must satisfy (w2− t) ·∆ch ≡ n ·a ·∆ch (mod `). Since ` does not divide
∆ch with overwhelming probability, we obtain that w2 − t ≡ n · a (mod `).
Since this equality holds modulo a random ` ∈ Primes(2λ) with overwhelming
probability, the equality w2 − t = n · a must hold over the integers, as required.
Note that this implies that a 6= 0.

Because a 6= 0, the extractor can obtain (n mod `) from equality (17), and
thus extract n ∈ Z by repeating this procedure over several ` and then using the
Chinese remainder theorem. Similarly, it can extract s ∈ Z from equality (18).
It thus obtains a witness (n, s, w, a) for the relation Rg,h in (3), as required. ut

44

	An airdrop that preserves recipient privacy

