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Abstract

Proof systems allow one party to prove to another party that a certain
statement is true. Most existing practical proof systems require that the
statement will be represented in terms of polynomial equations over a
finite field. This makes the process of representing a statement that one
wishes to prove or verify rather complicated, as this process requires a
new set of equations for each statement.

Various approaches to deal with this problem have been proposed,
see for example [1].

We present Cairo, a practically-efficient Turing-complete STARK-friendly
CPU architecture. We describe a single set of polynomial equations for
the statement that the execution of a program on this architecture is
valid. Given a statement one wishes to prove, Cairo allows writing a
program that describes that statement, instead of writing a set of poly-
nomial equations.
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1 Introduction

1.1 Background

The seminal work of Babai, Fortnow and Lund [8] was the first to show the
applications of interactive proof systems to scalability. Informally speaking,
such systems allow two parties, named the prover and the verifier, to en-
gage in a protocol where the prover convinces the verifier that a certain
statement is correct. The statement has the general form: “I know an in-
put of a certain computation that results in a certain output”, where both
the computation and the output are known to the prover and the verifier.
The naive approach is for the prover to send the input to the verifier and
let the verifier repeat the computation. This approach has two potentially
undesirable features: (1) the verifier learns the input (lack of privacy), and
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(2) the verifier needs to re-execute the computation (inefficient). Crypto-
graphic proof systems for computational integrity are protocols that can
address these issues by: (1) introducing zero-knowledge [17] for privacy
and (2) enabling succinct verification, which is exponentially more efficient
than re-execution.

This paper addresses the challenge of representing the proven compu-
tation by introducing Cairo, an architecture that allows describing the com-
putation in the form of a computer program and then generating a proof
of integrity for that computation. The Cairo architecture is designed for:
(1) ease of writing and reading programs to be used as provable statements,
and (2) efficient proving, for example, based on the STARK [10] proof sys-
tem.

In most of the existing practical proof systems, one has to represent
the computation being proven in terms of polynomial equations over a fi-
nite field. This process is called “arithmetization”, and was first used in
the context of interactive proofs in [19]. Examples of such representations1

are arithmetic circuits, Quadratic Span Programs [15] (aka R1CS) and Al-
gebraic Intermediate Representations [10, p. 14] (AIRs).

This requirement, of representing the computation in terms of a system
of polynomial equations, makes it very complicated to use these proof sys-
tems for practical applications. In addition, some of the approaches for
doing the arithmetization process result in unnecessary computation (see
the example of branches and loops below).

Consider some examples of how such an arithmetization process may
look. Start with the simple task of asserting that x ̸= y. Note that polyno-
mial equations must usually be of the form p = 0 (rather than p ̸= 0) where
p is some polynomial in the variables. The assertion x ̸= y may be trans-
lated to ∃a : (x − y) · a = 1 (by adding an auxiliary variable a). The slightly
more complicated task of addition modulo 264 can be translated to poly-
nomial equations by adding 64 auxiliary variables that capture the binary
representation of the sum.

The task gets even more complicated when one has to deal with branches
in the computation (for example, do one thing if x = y and another other-
wise) and loops (for example, repeat doing something until x = y). One
approach for dealing with branches is to translate both of the branches to
polynomial equations and add one equation that “selects” the result accord-
ing to the value of the condition (for example, the equation z = (1−b)·x+b·y
enforces that z = x if b = 0 and z = y if b = 1). Loops can be dealt with by
bounding the number of iterations by some constant B and executing the
body of the loop exactly B times, where if the condition was met at some
point, the next iterations would simply pass the result until the end of the
loop. Note that the last two cases require additional “unnecessary” compu-

1The specific representation depends on the proof system being used.
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tation: execute the two branches in the first case and execute B iterations
even if the loop ended early in the second case.

One approach to deal with the challenges of the computation’s repre-
sentation is to write a compiler – a computer program that takes code as
its input and outputs the list of polynomial equations that represent the ex-
ecution of the code. Examples of systems that follow this approach include
ZKPDL [20], Pinocchio [22], TinyRAM for SNARKs [11] and STARKs [10]
and xJsnark [18]. This may make the process simpler, but the result still
suffers from several drawbacks, such as the aforementioned inefficiencies
of executing unnecessary code, and the necessity of bounding the number
of iterations in loops.

Another approach takes its motivation from the invention of CPUs and
the von Neumann architecture: One can design a single universal system of
polynomial equations representing the execution of an arbitrary computer
program written for some fixed instruction set. In the context of prepro-
cessing SNARKs, this approach was used in the vnTinyRAM system [13].

1.2 Our contribution

We present Cairo, an efficient and practical von Neumann architecture that
can be used with the STARK proof system to generate proofs of computa-
tional integrity. As such, it is the first STARK von Neumann architecture.
The main advantages of Cairo are:

Efficient The Cairo instruction set was chosen so that the corresponding
AIR will be as efficient as possible. For example, the construction
of [13] requires around 1000 variables per cycle. Compare this to
the 51 variables required by Cairo’s AIR (see Section 9). Moreover,
we present the idea of builtins (Sections 2.8 and 7), which make the
overhead of executing predefined operations negligible (for example,
applying a cryptographic hash function).

Practical Cairo supports conditional branches, memory, function calls, and
recursion.

Production-grade Cairo is the backbone of multiple cryptocurrency sys-
tems that run over the Ethereum blockchain. Proofs for Cairo pro-
grams are generated frequently and verified by an on-chain contract.
For more information, see [2].

The following concepts, as presented in this paper, were crucial to achieve
the performance of Cairo:

Algebraic RISC2 Cairo uses a small and simple, yet relatively expressive,

2Reduced Instruction Set Computer
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instruction set; where all of the instructions can be encoded using 15
flags and three integers. See Sections 2.3.2 and 4.5.

Nondeterministic Continuous Read-Only Random-Access Memory In-
stead of using the conventional read-write memory model, Cairo uses
a unique memory model (Section 2.6), which is much more restricted
– for example, the values of all the memory cells are chosen by the
prover and do not change when the code is executed. The additional
restrictions allow a very efficient AIR implementation, with only 5
trace cells per memory access (Section 9.7). This is especially im-
portant, as each instruction uses 4 memory accesses (one for fetching
the instruction and 3 for the 3 operands). In fact, most programming
tasks that are usually done using a read-write memory can also be
done using this new memory model (see Sections 6 and 8).

Permutation range-checks Permutation range-checks, presented in Sec-
tion 9.9, allow one to check (in an AIR) that a value is in the range
[0, 216) using only 3 trace cells (compared to the 16 trace cells required
by the naive approach of using the binary representation). Each in-
struction uses 3 such range-checked values, so such efficiency is cru-
cial.

Builtins The Cairo architecture supports the implementation of predefined
operations directly, as a set of equations, instead of implementing
them with Cairo code. We call such predefined operations builtins
(Sections 2.8 and 7). The advantage of using builtins is that they sig-
nificantly reduce the overhead which was added due to the transition
from hand-written AIR to Cairo code. This allows the programmer to
benefit from writing code while not suffering from significant perfor-
mance overheads.

Efficient public memory Cairo’s memory implementation has another im-
portant feature – each memory cell that should be shared with the ver-
ifier (for example, the program’s code and output), adds a verification
cost of only 4 arithmetic operations (excluding the Fiat-Shamir hash).
See Sections 2.6.1 and 9.8.

Nondeterministic von Neumann advantages For example, (1) proving
programs where only the hash (rather than the code) is known to the
verifier and (2) proving multiple different programs in one proof to
reduce the amortized verification costs. See Section 2.2.

The name Cairo comes from the term “CPU AIR” – an AIR implementing
the concept of a CPU (Section 9).
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1.3 Overview

Section 2 presents the main features of Cairo and explains many of the
decisions that were taken in the design of the architecture.

Section 3 gives the formal definition of the Cairo machine and explains
how it fits into a proof system.

Section 4 describes the state transition function of the Cairo machine.
This section is very technical as it explains how each of the 15 flags that
form an instruction affects the state transition. In practice, very few of the
215 possible combinations are used. Its counterpart, Section 5, presents a
set of useful instructions that can be implemented using specific flag con-
figurations. Those instructions form the Cairo assembly language (although
the exact syntax is out of the scope of this paper).

Section 6 suggests how to arrange the read-only memory to allow han-
dling function calls (including recursion). In other words, how one may
implement the function call stack in Cairo.

Section 7 explains the concept of builtins, which are optimized execution
units for selected functions.

Section 8 gives a high-level overview of how one can handle common
programming tasks (e.g., integer division and simulating read-write mem-
ory) given the unique features of Cairo (for example, its unique memory
model and the fact that the basic arithmetic operations are evaluated over
a finite field, rather than the more common 64-bit integer arithmetic).

As the main purpose of Cairo is to enable the generation of proofs of
computational integrity, one must be able to use a proof system in order to
prove that the execution of a Cairo program completed successfully. A nat-
ural candidate for a proof system is STARK [10] due to its ability to handle
uniform computations3 efficiently.

Section 9 explains how the Cairo machine can be implemented as an
Algebraic Intermediate Representation (AIR) [10, p. 14], which is the way
the computation is described in the STARK protocol. It includes a detailed
description of the polynomial constraints that enforce the behavior of the
Cairo machine.

1.4 Notation

Throughout the paper, F is a fixed finite field of size |F| and characteristic
P . For two integers a, b ∈ Z, we use the notation [a, b) := {x ∈ Z : a ≤ x < b}
and [a, b] := {x ∈ Z : a ≤ x ≤ b}.

3Computations where the constraints repeat themselves.
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2 Design principles

The Cairo framework enables one to prove the integrity of an arbitrary com-
putation. That is, to convince the verifier that a certain program ran suc-
cessfully with some given output.

Cairo is designed to provide an intuitive programming framework for ef-
ficient proving of valid program executions using the STARK protocol [10].
Even though the STARK protocol can be used by itself (i.e., without Cairo)
to prove the integrity of arbitrary computations, Cairo provides a layer of
abstraction around STARKs that simplifies the way the computation is de-
scribed.

In order to use the STARK proof system directly, the computation has to
be framed as an AIR (Algebraic Intermediate Representation) [10, p. 14],
see Section 2.1, which requires a rather complicated design process. The
Cairo framework introduces an assembly language (and on top of which,
a full programming language – which is outside the scope of this paper) in
which the computation can be described. This is much easier than designing
an AIR.

Note that while Cairo was designed to be used with the STARK protocol,
it can also be used with many other finite field-based proof systems, such as
SNARKs [11].

This section deals with the principles behind Cairo and explains some of
the choices that were made during its design.

2.1 Algebraic Intermediate Representation (AIR) and Ran-
domized AIR with Preprocessing (RAP)

Many finite-field-based proof systems [16, 11, 12, 14] work with arithmetic
circuits or quadratic span programs [15] (aka R1CS). Consider an arithmetic
circuit – a circuit with addition and multiplication gates, where all the values
are from some fixed finite field. The prover gets such an arithmetic circuit,
together with inputs (the witness), that make it return 0 where 0 is the
algebraic representation of “true” or “success”. Then, it generates a proof
attesting to the fact that some inputs of this particular arithmetic circuit
exist that make it return 0.
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The STARK proof system is based on AIRs (Algebraic Intermediate Rep-
resentation, see [10, p. 14]), rather than arithmetic circuits or R1CSs. An
AIR can be thought of as a list of polynomial constraints (equations) oper-
ating on a (two-dimensional) table of field elements (of some finite field, F)
called the “trace” (the witness). A STARK proof proves that there exists a
trace satisfying the constraints.

Usually, the number of columns in the table is small (around 20) and the
number of rows is a power of 2. Each constraint is assigned a domain, which
is a periodic4 set of the rows to which the constraint applies. For example,
a constraint may apply to all the rows, every fourth row, or to a single row.

As we will see in Section 9.6, the Cairo AIR is, in fact, not really an AIR
(as per the formal definition in [10, p. 14]), it is a Randomized AIR with
Preprocessing (RAP, see [3]). A RAP is a broader definition of the term AIR,
that allows an additional step of interaction between the prover and the
verifier. This means that:

1. The constraints may involve variables c0, . . . , cm ∈ F that are not part
of the trace cells. We refer to them as the interaction variables.

2. The trace columns are split into two sets: before and after the inter-
action step.

3. Instead of requiring one satisfying assignment, we require the exis-
tence of a satisfying assignment for most5 values of (c0, . . . , cm) where
the first set of columns are independent of the values (c0, . . . , cm).

The STARK protocol can be modified to prove statements described as RAPs
(see Section 9.6).

Since this concept was used in Cairo before the term RAP was coined6,
we will continue to use the term “Cairo AIR”, rather than “Cairo RAP”, in
this paper.

2.2 von Neumann architecture

The Cairo framework deals with moving from a computation described as
a computer program to a computation described as an AIR. The two main
approaches that handle this translation are:

The ASIC approach: compiling a program to an AIR. In this approach one
writes a computer program (the compiler) that takes as an input a

4As the period must divide the number of rows, which is a power of 2, the period must also
be a power of 2.

5If one considers (c0, . . . , cm) as chosen at random, we allow a small probability, say 2−200,
that there won’t be an assignment. This means that the system does not have perfect complete-
ness. In practice, this is not a problem because of the negligible probability, but if required the
Cairo AIR can be slightly modified so that it will have perfect completeness.

6The first time a Cairo verifier contract was deployed to Ethereum Mainnet was in July 2020.
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program written in some language and outputs an AIR (a set of con-
straints) that represents an equivalent computation. This is similar to
a compiler, which takes a program and outputs an ASIC or an FPGA
based on the input code.

The CPU approach: designing a single AIR (independent of the compu-
tation being proven) that behaves like a CPU. This AIR represents a
single computation – the loop of fetching an instruction from memory,
executing that instruction, and continuing to the next instruction. This
is similar to using a single general-purpose CPU chip rather than an
application-specific chip.

The main advantage of the ASIC approach is efficiency. Building an AIR
based on the computation does not have the overhead of decoding the in-
structions and using memory. However, as using builtins (see Section 2.8
and Section 7) reduces this overhead, this enables the CPU approach to
present similar performance to that of a hand-written AIR for many compu-
tations. If a certain computation cannot take advantage of existing builtins,
one has a trade-off: you may choose between (1) accepting the performance
loss and (2) designing a new builtin that will improve the computation’s per-
formance7.

The CPU approach has many advantages, including:

• A small constraint set: as the set of constraints is independent of the
computation being proven, it has a fixed size. The AIR of the Cairo CPU
consists of 30-40 constraints8. This improves the verification costs.

• A single AIR: while the ASIC approach requires a computer program
that outputs AIR constraints, the CPU approach has a single set of
constraints that can run any program. Therefore, the verifier for this
AIR has to be implemented only once (rather than per application).
In particular, this simplifies the process of auditing the proof system.
Once the constraints are checked, the only thing that requires audit-
ing, when considering a new application, is its code (which is much
simpler to audit than polynomial equations). Another advantage of the
fact the AIR is independent of the application, is that it simplifies the
process of building recursive STARK proofs (see Section 2.2.4).

The rest of Section 2.2 describes the advantages of the CPU approach
that are an outcome of following the von Neumann architecture. In the von
Neumann architecture, the program’s bytecode and data are located within
the same memory. A register, called the “program counter” (PC), points to

7Note that adding a builtin is not free: designing a builtin is usually a complicated task. In
addition, it means that the number of AIR constraints increases, which impacts the verification
time.

8The CPU does not include the builtins.

10



a memory address. The CPU (1) fetches the value of that memory cell, (2)
performs the instruction expressed by that value (which may affect memory
cells or change the flow of the program by assigning a different value to
PC), (3) moves PC to the next instruction and (4) repeats this process.

2.2.1 Bootloading: Loading programs from their hash

A program may write the bytecode of another program to memory and then
set the PC to point to that memory segment, thus starting the execution of
the other program.

One specific use of this idea is “Bootloading from hash”: A program,
called “the bootloader” computes and outputs the hash of the bytecode of
another program and then starts executing it as above. This way, the verifier
only needs to know the hash of the program being executed and not its full
bytecode.

This improves both privacy and scalability:

Privacy: the verifier can verify the execution of a program without knowing
what the computation does9.

Scalability: assuming the program hash is known to the verifier, the verifi-
cation time does not depend linearly on the program size, as would be
the case if the program – rather than its hash – were given as input to
the verifier.

2.2.2 Running several different programs in the same proof

The bootloader described above can be extended to execute several pro-
grams one after the other, outputting the bytecode hash of each of the pro-
grams, together with the programs’ outputs. Note that the programs can
describe entirely different computations. As the size of a proof and the cost
of verifying it are both sublinear in the size of the computation, one may
use such a bootloader to take several programs and generate a single proof
attesting to the validity of all of the programs. The verification costs will be
shared among these programs.

Let’s take a numerical example: In the theoretical construction STARK
is based on, STIK10, proof-verification scales logarithmically with the trace
length, O(log T ), see [10, p. 21]. The STARK construction (using a Merkle
tree commitment) adds another multiplicative factor of O(log T ), resulting

9Note that to achieve zero-knowledge: (1) the underlying proof system (for example, STARK)
has to have the zero-knowledge property, (2) the program hash must use a cryptographic salt,
and (3) one must make sure that the values that are shared with the verifier (such as the
number of steps) do not reveal information on the program.

10The acronym STIK stands for scalable, transparent IOP of knowledge, and IOP is interactive
oracle proof.
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in verification time complexity11 of O(log2 T ). For simplicity, let’s assume
the verification of an integrity proof for an execution trace of length T is
exactly log2(T ). Verifying the proofs of two programs of 1 million steps
each separately will cost 2 log2(T ) ≈ 794, whereas verifying one proof for
both programs will cost log2(2T ) ≈ 438. One can see that the amortized
verification cost of a program in a batch of many programs approaches zero
as more programs are added to the batch.

2.2.3 Advanced optimizations (just in time compilation and byte-
code generation)

Some advanced optimizations may be implemented via automatic genera-
tion of bytecode during the execution of a program. For example, instead
of fetching values from the memory in a function, a program may clone the
function’s bytecode and place some values directly inside the instructions
that require them. Consider the instruction “read c and x from memory and
compute x+ c”. Once the value of c is known (let’s denote it by C), we may
replace the instruction with the, possibly more efficient instruction, “read x

from memory and compute x + C”, where C is the immediate value of the
instruction.

All other forms of bytecode generation are also possible: A program can
generate Cairo bytecode according to some rules and then execute it. For
example, let’s say that we need to compute xc

i for multiple xis, we may write
a function that gets c and returns the bytecode of a function computing xc

using a long sequence of multiplications (rather than the naive implemen-
tation which uses recursion and conditional jumps and is, therefore, much
less efficient).

2.2.4 Incrementally verifiable computation (recursive proofs)

A recursive proof is a proof attesting to the validity of another proof. For
example, let A0 denote some statement. The simplest use of a proof system
is the prover convincing the verifier that A0 is true. Now, let’s define A1 to
be the statement “I verified a proof attesting to the fact that A0 is true”. One
can try generating a proof for A1. We can then continue with statements A2,
A3, and so on. This idea, called “incrementally verifiable computation”, was
first defined and analyzed in [23].

In order to generate a recursive proof, one has to encode the verifica-
tion process (the algorithm the verifier is running) as the statement being
proven. For many proof systems, and in particular, for the ASIC approach,
this creates a circular dependency: The verifier depends on the program
being proven, which depends on the verifier’s code. However, with the CPU

11We assign O(1) computational cost to basic field operations and single invocations of the
hash function used by the Merkle tree.
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approach, the verifier does not depend on the program, which simplifies
recursive proving – as the circular dependency breaks. Moreover, using the
idea of bootloading from the hash (Section 2.2.1), the entire verification pro-
gram can be encoded as one hash (say, 256 bits), which allows passing the
program as an argument to itself (which is one of the steps for generating
recursive proofs).

2.3 The instruction set

The instruction set is the set of operations the Cairo CPU can perform in
a single step. This section describes the high-level properties of Cairo’s
instruction set.

2.3.1 Metrics

In order to design a good instruction set for Cairo, one first needs to under-
stand what metrics should be optimized. Unlike ordinary instruction sets,
which are executed on a physical chip built of transistors, Cairo is executed
in an AIR (see Section 2.1)12. Ordinary instruction sets should minimize the
latency of the execution of an instruction and the number of required tran-
sistors; while maximizing the throughput of the computation. The metrics
for an efficient AIR are different: Roughly speaking, the most important
constraint when designing an AIR (and, therefore, when designing an in-
struction set that will be executed by an AIR) is to minimize the number
of trace cells used13. This is more or less equivalent to the number of
variables in a system of polynomial equations.

In order to design an efficient instruction set, one has to understand
what property should be optimized. A reasonable measure is the expecta-
tion of the number of trace cells an average program (written optimally in
the said instruction set) uses. This is an informal measure because, to be
accurate, it would require knowledge of the distribution of the programs,
and require that each of those programs is written in the most efficient way
in all of the compared instruction sets. Nevertheless, one can still use this
definition as a guideline for many decisions throughout the design.

As an example, take two instruction sets, A and B. The instruction set
A has an instruction “as_bool” that computes the expression “1 if x ̸= 0,
otherwise 0”. The instruction set B is an identical instruction set, except
that “as_bool” is missing. Say that the cost, in trace cells, of executing
a single step in a CPU based on instruction set A is a (for simplicity we
assume all instructions cost the same number of trace cells), and that the
cost of a single step when using instruction set B is b (where a > b due to
the complexity of adding the additional instruction). On the other hand, a

12More precisely, the execution trace is verified using an AIR.
13As long as all other parameters are in a reasonable range.

13



certain program may require kA steps if written using instruction set A and
kB steps if written using instruction set B (here kB ≥ kA since every time
the program needs to use “as_bool” it might require more than a single
instruction from instruction set B). If a · kA < b · kB, instruction set A is
better for that program, and if a·kA > b·kB, instruction set B is better. When
one decides whether to include an instruction or not, they should consider
the additional cost per step (a/b) against the additional steps (kB/kA), and
do so for “typical” programs, with some understanding of what “typical”
programs look like.

2.3.2 Algebraic RISC

In accordance with the guideline described in Section 2.3.1, the Cairo in-
struction set tries to create a balance between (1) a minimal set of simple
instructions that require a very small number of trace cells and (2) powerful
enough instructions that will reduce the number of required steps. As such,

1. Addition and multiplication are supported over the base field (for ex-
ample, modulo a fixed prime number) rather than for 64-bit integers.

2. Checking whether two values are equal is supported, but there is no
instruction for checking whether a certain value is less than another
value (such an instruction would have required many more trace cells
– since a finite field does not support an algebraic-friendly linear or-
dering of its elements).

We say that an instruction set with those properties is an Algebraic RISC
(Reduced Instruction Set Computer): “RISC” refers to the minimality of the
instruction set, and “Algebraic” refers to the fact that the supported opera-
tions are field operations. Using an Algebraic RISC allows us to construct
an AIR for Cairo with only 51 trace cells per step. The AIR for the Cairo
CPU is described in Section 9.

The Cairo instruction set can simulate any Turing Machine and hence is
Turing-complete14. As such, it supports any feasible computation. However,
implementing some basic operations, such as comparison of elements, using
only Cairo instructions would result in a lot of steps. To mitigate this without
increasing the number of trace cells per instruction, Cairo introduces the
notion of builtins, through which the cost of operations that are not part of
the instruction set is not multiplied by the total number of steps, but rather
by the number of times the operation was invoked. See Sections 2.8 and 7.

14 We mean this in an informal way, as one would say the x64 instruction set is Turing-
complete. The Cairo instruction set instantiated over a fixed prime field can decide the
bounded halting problem for instances smaller than the field size.
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2.4 Registers

An important question that assists to distinguish between instruction sets
is: what values do the instructions operate on? Usually, the instruction
operands are either general-purpose registers (e.g., rax in the x64 archi-
tecture) or memory cells. Many instructions have more than one operand,
and they force some constraints on what those operands are (an example of
a possible constraint is: a maximum of one operand may be a memory cell,
and the rest must be general purpose registers).

A few examples for different approaches are:

1. No general-purpose registers – all of the instructions are performed
directly on memory cells.

2. Some general-purpose registers – instructions are performed on those
registers and usually, at most, one memory cell.

3. Bounded stack machines – those can be thought of as machines with
many general purpose registers, where the different instructions shift
the values between the registers. In many cases, at most one mem-
ory cell is involved, and usually, the only instructions that access the
memory are simple read/write instructions that do not perform com-
putation.

In physical systems, memory access is usually very expensive, which
makes option 1 above inefficient (consider, for example, a summation loop
that has to read and write the partial sum to the memory in each iteration).
This is not necessarily15 the case for AIRs: In Cairo, the cost of one mem-
ory access is 5 trace cells (See Section 2.6). Compare this to the cost of
decoding an instruction, which is 16 trace cells.

Therefore, Cairo implements option 1 above – there are no general-
purpose registers, and all the operands of an instruction are memory cells.
Thus, one Cairo instruction may deal with up to 3 values from the memory
and perform one arithmetic operation (either addition or multiplication) on
two of them, and store the result in the third.

Cairo has 2 address registers, called ap and fp, which are used for spec-
ifying which memory cells the instruction operates on. For each of the 3 val-
ues in an instruction, you can choose either an address of the form ap+ off
or fp + off where off is a constant offset in the range [−215, 215). Thus, an
instruction may involve any 3 memory cells out of 2 · 216 = 131072. In many
aspects, this is similar to having this many registers (implemented in a much
cheaper way).

Accessing memory cells that cannot be described in the form above is
possible using an instruction (see Section 5.2) that takes the value of a

15It depends on the choice of memory model and the way it’s implemented in the AIR. See
Section 2.6.
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memory cell and treats it as the address of another memory cell. Note that
the address space can be as large as the number of steps being executed.

2.5 Nondeterminism

Consider an NP-complete problem, such as SAT, and consider the following
two algorithms:

Algorithm A gets a SAT instance and an assignment and returns True if
the assignment satisfies the formula.

Algorithm B gets a SAT instance and enumerates over all possible assign-
ments. If it finds a satisfying assignment, it stops and returns “True”.
Otherwise, if no such assignment is found, it returns “False”.

If the prover wants to convince the verifier that a certain SAT formula is
satisfiable, it can use both algorithms. Knowing that either of the algorithms
returned “True” for the required SAT-formula means that it’s satisfiable. Of
course, Algorithm A is much more efficient, so the prover and the verifier
will prefer to use it for such a proof. Even if the prover doesn’t have a satis-
fying assignment yet, it can run Algorithm B locally, find a satisfying assign-
ment and then prove that Algorithm A returns “True” (this is usually much
more efficient than proving that Algorithm B returns “True”, since proving
a computation is much more expensive than running the same computation
without generating a proof).

We refer to this approach as nondeterministic programming – the prover
may do additional work that is not part of the proven computation.

We mentioned before that a Cairo instruction may either add or multi-
ply field elements. What if we want to compute a square root of a certain
number x as part of a larger function? The deterministic approach is to use
some square-root algorithm to compute y =

√
x, which means we need to

include its execution trace in our proof. But the nondeterministic approach
is much more efficient: the prover computes the square-root y using the
same algorithm, but doesn’t include this computation in the proved execu-
tion trace. Instead, the only thing proved is that y2 = x, which can be done
using a single Cairo (multiplication) instruction. Notice that from the point
of view of the verifier, the value y is “guessed”, and all the program does is
check that the guess is indeed correct (in particular, in certain cases several
different guesses are legitimate and valid from the verifier’s point of view;
in the example above, notice that −y is valid, even though the deterministic
square-root algorithm returns y).

An important aspect in the design of Cairo was to allow the programmer
to take advantage of nondeterministic programming.
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2.5.1 Hints

To allow taking advantage of nondeterministic programming, Cairo intro-
duces the notion of prover hints or just “hints”. Hints are pieces of code
that are inserted between Cairo instructions where additional work is re-
quired by the prover. Since hints are only used by the prover, and we don’t
have to prove the execution of the hints to the verifier, hints can be written
in any programming language16. When the Cairo Runner (see Section 3.5)
needs to simulate a Cairo instruction that is preceded by a hint, it first runs
the hint, which may initialize some memory cells and, only then, continue
with the execution of the Cairo instruction.

2.6 Memory

Most computer architectures use random-access read-write memory. This
means that an instruction may choose an arbitrary memory address and ei-
ther read the existing value at that address or write a new value to that
address, replacing the existing one. However, this is not the only possi-
ble memory model. For example, in purely functional programming, once
a variable is set, its value cannot change, so a write-once memory model
may be enough to efficiently run a program written in a purely functional
language.

Below are some memory models which were considered for the Cairo
architecture:

Read-Write Memory This is the most familiar memory model, described
above.

Write-Once Memory In this memory model, if you try to write to a memory
cell that was already assigned a value, the write operation will fail.
Similarly, if you try to read before writing, the operation will fail.

Nondeterministic Read-Only Memory In this memory model, the prover
chooses all the values of the memory, and the memory is immutable.
The Cairo program may only read from it.

The three pieces of pseudo-code in Fig. 1 demonstrate how one can use
each memory model to pass information between two points in the program.
In all of the examples, the value 7 is written to address 20 and fetched later
in the code.

Although Fig. 1a, Fig. 1b share the same code, in fact, Fig. 1b and Fig. 1c
have more in common: The first two instructions of Fig. 1c force the prover
to initialize address 20 with the value 7, so they function as a write instruc-
tion. While in Fig. 1a, we cannot be certain that the value of x will be

16The existing implementation of Cairo uses Python as the language for writing hints.
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write (
address=20, value=7)

. . .
x = read(address=20)

(a) Read-Write Memory

write (
address=20, value=7)

. . .
x = read(address=20)

(b) Write-Once Memory

y = read(address=20)
assert y == 7
. . .
x = read(address=20)

(c) Nondeterministic Read-
Only Memory

Figure 1: Using various memory models.

7 without reading the code between the two instructions, this property is
guaranteed in the other two models. Due to this similarity, we will some-
times refer to an instruction of the form assert read(address=20) == 7
as an assignment instruction.

The main trade-off in choosing a memory model is between allowing ef-
ficient implementation of various algorithms and efficient representation
of each memory access in the AIR. As we move from Read-Write Memory
to Nondeterministic Read-Only Memory, implementation of algorithms be-
comes more restricted, but the representation of each memory access in the
AIR becomes more efficient.

It turns out that, for most of the memory accesses in programs, a Nonde-
terministic Read-Only Memory is sufficient (for example, Section 6 explains
how a function stack may be implemented in the read-only model), and in
places where it does not suffice, it’s possible to simulate a full read-write
memory using it (see Section 8.5). Therefore, Cairo uses a nondeterministic
read-only memory as its memory model.

In fact, one more restriction is applied to gain efficiency. The memory
address space is continuous, which means that if there is a memory ac-
cess to address x and another memory access to address y, then for every
address x < a < y, there must be a memory access to this address. This ad-
ditional restriction on the prover allows a very efficient AIR implementation
of memory accesses with only 5 trace cells per access (see Section 9.7).

Another interesting aspect is freeing or reusing memory cells. In all
of the memory models mentioned above (assuming similar approaches of
AIR implementation to the one described in Section 9.7), one has to pay (in
terms of trace-cell) per memory access, rather than per used memory ad-
dress. This means that rewriting over a single cell in the read-write model,
or writing to a new cell each time, will have a similar cost. So, the program-
mer does not have to worry about freeing memory or reusing memory cells
to save “space”. They need only try to minimize memory accesses.
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2.6.1 Public memory

An important advantage of the way Cairo implements the nondeterministic
read-only memory as an AIR is that it allows the prover to efficiently con-
vince the verifier that some memory addresses contain certain values. More
formally, given a list of pairs of address ai and value vi, shared by the prover
and the verifier, the verifier can confirm that the memory at address ai has
the value vi. Since this information is shared with the verifier, we refer to it
as the public memory. One can think of this list as “boundary constraints”
on the memory, which are externalized to the world.

This mechanism is extremely efficient: during the proof generation, two
“random”17 numbers are generated: z, α. Then, the only thing the verifier
has to do with the list (ai, vi) is to compute the expression∏

i

(z − (ai + α · vi)), (1)

and substitute the result in one of the AIR’s constraints. This means that
the verification cost per entry is one addition, one subtraction, and two
multiplications in the field; in addition to the computation of the hash of the
list which is required as part of the Fiat-Shamir transformation.

Compare our approach to the naive approach of adding boundary con-
straints to an AIR: In the naive approach, one adds a constraint per trace
cell that should be fixed. This means one should add two constraints per
memory cell (for the address and the value). Since the location of the two
trace cells that contain the memory cell for a specific address is usually
not known before generating the trace18, the prover will have to send this
information to the verifier.

This mechanism can be used for:

1. Loading the bytecode (see Section 3.3) of the program into memory
(the prover and the verifier should agree on the program being exe-
cuted).

2. Passing the arguments and return values of the program (between the
prover and the verifier).

For more information about the way this mechanism is implemented as
an AIR, see Section 9.8.

2.6.2 Handling on-chain-data in blockchain applications

Let’s now consider one concrete application of the mechanism described in
Section 2.6.1, in which its efficiency is crucial. In some blockchain appli-

17as part of the Fiat-Shamir heuristic in the non-interactive case or sent by the verifier in the
interactive case.

18Recall that the trace cells are ordered chronologically according to the execution of the
program.
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cations, one of the outputs of a Cairo program that should be accessible to
the verifier is a log of all the changes to the state of the application. Its
purpose is not to be processed by the verifier, but rather to only be written
on-chain so that users will be able to inspect it if needed (this is sometimes
referred to as “data availability” or “on-chain data” and used for common
constructions such as a “ZK-Rollup”). Usually, this log is very large, and it
is extremely important to reduce the linear verification cost (for example,
in the Ethereum blockchain, this cost is measured in “gas”) that is involved
during its processing as much as possible. This can be done using the pub-
lic memory mechanism: one may put the data in a contiguous segment of
memory cells and include those cells in the public memory. Then, the verifi-
cation cost is the sum of the cost of transmitting the data to the blockchain
and the computation cost of only 4 arithmetic operations per data element
and the hash of the data.

Note that this is not the only possible solution. An alternative way for
handling such data, which has even cheaper verification costs, is to com-
pute the hash of the data by the verifier, using a blockchain-friendly hash
function, and make the same hash computation as part of the statement
being proven. The problem with this approach, is that typically blockchain-
friendly hash functions are not STARK-friendly19 which means that using
this method significantly increases the proving costs.

2.7 Program input and program output

A Cairo program may have:

Program input – the input of the program. This data is not shared with
the verifier. In terms of proof systems, this is the witness20.

Program output – the data that is generated during the execution of the
program, that is shared with the verifier. It will become part of the
data externalized using the public memory mechanism (Section 2.6.1).

It is possible that some data will be both program input and program out-
put? Consider, for example, a Cairo program given (as an input) a number n
and computes the n-th Fibonacci number, y. In this case, the program input
is n. Let’s consider a few options for the program output and the statement
each of them induces:

• If the program output contains both n and y, the statement being
proven is “the n-th Fibonacci number is y”.

19This means that computing such a hash function as part of the statement being proven
costs a large number of trace cells.

20Note that when one proof system is based on another system, each of them has its own
witness, and, usually, the outer proof system has to translate its witness to a witness of the
inner proof system. Thus, the witness of the Cairo proof system is the program input, and the
witness of the STARK proof system is the AIR’s trace.
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• If the program output contains only y, the statement being proven is “I
know n such that the n-th Fibonacci number is y” (but n is not explicitly
shared with the verifier).

• If the program output contains only n, the statement being proven is
“I have computed the n-th Fibonacci number” (but the result is not
explicitly shared with the verifier).

2.7.1 Program input

Handling the program input is easy – one may use the hint mechanism
to parse the input, which may be given in any desired format (recall that
hints can be theoretically written in any programming language) and up-
date uninitialized memory cells accordingly. For example, in the current
implementation of the Cairo Runner [4], the program input is a JSON file
which is read by the program-specific hints.

Consider the Fibonacci example above. The program input may be a
JSON file of the form {"n":5}. A hint at the beginning of the program may
read this file, fetch the value of n, and place it in a certain memory cell. The
Cairo code will then pass the value of that cell to the Fibonacci function.

2.7.2 Program output

The program output is handled as follows: the Cairo program writes the val-
ues of the output data to a contiguous segment of memory cells. The start
and end addresses of this segment are stored in the memory in addresses
that can be computed by the verifier (for example, relative to the initial and
final value of the ap register, which are part of the information available to
the verifier. See Section 3.2). The values of all the memory cells involved
(the memory cells containing the output data, as well as the two cells con-
taining the start and end addresses of the segment) are externalized to the
verifier using the public memory mechanism (Section 2.6.1). In other words,
the prover sends the start and end addresses of the segment, as well as all
of the values in the segment, and the verifier incorporates them in Eq. (1)
to validate their consistency with the proof.

2.8 Builtins

As we have seen in the previous sections, adding a new instruction to the
instruction set has a cost even if this instruction is not used. On the other
hand, trying to implement some primitives using only Cairo instructions may
be inefficient, as a lot of instructions may be required – even for relatively
simple tasks such as integer division.

To overcome this conflict, while also supporting predefined tasks without
the need to add new instructions, Cairo introduces the concept of builtins.
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A builtin enforces some constraints (which depend on the builtin) on the
Cairo memory. For example, a builtin may enforce that all the values for
the memory cells in some fixed address range are within the range [0, 2128).
In fact, this is a very useful builtin, as we will see in Section 8. We call
it the range-check builtin and the memory cells constrained by the builtin
range-checked cells.

Cairo doesn’t have a special instruction to invoke a builtin. Instead,
one should simply read or write values in the memory cells affected by
the builtin. This kind of communication is also known as memory-mapped
I/O [21]. Take the range-check builtin, for example, if you want to verify that
a value x is within the range [0, 2128), just copy it (using a Cairo instruction)
to a range-checked cell. If you want to verify that x is within the range [0, B]

where B < 2128, you can write x to one range-checked cell and B − x to
another.

In terms of building the AIR, it means that adding builtins does not affect
the CPU constraints. It just means that the same memory is shared between
the CPU and the builtins. Figure 2 shows the relationship between the CPU,
the memory, and the builtins: in order to “invoke” a builtin, the Cairo pro-
gram “communicates” with certain memory cells, and the builtin enforces
some constraints on those memory cells.

Memory CPUBuiltin 2

Builtin 1

Builtin 3

Figure 2: The relationship between the Cairo components.

It is important to note that builtins are an optional part of the Cairo
architecture: one may replace using a builtin with a piece of pure Cairo code
that does the same21 (taking advantage of nondeterministic programming).
For example, to implement the range-check builtin, one could “guess” the
128 field elements bi that form the binary representation of x, assert that
b2i = bi for all i ∈ [0, 128) and that x =

∑
i 2

i ·bi. This enforces that x is within
the expected range. However, compare the costs of the two approaches: the
above computation takes at least 3 · 128 Cairo instructions. Using a builtin
(implemented with the range-check techniques presented in Section 9.9), it
takes the number of trace cells equivalent to about 1.5 instructions.

21Since Cairo is Turing-Complete, even without any builtins.
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The Cairo architecture does not specify a specific set of builtins. One
may add or remove builtins from the AIR according to one’s needs. For
example, if a program needs to invoke the Pedersen hash numerous times,
it makes sense to run it on an architecture with a builtin that computes the
Pedersen hash. On the other hand, a program that uses this builtin will not
be able to run on an architecture where this builtin is missing. Note that
adding builtins implies adding constraints, which increases the verification
time.

3 The Cairo framework

We now give a formal definition to the term “the Cairo machine”. In fact, we
define two versions: a deterministic and nondeterministic, where the latter
is based on the former.

The deterministic Cairo machine by itself does not perform a computa-
tion. Instead, it verifies that a given computation trace is valid. One can
imagine a machine that is given a sequence of states and a memory func-
tion, and checks whether the transition between two consecutive states is
valid (according to the rules presented in Section 4.5). It returns “accept”
if all the state transitions are valid with respect to the memory; and “reject”
otherwise. The term “deterministic” is pertinent due to the fact that the de-
cision problem, whether it accepts or rejects, can be solved efficiently using
a deterministic Turing Machine.

The nondeterministic version gets a partial memory function (which can
be thought of as boundary constraints on the full memory function) and only
the initial and final states (rather than the full list of states). It accepts, if
there exist a list of states and a full memory function that are consistent
with the inputs that the deterministic version accepts.

We close this section with a description of the Cairo Runner, a concrete
realization of those theoretical models, and show how one can use the Cairo
Runner to transform a statement, such as “the j-th Fibonacci number is y”,
into inputs for the deterministic machine (which is used by the prover) and
the nondeterministic machine (which is used by the verifier), in such a way
that if the machine accepts, this implies that the statement is true. The
Cairo AIR, presented in Section 9, allows one to use the STARK protocol
in order to prove that the nondeterministic Cairo machine accepts those
inputs, thus proving that the original statement is true.

3.1 The deterministic Cairo machine

Fix a prime field FP = Z/P and a finite extension field F of it.

Definition 1. The Cairo machine is a function that receives the following
inputs
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1. a number of steps T ∈ N,

2. a memory function m : F → F,

3. a sequence S of T + 1 states Si = (pci, api, fpi) ∈ F3 for i ∈ [0, T ], 22

and outputs either “accept” or “reject”.
It accepts if, and only if, for every i, the state transition from state i

to state i + 1 is valid. Section 4.5 describes what constitutes a valid state
transition of the machine.

Note that the decision as to whether a single transition is valid depends
only on the two states involved (that is Si and Si+1) and the memory function
m. In particular, the memory function used for the state transition logic is
the same for all i. In other words, the Cairo memory is immutable (read-
only) rather than read-write.

We call the sequence of states S the Cairo execution trace. We refer to
the state S0 as the initial state and to ST as the final state.

The memory function is defined formally as a function m : F → F, but,
since in practical applications F is usually huge and at most O(T ) values of
m are accessed during the computation, we can treat m as a sparse function
where almost all the values are zeros.

Example 1 (The Fibonacci Sequence). Let S0 = (0, 5, 5) and let m satisfy

m(0) = 0x48307ffe7fff8000,

m(1) = 0x010780017fff7fff,

m(2) = −1, (2)

m(3) = 1,

m(4) = 1,

In Section 4.5, you will see that the first two constants represent Cairo
instructions. The exact way the encoding works is not important for this
example.

Note that,

1. For the state transition S0 → S1, we have

m(pc0) = m(0) = 0x48307ffe7fff8000.

Careful review of Section 4.5 reveals that this implies that the state
transition from S0 to S1 is valid if, and only if,

pc1 = pc0 + 1, ap1 = ap0 + 1, fp1 = fp0, and

m(ap0) = m(ap0 − 1) +m(ap0 − 2).

22pc will function as the program counter register, and ap and fp will function as pointers to
the memory. Their exact purpose and behavior will become clear in Section 4.1.
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Therefore, if we want the Cairo machine to accept, we must set S1 =

(1, 6, 5) and m(5) = m(4) +m(3) = 2.

2. For the state transition S1 → S2, we have

m(pc1) = m(1) = 0x010780017fff7fff.

It will follow from Section 4.5 that the state transition from S1 to S2 is
valid if, and only if, pc2 = pc1 + m(pc1 + 1) (that is, pc2 = 1 + m(2) =

1 + (−1) = 0), ap2 = ap1 and fp2 = fp1. So, we must set S2 = (0, 6, 5).

3. For the state transition S2 → S3, once again the “current” pc is 0, so
the constraints are similar to those of the first state transition: pc3 =

pc2+1, ap3 = ap2+1, fp2 = fp2 and m(ap2) = m(ap2− 1)+m(ap2− 2).
We deduce that we have to set S3 = (1, 7, 5) and m(6) = m(5) +m(4).

One may observe that this behavior repeats itself: fp remains constant,
pc alternates between 0 and 1, and each time it is 0 it forces m(ap2) =

m(ap2 − 1) + m(ap2 − 2), and increases ap by 1. Thus, the only way the
Cairo machine returns “accpet” is if the memory function continues with the
Fibonacci sequence (starting from m(3)). To be more accurate, the values
m(3),m(4), . . . ,m(4 + ⌈T/2⌉) should form the Fibonacci sequence.

3.2 The nondeterministic Cairo machine

Definition 2. The nondeterministic Cairo machine is a nondeterministic
version of the Cairo machine. It is a function that receives the following
inputs:

1. a number of steps T ∈ N,

2. a partial memory function m∗ : A∗ → F, where A∗ ⊆ FP ,

3. initial and final values for pc and ap: pcI , pcF , apI , and apF (apI is
also used as the initial value for fp),

and outputs “accept” or “reject”.
It accepts the input (T,m∗, pcI , pcF , apI , apF ) if, and only if, there ex-

ists a memory function m : F → F extending23 m∗, and a list of states Si =

(pci, api, fpi) ∈ F3 for i ∈ [0, T ] satisfying (pc0, ap0, fp0) = (pcI , apI , apI),
pcT = pcF and apT = apF , such that the deterministic Cairo machine from
Definition 1 accepts the input (T,m, S).

Note, the main differences between Definitions 1 and 2:

23We say that m extends m∗ if both functions agree on A∗.
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• The deterministic version from Definition 1 gets the full list of states,
while the nondeterministic version from Definition 2 only gets the ini-
tial and final values of pc and ap.

• The deterministic version gets the full memory function, while the non-
deterministic version only gets a partial function.

• Computing whether the deterministic version accepts a particular in-
put or not, can be done in polynomial time using a deterministic ma-
chine. For the nondeterministic version, one needs a nondeterministic
machine in order to do it in polynomial time (see the discussion in
Section 2.5).

Example 2. Let T < P be an even number, 2 ≤ j ≤ T/2 and y ∈ F. Set
A∗ = {0, 1, 2, 3, 4, j + 3}, pcI = 0, pcF = 1, apI = 5, apF = 5 + T/2. Let
m∗ : A∗ → F have the same values that appear in (2) for 0, . . . , 4 and set
m∗(j+3) = y. We claim that the nondeterministic Cairo machine accepts this
input if, and only if, the j-th Fibonacci number is y. In fact, this follows from
the last example: the nondeterministic Cairo machine accepts if, and only if,
there exists a memory function extending m∗ that makes the deterministic
version accept. But as we saw, the deterministic version accepts only if the
values m(3),m(4), . . . ,m(4+T/2) form the Fibonacci sequence. In particular,
m(j + 3) is the j-th Fibonacci number, but it must be equal to m∗(j + 3) = y.

Note 1. Due to performance considerations of the Cairo AIR (more specifi-
cally, the implementation of the Cairo memory in the AIR. See Section 9.7),
the AIR will enforce stricter constraints than just the fact that the nonde-
terministic Cairo machine accepts: the memory accesses performed during
the execution of the code must result in a continuous address range. That
is, the set of accessed addresses must be of the form {a0 + i : i ∈ [0, k)} for
some initial address a0 and some natural number k. In particular, it means
that only addresses from FP can be used (rather than addresses from the
extension field, F), and this is the reason A∗ is a subset of FP . We treat this
additional requirement as follows: the programmer of Cairo code should not
rely on this continuity guarantee (from a soundness perspective), but they
should write the program such that this requirement will be satisfied if the
inputs are valid (for completeness).

3.3 The Cairo program bytecode

The Cairo program bytecode is a sequence of field elements b = (b0, . . . , b|b|−1)

together with two indices progstart,progend ∈ [0, |b|) that define the computa-
tion we want the Cairo machine to perform. In order to “run” the program,
we pick a field element progbase ∈ FP , which is called the program base, set
the partial memory function m∗ so that m∗(progbase + i) = bi for i ∈ [0, |b|),
and set pcI = progbase + progstart, pcF = progbase + progend.

26



In addition to the bytecode of the program, the partial memory function
may contain additional entries that provide additional constraints on the
execution of the code (for example, input arguments for the execution are
handled this way).

Example 3. The bytecode of the Fibonacci program in the previous exam-
ple was:

b = (0x48307ffe7fff8000,0x010780017fff7fff,−1), progstart = 0.

The bytecode was “loaded” to m∗(0),m∗(1),m∗(2), so the program base in
that example was progbase = 0.

The values m∗(3),m∗(4),m∗(3+j) (or, in the more general form: m∗(apI−
2),m∗(apI − 1),m∗(apI − 2 + j)) are the additional constraints.

3.4 Cairo programs

The following Fibonacci program is written in Cairo assembly (see Section 5
for more detail). For convenience, we added the state transition constraints
of each instruction (all of the instructions in the example imply fpi+1 = fpi).

Example 4.
# Initialize the Fibonacci sequence with (1, 1).

[ap] = 1; ap++

pci+1 = pci + 2, api+1 = api + 1, m(api) = 1

[ap] = 1; ap++

pci+1 = pci + 2, api+1 = api + 1, m(api) = 1

body:

# Decrease one from the iteration counter.

[ap] = [ap - 3] - 1; ap++
pci+1 = pci + 2, api+1 = api + 1,

m(api) = m(api − 3)− 1
# Copy the last Fibonacci item.

[ap] = [ap - 2]; ap++

pci+1 = pci+1, api+1 = api+1, m(api) = m(api−2)

# Compute the next Fibonacci item.

[ap] = [ap - 3] + [ap - 4]; ap++
pci+1 = pci + 1, api+1 = api + 1,

m(api) = m(api − 3) +m(api − 4)
# If the iteration counter is not zero, jump to body.

jmp body if [ap - 3] != 0

pci+1 =

{
pci − 4, m(api − 3) ̸= 0

pci + 2, otherwise
, api+1 = api,

__end__:

jmp __end__ # Infinite loop
pci+1 = pci, api+1 = api
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This program works as follows: it assumes that m(apI−1) = j is the index
of the Fibonacci number we want to compute. After the first two steps, we
have (m(ap − 3),m(ap − 2),m(ap − 1)) = (j, 1, 1). After the next three steps,
the values are (j− 1, 1, 2). Then we check whether j− 1 = 0. If not, we jump
back to the body label. After another iteration the values are (j − 2, 2, 3),
then (j − 3, 3, 5), (j − 4, 5, 8), and so on. When the iteration counter gets to
0, we start an infinite loop. At that point, the result is m(ap − 2). Since the
loop keeps the value of ap constant, the result can be found in m(apF − 2).

A Cairo assembler can take this program and turn it into Cairo bytecode:

b = (0x480680017fff8000, 1,

0x480680017fff8000, 1,

0x482480017ffd8000,−1,

0x48127ffe7fff8000,

0x48307ffc7ffd8000,

0x20680017fff7ffd,−4,

0x10780017fff7fff, 0)

progstart = 0, progend = 10.

Usually, the last instruction of a Cairo program is an infinite loop – this
makes the number of steps, T , independent of the program, as long as it is
large enough to make the program reach progend.

3.5 The Cairo Runner

The Cairo Runner is a computer program responsible for executing a com-
piled Cairo program. Executing a Cairo program is different from executing
a regular computer program. The main difference is due to the fact that
Cairo allows nondeterministic code. For example, the following Cairo in-
struction “computes” the square root of 25 by asserting that the square of
an uninitialized cell is 25:

[ap] = 25; ap++
# [ap - 1] is now 25, so the next line enforces that [ap] is the
# square root of 25.
[ap - 1] = [ap] * [ap]; ap++

In fact, even if we recognize this particular instruction as saying; “take the
square root of [ap− 1]”, there are 2 possible values: 5 and −5, and it is pos-
sible that only one of them will allow satisfying the rest of the instructions.
In a similar way, you can write a Cairo program that solves an NP-complete
problem, such as SAT.

This means that some Cairo programs cannot be efficiently executed
without some additional information (such as the specific square root of 25
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or a satisfying SAT assignment). This information is given by what we call
hints. Hints are special instructions for the Cairo Runner; used to resolve
nondeterminism where a value cannot be easily deduced. In theory, hints
can be written in any programming language24. For example, in the existing
implementation of the Cairo Runner (see [4]), the hints are code blocks of
Python code.

The output of the Runner consists of

1. an accepting input to the Cairo nondeterministic machine:

(T,m∗, pcI , pcF , apI , apF ),

where m∗ includes the program bytecode (starting at progbase) and any
additional information that should be revealed (the hints may specify
what memory cells should be added to m∗), pcI = progbase + progstart

and pcF = progbase + progend.

2. an accepting input to the Cairo deterministic machine, (T,m, S) that
constitutes the witness to the nondeterministic machine.

Alternatively, the Runner may return a failure in the case that the exe-
cution results in a contradiction, or was unable to compute the value of a
memory cell due to insufficient hints.

Example 5. Continuing with Example 4, the hints will have to set m(apI −
1) = j and add apI − 1 and apF − 2 to A∗ (in order to reveal which Fibonacci
number was computed and what the result was).

3.6 Generating proofs of computational integrity using
Cairo

Below is an overview of the process of generating a proof of computational
integrity for a given computation. We use the following assertion as an
example of what we wish to prove:

“The j-th Fibonacci number is y”. (3)

1. Write a Cairo program for the computation (either using the Cairo
assembly language directly or using any other language that can be
compiled to Cairo bytecode); with hints that resolve the nondetermin-
istic components. In our example, we use the code of Example 4 with
a hint that set m∗(apI − 1) = j.

2. Compile the program to Cairo bytecode.

24In particular, they don’t have to be written in Cairo.
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3. Run the program using the Cairo Runner to obtain the execution trace
S, the partial memory function m∗, and the full memory function m. In
our case, m∗ will include the program bytecode, m∗(apI − 1) = j for
the index, and m∗(apF − 2) = y for the result.

4. Use a STARK prover for the Cairo AIR to generate a proof for the
assertion:

“The nondeterministic Cairo machine accepts given
the input (T,m∗, pcI , pcF , apI , apF )”.

(4)

We now have to show that the correctness of (4) implies the correctness
of (3): The fact that the nondeterministic Cairo machine accepts implies
that there exists an input (T,m, S) accepted by the deterministic Cairo ma-
chine. Since m extends m∗, we know that the bytecode of the Fibonacci pro-
gram appears in {m(progbase + i)}i∈[0,|b|). Moreover, since pcI = progbase +

progstart, we deduce that the first instruction that is executed by the deter-
ministic Cairo machine is the first instruction of the Fibonacci program.
Similarly, the rest of the program’s instructions will be executed, for T

steps. As pcF = progbase +progend, we know that the infinite loop at the end
of the program was reached, which implies that the program was completed
successfully, and that the j-th Fibonacci number is equal to m(apF − 2) =

m∗(apF − 2) = y.

4 The CPU architecture

The Cairo architecture, which defines the core of the deterministic Cairo
machine, presented in Section 3.1, consists of a “CPU” that operates on 3
registers – pc, ap, and fp, and has access to the (read-only) memory, m.

4.1 The registers

Program counter (pc) contains the address in memory of the current Cairo
instruction to be executed.

Allocation pointer (ap) , by convention, points to the first memory cell
that has not been used by the program so far. Many instructions may
increase its value by one to indicate that another memory cell has
been used by the instruction. Note that this is merely a convention –
the Cairo machine does not force that the memory cell ap has not been
used, and the programmer may decide to use it in different ways.

Frame pointer (fp) points to the beginning of the stack frame of the cur-
rent function. The value of fp allows a stack-like behavior: When a
function starts, fp is set to be the same as the current ap, and when
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the function returns, fp resumes its previous value. Thus, the value
of fp stays the same for all the instructions in the same invocation
of a function. Due to this property, fp may be used to address the
function’s arguments and local variables. See more in Section 6.

4.2 The memory

The CPU has access to a nondeterministic read-only random-access mem-
ory. Read-only means that the values of the memory cells do not change
during the execution of Cairo code. Nondeterministic means that the prover
is allowed to choose the initial and, thus also, final values of all the mem-
ory cells. The Cairo code simply consists of assertions on the memory val-
ues, which play the role of reading and writing (once) memory values, see
Section 2.6. Sections 6 and 8 explain how one can use a nondeterministic
read-only memory for common programming tasks, including simulating a
read-write memory.

We are using the notations m(a) and [a] to represent the value of the
memory at address a.

4.3 Execution of a program

As you have seen in Section 3.1, the input of the deterministic Cairo ma-
chine consists of (1) the read-only memory and (2) an execution trace rep-
resented by a sequence of register states (pci, api, fpi). The validity of the
transition between two consecutive states is defined by the instruction the
pc register is pointing to (m(pci)) and is the main topic covered by this sec-
tion. Each instruction induces some constraints on the transition from one
state to the next. In common CPU architectures, the state transition is de-
terministic – the CPU must be able to compute the next state, given the
current one. Cairo is designed to verify statements, and thus, it can sup-
port nondeterministic state transitions. Moreover, there may be states that
allow no following states. If such a case happens during the execution of a
program, we say that the execution is rejected, and the prover will not be
able to generate a proof for it.

4.4 Instruction structure

The CPU’s native word is a field element, where the field is some fixed
finite field of characteristic P > 263. Each Cairo instruction spreads over
one or two words. Instructions that use an immediate value (such as “[ap]
= 123456789”) are spread over two words, and the value is stored in the
second word. The first word of each instruction consists of: (1) three 16-
bit signed integer offsets offdst, offop0, offop1 in the range [−215, 215) encoded
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offdst (biased representation)

offop0 (biased representation)

offop1 (biased representation)

dst
reg

op0
reg

op1_src res_logic pc_update
ap

update opcode 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3: The structure of the 63-bits that form the first word of each in-
struction. Bits are ordered in a little-endian-like encoding (least significant
bit first): offdst appears as the low 16 bits, and dst_reg is bit 48 (starting
from the least significant bit).

using biased representation25; and (2) 15 bits of flags divided into seven
groups as shown in Figure 3.

4.5 The state transition

Cairo’s state transition function is designed to have an efficient AIR imple-
mentation. We give here one implication of this fact: A valid flag group
of three bits (such as op1_src) may only take the values 0, 1, 2, and 4 (in-
stead of 0, 1, . . . , 7). To understand why, denote the three bits representing
op1_src by b0, b1, b2 ∈ {0, 1}. Now we have the four linear functionals: b0, b1,
b2 and 1 − b0 − b1 − b2, where exactly one of them is 1, and the rest are 0.
Such functionals are used in the construction of the AIR, as you will see in
Section 9.

The state transition function uses four auxiliary values: op0, op1, dst,
and res. The auxiliary values can be computed from the memory values, the
three offsets, and the instruction flags.

This section introduces the formal definition of the state transition func-
tion. Refer to Section 5 for examples of various ways to set the instruction
flags in order to obtain meaningful instructions.

We use the term Unused to describe a variable that will not be used later
in the flow. As such, we don’t need to assign it a concrete value.

We use the term Undefined Behavior to describe a computation that
leads to an undefined behavior of the Cairo machine. This means that the
definition of the valid next states in such a case may be different across
different implementations of the Cairo machine. Therefore, programmers

25The 16 bits b0, b1, ...b15 ∈ {0, 1} represent the number −215 +
∑15

i=0 bi2
i ∈ [−215, 215).
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should ensure that their programs cannot reach such cases.
We use the notation assert x = y to represent an additional equality re-

quirement between two values. If this requirement does not hold, this is not
a valid state transition. In such a case, it may be that no valid state transi-
tion exists, in which case the Cairo machine will reject the entire statement,
and no proof will be generated.

Note: mathematically, the state transition function may return either a
state, undefined or reject.

The state transition is formally defined by the following pseudo-code:

# Context: m(.).
# Input state: (pc, ap, and fp).
# Output state: (next_pc, next_ap, and next_fp).

# Compute op0.
if op0_reg == 0:

op0 = m(ap + offop0)
else:

op0 = m(fp + offop0)

# Compute op1 and instruction_size.
switch op1_src:

case 0:
instruction_size = 1
op1 = m(op0 + offop1)

case 1:
instruction_size = 2
op1 = m(pc + offop1)
# If offop1 = 1, we have op1 = immediate_value.

case 2:
instruction_size = 1
op1 = m(fp + offop1)

case 4:
instruction_size = 1
op1 = m(ap + offop1)

default:
Undefined Behavior

# Compute res.
if pc_update == 4:

if res_logic == 0 && opcode == 0 && ap_update != 1:
res = Unused

else:
Undefined Behavior

else if pc_update = 0, 1 or 2:
switch res_logic:

case 0: res = op1
case 1: res = op0 + op1
case 2: res = op0 * op1
default: Undefined Behavior

else: Undefined Behavior

# Compute dst.
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if dst_reg == 0:
dst = m(ap + offdst)

else:
dst = m(fp + offdst)

# Compute the new value of pc.
switch pc_update:

case 0: # The common case:
next_pc = pc + instruction_size

case 1: # Absolute jump:
next_pc = res

case 2: # Relative jump:
next_pc = pc + res

case 4: # Conditional relative jump (jnz):
next_pc =

if dst == 0: pc + instruction_size
else: pc + op1

default: Undefined Behavior

# Compute new value of ap and fp based on the opcode.
if opcode == 1:

# "Call" instruction.
assert op0 == pc + instruction_size
assert dst == fp

# Update fp.
next_fp = ap + 2

# Update ap.
switch ap_update:

case 0: next_ap = ap + 2
default: Undefined Behavior

else if opcode is one of 0, 2, 4:
# Update ap.
switch ap_update:

case 0: next_ap = ap
case 1: next_ap = ap + res
case 2: next_ap = ap + 1
default: Undefined Behavior

switch opcode:
case 0:

next_fp = fp
case 2:

# "ret" instruction.
next_fp = dst

case 4:
# "assert equal" instruction.
assert res = dst
next_fp = fp

else: Undefined Behavior
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5 The Cairo Assembly

The previous section described how every possible combination of the flags
affects the new state, given the old state and the memory function. Notice
that the number of possible combinations is pretty large: there are thou-
sands of valid flag combinations, and 23·16 independent possible values for
the 3 offsets.

In practice, a programmer needs a better way to describe instructions –
rather than listing all the flag values. In this section, we introduce the Cairo
assembly syntax that gives textual names to common sets of flag combina-
tions. This section is not a full manual for the Cairo assembly. Instead, it
provides a high-level description of the Cairo assembly together with a few
examples of instructions. A full manual for the Cairo assembly is out of the
scope of this paper. See [5]. Examples of common algorithm implementa-
tions can be found in Section 8.

5.1 Common syntax

Memory access: [x] The [.] operator refers to the memory value at ad-
dress x. x can be one of the registers ap or fp or their value added to
a constant (e.g., [ap + 5]). The value stored in the given address can
be used as an address as well. For example, [[fp + 4] - 2]. Up to two
layers of dereferencing are supported by the Cairo machine in a single
instruction.

Increasing ap: ap++ The value of ap can be increased by 1 by most of the
instructions by appending the command ap++ to the instruction. The
only instruction that may not use ap++ is the call instruction.

5.2 Assert equal

The assert equal instruction is represented by the syntax:

<left_hand_op> = <right_hand_op>

It ensures that both sides are equal and rejects the program execution oth-
erwise.

The left-hand side takes the form [fp + offdst] or [ap + offdst] and
the right-hand side has a few possible forms (reg0 and reg1 can be fp or
ap, ◦ can be either addition or multiplication and imm can be any fixed field
element):

• imm

• [reg1 + offop1]

• [reg0 + offop0] ◦ [reg1 + offop1]
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• [reg0 + offop0] ◦ imm

• [[reg0 + offop0] + offop1]

Note 2. Division and subtraction can be represented as multiplication and
addition (respectively) with a different order of operands.

As explained in page 18, an assert instruction can be thought of as an
assignment instruction where one of the sides is known and the other one
is unknown. For example, [ap] = 4 can be thought of as an assertion that
the value of [ap] is 4 or as an assignment setting [ap] to 4, according to
the context.

A selected sample of assert equal instructions, and the flag values for
each instruction, is given in Fig. 4.
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[fp + 1] = 5 1 −1 1 5 1 1 1 0 0 0 4

[ap + 2] = 42 2 −1 1 42 0 1 1 0 0 0 4

[ap] = [fp]; ap++ 0 −1 0 ∅ 0 1 2 0 0 2 4

[fp - 3] = [fp + 7] −3 −1 7 ∅ 1 1 2 0 0 0 4

[ap - 3] = [ap] −3 −1 0 ∅ 0 1 4 0 0 0 4

[fp + 1] = [ap] + [fp] 1 0 0 ∅ 1 0 2 1 0 0 4

[ap + 10] = [fp] + [fp - 1] 10 0 −1 ∅ 0 1 2 1 0 0 4

[ap + 1] = [ap - 7] * [fp + 3] 1 −7 3 ∅ 0 0 2 2 0 0 4

[ap + 10] = [fp] * [fp - 1] 10 0 −1 ∅ 0 1 2 2 0 0 4

[fp - 3] = [ap + 7] * [ap + 8] −3 7 8 ∅ 1 0 4 2 0 0 4

[ap + 10] = [fp] + 42 10 0 1 42 0 1 1 1 0 0 4

[fp + 1] = [[ap + 2] + 3]; ap++ 1 2 3 ∅ 1 0 0 0 0 2 4

[ap + 2] = [[fp]] 2 0 0 ∅ 0 1 0 0 0 0 4

[ap + 2] = [[ap - 4] + 7]; ap++ 2 −4 7 ∅ 0 0 0 0 0 2 4

Figure 4: Assert equal instruction examples

5.3 Conditional and Unconditional Jumps

The jmp instruction allows changing the value of the program counter.
Cairo supports relative jumps (where the operand represents an offset

from the current pc) and absolute jumps – represented by the keywords rel
and abs, respectively. A jmp instruction may be conditioned, in which case
the jump will occur only if a given memory cell is not zero.

The instruction syntax:

# Unconditional jumps.
jmp abs <address>
jmp rel <offset>
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# Conditional jumps.
jmp rel <offset> if <op> != 0

A selected sample of jump instructions, and the flag values for each instruc-
tion, are available in Fig. 5.
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jmp rel [ap + 1] + [fp - 7] −1 1 −7 ∅ 1 0 2 1 2 0 0

jmp abs 123; ap++ −1 −1 1 123 1 1 1 0 1 2 0

jmp rel [ap + 1] + [ap - 7] −1 1 −7 ∅ 1 0 4 1 2 0 0

jmp rel [fp - 1] if [fp - 7] != 0 −7 −1 −1 ∅ 1 1 2 0 4 0 0

jmp rel [ap - 1] if [fp - 7] != 0 −7 −1 −1 ∅ 1 1 4 0 4 0 0

jmp rel 123 if [ap] != 0; ap++ 0 −1 1 123 0 1 1 0 4 2 0

Figure 5: Jump instruction examples

5.4 call and ret

The call and ret instructions allow implementation of a function stack. The
call instruction updates the program counter (pc) and the frame pointer
(fp) registers. The program counter is updated similarly to the jmp instruc-
tion. The previous value of fp is written to [ap] to allow the ret instruction
to reset the value of fp to the value prior to the call. Similarly, the return
pc (the address of the instruction following the call instruction) is written
to [ap+1] to allow the ret instruction to jump back and continue the exe-
cution of the code following the call instruction. Since two memory cells
were written, ap is advanced by 2, and fp is set to the new ap.

The instruction syntax is:

call abs <address>
call rel <offset>
ret

A selected sample of call and ret instructions, and the flag values for each
instruction, are available in Fig. 6.

5.5 Advancing ap

The instruction ap += <op> increases the value of ap by the given operand.
A selected sample of this instruction and the corresponding flag values, is
available in Fig. 7.
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call abs [fp + 4] 0 1 4 ∅ 0 0 2 0 1 0 1

call rel [fp + 4] 0 1 4 ∅ 0 0 2 0 2 0 1

call rel [ap + 4] 0 1 4 ∅ 0 0 4 0 2 0 1

call rel 123 0 1 1 123 0 0 1 0 2 0 1

ret −2 −1 −1 ∅ 1 1 2 0 1 0 2

Figure 6: call and ret instruction examples
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ap += 123 −1 −1 1 123 1 1 1 0 0 1 0

ap += [fp + 4] + [fp] −1 4 0 ∅ 1 1 2 1 0 1 0

ap += [ap + 4] + [ap] −1 4 0 ∅ 1 0 4 1 0 1 0

Figure 7: ap register update instruction examples

6 Recommended memory layout

This section describes what we consider to be best practices for managing
the memory layout in Cairo programs. The patterns described in this section
are not enforced by the Cairo architecture. Rather, they are described here
to show how common memory management concepts, such as the function
call stack, may be implemented given Cairo’s unique memory model – the
nondeterministic read-only memory (Section 2.6).

6.1 Function call stack

This section suggests a way to implement the function call stack in the Cairo
architecture. The call stack is a widely-used pattern, which enables pro-
gramming flows such as recursion. In common architectures, the depth of
the call stack is increased, and a new frame is created whenever a function
is called; and decreased whenever a function returns – releasing the mem-
ory of the frame. The memory can then be overridden with frames of future
function calls. This approach cannot be implemented as-is in Cairo, since
the memory is read-only. However, only minor adjustments are required.

The frame pointer register (fp) points to the current frame in the “call
stack”. As you will see, it is convenient not to define fp as the beginning
of the frame but rather as the beginning of the local variables’ section, in
a similar way to the behavior of the stack in common architectures. Each
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frame consists of four parts (fp refers to the current frame):

1. The arguments of the function provided by the caller. For example,
[fp - 3], [fp - 4], . . .

2. Pointer to the caller function’s frame. Located at [fp - 2].

3. The address of the instruction to be executed once the function returns
(the instruction following the call instruction). Located at [fp - 1].

4. Local variables allocated by the function. For example, [fp], [fp + 1],
. . .

In addition, the return values of the function are placed in the memory
at [ap - 1], [ap - 2], . . . , where ap is the value of the ap register at the
end of the function.

f:
call g
ret

g:
call h
call h
ret

h:
ret

Figure 8: Function calls code

Fig. 8 presents a code example of function calls, and Fig. 9 presents the
function call stack for this example. Frame 1 is the frame of the function
f(), and at the beginning of the code example, fp points to this frame. After
the call to g(), the active frame (pointed by fp) is Frame 2. The first call
to h() changes the active frame to Frame 3. When h() returns, the value
of fp is restored to point to Frame 2 (based on the value of [fp - 2]). The
second call to h() creates Frame 4, and when it returns fp moves to point to
Frame 2 again. When g() returns, fp is changed back to point to Frame 1.

6.2 Memory segments

The Cairo machine, as defined in Definition 1, allows random access mem-
ory and can support a very big address domain (as big as the field size). On
the other hand, in order to gain maximum efficiency in the Cairo AIR imple-
mentation, Cairo imposes an additional requirement that the set of accessed
memory addresses must be continuous (see Note 1 and Section 9.7).

It is possible to take advantage of Cairo’s nondeterminism in order to
mitigate the continuity requirement: The Cairo Runner supports the con-
cept of relocatable memory segments. A memory segment is a contiguous
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f() arguments

fp (for main)

pc (after call to f)

f() local variables

Frame 1

g() arguments

fp (for f)

pc (after call to g)

g() local variables

Frame 2

h() arguments

fp (for g)

pc (after 1st call to h)

h() local variables

Frame 3

h() return values

h() arguments

fp (for g)

pc (after 2nd call to h)

h() local variables

Frame 4

h() return values

g() return values

f() return values

Figure 9: The call stack. Indentation represents the call stack depth at that
point.
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segment of the memory whose address range is not fixed, and can be chosen
by the Cairo Runner (Section 3.5) at the end of the computation. We refer
to this process as segment relocation. Before the segment relocation pro-
cess, addresses of memory cells that belong to a relocatable segment may
be represented as a pair (s, t) where s is an integer identifying the segment,
and t is a non-negative integer specifying the offset within the segment. At
the end of the run, the size of each segment is computed (the size is the
least positive integer greater than all t for the given segment identifier s).
Then, the Cairo Runner assigns each segment a final base address so that
the memory segments will be positioned one after the other. For example, if
segment s was assigned a base address a ∈ F, then the relocatable memory
address (s, t) will be relocated to a+ t.

The segment mechanism provides an effective alternative to the dynamic
memory allocation process in other programming languages. Usually, the
dynamic memory allocation is a complicated process: the standard library
and the operating system have to track the allocated segments, handle re-
leasing the memory, and find the best position to allocate a new segment to
reduce fragmentation. In Cairo, this is much simpler; all one has to do is
allocate a new memory segment (the Cairo Runner picks an unused s). The
programmer doesn’t even have to specify the segment size!

As the relocation is done by the Cairo Runner, it will not be proven. For
example, a malicious prover may define overlapping segments. In a read-
write memory, this would have been a problem – how can one know that
changing a value in one segment will not change the value in another seg-
ment? However, since Cairo’s memory is read-only, this problem does not
exist: as long as the program is agnostic to address differences across seg-
ments, overlapping segments are indistinguishable from non-overlapping
segments.

There are several common segments defined by the Cairo Runner:

Program Segment – stores the bytecode of the executed Cairo program.

Execution Segment – stores the execution stack, as described in Section 6.1.

User Segments – general purpose segments defined by the program (dy-
namic allocation).

Builtin Segments – segments allocated for builtins, as covered by Sec-
tion 7.
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7 Builtins

Although Cairo is a Turing-complete26 architecture and can express every
computation, it incurs an overhead cost over raw AIRs. In a similar fashion
to the approach taken for physical CPUs, a way to overcome this is to add
numerous predefined optimized low-level execution units, called builtins.

Examples for such builtins are:

Range check Verify that a value is in some bounded range [0, n).

Cryptographic primitives such as hash functions, encryption, and signa-
ture validation.

General-purpose builtins such as a builtin that executes any given arith-
metic circuit.

Practically, the use of builtins may tremendously reduce the overhead
costs of moving from raw AIRs to Cairo programs – for many common pro-
grams. This section describes how builtins work as part of the Cairo archi-
tecture, and in particular, how Cairo programs use them.

7.1 Memory communication

Each builtin is assigned a memory segment (see Section 6.2), through which
the Cairo program can communicate with the builtin (see Fig. 2 in Sec-
tion 2.8).

For example, consider a hash builtin, whose purpose is to take 2 inputs x

and y, and compute their hash H(x, y). We can divide the “shared” memory
segment to triplets (m(3i),m(3i+1),m(3i+2)) for i in some range [a, b). The
responsibility of the hash builtin is to verify that m(3i+2) = H(m(3i),m(3i+

1)). Then, when the Cairo program wishes to “invoke” the hash function, it
could simply write x and y to m(3i) and m(3i+1), respectively, and read27 the
result from m(3i+ 2). Once we use the addresses m(3i),m(3i+ 1),m(3i+ 2)

in order to compute the first hash, we cannot use them again to compute a
different hash since Cairo’s memory is immutable.

Another implication of the immutability of the memory is that one cannot
maintain a global pointer to the “last” used memory address in the builtin
segment. Instead, one has to pass this pointer to and from each function
that uses that builtin. In particular, the main() entry-point should get and
return the pointer for each used builtin. It gets the (start) pointer to the
beginning of the memory segment and should return the (stop) pointer after
the last usage of the builtin.

26See footnote on page 14.
27From the point of view of the Cairo code, the result is computed nondeterministically.
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To check that there was no overflow from the memory segment allocated
for the builtin, these two pointers (start and stop) are exported via the public
memory mechanism (see Section 9.8) and verified by the verifier. For exam-
ple, say that the hash builtin has b − a instances and its allocated segment
spread over the addresses [3a, 3b) (recall that each instance takes three
cells). Then the verifier should check that the pointer sent to main() is 3a

and the pointer returned by main() satisfies 3a ≤ returned pointer ≤ 3b.
The Cairo Runner (see Section 3.5) comes with predefined hints to de-

duce values in some of the builtin memory segments. For example, in the
hash builtin, a useful hint is to deduce the value of m(3i + 2) by computing
the hash of the previous two elements.

8 Cairo Constructs

In this section, we describe how to construct basic building blocks of mod-
ern programming languages using Cairo instructions. Specifically, how to
deal with the memory restrictions (immutability) and the fact that the basic
type is a field element rather than an integer.

The code examples in this section will be given in pseudo-code assembly,
whose syntax will not be explicitly defined. Since Cairo is nondeterminis-
tic, the code will employ the concept of nondeterministic "guesses". See
Section 2.5.1.

8.1 Loops and recursion

We have already seen the layout of the Cairo stack and how the Cairo ma-
chine supports function calls (see Section 6). For example, consider the
following recursive function that computes x · an.

def exp(x, a, n):
# Compute x * a ** n.
if n == 0:

return x
return exp(x * a, a, n - 1)

One can implement it using Cairo instructions as follows:

exp:
# [fp - 5], [fp - 4], [fp - 3] are x, a, n, respectively.
jmp body if [fp - 3] != 0

# n == 0. Return x.
[ap] = [fp - 5]; ap++
ret

body:
# Return exp(x * a, a, n - 1).
[ap] = [fp - 5] * [fp - 4]; ap++
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[ap] = [fp - 4]; ap++
[ap] = [fp - 3] - 1; ap++
call exp
ret

In particular, note the pattern of a call instruction followed immediately
by a ret instruction. This is a tail recursion – where the return values of the
called function are forwarded. Functions with loops can be implemented by
defining helper functions that use tail recursion. This pattern is common in
functional programming languages.

8.2 Integer arithmetic

Since the basic word in Cairo is a field element, one might wonder how to
implement primitive integer arithmetic operations over bounded integers or
modulo other numbers (such as 264) as per standard architectures. This can
be achieved by using the range check builtin (see Section 2.8). Let M be the
bound of the range check builtin. One can treat the range check builtin as
if it introduces a new primitive instruction to our pseudo-code, of the form:

assert x in [0, M)

For the rest of this section, we assume M is much smaller than P (at least
by a factor of two).

Example 6 (Addition bounded by B ≤ M ). Given two elements x, y ∈ [0, B),
compute their sum, and verify that it is also in [0, B).

z := x + y # Field operation.
assert z in [0, M)
assert B - z in [0, M)

This shows that two range check invocations are enough to check for any
range smaller than B.

Example 7 (Multiplication modulo B ≤ M assuming (B − 1)2 + B ≤ P ).
Computing x · y mod B (where x and y are in the range [0, B)) can be ac-
complished by guessing residue < B and quotient, and then verifying that
x · y = residue+ quotient ·B. Since the latter is verified in the field, a check
that quotient is small enough is required to avoid overflow.

The largest possible quotient we need to support is ⌊(B − 1)2/B⌋.
This gives rise to the following algorithm:

z := x * y
residue := guess
quotient := guess
assert residue in [0, B)
assert quotient in [0, ⌊(B − 1)2/B⌋]
assert z == residue + quotient * B
return residue
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Note the use of nondeterminism – the line residue := guess should be
translated to the use of an uninitialized memory cell (whose value will be set
by a hint). For more information about nondeterminism, see Section 2.5.

8.3 Fixed and floating-point arithmetic

Fixed point operations are similar to integer operations except that after
each multiplication, one has to divide by 2b, where b is the fixed precision
(in bits). For this, one needs the integer division with remainder operation.

Notation. A fixed-point number x with b precision bits is represented by an
integer X, where x = X

2b
.

To see how to compute the multiplication of two fixed-point numbers
z = xy, note that Z = 2bxy = XY

2b
. Since X · Y is not guaranteed to be

divisible by 2b, one needs to use integer division, and we lose b precision
bits here – as expected when working with fixed-point arithmetic. Integer
division can be implemented almost identically to the multiplication modulo
operation in Example 7. Given x, y < B, and assuming (B − 1)2 +B ≤ P :

# Compute x // y.
residue := guess
quotient := guess

assert residue in [0, y)
assert quotient in [0, B)
assert x == residue + quotient * y
return quotient

Floating-point numbers are less efficient but still possible. Each floating-
point number can be represented by 2 words, the exponent and the man-
tissa. For example, the pair (xe, xm) represents the number (1+xm/2b) ·2xe .

Example 8 (Multiplication of floating-point numbers). Given two floating-
point numbers (xe, xm) and (ye, ym), the following pseudo-code computes
their product:

z_e := bounded_addition(x_e, y_e)
z_m := fixed_point_multiplication(x_m, y_m)
if fixed_point_less_than(z_m, 2):

return (z_e, z_m)
else:

return (bounded_addition(z_e, 1), integer_division(z_m , 2))

Addition can be implemented by first shifting one of the numbers so that
their exponents will be the same, and then summing the resulting mantis-
sas.
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8.4 Obtaining the values of the registers

Cairo has no specialized instruction for obtaining the values of the registers
ap, fp, pc. Still, one can retrieve those values and store them in the memory,
using the call (Section 5.4) instruction, as follows: The call instruction
pushes the values of fp and pc to the memory and then sets fp to ap. Thus,
after two consecutive calls, the 4 values at the top of the memory stack
(that is, [ap - 4], [ap - 3], [ap - 2], [ap - 1]) are fp, pc, ap + 2, and
another value we don’t care about.

The following code may be used to obtain the values of the registers:

get_registers:
call get_ap
ret

get_ap:
ret

....
call get_registers
# We now have:
# [ap - 4] == fp
# [ap - 3] == pc
# [ap - 2] == prev_ap + 2 == current_ap - 2

8.5 Read-write memory

Cairo’s memory model does not support read-write memory natively. In-
stead, one can take advantage of nondeterminism to build a data structure
that simulates a random-access read-write memory.

8.5.1 Append-only array

Before describing how to implement a read-write dictionary in Cairo, we
describe an important building block: the append-only array.

An append-only array is a data structure that supports two operations
in constant time: appending a value and querying a value at an arbitrary
index. It does not support modifying or removing values.

To implement an append-only array in Cairo, one stores the values of the
array in a memory segment28 (see Section 6.2) and maintains two pointers
into this segment: array_start, which points to the beginning of the array,
and array_end, which points to the first cell that hasn’t been written yet.

The size of the array can be computed using array_end - array_start.
In order to access the element at index i, simply take [array_start + i].

28Note that using a memory segment means that one doesn’t have to handle memory re-
allocation when additional elements are added, as done in similar data structures in other
architectures.
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The append function gets the two pointers and returns the two updated
pointers:

append_to_array(array_start, array_end, new_value):
# Write the value at the end of the array.
[array_end] = new_value
# Return the updated pointers.
return (array_start, array_end + 1)

An append-only array can function as an operation log: say you have a
sequence of read and write operations. One can nondeterministically guess
the result of each operation and log the operation and its alleged result in
such an array. At the end of the execution, one can go over the log and
check that the log is consistent and the guessed values were correct.

8.5.2 Read-write dictionary

The read-write dictionary data structure holds a mapping from keys to val-
ues and allows the setting of, and retrieval of, arbitrary keys. One can
implement this in Cairo using an append-only array:

The array will hold triplets of (key, previous value, new value); each rep-
resents a single read and write access to the dictionary at a specific key.
The order of the triplets in the array will be the chronological order of the
accesses. Each key may appear (and, in fact, is likely to appear) in more
than one triplet. When accessing the dictionary, the correct previous value
(which is, in fact, the current value at the given key) can be (nondetermin-
istically) guessed.

After using the dictionary, the program must verify that the array of ac-
cess triplets is consistent. Namely, that for every access (k, p0, n0), the next
access with the same key, (k, p1, n1), should satisfy n0 = p1. This constraint
guarantees that, when setting a key to some value, the next access to that
key will return the written value.

To check this constraint, one takes the following approach:

1. The prover (with the assistance of a hint) sorts the access array by the
key (preserving the order of accesses within the same key).

2. Verify that the (guessed) sorted array matches the result of sorting the
original array of accesses (due to nondeterminism, this can be done in
O(n), instead of the usual cost of sorting, which is O(n log n)).

3. Iterate over the sorted array and check the consistency condition lo-
cally.

8.5.3 Sorting with permutation checking

Given two arrays A,B of size n, it is possible to check that A is the stable
sorting of B. This can be done by guessing an injection from A to B: a
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mapping that has no collisions, from indices in A to indices in B, s.t. A[i] =

B[f(i)]. Since f is injective and n to n, it is, in fact, a permutation. The
sorting can be done in the following manner:

1. Check that A is sorted: iterate the values of A and check that they are
non decreasing.

2. Check that A is a permutation of B: For the sake of simplicity, assume
that the set of distinct ordered keys is 0, 1, . . . ,m−1, and j0, j1, . . . , jm−1

are the first indices of each segment in A (respectively). For the sake
of completeness, define jm = n. For each segment Si = [ji, ji+1):

(a) Guess the indices in B where these values appear Ii : Si → [0, n),
and ensure it is indeed the case:

B[Ii(k)] = A[k].

(b) Ensure the sorting is stable by checking that Ii is increasing:

Ii(k + 1) > Ii(k).

This algorithm can also be used to check that two arrays are a permuta-
tion of one another by introducing a third array and checking that it is the
sorting of the two original arrays.

9 An Algebraic Intermediate Representation (AIR)
for Cairo

This section describes how to construct an AIR – Arithmetic Intermediate
Representation (see Section 2.1) for the Cairo machine (Section 3.2). In
Section 2.1, we defined an AIR as a system of polynomial constraints oper-
ating on a table of field elements (the trace). An AIR for the Cairo machine
is such a system for which the constraints are satisfiable if, and only if, the
Cairo machine outputs “accept”. Such an AIR allows the prover to convince
the verifier that the machine accepts. Note that understanding this section
is not required in order to understand the Cairo language or architecture.

While this paper does not include formal proofs for the completeness
(if the Cairo machine accepts then the AIR has a valid assignment) and
the soundness (a valid assignment implies that the Cairo machine accepts)
of the presented AIR, most of the constraints are rather intuitive and they
closely follow the definition in Section 4.5. Both the soundness and the com-
pleteness are not perfect due to the memory (Section 9.7) and permutation
range check (Section 9.9) constraints. The soundness error of the memory
constraint is analyzed in Theorem 2 and the soundness error of the permu-
tation range checks can be analyzed similarly. A coming paper, [7], provides
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a LEAN proof for the soundness of the Cairo AIR, using the LEAN theorem
prover [6].

The straightforward way to describe an AIR entails describing what each
cell in the trace means and then listing each constraint, explaining what it
enforces. This section presents the AIR in an alternative way that alternates
between listing constraints and expanding the trace cells. For our purposes,
we won’t examine the exact location of each cell in the table. We will only
focus on how many instances of the cell exist. For example, we may have
N = T + 1 trace cells representing pci for i ∈ [0, T ], but 16N trace cells for
the 15 bits representing the flags of the instructions (for technical reasons,
the number of cells must be a power of 2).

A set of trace cells with the same role is called a virtual column. After
collecting all the required virtual columns, we can decide how to place them
in a two-dimensional table. Every virtual column is placed inside a single
column periodically. For example, if the trace length (the number of rows)
is L = 16N , then the virtual column representing pci will have a cell in the
table every 16 rows. The process of optimal placement29 is easy, due to the
fact that the ratios between the sizes are powers of two, however, we don’t
deal with this in this paper.

We also define the notion of a virtual subcolumn, where one takes a
periodic subset of the cells that constitute a virtual column, and treat those
cells as a virtual column. For example, we may define a virtual column of
size 4N on which we will enforce that all the values are in the range [0, 216),
and then define three subcolumns of size N for offdst, offop0 and offop1. This
allows us to write one set of constraints for the parent column (for example,
constraints for validating that the values are in range), and three sets of
constraints for offdst, offop0, and offop1 according to the way they are used in
the instruction.

Thus, we proceed as follows: describe several of the virtual columns;
then some constraints involving them; then possibly describe more virtual
columns and more constraints; and so on.

9.1 Notation

Let F denote the base field – a finite field of size |F| and characteristic P >

263. Let T denote the number of steps, as in Definition 2. The number
of states is N = T + 1. The trace length, L, is 16N . As the trace length
must be a power of 2, so should be N . Throughout this section, we assume
that L is less than P . Note that each integer in the range [−⌊P/2⌋, ⌊P/2⌋]
corresponds to a unique element in F. We will use the two representations
interchangeably.

29Placing the virtual columns in a table of minimal size.
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9.2 The proven integrity statement

Recall from Section 3 that the nondeterministic Cairo machine is a function
that receives the following inputs:

1. a number of steps T ∈ N,

2. a partial memory function m∗ : A∗ → F, where A∗ ⊆ FP ,

3. initial and final values for pc and ap: pcI , pcF , apI , and apF (apI is
also used as the initial value for fp),

and outputs “accept” or “reject”.
The parameters of the statement are called the public input, and they are

precisely (T,m∗, pcI , pcF , apI , apF ). They represent the information known
both to the prover and the verifier.

For each set of values to the parameters (public input), we define a state-
ment which will be referred to as the integrity statement :

Definition 3 (Integrity statement). The nondeterministic Cairo machine
outputs “accept” when applied to (T,m∗, pcI , pcF , apI , apF ) (see Definition 2
on page 25).

The rest of this section is dedicated to the description of the AIR for the
above statement.

9.3 Quadratic AIR

One metric that was not mentioned in Section 2.3.1 is the maximal degree of
the constraints in the AIR. As long as the degree is not too large, the number
of trace cells is a good estimation for the performance of the AIR. However,
in some cases it is beneficial to add a few additional trace cells in order
to reduce the maximal degree of the constraints. As you will see below,
most of the constraints of the Cairo AIR are natively of degree 2 (quadratic
constraints). The exceptions are two constraints described in Section 9.5,
which are natively of degree 3. For these constraints, we add additional
trace cells to reduce their degree to 2, so that all of the constraints of the
Cairo AIR will be linear or quadratic.

9.4 Instruction flags

As explained in Section 4, each instruction consists of:

1. First word: 15 bits of flags (f∗) and 3 offsets (off∗).

2. Second word (optional): An immediate value (a field element).
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The flag groups are defined as follows:

dst_reg = fDST_REG

op0_reg = fOP0_REG

op1_src = fOP1_IMM + 2 · fOP1_FP + 4 · fOP1_AP
res_logic = fRES_ADD + 2 · fRES_MUL

pc_update = fPC_JUMP_ABS + 2 · fPC_JUMP_REL + 4 · fPC_JNZ
ap_update = fAP_ADD + 2 · fAP_ADD1

opcode = fOPCODE_CALL + 2 · fOPCODE_RET + 4 · fOPCODE_ASSERT_EQ

Define õff∗ = off∗ + 215 (where ∗ is one of op0, op1, dst) so that õff∗
should be in the range [0, 216). We allocate a virtual column for õff∗ rather
than off∗ (three virtual columns, each of size N ). In order to unpack the first
word of an instruction to its ingredients, we use a bit-unpacking component:
Let {fi}14i=0 be the flag bits. We have:

inst = õffdst + 216 · õffop0 + 216·2 · õffop1 + 216·3 ·
14∑
i=0

(
2i · fi

)
.

Denote f̃i =
∑14

j=i 2
j−i · fj (so that f̃0 is the full 15-bit value and f̃15 =

0). Note that f̃i are the bit prefixes of f̃0. Instead of allocating 15 virtual
columns of size N for the flags, we allocate one virtual column for {f̃i}15i=0

of size 16N . This is an optimization of the number of constraints in the AIR
(thus slightly reducing the verification time). To obtain the value of a flag fi
from the sequence {f̃i}15i=0, we use the following identity:

f̃i − 2f̃i+1 =

14∑
j=i

2j−i · fj − 2 ·
14∑

j=i+1

2j−i−1 · fj =

=

14∑
j=i

2j−i · fj −
14∑

j=i+1

2j−i · fj = fi

Thus, the instruction-unpacking constraints are:

Instruction inst = õffdst + 216 · õffop0 + 216·2 · õffop1 + 216·3 · f̃0.

Bit (f̃i − 2f̃i+1)(f̃i − 2f̃i+1 − 1) = 0 for all i ∈ [0, 15).

Last value is zero f̃15 = 0.
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Offsets are in range The virtual columns õff∗ (where ∗ is one of op0, op1,
dst) are, in fact, subcolumns of the permutation range-check described
in Section 9.9 forcing õff∗ ∈ [0, 216), and thus off∗ ∈ [−215, 215).

Theorem 1 (Instruction decoding). Assume the constraints above on the
values of inst, õffdst, õffop0, õffop1, and {f̃i}15i=0, and that P > 263. Then,
there exists a unique integer instZ ∈ Z in the range [0, 263) such that inst =

instZ (recall that inst ∈ F). Moreover, the value of fi = f̃i − 2f̃i+1 is the
(3 · 16 + i)-th bit of instZ, and the value of õff∗ is bits 16 · i, . . . , 16 · i+ 15 of
instZ, where i is either 0, 1, or 2 according to *.

Proof. The fact that P > 263 guarantees that any representation of a field
element by an integer in the range [0, 263) (or any smaller range) is unique.

The “Bit” constraint enforces f̃i = 2f̃i+1 or f̃i = 2f̃i+1 + 1. By induction
on i, we have that f̃15−i ∈ [0, 2i). Thus, f̃0 ∈ [0, 215). The permutation range-
checks enforce õff∗ ∈ [0, 216). Hence, we have30

0 ≤ õffdst + 216 · õffop0 + 216·2 · õffop1 + 216·3 · f̃0 < 263.

Thus, the “Instruction” constraint proves the existence of instZ ∈ [0, 263)

and its required properties.

9.5 Updating pc

Most of the constraints for the validation of instructions are relatively straight-
forward, and the full list appears in Section 9.10. One exception is the con-
straints for updating the pc register, whose derivation is explained in this
section.

As we saw in Section 4.5, pc may be updated in a few ways – regular
update (pc_update = 0), absolute/relative jump (pc_update = 1, 2) and con-
ditional jump (pc_update = 4. This case is also referred to as jnz – Jump
Non-Zero). In order to follow this section, the reader is encouraged to refer
to the part about computing the new value of pc in Section 4.5.

As explained in Section 9.4, we have

pc_update = fPC_JUMP_ABS + 2 · fPC_JUMP_REL + 4 · fPC_JNZ.

Denote

regular_update = 1− fPC_JUMP_ABS − fPC_JUMP_REL − fPC_JNZ,

and note that we may assume that exactly one of regular_update, fPC_JUMP_ABS,
fPC_JUMP_REL, fPC_JNZ is one and the other three are zero31.

30In fact, the field element values in the equation should be replaced by their unique integer
representation in the range [0, 263).

31Otherwise, we’re in an Undefined Behavior.
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Consider the following constraint:

(1−fPC_JNZ) · next_pc− (

regular_update · (pc+ instruction_size) +

fPC_JUMP_ABS · res+

fPC_JUMP_REL · (pc+ res)) = 0 (5)

Note that this constraint handles all the cases except for jnz (in jnz, the
constraint becomes 0 = 0). In the case of jnz, we either perform a regular
update (if dst = 0) or make a relative jump according to op1 (if dst ̸= 0).

The following constraint enforces that if dst ̸= 0, we make the relative
jump:

fPC_JNZ · dst · (next_pc− (pc+ op1)) = 0

As we prefer to use quadratic constraints (see Section 9.3), we allocate
a new virtual column of size N , t0, and we replace the constraint with the
following two:

t0 = fPC_JNZ · dst,
t0 · (next_pc− (pc+ op1)) = 0. (6)

To verify that we make a regular update if dst = 0, we need an auxiliary
variable (a new virtual column of size N ), v (to fill the trace in the case
dst ̸= 0, set v = dst−1):

fPC_JNZ · (dst · v − 1) · (next_pc− (pc+ instruction_size)) = 0.

To make it quadratic, we add another virtual column, t1, and we rewrite it
as:

t1 = t0 · v,
(t1 − fPC_JNZ) · (next_pc− (pc+ instruction_size)) = 0.

We finish by applying two more optimizations:

1. Note that in a jnz (conditional jump) instruction, res is not used (it
is either Unused or Undefined Behavior). Hence, we can use it to
hold the value of v (in other words, instead of allocating a new virtual
column for v, one can use the virtual column of res).

2. Note that according to the value of fPC_JNZ, one of the left-hand sides
of Eq. (5) and Eq. (6) must be zero. Thus, we can combine them to one
constraint:

t0 · (next_pc− (pc+ op1)) + (1− fPC_JNZ) · next_pc− (

regular_update · (pc+ instruction_size) +

fPC_JUMP_ABS · res+

fPC_JUMP_REL · (pc+ res)) = 0.
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9.6 Permutations and interaction step

A key component that is required to make Cairo efficient in terms of trace
cells, is an additional interaction step between the prover and the verifier
during the construction of the trace. This construction is based on a tech-
nique originally introduced in [9].

As an example, let’s say that we want to prove that the cells of one
trace column a are the same as the cells of another column b, up to some
permutation. The problem is that this property is not local, and thus there
is no simple AIR constraint that enforces it.

The key idea is to observe that the two polynomials f(X) =
∏n−1

i=0 (X−ai)

and g(X) =
∏n−1

i=0 (X − bi) are identical if, and only if, the values of ai and bi
are the same up to a permutation. Second, note that if the two polynomials
are not identical, we can observe this by picking a random field element
z ∈ F and substituting it in the two polynomials. With high probability, the
results will not be the same (assuming that the polynomials’ degrees are
much smaller than the field size).

To translate this concept to an AIR, we introduce two new trace columns:
cj =

∏j
i=0(z − ai) and dj =

∏j
i=0(z − bi) which represent the computation of

f(z) and g(z), for a field element z ∈ F (we describe below how z is chosen).
The constraints will enforce that the cumulative products are computed cor-
rectly, and that the last cell in the column c is the same as the last cell in
d. This will convince the verifier that f(z) = g(z), which implies (with high
probability) that f = g, which in turn implies that the values in a and b are
the same up to a permutation.

There is one crucial problem with the construction above: On the one
hand, it is important that z will be (randomly) chosen by the verifier after the
prover has committed to a and b (otherwise, the probability argument above
fails). But on the other hand, it must be chosen before the commitment to
c and d (as they depend on it). With the regular STARK protocol, this is not
possible since the commitment to the trace is done in one step.

Therefore, Cairo uses a slightly modified version of STARK, in which the
prover first commits to some columns (a and b in our example), then the
verifier generates some randomness32. Now, the prover commits to the rest
of the columns (c and d), which may depend on the random values. We refer
to this method as adding another interaction step between the prover and
the verifier (in which the verifier sends the additional randomness).

Cairo uses a slightly improved version of the permutation-check described
above for its range-checks and memory, as explained in the following sec-
tions.

32In the case of a non-interactive STARK, where the Fiat-Shamir heuristic is used, the ran-
domness is based on the commitment to the first part of the trace.
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9.7 Nondeterministic continuous read-only memory

9.7.1 Definition

Definition 4. A memory access is a pair (a, v) ∈ F2 where a represents an
address and v represents the value of the memory at a. A list of memory
accesses (ai, vi) for i ∈ [0, n) (1 ≤ n < P ) is said to form a read-only memory
if for all i, j ∈ [0, n), if ai = aj , then vi = vj . It is said to be continuous if
the set {ai : i ∈ [0, n)} equals [m0,m1)

33 for some m0,m1 ∈ F that satisfy
m1 = m0+t for a natural number t < P . In particular, for a given continuous
read-only memory list of accesses, we can define a function f : [m0,m1) → F
such that f(ai) = vi for all i ∈ [0, n). Any function m : F → F extending f is
said to be a memory function for the list of memory accesses.

9.7.2 Constraints

Theorem 2. Let L1 = {(ai, vi)}n−1
i=0 , L2 = {(a′i, v′i)}

n−1
i=0 be two lists of memory

accesses, and {pi}n−1
i=0 an additional sequence of field elements, satisfying

the following constraints with non-negligible probability over the choice of
two random elements z, α ∈ F:

Continuity (a′i+1 − a′i)(a
′
i+1 − a′i − 1) = 0 for all i ∈ [0, n− 1).

Single-valued (v′i+1 − v′i)(a
′
i+1 − a′i − 1) = 0 for all i ∈ [0, n− 1).

Permutation:

Initial value (z − (a′0 + αv′0)) · p0 = z − (a0 + αv0).

Final value pn−1 = 1.

Cumulative product step (z − (a′i + αv′i)) · pi = (z − (ai + αvi)) · pi−1

for all i ∈ [1, n).

Then, L1 forms a continuous read-only memory.

Proof. First, show that L2 forms a continuous read-only memory. By the
continuity constraint, a′i+1 ∈ {a′i, a′i + 1} and so L2 is continuous34. To see
that L2 forms a read-only memory, note that if a′i = a′j for i < j then a′i =

a′j = a′k for all i < k < j by the “Continuity” constraint. The “Single-valued”
constraint then guarantees that v′i = v′i+1 = v′i+2 = · · · = v′j .

Next, show that

n−1∏
i=0

(z − (a′i + αv′i)) =

n−1∏
i=0

(z − (ai + αvi)) . (7)

33Here we use the notation [m0,m1) to mean {m0 + i : i = 0, 1, . . . , t− 1}.
34Note that there cannot be an overflow since n < L < P , where L is the trace length.
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We show by induction that for all n′ ∈ [0, n):

pn′ ·
n′∏
i=0

(z − (a′i + αv′i)) =

n′∏
i=0

(z − (ai + αvi)) . (8)

For n′ = 0, this holds by the “Initial value” constraint. For n′ > 0, this
follows from the “Cumulative product step” constraint: Multiply both hands
of Eq. (8) for n′−1 by (z−(an′+αvn′)). Then, replace (z−(an′+αvn′))·pn′−1 in
the left-hand side by (z− (a′n′ +αv′n′)) ·pn′ to obtain Eq. (8) for n′. It remains
to substitute n′ = n−1 and use the “Final value” constraint to obtain Eq. (7).

We have shown that L2 forms a continuous read-only memory and that
Eq. (7) holds. The following proposition will imply that L1 also forms a
continuous read-only memory.

Proposition 1. Let L1 = {(ai, vi)}n−1
i=0 , L2 = {(a′i, v′i)}

n−1
i=0 be two lists of

memory accesses, where L2 forms a continuous read-only memory. Denote
by E the event that

∏n−1
i=0 (z − (a′i + αv′i)) =

∏n−1
i=0 (z − (ai + αvi)). If

Pr
α,z∈F

[
E
]
>

n2 + n

F
,

then L1 forms a continuous read-only memory.

Proof. Let E ′ be the event that the function (a, v) 7→ a+ αv has no collisions
with respect to the two lists. Namely, for all i and j if ai + αvi = a′j + αv′j

then (ai, vi) = (a′j , v
′
j). By the union bound, we have Prα,z∈F[E ′] < n2

F and
thus Prα,z∈F[E ∩ E ′] > n

F .
Fix α satisfying Prz∈F[E ∩ E ′] > n

F . Consider the polynomial

n−1∏
i=0

(X − (ai + αvi))−
n−1∏
i=0

(X − (a′i + αv′i)).

This polynomial vanishes for at least n + 1 values of X, and thus it is the
zero polynomial. Since ai + αvi is a root of the left product, there must be
j for which ai + αvi = a′j + αv′j . Since (a, v) 7→ a + αv has no collisions, we
have (ai, vi) = (a′j , v

′
j). Remove the two terms from the products and apply

the same argument to obtain that the list L1 is a permutation of L2. Since
the property “continuous read-only memory” does not depend on the order
of the list, it holds for L1 as well.

9.8 Public memory

Verifying that L1 = {(ai, vi)}n−1
i=0 forms a continuous read-only memory is

not enough. Part of the statement is to verify that there exists a memory
function m that extends m∗ (specified in the public input). To do it, it suffices
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to artificially add the accesses {(a,m∗(a))}a∈A∗ to L1 and L2
35. This can be

done by allocating additional trace cells for these artificial accesses and
enforcing the values of the L1 cells to be (a,m∗(a)) using 2 · |A∗| boundary
constraints (for each address in A∗, one boundary constraint for the address
and one for the value).

While this solution works, it is rather inefficient due to the large num-
ber of additional constraints. Instead, we replace the |A∗| L1-accesses with
the dummy memory accesses (0, 0) (the L2-accesses remain with the real
accesses induced by m∗) and change the constraints given in Section 9.7.2
to treat those accesses as if they were {(a,m∗(a))}a∈A∗ . Going over the con-
straints, we see that the only thing that needs to change is the computation
of the product. Moving from the product computed using the (0, 0) accesses
to the real product is relatively straightforward: we just need to multiply by∏

a∈A∗(z − (a+ α ·m∗(a)))

z|A∗| .

Therefore, we change the “Final value” constraint to:

pn−1 =
z|A

∗|∏
a∈A∗(z − (a+ α ·m∗(a)))

. (9)

If this new constraint holds for the data with the (0, 0) accesses, the product
of the real accesses will be 1 as required.

This gives an extremely efficient way to handle the output of the Cairo
program: for every field element in the output, the verifier has to do only
two additions and two multiplications (for computing the denominator in
Eq. (9)).

9.9 Permutation range-checks

As explained in Section 9.4, some of the trace cells should be constrained to
be in the range [0, 216). To check that the values {ai}n−1

i=0 of a virtual column
are all in that range, we use the same technique we saw in Section 9.7, with
the following changes:

1. Make sure that the set {ai : i ∈ [0, n)} is continuous. To do so, one
may artificially add trace cells and populate them to fill the holes that
existed in the original list of values.

2. Set vi = 0 for all i ∈ [0, n) and add constraints to check that {(ai, vi)}n−1
i=0

forms a continuous read-only memory. Of course, some of the con-
straints can be simplified (e.g., α is not needed anymore), and some
can be removed (e.g., the “Single valued” constraint).

35They are added to L1 in dedicated trace cells and to L2 in their natural place according to
the sorting.
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3. Add two constraints on the first and last values of a′:

Min range-check value a′0 = rcmin,

Max range-check value a′n−1 = rcmax,

where the values of rcmin and rcmax are shared with the verifier. The
verifier checks explicitly that 0 ≤ rcmin ≤ rcmax < 216.

9.10 List of constraints

This section summarizes Section 9 and lists all of the Cairo AIR constraints.
We start with a list of definitions to simplify the constraints below. These
definitions do not constitute constraints themselves.

off∗ = õff∗ − 215 (where ∗ is one of op0, op1, dst)

fi = f̃i − 2f̃i+1

fDST_REG = f0 fPC_JUMP_REL = f8

fOP0_REG = f1 fPC_JNZ = f9

fOP1_IMM = f2 fAP_ADD = f10

fOP1_FP = f3 fAP_ADD1 = f11

fOP1_AP = f4 fOPCODE_CALL = f12

fRES_ADD = f5 fOPCODE_RET = f13

fRES_MUL = f6 fOPCODE_ASSERT_EQ = f14

fPC_JUMP_ABS = f7

instruction_size = fOP1_IMM + 1

Instruction unpacking (see Section 9.4):

inst = õffdst + 216 · õffop0 + 216·2 · õffop1 + 216·3 · f̃0
fi · (fi − 1) = 0, for all i ∈ [0, 15)

f̃15 = 0

Operand constraints:

dst_addr = fDST_REG · fp+ (1− fDST_REG) · ap+ offdst

op0_addr = fOP0_REG · fp+ (1− fOP0_REG) · ap+ offop0

op1_addr = fOP1_IMM · pc+ fOP1_AP · ap+ fOP1_FP · fp+

(1− fOP1_IMM − fOP1_AP − fOP1_FP) · op0+ offop1
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The ap and fp registers:

next_ap = ap+ fAP_ADD · res+ fAP_ADD1 · 1 + fOPCODE_CALL · 2
next_fp = fOPCODE_RET · dst+ fOPCODE_CALL · (ap+ 2) +

(1− fOPCODE_RET − fOPCODE_CALL) · fp
ap0 = fp0 = apI

apT = apF

The pc register (Section 9.5):

t0 = fPC_JNZ · dst
t1 = t0 · res
(t1 − fPC_JNZ) · (next_pc− (pc+ instruction_size)) = 0

t0 · (next_pc− (pc+ op1)) + (1− fPC_JNZ) · next_pc− (

(1− fPC_JUMP_ABS − fPC_JUMP_REL − fPC_JNZ) · (pc+ instruction_size) +

fPC_JUMP_ABS · res+

fPC_JUMP_REL · (pc+ res)) = 0

pc0 = pcI

pcT = pcF

Opcodes and res:

mul = op0 · op1
(1− fPC_JNZ) · res =

fRES_ADD · (op0+ op1) + fRES_MUL · mul+
(1− fRES_ADD − fRES_MUL − fPC_JNZ) · op1,

fOPCODE_CALL · (dst− fp) = 0

fOPCODE_CALL · (op0− (pc+ instruction_size)) = 0

fOPCODE_ASSERT_EQ · (dst− res) = 0

Memory (Section 9.7.2): Here am, vm are two virtual columns with the fol-
lowing pairs of subcolumns: 1. (pc, inst), 2. (dst_addr, dst), 3. (op0_addr, op0),
and 4. (op1_addr, op1). If the AIR contains builtins (see Sections 2.8 and 7),
each builtin may use additional pairs of subcolumns. Another pair of sub-
columns is dedicated to the public memory mechanism (Section 9.8); for
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those cells, we add constraints that both the addresses and the values are
zeros. The size of the virtual columns am, vm is determined by the sum of the
required subcolumns. a′m and v′m are two virtual columns of the same size
as am and vm, that hold the sorted list of memory accesses.

(a′mi+1 − a′mi )(a
′m
i+1 − a′mi − 1) = 0 for all i ∈ [0, n− 1)

(v′mi+1 − v′mi )(a′mi+1 − a′mi − 1) = 0 for all i ∈ [0, n− 1)

(zm − (a′m0 + αv′m0 )) · pm

0 = zm − (am

0 + αvm

0)

pm

nm−1 =
z|A

∗|∏
am∈A∗(z − (am + α ·m∗(am)))

(see Section 9.8)

(zm − (a′mi + αv′mi )) · pm

i = (zm − (am

i + αvm

i )) · pm

i−1 for all i ∈ [0, n− 1)

Permutation range-checks (see Section 9.9): Here, arc is a virtual col-
umn with subcolumns for: õffdst, õffop0, õffop1 (at least 3T values, with addi-
tional unused cells for filling holes).

(a′rc

i+1 − a′rc

i )(a′rc

i+1 − a′rc

i − 1) = 0 for all i ∈ [0, n− 1)

(zrc − a′rc

0 ) · prc

0 = zrc − arc

0

prc

nrc−1 = 1

(zrc − a′rc

i ) · prc

i = (zrc − arc

i ) · prc

i−1 for all i ∈ [0, n− 1)

a′rc

0 = rcmin

a′rc

nrc−1 = rcmax

A Running untrusted code

As explained in Section 2.2.2, it is possible to run several different programs
within the same proof. This can be done using a “bootloader” that runs the
following loop:

1. Guess the bytecode of an inner program.

2. Compute its hash.

3. Jump to the first instruction using a call opcode.

This schema only works if all the inner programs are honest: A malicious
program could perform a jump to the end of the bootloader loop (instead of
properly returning using the ret opcode). This would skip the execution of
the other programs.

As one may want to be able to execute untrusted programs, we need
to amend the AIR constraints, and require some properties from the boot-
loader program, to enforce that every call has a corresponding ret.
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Our goal is to prove the following theorem:

Theorem 3. Under the constraints that will be described in this section,
every call always returns properly. Specifically, there is a corresponding
ret opcode which results in the correct pc and fp values.

We do so by adding the following constraints:

1. Disjoint flags Each of the following expressions is either 0 or 1 (en-

forced by a constraint of the form z · (z− 1) = 0, where z is the expres-
sion):

(a) fOP1_IMM + fOP1_AP + fOP1_FP

(b) fOPCODE_RET + fOPCODE_CALL

(c) fPC_JUMP_ABS + fPC_JUMP_REL + fPC_JNZ

(d) fRES_ADD + fRES_MUL + fPC_JNZ

Together with the constraints fi · (fi− 1) = 0, this ensures that at most
one of the expressions in each group is 1. For example, an opcode
cannot be both call and ret at the same time.

2. call restrictions The following constraints must hold for every call

opcode:

(a) offdst = 0 (fOPCODE_CALL · offdst = 0)

(b) offop0 = 1 (fOPCODE_CALL · (offop0 − 1) = 0)

(c) fDST_REG = 0 and fOP0_REG = 0 (fOPCODE_CALL · (fDST_REG + fOP0_REG) = 0)

3. ret restrictions The following constraints must hold for every ret

opcode:

(a) offdst = −2 (fOPCODE_RET · (offdst + 2) = 0)

(b) offop1 = −1 (fOPCODE_RET · (offop1 + 1) = 0)

(c) fPC_JUMP_ABS = 1, fDST_REG = 1, fOP1_FP = 1, fRES_ADD = 0, fRES_MUL = 0,
and fPC_JNZ = 0

(fOPCODE_RET · (fPC_JUMP_ABS + fDST_REG + fOP1_FP − fRES_ADD − fRES_MUL −
fPC_JNZ − 3) = 0)

4. Final fp The final value of the fp register must be identical to the

initial value: fpT = fp0 = apI .

5. fp cycle: m(apI − 2) = apI . This can be enforced in the verifier by
adding an entry to the public memory.
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Furthermore, we require the bootloader to start with the following op-
codes:

ap += C # C ̸= −2. This opcode is optional.
call ...
jmp rel 0 # Infinite loop.

Proposition 2. If fOPCODE_CALL = 1 then

m(next_fp− 2) = fp,

m(next_fp− 1) = pc+ instruction_size.

If fOPCODE_RET = 1 then

next_pc = m(fp− 1), next_fp = m(fp− 2).

Proof. For a call opcode, we have:

fp = dst = m(dst_addr) = m(ap+ offdst) =

= m(ap) = m(next_fp− 2),

pc+ instruction_size = op0 = m(op0_addr) =

= m(ap+ 1) = m(next_fp− 1).

For a ret opcode, we have:

next_pc = res = op1 = m(op1_addr) = m(fp+ offop1) = m(fp− 1),

next_fp = dst = m(dst_addr) = m(fp+ offdst) = m(fp− 2).

Consider the value of fp at a certain step of the execution. m(fp − 2)

should be the value of fp of the caller function, m(m(fp − 2) − 2) should be
the value of its caller, and so on. Define two functions: f(x) = m(x− 2) and
g(x) = (x, f(x), f(f(x)), . . . ). g(fp) represents the stack trace at a certain
point in time – the sequence of the fp values of all the caller functions.

The following proposition describes how the sequence g(fp) may change
during the execution of a step.

Proposition 3. If g(fp) = (g0, g1, . . . ) at a certain step, then g(next_fp) is
either

1. Unchanged: (g0, g1, . . . ),

2. call: (next_fp, g0, g1, . . . ),

3. ret: (g1, g2, . . . ).

Proof.
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1. If fOPCODE_CALL = fOPCODE_RET = 0, we have next_fp = fp and thus the
value of g(fp) remains unchanged: g(next_fp) = g(fp) = (g0, g1, . . .).

2. If fOPCODE_CALL = 1, then by Proposition 2, m(next_fp − 2) = fp and
therefore f(next_fp) = m(next_fp − 2) = fp = g0. This implies
g(next_fp) = (next_fp, g0, g1, . . . ).

3. If fOPCODE_RET = 1, we have next_fp = m(fp − 2) = f(fp) = g1. Thus,
g(next_fp) = (g1, g2, . . . ).

Note that the constraint m(apI − 2) = apI implies that f(apI) = apI , and
thus g(fp0) = g(fpT ) = (apI , apI , apI , . . . ). Define the stack depth function
h(fp) to be the number of elements in the sequence g(fp) different from
apI . We have h(fp0) = h(fpT ) = 0. It follows from Proposition 3 that each
step may either increase h by 1, decrease it by 1 or leave it unchanged (note
that the value may be unchanged even if the opcode is call or ret).

Proposition 4. Let 0 ≤ i < i + 1 < j ≤ T . If the i-th opcode is call,
h(fpi) = h(fpj), and for every i < k < j, h(fpk) ̸= h(fpi), then (1) the (j−1)-
th opcode is ret, (2) fpj = fpi, (3) fpj−1 = fpi+1, and (4) h(fpk) > h(fpi)
for every i < k < j.

Proof. First show that for every i < k < j − 1, if g(fpi+1) is a suffix of g(fpk)
then g(fpi+1) is also a suffix of g(fpk+1): The only interesting case is when
the k-th opcode is ret and g(fpk) = g(fpi+1). In that case, g(fpk+1) = g(fpi),
so h(fpk+1) = h(fpi), which leads to a contradiction.

As g(fpi+1) is a suffix of itself, we can apply this property inductively and
obtain that g(fpi+1) is a suffix of g(fpj−1).

Since the i-th opcode is call, h(fpi+1) can be either h(fpi) or h(fpi) + 1.
The former case is impossible by the assumption of the proposition. We
conclude that h(fpk) ≥ h(fpi+1) > h(fpi) for every i < k < j.

Since h(fpi+1) = h(fpi) + 1 = h(fpj) + 1 > h(fpj), g(fpi+1) cannot be
a suffix of g(fpj). This implies that the (j−1)-th opcode is ret and g(fpj−1) =

g(fpi+1). Thus, fpj−1 = fpi+1 and fpj = next_fpj−1 = f(fpj−1) = f(fpi+1) =

f(next_fpi) = fpi.

Proposition 5. If the i-th opcode is call and h(fpi+1) > h(fpi), then there
exists j > i + 1 such that (1) the (j − 1)-th opcode is ret, (2) fpj = fpi, (3)
pcj = pci + instruction_sizei, and (4) h(fpk) > h(fpi) for every i < k < j.

Proof. Note that i ̸= T − 1 since otherwise h(fpi) < h(fpi+1) = h(fpT ) = 0.
Let j be the smallest value for which j > i+ 1 and h(fpj) = h(fpi) (such

j must exist since h(fpi+1) > h(fpi) ≥ 0 = h(fpT ) and h changes by at most
1 in each step). Proposition 4 implies that fpj = fpi and fpj−1 = fpi+1.
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Since the i-th opcode is call and the (j − 1)-th opcode is ret, we get:

pcj = next_pcj−1 = m(fpj−1 − 1) = m(fpi+1 − 1) =

= m(next_fpi − 1) = pci + instruction_sizei.

From the first two opcodes of the bootloader, we deduce that:

ap0 = apI , ap1 = apI + C, ap2 = apI + C + 2,

fp0 = apI , fp1 = apI , fp2 = apI + C + 2 ̸= apI .

Hence,

g(fp0) = g(fp1) = (apI , apI , apI , . . . ),

g(fp2) = (apI + C + 2, apI , apI , . . . ),

h(fp0) = h(fp1) = 0,

h(fp2) = 1.

We can now prove Theorem 3:

Proof. Apply Proposition 5 with i = 1. Note that indeed h(fp2) = 1 > 0 =

h(fp1). Denote the j obtained in the proposition by n. Since pcn = pc1 +

instruction_size1, the n-th opcode is jmp rel 0, which forms an infinite
loop. So for every k ≥ n, we have pck = pcn. We also obtain that h(fpk) > 0

for every 1 < k < n.
Let 1 < i < n be a step where the opcode was call. From Proposition 3

we get that h(fpi+1) = h(fpi) + 1, as h(fpi+1) = h(fpi) is possible for call
opcodes only if next_fpi = apI . But in that case, h(fpi) = h(fpi+1) = 0. The
result follows from Proposition 5.
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