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Abstract

We study the problem of obtaining 2-round interactive arguments for NP with weak zero-knowledge
(weak ZK) [Dwork et al., 2003] or with strong witness indistinguishability (strong WI) [Goldreich, 2001]
under polynomially hard falsifiable assumptions. We consider both the delayed-input setting [Jain et al.,
2017] and the standard non-delayed-input setting, where in the delayed-input setting, (i) prover privacy is
only required to hold against delayed-input verifiers (which learn statements in the last round of the protocol)
and (ii) soundness is required to hold even against adaptive provers (which choose statements in the last
round of the protocol).

Concretely, we show the following black-box (BB) impossibility results by relying on standard crypto-
graphic primitives (such as one-way functions and trapdoor permutations).

1. It is impossible to obtain 2-round delayed-input weak ZK arguments under polynomially hard falsifiable
assumptions if BB reductions are used to prove soundness. This result holds even when non-black-box
techniques are used to prove weak ZK.

2. It is impossible to obtain 2-round non-delayed-input strong WI arguments and 2-round publicly veri-
fiable delayed-input strong WI arguments under polynomially hard falsifiable assumptions if a natural
type of BB reductions, called “oblivious” BB reductions, are used to prove strong WI. (Concretely, a
BB reduction for strong WI is called oblivious if it is black-box not only about the cheating verifier but
also about the statement distributions.)

3. It is impossible to obtain 2-round delayed-input strong WI arguments under polynomially hard falsifi-
able assumptions if BB reductions are used to prove both soundness and strong WI (the BB reductions
for strong WI are required to be oblivious as above). Compared with the above result, this result no
longer requires public verifiability in the delayed-input setting.

This article is a full version of the following article: Black-Box Impossibilities of Obtaining 2-Round Weak ZK and Strong WI from
Polynomial Hardness, TCC 2021, ©IACR 2021.
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1 Introduction
Zero-knowledge (ZK) proofs and arguments have been extensively used in cryptography due to their powerful
security. Informally, their security guarantees that an honest prover can convince a verifier of the validity of a
statement without revealing anything beyond it. More formally, the zero-knowledgeness (ZK) guarantees that for
any verifier there exists a (efficient) simulator such that for any distinguisher, the output of the simulator (which is
given only a statement and is executed alone) is indistinguishable from the output of the verifier (which interacts
with an honest prover that proves the validity of the statement).

The powerful security of ZK protocols1 however comes with a cost: it is known that ZK protocols require
at least three rounds for any language outside of BPP [GO94]. This lower bound limits the applicability of ZK
protocols since many applications require that the number of interactions is at most two rounds.

Fortunately, it has been shown that by carefully weakening the definition of ZK, we can obtain several
useful security notions that can be achieved in less than three rounds.2 Such security notions include witness
indistinguishability (WI) [FS90, DN07], witness hiding (WH) [FS90, BKP19], strong WI [Gol01, JKKR17],
weak ZK [DNRS03, BKP19], super-polynomial-time simulation (SPS) ZK [Pas03], and ZK against bounded-
size verifiers [BCPR16].

Still, the state-of-the-art is not satisfactory since many of the existing 2-round constructions for these notions
are based on super-polynomially hard assumptions (i.e., assumptions against adversaries that run in fixed super-
polynomial time) [JKKR17, BKP19, Pas03, KS17, BGI+17, BCPR16, KKS18, BFJ+20, GJJM20, LVW20].
Indeed, for some of the above-listed security notions (such as strong WI and weak ZK as explained below),
no 2-round construction is currently known under polynomially hard standard assumptions. This situation is
frustrating since for WI, it has long been known that 2-round (or even non-interactive) constructions can be
obtained from polynomially hard standard assumptions [DN07, GOS12].

In this work, we study whether the use of super-polynomially hard assumptions is unavoidable in these
existing 2-round protocols, focusing on the cases of weak ZK and strong WI.

Weak ZK. Weak ZK is defined identically with ZK except that the order of the quantifier is reversed, i.e., it is
now required that for any verifier V∗ and any distinguisher D, there exists a simulator S (which may depend on
both V∗ and D) such that the distinguisher D cannot distinguish the output of the simulator S from the output
of the verifier V∗. Weak ZK is weaker than ZK but still implies WI and WH.

Currently, two positive results are known about 2-round weak ZK, where one is shown in the delayed-input
setting [JKKR17]—i.e., in the setting where (i) an honest verifier can create its first-round message without
knowing the statement to be proven, (ii) soundness is required to hold even against any adaptive prover, which
can choose the statement to prove in the last round of the protocol (i.e., after seeing the verifier’s first-round
message), and (iii) weak ZK is only required to hold against any delayed-input verifier, which creates its first-
round message without knowing the statement to be proven. Note that the delayed-input setting and the standard
(non-delayed-input) setting are incomparable since the former considers soundness against stronger provers
whereas the latter considers weak ZK against stronger verifiers.

In the delayed-input setting, Jain et al. [JKKR17] constructed a 2-round argument that satisfies distributional
ϵ-weak ZK for any inverse polynomial ϵ, where distributional ϵ-weak ZK is weaker than the standard weak ZK
in that (i) the simulator is only required to work for random statements that are sampled from a distribution
D and (ii) the distinguishing gap between the verifier’s output and the simulator’s output is only bounded by
the inverse polynomial ϵ (the simulator is allowed to depend on both D and ϵ). The security of their protocol
is proven under a quasi-polynomially hard assumption (concretely, the existence of 2-round oblivious transfer
protocols that are secure against malicious polynomial-time receivers and quasi-polynomial-time semi-honest
senders).

In the standard setting, Bitansky et al. [BKP19] constructed a 2-round argument that is ϵ-weak ZK for any
inverse polynomial ϵ under super-polynomially hard assumptions (such as quasi-polynomial hardness of the
Learning with Errors problem).3

1We use the term “zero-knowledge protocols” to refer to both zero-knowledge proofs and zero-knowledge arguments.
2Throughout this paper, we focus on interactive proofs/arguments for all NP.
3Weak ZK is defined slightly differently in Bitansky et al. [BKP19], where weak ZK is defined to be satisfying ϵ-weak ZK for any

inverse polynomial ϵ We follow other prior works [DNRS03, CLP15, JKKR17] and require the distinguishing gap to be negligible.
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Strong WI. Strong WI guarantees that for any two indistinguishable distributionsD0,D1 over statements, no
verifier can distinguish a proof for a random statement x ← D0 from a proof for a random statement x ← D1.
A typical application of strong WI is proof of honest behaviors: for example, when a strong WI protocol is
used to prove that a commitment is correctly generated, it directly guarantees that the hiding property of the
commitment is preserved. (In contrast, the standard WI does not guarantee anything when the commitment is
perfectly binding.)

In the delayed-input setting, Jain et al. [JKKR17] constructed a 2-round strong WI argument under a quasi-
polynomially hard assumption (concretely, the existence of 2-round oblivious transfer protocols that are secure
against malicious polynomial-time receivers and quasi-polynomial-time semi-honest senders). In the standard
setting, the above-mentioned result about 2-round weak ZK [BKP19] also holds for 2-round strong WI since
ϵ-weak ZK implies strong WI.

1.1 Our Results
At a high level, we show impossibility results about obtaining 2-round weak ZK and strong WI protocols under
“standard assumptions” by using “standard techniques.” Following previous works (e.g., [GW11]), we formalize
“standard assumptions” and “standard techniques” by using falsifiable assumptions and black-box (BB) reduc-
tions, respectively. Roughly speaking, (polynomially hard) falsifiable assumptions are the assumptions that are
modeled as interactive games between a polynomial-time adversary and a polynomial-time challenger, where a
falsifiable assumption (C, c) is considered true if no polynomial-time adversary can make the challenger C out-
put 1 with probability non-negligibly higher than the threshold c ∈ [0, 1]. Essentially all standard cryptographic
assumptions are falsifiable, including both general assumptions (e.g., the existence of one-way functions) and
concrete ones (e.g., the RSA, DDH, and LWE assumptions). Regarding BB reductions, we consider two types
of BB reductions, one is for soundness and the other is for strong WI. These two types are explained below with
our results.

BB impossibility of 2-round weak ZK. Our first impossibility result is about obtaining 2-round weak ZK
protocols while using BB reductions in the proof of soundness. Here, BB reductions are defined for soundness as
follows: for a 2-round weak ZK argument (P,V), we say that the soundness of (P,V) is proven by a BB reduction
based on a falsifiable assumption (C, c) if there exists a polynomial-time oracle machine (or BB reduction) R
such that for any verifier V∗ that breaks the soundness of (P,V), the machine RV∗ breaks the assumption (C, c).

Theorem (informal). Assume the existence of one-way functions. Then, there exists an NP language L such
that if

• there exists a 2-round delayed-input distributional ϵ-weak ZK argument for L and

• its adaptive soundness is proven by a BB reduction based on a falsifiable assumption (C, c),

then the assumption (C, c) is false.

(The formal statement is given as Theorem 1 in Section 7.) We note that using BB reductions in the proof of
soundness is quite common, and in particular, BB reductions are used in the proof of soundness in the above-
mentioned two positive results of 2-round weak ZK [JKKR17, BKP19].4 (In fact, to the best of our knowledge,
currently there do not exist any non-BB technique that can be used to prove the soundness of 2-round interactive
arguments.) This result therefore matches with the positive result of [JKKR17] (note that this result holds even
for the distributional ϵ-weak ZK version of weak ZK) and thus explains why the use of super-polynomial-time
hardness is required in [JKKR17]. Finally, we note that this result holds even when non-BB techniques are used
in the proof of weak ZK.

Let us explain informally what this result says about the difficulty of obtaining 2-round weak ZK proto-
cols under polynomially hard assumptions. First, in the delayed-input setting, this result directly explains the
difficulty: to overcome this result, we need to prove the soundness of 2-round arguments by using non-BB tech-
niques,5 but given the state-of-the-art, this approach unfortunately seems to require novel techniques. Second,

4In [BKP19], weak ZK is proven by a non-black-box technique, but soundness is proven by a BB reduction.
5It is easy to verify that for interactive proofs (rather than arguments) in the delayed-input setting, the classical impossibility result

of 2-round ZK [GO94] can be extended to 2-round weak ZK.
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even in the standard setting, this result partially explains the difficulty: to overcome this result, we need to con-
sider protocols that are inherently not adaptively sound, and thus, we need to be careful when using the popular
FLS paradigm [FLS99]. Indeed, if we naively use the FLS paradigm (where the verifier sets up a “trapdoor
statement” in the first round and the prover gives a WI proof in the second round to prove that either the actual
statement is true or the trapdoor statement is true), it is often the case that the first-round message is independent
of the statement and as a result adaptive soundness holds whenever soundness holds.

BB impossibility of 2-round strong WI (non-delayed-input or publicly verifiable). Our second impossi-
bility result is about obtaining 2-round strong WI protocols while using a certain type of BB reductions in the
proof of strong WI. Specifically, we consider BB reductions that we call oblivious BB reductions, which are
defined roughly as follows: for a 2-round strong WI protocol (P,V), we say that the strong WI of (P,V) is proven
by an oblivious BB reduction based on a falsifiable assumption (C, c) if there exists a polynomial-time oracle
machine (or oblivious BB reduction) R such that for any verifier V∗ that breaks the strong WI of (P,V) w.r.t.
some distributionsD0,D1, the machine RV∗,D0,D1 either breaks the assumption (C, c) or distinguishes the distri-
butionsD0 andD1. We note that R is oblivious to the distributionsD0,D1 in the sense that R is defined before
the distributions D0,D1 are specified.6 (We emphasize that during the execution, R is given oracle access to
D0,D1.)

Theorem (informal). Assume the existence of CCA-secure public-key encryption schemes. Then, there exists
an NP language L such that the following hold.

1. If there exists a 2-round (non-delayed-input) strong WI protocol for L and its strong WI is proven by an
oblivious BB reduction based on a falsifiable assumption (C, c), then the assumption (C, c) is false.

2. If there exists a 2-round publicly verifiable delayed-input strong WI protocol7 for L and its strong WI is
proven by an oblivious BB reduction based on a falsifiable assumption (C, c), then the assumption (C, c)
is false.

(The formal statement is given as Theorem 3 and Theorem 4 in Section 7.) We note that obliviousness is a natural
property for BB reductions, and for example oblivious reductions are used in the above-mentioned positive result
of 2-round strong WI [JKKR17] and in the trivial proof showing that ZK implies strong WI [Gol01, Proposition
4.6.3]. (Indeed, we are not aware of any non-oblivious reduction that can be used to prove strong WI for NP
w.r.t. all distributions.) We also note that the second part of this result in particular holds for strong WI versions
of ZAPs [DN07] and ZAP arguments [BFJ+20, GJJM20, LVW20].

Let us explain informally what this result says about the difficulty of obtaining 2-round strong WI protocols
under polynomially hard assumptions. In particular, since the only way to overcome this result is to use non-BB
or non-oblivious techniques in the proof of strong WI (as long as we consider non-delayed-input or publicly
verifiable protocols), let us explain informally the difficulty of using these two types of techniques.

• Let us first see the difficulty of using non-BB techniques. We first note that for witness hiding, there exists
a non-BB technique [BKP19] such that (i) it can be used to prove the prover privacy of 2-round arguments
under polynomially hard assumptions and (ii) we can use it while proving soundness under polynomially
hard assumptions (such as the existence of witness encryption schemes [GGSW13]). Unfortunately, the
usage of this technique in the witness hiding setting strongly relies on a certain property of witness hiding
(concretely, the property that a successful cheating verifier against witness hiding outputs a witness for the
statement). As a result, it is currently unclear whether we can use this (or any other) non-BB technique in
the setting of strong WI while proving soundness under polynomially hard assumptions.

• Let us next see the difficulty of using non-oblivious techniques. The main difficulty is that when we
consider strong WI that holds for all NP w.r.t. all distributions over statements, we currently do not have
any technique that makes non-oblivious use of distributions. As a result, it is currently unclear whether
any non-oblivious technique is useful to obtain 2-round strong WI under polynomially hard assumptions.

6This type of obliviousness is considered previously on BB reductions for witness hiding [HRS09].
7that is, a 2-round delayed-input strong WI protocol such that anyone can decide whether a proof is accepting or not given the protocol

transcript (without knowing the verifier randomness).
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BB impossibility of 2-round strong WI (delayed-input). Our third impossibility result is about obtaining 2-
round strong WI arguments while using BB reductions in the proofs of soundness and strong WI. The motivation
behind this result is to give an impossibility result about 2-round privately verifiable delayed-input strong WI
protocols (for which the above result does not hold).

Theorem (informal). Assume the existence of trapdoor permutations. Then, there exists an NP language L
such that if

• there exists a 2-round delayed-input strong WI argument for L,

• its soundness is proven by a BB reduction based on a falsifiable assumption (C, c), and

• its strong WI is proven by an oblivious BB reduction based on a falsifiable assumption (C′, c′),

then either the assumption (C, c) or the assumption (C′, c′) is false.

(The formal statement is given as Theorem 2 in Section 7.) We note that this result matches with the positive
result of [JKKR17] since BB reductions are used for both soundness and strong WI in the result of [JKKR17]
(the one for strong WI is oblivious). Thus, this result explains why the use of super-polynomial-time hardness
is required in [JKKR17].

Let us explain informally what this result says about the difficulty of obtaining 2-round strong WI protocols
under polynomially hard assumptions. Compared with the above result, this result holds even for 2-round pri-
vately verifiable delayed-input strong WI protocols, but it holds only when BB reductions are used in the proof
of soundness. Still, it seems reasonable to think that this result explains the difficulty of obtaining 2-round strong
WI protocols almost as strongly as the above one since, as in the case of 2-round weak ZK, novel techniques
are likely to be required to obtain 2-round strong WI protocols without using BB reductions in the proof of
soundness.

Summary. In Table 1, we summarize the settings that we consider in our impossibility results (standard v.s.
delayed-input) for each combination of the types of reductions (BB and non-BB reductions for soundness and
weak ZK, and oblivious BB, non-oblivious BB, and non-BB reductions for strong WI). For example, “delayed-
input” in the cell that corresponds to BB for soundness and BB for weak ZK indicates that one of our results
(concretely, the first result) shows the impossibility of 2-round delayed-input weak ZK arguments when BB
techniques are used for both soundness and weak ZK.

Table 1: Summary of the settings that we consider in our impossibility results.
weak ZK strong WI

BB non-BB obl. BB non-obl. BB / non-BB

Soundness
BB delayed-input delayed-input standard

delayed-input
non-BB standard

pub-verifiable delayed-input

2 Our Techniques
2.1 BB Impossibility of 2-Round Delayed-Input Weak ZK
We first explain how we obtain our BB impossibility result about 2-round delayed-input weak ZK. This result is
technically less involved and is used in a non-modular way in one of our BB impossibility results about strong
WI.

At a very high level, we obtain our result about weak ZK by obtaining a BB impossibility result about
(t, ϵ)-zero-knowledge [CLP15], which is defined identically with the standard zero-knowledge except that (i)
the definition is parameterized by a polynomial t and an inverse polynomial ϵ, (ii) the running time of the
distinguisher is bounded by t, and (iii) the distinguishing gap is bounded by ϵ (the simulator is allowed to
depend on both t and ϵ). Note that (t, ϵ)-ZK is defined with the same order of quantifier as the standard ZK (i.e.,
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in the form “∀V∗∃S∀D . . .”) and thus seems much stronger than weak ZK. Nonetheless, it is known that weak
ZK implies (t, ϵ)-ZK for every polynomial t and inverse polynomial ϵ (with no modification to the protocol)
[CLP15]. Thus, to obtain a BB impossibility result on weak ZK, it suffices to obtain it on (t, ϵ)-ZK.

Before explaining how we obtain a BB impossibility result about (t, ϵ)-ZK, let us explain a subtle difference
between (t, ϵ)-ZK and the standard ZK. Specifically, we note that in (t, ϵ)-ZK (in particular, the one that is defined
in [CLP15] and shown to be implied by weak ZK), the indistinguishability between a real proof and simulation
is only guaranteed to hold against uniform distinguishers, i.e., distinguishers that take no auxiliary input other
than the one that is given to the verifier and the simulator. In the standard ZK (where the running time of the
distinguisher can be longer than that of the simulator), we can think as if the distinguisher takes an additional
auxiliary input since we can assume without loss of generality that a suffix of the common auxiliary input is only
read by the distinguisher (see, e.g., [Gol01, Section 4.3.3]). Yet, in (t, ϵ)-ZK (where the simulator can depend
on t and thus can run longer than the distinguisher), we cannot use this argument anymore.

Somewhat surprisingly, this subtle difference causes difficulties when we try to obtain impossibility results
about (t, ϵ)-ZK by using known techniques. Indeed, the classical impossibility result of 2-round ZK [GO94] does
not hold for (t, ϵ)-ZK exactly due to this difference. Also, known techniques in BB impossibility literature, such
as those that have been used for the BB impossibility of other 2-round interactive protocols [GW11, CLMP12,
DJKL12], also require non-uniform indistinguishability and thus cannot be used for (t, ϵ)-ZK directly.

Roughly speaking, we overcome the difficulties as follows. First, we observe that weak ZK implies (t, ϵ)-
ZK with non-uniform indistinguishability if we allow the simulator of (t, ϵ)-ZK to run in a “pre-processing”
manner, i.e., in a manner that the simulator is computationally unbounded before receiving the statement. (More
specifically, the simulator is separated into two parts, a pre-processing simulator and a main simulator, where the
pre-processing simulator is computationally unbounded and creates short trapdoor information without knowing
the statement, and the main simulator takes the statement along with the trapdoor information and simulates the
verifier’s output in polynomial time.) Second, we observe that the meta-reduction techniques, which have been
used for the BB impossibility of other 2-round interactive protocols [GW11, CLMP12, DJKL12], can be used
naturally to obtain a BB impossibility result about 2-round delayed-input pre-processing (t, ϵ)-ZK. Let us now
give more details about these two steps below.

Step 1. Showing that weak ZK implies pre-processing (t, ϵ)-ZK. We first note that, as already observed in
[CLP15], weak ZK implies (t, ϵ)-ZK with non-uniform indistinguishability if we allow the simulator of (t, ϵ)-ZK
to be non-uniform, i.e., if we only require that for each auxiliary input zV to the verifier there exists an auxiliary
input zS to the simulator such that on input zS , the simulator works for any (non-uniform) distinguisher. Now,
the problem is of course that it is in general not possible to compute a “good” zS from zV efficiently. Thus,
we give the simulator unbounded computing power so that it can compute a good zS from zV by brute force.
To make sure that the simulator can compute a good zS before receiving the statement, we further weaken the
definition of (t, ϵ)-ZK and consider the distributional version of it, where the simulator is only required to work
for random statements that are sampled from a certain distribution. Since it is now sufficient for the simulator
to find a good zS for random statements, the simulator can find it before obtaining the actual statement.

Step 2. Showing BB impossibility of pre-processing (t, ϵ)-ZK. We obtain a BB impossibility result about
2-round delayed-input pre-processing (t, ϵ)-ZK by appropriately modifying a proof that is given in [CLMP12,
DJKL12] for the BB impossibility of 2-round super-polynomial-simulation (SPS) ZK, where the simulator is
allowed to run in fixed super-polynomial time T .8 To see how we modify the proof of [CLMP12, DJKL12],
consider for example a step in the proof where it is shown that the simulator creates an accepting proof for a
false statement. In [CLMP12, DJKL12], this property is shown by (i) first observing that the simulator creates
an accepting proof for a true statement due to the indistinguishability of simulation (note that an honest prover
does so with probability 1 by completeness) and then (2) observing that the simulator creates an accepting
proof even for a false statement due to the indistinguishability between true and false statements (since the
simulator runs in super-polynomial time T , it is assumed that true and false statements are indistinguishable in
poly(T ) time). Clearly, when the simulator is computationally unbounded, the second step of this argument fails

8In SPS ZK, the simulator is usually computationally bounded by a fixed moderate super-polynomial (e.g., a quasi-polynomial) but it
can use its super-polynomial-time computing power arbitrarily. In pre-processing (t, ϵ)-ZK, the simulator is computationally unbounded
but it can use its super-polynomial-time computing power only before receiving the statement.
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since the simulator can distinguish true and false statements by brute force. Nevertheless, in the pre-processing
model, we can still show the same property by relying on the non-uniform polynomial-time indistinguishability
of true and false statements. To see this, observe that the non-uniform indistinguishability guarantees that no
polynomial-time algorithm can distinguish true and false statements even when it is given any auxiliary input
that is computed independently of the statement. This guarantee is clearly sufficient to show that when the main
simulator in the pre-processing model creates an accepting proof for a true statement, it creates an accepting
proof even for a false statement.

2.2 BB Impossibility of 2-Round Strong WI
We next explain how we obtain our BB impossibility results about 2-round strong WI. Recall that unlike our
result about weak ZK, our results about strong WI require that BB reductions are used in the proof of prover
privacy (i.e., strong WI). To explain the reason behind this difference, we note that when proving our result
about weak ZK (or more precisely about (t, ϵ)-ZK), we first obtain a simulator by relying on the ZK property
and then design a successful cheating prover against soundness by using it (the resultant cheating prover is then
combined with the soundness BB reduction to show that the underlying assumption must be false). Clearly, this
approach does not work for strong WI since simulators are not guaranteed to exist. Thus, we instead assume
the existence of a strong WI reduction (which acts as a prover when interacting with a verifier through oracle
queries) and use it to obtain a cheating prover. More details are given below.

Non-interactive strong WI. First, as a warm-up, we explain how we can obtain a BB impossibility result
about non-interactive strong WI. In particular, we show that the strong WI of non-interactive arguments cannot
be proven by oblivious BB reductions based on falsifiable assumptions.

At a high level, the proof proceeds as follows. Recall that an oblivious BB reduction Rswi for strong WI has
the following property: for any verifier V∗ that breaks strong WI w.r.t. some distributionsD0,D1 over statements
(meaning that V∗ can distinguish a proof π for statement x ← D0 and a proof π for statement x ← D1), the
reduction RV∗

swi either breaks the underlying assumption (C, c) or distinguishes D0 and D1.9 First, we observe
that RV∗

swi breaks the assumption (C, c) rather than distinguishesD0 andD1. Assume for contradiction that RV∗
swi

distinguishes D0 and D1, and assume without loss of generality that V∗ aborts when it receives a proof that
is not accepting. Now, intuitively, the assumption that RV∗

swi can distinguish x ← D0 and x ← D1 seems to
imply that Rswi sends x to V∗ along with an accepting proof (since otherwise V∗ seems useless); if so, we can
use Rswi to break soundness by arguing that even when x is a false statement, Rswi still sends x to V∗ along
with an accepting proof. A problem is that Rswi might distinguish x ← D0 and x ← D1 by sending a related
statement x′ to V∗ without directly sending x. We solve this problem by designing a “non-malleable” language
L, which guarantees that Rswi cannot distinguish x ← D0 and x ← D1 even when it sends a related statement
x′ to V∗. After showing RV∗

swi breaks the assumption (C, c), we conclude that the assumption (C, c) must be false
by observing that we can design as V∗ a specific cheating verifier that breaks strong WI w.r.t.D0,D1 efficiently.

More specifically, the proof proceeds as follows. Consider an NP language L that contains all the en-
cryptions of 0 and 1 of a CCA-secure public-key encryption scheme PKE = (Gen,Enc,Dec), i.e., L B
{(pk, ct) | ∃r s.t. ct = Enc(pk, 0; r) or ct = Enc(pk, 1; r)}. Also, for each public key pk of PKE and each
b ∈ {0, 1}, consider the distribution Db

pk that outputs a random encryption of b under the public-key pk, i.e.,
Db

pk B {(pk, ct) | ct ← Enc(pk, b)}. (We emphasize that Db
pk always outputs a ciphertext ct that is encrypted

with the hardwired public key pk.) Assume that there exist a non-interactive argument (P,V) for L and an obliv-
ious BB reduction Rswi for showing the strong WI of (P,V) based on a falsifiable assumption (C, c). Note that
this assumption implies that for any public key pk and any verifier V∗ that breaks the strong WI of (P,V) w.r.t.
D0

pk,D
1
pk, the reduction RV∗

swi either breaks the assumption (C, c) or distinguishes D0
pk and D1

pk. Now, our goal
is to show that the assumption (C, c) is false. Toward this goal, for each public-key–secret-key pair (pk, sk), we
consider the following verifier V∗swi = V∗swi[pk, sk] against the strong WI of (P,V).

• Verifier V∗swi: Given a statement (pk′, ct) and a proof π from the prover, return the decryption result
b ← Dec(sk, ct) to the prover if pk = pk′ holds and π is an accepting proof for (pk′, ct), and return a
random bit otherwise.

9Formally, Rswi also has oracle access toD0 andD1, but we ignore it for simplicity in this overview.
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Note that for any (pk, sk), the verifier V∗swi breaks the strong WI w.r.t. D0
pk,D

1
pk due to the correctness of PKE.

Thus, for any (pk, sk), the reduction RV∗swi
swi either breaks the assumption (C, c) or distinguishes D0

pk and D1
pk.

Now, we observe that the assumption (C, c) is false unless we can use the reduction RV∗swi
swi to break either the

CCA security of PKE or the soundness of (P,V). Consider the following three cases for random pk.

• Case 1. RV∗swi
swi breaks the assumption (C, c). In this case, it follows immediately that the assumption

(C, c) is false since we can emulate V∗swi for Rswi efficiently by using sk for random (pk, sk).

• Case 2. RV∗swi
swi (pk, ct) distinguishes whether (pk, ct) ← D0

pk or (pk, ct) ← D1
pk, and Rswi does not

send (pk, ct) to V∗swi along with an accepting proof π. In this case, we can use RV∗swi
swi to break the CCA

security of PKE since we can efficiently emulate V∗swi for Rswi in the CCA-security game (i.e., by using
the decryption oracle).

• Case 3. RV∗swi
swi (pk, ct) distinguishes whether (pk, ct) ← D0

pk or (pk, ct) ← D1
pk, and Rswi sends (pk, ct)

to V∗swi along with an accepting proof π. In this case, we can use Rswi to break the soundness of (P,V).
Indeed, the CCA security of PKE guarantees that even when ct is a false statement (e.g., a random encryp-
tion of 2), Rswi still sends (pk, ct) to V∗swi along with an accepting proof. Thus, we can straightforwardly
design an attacker against the soundness of (P,V) by efficiently emulating V∗swi for Rswi by using sk for
random (pk, sk).

Note that in the above argument, it is important that the reduction Rswi is oblivious, i.e., is black-box about the
distributions. This is because when we rely on the CCA security of PKE, we require that a single reduction
works for every pk (rather than that each pk has its owns (not necessarily efficiently constructible) reduction).

2-round strong WI: non-delayed-input or publicly verifiable. Next, we explain the main difficulty that
arises when we consider 2-round protocols. In general, when we consider a BB reduction for the strong WI of
2-round interactive arguments, we need to think that the reduction can “rewind” the given verifier V∗, i.e., it
can control the randomness of V∗ so that it can force V∗ to reuse the same verifier message in multiple queries.
In this case, the above argument for non-interactive strong WI fails when we try to use the reduction Rswi to
break the soundness of (P,V). To see this, note that the soundness attacker first receives a verifier message from
the external verifier and needs to forward it to the internally emulated Rswi as an oracle response from V∗swi.
Now, if the reduction Rswi can force V∗swi to reuse this verifier message in multiple queries (possibly for different
statements when we consider the delayed-input setting), we can no longer efficiently emulate V∗swi for Rswi since
we cannot decide whether the reduction Rswi creates an accepting proof or not.

We can easily avoid this difficulty if we consider the standard (non-delayed-input) strong WI and (possibly
delayed-input) publicly verifiable strong WI. First, in the case of publicly verifiable strong WI, it is easy to see
that the above argument for non-interactive strong WI still works with no modification since we can still emulate
V∗swi for Rswi efficiently even when the same first message is reused. Second, in the case of the standard strong
WI, we can effectively prevent the reuse of verifier messages since we can consider a verifier that obtains all the
randomness by applying PRF on the statement at the beginning.

Thus, it remains to consider privately verifiable delayed-input strong WI.

2-round strong WI: (possibly privately verifiable) delayed-input. In this case, we cannot obtain a BB im-
possibility result that is as strong as the one for non-interactive strong WI since there exists a positive result
[JKKR17] whose strong WI is proven by a BB reduction based on a falsifiable assumption.10 We thus consider
a weaker form of BB impossibility result by assuming that soundness is also proven by a BB reduction based
on a falsifiable assumption.

Our high-level strategy is to show that strong WI implies (a weak form of) weak ZK and then reuse our BB
impossibility result about weak ZK. Toward showing that strong WI implies weak ZK, let us fix any verifier
V∗wzk and distinguisher Dwzk against the weak ZK of (P,V), and consider the following strong WI verifier V∗swi =

V∗swi[pk, sk,V∗wzk,Dwzk] (which can be seen as a generalization of V∗swi[pk, sk], which we consider in the non-
interactive case above).

10The soundness is proven based on quasi-polynomially hard assumptions.
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Verifier V∗swi:

1. Invoke V∗wzk and let it interact with the external prover. Let (pk′, ct) denote the statement given from the
prover and outV denote the output of V∗wzk.

2. If pk = pk′ holds and Dwzk is convinced by the external prover (i.e., Dwzk outputs 1 on ((pk′, ct), outV )),
return the decryption result b← Dec(sk, ct) to the prover. Otherwise, return a random bit.

Note that V∗swi returns a meaning response only when it receives a proof that convinces Dwzk. Now, at a high
level, by arguing similarly to the case of non-interactive strong WI (with this new version of V∗swi), we show that
the assumption (C, c) is false unless we can use the reduction RV∗swi

swi either to break the CCA security of PKE or
to obtain a weak ZK simulator that convinces Dwzk.

Unfortunately, although our strategy is intuitively simple, we need to overcome various problems because
of subtle differences from the case of non-interactive strong WI (where we use Rswi to break the soundness of
(P,V) rather than to obtain a weak ZK simulator).

1. Unlike the case that we use the reduction Rswi to break the soundness of (P,V) (where it suffices to con-
struct a prover that obtains sk as auxiliary input to emulate V∗swi for Rswi efficiently), we need to construct
a weak ZK simulator that is not given sk and still is able to emulate V∗swi for Rswi—this is because for
our proof of weak ZK BB impossibility to go through, we need to make sure that the simulator cannot
distinguish true statements (encryptions of 0 or 1) and false statements (encryptions of 2) so that we can
show that the simulator creates an accepting proof for a false statement as mentioned at the end of Sec-
tion 2.1. To overcome this problem, we assume that the CCA-secure encryption PKE in the definition of
the language L is puncturable in the following sense: the CCA security holds even when the adversary is
given a punctured secret key that can be used to emulate the decryption oracle unless the target ciphertext
is queried. (It is easy to see that the classical CCA-secure encryption by Dolev et al. [DDN00] satisfies
such a property.) Then, we consider a simulator that takes as auxiliary input a punctured secrete key sk{ct}
that corresponds to the statement (pk, ct) (i.e., sk{ct} is a key that can be used to emulate the decryption
oracle unless ct is queried). The simulator can now emulate V∗swi for Rswi efficiently by using sk{ct} and
yet it cannot distinguish true and false statements as required.

2. Unlike the case that we use the reduction Rswi to break the soundness of (P,V) (where it suffices to show
that we can use Rswi to create a convincing proof for a single (false) statement), we need to show that we
can use Rswi to create a convincing proof (w.r.t. V∗wzk and Dwzk) for any (true) statement. This is in general
hard to show since Rswi might work only for a non-negligible fraction of the statements (this is because
the reduction Rswi is only guaranteed to have non-negligible advantage even when it is combined with a
verifier V∗ that breaks strong WI with very high advantage). To overcome this problem, we consider a
weaker definition of distributional weak ZK where (i) the simulator is given polynomially many statements
that are sampled from a distribution over L and (ii) the simulator is only required to give a simulated proof
for one of these statements. Now, by properly defining the distribution, we can show that if the simulator
is given sufficiently many statements, with high probability the simulator can find a statement for which
the reduction Rswi works, so it can create a convincing proof for one of the statements. Furthermore, our
BB impossibility of weak ZK can be easily extended to this distributional weak ZK setting.

3. Unlike the case that we use the reduction Rswi to break the soundness of (P,V) (where it suffices to show
that Rswi creates a proof that is convincing with non-negligible probability), we need to show that Rswi
creates a proof that is convincing with probability as high as an honest proof. To overcome this problem,
we modify V∗swi in such a way that (i) V∗swi approximates (by sampling) the probability that an honest
prover convinces Dwzk for a random statement, and also approximates the probability that the external
prover convinces Dwzk, and (ii) V∗swi returns the decryption result b ← Dec(sk, ct) only when the latter
is sufficiently high compared with the former. Now, we can show that Rswi creates a proof that convinces
Dwzk with probability as high as an honest proof since otherwise Rswi cannot obtain meaningful responses
from V∗swi.
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2.3 Outline of the Rest of the Paper
In Section 3, we introduce notations and definitions. From Section 4 to Section 6, we prove the lemmas that are
necessary to obtain our results: in Section 4, we show that 2-round delayed-input strong WI with BB reductions
implies a weak form of weak ZK; in Section 5, we show that such a weak form of weak ZK implies a weak
form of pre-processing (t, ϵ)-ZK; in Section 6, we show a BB impossibility result about such a weak form of
pre-processing (t, ϵ)-ZK. In Section 7, we explain how we obtain our main results.

3 Preliminaries
3.1 Notations
We denote the security parameter by n. For any n ∈ N, we use [n] to denote the set {1, . . . , n}. For any random
variable X, we use Supp(X) to denote the support of X. We use poly to denote an unspecified polynomial, use
negl to denote an unspecified negligible function, and ppt as an abbreviation of “probabilistic polynomial-time.”
For any NP language L, we use RL to denote its witness relation (i.e., RL is the set of all the instance-witness
pairs of L). For any pair of (possibly probabilistic) interactive Turing machines (P,V), we use ⟨P(w),V(z)⟩(x) for
any x,w, z ∈ {0, 1}∗ to denote the random variable representing the output of V in an interaction between P(x,w)
and V(x, z). Specifically, since we only consider such P and V that participate in a 2-round interaction where
V starts the interaction, ⟨P(w),V(z)⟩(x) represents the value outV that is generated in the following process:
m1 ← V(x, z); m2 ← P(x,w,m1); outV ← V(m2).11

We assume that readers are familiar with the definitions of computational indistinguishability and basic cryp-
tographic primitives, where unless explicitly stated, we assume that cryptographic primitives are secure against
non-uniform adversaries. Following the standard convention, we think that a Turing machine runs in polyno-
mial time if its running time is polynomially bounded in the length of its first input (which is often implicitly
the security parameter). For any two sequences of random variables (or distributions) X = {Xi}i∈N,Y = {Yi}i∈N,
we use X ≈ Y to denote that X and Y are computationally indistinguishable.

3.2 (δ, γ)-Approximation
Definition 1. For any p, δ, γ ∈ [0, 1], a probabilistic algorithm Algo is said to give a (δ, γ)-approximation of p
if the output p̃ of Algo satisfies Pr

[|p̃ − p| ≤ δ] ≥ 1 − γ. ^

It is easy to see (using a Chernoff Bound) that for any δ, γ ∈ [0, 1] and any distribution D over {0, 1}, a (δ, γ)-
approximation of p B Pr [b = 1 | b← D] can be obtained by taking k B Θ(δ−2 log γ−1) samples from D and
computing the relative frequency in which 1 is sampled. (See any standard textbook, e.g., [MU17, Section
4.2.3].)

3.3 2-Round Interactive Argument
3.3.1 Basic Definitions

Let us recall the definitions of interactive arguments [GMR89, BCC88] and their delayed-input version
[JKKR17], focusing on 2-round ones.

Definition 2 (Interactive argument). For any NP language L, a pair of interactive Turing machines (P,V) is
called a 2-round interactive argument for L if it satisfies the following.

• Completeness. There exists a negligible function negl such that for every (x,w) ∈ RL,

Pr [⟨P(w),V⟩(x) = 1] ≥ 1 − negl(|x|) .

• Soundness. For every ppt interactive Turing machine P∗, there exists a negligible function negl such that
for every x ∈ {0, 1}∗ \ L and z ∈ {0, 1}∗,

Pr
[⟨P∗(z),V⟩(x) = 1

] ≤ negl(|x|) .
11It should be understood that the secret state that is generated in the first invocation of V is implicitly inherited by the second invocation

of V .
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^

Definition 3 (Delayed-input interactive argument). A 2-round interactive argument (P,V) for an NP language
L is called delayed-input if it satisfies the following.

• Completeness. There exists a negligible function negl such that for every (x,w) ∈ RL,

Pr
[
out = 1

∣∣∣ m1 ← V(1|x|); m2 ← P(x,w,m1); out← V(x,m2)
]
≥ 1 − negl(|x|) .

• Adaptive soundness. For every ppt interactive Turing machine P∗, there exists a negligible function negl
such that for every n ∈ N and z ∈ {0, 1}∗,

Pr
[
out = 1 ∧ x ∈ {0, 1}n \ L

∣∣∣ m1 ← V(1n); (x,m2)← P∗(1n, z,m1); out← V(x,m2)
]
≤ negl(n) .

^

Notation. For a 2-round delayed-input interactive argument (P,V) for an NP language L, an interactive Turing
machine V∗ is called a delayed-input verifier if for any (x,w) ∈ RL, it interacts with P(x,w) in behalf of V in
the manner defined in the definition of the correctness above (i.e., in the manner that V∗ receives x in the last
round of the interaction). For a delayed-input verifier V∗, the notation ⟨P(w),V∗(z)⟩(x) is overloaded naturally,
i.e., it denotes the value outV that is generated in the following process: m1 ← V∗(1|x|, z); m2 ← P(x,w,m1);
outV ← V∗(x,m2).

3.3.2 Strong Witness Indistinguishability

Next, let us recall the definition of strong witness indistinguishability (strong WI) [Gol01], where we also in-
troduce its straightforward extension to the delayed-input setting. Since we focus on negative results, we give a
definition that is slightly weaker than the one given in [Gol01, Definition 4.6.2].

Definition 4 ((delayed-input) strong WI). An interactive argument (resp., a delayed-input interactive argu-
ment) (P,V) for an NP language L is called strongly witness indistinguishable (resp., delayed-input strongly
witness indistinguishable) if the following holds: for every {(X0

n,W0
n)}n∈N, {(X1

n,W1
n)}n∈N and {zn}n∈N where

each (Xb
n,Wb

n) is a joint distribution that ranges over RL ∩ ({0, 1}n × {0, 1}∗) and each zn is a string in {0, 1}∗, if
it holds

{X0
n}n∈N ≈ {X1

n}n∈N ,

then for every ppt verifier (resp. ppt delayed-input verifier) V∗ there exists a negligible function negl such that
for every n ∈ N, ∣∣∣∣∣∣∣ Pr

[
⟨P(w),V∗(zn)⟩(x) = 1 | (x,w)← (X0

n,W0
n)

]
−Pr

[
⟨P(w),V∗(zn)⟩(x) = 1 | (x,w)← (X1

n,W1
n)

] ∣∣∣∣∣∣∣ ≤ negl(n) .

^

3.3.3 Delayed-Input Weak Zero-Knowledge

Next, let us recall the definition of weak zero-knowledge (weak ZK) [DNRS03, CLP15], focusing on the delayed-
input version of it while considering non-uniform indistinguishability. Since we focus on negative results, we
give a weaker, distributional (t, ϵ) version of the definition [CLP15, JKKR17].

Definition 5 (delayed-input distributional weak (t, ϵ)-zero-knowledge). Let L be an NP language, t be a
polynomial, and ϵ be an inverse polynomial. Then, a delayed-input interactive argument (P,V) for L is
said to be delayed-input distributional weak (t, ϵ)-zero-knowledge if for every sequence of joint distributions
Dxw = {(Xn,Wn)}n∈N such that each (Xn,Wn) ranges over RL ∩ ({0, 1}n × {0, 1}∗), every ppt delayed-input
verifier V∗, and every probabilistic t-time distinguisher D, there exists a ppt simulator S and an n0 ∈ N such
that for every n > n0, zV ∈ {0, 1}∗, and zD ∈ {0, 1}∗, it holds∣∣∣∣∣Pr

[
D(x, zD, ⟨P(w),V∗(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)

] − Pr [D(x, zD, S (x, zV , zD)) = 1 | x← Xn]
∣∣∣∣∣ ≤ ϵ(n) .

^
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3.3.4 Special-Purpose (Weak) Zero-Knowledge

Next, let us introduce two new prover privacy notions for interactive arguments, where one is a weaker version
of ZK and the other is a weaker version of weak ZK. We note that these nations should be viewed just as useful
tools for our negative results; they are not intended to give any intuitively meaningful security.

First, we introduce special-purpose delayed-input (Dxwz,N)-distributional pre-processing (t, ϵ)-zero-
knowledge, which is roughly speaking weaker than the standard delayed-input (t, ϵ)-ZK in the following sense.

1. The honest prover takes a random statement-witness pair that is sampled from a distribution Dxwz. In
contrast, the simulator takes N random statement–auxiliary-input pairs {xi, zx,i}i∈[N] that are sampled one
by one fromDxwz, and it only does the simulation for one of the statements.

2. The simulator works in a pre-processing model where after receiving an auxiliary input z (which is in-
dependent of the statements), the simulator is computationally unbounded and computes short trapdoor
information before receiving the statements.

The formal definition is given below. For editorial simplicity, we focus on deterministic verifiers below.
Definition 6 (special-purpose delayed-input (Dxwz,N)-distributional pre-processing (t, ϵ)-zero-knowledge). Let
L be an NP language, N, t be polynomials, ϵ be an inverse polynomial, and Dxwz = {(Xn,Wn,Zn)}n∈N be a
sequence of joint distributions such that each (Xn,Wn,Zn) ranges over (RL × {0, 1}∗) ∩ ({0, 1}n × {0, 1}∗ ×
{0, 1}∗). Then, a 2-round delayed-input interactive argument (P,V) for L is said to be special-purpose delayed-
input (Dxwz,N)-distributional pre-processing (t, ϵ)-zero-knowledge if for every deterministic polynomial-time
delayed-input verifier V∗, there exists a simulator S = (S pre, S main) such that (i) S pre is computationally un-
bounded and S main is ppt and (ii) for every probabilistic t-time distinguisher D, there exists an n0 ∈ N such that
for every n > n0, zV ∈ {0, 1}∗, and zD ∈ {0, 1}∗, it holds∣∣∣∣∣∣∣∣∣∣∣

Pr [D(x, zD, ⟨P(w),V∗(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)]

−Pr

D(xi∗ , zD, v) = 1

∣∣∣∣∣∣∣∣∣
stS ← S pre(1n, zV )
(xi, zx,i)← (Xn,Zn) for ∀i ∈ [Nn]
(i∗, v)← S main({xi, zx,i}i∈[Nn], stS )


∣∣∣∣∣∣∣∣∣∣∣ ≤ ϵ(n) ,

where Nn B N(n, 1/ϵ(n)). ^

We note that although the simulator is given some extra information zx,i about each xi in the above definition, we
will only consider the setting where zx,i does not contain much information about a witness for xi. In particular,
the distribution (Xn,Wn,Zn) that we will consider has a related distribution (Xn,Zn) over ({0, 1}n \ L)× {0, 1}∗
such that (Xn,Zn) and (Xn,Zn) are computationally indistinguishable.

Next, we introduce special-purpose delayed-input (Dxwz,N)-distributional super-weak (t, ϵ)-zero-
knowledge, which is roughly speaking weaker than the standard delayed-input weak (t, ϵ)-ZK in the following
sense.

• The definition is (Dxwz,N)-distributional in the same sense as above.

• The definition is super-weak ZK [CLP15] in the sense that the simulator is only required to convince the
distinguisher with probability as high as an honest prover (i.e., only “one-sided” indistinguishability is
required).

The formal definition is given below.
Definition 7 (special-purpose delayed-input (Dxwz,N)-distributional super-weak (t, ϵ)-zero-knowledge). Let L
be an NP language, N, t be polynomials, ϵ be an inverse polynomial, and Dxwz = {(Xn,Wn,Zn)}n∈N be a
sequence of joint distributions such that each (Xn,Wn,Zn) ranges over (RL×{0, 1}∗)∩({0, 1}n×{0, 1}∗×{0, 1}∗).
Then, a 2-round delayed-input interactive argument (P,V) for L is said to be special-purpose delayed-input
(Dxwz,N)-distributional super-weak (t, ϵ)-zero-knowledge if for every deterministic polynomial-time delayed-
input verifier V∗ and every probabilistic t-time distinguisher D, there exists a ppt simulator S and an n0 ∈ N
such that for every n > n0, zV ∈ {0, 1}∗, and zD ∈ {0, 1}∗, it holds

Pr
[
D(xi∗ , zD, v) = 1

∣∣∣∣∣∣ (xi, zx,i)← (Xn,Zn) for ∀i ∈ [Nn]
(i∗, v)← S ({xi, zx,i}i∈[Nn], zV , zD)

]
≥ Pr

[
D(x, zD, ⟨P(w),V∗(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)

] − ϵ(n) ,
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where Nn B N(n, 1/ϵ(n)). ^

Remark 1 (Non-uniform indistinguishability). In both Definition 6 and Definition 7, the indistinguishability
between a real proof and simulation holds against non-uniform distinguisher since the distinguisher takes its
own auxiliary input zD (which can contain zV if necessary). Note that in Definition 7, the simulator also takes
zD since we consider the weak ZK setting. ^

3.4 Falsifiable Assumption and Black-Box Reduction
3.4.1 Falsifiable Assumption

First, let us recall the definition of falsifiable assumptions from [Nao03, GW11].

Definition 8 (Falsifiable assumption). A falsifiable cryptographic assumption consists of a ppt interactive Turing
machine C and a constant c ∈ [0, 1), where C is called the challenger. On security parameter n, the challenger
C(1n) interacts with an interactive Turing machine A(1n, z) for some z ∈ {0, 1}∗ and C outputs a bit b ∈ {0, 1}
at the end of the interaction; A is called the adversary, and when b = 1, it is said that A(1n, z) wins C(1n).
The assumption associated with the tuple (C, c) states that for every ppt adversary A there exists a negligible
function negl such that for every n ∈ N and z ∈ {0, 1}∗, it holds Pr [⟨A(z),C⟩(1n) = 1] ≤ c + negl(n). ^

For any polynomial p and security parameter n, we say that an (possibly inefficient) adversary A breaks
a falsifiable assumption (C, c) on n with advantage 1/p(n) if there exists z ∈ {0, 1}∗ such that it holds
Pr [⟨A(z),C⟩(1n) = 1] ≥ c + 1/p(n). We say that an (possibly inefficient) adversary A breaks a falsifiable
assumption (C, c) if there exists a polynomial p such that for infinitely many n ∈ N, A breaks (C, c) on n with
advantage 1/p(n).

3.4.2 Black-Box Reduction

Next, we introduce the definitions of black-box (BB) reductions. We consider BB reductions for adaptive sound-
ness and BB reductions for strong WI. The former is defined as in [GW11, Wic13] and the latter is defined
similarly to “oblivious” BB reductions for witness hiding [HRS09].

Definition 9 (BB reduction for adaptive soundness). Let (P,V) be a pair of interactive Turing machines that
satisfies the correctness of a delayed-input 2-round interactive argument for an NP language L. Then, a ppt
oracle Turing machine R is said to be a black-box reduction for showing the adaptive soundness of (P,V) based
on a falsifiable assumption (C, c) if there exists a polynomial p such that for every (possibly inefficient) interactive
Turing machine P∗ and every sufficiently large n ∈ N, if there exists z ∈ {0, 1}∗ such that

Pr
[
out = 1 ∧ x ∈ {0, 1}n \ L

∣∣∣ m1 ← V(1n); (x,m2)← P∗(1n, z,m1); out← V(x,m2)
]
≥ 1

2
,

then the machine RP∗z breaks the assumption (C, c) on n with advantage 1/p(n) (where P∗z is the same as P∗

except that z is hardwired as its auxiliary input). ^

Definition 10 (Oblivious BB reduction for (delayed-input) strong WI). Let (P,V) be a pair of interactive Turing
machines that satisfies the correctness of 2-round interactive argument (resp., delayed-input interactive argu-
ment) for an NP language L. Then, a ppt oracle Turing machine R is said to be an oblivious black-box reduction
for showing the strong WI (resp., delayed-input strong WI) of (P,V) based on a falsifiable assumption (C, c) if for
every polynomial p, there exists a polynomial p′ such that for every (possibly inefficient) verifier (resp., delayed-
input verifier) V∗, every sufficiently large n ∈ N, every two joint distributions D0

n = (X0
n,W0

n),D1
n = (X1

n,W1
n)

such that each (Xb
n,Wb

n) ranges over RL ∩ ({0, 1}n × {0, 1}∗), and every z ∈ {0, 1}∗, if

Pr
[
⟨P(w),V∗(z)⟩(x) = b

∣∣∣ b← {0, 1}; (x,w)← (Xb
n,Wb

n)
]
≥ 1

2
+

1
p(n)

,

then either (i) RV∗z ,D0
n,D1

n(1n, 1p(n)) breaks the assumption (C, c) on n with advantage 1/p′(n) or (ii)
RV∗z ,D0

n,D1
n(1n, 1p(n)) distinguishes X0

n and X1
n with advantage 1/p′(n), i.e., it holds∣∣∣∣ Pr

[
RV∗z ,D0

n,D1
n(1n, 1p(n), x) = 1

∣∣∣∣ x← X0
n

]
− Pr

[
RV∗z ,D0

n,D1
n(1n, 1p(n), x) = 1

∣∣∣∣ x← X1
n

] ∣∣∣∣ ≥ 1
p′(n)

,

where V∗z is the same as V∗ except that z is hardwired as its auxiliary input. ^
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Remark 2. As is [CLMP12, Wic13], we assume that given security parameter n, BB reductions make queries
to the adversary with the same security parameter n. Also, we note that in Definition 9, the reduction R is
given access to an adversary P∗ that strongly breaks soundness (in the sense that the success probability is 1/2
rather than non-negligible). Since we consider negative results (which essentially show the nonexistence of BB
reductions), focusing on reductions that have access to such an adversary makes our results stronger. ^

Conventions. Note that in Definition 9 and Definition 10, BB reductions are given access to probabilistic
interactive Turing machines. When an oracle machine R is given oracle access to a probabilistic interactive
Turing machineA, we follow the following conventions (see, e.g., [BMO90, Gol01]), which are (to the best of
our knowledge) general enough to capture the existing BB reductions.

• What R actually makes queries to is the next-message function ofA, i.e., a functionAr for some random-
ness r such that for any input x and a (possibly empty) list of messages m⃗, Ar(x, m⃗) returns the message
that A(x; r) will send after receiving messages m⃗ (or it returns the output of A if the interaction reaches
the last round afterA(x; r) receives m⃗).

• The randomness forA is set uniformly randomly, and in each query R can choose whetherA should reuse
the current randomness or it should use new (uniformly random) randomness.

3.5 Puncturable (CCA-Secure) Public-Key Encryption
Let us first recall the definition of CCA-secure public-key encryption [NY90, RS92].

Definition 11. A CCA-secure public-key encryption scheme (PKE) consists of three ppt algorithms
(Gen,Enc,Dec) that satisfy the following.

• Correctness. For every n ∈ N and m ∈ {0, 1}n,

Pr
[
Dec(sk, c) = m

∣∣∣ (pk, sk)← Gen(1n); c← Enc(pk,m)
]
= 1 .

• CCA security. For every pair of ppt Turing machines A = (A1,A2), there exists a negligible function
negl such that for every n ∈ N and z ∈ {0, 1}∗,

Pr

b = b′

∣∣∣∣∣∣∣∣
(pk, sk)← Gen(1n)
(m0,m1, st)← ADec(sk,·)

1 (1n, pk, z) where |m0| = |m1|
b← {0, 1}; c← Enc(pk,mb); b′ ← ADec′(sk,·)

2 (st, c)

 ≤ 1
2
+negl(n),

where the oracle Dec′(sk, ·) is the same as Dec(sk, ·) except that it returns ⊥ whenA2 queries the chal-
lenge ciphertext c to it.

^

Next, we introduce a new type of PKE schemes that we call puncturable public-key encryption.12

Definition 12. A public-key encryption scheme (Gen,Enc,Dec) is called puncturable if there exist two ppt
algorithms (PuncGen,PuncDec) that satisfy the following.

• Correctness of punctured keys. For every pair of ppt Turing machines A = (A1,A2), the outputs of
the following two probabilistic experiments are computationally indistinguishable for every n ∈ N and
z ∈ {0, 1}∗.

– Experiment 1.
1. Run (pk, sk) ← Gen(1n), (m, st) ← A1(1n, pk, z), c ← Enc(pk,m), sk{c} ← PuncGen(sk, c),

and out← ADec(sk,·)
2 (st, c, sk{c}).

2. If A2 queried c to Dec in the previous step, the output of the experiment is ⊥. Otherwise, the
output is out.

12Our definition of puncturable PKE is related to but is much simpler than the one that is proposed in [GM15].

15



– Experiment 2.
1. Run (pk, sk) ← Gen(1n), (m, st) ← A1(1n, pk, z), c ← Enc(pk,m), sk{c} ← PuncGen(sk, c),

and out← APuncDec(sk{c},·)
2 (st, c, sk{c}).

2. IfA2 queried c to PuncDec in the previous step, the output of the experiment is ⊥. Otherwise,
the output is out.

• Security of punctured keys. For every pair of ppt Turing machinesA = (A1,A2), there exists a negligible
function negl such that for every n ∈ N and z ∈ {0, 1}∗,

Pr

A2(st, c, sk{c}) = b

∣∣∣∣∣∣∣∣∣
(pk, sk)← Gen(1n)
(m0,m1, st)← A1(1n, pk, z), where |m0| = |m1|
b← {0, 1}; c← Enc(pk,mb); sk{c} ← PuncGen(sk, c)

 ≤ 1
2
+ negl(n) .

^

It is easy to verify that the classical CCA-secure PKE of Dolev et al. [DDN00] is puncturable. (Indeed, their
proof of CCA security relies on the very fact that we can create a key with which we can emulate the decryption
oracle without disturbing the security of the challenge ciphertext; see Appendix A.) Thus, we have the following
lemma.

Lemma 1. Assume the existence of trapdoor permutations. Then, there exists a puncturable CCA-secure public-
key encryption scheme.

4 From 2-Round Delayed-Input Strong WI to 2-Round Special-Purpose Weak
ZK

In this section, we show that 2-round delayed-input strong WI arguments satisfy a weak form of delayed-input
weak ZK if their strong WI is proven by oblivious BB reductions.

Lemma 2. Assume the existence of puncturable CCA-secure public-key encryption schemes. Then, there exists
an NP language L such that if there exist

• a 2-round delayed-input interactive argument (P,V) for L and

• an oblivious black-box reduction Rswi for showing the delayed-input strong WI of (P,V) based on a falsi-
fiable assumption (C, c),

then either (i) the assumption (C, c) is false or (ii) (P,V) is special-purpose delayed-input (Dxwz,N)-
distributional super-weak (t, ϵ)-zero-knowledge for every polynomial t and every inverse polynomial ϵ, where
N is a polynomial and Dxwz = {(Xn,Wn,Zn)}n∈N is a sequence of efficient joint distributions such that each
(Xn,Wn,Zn) ranges over (RL × {0, 1}∗) ∩ ({0, 1}n × {0, 1}∗ × {0, 1}∗). Furthermore, there exists a sequence of
joint distributions Dxz = {(Xn,Zn)}n∈N such that each (Xn,Zn) ranges over ({0, 1}n \ L) × {0, 1}∗ and Dxz is
computationally indistinguishable fromDxz B {(Xn,Zn)}n∈N.

We note that the proof of this lemma is a little involved, and a related proof that is simpler than this one can be
found in Appendix B (where we prove a BB impossibility of 2-round non-delayed-input strong WI).

Proof . Let PuncPKE = (Gen,Enc,Dec,PuncGen,PuncDec) be a puncturable CCA-secure PKE and L be the
NP language that consists of all the public-key–ciphertext pairs of PuncPKE such that either 0 or 1 is encrypted
(the public key is not necessarily honestly generated), i.e.,

L B
{
(pk, ct)

∣∣∣ ∃b ∈ {0, 1}, r ∈ {0, 1}poly(n) s.t. ct = Enc(pk, b; r)
}
.

Assume, as stated in the statement of the lemma, the existence of a 2-round delayed-input interactive argument
(P,V) and an oblivious black-box reduction Rswi for showing the delayed-input strong WI of (P,V) based on
a falsifiable assumption (C, c). For any inverse polynomial ϵ′, let Qϵ′ denote a polynomial such that for every
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delayed-input verifier V∗, every n ∈ N, every two joint distributions D0
n = (X0

n,W0
n) and D1

n = (X1
n,W1

n) over
RL ∩ ({0, 1}n × {0, 1}∗), and every z ∈ {0, 1}∗, if it holds

Pr
[
⟨P(w),V∗(z)⟩(x) = b

∣∣∣ b← {0, 1}; (x,w)← (Xb
n,Wb

n)
]
≥ 1

2
+ ϵ′(n) ,

then either (i) RV∗z ,D0
n,D1

n
swi (1n, 11/ϵ′(n)) breaks the assumption (C, c) on n with advantage 1/Qϵ′(n) or (ii)

RV∗z ,D0
n,D1

n
swi (1n, 11/ϵ′(n)) distinguishes X0

n and X1
n with advantage 1/Qϵ′(n). (Such a polynomial is guaranteed

to exist because of our assumption on Rswi.) Fix any polynomial t and inverse polynomial ϵ. Our goal is to
show that either the assumption (C, c) is false or (P,V) is special-purpose delayed-input (Dxwz,N)-distributional
super-weak (t, ϵ)-zero-knowledge for a distributionDxwz and a polynomial N.

At a high level, the proof proceeds as outlined in Section 2.2. Specifically, for any verifier and distinguisher
against the weak ZK of (P,V), we first define a cheating verifier V∗swi against the strong WI of (P,V). Then, we
proceed with case analysis about the behavior of RV∗swi

swi , where in the first case, we show that we can efficiently
break the assumption (C, c) by using Rswi, and in the second case, we show that we can obtain a simulator for
weak ZK by using Rswi. We note that in what follows, we use several constants that are chosen rather arbitrarily
so that the proof works.

We first introduce distributions over RL and a delayed-input verifier against the strong WI of (P,V). For
any n ∈ N, let Keysn be the set of all the keys that can be output by Gen(1n), i.e., Keysn B {(pk, sk) | ∃r ∈
{0, 1}∗s.t. (pk, sk) = Gen(1n; r)}. Then, for any n ∈ N and any (pk, sk) ∈ Keysn, let D0

pk and D1
pk be the

distributions that are defined over RL as follows: ∀b ∈ {0, 1},

Db
pk B

{
((pk, ct), (b, r))

∣∣∣ r ← {0, 1}poly(n); ct B Enc(pk, b; r)
}
,

i.e., the first part ofDb
pk outputs pk and a random encryption of b, and the second part outputs b and the random-

ness of the encryption. We use (Xb
pk,W

b
pk) to denote the joint distributions such thatXb

pk denotes the first part of
Db

pk andWb
pk denotes the second part ofDb

pk. Next, for any n ∈ N, any z = zV ∥zD ∈ {0, 1}∗, any (pk, sk) ∈ Keysn,
and any pair of a (deterministic) delayed-input verifier V∗wzk and a (probabilistic) distinguisher Dwzk against the
weak zero-knowledge property of (P,V), let V∗swi[n, z, pk, sk,V∗wzk,Dwzk] be the delayed-input verifier described
in Algorithm 1. Note that due to the correctness of PuncPKE, our verifier V∗swi[n, z, pk, sk,V∗wzk,Dwzk] distin-
guishes D0

pk and D1
pk with probability 1 when it interacts with a prover that passes the test in the last step of

V∗swi[n, z, pk, sk,V∗wzk,Dwzk]. In the following, we usually write V∗swi[n, z, pk, sk,V∗wzk,Dwzk] as V∗swi for editorial
simplicity.

We proceed with case analysis about the behavior of the strong WI reduction Rswi in the setting where Rswi
is combined with our strong WI verifier V∗swi. Specifically, we consider the following two cases.

• Case 1. There exist a deterministic polynomial-time delayed-input verifier V∗wzk, a probabilistic t-time
distinguisher Dwzk, and polynomials p1, p2 such that for infinitely many n ∈ N, there exist z ∈ {0, 1}∗ and
(pk, sk) ∈ Keysn such that RV∗swi

swi (1n, 1p1(n)) breaks the assumption (C, c) on n with advantage 1/p2(n), i.e.,

Pr
[
⟨R

V∗swi,D0
pk,D

1
pk

swi (1p1(n)),C⟩(1n) = 1
]
≥ c +

1
p2(n)

. (1)

• Case 2. The condition of Case 1 does not hold.

We analyze each case below.

Analysis of Case 1. We show that Rswi can be used to break the assumption (C, c). Fix any V∗wzk, Dwzk, p1,
p2, n, z, and (pk, sk) ∈ Keysn such that we have (1). Consider the following adversaryA against (C, c).

1. Given V∗wzk, Dwzk, z, and (pk, sk) ∈ Keysn as auxiliary inputs,A lets R
V∗swi,D0

pk,D
1
pk

swi (1n, 1p1(n)) interact with
the challenger C, where sk is used to emulate V∗swi for Rswi efficiently.

Clearly, A runs in polynomial time. Also, from (1) it follows immediately that A breaks the assumption (C, c)
on n with advantage 1/p2(n). We thus conclude that the assumption (C, c) is false in this case.
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Algorithm 1 Delayed-input strong WI verifier V∗swi[n, z, pk, sk,V∗wzk,Dwzk], where z = zV ∥zD.

1. On input 1n, invoke V∗wzk(1n, zV ) and let it interact with the external prover. Let x⋆ = (pk⋆, ct⋆) denote
the statement that is obtained in the last round of the interaction and out⋆ denote the output of V∗wzk. If
pk⋆ , pk, output a random bit and abort.

2. Sample a key key for a pseudorandom function PRF. In the following, whenever new randomness is
required, it is obtained by applying PRF(key, ·) on the transcript that is exchanged with the prover in the
previous step. (The previous step does not require randomness since V∗wzk is assumed to be deterministic.)

3. (Approximation of honest prover’s success probability.) Obtain a (ϵ(n)/16, negl(n))-approximation p̃
of

p B Pr
[
Dwzk(x, zD, ⟨P(w),V∗wzk(zV )⟩(x)) = 1

∣∣∣∣ (pk′, sk′)← Gen(1n); b← {0, 1}; (x,w)← Db
pk′

]
.

4. (Approximation of external prover’s success probability.) Obtain a (ϵ(n)/16, negl(n))-approximation
p̃⋆ of

p⋆ B Pr
[
Dwzk(x⋆, zD, out⋆) = 1

]
.

5. Output a random bit and abort if p̃⋆ < p̃ − ϵ(n)/2 (which suggests that the external prover with the given
statement x⋆ is not likely to convince Dwzk with probability as high as an honest prover with a random
statement). Otherwise, run b← Dec(sk, ct⋆) and output b.

Analysis of Case 2. We show that Rswi can be used to construct a simulator for the special-purpose distribu-
tional super-weak (ϵ, t)-zero-knowledge property of (P,V) (unless it can be used to break the CCA security of
PuncPKE). Toward this end, we split Case 2 into two sub-cases based on the behavior of Rswi in the setting
where RV∗swi

swi is used as a distinguisher against D0
pk,D

1
pk for randomly chosen (pk, sk) ← Gen(1n). Let us first

introduce the following notations about (pk, sk) of PuncPKE. For any n, z, (pk, sk), V∗wzk, and Dwzk:

• (pk, sk) is called interesting (w.r.t. (n, z,V∗wzk,Dwzk)) if it satisfies the following.

Pr
[
⟨P(w),V∗swi⟩(x) = b

∣∣∣ b← {0, 1}; (x,w)← Db
pk

]
≥ 1

2
+
ϵ(n)
18
. (2)

Intuitively, (pk, sk) is interesting if V∗swi[n, z, pk, sk,V∗wzk,Dwzk] breaks the strong WI of (P,V) w.r.t.
D0

pk,D
1
pk with high advantage (which implies that Rswi either breaks (C, c) or distinguishes X0

pk and X1
pk

given V∗swi).

• (pk, sk) is called type-1 interesting if it is interesting and in addition satisfies the following.

Pr

INTERESTING-QUERY

∣∣∣∣∣∣∣ b← {0, 1}; (x,w)← Db
pk

b′ ← R
V∗swi,D0

pk,D
1
pk

swi (1n, 136/ϵ(n), x)

 ≤ 1
4Qϵ/36(n)

,

where (i) Qϵ/36 is the polynomial that is introduced at the beginning of the proof and (ii)
INTERESTING-QUERY is the event that is defined as follows: through oracle queries to V∗swi, the reduction
Rswi(1n, 136/ϵ(n), x) invokes an execution of (P,V) in which Rswi forwards the statement x to V∗swi along
with an accepting prover message (i.e., a message that passes the test in the last step of V∗swi). Note that by
the construction of V∗swi, INTERESTING-QUERY implies that Rswi produces a prover message that convinces
Dwzk with high probability on the statement x—thus, intuitively, (pk, sk) is type-1 interesting if Rswi can
either break (C, c) or distinguish X0

pk and X1
pk without producing such a prover message.

• (pk, sk) is called type-2 interesting if it is interesting but is not type-1 interesting.

Now, we consider the following two sub-cases.
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• Case 2-1. There exist a deterministic polynomial-time delayed-input verifier V∗wzk and a probabilistic
t-time distinguisher Dwzk such that for infinitely many n ∈ N there exists z ∈ {0, 1}∗ such that

Pr
[
(pk, sk) is type-1 interesting | (pk, sk)← Gen(1n)

] ≥ ϵ(n)
8
. (3)

• Case 2-2. The condition of Case 1 does not hold.

We analyze each sub-case below.

Analysis of Case 2-1. We show that Rswi can be used to break the CCA security of PuncPKE. Fix any
V∗wzk, Dwzk, n, and z such that (i) we have (3) and (ii) for every (pk, sk) ∈ Keysn, we we have

Pr
[
⟨R

V∗swi,D0
pk,D

1
pk

swi (136/ϵ(n)),C⟩(1n) = 1
]
< c +

1
Qϵ/36(n)

. (4)

(Such V∗wzk, Dwzk, n, and z are guaranteed to exist since in Case 2, it is assumed that the condition of Case 1
does not hold.) Then, consider the following adversaryAcca against the CCA security of PuncPKE.

1. On input (1n, pk, z), the adversary Acca sends m0 B 0 and m1 B 1 to the challenger as the challenge
plaintexts.

2. On receiving the challenge ciphertext ct, the adversaryAcca first does the following to check whether or
not the key pair (pk, sk) that the challenger has is likely to be type-1 interesting.

(a) Obtain a (1/4Qϵ/36(n), negl(n))-approximation p̃1 of

p1 B Pr
[
⟨P(w),V∗swi⟩(x) = b

∣∣∣ b← {0, 1}; (x,w)← Db
pk

]
,

where during the approximation, the decryption oracle Dec(sk, ·) is used to emulate V∗swi efficiently
without knowing sk. (Since the definition of p1 is independent of ct, the probability that ct need to
be queried to Dec(sk, ·) is negligible.)

(b) Obtain a (1/4Qϵ/36(n), negl(n))-approximation p̃2 of

p2 B Pr

INTERESTING-QUERY

∣∣∣∣∣∣∣ b← {0, 1}; (x,w)← Db
pk

b′ ← R
V∗swi,D0

pk,D
1
pk

swi (1n, 136/ϵ(n), x)

 ,
where as above the decryption oracle Dec(sk, ·) is used to emulate V∗swi during the approximation.

(c) If p̃1 < 1/2 + ϵ(n)/18 − 1/4Qϵ/36(n) or p̃2 > 1/2Qϵ/36(n) (which suggests that (pk, sk) is unlikely
to be type-1 interesting), output a random bit and abort.

3. Finally, the adversary Acca lets x⋆ B (pk, ct) and runs b⋆ ← R
V∗swi,D0

pk,D
1
pk

swi (1n, 136/ϵ(n), x⋆), where as
above the decryption oracle Dec(sk, ·) is used to emulate V∗swi. If INTERESTING-QUERY occurs during the
execution of Rswi, the adversaryAcca outputs a random bit. Otherwise, it outputs b⋆.

We now analyzeAcca. Let ABORT be the event thatAcca aborts, and APPROX-FAIL be the event that the approx-
imation of any of p̃1, p̃2 fails, i.e., max(|p1 − p̃1|, |p2 − p̃2|) > 1/4Qϵ/36(n). From the union bound, we have
Pr [APPROX-FAIL] ≤ negl(n). Also, we have Pr [¬ABORT] ≥ ϵ(n)/8 − negl(n) due to (3) since Acca does not
abort when pk is the public key of a type-1 interesting (pk, sk) and APPROX-FAIL does not occur. Now, under the
condition that neither APPROX-FAIL nor ABORT occurs, we have

p1 ≥ p̃1 −
1

4Qϵ/36(n)
≥ 1

2
+
ϵ(n)
18
− 1

2Qϵ/36(n)
≥ 1

2
+
ϵ(n)
36
, and (5)

p2 ≤ p̃2 +
1

4Qϵ/36(n)
≤ 3

4Qϵ/36(n)
, (6)

where the last inequality in (5) follows since we can assume without loss of generality that Qϵ/36(n) is sufficiently
large and satisfies 1/Qϵ/36(n) ≤ ϵ(n)/18. Note that when we have (5) and (4) (where the former means that V∗swi
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breaks the strong WI of (P,V) w.r.t. D0
pk,D

1
pk with advantage ϵ(n)/36 while the latter means that R

V∗swi,D0
pk,D

1
pk

swi

does not break (C, c) with advantage 1/Qϵ/36(n)), it is guaranteed that R
V∗swi,D0

pk,D
1
pk

swi distinguishes X0
pk and X1

pk
with advantage 1/Qϵ/36(n) due to the definition of Qϵ/36. Thus, by additionally using (6) and recalling the
definitions of X0

pk and X1
pk (i.e., that Xb

pk outputs pk and a random encryption of b), we conclude thatAcca wins
with advantage at least(

1
Qϵ/36(n)

− Pr
[
INTERESTING-QUERY occurs in Step 3 ofAcca

]) × Pr [¬ABORT] − Pr [APPROX-FAIL]

≥ 1
4Qϵ/36(n)

×
(
ϵ(n)

8
− negl(n)

)
− negl(n) =

1
poly(n)

.

Since this is a contradiction, we conclude that we never have Case 2-1.

Analysis of Case 2-2. We show that Rswi can be used to construct a simulator for the special-purpose
distributional super-weak (ϵ, t)-zero-knowledge property of (P,V). For each n ∈ N, let (Xn,Wn,Zn) be the
following joint distributions.

(Xn,Wn,Zn) B
{

((pk, ct), (b, r), sk{ct})

∣∣∣∣∣∣ (pk, sk)← Gen(1n); b← {0, 1}; r ← {0, 1}poly(n)

ct B Enc(pk, b; r); sk{ct} ← PuncGen(sk, ct)

}
.

(Note that (Xn,Wn,Zn) indeed ranges over (RL × {0, 1}∗)∩ ({0, 1}n × {0, 1}∗ × {0, 1}∗) as required.13 Also, note
that (Xn,Wn) is identically distributed with {(x,w) | (pk, sk)← Gen(1n); b← {0, 1}; (x,w)← Db

pk}.) Let N be
the polynomial such that N(n, 1/ϵ(n)) B 320Qϵ/36(n)/ϵ(n)2.

For any deterministic polynomial-time delayed-input verifier V∗wzk and a probabilistic t-time distinguisher
Dwzk, we consider the simulator S described in Algorithm 2.

Algorithm 2 Weak zero-knowledge simulator S .
Input: {xi, zx,i}i∈[Nn] and zV , zD ∈ {0, 1}∗, where Nn B N(n, 1/ϵ(n)) and each (xi, zx,i) is sampled from (Xn,Zn).
Hardwired information: the descriptions of the verifier V∗wzk and the distinguisher Dwzk.

1. Let z B zV ∥zD. Then, for each i ∈ [Nn], do the following.

(a) Parse (xi, zx,i) as ((pk, ct), sk{ct}), and run R
V∗swi,D0

pk,D
1
pk

swi (1n, 136/ϵ(n), xi) as a distinguisher for D0
pk and

D1
pk to see whether INTERESTING-QUERY occurs, where the punctured secret key sk{ct} is used to

emulate V∗swi efficiently for Rswi until INTERESTING-QUERY occurs. (Recall that INTERESTING-QUERY
occurs if Rswi makes a query (to V∗swi) that contains xi and an accepting prover message.)

(b) It INTERESTING-QUERY occurs, let i⋆ B i, and let out⋆ denote the output of V∗wzk that is computed
inside V∗swi when the query that causes INTERESTING-QUERY is made; then, exit the loop and go to
the next step.

2. If (i⋆, out⋆) is not defined in the above step, abort. Otherwise, output (i⋆, out⋆).

We now proceed with the analysis of S . Fix any V∗wzk and Dwzk. Since it is assumed that the condition of
Case 2-1 does not hold, we have that for every sufficiently large n ∈ N and every z = zV ∥zD ∈ {0, 1}∗,

Pr
[
(pk, sk) is type-1 interesting | (pk, sk)← Gen(1n)

]
<
ϵ(n)

8
. (7)

Fix any such n and z = zV ∥zD. Let p be defined by

p B Pr
[
Dwzk(x, zD, ⟨P(w),V∗wzk(zV )⟩(x)) = 1

∣∣∣ (x,w)← (Xn,Wn)
]
. (8)

(Note that p is identically defined with the one in the description of V∗swi in Algorithm 1.)
13We assume without loss of generality that on security parameter 1n, Gen and Enc generate (pk, ct) such that |(pk, ct)| = n.
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We first make a simplifying assumption. First, note that S runs the reduction Rswi with our (probabilistic)
verifier V∗swi. Following the conventions stated in Section 3.4.2, in general the reduction Rswi can make V∗swi reuse
the same randomness multiple times when it makes queries to V∗swi. However, since V∗swi obtains randomness by
applying PRF on the transcript exchanged with the prover (where the prover message is actually given by Rswi),
we can safely think, by assuming without loss of generality that Rswi never makes the same query twice to V∗swi
while making V∗swi reuse the same randomness, as if V∗swi always uses new true randomness in each invocation
during the execution of S .14 Second, note that S uses the punctured secret key sk{ct} to emulate V∗swi for Rswi.
We can however safely think as if S uses the real secret key sk to perfectly emulate V∗swi since the correctness of
punctured keys of PuncPKE guarantees that the output of Rswi (and hence that of S ) is indistinguishable in these
two cases. (Note that by the definition of INTERESTING-QUERY, decrypting ct is not required for the emulation of
V∗swi unless INTERESTING-QUERY occurs.)

Next, we bound the probability that S aborts. Toward this end, it suffices to show that we have

Pr
[
(pk, sk) is type-2 interesting | (pk, sk)← Gen(1n)

] ≥ ϵ(n)
8
. (9)

Indeed, by combining (9) with the definition of type-2 interesting keys, we obtain

Pr

INTERESTING-QUERY

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← Gen(1n)
b← {0, 1}; (x,w)← Db

pk

b′ ← R
V∗swi,D0

pk,D
1
pk

swi (1n, 136/ϵ(n), x)

 ≥ ϵ(n)
8
· 1

4Qϵ/36(n)
=

ϵ(n)
32Qϵ/36(n)

,

and thus, by using Markov’s inequality, we can bound the probability that S aborts as follows.

Pr
[
S ({xi, zx,i}i∈[Nn], zV , zD) aborts | (xi, zx,i)← (Xn,Zn) for ∀i ∈ [Nn]

] ≤ 1
Nn
·

32Qϵ/36(n)
ϵ(n)

=
ϵ(n)
10
. (10)

So, we focus on showing (9). Observe that from (8) and an average argument, it follows that with probability at
least ϵ(n)/4 over the choice of (pk, sk)← Gen(1n), we obtain (pk, sk) such that

Pr
[
Dwzk(x, zD, ⟨P(w),V∗wzk(zV )⟩(x)) = 1

∣∣∣ b← {0, 1}; (x,w)← Db
pk

]
≥ p − ϵ(n)

4
. (11)

For any such (pk, sk), it follows from (11) and an average argument that with probability at least ϵ(n)/8 over the
choice of b← {0, 1}, (x,w)← Db

pk, and out← ⟨P(w),V∗wzk(zV )⟩(x), we obtain out such that

Pr [Dwzk(x, zD, out) = 1] ≥ p − 3ϵ(n)
8
. (12)

Now, for any (pk, sk) such that we have (11), we have

Pr
[
⟨P(w),V∗swi(z)⟩(x) = b

∣∣∣ b← {0, 1}; (x,w)← Db
pk

]
=

1
2
· Pr

[
V∗swi aborts

]
+ 1 · Pr

[
V∗swi does not abort

]
=

1
2
+

1
2
· Pr

[
V∗swi does not abort

]
≥ 1

2
+

1
2

(
ϵ(n)

8
− negl(n)

)
≥ 1

2
+
ϵ(n)
18
, (13)

where to see the first inequality, observe that we have

Pr
[
V∗swi does not abort

] ≥ ϵ(n)
8
− negl(n)

since if the output out of V∗wzk that is computed in the first step of V∗swi satisfies (12), we have p̃⋆ ≥ p⋆−ϵ(n)/16 ≥
p − ϵ(n)/16 − 3ϵ(n)/8 ≥ p̃ − ϵ(n)/16 − 3ϵ(n)/8 − ϵ(n)/16 = p̃ − ϵ(n)/2 in V∗swi unless the approximations of p

14Formally, we need to consider a hybrid simulator S̃ that emulates V∗swi for Rswi in such a way that V∗swi uses true randomness instead
of pseudorandomness. Due to the security of PRF, the output of S̃ is indistinguishable from that of S .
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and p⋆ fails (the second inequality follows from (12)). Thus, by (13) and the definition of interesting keys, any
(pk, sk) such that we have (11) is interesting, so we have

Pr
[
(pk, sk) is interesting | (pk, sk)← Gen(1n)

] ≥ ϵ(n)
4
. (14)

Combining (7) and (14), we obtain (9).
Next, we analyze the behavior of S under the condition that it does not abort. Since S makes at most

polynomially many queries to V∗swi, it follows from a union bound that with overwhelming probability, in each
query the approximations of p and p⋆ by V∗swi are correct, i.e., max(|p− p̃|, |p⋆− p̃⋆|) ≤ ϵ(n)/16. Thus, under the
condition that S does not abort, with overwhelming probability the output (i⋆, out⋆) of S ({xi, zx,i}i∈[Nn], zV , zD)
satisfies

Pr
[
Dwzk(xi⋆ , zD, out⋆) = 1

]
≥ p̃ − ϵ(n)

2
− ϵ(n)

16
≥ p − ϵ(n)

2
− ϵ(n)

8
= p − 5ϵ(n)

8
. (15)

Finally, by combining (10) and (15), we obtain

Pr
[
Dwzk(xi⋆ , zD, out⋆) = 1

∣∣∣∣∣∣ (xi, zx,i)← (Xn,Zn) for ∀i ∈ [Nn]
(i⋆, out⋆)← S ({xi, zx,i}i∈[Nn], zV , zD)

]
≥ p − 5ϵ(n)

8
− ϵ(n)

10
− negl(n)

≥ Pr
[
Dwzk(x, zD, ⟨P(w),V∗wzk(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)

] − ϵ(n)

as required. Thus, (P,V) is special-purpose delayed-input (Dxwz,N)-distributional super-weak (t, ϵ)-zero-
knowledge in this case.

Completing the proof of the first part of Lemma 2. Combining the analyses of Case 1 and Case 2, we
conclude that for any t, ϵ,V∗wzk,Dwzk, either the assumption (C, c) is false or S is a good simulator for the delayed-
input special-purpose (Dxwz,N)-distributional super-weak (t, ϵ)-zero-knowledge property of (P,V), whereDxwz

and N are defined as above. This completes the proof of the first part of Lemma 2.

Proof of the furthermore part. We defineDxz = {(Xn,Zn)}n∈N by

(Xn,Zn) B
{
((pk, ct), sk{ct})

∣∣∣ (pk, sk)← Gen(1n); ct← Enc(pk, 2); sk{ct} ← PuncGen(sk, ct)
}
.

Due to the (perfect) correctness of PuncPKE, each (Xn,Zn) indeed ranges over ({0, 1}n \ L) × {0, 1}∗. Also,
Dxz is computationally indistinguishable fromDxz = {(Xn,Zn)}n∈N because of the security of PuncPKE. This
completes the proof of Lemma 2. □

5 From Special-Purpose Weak ZK to Special-Purpose Pre-Processing ZK
In this section, we show that special-purpose delayed-input (Dxwz,N)-distributional super-weak (t, ϵ)-
zero-knowledge implies special-purpose delayed-input (Dxwz,N′)-distributional pre-processing (t′, ϵ′)-zero-
knowledge for some N′, t′, ϵ′.

Lemma 3. Let (P,V) be a 2-round delayed-input interactive argument for an NP language L and Dxwz =

{(Xn,Wn,Zn)}n∈N be a sequence of joint distributions such that each (Xn,Wn,Zn) ranges over (RL×{0, 1}∗)∩
({0, 1}n × {0, 1}∗ × {0, 1}∗). Then, if there exists a polynomial N such that (P,V) is special-purpose delayed-
input (Dxwz,N)-distributional super-weak (t, ϵ)-zero-knowledge for every polynomial t and inverse polynomial
ϵ, there also exists a polynomial N′ such that (P,V) is special-purpose delayed-input (Dxwz,N′)-distributional
pre-processing (t′, ϵ′)-zero-knowledge for every polynomial t′ and inverse polynomial ϵ′.

Before giving the proof, let us first give a high-level idea of the proof. Essentially, the proof is obtained by
slightly modifying the proof of [CLP15, Theorem 9] (where it is shown that a certain version of weak ZK implies
a certain version of ZK as in our lemma). In particular, we prove the lemma by using von Neumann’s minimax
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theorem as in [CLP15]. Recall that, at a high level, the minimax theorem guarantees that in any finite two-player
zero-sum game, if for every strategy for Player 1 there exists a strategy for Player 2 such that Player 2’s payoff is
v, then there exists a (universal) strategy for Player 2 such that for any strategy for Player 1, Player 2’s payoff is v.
Now, consider a game where Player 1 chooses a distinguisher, Player 2 chooses a simulator, and Player 2’s payoff
is defined to be high when the simulator makes the distinguisher output 1 with probability as high as an honest
prover. The weak ZK property of (P,V) guarantees that for each distinguisher that Player 1 chooses, there exists
a simulator that Player 2 can choose so that Player 2’s payoff is high. Thus, intuitively, we can use the minimax
theorem to show that Player 2 can choose a (universal) simulator such that for any distinguisher that Player 1
chooses, Player 2’s payoff is guaranteed to be high. A subtlety is that to use the minimax theorem, we need to
allow Player 1 to choose a distribution over distinguishers (rather than a single distinguisher); thus, we cannot
use the weak ZK property directly. We solve this problem as in [CLP15], namely by considering a polynomial-
size circuit that approximates a distribution over distinguishers. Another subtlety is that the universal strategy
that is guaranteed to exist by the minimax theorem is a distribution of simulators (rather than a single simulator);
thus, if we approximate it by a polynomial-size circuit, we only obtain a non-uniform simulator. We solve this
problem by considering ZK in the pre-processing model, where we can consider a pre-processing simulator that
finds a good non-uniform simulator by using its unbounded computing power.

Now, we give the proof of Lemma 3. We note that much text in the proof is taken from [CLP15].

Proof of Lemma 3. Suppose (P,V) is special-purpose (Dxwz,N)-distributional super-weak (t, ϵ)-zero-
knowledge for every polynomial t and inverse polynomial ϵ for a polynomial N. Let t′ be any polynomial
and ϵ′ be any inverse polynomial. Let V∗ be any ppt verifier and TV∗ be any polynomial that bounds the
running time of V∗. Without loss of generality, we can assume that the auxiliary inputs zV , zD ∈ {0, 1}∗ in
the definition of special-purpose delayed-input (Dxwz,N)-distributional pre-processing (t′, ϵ′)-zero-knowledge
(Definition 6) satisfy |zV | = TV∗(n) and |zD| = t′(n), and we can also remove the absolute value |·| when
considering the difference of the probabilities.15 Thus, it suffices to construct a polynomial N′ and a ppt
simulator S = (S pre, S main) such that for every t′-time distinguisher D, there exists an n0 ∈ N such that for every
n > n0 and zV , zD ∈ {0, 1}∗ with |zV | = TV∗(n) and |zD| = t′(n) and for N′n B N′(n, 1/ϵ′(n)), it holds

Pr

D(xi∗ , zD, v) = 1

∣∣∣∣∣∣∣∣∣
stS ← S pre(1n, zV )
(xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← S main({xi, zx,i}i∈[Nn], stS )


≥ Pr

[
D(x, zD, ⟨P(w),V∗(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)

] − ϵ′(n) .

We let N′ be a polynomial such that N′(n, 1/ϵ′(n)) = N(n, 2/ϵ′(n)) for every n ∈ N. (The reason for this choice
will become clear later.)

First, let us describe a useful lemma given in [CLP15]. Roughly speaking, the lemma states that any distri-
bution over circuits can be approximated by a small randomized circuit.

Lemma 4 ([CLP15]). Let X and A be finite sets, let Y be any random variable with finite support, let C be any
distribution over s-size randomized circuits of the form C : X × Supp(Y) → A, and let U be any finite set of
randomized circuits of the form u : X × Supp(Y) × A→ {0, 1}. Then, for every δ > 0, there exists a randomized
circuit Ĉ of size T = O(s · (log|X| + log|U |)/δ2) such that for every u ∈ U and x ∈ X, we have∣∣∣∣∣ EC←C

[u(x,Y,C(x,Y))] − E
[
u(x,Y, Ĉ(x,Y))

]∣∣∣∣∣ ≤ δ .
Using Lemma 4, we obtain two corollaries, where the first one will be used to approximate a distribution over
distinguishers and the second one will be used to approximate a distribution over simulators.

Corollary 1. Fix any n ∈ N. LetC be any distribution over s-size randomized circuits of the form D : Supp(Xn)×
{0, 1}t′(n) → {0, 1}. Then, for every δ > 0, there exists a randomized circuit D̂ of size T = O(s · (n + t′(n))/δ2)
such that for every x ∈ Supp(Xn) and v ∈ {0, 1}t′(n), we have∣∣∣∣∣ Pr

D←C
[D(x, v) = 1] − Pr[D̂(x, v) = 1]

∣∣∣∣∣ ≤ δ .
15Specifically, if we have (t′, ϵ′)-zero-knowledge holds in this version of definition, we have (t′ − 1, ϵ′)-zero-knowledge in the original

version of definition, where we assume for simplicity that we can negate the output of each distinguisher in one step.
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Proof . In the statement of Lemma 4, let X = Supp(Xn)× {0, 1}t′(n), A = {0, 1}, Y = 0, and U be the set that only
contains the circuit (x, y, a) 7→ a. □

Corollary 2. Fix any n ∈ N and let N′n B N′(n, 1/ϵ(n)). Let C be any distribution over s-size randomized
circuits of the form S : (Supp(Xn)×Supp(Zn))N′n → [N′n]×{0, 1}t′(n), and let UD be any finite set of randomized
circuits of the form D : Supp(Xn) × {0, 1}t′(n) → {0, 1}. Then, for every δ > 0, there exists a randomized circuit
Ŝ of size T = O(s · (log|UD|)/δ2) such that for every D ∈ UD, we have∣∣∣∣∣∣∣∣Pr

D(xi∗ , v) = 1

∣∣∣∣∣∣∣∣
S ← C
(xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← S ({xi, zx,i}i∈[N′n])

 − Pr
[
D(xi∗ , v) = 1

∣∣∣∣∣ (xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← Ŝ ({xi, zx,i}i∈[N′n])

]∣∣∣∣∣∣∣∣ ≤ δ
Proof . In the statement of Lemma 4, let X = ∅, A = [N′n] × {0, 1}t′(n), Y = (Xn,Zn)N′n , and U is the set that
contains, for each D ∈ UD, a circuit such that on input of the form ({xi, zx,i}i∈[N′n], (i∗, v)), it runs D(xi∗ , v). □

Next, to obtain a simulator S , for each n ∈ N and zV ∈ {0, 1}TV∗ (n) we define a two-player zero-sum game
between a “simulator player” PS and a “distinguisher player” PD. Let D1,D2,D3, . . . be an enumeration of the
set of all (uniform) distinguishers, and let D′1,D

′
2,D

′
3, . . . be the corresponding sequence where D′j is the same

as D j except that after t′(n) steps, D′j stops and outputs 0. (Note that each fixed t′-time distinguisher D will
eventually appear in the set {D′1, . . . ,D′n} as n gets larger.) Let ZD B {0, 1}t

′(n) be the set of all length-t′(n) binary
strings. Then, the strategies for PS and PD are defined as follows.

• The set StratD of pure strategies for PD is {D′i(·, zD, ·)}i∈[n],zD∈ZD , i.e., the set that is obtained by hardwiring
zD on D′i for each zD ∈ ZD and D′i ∈ {D′1, . . . ,D′n}.

• The set StratS of pure strategies for PS is, roughly speaking, the set of the distinguisher-dependent simu-
lators that we obtain by first considering circuits that approximate distributions over {D′i(·, zD, ·)}i∈[n],zD∈ZD

and then using the weak ZK property of (P,V) for them. Formally, let TD̂ be the size of the circuit that
we obtain by using Corollary 1 on a distribution16 over {D′i(·, zD, ·)}i∈[n],zD∈ZD with δ B ϵ′(n)/8 (each
D′i(·, zD, ·) is viewed as a circuit). Let DU be a Turing machine such that on input of the form (x,C, v) for a
TD̂-size circuit C, it runs C(x, v). Let TDU be the running time of DU , and let S DU be the simulator that is
guaranteed to exist for the distinguisher DU by the special-purpose delayed-input (Dxwz,N)-distributional
super-weak (TDU , ϵ

′/2)-zero-knowledge property of (P,V). Then, the set StratS of pure strategies for PS

is the set that contains S DU (·, zV ,C) for every TD̂-size circuit C.17

For each S ′ ∈ StratS and D′ ∈ StratD, let the “payoff” of PS (w.r.t. V∗, n, and zV ) is defined by

µn,zV (S ′,D′) BPr
[
D′(xi∗ , v) = 1

∣∣∣∣∣∣ (xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← S ′({xi, zx,i}i∈[N′n])

]
− Pr

[
D′(x, ⟨P(w),V∗(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)

]
,

where N′n B N′(n, 1/ϵ′(n)) = N(n, 2/ϵ′(n)). Also, for any mixed strategies (i.e., distributions) S over StratS and
D over StratD, the expected payoff of PS is defined by

µn,zV (S,D) B E
S ′←S,D′←D

[
µn,zV (S ′,D′)

]
=

∑
S ′,D′

Pr
S←S,D←D

[
S = S ′ ∧ D = D′

] · µn,zV (S ′,D′) .

Jumping ahead, below we show that there exists a (non-uniform) simulator Ŝ such that for any D ∈ StratD, we
have µn,zV (Ŝ ,D) ≥ −ϵ′(n).

Now, by using the above game, we obtain a simulator S . Roughly speaking, we proceed in four steps (more
details will be given shortly).

16Note that in Corollary 1, the size T of the randomized circuit is independent of the distribution C.
17Here, S DU is given zV as the auxiliary input to the verifier V∗ and is given C as the auxiliary input to the distinguisher DU (cf.

Definition 7).
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Step 1. We first show that for any sufficiently large n ∈ N, any zV ∈ {0, 1}TV∗ (n), and any mixed strat-
egy D for PD (i.e., any distribution over StratD), there exists a simulator SD ∈ StratS such that
µn,zV (SD,D) ≥ −3ϵ′(n)/4. Toward this end, we first use Corollary 1 to show that we can approximateD
by a TD̂-size distinguisher D̂, and then use the special-purpose delayed-input (Dxwz,N)-distributional
super-weak (TDU , ϵ

′/2)-zero-knowledge property of (P,V) to obtain a simulator S D̂ for D̂ such that
µn,zV (S D̂, D̂) ≥ −ϵ′(n)/2. Finally, by recalling that D̂ approximatesD, we show µn,zV (S D̂,D) ≥ −3ϵ′(n)/4.

Step 2. We now apply the minimax theorem to the result of Step 1 to obtain that for any sufficiently large n ∈ N
and any zV ∈ {0, 1}TV∗ (n), there exists a mixed strategy S for PS (i.e., a distribution over StratS ) such that
for every distinguisher D ∈ StratD, we have µn,zV (S,D) ≥ −3ϵ′(n)/4.

Step 3. We next use Corollary 2 to show that for any sufficiently large n ∈ N and any zV ∈ {0, 1}TV∗ (n), we
can approximate S (from Step 2) by a polynomial-size circuit Ŝ so that µn,zV (Ŝ ,D) ≥ −ϵ′(n) for every
distinguisher D ∈ StratD.

Step 4. Finally, we obtain S = (S pre, S main) as follows. First, on input (1n, zV ), the pre-processing simulator
S pre finds the polynomial-size circuit Ŝ (from Step 3) by brute force and outputs it as the intermediate
state. Next, on input {xi, zx,i}i∈[Nn] and Ŝ , the main simulator S main simply runs Ŝ on {xi, zx,i}i∈[Nn].

Details of Step 1, Step 3, and Step 4 are given below.

Details of Step 1. Let n be sufficiently large (in particular, n should be large enough that the distinguisher-
dependent simulator S DU works for the universal distinguisher DU , where DU and S DU are defined in the defini-
tion of StratS ), and fix any zV ∈ {0, 1}TV∗ (n) and any mixed strategyD for PD. Let D̂ be the TD̂-size randomized
circuit that we obtain by using Corollary 1 on the distributionDwith δ B ϵ′(n)/8 so that for every x ∈ Supp(Xn)
and v ∈ {0, 1}t′(n), we have ∣∣∣∣∣ Pr

D←D
[D(x, v) = 1] − Pr[D̂(x, v) = 1]

∣∣∣∣∣ ≤ ϵ′(n)
8
. (16)

(Recall that TD̂ is defined in the definition of StratS above.) First, we observe that there exists SD ∈ StratS such
that µn,zV (SD, D̂) ≥ −ϵ′(n)/2. To see this, observe that for SD B S DU (·, zV , D̂) ∈ StratS , we have

Pr
[
D̂(xi∗ , v) = 1

∣∣∣∣∣∣ (xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← SD({xi, zx,i}i∈[Nn])

]
= Pr

[
DU(xi∗ , D̂, v) = 1

∣∣∣∣∣∣ (xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← S DU ({xi, zx,i}i∈[Nn], zV , D̂)

]
(due to the definitions of DU , SD)

≥ Pr
[
DU(x, D̂, ⟨P(w),V∗(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)

]
− ϵ

′(n)
2

= Pr
[
D̂(x, ⟨P(w),V∗(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)

]
− ϵ

′(n)
2
, (due to the definition of DU)

where the inequality holds since the simulator S DU is obtained by the special-purpose delayed-input (Dxwz,N)-
distributional super-weak (TDU , ϵ

′/2)-zero-knowledge of (P,V) for the universal distinguisher DU . Then, since
we have |µn,zV (SD,D) − µn,zV (SD, D̂)| ≤ ϵ′(n)/4 due to (16), we obtain µn,zV (SD,D) ≥ −3ϵ′(n)/4 as required.

Details of Step 3. By Corollary 2, there exists a polynomial-size circuit Ŝ such that for every distinguisher
D ∈ StratD and for the distribution S that is obtained in Step 2, we have∣∣∣∣∣∣∣∣Pr

D(xi∗ , v) = 1

∣∣∣∣∣∣∣∣
S ← S
(xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← S ({xi, zx,i}i∈[N′n])

 − Pr
[
D(xi∗ , v) = 1

∣∣∣∣∣ (xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← Ŝ ({xi, zx,i}i∈[N′n])

]∣∣∣∣∣∣∣∣
≤ ϵ

′(n)
4
.

In other words, for Ŝ , we have |µn,zV (S,D) − µn,zV (Ŝ ,D)| ≤ ϵ′(n)/4 for every D ∈ StratD. Thus, by the result of
Step 2, we have µn,zV (Ŝ ,D) ≥ −ϵ′(n) for every D ∈ StratD.
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Details of Step 4. Consider the following simulator S = (S pre, S main). On input (1n, zV ), the pre-processing
simulator S pre uses its unbounded computing power to find a polynomial-size circuit Ŝ that satisfies µn,zV (Ŝ ,D) ≥
−ϵ′(n) for every D ∈ StratD. (Note that µn,zV (Ŝ ,D) can be computed given (1n, zV ), so S pre can indeed
check whether a circuit Ŝ satisfies µn,zV (Ŝ ,D) ≥ −ϵ′(n).) The output of S pre is stS B Ŝ . Then, on input
({xi, zx,i}i∈[Nn], stS ), the main simulator S main parses stS as Ŝ and outputs whatever Ŝ ({xi, zx,i}i∈[Nn]) outputs.

We now analyze S . Fix any probabilistic t-time distinguisher D, and fix any sufficiently large n ∈ N (in
particular, n should be large enough that D appears in {D′1, . . . ,D′n} and that the distinguisher-dependent simu-
lator S DU works for the universal distinguisher DU). Fix any zV ∈ {0, 1}TV∗ (n) and zD ∈ ZD,n = {0, 1}t

′(n). Note
that by the definition of StratD, we have D(·, zD, ·) ∈ StratD. Thus, by the analysis of Step 3, the pre-processing
simulator S pre can always find a polynomial-size circuit Ŝ such that µn,zV (Ŝ ,D) ≥ −ϵ′(n), i.e.,

Pr

D(xi∗ , zD, v) = 1

∣∣∣∣∣∣∣∣∣
Ŝ ← S pre(1n, zV )
(xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← Ŝ ({xi, zx,i}i∈[N′n])


≥ Pr

[
D(x, zD, ⟨P(w),V∗(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)

] − ϵ′(n) .

Thus, by the construction of S = (S pre, S main), we obtain

Pr

D(xi∗ , zD, v) = 1

∣∣∣∣∣∣∣∣∣
stS ← S pre(1n, zV )
(xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← S main({xi, zx,i}i∈[Nn], stS )


= Pr

D(xi∗ , zD, v) = 1

∣∣∣∣∣∣∣∣∣
Ŝ ← S pre(1n, zV )
(xi, zx,i)← (Xn,Zn) for ∀i ∈ [N′n]
(i∗, v)← Ŝ ({xi, zx,i}i∈[Nn])


≥ Pr

[
D(x, zD, ⟨P(w),V∗(zV )⟩(x)) = 1 | (x,w)← (Xn,Wn)

] − ϵ′(n)

as required. This completes the proof of Lemma 3. □

6 BB Impossibility of 2-Round Special-Purpose Pre-Processing ZK
In this section, we give a BB impossibility result about special-purpose delayed-input (Dxwz,N)-distributional
pre-processing (t, ϵ)-zero-knowledge.

Lemma 5. Let L be an NP language andDxwz = {(Xn,Wn,Zn)}n∈N be a sequence of efficient joint distributions
such that (i) each (Xn,Wn,Zn) ranges over (RL × {0, 1}∗) ∩ ({0, 1}n × {0, 1}∗ × {0, 1}∗) and (ii) there exists a
sequence of joint distributions Dxz = {(Xn,Zn)}n∈N such that Dxz is computationally indistinguishable from
Dxz B {(Xn,Zn)}n∈N and each (Xn,Zn) ranges over ({0, 1}n \ L) × {0, 1}∗. Then, if there exists a 2-round
delayed-input interactive argument (P,V) for L such that

• there exists a polynomial N such that (P,V) is special-purpose delayed-input (Dxwz,N)-distributional
pre-processing (t, ϵ)-zero-knowledge for every polynomial t and every inverse polynomial ϵ, and

• there exists a black-box reduction R for showing the adaptive soundness of (P,V) based on a falsifiable
assumption (C, c),

then, the assumption (C, c) is false.

As mentioned in Section 2.2, the proof of this lemma closely follows the proof of [CLMP12, Theorem 2]. We
note that much text in the proof is taken from [CLMP12].

Proof . Assume that there exist a 2-round delayed-input interactive argument (P,V) for L, a polynomial N,
a black-box reduction R, and a falsifiable assumption (C, c) that satisfy the conditions stated in the lemma.
Following the “meta-reduction” paradigm by Boneh and Venkatesan [BV98] (which is also used in, e.g., [Pas11,
GW11, CLMP12, Pas13]) we will use the reduction R to efficiently break the assumption (C, c). More formally,
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we construct an inefficient cheating prover that breaks the soundness of (P,V) with overwhelming probability
(which implies that the reduction R breaks the assumption (C, c) when it is combined with this cheating prover),
and we next show how to emulate this cheating prover for R efficiently without disturbing R’s interaction with
the challenger C.

We first describe an inefficient cheating prover A that breaks the adaptive soundness of (P,V). More pre-
cisely (as in [Pas11, CLMP12]), we define a class of deterministic provers A f , parameterized by a function
f : {0, 1}∗ → {0, 1}∞. Given that A f is deterministic, we can assume without loss of generality that R never
asks its oracle the same query twice. Let V∗ be the delayed-input verifier such that on input (1n, z), it sends z
to the prover as the first message of (P,V), and after receiving a response a from the prover, it simply outputs
a. Let S = (S pre, S main) be the simulator that is guaranteed to exist for V∗ by the special-purpose delayed-input
(Dxwz,N)-distributional pre-processing (t, ϵ)-zero-knowledge property of (P,V), where t and ϵ are the parame-
ters that we will specify later (see (17) and (18)). Note that for any n ∈ N, z ∈ {0, 1}∗, stS ← S pre(1n, z), and
{(xi, zx,i)}i∈[Nn] (where Nn B N(n, 1/ϵ(n))), the main simulator S main({xi, zx,i}i∈[Nn], stS ) outputs some (i∗, v) such
that v is the same format as the output of V∗, i.e., v can be viewed as a prover message w.r.t. the verifier message
z and the statement xi∗ . Now, on input the security parameter 1n and a verifier message q of (P,V), the cheating
prover A f does the following by using f (1n ∥ q) as randomness: (i) compute stS ← S pre(1n, q), (ii) sample
(xi, zx,i) ← (Xn,Zn) for each i ∈ [Nn], (iii) compute (i∗, a) ← S main({xi, zx,i}i∈[Nn], stS ) and send (xi∗ , a) to the
prover.

Let us see thatA indeed breaks the adaptive soundness of (P,V). Let RO : {0, 1}∗ → {0, 1}∞ be a uniformly
distributed random oracle. Our claim is that ARO breaks the adaptive soundness of (P,V) with overwhelming
probability. First note that with probability 1 (over the choice of RO),ARO selects a false statement xi∗ < L due
to our assumption on Dxz. Now, consider an alternative cheating prover A f

alt that is identical with A f except
that A f

alt samples (xi, zx,i) ← (Xn,Zn) for each i ∈ [Nn] (again by using f (1n ∥ q) as the randomness); that
is, the difference from A f is that A f

alt samples true statements rather than false statements. It follows from
the (non-uniform) indistinguishability property of the simulator S and the completeness of (P,V) that ARO

alt
convinces an honest verifier for a true statement xi∗ ∈ L with overwhelming probability.18 Now, it follows from
the (non-uniform) indistinguishability between Dxz and Dxz that ARO convinces the honest verifier for a false
statement xi∗ < L with overwhelming probability.19 That is,ARO breaks the soundness of (P,V) with probability
µ(·) = 1 − ν(·) for a negligible function ν.

Next, let us see that the reduction R breaks the assumption (C, c) when it is combined with A. By an
averaging argument, with probability at least 1 − 10ν(n) over the choice of a random oracle f ← RO, the
cheating prover A f breaks the adaptive soundness of (P,V) with probability at least 9/10. Therefore, there
exists a polynomial Q (independent of S ) such that for each such “good” choice of f , the reduction RA

f breaks
the assumption (C, c) with non-negligible advantage 1/Q(n). By a union bound, it follows that RA

RO
(1n) breaks

the assumption (C, c) with advantage 1/2Q(n) for sufficiently large n.
We now construct a ppt cheating prover Ã that emulates A. The cheating prover Ã, on input the security

parameter 1n and a verifier message q, uniformly samples (x,w) ← (Xn,Wn), runs the honest prover strategy
P(x,w) on input the message q, and outputs x and whatever P outputs.

We now show the following claim, which concludes the proof of Lemma 5.

Claim 1. For sufficiently large n, the reduction RÃ breaks the assumption (C, c) with advantage at least 1/4Q(n)
on common input 1n.

Proof . Let m(n) be an upper bound on the running time of R, and define a sequence of m(n) + 1 hybrids
H0, . . . ,Hm(n) as follows.

• In the hybrid Hi, the challenger C interacts with the reduction R(·) where the first i oracle responses are
18In particular, we use the indistinguishability w.r.t. V∗(1n, z) where the auxiliary input z is an honest verifier message q. We require

non-uniform indistinguishability since we use indistinguishability against a distinguisher that takes as additional auxiliary input the
randomness that is used to generate q. (The randomness is used by the distinguisher to check whether the given prover message is
accepting or not.)

19We require non-uniform indistinguishability since we use the indistinguishability against a distinguisher that takes as auxiliary input
(i) an honest verifier message q and its randomness and (ii) the pre-processing simulator’s output stS ← S pre(1n, q). (These auxiliary
inputs are used by the distinguisher to check whether the main simulator S main outputs an accepting prover message on the given statement
(xi, zx,i).)
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simulated (i.e., answered by ARO) and the remaining queries are answered honestly (i.e., answered by
Ã).20 The output of the hybrid Hi is that of the challenger C.

Note that H0 is the output of C after interacting with RÃ and Hm(n) is the output of C after interacting with
RA

RO . Roughly speaking, we show the indistinguishability between each two consecutive hybrids Hi and Hi+1
by combining the indistinguishability of the simulation, the indistinguishability between Dxz and Dxz, and the
fact that oracle responses for all j > i + 1 can be generated in polynomial time. Formally, let us consider the
following intermediate hybrid H+i .

• The hybrid H+i is identical with Hi except that the (i+ 1)-th oracle response is answered by the alternative
cheating proverARO

alt.

We first show that Hi and H+i are distinguishable with advantage at most 1/5m(n)Q(n) by relying on the (non-
uniform) indistinguishability of the simulation. (Recall that H+i differs from Hi in that ARO

alt is used instead of
Ã in the (i + 1)-th oracle response, where ARO

alt differs from Ã in that ARO
alt generates a simulated proof for a

true statement whereas Ã generates an honest proof for a true statement.)

Details: Set the parameter t and ϵ for the special-purpose delayed-input (Dxwz,N)-distributional
pre-processing (t, ϵ)-zero-knowledge property of (P,V) as

t(n) is a polynomial that upper bounds the joint running time of C and RÃ. (17)

ϵ(n) =
1

5m(n)Q(n)
. (18)

(Note that both t and ϵ are independent of i and S .) Assume for contradiction that Hi and H+i
are distinguishable with advantage greater than 1/5m(n)Q(n). By an average argument, we can
fix the execution of Hi up until the (i + 1)-th query (inclusive) in such a way that Hi and H+i are
still distinguishable with advantage greater than 1/5m(n)Q(n). Let qi+1 and stR,C be the (i + 1)-
th query and the joint internal state of R and C at the point of the (i + 1)-th query of this fixed
execution, respectively. Now, it is easy to see that we can break the special-purpose delayed-input
(Dxwz,N)-distributional pre-processing (t, ϵ)-zero-knowledge property of (P,V) (w.r.t. the cheating
verifier V∗ that is defined at the beginning of the proof of Lemma 5)—namely, we let qi+1 be the
auxiliary input to the verifier and stR,C be the auxiliary input to the distinguisher, and we consider
a distinguisher that continues the execution of Hi from the (i + 1)-th oracle response in such a way
that the statement and the output of V∗ (which is viewed as a prover’s response) are used as the
(i+ 1)-th oracle response. (Note that the running time of such a distinguisher is indeed bounded by
t.)

We next show that H+i and Hi+1 are indistinguishable by relying on the (non-uniform) indistinguishability be-
tweenDxz andDxz. (Recall that Hi+1 differs from H+i in thatARO is used instead ofARO

alt in the (i+1)-th oracle
response, where ARO differs from ARO

alt in that ARO
alt generates a simulated proof for a true statement whereas

ARO generates a simulated proof for a false statement.)

Details: Assume for contradiction that H+i and Hi+1 are distinguishable with non-negligible ad-
vantage, and fix the execution of H+i until the point that stS ← S pre(1n, qi+1) is computed during
the (i + 1)-th oracle response (inclusive) in such a way that H+i and Hi+1 are still distinguishable
with non-negligible advantage. Now it is easy to see that we can break the (multiple version of the)
indistinguishability between Dxz and Dxz by considering a distinguisher that continues the execu-
tion of H+i in such a way that the given statements {xi, zx,i}i∈[Nn] is used as the input to S main in the
(i + 1)-th oracle response.

From the above two, it follows that Hi and Hi+1 are distinguishable with advantage at most 1/5m(n)Q(n) +
negl(n) ≤ 1/4m(n)Q(n) for sufficiently large n. Thus, H0 and Hm(n) are distinguishable with advantage at most
1/4Q(n). Since as shown above RA

RO breaks the assumption (C, c) with advantage 1/2Q(n) (and therefore the
challenger C in Hm(n) outputs 1 with probability at least c+1/2Q(n)), we conclude that RÃ breaks the assumption
(C, c) with advantage 1/2Q(n) − 1/4Q(n) = 1/4Q(n). This concludes the proof of Claim 1. □

20Since (P,V) is a 2-round protocol, we can assume without loss of generality that the reduction makes queries sequentially. Also,
recall that it is guaranteed that R does not make the same query twice.
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This concludes the proof of Lemma 5. □

7 Obtaining Main Results
In this section, we obtain our main results by using the lemmas given in the previous sections.

7.1 BB Impossibility of 2-Round Delayed-Input Weak ZK
By using Lemma 3 and Lemma 5, we obtain the following black-box impossibility result about 2-round delayed-
input weak ZK.

Theorem 1. Assume the existence of one-way functions. Then, there exists an NP language L such that if there
exist

• a 2-round delayed-input interactive argument (P,V) for L that is delayed-input distributional weak (t, ϵ)-
zero-knowledge for every polynomial t and inverse polynomial ϵ, and

• a black-box reduction R for showing the adaptive soundness of (P,V) based on a falsifiable assumption
(C, c),

then the assumption (C, c) is false.

Proof . Let PRG be any pseudorandom generator (which can be obtained from one-way functions [HILL99])
and L be the NP language that is defined by L B {PRG(s) | s ∈ {0, 1}∗}, where we assume without loss of
generality that PRG is length-doubling. For each n ∈ N, consider the following joint distributions (Xn,Wn,Zn)
and (Xn,Zn).

(Xn,Wn,Zn) B
{
(PRG(s), s,⊥) | s← {0, 1}n/2

}
(Xn,Zn) B

{
(r,⊥) | r ← {0, 1}n \ L}

It is easy to see that {(Xn,Zn)}n∈N and {(Xn,Zn)}n∈N are computationally indistinguishable, and delayed-input
distributional weak (t, ϵ)-zero-knowledge implies special-purpose delayed-input (Dxwz, 1)-distributional super-
weak (t, ϵ)-zero-knowledge, where Dxwz = {(Xn,Wn,Zn)}n∈N. Now, the lemma follows from Lemma 3 and
Lemma 5. □

7.2 BB Impossibility of 2-Round Delayed-Input Strong WI
By combining Lemma 1, Lemma 2, Lemma 3, and Lemma 5, we immediately obtain the following black-box
impossibility result about 2-round delayed-input strong WI.

Theorem 2. Assume the existence of trapdoor permutations. Then, there exists an NP language L such that if
there exist

• a 2-round delayed-input interactive argument (P,V) for L,

• an oblivious black-box reduction R for showing the delayed-input strong WI of (P,V) based on a falsifiable
assumption (C, c), and

• a black-box reduction R′ for showing the adaptive soundness of (P,V) based on a falsifiable assumption
(C′, c′),

then either the assumption (C, c) is false or the assumption (C′, c′) is false.
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7.3 BB Impossibility of 2-Round (Non-Delayed-Input) Strong WI
By adjusting the proof of Lemma 2, we obtain the following black-box impossibility result about 2-round (non-
delayed-input) strong WI.

Theorem 3. Assume the existence of CCA-secure public-key encryption schemes. Then, there exists an NP
language L such that if there exist

• a 2-round interactive argument (P,V) for L and

• an oblivious black-box reduction R for showing the strong WI of (P,V) based on a falsifiable assumption
(C, c),

then the assumption (C, c) is false.

Since Theorem 3 can be proven by closely following the proof of Lemma 2, we give the proof in the appendix
(Appendix B).

7.4 BB Impossibility of 2-Round Publicly Verifiable Delayed-Input Strong WI
By adjusting the proof of Lemma 2, we obtain the following black-box impossibility result about 2-round
delayed-input publicly verifiable strong WI.

Theorem 4. Assume the existence of CCA-secure public-key encryption schemes. Then, there exists an NP
language L such that if there exist

• a 2-round delayed-input publicly verifiable interactive argument (P,V) for L and

• an oblivious black-box reduction R for showing the delayed-input strong WI of (P,V) based on a falsifiable
assumption (C, c),

then the assumption (C, c) is false.

Since Theorem 4 can be proven very similarly to Theorem 3 (as mentioned in Section 2), we omit the proof.

References
[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge.

Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BCPR16] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way
functions. SIAM Journal on Computing, 45(5):1910–1952, 2016.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and Amit Sahai. Sta-
tistical ZAP arguments. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 642–667. Springer, Heidelberg, May 2020.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia. Two-
message witness indistinguishability and secure computation in the plain model from new assump-
tions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626
of LNCS, pages 275–303. Springer, Heidelberg, December 2017.

[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond the black-box
barrier. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1091–1102. ACM
Press, June 2019.

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. The (true) complexity of statistical zero knowl-
edge. In 22nd ACM STOC, pages 494–502. ACM Press, May 1990.

30



[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring. In
Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 59–71. Springer, Heidelberg,
May / June 1998.

[CLMP12] Kai-Min Chung, Edward Lui, Mohammad Mahmoody, and Rafael Pass. Unprovable security of
two-message zero knowledge. Cryptology ePrint Archive, Report 2012/711, 2012. https://
eprint.iacr.org/2012/711.

[CLP15] Kai-Min Chung, Edward Lui, and Rafael Pass. From weak to strong zero-knowledge and appli-
cations. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of
LNCS, pages 66–92. Springer, Heidelberg, March 2015.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

[DJKL12] Dana Dachman-Soled, Abhishek Jain, Yael Tauman Kalai, and Adriana Lopez-Alt. On the
(in)security of the Fiat-Shamir paradigm, revisited. Cryptology ePrint Archive, Report 2012/706,
2012. https://eprint.iacr.org/2012/706.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM Journal on Computing,
36(6):1513–1543, 2007.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions. Journal
of the ACM, 50(6):852–921, 2003.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under
general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd ACM
STOC, pages 416–426. ACM Press, May 1990.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 467–476.
ACM Press, June 2013.

[GJJM20] Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Statistical zaps and new obliv-
ious transfer protocols. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 668–699. Springer, Heidelberg, May 2020.

[GM15] Matthew D. Green and Ian Miers. Forward secure asynchronous messaging from puncturable
encryption. In 2015 IEEE Symposium on Security and Privacy, pages 305–320. IEEE Computer
Society Press, May 2015.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Jour-
nal of Cryptology, 7(1):1–32, December 1994.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University
Press, Cambridge, UK, 2001.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge.
Journal of the ACM, 59(3), June 2012.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM
Press, June 2011.

31

https://eprint.iacr.org/2012/711
https://eprint.iacr.org/2012/711
https://eprint.iacr.org/2012/706


[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom gener-
ator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HRS09] Iftach Haitner, Alon Rosen, and Ronen Shaltiel. On the (im)possibility of Arthur-Merlin witness
hiding protocols. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 220–237.
Springer, Heidelberg, March 2009.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum. Distinguisher-
dependent simulation in two rounds and its applications. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 158–189. Springer, Heidelberg,
August 2017.

[KKS18] Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical witness indistinguishability (and
more) in two messages. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 34–65. Springer, Heidelberg, April / May 2018.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or two rounds. In Chris
Umans, editor, 58th FOCS, pages 564–575. IEEE Computer Society Press, October 2017.

[LVW20] Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Statistical ZAPR arguments from bilin-
ear maps. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107
of LNCS, pages 620–641. Springer, Heidelberg, May 2020.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and probabilis-
tic techniques in algorithms and data analysis. Cambridge University Press, 2017.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 96–109. Springer, Heidelberg, August 2003.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In
Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 160–176. Springer, Heidel-
berg, May 2003.

[Pas11] Rafael Pass. Limits of provable security from standard assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 109–118. ACM Press, June 2011.

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-malleable commitments.
In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 334–354. Springer, Heidelberg,
March 2013.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
433–444. Springer, Heidelberg, August 1992.

[Wic13] Daniel Wichs. Barriers in cryptography with weak, correlated and leaky sources. In Robert D.
Kleinberg, editor, ITCS 2013, pages 111–126. ACM, January 2013.

A Instantiation of Puncturable CCA-Secure PKE
Recall that the CCA-secure PKE of Dolev et al. [DDN00] works as follows.

• Building blocks.

– CPA-secure PKE scheme PKEcpa = (Gencpa,Enccpa,Deccpa).
– One-time signature scheme Πots = (Genots,Signots,Verifyots). For simplicity, we assume that on

security parameter 1n, the key generation algorithm Genots outputs a verification key of length n.
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– Non-interactive zero-knowledge system NIZK = (Gennizk,Provenizk,Verifynizk).

• Key Generation Gen(1n):

1. For each i ∈ [n], b ∈ {0, 1}, run (pki,b, ski,b)← Gencpa(1n).
2. Run crs← Gennizk(1n).
3. Output pk B ({pki,b}i∈[n],b∈{0,1}, crs) and sk B (pk, {ski,b}i∈[n],b∈{0,1}).

• Encryption Enc(pk,m):

1. Run (vkots, skots)← Genots(1n), and parse vkots as vkots = (v1, . . . , vn) ∈ {0, 1}n.
2. For each i ∈ [n], run cti ← Enccpa(pki,vi

,m).
3. Use Provenizk with crs to obtain a proof π for the statement {pki,vi

, cti}i∈[n] that says “∃m′ s.t. ∀i ∈ [n],
cti is an encryption of m′ under pki,vi

.
4. Run σ← Signots(skots, ct1 ∥ · · · ∥ctn ∥π).
5. Output ct B (ct1, . . . , ctn, π, vkots, σ)

• Decryption Dec(sk, ct):

1. Check whether Verifyots(vkots, ct1 ∥ · · · ∥ctn ∥π, σ) = 1. If not, abort.
2. Check whether π is an accepting proof for the statement {pki,vi

, cti}i∈[n]. If not, abort.
3. Run m̃← Deccpa(sk1,v1 , ct1).
4. Output m̃.

Now, let us define (PuncGen,PuncDec) as follows.

• Punctured key generation PuncGen(sk, ct):

1. Parse sk as sk = (pk, {ski,b}i∈[n],b∈{0,1}), parse ct as ct = (ct1, . . . , ctn, π, vkots, σ), and parse vkots as
vkots = (v1, . . . , vn).

2. Output sk{ct} B (pk, vkots, {ski,1−vi}i∈[n]).

• Decryption with punctured key PuncDec(sk{ct}, ct′):

1. Parse sk{ct} as sk{ct} = (pk, vkots, {ski,1−vi}i∈[n]), parse ct′ as ct′ = (ct′1, . . . , ct′n, π
′, vk′ots, σ

′), parse
pk as pk = ({pki,b}i∈[n],b∈{0,1}, crs) parse vkots as vkots = (v1, . . . , vn), and parse vk′ots as vk′ots =

(v′1, . . . , v
′
n).

2. Check whether vkots , vk′ots and Verifyots(vk′ots, ct′1 ∥ · · · ∥ct′n ∥π′, σ′) = 1. If not, abort.
3. Check whether π′ is an accepting proof for the statement {pki,v′i

, ct′i}i∈[n]. If not, abort.
4. Find any i∗ ∈ [n] such that vi∗ , v′i∗ , and run m̃′ ← Deccpa(ski∗,v′i∗

, ct′i∗).
5. Output m̃′.

To see the correctness of punctured keys, observe that (i) the strong unforgeability ofΠots guarantees that during
the security game, after receiving a ciphertext ct = (ct1, . . . , ctn, π, vkots, σ) from the challenger, the adversary
creates ct′ = (ct′1, . . . , ct′n, π

′, vk′ots, σ
′) such that ct , ct′, vkots = vk′ots, and Verifyots(vk′ots, ct′1 ∥ · · · ∥ ct′n ∥

π′, σ′) = 1 only with negligible probability, and (ii) the soundness of NIZK guarantees that during the security
game, the probability that the adversary creates ct′ = (ct′1, . . . , ct′n, π

′, vk′ots, σ
′) such that π′ is accepting but

Deccpa(sk1,v′1 , ct′1) , Deccpa(ski∗,v′i∗
, ct′i∗) is negligible. Regarding the security of punctured keys, it follows

immediately from the CPA security of PKEcpa and the security of NIZK.
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B Proof of Theorem 3
Theorem 5 (restatement of Theorem 3). Assume the existence of CCA-secure public-key encryption schemes.
Then, there exists an NP language L such that if there exist

• a 2-round interactive argument (P,V) for L and

• an oblivious black-box reduction Rswi for showing the strong WI of (P,V) based on a falsifiable assumption
(C, c),

then the assumption (C, c) is false.

Proof . Let PKE = (Gen,Enc,Dec) be a CCA-secure PKE and L be the NP language that consists of all the
public-key–ciphertext pairs of PKE such that either 0 or 1 is encrypted (the public key is not necessarily honestly
generated), i.e.,

L B
{
(pk, ct)

∣∣∣ ∃b ∈ {0, 1}, r ∈ {0, 1}poly(n) s.t. ct = Enc(pk, b; r)
}
.

Assume, as stated in the statement of the theorem, the existence of a 2-round (non-delayed-input) interactive
argument (P,V) and an oblivious black-box reduction Rswi for showing the strong WI of (P,V) based on a
falsifiable assumption (C, c). Let Q denote a polynomial such that for every verifier V∗, every n ∈ N, every two
joint distributions D0

n = (X0
n,W0

n) and D1
n = (X1

n,W1
n) over RL ∩ ({0, 1}n × {0, 1}∗), and every z ∈ {0, 1}∗, if it

holds

Pr
[
⟨P(w),V∗(z)⟩(x) = b

∣∣∣ b← {0, 1}; (x,w)← (Xb
n,Wb

n)
]
≥ 3

4
,

then either (i) RV∗z ,D0
n,D1

n
swi (1n) breaks the assumption (C, c) on n with advantage 1/Q(n) or (ii) RV∗z ,D0

n,D1
n

swi (1n) dis-
tinguishes X0

n and X1
n with advantage 1/Q(n).21 (Such a polynomial is guaranteed to exist because of our as-

sumption on Rswi.)
At a high level, the proof proceeds as outlined in Section 2.2. Specifically, we first define a cheating verifier

V∗swi against the strong WI of (P,V). Then, we proceed with case analysis about the behavior of RV∗swi
swi , where in

the first case, we show that we can efficiently break the assumption (C, c) by using Rswi, and in the second case,
we show that we can efficiently break the soundness of (P,V) by using Rswi.

We first introduce distributions over RL and a verifier against the strong WI of (P,V). For any n ∈ N, let
Keysn be the set of all the keys that can be output by Gen(1n), i.e., Keysn B {(pk, sk) | ∃r ∈ {0, 1}∗s.t. (pk, sk) =
Gen(1n; r)}. Then, for any n ∈ N and any (pk, sk) ∈ Keysn, letD0

pk andD1
pk be the distributions that are defined

over RL as follows: ∀b ∈ {0, 1},

Db
pk B

{
((pk, ct), (b, r))

∣∣∣ r ← {0, 1}poly(n); ct B Enc(pk, b; r)
}
,

i.e., the first part ofDb
pk outputs pk and a random encryption of b, and the second part outputs b and the random-

ness of the encryption. We use (Xb
pk,W

b
pk) to denote the joint distributions such that Xb

pk denotes the first part
ofDb

pk andWb
pk denotes the second part ofDb

pk. Next, for any n ∈ N and (pk, sk) ∈ Keysn, let V∗swi[n, pk, sk] be
the verifier described in Algorithm 3. Note that due to the completeness of (P,V) and the correctness of PKE,
our verifier V∗swi[n, pk, sk] distinguishes D0

pk and D1
pk with probability 1 − negl(n) > 3/4. In the following, we

usually write V∗swi[n, pk, sk] as V∗swi for editorial simplicity.
We proceed with case analysis about the behavior of the strong WI reduction Rswi in the setting where Rswi

is combined with our strong WI verifier V∗swi. Specifically, we consider the following two cases.

• Case 1. There exists a polynomial poly such that for infinitely many n ∈ N, there exists (pk, sk) ∈ Keysn

such that RV∗swi
swi (1n) breaks the assumption (C, c) on n with advantage 1/poly(n), i.e.,

Pr
[
⟨R

V∗swi,D0
pk,D

1
pk

swi ,C⟩(1n) = 1
]
≥ c +

1
poly(n)

. (19)

• Case 2. The condition of Case 1 does not hold.

We analyze each case below.
21Formally, we also need to give the reduction Rswi an input 14 to let it know that the advantage of V∗z is 1/4 (see Definition 10). We

omit it in this proof for editorial simplicity.
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Algorithm 3 Strong WI verifier V∗swi[n, pk, sk].

1. On input 1n, sample a key key for a pseudorandom function PRF. In the following, whenever new ran-
domness is required, it is obtained by applying PRF(key, ·) on the transcript that is exchanged with the
prover so far (including the statement).

2. Invoke the honest verifier algorithm V of (P,V) and let it interact with the external prover. Let x⋆ =
(pk⋆, ct⋆) denote the statement that is obtained at the beginning of the interaction and out⋆ denote the
output of V . If pk⋆ , pk, output a random bit and abort.

3. Output a random bit and abort if out⋆ = 0. Otherwise, run b← Dec(sk, ct) and output b.

Analysis of Case 1. We show that Rswi can be used to break the assumption (C, c). Fix any poly, n, and
(pk, sk) ∈ Keysn such that we have (19). Consider the following adversaryA against (C, c).

1. Given (pk, sk) ∈ Keysn as auxiliary inputs, A lets R
V∗swi,D0

pk,D
1
pk

swi (1n) interact with the challenger C, where
sk is used to emulate V∗swi for Rswi efficiently.

Clearly,A runs in polynomial time. Also, from (19) it follows immediately thatA breaks the assumption (C, c)
on n with advantage 1/poly(n). We thus conclude that the assumption (C, c) is false in this case.

Analysis of Case 2. We show that Rswi can be used to break the soundness of (P,V) (unless it can be used to
break the CCA security of PKE). Toward this end, we split Case 2 into two sub-cases based on the behavior
of Rswi in the setting where RV∗swi

swi is used as a distinguisher against D0
pk,D

1
pk for randomly chosen (pk, sk) ←

Gen(1n). Let us first introduce the following notations about (pk, sk) of PKE. For any n and (pk, sk):

• (pk, sk) is called interesting (w.r.t. n) if it satisfies the following.

Pr
[
⟨P(w),V∗swi⟩(x) = b

∣∣∣ b← {0, 1}; (x,w)← Db
pk

]
≥ 3

4
. (20)

Intuitively, (pk, sk) is interesting if V∗swi[n, pk, sk] breaks the strong WI of (P,V) w.r.t.D0
pk,D

1
pk with high

advantage (which implies that Rswi either breaks (C, c) or distinguishes X0
pk and X1

pk given V∗swi).

• (pk, sk) is called type-1 interesting if it is interesting and in addition satisfies the following.

Pr

INTERESTING-QUERY

∣∣∣∣∣∣∣ b← {0, 1}; (x,w)← Db
pk

b′ ← R
V∗swi,D0

pk,D
1
pk

swi (1n, x)

 ≤ 1
2Q(n)

, (21)

where (i) Q is the polynomial that is introduced at the beginning of the proof and (ii) INTERESTING-QUERY
is the event that is defined as follows: through oracle queries to V∗swi, the reduction Rswi(1n, x) invokes an
execution of (P,V) in which Rswi forwards the statement x to V∗swi along with an accepting prover message
(i.e., a message such that we have out⋆ = 1 in V∗swi). Thus, intuitively, (pk, sk) is type-1 interesting if Rswi
can either break (C, c) or distinguish X0

pk and X1
pk without producing an accepting prover message for the

statement x.

• (pk, sk) is called type-2 interesting if it is interesting but is not type-1 interesting.

Now, we consider the following two sub-cases.

• Case 2-1. There exists a negligible function negl such that for every n ∈ N,

Pr
[
(pk, sk) is type-1 interesting | (pk, sk)← Gen(1n)

] ≥ 1 − negl(n) . (22)

• Case 2-2. The condition of Case 1 does not hold.

We analyze each sub-case below.
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Analysis of Case 2-1. We show that Rswi can be used to break the CCA security of PKE. We note that for
every sufficiently large n ∈ N, (i) we have (22) and (ii) for every (pk, sk) ∈ Keysn, we have

Pr
[
⟨R

V∗swi,D0
pk,D

1
pk

swi ,C⟩(1n) = 1
]
= c + negl(n) . (23)

(This is because it is assumed that the condition of Case 1 does not hold.) Fix any such n. Then, consider the
following adversaryAcca against the CCA security of PKE.

1. On input (1n, pk, z), the adversary Acca sends m0 B 0 and m1 B 1 to the challenger as the challenge
plaintexts.

2. On receiving the challenge ciphertext ct, the adversary Acca lets x⋆ B (pk, ct) and runs b⋆ ←
R

V∗swi,D0
pk,D

1
pk

swi (1n, x⋆), where the decryption oracle Dec(sk, ·) is used to emulate V∗swi efficiently without
knowing sk. If INTERESTING-QUERY occurs during the execution of Rswi, the adversary Acca outputs
a random bit. Otherwise, it outputs b⋆. (Note that Acca needs to query ct to Dec(sk, ·) only when
INTERESTING-QUERY occurs.)

We now analyze Acca. Note that when the challenger samples a type-1 interesting (pk, sk), we have (20), and

thus, by combining it with (23), we have that R
V∗swi,D0

pk,D
1
pk

swi distinguishes X0
pk and X1

pk with advantage 1/Q(n) due
to the definition of Q. Thus, by additionally using (22) and (21) and recalling the definitions of X0

pk and X1
pk

(i.e., that Xb
pk outputs pk and a random encryption of b), we conclude thatAcca wins with advantage at least(
1

Q(n)
− Pr

[
INTERESTING-QUERY occurs in Step 2 ofAcca
when (pk, sk) is type-1 interesting

])
× Pr

[
(pk, sk) is type-1 interesting

]
− Pr

[
(pk, sk) is not type-1 interesting

]
≥ 1

2Q(n)
× (1 − negl(n)) − negl(n) =

1
poly(n)

.

Thus, we obtain a contradiction.

Analysis of Case 2-2. We show that Rswi can be used to break the soundness of (P,V). For each n ∈ N,
let (Xn,Wn) and (Xn,Zn) be the following joint distributions.

(Xn,Wn) B
{
((pk, ct), (b, r))

∣∣∣ (pk, sk)← Gen(1n); b← {0, 1}; r ← {0, 1}poly(n); ct B Enc(pk, b; r)
}
.

(Xn,Zn) B
{
((pk, ct), sk)

∣∣∣ (pk, sk)← Gen(1n); ct← Enc(pk, 2)
}
.

(Note that (Xn,Wn) ranges over RL ∩ ({0, 1}n × {0, 1}∗) and (Xn,Zn) ranges over ({0, 1}n \ L) × {0, 1}∗.22 Also,
note that (Xn,Wn) is identically distributed with {(x,w) | (pk, sk)← Gen(1n); b← {0, 1}; (x,w)← Db

pk}.)
We first describe a cheating prover P∗. At a high level, given x = (pk, ct) as the statement, P∗ first internally

runs RV∗swi
swi as a distinguisher forD0

pk,D
1
pk while hoping that the event INTERESTING-QUERY occurs in a randomly

selected query. (Recall that INTERESTING-QUERY occurs when the reduction Rswi, on input a statement x, makes
a query that contains x and an accepting prover message.) If indeed INTERESTING-QUERY occurs in the selected
query, P∗ simply forwards the prover message that is contained in the query to the external verifier. A problem
is that P∗ needs to forward the message mV that it receives from the external prover to the internally emulated
Rswi, and in this case, P∗ cannot verify whether Rswi’s query contains an accepting prover message. Thus, to
emulate V∗swi’s response for Rswi until the randomly selected query is made, P∗ simply guesses that only rejecting
prover messages are queried about mV until the randomly selected one is made, and therefore P∗ simply returns
a random bit until the randomly selected query is made. The formal description of P∗ is given in Algorithm 4.

Now, we analyze the success probability of P∗ as follows. Since it is assumed that the condition of Case 2-1
does not hold, there exists a polynomial poly such that for infinitely many n ∈ N,

Pr
[
(pk, sk) is type-1 interesting | (pk, sk)← Gen(1n)

]
< 1 − 1

poly(n)
. (24)

22We assume without loss of generality that on security parameter 1n, Gen and Enc yield (pk, ct) such that |(pk, ct)| = n.
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Algorithm 4 Cheating Prover P∗.
Input: (x, zx), which is sampled from (Xn,Zn).

1. Obtain a verifier message mV from the external verifier.

2. Sample random i⋆ ∈ [TR], where TR is an upper bound of the number of queries that Rswi makes to V∗swi.

Then, parse (x, zx) as ((pk, ct), sk) and run R
V∗swi,D0

pk,D
1
pk

swi (1n, x) as a distinguisher for D0
pk and D1

pk, where
each query that Rswi makes to V∗swi is answered as follows.

• If the statement that is contained in the query is different from x, emulate the response of V∗swi
perfectly by using sk.

• If the statement that is contained in the query is x, return mV as the verifier first-round message, and
after receiving a prover response in a subsequent query, return a random bit unless it is the i⋆-th
query. If it is the i⋆-th query, define mP to be the prover response that is contained in the query, and
abort the execution of Rswi.

3. If mP is not defined in the above step, abort. Otherwise, send mP to the external verifier.

Fix any such n. Note that by the completeness of (P,V) and the correctness of PKE, we have

Pr
[
(pk, sk) is interesting | (pk, sk)← Gen(1n)

]
= 1 − negl(n) . (25)

By combing (24) and (25), we obtain

Pr
[
(pk, sk) is type-2 interesting | (pk, sk)← Gen(1n)

] ≥ 1
2poly(n)

. (26)

By combining (26) with the definition of type-2 interesting keys, we obtain

Pr

INTERESTING-QUERY

∣∣∣∣∣∣∣ (pk, sk)← Gen(1n); b← {0, 1}; (x,w)← Db
pk

b′ ← R
V∗swi,D0

pk,D
1
pk

swi (1n, x)

 ≥ 1
4Q(n)poly(n)

.

By additionally using the security of the CCA-secure PKE, we obtain

Pr

INTERESTING-QUERY

∣∣∣∣∣∣∣ (x, zx)← (Xn,Zn)

b′ ← R
V∗swi,D0

pk,D
1
pk

swi (1n, x)

 ≥ 1
4Q(n)poly(n)

− negl(n) . (27)

(To see this, observe that we can efficiently emulate V∗swi by using the decryption oracle in the CCA-security
game until INTERESTING-QUERY occurs.) Now, note that P∗ convinces the external verifier if during the execution
of P∗, the event INTERESTING-QUERY occurs for the first time in the i⋆-th query. Thus, by (27) and the security
of PRF in the first step of V∗swi,23 24 we obtain

Pr
[
⟨P∗(zx),V⟩(x) = 1

∣∣∣∣ (x, zx)← (Xn,Zn)
]
≥ 1

poly′(n)

for some polynomial poly′(n). This in particular means that there exists x ∈ {0, 1}n \ L and z ∈ {0, 1}∗ such that

Pr
[⟨P∗(z),V⟩(x) = 1

] ≥ 1
poly′(n)

.

Thus, P∗ breaks the soundness of (P,V), and therefore we obtain a contradiction.

Completing the proof of Theorem 3. Combining the analyses of Case 1 and Case 2, we conclude that the
assumption (C, c) is false. This completes the proof of Theorem 3. □

23The security of PRF is used to argue that the probability of INTERESTING-QUERY occurring in (27) decreases only negligibly when
V∗swi uses true randomness.

24For simplicity, we implicitly assume that Rswi requests V∗swi to reuse the same randomness in all the queries (cf. the conventions
stated in Section 3.4.2). The general case can be handled straightforwardly by considering slightly more complex P∗.
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