
Lattice-based Zero-knowledge Proofs for
Blockchain Confidential Transactions

Shang GAO1, Tianyu ZHENG1, Yu GUO2, and Zhe PENG1 Bin XIAO1

1 The Hong Kong Polytechnic University, Hong Kong, China
2 SECBIT Labs, Suzhou, China

{shanggao,jeffrey-zhe.peng,csbxiao}@polyu.edu.hk
tian-yu.zheng@connect.polyu.hk

yu.guo@secbit.io

Abstract. We propose new zero-knowledge proofs for efficient and postquan-
tum ring confidential transaction (RingCT) protocols based on lattice as-
sumptions in Blockchain systems. First, we introduce an inner-product
based linear equation satisfiability approach for balance proofs with a
wide range (e.g., 64-bit precision). Unlike existing balance proofs (Ma-
tRiCT and MatRiCT+) that require additional proofs for some “correc-
tor values”, our approach avoids the corrector values for better efficiency.
Furthermore, we design a ring signature scheme to efficiently hide a user’s
identity in large anonymity sets. Different from existing approaches that
adopt a one-out-of-many proof (MatRiCT and MatRiCT+), we show
that a linear sum proof suffices in ring signatures, which could avoid
the costly binary proof part. We further use the idea of “unbalanced”
relations to build a logarithmic-size ring signature scheme. Finally, we
show how to adopt these techniques in RingCT protocols and implement
a prototype to compare the performance with existing approaches. The
results show our solutions can reduce up to 50% and 20% proof size,
30% and 20% proving time, 20% and 20% verification time of MatRiCT
and MatRiCT+, respectively. We also believe our techniques are of in-
dependent interest for other applications and are applicable in a generic
setting.

Keywords: Lattice-based cryptography, zero-knowledge proof, balance proof,
ring signature, RingCT, blockchain

1 Introduction

Cryptocurrencies adopt the blockchain technique where each participant main-
tains a ledger of all transactions to avoid any tampering attempts from minority
attackers. In private/anonymous cryptocurrencies, the amount3 stored in each

3 In this paper, the “amount” refers to “account balance”. We avoid using balance
here as it conflicts with balance proofs.

account and the user’s identity need to be hidden from the outside world. Mean-
while, it also requires public verification to ensure each transaction is valid. Ex-
isting solutions such as Monero [24b] and Zcash [SCG+14] adopt zero-knowledge
proofs (ZKPs) to prove useful statements without leaking any private informa-
tion. For instance, in Monero, a ring confidential transaction (RingCT) proto-
col is used with a range proof to show all amounts are non-negative and the
difference between outputs and inputs is zero (balance property), and a ring
signature-like approach to hide the identity of a spender with one-out-of-many
proofs [Noe15] (recent research also demonstrates with more efficient partial
knowledge proofs [ACF21, ZGSX23]). However, as the security of these imple-
mentations is mainly based on discrete logarithm assumptions, they are at risk
of potential attacks from quantum computers.

This deficiency has impelled the development of “post-quantum” solutions.
Without exception, blockchain communities also consider using quantum-secure
techniques to fill the gap. Among all post-quantum approaches, lattice-based
cryptography is one of the most promising candidates based on computational
lattice problems. Unfortunately, the costs of lattice-based solutions increase sig-
nificantly in comparison with those in discrete logarithm settings. Taking the
range proof proposed by Esgin et al. [ESLL19] as an example, a single proof
costs more than 90KB while the Bulletproofs protocol [BBB+18] costs less than
1KB. Even worse, as the amounts in a RingCT protocol need to be committed
separately, the efficient aggregation approach in [ESLL19] cannot be adopted.
MatRiCT [EZS+19] is the first practical lattice-based RingCT protocol to op-
timize the proof size in a blockchain environment and is currently applied in
Hcash [24a]. By using a novel balance proof with hashed-message commitments
(HMC) to show a transaction is valid, MatRiCT reduces the size of commitments
and allows proofs on a wide range. Furthermore, it adopts techniques such as
batched commitments and rejection sampling for secrets with a fixed Hamming
weight in one-out-of-many proofs to improve the efficiency of the ring signature.
MatRiCT+ [ESZ22] further improves the performance of MatRiCT by optimiz-
ing the underlying cyclotomic rings. However, both MatRiCT and MatRiCT+
require some “corrector values” in balance proofs. Proving corrector values that
are correct imposes a high cost.

1.1 Our contribution

The main goal of this paper is to propose efficient, scalable, and practical ZKPs
for existing post-quantum4 anonymous cryptocurrencies such as Hcash [24a]. We
focus on some key problems in lattice-based RingCT protocols and significantly
reduce the proof size and proving/verification time with our new ZKP tech-
niques. Besides, our approaches optimize the high-level ZKP relations, which
are compilable with MatRiCT [EZS+19] and MatRiCT+ [ESZ22].

4 The post-quantum security in this paper relies on the hardness of “post-quantum”
lattice assumptions as with [ESLL19,EZS+19,ESZ22].

2

To achieve the high efficiency of our approach, we first extend the amortiza-
tion technique in [ACF21] to deal with non-homomorphic functions, and propose
a partially amortized proof for binary relations (Section 3). Furthermore, we de-
sign a new inner-product based linear equation satisfiability protocol (Section
4) which implies balance relations in RingCT. Additionally, we introduce a new
unbalanced linear sum proof (Section 5) which proves a weaker but still secure
relation to replace the one-out-of-many relation in ring signatures. Finally, to
build a secure RingCT protocol, we build a linkable version of our ring signa-
tures (signatures of the same signer can be linked by serial number in the public
key) and check the count of serial numbers to avoid additional issues (Section
6).

1.2 Related work

In anonymous cryptocurrencies, RingCT protocols [Noe15, EZS+19, SALY17]
adopt range proofs to show transaction amounts are valid and ring signature-like
approaches to hide a spender’s identity. We describe existing work in these two
directions.

Range proofs. To guarantee the amount of each account in a confidential
transaction is valid, range proofs [BBB+18] are used in RingCT protocols. By
encapsulating the amounts in homomorphic commitments, the prover proves that
1) all the inputs and outputs are non-negative and 2) the sum of inputs equals
outputs. The proofs can be succinct and efficient with a trusted setup [Gro16,
GWC19], but will undermine the decentralized property of blockchain systems at
the same time where no particular trusted authority should be involved. Though
the trusted setup can be replaced by a secure multi-party computation, the
process is costly and may not be reusable when the application (i.e., circuit) is
updated [Gro16]. Currently, the smallest proof without a trusted setup is the
Bulletproofs protocol [BBB+18], which leverages the vector compression idea
in [BCC+16]. However, these approaches fail to address quantum attacks as
they are proposed based on discrete logarithm assumptions.

One of the most promising post-quantum cryptography candidates is lattice-
based cryptography. Esgin et al. propose new range proofs in lattice settings
based on the unbounded-message commitment (UMC) scheme and further adopt
a new Chinese remainder theorem (CRT) packing technique for efficient batch
processing [ESLL19]. Unfortunately, the size of a UMC commitment is linear to
the message size which is not suitable for large values such as amounts of dif-
ferent accounts. Besides, the batch processing in [ESLL19] is only efficient when
the amounts of all accounts are committed together in a single commitment,
while the amounts are usually committed separately in a RingCT protocol. The
first practical lattice-based RingCT approach is MatRiCT [EZS+19] (applied in
Hcash [24a]). Instead of using UMC to commit to an amount directly, MatRiCT
commits to the bits of an amount with HMC [ESS+19] and further adopts a
balance proof with some “corrector values” to show the sums of inputs and out-
puts are equal. MatRiCT+ [ESZ22] further reduces the proof size and running
time of MatRiCT by optimizing the underlying cyclotomic rings. Here we focus

3

on MatRiCT since our improvements are based on the techniques proposed in
MatRiCT, which are quite independent from the improvements in MatRiCT+.
Though the efficiency has been improved compared with [ESLL19], a subtle issue
prevents the use of MatRiCT and MatRiCT+ in general cases: the corrector val-
ues require additional range proofs when dealing with multiple input and output
accounts.

Ring signatures. To hide the identity of a signer, ring signatures (one-out-
of-many proofs) allow one to prove the knowledge of a secret key corresponding
to an element in a set of public keys. The idea of the ring signature has been
proposed by Rivest, Shamir, and Tauman [RST01]. In discrete logarithm set-
tings, logarithmic-size ring signatures [BCC+15,GK15,ZGSX23] have been used
in different applications. Most of current anonymous cryptocurrencies are im-
plemented based on discrete logarithm assumptions which is not post-quantum
secure.

On the side of lattice settings, linear-size ring signatures have been pro-
posed [TSS+18, LAZ19], but these approaches are inefficient for large anony-
mous groups. Libert et al. [LLNW16] design a Merkle tree based accumulator
and build a ZKP system for this accumulator. With these tools, logarithmic-
size ring and group signatures are proposed. Furthermore, a linkable version
of [LLNW16] (signatures created by the same signer can be linked) is introduced
in [YAL+17]. Though the signature size of [LLNW16,YAL+17] is logarithmic,
the zero-knowledge arguments applied in the accumulator require multiple pro-
tocol iterations (multi-shot proofs) to get a negligible soundness error. Esgin et
al. [ESS+19] introduce new tools for ZKPs to extend the discrete logarithm proof
techniques in [GK15] to lattice settings. Logarithmic-size ring signatures can be
easily achieved with these new techniques. A further improvement in [ESLL19]
makes the underlying ZKPs achieve a negligible soundness error at a single proto-
col iteration and reduces the signature size accordingly. Following the blueprint
of [ESLL19], MatRiCT [EZS+19] batches commitments in binary proofs and
improves the rejection sampling to build a more efficient ring signature scheme.
Besides, MatRiCT uses two sets of compatible parameters for the ring signature
to reduce the size. BLOOM [LN22] further reduces the proof size in large rings
setting by utilizing ABDLOP commitments and Bimodal Gaussians.

2 Preliminaries

We describe some notations and background knowledge used in this paper.

2.1 Notations

We use Zq = Z/qZ to denote the ring of integers modulo q represented by the
range [− q−1

2 , q−1
2]. The rings are defined by R = Z[X]/(Xd + 1) and Rq =

Zq[X]/(Xd + 1) where d > 1 is a power of 2. Bold-face lower-case letters such
as a and bold-face capital letters such as A are used to denote column vectors
and matrices respectively. Commitments are denoted by capital letters such as

4

C even though they may be vectors (except R for the ring and M,S,N for
the size of different inputs). We use (a, b) to denote appending vector a to b.

For a vector a = (a0, · · · , ak−1), the norms are defined as ∥a∥ =
√∑k−1

i=0 a2i ,

∥a∥1 =
∑k−1

i=0 |ai|, and ∥a∥∞ = maxi |ai|. The norms of a polynomial are defined
in a similar way as a vector. Suppose x ∈ Zq, we denote x

k = (1, x, x2, · · · , xk−1).
Furthermore, the inner-product of two k-dimensional vectors a and b is denoted
as ⟨a, b⟩ =

∑k−1
i=0 aibi and the Hadamard product is denoted as a ◦ b = (a0 ·

b0, · · · , ak−1 · bk−1). The Kronecker’s delta is denoted as δj,i such that δj,i = 1
when j = i and otherwise δj,i = 0. HW(x) denotes the Hamming weight of
the coefficient vector of x ∈ R. Given a distribution/set S, a ←$ S denotes
sampling a from S, or uniformly sampling from a set S. Define SB as the subset
of polynomials in Rq with infinity norm at most B ∈ Z∗.

The challenge space in a Σ-protocol is defined as follows:

C = {x ∈ R : deg(x) = d− 1 ∧HW(x) = w ∧ ∥x∥∞ = p}. (1)

Clearly, we can observe ∥x∥1 ≤ pw and |C| =
(
d
w

)
· (2p)w. We denote the set of

challenge differences excluding zero as ∆C.

2.2 Lattice problems and HMC

M-SIS and M-LWE. We define the two well-known lattice problems [LS15],
module short integer solution (M-SIS) and module learning with errors (M-
LWE), which our schemes’ security relies on.

Definition 1. M-SIS(n,m, q, γ). Given A ← Rn×m
q , the goal of the problem is

to find z ∈ Rm
q such that Az = 0 mod q and 0 < ∥z∥ ⩽ γ.

Definition 2. M-LWE(n,m, q,B). Let s← SnB be a secret key. Define LWE(q, s)
as the distribution obtained by sampling a ← Rn

q , e ← SB and outputting
(a, ⟨a, s⟩+e). The goal of the problem is to distinguish between m given samples
from either LWE(q, s) or Rn+1

q .

Hashed-Message Commitment. Let n,m,B, q be positive integers with
m > n. Suppose a prover commits to v-dimensional vectors over Rq for v ⩾ 1.
The instantiation of the hashed-message commitment (HMC) scheme [EZS+19,
BDL+18] is as follows:

– CKeygen(1λ): Sample Gr ← Rn×m
q and Gm ← Rn×v

q . Output ck = G =

(Gr,Gm) ∈ R
n×(m+v)
q .

– Commitck(m): Sample r ← {−B, · · · ,B}md. Output r and Comck(m; r) =
G · (r,m) = Gr · r +Gm ·m.

– COpenck(C, (y,m
′, r′)): If ∥(m′, r′)∥ ⩽ γ and yC = Comck(m

′, r′) return
1, otherwise return 0.

The computationally hiding and computationally strong binding prosperities are
defined as follows.

5

Definition 3. For all PPT adversaries A, computational hiding and computa-
tional strong γ-binding are defined respectively as

Pr

 ck ← CKeygen(1λ);
(m0,m1)← ACKeygen(ck);
b← {0, 1};C ← Commitck(mb)

: A(C) = b

 ≈ 1

2
, and

Pr

 ck ← CKeygen(1λ);
(C, t0, t1)← A(ck)

:
(m0, r0) ̸= (m1, r1)∧
COpenck(C, t0) = 1∧
COpenck(C, t1) = 1

 ≈ 0,

where ti = (yi,mi, ri) for i = {0, 1} and the norm bound parameter in COpen
is γ.

Lemma 1. (Lemma 2.3 in [EZS+19]) For a (large) set of appropriately
chosen parameters, if M-LWE(m − n,m, q,B) problem is hard then the HMC
is computationally hiding. If M-SIS(n,m + v, q, 2γ) is hard, then the HMC is
computationally strong γ-binding to the same relaxation factor y.

Given a r ∈ Rm
q , we write it into r = (r′, r′′) where r′ ∈ Rn

q and r′′ ∈ Rm−n
q .

Similarly, writeGr = (G′
r,G

′′
r) whereG

′
r ∈ Rn×n

q andG′′
r ∈ R

n×(m−n)
q . We have

Gr ·r = G′
r ·r′+G′′

r ·r′′. When G′
r is non-singular (non-singular over all the fields

ofRq splits into),G
′
r·r′ is indistinguishable from a random element a ∈ Rn

q (since
r′ = (G′

r)
−1 ·a). It indicates n M-LWE instances from M-LWE(m− n,m, q,B).

As the probability of Gr being singular over Rn
q is negligible in our settings

(see [EZS+19,ESZ22]), the probability of G′
r being singular is also negligible (by

swapping columns). Thus, the HMC is computational hiding.
When given an HMC collision (m0, r0) ̸= (m1, r1), we have G · (m0, r0) =

G · (m1, r1), which implies G · (m1 −m0, r1 − r0) = 0. This gives a solution to
M-SIS(n,m+ v, q, 2γ) directly since ∥(m1 −m0, r1 − r0)∥ ≤ 2γ. Thus, HMC is
computational strong γ-binding. Based on the result in [MR09], the parameters
should satisfy the following relation to ensure HMC is γ-binding:

min{q, 22
√
nd log q log δ} > 2γ, (2)

where δ is a root Hermite factor to indicate the security level.

2.3 Lattice-based Σ-protocol

A Σ-protocol is a public coin interactive proof system to allow a prover to
convince a verifier that a statement is true. It has three properties: complete-
ness, knowledge soundness, and special honest-verifier zero-knowledge (SHVZK)
[ESLL19, EZS+19]. Here we start from a simple example in discrete logarithm
settings to show the knowledge of a secret m such that C = Comck(m) for a
public C (randomness is omitted for simplicity). Specifically, the prover samples
a masking vector d and sends D = Comck(d). The verifier challenges with a
random challenge x and the prover responds with f = xm + d. Finally, the
verifier checks Comck(f) = xC +D.

6

Relaxed proof. Recall HMC. The opening algorithm COpen does not sim-

ply check C
?
= Comck(m

′) in common lattice-based schemes [DPLS18], but with
a relaxation factor y ∈ Rq as in [ESLL19,BLNS20]. This is due to the straight-
forward soundness proofs under lattice assumptions do not work (the challenge
differences may not be invertible and the extracted witness may not be short
in the soundness proof). Consider a simple case with two accepting transcripts,
(D,x1,f1) and (D,x2,f2). Though the extractor can get (x2 − x1)Com(m′) =
Com(f2 − f1), it cannot simply output m′ = (x2 − x1)

−1(f2 − f1) since: 1)
(x2 − x1) may not be invertible; and 2) even (x2 − x1) is invertible, (x2 − x1)

−1

may not be short and the extracted opening will not be a valid one. One solution
is to use a relaxed proof by relaxing the verification relation to overcome the
complications [ESLL19,BLNS20]: instead of extracting the opening of Com(m′),
the extractor is allowed to extract the opening of yCom(m) (y = x2−x1 in this
example). Since f1 and f2 are short, (f2 − f1) is still short. Accordingly, the
proving and relaxed opening relations are different in relaxed proofs.

Rejection sampling. In lattice settings, the verifier also needs to check
the norm bound of f to ensure the hardness of M-SIS problem in Section 2.2.
Therefore, d must be sampled from a distribution with a larger range to hide
xm term (denoted as Dγ , where γ is the norm bound in M-SIS), while the bound
of the distribution should be manageable for the hardness of M-SIS. Besides, the
prover cannot output f directly since the distribution of f leaks the information
of m when d is not uniformly sampled from the field. For instance, consider one-
bit message m ∈ {0, 1}, the distribution of f is the same as the distribution of d
when m = 0, and will shift by x when m = 1. Anyone can infer m by observing
the distribution of f . Existing solutions adopt an additional rejection sampling
to reject responses that are out-of-bounds. Generally speaking, only f ’s that can
be “touched” by all possible values of m and follow an expected distribution are
acceptable. As we directly use the results of rejection sampling in this paper, we
only briefly summarize rejection sampling [Lyu12] in Algorithm 1 (restricting the
distribution of (x,f) being independent of m), where T = ∥xm∥ and ϕ = γ/T .
Returning 1 means f passes the rejection sampling.

Algorithm 1 Rejection Sampling [Lyu12]

Rej(f ,m, ϕ, T)

1: γ = ϕT ; µ(ϕ) = exp(12ϕ + 1
2ϕ2); u← [0, 1)

2: if u > 1
µ(ϕ) · exp(

−2⟨f ,m⟩+∥m∥2

2γ2) then

3: Return ⊥
4: end if
5: Return 1

We summarize the lattice-based Σ-protocol below. The major differences
with that in discrete logarithm settings is highlighted in blue.

7

1. P: Sample d←$ Dm
ϕT and set D = Comck(d).

2. P → V: D.
3. V → P: x←$ C.
4. P: Set f := xm+ d and run Rej(f , xm, ϕ, T).
5. P → V: f .
6. V: Check Comck(f)

?
= xC +D and ∥f∥

?
≤ 2ϕT

√
md.

2.4 Vandermonde matrix and one-shot proof [ESLL19]

A (k + 1)-dimensional Vandermonde matrix V is defined as follows for some
x0, · · · , xk ∈ R:

V =

1 x0 · · · xk

0

1 x1 · · · xk
1

...
...

. . .
...

1 xk · · · xk
k

 . (3)

Let adj(V) denotes adjugate matrix of V and det(V) denotes the determinant
of V . We have det(V) =

∏
0≤i<j≤k(xj −xi). Let (Γ0, · · · , Γk) be the last row of

adj(V). Then

Γi = (−1)i+k
∏

0≤s<j≤k
s,j ̸=i

(xj − xs).
(4)

Lemma 2. (Lemma 4 in [ESLL19]) Let κ = k(k+1)
2 , we have ∥ det(V)∥∞ ≤

(2p)κwκ−1 when using the challenge space in Equation (1).

The one-shot proof is a technique proposed in [ESLL19] to efficiently prove
non-linear polynomial relations. Consider a k-degree polynomial relation with
commitments C0 = Comck(m0; r0), · · · , Ck = Comck(mk; rk). The prover en-

codes the message as (f , z)← (
∑k

i=0 x
imi,

∑k
i=0 x

iri) with a challenge x. The

verifier checks the norms of f , z and
∑k

i=0 x
iCi

?
= Comck(f ; z). This protocol

has (k + 1)-special soundness as we can extract a witness in one shot with the
following approach.

Considering (k + 1) accepted transactions with distinct challenges xi’s and
responses (fi, zi)’s where i ∈ [0, k] (Ci’s are the same). We have the following
relation

1 x0 · · · xk
0

1 x1 · · · xk
1

...
...

. . .
...

1 xk · · · xk
k

 ·

C0

C1

...
Ck

 =

Comck(f0; zk)
Comck(f1; zk)

...
Comck(fk; zk)

 . (5)

Let the Vandermonde matrix in Equation (5) be V . Considering the property
adj(V) · V = det(V) · Ik+1, we multiply both sides of Equation (5) by adj(V).

8

Based on Equation (4), its last row becomes

det(V) · Ck =

k∑
i=0

ΓiComck(fi; zi) := Comck(m̂k; r̂k), (6)

where (m̂k, r̂k) = (
∑k

i=0 Γifi,
∑k

i=0 Γizi) is a relaxed opening to yCk with a
relaxation factor y = det(V).

2.5 Amortized relation [ACF21,GQZ+24]

The amortization technique is used to open multiple linear forms for essentially
the price of one [ACF21,GQZ+24]. In [ACF21], Attema et al. describe amor-
tized exponentiations in discrete logarithm settings. For simplicity, we regard
the randomness as one dimension of the secret. Consider the following relation

RAmorExp =

{
(ck, (Bi, Pi)

S
i=1), ((bi)

S
i=1) :

(Comck(bi) = Bi, g(bi) = Pi)
S
i=1

}
, (7)

where g(·) is a homomorphic function, it is equivalent to prove Comck(
∑S

i=1 ζ
ibi) =∑S

i=1 ζ
iBi and g(

∑S
i=1 ζ

ibi) =
∑S

i=1 ζ
iPi with a challenge ζ. The prover can fur-

ther use one vector a to mask the response f = a+
∑k

i=1 ζ
ibi as with a standard

Σ-protocol.

3 Partial Amortization

3.1 Batched verification of binary proofs

The binary proof is a fundamental building block in RingCT protocols (as
well as other applications) to prove the knowledge of a binary vector. When
proving multiple binary vectors, this can be done efficiently by committing
all vectors in one commitment. Unfortunately, in RingCT protocols such as
MatRiCT [EZS+19] and MatRiCT+ [ESZ22], this batching technique cannot
be applied since each account is committed separately. For example, to mint
coins for S accounts (bi, rb,i, Bi)

S−1
i=0 such that Bi = Comck(bi; rb,i) (instead

of Comck(b0, · · · , bS−1; rb)), the prover needs to run a binary proof to prove
the knowledge of bi’s and bi’s being binary vectors. Specifically, the prover
needs to use S vectors (ti, rt,i)

S−1
i=0 to mask bi’s and rb,i’s as gi = xbi + ti

and zb,i = xrb,i + rt,i based on a challenge x. Accordingly, the verifier needs to
check Comck(gi; zb,i) = xBi +Gi holds for all i’s, where Gi = Comck(ti; rt,i) (a
further check to ensure bi ◦ (1− bi) = 0 is also needed). Since the verification is
conducted separately for each i, all zb,i’s must be included in the proof, which
increases the proof size when dealing with multiple accounts.

Our observation is that it is possible to batch the verification of Comck(gi; zb,i) =
xBi + Gi with the amortized technique in [ACF21, GQZ+24]. Unfortunately,
since the binary constraint bi ◦ (1 − bi) = 0 is not homomorphic, it cannot

9

be regarded as the g(·) in Equation (7). This brings us to the idea of partial
amortization: only using the batched verification for Comck(gi; zb,i) = xBi +Gi

(i.e., the knowledge of bi’s) and leaving the binary constraint part (i.e., bi’s are
binary vectors) unchanged. Specifically, we replace Comck(bi; rb,i) = Bi with

Comck(
∑S−1

i=0 ζibi,
∑S−1

i=0 ζirb,i) =
∑S−1

i=0 ζiBi based on a challenge ζ. Since the
remaining (non-homomorphic) binary constraint does not involve rb,i (i.e., Bi),

the prover can batch rb,i’s and only send one element zb =
∑S−1

i=0 ζizb,i.
Note that in the security (soundness) analysis, if we use the one-shot proof

[ESLL19] directly to extract the relaxed openings of Bi’s, we need to use the
i-th row of a Vandermonde’s adjugate matrix, which is much different from the
form in Equation (4) when i ̸= S. Additionally, the relaxation factor ∥ det(V)∥∞
increases significantly with S, which requires a larger parameter set to ensure
the hardness of M-SIS and reduce the soundness error. Fortunately, as claimed
in [EZS+19] and [ESZ22], the most common cases in cryptocurrencies are trans-
actions with two outputs. Thus, we focus on the case of S ≤ 2 in the soundness
analysis of this paper. Besides, one may also reduce the growth with different
challenges ζi’s in a special challenge space to compute

∑S−1
i=0 ζiBi and ensure

the norm bound is relatively small as with [ESZ22].

3.2 Partially amortized binary proofs

Recall the amortized proof in Section 2.5. We generalize the commitment func-
tion Comck(·) in Equation (7) to any homomorphic function h(·) and discuss the
case when g(·) is not homomorphic. SupposeBi and Pi’s only share a part of com-
mon secrets, i.e., h(bi, si) = Bi and g(bi, ti) = Pi for witness (bi, si, ti)

S−1
i=0 (this

is a common case in many applications when regarding si’s and ti’s are different
randomness, see our binary relation below as an example). Let s =

∑S−1
i=0 ζisi

and B =
∑S−1

i=0 ζiBi. It is possible only to amortize the homomorphic part

h(
∑S−1

i=0 ζibi, s) = B, and keep the g(·) part unchanged. Therefore, the prover

only needs to send (bi, ti)
S−1
i=0 and s (instead of all si’s) in the proof (we do not

consider HVZK property here for simplicity).

To apply the above technique in lattice settings, besides checking g(bi, ti)
?
=

Pi and h(
∑S−1

i=0 ζibi, s)
?
= B, the verifier also needs additional norm checks to

ensure ∥bi∥’s and ∥ti∥’s are smaller than the claimed bounds and ∥s∥ is short.
The correctness of the protocol follows directly. The soundness for h(·) part

follows the soundness of the amortized exponentiations in [ACF21], which takes

an (S × S)-size Vandermonde matrix to extract si with
∑S−1

i=0 ζijsi on different

challenges (ζj)
S−1
j=0 (in lattice settings, it is a little bit different to extract a

relaxed opening, see our binary proof for more details). Other parts (bi, ti)
S−1
i=0

can be derived directly from the prover’s proof.
It is not hard to further add the zero-knowledge property to the above proto-

col. More specifically, we describe a partially amortized binary proof in Protocol
1 as a fundamental building block of our RingCT protocol, which shows Bi’s are
commitments to bits (for S ≤ 2).

10

Protocol 1 Partially Amortized Binary Proof.

Pbin(ck, (Bi, bi, rb,i)
S−1
i=0), Vbin(ck, (Bi)

S−1
i=0)

1: Vbin ⇒ Pbin: ζ ← C.
2: Pbin: Set T1 = p

√
2wk and T2 = Bwp

√
3md.

3: Pbin: Sample masking values

re ← SmB ; rf ← Dm
ϕ2T2

; ti ← Dk
ϕ1T1

; rt,i ← Dm
ϕ2T2

∀i ∈ [0, S).

4: Pbin: Compute the commitments

E = Comck((ti ◦ (1− 2bi))
S−1
i=0 ; re); F = Comck((−ti ◦ ti)S−1

i=0 ; rf);

G = Comck(

S−1∑
i=0

ζiti;

S−1∑
i=0

ζirt,i).

5: Pbin ⇒ Vbin: E,F,G.
6: Vbin ⇒ Pbin: x← C.
7: Pbin: Compute gi = xbi + ti, ∀i ∈ [0, S).
8: Pbin: Run Rej((gi)

S−1
i=0 , (xbi)

S−1
i=0 , ϕ1, T1).

9: Pbin: Compute zg = xre + rf , zb,i = xrb,i + rt,i, and zb =
∑S−1

i=0 ζizb,i.

10: Pbin: Run Rej((zg, (zb,i)
S−1
i=0), x(re, (rb,i)

S−1
i=0), ϕ2, T2).

11: Pbin ⇒ Vbin: (gi)
S−1
i=0 , zg, zb.

12: Vbin: Conduct the following checks

∥gi,j∥
?
≤ 2ϕ1T1

√
d, ∀i, j; ∥zg∥

?
≤ 2ϕ2T2

√
md; ∥zb∥

?
≤ 2mdϕ2T2(wp+ 1);

xE+F
?
=Comck((gi◦(x·1−gi))S−1

i=0 ; zg);x

S−1∑
i=0

ζiBi+G
?
=Comck(

S−1∑
i=0

ζigi; zb).

Definition 4. The following defines the relations for multiple binary vectors,
proving Rbin and relaxed opening R′

bin:

Rbin(T) =

{
((ck, (Bi)

S−1
i=0), (bi, rb,i)

S−1
i=0) : bi ∈ {0, 1}k

∧∥rb,i∥ ≤ T ∧Bi = Comck(bi; rb,i)

}
,

R′
bin(T̂) =

{
((ck, (Bi)

S−1
i=0), (y, (bi, r̂b,i)

S−1
i=0) : bi ∈ {0, 1}k

∧∥r̂b,i∥ ≤ T̂ ∧ yBi = Comck(ybi; r̂b,i)

}
,

where T and T̂ are norm bounds of rb,i and r̂b,i respectively and y is a relaxation
factor.

To ensure the hardness of M-SIS in lattice settings, the prover needs to sample
the masking values in special distributions (steps 2 and 3) and reject results that
are out-of-bounds (steps 8 and 10). Accordingly, the verifier should check the
bound based on the claimed bounds of the openings (step 12, first line).

11

A binary relation indicates two constraints, bi ∈ {0, 1}k andBi = Comck(bi; rb,i).
For the former one, it is equivalent to show bi ◦ (1 − bi) = 0. Specifically, in a
Σ-protocol, the prover encodes bi as gi = xbi + ti with a challenge x and mask-
ing vectors ti’s (step 7), which further allows the prover to check xE + F =
Comck((gi ◦ (x · 1 − gi))

S−1
i=0 ; zg), where E = Comck((ti ◦ (1 − 2bi))

S−1
i=0 ; re),

F = Comck((−ti ◦ ti)S−1
i=0 ; rf), and zg = xre + rf (steps 4, 9, and 12). This part

is same as a standard binary proof.
With our partial amortization, the latter constraint can be converted to

Comck(
∑S−1

i=0 ζibi;
∑S−1

i=0 ζirb,i) =
∑S−1

i=0 ζiBi under a challenge ζ. Since gi =
xbi+ti, the prover needs to send the commitment G of the batched masking vec-
tors and the batched randomness zb to allow the verifier to check x

∑S−1
i=0 ζiBi+

G = Comck(
∑S−1

i=0 ζigi; zb).

Theorem 1. Suppose S ≤ 2. Let κ = S(S − 1)/2, q/2 > 16(wϕ1)
2pkd, γbin =

4p2
√
d3w3

(
32dp2k3ϕ4

1 + 3ϕ2
2B2m2

)
, and the HMC is hiding and γbin-binding.

Protocol 1 has (S, 3)-special soundness for relations Rbin(B
√
md) and

R′
bin(8mdw2p2ϕ2B

√
3md) and SHVZK with a completeness error 1−1/(µ(ϕ1)µ(ϕ2))

defined in Lemma 6.

The proof for Theorem 1 is given in Appendix B.

4 Linear Equation for Balance Proofs

4.1 Corrector values in balance proofs

In existing RingCT protocols, to prove a transaction is valid, a spender (prover)
needs to show 1) all the inputs and outputs are non-negative and 2) the differ-
ence between inputs and outputs is zero. The former relation can be checked
in a range proof while the latter one is quite simple with a homomorphic com-
mitment scheme. In lattice settings, some approaches use UMC to commit to
an unbounded secret like amount [ESLL19, BDL+18]. However, as the size of
a UMC commitment grows linearly with the secret size, using a range proof
directly is not practical in RingCT protocols.

MatRiCT [EZS+19] and MatRiCT+ [ESZ22] commit to bits of each amount
to reduce the cost of UMC. Thus, the former relation can be proved in a binary
proof. For the latter one, it requires “corrector values” to ensure Bits(x1) +
Bits(x2) equals to Bits(x1 + x2) after some corrections. For instance, suppose
a prover wants to prove that the following relations hold for M inputs and S
outputs:

ai ≥ 0, ∀i ∈ [0,M); ∧ bi ≥ 0, ∀i ∈ [0, S); (8)

M−1∑
i=0

ai =

S−1∑
i=0

bi; (9)

where ai’s are amounts of input accounts and bi’s are amounts of output ac-
counts. A balance proof first converts each amount into k bits, Bits(ai) =

12

(ai,0, · · · , ai,k−1) = ai and Bits(bi) = (bi,0, · · · , bi,k−1) = bi, and commits to
each ai and bi. Then, the prover shows 1) ai and bi are binary vectors for
Equation (8) and 2) Equation (9) holds such that:

M−1∑
i=0

ai =

S−1∑
i=0

bi ⇐⇒
M−1∑
i=0

k−1∑
j=0

2jai,j =

S−1∑
i=0

k−1∑
j=0

2jbi,j

⇐⇒
S−1∑
i=0

bi,j −
M−1∑
i=0

ai,j + τj − 2τj+1 = 0, ∀j ∈ [0, k),

where τj ’s are correct values to ensure
∑S−1

i=0 bi,j −
∑M−1

i=0 ai,j + τj − 2τj+1 = 0
holds for all j ∈ [0, k) and τ0 = τk = 0.

The balance proof requires additional work to ensure τj ’s are properly gen-
erated. In general, the prover needs to ensure τj ∈ [−M +1, S − 1] for j ∈ (0, k)
(Lemma 4.1 in [EZS+19]) with range proofs. It is acceptable to embed τj ’s in
the binary proof of bi,j ’s when M = 1 and S ≤ 2, as with the Algorithm 8 and 9
in [EZS+19]. However, in other cases, the cost of a standard range proof is not
negligible. Taking the state-of-the-art range proof in [ESLL19] as an example,
the additional 64-bit range proof costs more than 90KB, while other parts only
cost about 100KB. MatRiCT+ [ESZ22] addresses this issue by converting each
range proof into a binary proof and embedding them into the binary proof of
output accounts. Nevertheless, it still requires additional commitments for τj ’s.

One observation is that the corrector values (τ0, · · · , τk) are unnecessary for
balance proofs. To prove Equation (9) holds, one can simply prove

M−1∑
i=0

k−1∑
j=0

2jai,j =

S−1∑
i=0

k−1∑
j=0

2jbi,j ⇐⇒
k−1∑
j=0

2j
(S−1∑

i=0

bi,j −
M−1∑
i=0

ai,j

)
= 0. (10)

Let cj =
∑S−1

i=0 bi,j−
∑M−1

i=0 ai,j . We can rewrite Equation (10) as
∑k−1

j=0 2
jcj = 0.

The fact behind this idea is that though Bits(a1) +Bits(a2) ̸= Bits(a1 + a2), we
have ⟨Bits(a1),2k⟩ + ⟨Bits(a2),2k⟩ = ⟨Bits(a1 + a2),2

k⟩. Accordingly, we can
fully remove the range proofs and the commitments to τj ’s. Additionally, the
prover can avoid sending the commitment of c = (cj)

k−1
j=0 as it can be computed

locally by the verifier:

Comck(c; ∗) =
S−1∑
i=0

Comck(bi; ∗)−
M−1∑
i=0

Comck(ai; ∗). (11)

More importantly, the range proofs of cj ’s can be avoided when ai’s and bi’s are

binary vectors since cj =
∑S−1

i=0 bi,j −
∑M−1

i=0 ai,j implies cj ∈ [−M,S].
When using the inner-product relation in lattice settings, a serious problem

arises at the same time: after encoding cj as fj = xcj + dj (dj is a masking

value and x is a challenge),
∑k−1

j=0 2
jfj can be greater than q, i.e., (

∑k−1
j=0 2

jfj

mod q) ̸=
∑k−1

j=0 2
jfj . Accordingly, verifying

∑k−1
j=0 2

jfj = x
∑k−1

j=0 2
jcj+

∑k−1
j=0 2

jdj

13

in Rq may not imply
∑k−1

j=0 2
jcj = 0. A straightforward solution is to use a large

q to avoid overflowing. However, such a solution will result in a large proof size,
making it impractical for real-world applications. In this paper, we solve this
problem with a new cycle masking approach to ensure both fj ’s and

∑k−1
j=0 2

jfj
are short at the same time with proper dj ’s (see Section 4.2 for more details).

4.2 Linear equation satisfiability

We generalize the balance relation to a linear equation satisfiability. Let S be
a positive integer5 and ω0, · · · , ωS−1 be public integers. The linear function is
defined as

F (X0, · · · , XS−1) =

S−1∑
i=0

ωiXi. (12)

The linear equation satisfiability is to prove the knowledge of (bi)
S−1
i=0 such that

F (b0, · · · , bS−1) = 0.
To support bi’s with a wide range in lattice settings, we commit to the bits

of bi’s with Bi = Comck(bi; ∗), where bi is the binary representation of bi. Thus,
F (b0, · · · , bS−1) can be rewritten as:

F ′(b0, · · · , bS−1) =

S−1∑
i=0

(
ωi · ⟨2k, bi⟩

)
. (13)

Definition 5. The following defines the linear equation relations, proving RLE

and relaxed opening R′
LE:

RLE(T) =

{
((ck, (ωi, Bi)

S−1
i=0), (bi, rb,i)

S−1
i=0) : bi ∈ {0, 1}k ∧ ∥rb,i∥ ≤ T

∧Bi = Comck(bi; rb,i) ∧ F ′(b0, · · · , bS−1) = 0

}
,

R′
LE(T̂) =

{
((ck, (ωi, Bi)

S−1
i=0), (y, (bi, r̂b,i)

S−1
i=0) : bi ∈ {0, 1}k ∧ ∥r̂b,i∥ ≤ T̂

∧yBi = Comck(ybi; r̂b,i) ∧ F ′(b0, · · · , bS−1) = 0

}
,

where T and T̂ are norm bounds of rb,i and r̂b,i respectively and y is a relaxation
factor.

Inner-product based relation. The RLE indicates two important rela-
tions: 1) Bi’s are commitments to bits and 2) F ′(b0, · · · , bS−1) = 0. The former
can be proved in our partially amortized binary proof. For the second, we can
rewrite Equation (13) as

F ′(b0, · · · , bS−1) = 0⇐⇒
S−1∑
i=0

(
ωi

k−1∑
j=0

2jbi,j

)
= 0

⇐⇒
k−1∑
j=0

(
2j ·

S−1∑
i=0

ωibi,j

)
=

k−1∑
j=0

2jcj = 0,

(14)

5 In the partially amortized binary proof, we require S ≤ 2. However, here S can
exceed 2 if the binary proofs for (S − 2)-many bi’s are not necessary.

14

where bi,j is the j-th element of bi and cj =
∑S−1

i=0 ωibi,j . Denote c = (c0, · · · , ck−1).
The verifier can compute the commitment of c with ωi’s andBi’s: C = Comck(c; ∗) =∑S−1

i=0 ωiBi. Let f = xc + d with some masking values d = (d0, · · · , dk−1) and
a challenge x, D = Comck(d; ∗), dsum = ⟨d,2k⟩. We have

Comck(f ; ∗) = Comck(xc+ d; ∗) = xC +D,

⟨f ,2k⟩ = ⟨xc+ d,2k⟩ = x⟨c,2k⟩+ ⟨d,2k⟩ = dsum,
(15)

which ensure F ′(b0, · · · , bS−1) = 0 holds.
Cycle masking. It is important to note that if the second equation in Equa-

tion (15) is verified on Rq, it may not imply ⟨c,2k⟩ = 0 when q is small (the
soundness error increases). A straightforward solution is to use a large q. Unfor-
tunately, this makes q grow linearly with k and a larger q implies a larger proof
size. One may consider computing and sending dsum in R to avoid the overflow
problem. However, the cost of dsum is non-negligible. Here we describe a more
elegant and efficient encoding scheme named cycle masking to find proper dj ’s
that ensures fj ’s are short and dsum = 0. Specifically, the prover samples (d′j)

k−1
j=1

and sets d′0 = d′k = 0. By setting dj = d′j − 2d′j+1, we have

dsum = ⟨d,2k⟩ =
k−1∑
j=0

2jd′j −
k∑

j=1

2jd′j = d′0 − 2kd′k = 0. (16)

Therefore, the prover can avoid transmitting dsum and f0. Accordingly, the veri-
fier computes f0 = −

∑k−1
j=1 2

jfj on R, verifies f0 ∈ Rq, and only checks the first
equation in (15).

Note that the new encoding scheme can be further generalized to ensure that
both fi’s are short and the corresponding masking vector d satisfies ⟨d, t⟩ = 0

for a public t = (t0, t1t0, t2t1t0, · · · ,
∏k−1

i=0 ti) (the i-th term is ti−1 times of
the previous one). Specifically, the prover first sets d′0 = d′k = 0 and samples
(d′j)

k−1
j=1 . Then, she computes dj = d′j − tj+1d

′
j+1. Accordingly, we have ⟨d, t⟩ =∑k−1

j=0

(
dj

∏j
i=0 ti

)
=

∑k−1
j=0

(
(d′j − tj+1d

′
j+1)

∏j
i=0 ti

)
= d′0 − d′k

∏k−1
i=0 ti = 0.

Besides linear equation satisfiability, another direct application is to ensure
⟨δ,1β⟩ = 1 in one-out-of-many proofs (⟨f ,1β⟩ = x in steps 3 and 12 in Pro-
tocol 3). Since all fi’s are small, we can use a smaller parameter set to reduce
the proof size. But in our ring signatures (Protocol 3), the improvement will be
less significant since we fully avoid the binary proof part. Thus, we describe our
ring signatures with the standard encoding scheme for simplicity.

Formal protocol. We formally describe our linear equation satisfiability
protocol in Protocol 2. Similar to lattice-based Σ-protocols, the prover needs to
sample the masking values from special distributions (steps 2 and 4) and reject
results that are out-of-bounds (steps 12 and 14). Accordingly, the verifier checks
the norms of the openings based on the claimed bounds (step 17, first line).

The prover and verifier run the first 5 steps of partially amortized binary
proof (Protocol 1) to generate the commitment E,F,G. cj ’s in Equation (14)

15

Protocol 2 Linear Equation Satisfiability.

PLE(ck, (ωi, Bi)
S−1
i=0 , (bi, rb,i)

S−1
i=0), VLE(ck, (ωi, Bi)

S−1
i=0)

1: PLE: Run Pbin to obtain E,F,G← Pbin(ck, (Bi)
S−1
i=0 , (bi, rb,i)

S−1
i=0).

2: PLE: Set T3 = max(−
∑

ωi<0 ωi,
∑

ωi>0 ωi)p
√
wk.

3: PLE: Compute cj =
∑S−1

i=0 ωibi,j ,∀j ∈ [0, k).
4: PLE: Sample d′0 = d′k = 0, d′j ← Dϕ3T3

∀j ∈ [1, k), and rd ← Dm
ϕ2T2

.
5: PLE: Compute masking values dj = d′j − 2d′j+1,∀j ∈ [0, k).

6: PLE: Compute D = Comck((dj)
k−1
j=0 ; rd).

7: PLE ⇒ VLE: D,E, F,G.
8: VLE ⇒ PLE: x← C.
9: PLE: Run Pbin to obtain (gi)

S−1
i=0 , zg, zb ← Pbin(x).

10: PLE: Set c1 = (ci)
k−1
i=1 and d1 = (di)

k−1
i=1 .

11: PLE: Compute f1 = xc1 + d1.
12: PLE: Run Rej(f1, xc1, 3ϕ3, T3).

13: PLE: Compute rc =
∑S−1

i=0 ωirb,i and z = xrc + rd.
14: PLE: Run Rej(z, xrc, ϕ2, T2).
15: PLE ⇒ VLE: f1, (gi)

S−1
i=0 , zg, zb, z.

16: VLE: Compute f0 = −
∑k−1

j=1 2
j · fj in R and C =

∑k−1
j=1 ωiBi.

17: VLE: Conduct the following checks

f0
?
∈ Rq; ∥fj∥

?
≤ 6ϕ3T3

√
d, ∀j ∈ [0, k); ∥z∥

?
≤ 2ϕ2T2

√
md;

xC +D
?
= Comck((f0, · · · , fk−1); z);

Vbin(ck, (Bi)
S−1
i=0 , E, F,G, (gi)

S−1
i=0 , zb)

?
= 1.

are derived in step 3 and their masking values, dj ’s, are generated in steps 4 and
5.

After receiving the challenge x, the prover generates the responses of the
binary proof based on steps 7 to 11 in Protocol 1. As ⟨f ,2k⟩ = 0 holds, the
prover can avoid sending f0 in step 11. In step 13, the randomness for c (i.e.,

rc) is derived based on rb,i’s since cj =
∑S−1

i=0 ωibi,j .

Finally, in step 16, the verifier computes f0 to ensure ⟨f ,2k⟩ = 0 holds.
Here she also needs to run on R instead of Rq to avoid the overflow problem
and returns false if f0 is not in Rq. The commitment of c is derived based on
Bi’s. The check on C and D in Step 17 ensures fi’s are properly generated from
ci’s and the last verification Vbin (step 12 in Protocol 1) ensure bi’s are binary
vectors.

The following theorem ensures the security of Protocol 2. For simplicity, we
ignore the security requirement of the binary proof part as the balance constraint
can use a different parameter set.

16

Theorem 2. Let γLE = 4ϕ3mdBwp(∥ω∥21+S+1)1/2 and the HMC is hiding and
γLE-binding. Protocol 5 has (S, 3)-special soundness for relations RLE(B

√
md)

and R′
LE(γLE) and SHVZK with a completeness error 1− 1/(µ(ϕ1)µ(ϕ2)µ(ϕ3))

defined in Lemma 6.

Proof. Here we only focus on the SHVZK of c to argue the new encoding scheme
leaks no information. Other parts are similar to standard proofs for lattice-based
Σ-protocols. The full proof is formally given in Appendix C.

SHVZK of c. The simulator samples f ′
j ← Dd

ϕ3T3
for all j ∈ [1, k) and sets

f ′
0 = f ′

j = 0. Then, it computes fj = f ′
j − 2f ′

j+1 to build f and sets f1 =

(f1, · · · , fk−1). Clearly, ⟨f ,2k⟩ = 0 holds and f1 is close to the real distribution.

5 Linear Sum for Ring Signatures

5.1 Ring signatures without binary proofs

Binary proofs in ring signatures. In most of existing ring signatures [ESLL19,
EZS+19,ESZ22], a one-out-of-many proof is used to show a prover (signer) knows
an opening of a public key Pl in a public key set (P0, · · · , PN−1). The idea for
this proof is regarding a public key as a commitment to zero. Thus, by con-
structing a secret binary sequence δ = (δl,0, · · · , δl,N−1) with Hamming weight

1, a prover proves 1) δ is well-formed and 2)
∑N−1

i=0 δl,iPi = Pl is a commitment
to 0. A straightforward solution for the former relation is to use a binary proof
to show δ is a binary vector and

∑N−1
i=0 fi =

∑N−1
i=0 (xδi+ai) = x for a challenge

x and some masking values ai’s where
∑N−1

i=0 ai = 0. Unfortunately, the proof
size of this approach is O(N) due to the size of δ.

The efficient logarithmic-size ring signatures “compress” δ to several shorter
delta vectors and allow the verifier to “reconstruct” δ with these vectors [ESLL19,
EZS+19,ESZ22]. SupposeN = βk. Write l = (l0, · · · , lk−1) and i = (i0, · · · , ik−1)

as the representations in base β such that δl,i =
∏k−1

j=0 δlj ,ij . Instead of proving
that an N -size vector δ is well-formed, the prover only needs to prove k-many
β-size vectors, (δlj ,0, · · · , δlj ,β−1)

k−1
j=0 , are well-formed, which reduces the proof

size to O(kβ).
One observation is that the binary proof requires a larger parameter set than

other parts of the proof to ensure security. This is due to 1) the hardness of
the M-SIS problem and 2) δl,i(1 − δl,i) = 0 may not hold in Rq for a smaller
q (the relaxation factor for this constraint is large) [EZS+19, ESZ22]. Though
the binary proof is simple, its larger parameters indicate a larger proof size.
Motivated by this, we analyze ring signatures and find proving δ being a binary
sequence is redundant. For example, a signer can prove knowing the opening to
2Pl instead of Pl without sacrificing security. Generally speaking, it is sufficient
to relax the one-out-of-many proof by proving the knowledge of an opening
to

∑N−1
i=0 biPi in ring signatures, where bi’s are short and not all bi’s are 0

(relaxing δl,i to bi). While reducing binary proof is nice in itself, we would like

17

to highlight that it is particularly important for ring signatures. As “the binary
proof requires a much bigger modulus than (other parts of) the one-out-of-many
proof ” [EZS+19], avoiding the binary proof fully releases ring signatures from
the burden of large parameters. Therefore, instead of running a full one-out-of-
many proof, ring signatures can use a much more efficient linear sum proof with
a small modulus.

New ring signatures. Let r be a private key and Pl be the corresponding
public key in a public key set P = (P0, · · · , PN−1) for some N ≥ 1 and 0 ≤
l < N . The goal of ring signatures is to show the knowledge of a secret key(s)
corresponding to a public key(s) in P . Based on the idea in Section 5.1, we show
that proving the knowledge of an opening of a short non-zero linear sum relation
of the public keys suffices for ring signatures, i.e., knowing some bounded bi’s
and an opening to

∑N−1
i=0 biPi where at least one bi is not zero.

Theorem 3. In ring signatures, if the commitment scheme is computational
hiding and γ-binding, then the ring signature scheme described above is unforge-
able with respect to insider corruption6 in the random oracle model.

Proof. Assume there exists a PPT adversary F that can efficiently forge a ring
signature with non-negligible probability, we have an adversary A which can
break the binding property of the commitment scheme, and solve the M-SIS
problem accordingly.
A samples r ← {−B, · · · ,B} and computes an invalid public key pkl =

Comck(1, 0, · · · , 0; r). Due to the hiding probability of the commitment scheme,
F cannot distinguish pkl with other public keys. Then, A runs F for (k + 1)
times to get (k + 1) forgeries with distinct challenges and same A,B, (Ej)

k−1
j=0

based on the forking lemma (pkl is not corrupted). Furthermore, A runs the
extractor of Protocol 3 with the (k + 1) forgeries to get valid b′i = ykbi for

i ∈ [0, N) and a valid opening (0; s) of y
∑N−1

i=0 bi ·pki for some public keys. With
non-negligible probability, we have bl ̸= 0 since F can only make polynomially
many registration queries to A. Then, A uses all private keys but rl to compute
s′ = yk−1s −

∑
i ̸=l b

′
iri. Since bl ̸= 0, we have b′l ̸= 0 (with non-negligible

probability), and thus we find a binding collision for the HMC, ((b′l, 0, · · · , 0); b′lr)
and (0; s′). Detailed proof is given in Appendix E.

5.2 Unbalanced linear sum relation

It is important to note that the linear sum proof may be difficult to adopt the
“compressing” technique in [ESLL19,EZS+19,ESZ22] to achieve logarithmic-size

ring signatures as there may not exist (bj,0, · · · , bj,β−1) such that bi =
∏k−1

j=0 bj,ij
for all i ∈ [0, N) and finding such a solution can be very inefficient. This brings
us to the idea of adopting “unbalanced” relations as in relaxed proofs: using a
stricter relation in proving, but checking the original relation in verifying. For

6 The insider corruption allows the attacker to obtain private keys to some public keys
with corruption queries. Accordingly, the signature forgery should not include these
“corrupted” public keys in its ring.

18

instance, as a linear sum relation is sound for ring signatures and a one-out-of-
many relation is stricter than the linear sum relation, a prover can use bi = δl,i in
the one-out-of-many relation to generate a proof. The verifier checks the linear
sum relation instead of the one-out-of-many relation. The unbalanced linear sum
protocol is similar to the one-out-of-many protocol without the binary proof part,
which avoids the constraint of bi ∈ {0, 1}. Additionally, to ensure at least one
bi is not zero, the verifier checks whether ∥b∥ > 0. The unbalanced linear sum
relations are defined as follows:

Definition 6. The following defines the unbalanced relations for our unbalanced
linear sum proof, proving RLS and relaxed opening R′

LS:

RLS(T) =

{
((ck,P), (l, r)) :

l ∈ [0, N) ∧ ∥r∥ ≤ T ∧ Pl = Comck(0; r)

}
,

R′
LS(T̂b, T̂r) =

((ck,P), (y, b, r̂)) :

∥b∥ > 0 ∧ ∥bi∥ ≤ T̂b ∧ ∥r̂∥ ≤ T̂r ∧ y
N−1∑
i=0

biPi = Comck(0; r̂)

 ,

where y is a relaxation factor and T , T̂b, and T̂r are norm bounds of r, bi, and
r̂ respectively.

Though our “unbalanced” relation is derived from relaxed relations, the mo-
tivations behind are different. In our approach, we start from the verifier’s side
and show verifying a linear sum proof suffices in ring signatures. To improve the
efficiency, we restrict the prover’s relation and require the prover to run under a
one-out-of-many relation. The key idea is to find a strict and efficient relation
for provers. On the other hand, existing relaxed proofs start from the prover’s
side and find straightforward soundness proofs do not work. They need to re-
lax the relation on the verifier’s side to overcome the complications. The key
idea is to find a relaxed but sound relation for verifiers. Thus we use the term
“unbalanced relations” to distinguish with relaxed relations.

Logarithmic-size proof. To achieve a logarithmic-size unbalanced linear
sum proof, a prover can directly apply the “compressing” technique in [ESLL19,
EZS+19]. Here we briefly describe this technique to fill some gaps before showing
the details of the formal protocol. Specifically, the prover finds and commits
to k-many sequences (δlj ,0, · · · , δlj ,β−1)

k−1
j=0 such that δl,i =

∏k−1
j=0 δlj ,ij for all

i ∈ [0, N). After receiving a challenge x, the prover’s response contains fj,i =
xδlj ,i + aj,i with some masking values aj,i’s. Let δ

′ = (δl0,0, · · · , δlk−1,β−1), a =
(a0,0, · · · , ak−1,β−1), and f = (f0,0, · · · , fk−1,β−1). The prover needs to show 1)
(δlj ,0, · · · , δlj ,β−1)’s are short non-zero vectors and are properly committed and

2) δl,i’s can be constructed with δl,i =
∏k−1

j=0 δlj ,ij such that
∑N−1

i=0 δl,iPi being
a commitment to zero.

For the first constraint, the prover shows the following equations hold:

Comck(f ; ∗) = Comck(xδ
′ + a; ∗) = xB +A;

β−1∑
i=0

fj,i = x

β−1∑
i=0

δlj ,i +

β−1∑
i=0

aj,i = x+

β−1∑
i=0

aj,i, ∀j ∈ [0, k).
(17)

19

The second equation ensures at least one element in (δlj ,i)
β−1
i=0 is not 0 for all

j’s as
∑β−1

i=0 fj,i = x +
∑β−1

i=0 aj,i implies
∑β−1

i=0 δlj ,i = 1. Moreover, proving δ′

being “short” is done in the norm check of HMC openings. Besides, the second
equation is not a necessary condition for the linear sum relation. However, based
on the unbalanced relations in Section 5.1, the prover can efficiently show the
second equation holds with a one-out-of-many relation.

For the second constraint, the verifier computes the product pi(x) =
∏k−1

j=0 fj,ij :

pi(x) =

k−1∏
j=0

fj,ij =

k−1∏
j=0

(xδlj ,ij + aj,ij)

=xk ·
k−1∏
j=0

δlj ,ij +

k−1∑
j=0

pi,j · xj = δl,ix
k +

k−1∑
j=0

pi,jx
j ,

(18)

where pi,j ’s are functions of δlj ,ij ’s (i.e., l) and aj,i’s. Equation (18) holds for
all i ∈ [0, N). As pi,j ’s are independent of x, the prover can pre-compute pi,j ’s

and send Ej =
∑N−1

i=0 pi,jPi to allow the verifier to cancel out the coefficients
of the terms 1, x, · · · , xk−1 before receiving x (the randomness is omitted here
for simplicity). For xk part, it can be set to the prover’s public key Pl with∑N−1

i=0 δl,iPi.

Formal protocol. We formally describe our unbalanced linear sum proof
protocol in Protocol 3. Similar to lattice-based Σ-protocols, the prove samples
all masking values from special distributions (steps 2 and 5) and rejects results
that are out-of-bounds (steps 11 and 13). Accordingly, the verifier should check
the norms of the openings based on the claimed bounds (step 16).

Steps 3 and 4 generate the masking values aj,i’s for δlj ,i’s and ensure
∑β−1

i=0 aj,i =

0 (which further ensure
∑β−1

i=0 (xδlj ,i+aj,i) = x). pi,j ’s in step 3 are derived from
Equation (18).

Upon receiving the challenge x, the prover generates the responses f1, zb,
and zr. For f , the prover can avoid sending fj,0’s as

∑β−1
i=0 fj,i = x holds. In step

12, zr is the response to randomness in Pl and Ej ’s based on Equation (18).

Finally, the verifier computes fj,0 = x −
∑β−1

i=1 fj,i for all j ∈ [0, k) as∑β−1
i=0 fj,i = x, which ensures

∑β−1
i=0 δlj ,i = 1 (and further ensures at least one

element in (δlj ,0, · · · , δlj ,β−1) is not 0 for all j’s). The last two checks ensure that∑N−1
i=0 δl,iPi is a commitment to 0.

Theorem 4. Let γLS = (4ϕ1

√
kβ)kdk−

1
2 and γ′

LS = (k+1)2κ
′+2
√
2ϕ2Bmd2wκpκ+1

for κ = k(k+1)/2 and κ′ = k(k−1)/2, the HMC is hiding and γLS-binding. Pro-
tocol 6 has (k+1)-special soundness for relations RLS(B

√
md) and R′

LS(γLS, γ
′
LS)

and SHVZK with a completeness error 1− 1/(µ(ϕ1)µ(ϕ2)) defined in Lemma 6.

The proof is given in Appendix D.

20

Protocol 3 Unbalanced Linear Sum Proof.
PPLS(ck,P , (l, r)), VLS(ck,P)

1: PLS: Set T1 = p
√
kw and T2 = (wp)kB

√
2md.

2: PLS: Sample

ra ← Dm
ϕ2T2

; rb ← Smd
B ; aj,1, · · · , aj,β−1 ← Dϕ1T1

,∀j ∈ [0, k).

3: PLS: Set aj,0 = −
∑β−1

i=1 aj,i,∀j and a = (aj,i)
k−1,β−1
j=0,i=0 .

4: PLS: Compute δ = (δlj ,i)
k−1,β−1
j=0,i=0 and pi,j ’s based on l.

5: PLS: Sample ρ0 ← Dm
ϕ2T2

and ρj ← SmB ,∀j ∈ [0, k)
6: PLS: Compute the commitments

Ej =
N−1∑
i=0

pi,jPj +Comck(0;ρj), ∀j ∈ [0, k),

B = Comck(δ; rb), A = Comck(a; ra).

7: PLS ⇒ VLS: A,B, (Ej)
k−1
j=0 .

8: VLS ⇒ PLS: x← C.
9: PLS: Set δ1 = (δlj ,i)

k−1,β−1
j=0,i=1 and a1 = (aj,i)

k−1,β−1
j=0,i=1 .

10: PLS: Compute f1 = xδ1 + a1.
11: PLS: Run Rej(f1, xδ1, ϕ1, T1).

12: PLS: Compute zb = xrb + ra and zr = xkr −
∑k−1

j=0 x
jρj .

13: PLS: Run Rej((zb, zr), (xrb, x
kr −

∑k−1
j=1 x

jρj), ϕ2, T2).
14: PLS ⇒ VLS: f1, zb, zr.
15: VLS: Compute fj,0 = x−

∑β−1
i=1 fj,i,∀j ∈ [0, k).

16: VLS: Conduct the following checks

∥fj,i∥
?
≤ 2ϕ1T1

√
d,∀j ∈ [0, k),∀i ∈ [1,β); ∥fj,0∥

?
≤ 2ϕ1T1

√
βd,∀j ∈ [0, k);

∥zb∥, ∥zr∥
?
≤ 2ϕ2T2

√
md; xB +A

?
= Comck((f0,0, · · · , fk−1,β−1); zb);

N−1∑
i=0

(

k−1∏
j=0

fj,ij)Pj −
k−1∑
j=0

Ejx
j ?
= Comck(0; zr).

6 RingCT Protocol

6.1 Overview

Since both Protocol 2 and Protocol 3 are public coin, we can use Fiat-Shamir
heuristic to transform them into non-interactive protocols and build a RingCT
protocol. We first show how to combine the two proofs and then address some
additional issues such as the unbalancing problem and double-spending.

21

Combining two proofs. In a RingCT protocol, a spender needs to prove a
transaction is valid and hides the identity of input accounts simultaneously. This
can be achieved by adding decoy accounts into inputs and proving the balance
and linear sum (ring signature) relations in one proof. Note that the binary
proofs for inputs can be reduced as they have been verified as output accounts
in previous transactions. Let CNKin = (ra,i)

M−1
i=0 and CNKout = (rb,i)

S−1
i=0 be the

sets of input and output coin keys respectively (i.e. randomness), CNin = (Ai)
M−1
i=0

and CNout = (Bi)
M−1
i=0 be the sets of input and output coins (commitments to

ai’s and bi’s, i.e., Ai = Comck(ai; ra,i) and Bi = Comck(bi; rb,i)). Consider

NM inputs (CN
(j)
in)N−1

j=0 = (A
(j)
i)M−1,N−1

i=0,j=0 , which have M spender’s accounts (the

spender owns the amount values and coin keys at index j = l, (a
(l)
i , r

(l)
a,i)

M−1
i=0),

and (N − 1)M decoy accounts, CN
(j)
in where j ̸= l. To transfer funds to S output

accounts, (Bi = Comck(bi, rb,i))
S−1
i=0 , the spender needs to send an additional

commitment C and compute public keys (Pj)
N−1
j=0 as follows:

C = Comck(c; r
′
c),

Pj =

S−1∑
i=0

Bi −
M−1∑
i=0

A
(j)
i − C, ∀j ∈ [0, N).

(19)

Ideally, we regard Pl as a commitment to zero with the private key (random-

ness) r =
∑S−1

i=0 rb,i −
∑M−1

i=0 r
(l)
a,i − r′c. The spender can further show Pl is a

commitment to zero as in our ring signature scheme, which proves the amount
balance and hides the identity at the same time. Unfortunately, as linear sum
proof only ensures

∑N−1
i=0 b̃iPi is a commitment to zero instead of each Pi (we use

b̃i to distinguish with the output amount bi), the above approach will incur an
unbalancing problem. For instance, if the spender owns two input accounts at in-
dices s and t with a(s) = 2 and a(t) = 1, she can mint b = 4 coins (b ̸= a(s)+a(t))

by setting M = S = 1, b̃s = 3, and b̃t = −2. As Ps is a commitment to b− a(s)

(i.e., 2) and Pt is a commitment to b−a(t) (i.e., 3), b̃sPs+ b̃tPt is a commitment
to 0 (here we use the amounts directly instead of their bits for simplicity). This
is due to the security proof of our ring signatures relies on Pi’s being correctly
generated (i.e., commitments to 0), which may not be true in RingCT as Pi’s
are derived from different accounts. Prior to show our solution, we describe the
linkable version of our ring signature to avoid double spending.

Avoid double-spending. To avoid double-spending, we extend our ring
signature (Protocol 3) to provide linkability by checking the serial number of each
input account to ensure it is not included in previous transactions. This could be
done by following the blueprint of MatRiCT [EZS+19] and MatRiCT+ [ESZ22].
Consider a new commitment key H. A serial number SN is a public commitment
to zero under H with the signing key r as the randomness, i.e., SN = H · r. At
step 6 of Protocol 3, the prover needs to additionally compute Fj = H · ρj for
all j ∈ [0, k). In the verification, the verifier can 1) link the proof with previous

ones based on SN and 2) check SN is correct with xk ·SN−
∑k−1

j=0 x
jFj = H ·zb.

22

In a RingCT protocol, each account has an additional account key pair,
(pk, sk) such that pk = Comrk(0, sk) under a set of different public param-
eters rk. For each input account, i ∈ [0,M), the spender places it at index
l of an N -size ring PKi and runs the above linkable version of Protocol 3,
PLS(rk,PKi,SNi, (l, ski)). Besides, as described in MatRiCT+ [ESZ22], the link-
able ring signatures for M input accounts can be aggregated into one with∑M−1

i=0 αipki + Pi as the public keys and
∑M−1

i=0 αiski + r as the signing key,
where αi’s are challenges. To avoid double-spending, the verifier simply checks
the serial numbers are distinct and not included in previous transactions.

Avoiding unbalancing problem. To address the unbalancing problem de-
scribed above, we show a simple and efficient approach to ensure the spender
can only use one Pi to run the linear sum proof. Recall the linkable version of
our unbalanced linear sum proof. The serial number ensures a spender cannot
1) avoid sending any serial number of her real account and 2) include the serial
numbers of other’s accounts. Thus, the serial number set of a valid transaction
must be the serial numbers of all real input accounts. Accordingly, the number
of serial numbers must be HW(b) ·S, which reveals how many accounts are used
as real inputs in our unbalanced linear sum proof. Therefore, to ensure one Pi

out of an N -size list, the verifier checks the number of serial numbers being S.
The security of this approach can be derived directly from the prosperities of

serial numbers. If the count of serial numbers is different from the count of real
input accounts in a transaction (and causes the unbalancing problem), it either
excludes the serial numbers of the real accounts or includes the serial numbers
of others’ accounts. Since the serial number and secret key share the same secret
b̃ to indicate the indices, it cannot pass the verification in either case.

6.2 RingCT functions

We present the full set of algorithms in our RingCT protocol. Consider the case
with M input amounts (ai)

M−1
i=0 and S output amounts (bi)

S−1
i=0 . The balance

proof part in RingCT protocols is a special case of linear equation satisfiabil-
ity, where N = S + M , (ω0, · · · , ωS−1) = (1, · · · , 1), and (ωS , · · · , ωS+M−1) =
(−1, · · · ,−1). Accordingly, Equation (12) can be expressed as

F (a0, · · · , aM−1, b0, · · · , bS−1) =

S−1∑
i=0

bi −
M−1∑
i=0

ai. (20)

Let B be the set of public keys and coin keys of all registered accounts, S be
the set of serial numbers for spent output accounts, CNKin and CNKout be the sets
of real input and output coin keys respectively (i.e. randomness), CNin and CNout
be the sets of real input and output coins (commitments to amount with coin
keys as randomness), SKin and SKout be the sets of real input and output secret
keys respectively, PKin and PKout be the sets of real input and output public keys
respectively, SNin be the set of serial numbers of real inputs, CNd and PKd be the
sets of decoy coins and decoy public keys.

23

In Protocol 2, denote the initial commitments as CMTLE = (D,E, F,G),
the prover’s response as RSPLE = (f1, (gi)

S−1
i=0 , z, zg, zb), and CMT∗

LE = E. In
Protocol 3, denote the initial commitment as CMTLS = (A,B, (Ej)

k−1
j=0), the

prover’s response as RSPLS = (f1, zb, zr), and CMT∗
LS = (B, (Ej)

k−1
j=1).

• Setup(1λ): Run G ← CKeygen and set ck = G. Run G′ ← CKeygen and
set rk = G′. Run H ← CKeygen and set sk = H. Choose a hash function
H : {0, 1}∗ → C. Return pp = (ck, rk, sk,H).
•Mint(pp, v): Sample r ← {−B, · · · ,B}md and compute Bits(v) = (v0, · · · , vk−1),

B = Comck(v; r). Return (cn, cnk) = (B, r).
•KeyGen(pp): Sample r′ ← {−B, · · · ,B}md and compute P = Comrk(0; r

′).
Return (pk, sk) = (P, r′).
• SerialGen(pp, sk): Compute SN = Comsk(0; r

′) where r′ = sk. Return
SN.
• Spend(pp, (ai)

M−1
i=0 , (bi)

S−1
i=0 , CNin, CNKin, PKin, SKin, SNin, CNd, PKd): Choose

l ← [0, N − 1]. Parse CNin = (A
(l)
i)M−1

i=0 , CNKin = (r
(l)
a,i)

M−1
i=0 , PKin = (P

(l)
a,i)

M−1
i=0 ,

and SKin = (r
′(l)
a,i)

M−1
i=0 . Set Bits(ai) = ai for i ∈ [0,M) and Bits(bi) = bi for i ∈

[0, S). Call Mint(pp, bi) = (cni, cnki) = (Bi, rb,i), KeyGen(pp) = (pki, ski) =
(Pb,i, r

′
b,i), and SerialGen(pp, ski) = SNi for i ∈ [0, S) for output accounts. Set

CNout = (cni)
S−1
i=0 , CNKout = (cnki)

S−1
i=0 , PKout = (pki)

S−1
i=0 , SKout = (ski)

S−1
i=0 , and

SNout = (SNi)
S−1
i=0 . Set CNd = (A

(j)
i)M−1,N−1

i=0,j=0 and PKd = (P
(j)
a,i)

M−1,N−1
i=0,j=0 for j ̸= l.

Proceed as follows:

1. Compute ζ = H(pp, CNin, PKin, SNin, CNd, PKd) as the first challenge in the
partially amortized binary proof (Protocol 1).

2. Run PLE(ck, ((1, Bi)
S−1
i=0 , (−1, Ai)

M−1
i=0), ((bi, rb,i)

S−1
i=0 , (ai, ra,i)

S−1
i=0)) to gen-

erate CMTLE based on the first 7 steps of Protocol 2.

3. Compute C = Comck(c; r
′
c) and Pj =

∑S−1
i=0 Bi −

∑M−1
i=0 A

(j)
i − C for j ∈

[0, N) in Equation (19).

4. Set P = (P0, · · · , PN−1). Run PLS(ck,P , (l,
∑S−1

i=0 rb,i −
∑M−1

i=0 r
(l)
a,i − r′c))

steps 1 to 7 in Protocol 3 to generate CMTLS.

5. For each i ∈ [0,M−1], set Pi = (P
(0)
a,i , · · · , P

(N−1)
a,i). Run PLS(rk,Pi, (l, r

′
a,i))

steps 1 to 7 in Protocol 3 to generate CMT
(i)
LS for all i’s.

6. Additionally compute Fi,j = H · ρi,j for all i ∈ [0,M − 1] and j ∈ [0, k) at

step 6 of Protocol 3 (as described in Section 6.1). Set F = (Fi,j)
M−1,k−1
i=0,j=0

and F ∗ = (Fi,j)
M−1,k−1
i=0,j=1 .

7. Compute x = H(pp, CNin, PKin, SNin, CNd, PKd, CNout, PKout, SNout,CMTLE,

(CMT
(i)
LS)

M−1
i=0 ,CMTLS,F).

8. Compute RSPLE by running the remaining steps of PLE (Protocol 2).

9. Compute RSP
(i)
LS’s and RSPLS by running the remaining steps of PLS for all

i’s (Protocol 3).

10. Set π = (CMT∗
LE, (CMT

∗(i)
LS)M−1

i=0 ,CMT∗
LS,F

∗, x,RSPLE, (RSP
(i)
LS)

M−1
i=0 ,RSPLS).

Return (CKout, CNKout, PKout, SKout, SNout, π).

• CheckAct(B, PK, CNK): For all pki ∈ PK and cnki ∈ CNK, if all (pki, cnki)’s
appear in B, output 1. Otherwise, output 0.

24

10 20 30 40 50

Inputs (M)

0

50

100

150

200

Si
ze

 (
K

B
)

Fig. 1: Balance proof size.

2 4 6 8 10

Ring Size (N)

0

10

20

30

Si
ze

 (
K

B
)

Fig. 2: Ring signature size.

MatRiCT (w/ range proof)
MatRiCT (w/o range proof)
This work (under MatRiCT)
MatRiCT+
This work (under MatRiCT+)

M =1, S =1 M =1, S =2
0

2

4

6

8

T
im

e
(s

)

Fig. 3: Time cost of balance
proofs.

N =10 N =20 N =50
0

1

2

3

4

T
im

e
(s

)

Fig. 4: Time cost of ring sig-
natures.

MatRiCT: proving
This work (under Matrict): proving
MatRiCT+: proving
This work (under Matrict+): proving
MatRiCT: verification
This work (under Matrict): verification
MatRiCT+: verification
This work (under MatRiCT+): verification

• IsSpent(S, SN): For all SNi ∈ SN, if any SNi appears more than once in SN

or appears in S, output 1. Otherwise, output 0.
• Verify(pp, S, CNin, PKin, SNin, CNd, PKd, CNout, PKout, SNout, π): Compute ζ =

H(pp, CNin, PKin, SNin, CNd, PKd) as the first challenge in the partially amortized
binary proof (Protocol 1). Run CheckAct(B, PKin, CNKin). If the output is 0,
return 0. Run IsSpent(S, SNin). If the output is 1, return 0. Parse π = (CMT∗

LE,

(CMT
∗(i)
LS)M−1

i=0 ,CMT∗
LS,F

∗, x,RSPLE, (RSP
(i)
LS)

M−1
i=0 ,RSPLS). Proceed as follows:

1. Return 0 if |CNin| ≠ M or |PKin| ≠ M or |SNin| ≠ M .
2. Rebuild CMTLE based on the last two verifications in step 12 of Protocol 1

and the forth verification in step 17 of Protocol 2, (CMT
(i)
LS)

M−1
i=0 and CMTLS

based on the forth verification in step 16 of Protocol 3. Rebuild F by setting
Fi,0 = xk · SNi −

∑k−1
j=1 x

jFi,j −H · zb,i for all i’s.
3. Return 0 if x ̸= H(pp, CNin, PKin, SNin, CNd, PKd, CNout, PKout, SNout,CMTLE,

(CMT
(i)
LS)

M−1
i=0 ,CMTLS,F), otherwise return 1.

B and S will be updated once transactions are recorded on the blockchain.

7 Evaluation

Implementation. To evaluate the performance of the proposed proofs, we
give a reference implementation7 of our approaches in Golang. The underling

7 https://github.com/GoldSaintEagle/RingCT_Implementation

25

https://github.com/GoldSaintEagle/RingCT_Implementation

polynomial ring operations are implemented with LaGo [LJC24]. To compare
with MatRiCT and MatRiCT+, we evaluate the performance of our approaches
(as well as MatRiCT and MatRiCT+) under settings: ϕ1 = ϕ2 = 15, B = 1,
(d,w, p) = (64, 56, 8), q = 249−218+29+1, (n,m) = (29, 60), q̂ = 231−218+23+1,
and (n̂, m̂) = (18, 38) for MatRiCT; and (d,w) = (256, 56), q = 167770241
(≈ 227), (n, κ) = (4, 4), q̂ = 234 − 226 − 27 + 1, and (n̂, κ̂) = (5, 5) for Ma-
tRiCT+. Note these settings suffice the 128-bit security of partially amortized
binary proof when the number of outputs are small (≤ 2) in our experiments. All
experiments are performed on a personal laptop equipped with Intel i7-8750H
2.20GHz CPU and 8GB memory.

Proof size: balance proof.We first evaluate the performance of our balance
proof. Referring to [EZS+19,ESZ22], we consider the scenario that requires 64-
bit precision for amounts (i.e., k = 64) and fix the number of output account
(S = 1). The balance proof size growth with the number of input accounts is
depicted in Figure 1. As we do not consider anonymity in our balance proofs,
the proof size does not increase much with M except when M = 1. This is an
expected result as M only contributes to the size of proof elements which is
logarithmic to the proof size. Furthermore, there is a clear burst in MatRiCT
when M = 3 if we use full range proofs to show the validate of corrector values.
This problem can be avoided by embedding the range relation in the binary
proofs of output accounts as with MatRiCT+ (MatRiCT w/o range proof in
Figure 1). Nevertheless, our approach can save 15% size of MatRiCT (with
range proof) when M = 1 and more than 50% in other cases, and nearly 20%
size of MatRiCT+.

Proof size: ring signature. We further evaluate the performance of our
ring signature, and compare with MatRiCT [EZS+19] and MatRiCT+ [ESZ22].
As N is relatively small in existing anonymous cryptocurrencies (e.g., N = 11 in
Monero), we fix k = 1 and β = N . The signature size growth with the ring size N
is depicted in Figure 2. Since we set β = N , all approaches scale linearly with the
ring size. Compared with MatRiCT, our approach reduces about 50% proof size.
This is contributed by removing the binary proofs, which allows us to efficiently
run under the smaller parameter set. The improvement is less significant in
MatRiCT+ settings. This is mainly due to the cyclotomic rings optimization
decreases the gap between different parameters, i.e., (q, n, κ) ≈ (234, 4, 4) and
(q̂, n̂, κ̂) ≈ (227, 5, 5). Nevertheless, our approach can still save about 15% proof
size of MatRiCT+.

Time consumption. Finally, we compare the proving and verification time
of our approaches with MatRiCT [EZS+19] and MatRiCT+ [ESZ22]. The results
are depicted in Figure 3. Our inner-product based approach reduces nearly 30%
proving time of the MatRiCT and 20% of MatRiCT+ as we do not involve ci’s
in binary proofs. Besides, since the commitment of ci’s is derived from Ai’s and
Bi’s, our approach also reduce the time of committing to corrector values. Fur-
thermore, our approach reduces about 20% verification time of both MatRiCT
and MatRiCT+. The main reason is verifying the inner-product relation (step
11 of Protocol 2) is much more efficient than the balance relation with corrector

26

values. Therefore, the efficiency of binary verification is also improved without
corrector values.

The performances of ring signatures are depicted in Figure 4. Our unbalanced
linear sum approach can reduce nearly 15% proving time of MatRiCT and Ma-
tRiCT+ when N = 50. This is mainly contributed by avoiding the binary proof
parts in our approach. When N is small, the improvement is less significant as
the binary proof cost is only a small portion of the whole cost. The improve-
ment in verification is less significant due to the same reason. Nevertheless, our
approaches outperform MatRiCT and MatRiCT+ in all settings.

8 Discussion

Security of parameters. Based on Lemma 1, we can find that the security of
M-SIS increases with n whereas the security of M-LWE increases with m − n.
Thus, we balance the security aspects to choose parameters such that m ≈
2n. Furthermore, MatRiCT [EZS+19] and MatRiCT+ [ESZ22] aim for the root
Hermite factor of δ ≈ 1.0045 in Equation (2) for both M-LWE and M-SIS,
which indicates 128-bit post-quantum security [APS15]. Here we show that our
parameters ensure a same security level.

Prior to present the results, we show a technique used in [EZS+19] to reduce
γbin by scarifying some completeness (increasing the completeness error).

In the binary proof of MatRiCT, after generating gi’s, the prover and verifier
further check ∥(gi ◦ (x · 1− gi))

S−1
i=0 ∥ be a factor 4d smaller than the theoretical

bound in Equation (33) (after steps 8 and 12 in Protocol 1). [EZS+19] shows
these changes can significantly reduce γbin while ensuring the completeness error
less than 1%. Therefore, the norm bound of ∥(ŝ; r̂f)∥ becomes

∥(ŝ; r̂f)∥ = 4p2
√
d3w3

(
p2k3S3ϕ4

1 + ϕ2
2B2m2(S + 1)

)
. (21)

Accordingly, γbin becomes

γbin = max{BBin, BAmor}

:= max
{
4p2

√
d3w3

(
p2k3S3ϕ4

1 + ϕ2
2B2m2(S + 1)

)
,

2κ+1SBpκwκ−1md2ϕ2

√
md(S + 1)

S−1∑
i=0

(wp)i
}
.

Observe that BBin is the bound in MatRiCT (Lemma 5.5 in [EZS+19]) in-
troduced by the binary constraint (our solution has a smaller bound in this
term since we use the new encoding scheme), and BAmor is introduced by
our partial amortization technique. Meanwhile, BAmor < BBin when S ≤ 2,
which indicates our parameters satisfy Equation (2). Specifically, when S = 2,

2γbin ≈ 2.86 × 1014, which is smaller than min{q, 22
√
nd log q log δ} ≈ 4.10 × 1014

in Equation (2).

27

Additionally, 2(2wp)κ+1ϕ1

√
wkS ≈ 2.04×109 and 8(wϕ1)

2pkSd ≈ 3.70×1011
when S = 2, while q/2 ≈ 2.81×1014, which is greater than both terms. Thus, we
can safely use the our parameters for binary proofs when S ≤ 2, which satisfies
most cases for confidential transactions.

For the linear equation satisfiability, we set ∥ω∥21 = S+M in γLE. When S =

2 andM = 50, we have 2γLE ≈ 1.34×109, which is smaller than min{q̂, 22
√

n̂d log q̂ log δ} ≈
1.44 × 109 in Equation (2). Thus, the settings satisfy the security of our linear
equation satisfiability.

Lastly, for the unbalanced linear sum proof, we have 2γLS ≈ 6788 when
N = 50, which is much smaller than 1.44× 109 (derived from the left hand size
of Equation (2)). It also indicates we can use a much smaller parameter set for
ring signature applications.

Compatible with other techniques. As we improve the underlying ZKPs
of RingCT protocols, our approaches preserve all distinguishing features of Ma-
tRiCT, such as being compatible with extractable commitment techniques, which
allows one to design an auditable RingCT protocol by placing a “mini trapdoor”
in HMC (enumerating all possible values to recover the committed message).

Besides MatRiCT, other techniques in MatRiCT+ [ESZ22] to optimize the
underlying cyclotomic rings can also be applied in our approaches. Specifically,
a new CRT-packing technique is proposed in power-of-2 cyclotomic rings to
reduce the modulus with binary CRT slots (and reduce the commitment size
accordingly). Furthermore, MatRiCT+ optimizes challenges in cyclotomic rings
to reduce their Hamming weights [ESZ22]. As both techniques are “general and
of independent interest for lattice-based proof systems” [ESZ22], our approaches
can regard them as optimized settings to further improve efficiency.

Discrete logarithm settings and other applications. Since our tech-
niques do not rely on lattice settings, the results are believed to be of independent
interest for RingCT protocols in a generic setting and other applications.

Partially amortized binary proof can be directly applied in discrete logarithm
settings to batch zb,i’s regardless of S since the norm checks are no longer needed.

Partial amortization extends the amortization technique in [ACF21] which
can benefit other applications with non-homomorphic constraints (e.g., reduce
the cost of responses to randomness in many Σ-protocols).

Linear equation satisfiability is compatible with bit-based commitments with
Equation (13) (commit to the bits of the secret instead of its value). It also has
a wider application, such as in the R1CS check to build SNARKs. To prove the
knowledge of z and zA such that A · z = zA, one can run our linear equation
satisfiability by setting zA,i −

∑
j Ai,jzj = 0.

The new encoding scheme allows a prover to ensure both ⟨d, t⟩ = 0 and the
encoded result are short, which can be used with smaller parameters to reduce
the proof size in lattice settings as mentioned in Section 4.2.

Unbalanced linear sum proof can also be applied in discrete logarithm set-
tings directly to improve their performance of ring signatures by removing the
binary proof part. Note that under the discrete logarithm assumption, bi’s do
not necessarily have to be short. Besides RingCT protocols, other ring-signature-

28

based applications can also be benefited. For instance, in an anonymous e-voting,
voters can use our linkable ring signature to sign their votes. The tallying cen-
ter verifies the signatures to ensure validity and avoid multiple voting without
knowing the identities of the voters.

First, an O(
√
N)-size commitment scheme is proposed in [BBC+18] by en-

coding N -many secrets into S where v = l = O(
√
N). Unfortunately, when

adopting this approach, the ⟨f ,2k⟩ in Equation (15) cannot be calculated di-
rectly as Z will “batch” some fi’s when computing S ·C. For instance, consider
the first element in Z, z0,0 =

∑l−1
i=0 s0,i · ci,0 + y0,0. As f0 = s0,0 · c0,0 + y0,0,

we have 20 · z0,0 = 20 · f0 + 20 · (
∑l−1

i=1 s0,i · ci,0) = 20 · f0 + 20 · e0. Therefore,
it is important to allow the verifier to cancel out

∑k−1
i=0 2i · ei without leaking

any information when computing ⟨f ,2k⟩. The same issue occurs in ring signa-

tures when computing
∑β−1

i=0 fj,i in Equation (17) and
∏k−1

j=0 flj ,ij in Equation
(18). The latter one is a much thornier problem when using zi,j ’s to compute∏k−1

j=0 fj,ij . Second, Bootle et al. show the proof size of a Σ-protocol can be

reduced to O(N
1

d+1) with d-levelled commitments or O(log2(N)) with Bullet-
proofs folding [BLNS20]. Though the result is promising, we find it is hard to
be applied in our approaches due to the same reasons above. Besides, the sizes
of the extracted solutions (denoted by “slack” in [BLNS20]) also increase.

Open problems. Though our partial amortization technique works in most
RingCT cases, directly applying it with a larger S requires larger parameters,
which hinders from a wider application. It is very useful to improve the amor-
tization technique for a larger S. Besides, our ring signature approach avoids
the binary proof part based on the fact that a one-out-of-many relation is not
a necessary condition for ring signatures. An interesting question is finding the
sufficient and necessary condition for ring signatures, which may further avoid
unnecessary parts of our linear sum proof for a better efficiency. Finally, the
linear sum relation yields a “many-out-of-many” relation [Dia20]. Unlike [Dia20]
which generates many public key index from a single secret l with permutations,
the linear sum relation maps bi’s to Pi’s directly. Thus, logarithmic-size linear
sum proofs seem promising solutions.

29

Acknowledgment

We gratefully acknowledge Dr. Xingye LU from the University of Hong Kong for
the helpful technical discussions about lattice-based cryptography, Dr. Zuoxia
Yu from the University of Wollongong and Dr. Aoning HU from the Southeast
University for the discussion about ring signatures, as well as Dr. Muhammed
Esgin from Monash University for the discussion of MatRiCT and pointing
out some misleading parts. This research is partially supported by HK RGC
GRF PolyU 15216721/Q86A, 15207522/Q93W, 15209822, and NSFC Youth
62302418/ZGJV.

References

ACF21. Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing Proofs of k-
out-of-n Partial Knowledge. In Proc. of the Annual International Cryptology
Conference (CRYPTO). Springer, 2021.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the Concrete Hard-
ness of Learning With Errors. In Journal of Mathematical Cryptology, 2015.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short Proofs for Confidential
Transactions and More. In Proc. of the IEEE Symposium on Security and
Privacy (Oakland). IEEE, 2018.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël Del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear Lattice-based Zero-knowledge
Arguments for Arithmetic Circuits. In Proc. of the Annual International
Cryptology Conference (CRYPTO). Springer, 2018.

BCC+15. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. Short Accountable Ring Signatures Based
on DDH. In Proc. of the European Symposium on Research in Computer
Security (ESORICS). Springer, 2015.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient Zero-Knowledge Arguments for Arithmetic Cir-
cuits in the Discrete Log Setting. In Proc. of the Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT). Springer, 2016.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More Efficient Commitments from Structured Lattice As-
sumptions. In Proc. of the International Conference on Security and Cryp-
tography for Networks (SCN). Springer, 2018.

BLNS20. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. A Non-PCP Approach to Succinct Quantum-safe Zero-knowledge.
In Proc. of the Annual International Cryptology Conference (CRYPTO).
Springer, 2020.

Dia20. Benjamin E Diamond. “Many-out-of-Many” Proofs with Applications to
Anonymous Zether. In Proc. of the IEEE Symposium on Security and Pri-
vacy (Oakland). IEEE, 2020.

DPLS18. Rafaël Del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-Based
Group Signatures and Zero-Knowledge Proofs of Automorphism Stability.

30

In Proc. of the ACM Conference on Computer & Communications Security
(CCS). ACM, 2018.

ESLL19. Muhammed F Esgin, Ron Steinfeld, Joseph K Liu, and Dongxi Liu. Lattice-
Based Zero-Knowledge Proofs: New Techniques for Shorter and Faster Con-
structions and Applications. In Proc. of the Annual International Cryptology
Conference (CRYPTO). Springer, 2019.

ESS+19. Muhammed F Esgin, Ron Steinfeld, Amin Sakzad, Joseph K Liu, and
Dongxi Liu. Short Lattice-Based One-Out-of-Many Proofs and Applica-
tions to Ring Signatures. In Proc. of the International Conference on Ap-
plied Cryptography and Network Security (ACNS). Springer, 2019.

ESZ22. Muhammed F Esgin, Ron Steinfeld, and Raymond K Zhao. MatRiCT+:
More Efficient Post-Quantum Private Blockchain Payments. In Proc. of the
IEEE Symposium on Security and Privacy (Oakland), 2022.

EZS+19. Muhammed F Esgin, Raymond K Zhao, Ron Steinfeld, Joseph K Liu, and
Dongxi Liu. MatRiCT: Efficient, Scalable and Post-Quantum Blockchain
Confidential Transactions Protocol. In Proc. of the ACM Conference on
Computer & Communications Security (CCS). ACM, 2019.

GK15. Jens Groth and Markulf Kohlweiss. One-Out-of-Many Proofs: Or How to
Leak a Secret and Spend a Coin. In Proc. of the Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT). Springer, 2015.

GQZ+24. Shang Gao, Chen Qian, Tianyu Zheng, Yu Guo, and Bin Xiao. Σ-Check:
Compressed Σ-protocol Theory from Sum-check. IACR Cryptology ePrint
Archive, 2024.

Gro16. Jens Groth. On the Size of Pairing-based Non-Interactive Arguments. In
Proc. of the Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques (EUROCRYPT). Springer, 2016.

GWC19. Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over Lagrange-bases for Oecumenical Noninteractive Arguments
of Knowledge. IACR Cryptology ePrint Archive, 2019.

LAZ19. Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A Practical Lattice-
Based (Linkable) Ring Signature. In Proc. of the International Conference
on Applied Cryptography and Network Security (ACNS). Springer, 2019.

LJC24. Shaohua Li, Philipp Jovanovic, and ChristianMct. lago. https://github.
com/dedis/lago, 2024.

LLNW16. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-Size
Ring Signatures and Group Signatures without Trapdoors. In Proc. of the
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT). Springer, 2016.

LN22. Vadim Lyubashevsky and Ngoc Khanh Nguyen. BLOOM: Bimodal Lat-
tice One-out-of-Many Proofs and Applications. In Proc. of the Annual In-
ternational Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), pages 95–125. Springer, 2022.

LS15. Adeline Langlois and Damien Stehlé. Worst-Case to Average-Case Reduc-
tions for Module Lattices. In Designs, Codes and Cryptography. Springer,
2015.

Lyu12. Vadim Lyubashevsky. Lattice Signatures Without Trapdoors. In Proc.
of the Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). Springer, 2012.

31

https://github.com/dedis/lago
https://github.com/dedis/lago

MR09. Daniele Micciancio and Oded Regev. Lattice-based Cryptography. In Post-
quantum cryptography, pages 147–191. Springer, 2009.

Noe15. Shen Noether. Ring Signature Confidential Transactions for Monero. IACR
Cryptology ePrint Archive, 2015.

24a. Hash Team. Hcash. https://h.cash/, 2024.
24b. Monero Project. Monero. https://www.getmonero.org/, 2024.
RST01. Ronald L Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret. In

Proc. of the Annual International Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT). Springer, 2001.

SALY17. Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. RingCT
2.0: A Compact Accumulator-Based (Linkable Ring Signature) Protocol for
Blockchain Cryptocurrency Monero. In Proc. of the European Symposium
on Research in Computer Security (ESORICS). Springer, 2017.

SCG+14. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized Anony-
mous Payments from Bitcoin. In Proc. of the IEEE Symposium on Security
and Privacy (Oakland). IEEE, 2014.

TSS+18. Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K Liu,
Veronika Kuchta, Nandita Bhattacharjee, Man Ho Au, and Jacob Cheng.
Post-Quantum One-Time Linkable Ring Signature and Application to Ring
Confidential Transactions in Blockchain (Lattice RingCT v1. 0). In Proc. of
the Australasian Conference on Information Security and Privacy (ACISP).
Springer, 2018.

YAL+17. Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu.
Lattice-Based Techniques for Accountable Anonymity: Composition of Ab-
stract Stern’s Protocols and Weak PRF with Efficient Protocols from LWR.
IACR Cryptology ePrint Archive, 2017.

ZGSX23. Tianyu Zheng, Shang Gao, Yubo Song, and Bin Xiao. Leaking Arbitrarily
Many Secrets: Any-out-of-Many Proofs and Applications to RingCT Proto-
cols. In Proc. of the IEEE Symposium on Security and Privacy (Oakland).
IEEE, 2023.

32

https://h.cash/
https://www.getmonero.org/

A Useful Lemmas

Lemma 3. (Lemma 4.4 in [Lyu12]) Let Ds
σ be the Normal distribution over

Zs with standard deviation σ. Then we have:

– For any k > 0, Pr[|z| > kσ; z ← Dσ] ≤ 2e−k2/2.

– For any k > 1, Pr[∥z∥ > kσ
√
s; z ← Ds

σ] < kses(1−k2)/2.

Lemma 4. (Lemma 5 in [ESLL19]) In Equation (6), the following holds for

κ′ = k(k−1)
2 :

∥m̂k∥ ≤ d(k + 1)(2p)κ
′
wκ′−1 ·max

i
∥fi∥,

∥r̂k∥ ≤ d(k + 1)(2p)κ
′
wκ′−1 ·max

i
∥zi∥.

(22)

Lemma 5. (Lemma 8 in [ESLL19]) For any f, g ∈ R = Z[X]/(Xd + 1), we
have the following relations:

– ∥f∥ ≤
√
d · ∥f∥∞,

– ∥f∥ ≤ ∥f∥1 ≤
√
d · ∥f∥,

– ∥f · g∥ ≤
√
d · ∥f∥ · ∥g∥,

– ∥f · g∥∞ ≤ ∥f∥ · ∥g∥,
– ∥f · g∥∞ ≤ ∥f∥1 · ∥g∥∞,

– ∥
∏n

i=1 fi∥∞ ≤ (
∏n−1

i=1 ∥fi∥1) · ∥fn∥∞.

Lemma 6. (Theorem 4.6 in [Lyu12]) Let h be a probability distribution
over V ∈ Zs where s ≥ 1 and the norm of all elements is less than T . Let
c ← h and ϕ > 0. Considering an algorithm that samples y ← Ds

σ and outputs
Rej(z, c, ϕ, T) for z = y + c. The probability that the algorithm outputs 1 is

within 2−100 of 1/µ(ϕ) where µ(ϕ) = e12/ϕ+1/(2ϕ2). When the output is 1, the
statistical distance between the distribution of z and Ds

σ is at most 2−100.

Lemma 7. Considering independent vectors y1, · · · ,ys with distributions Dd
σ1
, · · · , Dd

σs

for d ≥ 1. If σi ≥ τ(Zd)/
√
π for all i ∈ [1, s] where τ(Zd) is a smoothing pa-

rameter of Zd, the distribution of
∑s

i=1 yi is statistically close to Dd√∑s
i=1 σ2

i

.

In particular, we have the distribution of
∑s

i=1 yi is statistically close to
Dd

σ
√
s
if Dd

σi
= Dd

σ (Lemma 9 in [ESLL19]) and the distribution of
∑s

i=1 yi

is statistically close to Dd

σ
√∑s

i=1 2i
if Dd

σi
= Dd

σ
√
2i

for all i ∈ [1, s].

33

B Proof of Theorem 1

Proof. Completeness: Based on Lemma 6, the prover responds with probability
1/(µ(ϕ1)µ(ϕ2)). As there are at most kS-many 1’s in (bi)

S−1
i=0 and HW (x) = w,

we have at most wkS non-zero elements in (xbi)
S−1
i=0 . Since ∥x∥∞ = p, we the

following relation when S ≤ 2:

∥x(b0, · · · , bS−1)∥ ≤ p
√
2wk = T1. (23)

Furthermore, we have

∥x(re, rb,0, · · · , rb,S−1)∥ ≤ Bwp
√
3md = T2. (24)

Therefore, based on Lemma 6, the distributions of gi,j ’s and zg, (zb,i)
S−1
i=0

are statistically close to Dd
ϕ1T1

and Dmd
ϕ2T2

respectively. Except with negligible
probability, for all i ∈ [0, S) and j ∈ [0, k), we have the following relations based
on Lemma 3:

∥gi,j∥ ≤ 2(ϕ1T1)
√
d, ∥zg∥ ≤ 2(ϕ2T2)

√
md, (25)

which satisfy the first two steps of verification.
Finally, since zb =

∑S−1
i=0 ζizb,i, we have

∥zb∥ ≤
∥∥∥(1 + ζ)zb,i

∥∥∥ ≤ ∥zb,i∥+ ∥ζzb,i∥
≤
√
md

(
(1 + ∥ζ∥) · ∥zb,i∥

)
≤ 2mdϕ2T2(wp+ 1).

(26)

(S, 3)-special soundness: We discus the case when S ≤ 2. The extractor
first extracts the relaxed opening of yBi’s when provided with the openings of
y
∑S−1

i=0 ζiBi for S different ζ in the first layer of the extraction tree, where
y is a relaxation factor derived from the second layer. Then, for each node in
the first layer, it extractors the relaxed openings of E,F,

∑S−1
i=0 ζiBi, G with 3

different x (as the second layer) by fixing the ζ and commitments. To maintain
consistency in our proof, we first describe the extractor’s operation in the second
layer, which derives the relaxed openings of

∑S−1
i=0 ζiBi and the corresponding

relaxation factor y used in the first layer.
Extractor in the second layer. Given 3 distinct challenges (x, x′, x′′), we have

3 accepted transcripts. We first consider the constraint of x
∑S−1

i=0 ζiBi + G =

Comck(
∑S−1

i=0 ζigi; zb). Taking two transcripts of x and x′, we have

x

S−1∑
i=0

ζiBi +G = Comck(

S−1∑
i=0

ζigi; zb), (27)

x′
S−1∑
i=0

ζiBi +G = Comck(

S−1∑
i=0

ζig′
i; z

′
b). (28)

34

Subtracting Equation (28) from Equation (27), we get

(x− x′)

S−1∑
i=0

ζiBi = Comck(

S−1∑
i=0

ζi(gi − g′
i); zb − z′

b). (29)

Denote y = x − x′, b̃i = gi − g′
i, and r̃b = zb − z′

b. We extract an opening

(
∑S−1

i=0 ζib̃i; r̃b) to y
∑S−1

i=0 ζiBi, where ∥r̃b∥ ≤ 4mdϕ2T2(wp + 1). Taking the
opening to Equation (27), we have

yG = yComck(

S−1∑
i=0

ζigi; zb)− x

S−1∑
i=0

ζiyBi

=Comck(

S−1∑
i=0

ζi(xg′
i − x′gi);xz

′
b − x′zb) := Comck(

S−1∑
i=0

ζit̂i; r̂t).

which gives an opening (
∑S−1

i=0 ζit̂i; r̂t) to yG where ∥r̂t∥ ≤ 4wpmdϕ2T2(wp+1).
Based on the γbin-binding property of the commitment scheme, the extractor
cannot extract new valid openings for y

∑S−1
i=0 ζiBi and yG. Thus, the extracted

openings are also valid for the third transcript of x′′.
For the constraint of xE+F = Comck(h; zg) where h = (gi ◦ (x ·1−gi))

S−1
i=0 ,

taking transcripts of (x, x′) from the three transcripts, we have 2 accepted re-
sponses, (h; zg) and (h′; z′

g) with the same inputs and commitments such that

xE + F = Comck(h; zg), (30)

x′E + F = Comck(h
′; z′

g). (31)

Using the same extraction approach, we can derive the opening yE = Comck(h−
h′; zg−z′

g) := Comck(ê; r̂e) and yF = Comck(xh
′−x′h;xz′

g−x′zg) := Comck(ŝ; r̂f)
such that yh = xê+ ŝ. (ŝ; r̂f) has a larger norm bound (without loss of gener-
ality, assume ∥(xh′, xz′

g)∥ ≥ ∥(x′h, x′zg)∥):

∥(ŝ; r̂f)∥ = ∥(xh′, xz′
g)− (x′h, x′zg)∥ ≤ 2∥(xh, xz′

g)∥

≤2p
√
dw · ∥(h′, z′

g)∥ = 2p
√
dw(∥h′∥2 + ∥z′

g∥2).
(32)

We further bound ∥x−gj,i∥ by ∥gj,i∥ since ∥x∥ is a much smaller term to compute
∥h′∥2 for simplicity:

∥h′∥2 =

k−1∑
j=0

S−1∑
i=0

d∥x− gj,i∥2∥gj,i∥2

≤dkS(2(ϕ1T1)
√
d)4 = 128(dk)3(ϕ2

1p
2w)2.

(33)

Taking Equation (33) into Equation (32), we have

∥(ŝ; r̂f)∥ ≤ 2p

√
dw

(
128(dk)3(ϕ2

1p
2w)2 + (2ϕ2T2

√
md)2

)
=4p2

√
d3w3

(
32dp2k3ϕ4

1 + 3ϕ2
2B2m2

)
≤ γbin,

35

which implies valid openings for yE and yF . Based on the γbin-binding property
of the HMC, the extractor cannot extract new valid openings for yE and yF .
Therefore, the extracted openings are also valid for the third transcript of x′′.

Extractor in the first layer. We show how to extract relaxed openings of
yBi’s when given the openings of

∑S−1
i=0 ζiyBi with S distinct ζ. When S = 1,

Equation (29) implies an opening (ζb̃0; r̃b) to yB0 directly, which allows us to set
the relaxation factor to yζ = 1. When S = 2, given 2 distinct challenges, ζ and

ζ ′, we have 2 accepted responses, (b̃0 + ζb̃1, r̃b) and (b̃0 + ζ ′b̃1, r̃
′
b). Accordingly,

we have

yB0 + ζyB1 = Comck(b̃0 + ζb̃1; r̃b), (34)

yB0 + ζ ′yB1 = Comck(b̃0 + ζ ′b̃1; r̃
′
b). (35)

Let yζ = ζ − ζ ′. Subtracting Equation (35) from Equation (34), we get

yζyB1 = Comck(yζ b̃1; rb − r′b) := Comck(b̂1; r̂b,1),

which gives an opening (b̂1; r̂b,1) to yζyB1. Tanking the opening to Equation
(35), we get

yζyB0 = yζComck(b̃0 + ζb̃1; r̃b)− ζyζyB1

=Comck(yζ b̃0; ζr̃
′
b − ζ ′r̃b) := Comck(b̂0; r̂b,0).

(36)

Since ∥r̂b,0∥ in S = 2 is larger than that in S = 1 and ∥r̂b,0∥ > ∥r̂b,1∥ when
S = 2, we only analyze the bound of ∥r̂b,0∥ in S = 2 case. Without loss of
generality, assume ∥ζ ′r̃b∥ ≥ ∥ζr̃′b∥ and ∥zb∥ ≥ ∥z′

b∥. We have

∥r̂b,0∥ = ∥ζr̃′b − ζ ′r̃b∥ ≤ 2∥ζ ′r̃b∥ = 2∥ζ ′(zb − z′
b)∥

≥4∥ζ ′zb∥ ≥ 8mdwpϕ2T2 = 8mdw2p2ϕ2B
√
3md,

(37)

Binary relation. Finally, we show the extracted openings imply the binary
relation. Taking the opening (

∑S−1
i=0 ζit̂i; r̂t) to yG, based on the last step of

verification, we have

yζy

S−1∑
i=0

ζigi = x

S−1∑
i=0

ζib̂i +

S−1∑
i=0

ζit̃i =

S−1∑
i=0

ζi(xb̂i + yζ t̂i). (38)

Though different ζ generate different G’s, the γbin-binding property of the com-
mitment scheme avoids extracting different t̂i’s such that Comck(

∑S−1
i=0 ζit̂i; r̂t)

(i.e., different t̂i’s result in different b̂i’s which break the γbin-binding prop-
erty). Thus, Equation (38) also holds for S different ζ, which indicates yζygi =

xb̂i + yζ t̂i.
Recall h = (gi ◦ (x ·1−gi))

S−1
i=0 and the openings of yE and yF , we have the

following relations in R for all i ∈ [0, S) and j ∈ [0, k):

yhi,j = y(gi,j(x− gi,j)) = xêi,j + ŝi,j . (39)

36

More precisely, we expected Equation (39) holds in Rq, which requires us to
prove

yζygi,j = xb̂i,j + yζ t̂i,j in Rq, (40)

ygi,j(x− gi,j) = xêi,j + ŝi,j in Rq. (41)

For Equation (40), we have the norm bound

∥yζygi,j∥∞ ≤ ∥y∥1 · ∥yζgi,j∥∞ ≤ ∥y∥1 · ∥yζ∥1 · ∥gi,j∥∞
≤2wp · 2wp · 2ϕ1T1 = 2(2wp)2ϕ1

√
2wk.

For Equation (41), we have

∥ygi,j(x− gi,j)∥∞ ≤ ∥y∥1 · ∥gi,j(x− gi,j)∥∞
≤∥y∥1 · ∥gi,j∥ · ∥x− gi,j∥ ≤ 2wp · 2ϕ1T1

√
d · (p

√
w + 2ϕ1T1

√
d)

≈2wp · 2ϕ1T1

√
d · 2ϕ1T1

√
d = 16(wϕ1)

2pkd.

Therefore, we have ∥ygi,j(x − gi,j)∥∞ > ∥yζygi,j∥∞. Since q/2 > 16(wϕ1)
2pkd,

we have both Equation (40) and Equation (41) hold on Rq, which implies Equa-
tion (39) holds in Rq. Accordingly, we have:

y2ζy(xêi,j + ŝi,j) = y2ζy(ygi,j(x− gi,j))

=yζygi,j(xyζy − yζygi,j)

=(xb̂i,j + yζ t̂i,j)(xyζy − xb̂i,j − yζ t̂i,j)

=x2
(
b̂i,j(yζy − b̂i,j)

)
+ x

(
t̂i,j(yζy − 2b̂i,j)

)
− y2ζ t̂

2
i,j ,

(42)

and thus

x2
(
b̂i,j(yζy − b̂i,j)

)
+ x

(
t̂i,j(yζy − 2b̂i,j)− y2ζyêi,j

)
+
(
− y2ζ t̂

2
i,j − y2ζyŝi,j

)
= 0,

(43)

Since Equation (43) holds for x, x′, and x′′, we have the following system in
R (instead of Rq):1 x x2

1 x′ x′2

1 x′′ x′′2

 ·
 −y2ζ t̂2i,j − y2ζyŝi,j

t̂i,j(yζy − 2b̂i,j)− y2ζyêi,j

b̂i,j(yζy − b̂i,j)

 = 0 in R. (44)

For the last row of Equation (44), we have

(x′′ − x′)(x′ − x)(x′′ − x)̂bi,j(yζy − b̂i,j) = 0 in R. (45)

Since Equation (45) holds in R, at least one factor it must be zero. As challenges

are distinct, we have b̂i,j = 0 or b̂i,j = yζy, i.e., b̂i,j = yζybi,j for bi,j ∈ {0, 1}.
Thus, all bi’s are binary vectors.

37

SHVZK: Assume the protocol is not aborted. The simulator samples rb ←
{−B, · · · ,B}md, gi,j ← Dd

ϕ1T1
for all i ∈ [0, S) and j ∈ [0, k), zg, (zb,i)

S−1
i=0 ←

Dmd
ϕ2T2

, and sets E = Comck(0; rb). Then, given ζ and x, it computes F =

Comck((gi,j(x− gi,j))
S−1,k−1
i=0,j=0 ; zg)− xE, and G =

Comck(
∑S−1

i=0 ζigi; zb) − x
∑S−1

i=0 ζiBi. Obviously, the simulated transcript will

be an accepted one. Based on Lemma 3, the distributions of (gi,j)
S−1,k−1
i=0,j=0 , zg,

zb are statistically close to the real distributions. The simulated distributions
of D,F,G are the same as the real distributions. Due to the hiding property of
the commitment scheme, the distribution E is computationally indistinguishable
from the real case.

C Proof of Theorem 4

Proof. Completeness: Based on the definition of cj , we have ∥c∥∞ ≤
max(−

∑
ωi<0 ωi,

∑
ωi>0 ωi). Let c = (c0, · · · , ck−1). As there are at most k

non-zero elements in c and HW (x) = w, xc has at most wk non-zero elements.
Thus,

∥xc∥ ≤ max(−
∑
ωi<0

ωi,
∑
ωi>0

ωi) · p
√
wk = T3. (46)

Let ω = (ω0, · · · , ωS−1). Based on Lemma 5, we have

∥rc∥ =

∥∥∥∥∥
S−1∑
i=0

ωirb,i

∥∥∥∥∥ ≤
S−1∑
i=0

(
|ωi| · ∥rb,i∥

)
≤
√
md · ∥rb,i∥∞ · ∥ω∥1 ≤ B

√
md∥ω∥1,

(47)

and thus,

∥x(rc, re, rb,0, · · · , rb,S−1)∥ = (∥xrc∥2 + ∥x(re, rb,0, · · · , rb,S−1)∥2)1/2

≤Bwp
√
md(∥ω∥21 + S + 1) = T2.

(48)

Therefore, based on Lemma 6, the distributions of fj ’s and z are statistically
close to Dd

ϕ3T3
and Dmd

ϕ2T2
respectively. Except with negligible probability, we

have the following relations for all j ∈ [0, k) based on Lemma 3:

∥fj∥ ≤ 6(ϕ3T3)
√
d, ∥z∥ ≤ 2(ϕ2T2)

√
md. (49)

Other parts can be derived from the completeness proof of the partially amor-
tized binary proof.

(S, 3)-special soundness: As the binary constraint is ensured by the par-
tially amortized binary proof, we only focus on the linear equation constraint
F ′(b0, · · · , bS−1) = 0. With the transcripts of 3 different challenges (x, x′, x′′),
the extractor conducts additional work in the second layer of the extraction tree
as follows.

38

Taking 2 transcripts of (x, x′), we have the accepted responses (f1, g, z, zg, zb)
and (f ′

1, g
′, z′, z′

g, z
′
b) with the same commitments (Bi)

S−1
i=0 , D,E, F,G. Set C =∑S−1

i=0 ωiBi. Compute f0 = −
∑k−1

j=1 2
j · fj on R and rebuild f = (f0, · · · fk−1).

Obviously, we have ⟨f ,2k⟩ = 0 (so does f ′). Taking (f , z) and (f ′, z′) we have

xC +D = Comck(f ; z), x
′C +D = Comck(f

′; z′), (50)

Subtracting the two equations, we get

(x− x′)C = Comck(f − f ′; z − z′) := Comck(ĉ; r̂c). (51)

Setting y = x− x′ as the relaxation factor, we extract a valid opening (ĉ; r̂c) to
yC where ∥r̃c∥ ≤ 4(ϕ2T2)

√
md. Thus, we prove the claimed bound for R′

LE.
Taking Equation (51), we have

yD = y(xC +D)− xyC = Comck(yf − xĉ; yz − xr̂c)

= Comck(xf
′ − x′f ;xz′ − x′z) := Comck(d̂; r̂d).

(52)

Based on the definition of ĉ and d̂, we have yf = xĉ + d̂ where ∥r̂d∥ ≤
4wpϕ2T2

√
md. Based on the γbin-binding property of the HMC, the extractor

cannot extract new valid openings for yC and yD. Therefore, the extracted
openings are also valid for the third transcript of x′′.

As we compute f0 on R instead of Rq, we have ⟨yf ,2k⟩ = 0, and thus

x⟨ĉ,2k⟩ + ⟨d̂,2k⟩ = 0. Based on the γLE-binding property of the commitment
scheme, the PPT prover cannot extract a new valid opening of yC and yD with
non-negligible probability. Thus, x′⟨ĉ,2k⟩+ ⟨d̂,2k⟩ = 0 also holds, which implies
⟨ĉ,2k⟩ = 0. Considering the definition of C, we have

C =

S−1∑
i=0

ωiBi = Comck(

S−1∑
i=0

ωibi;

S−1∑
i=0

ωirb,i), (53)

and thus y⟨
∑S−1

i=0 ωibi,2
k⟩ = ⟨ĉ,2k⟩ = 0, which implies

∑S−1
i=0

(
ωi · ⟨2k, bi⟩

)
=

F ′(b0, · · · , bS−1) = 0. Therefore, we prove the F ′(b0, · · · , bS−1) = 0 relation in
R′

LE.
Combining with the result of (S, 3)-special soundness in partially amortized

binary proof, the linear equation satisfiability also has (S, 3)-special soundness.
SHVZK: Assume the protocol is not aborted. By calling the simulator of the

partially amortized binary proof, we get (ζ, E, F,G, x, (gi)
S−1
i=0 , zb). Additionally,

we sample z ← Dmd
ϕ2T2

, f ′
j ← Dd

ϕ3T3
for all j ∈ [1, k) and set f ′

0 = f ′
j = 0. Then,

we compute fj = f ′
j − 2f ′

j+1 to build f and set f1 = (f1, · · · , fk−1). Given x, we
compute D = Comck(f ; z)− xC. Obviously, the simulated transcript will be an
accepted one. Based on Lemma 3, the distributions of f1 and z are statistically
close to the real distributions. The simulated distribution of D is the same as
the real one.

39

D Proof of Theorem 4

Proof. Completeness: Based on Lemma 6, the prover responds with probability
1/(µ(ϕ1)µ(ϕ2)). As there are at most k-many 1’s in δ and HW (x) = w, we have
at most wk-many non-zero elements in xδ. Since ∥x∥∞ = p, we have,

∥xδ∥ ≤ p
√
wk = T1. (54)

Furthermore, based on Lemma 5, we have∥∥∥∥∥xkr −
k−1∑
j=1

xjρj

∥∥∥∥∥ ≤ ∥xkr∥+
k−1∑
j=1

∥xjρj∥

≤
√
md

(
∥xkr∥∞ +

k−1∑
j=1

∥xjρj∥∞
)

≤
√
md

(
∥x∥k1 · ∥r∥∞ +

k−1∑
j=1

∥x∥j · ∥ρj∥∞
)

≤
√
md

(
(wp)kB + B

k−1∑
j=1

(wp)j
)
= B
√
md

k∑
j=1

(wp)j .

(55)

Denote r′ = xkr −
∑k−1

j=1 x
jρj , we have

∥xrb, r′∥ = (∥xrb∥2 + ∥r′∥2)1/2

≤B
√
md

(
w2p2 + (

k∑
j=1

wjpj)2
)1/2

≤ B(wp)k
√
2md = T2.

Considering each element of f1. Based on Lemma 7, the sum of discrete
normal variables behaves as its continuous counterpart. Thus, for all j ∈ [0, k), we

have the distribution of
∑β−1

i=1 fj,i is statistically close to Dd
ϕ1T1

√
β−1

. Therefore,

for all j ∈ [0, k) and i ∈ (0, β), we have

∥fj,i∥ ≤ 2(ϕ1T1)
√
d,

∥fj,0∥ ≤
∥∥∥x−∑β−1

i=1
fj,i

∥∥∥ ≤ ∥x∥+ ∥∥∥∑β−1

i=1
fj,i

∥∥∥
≤
√
w + 2(ϕ1T1)

√
d(β − 1) ≈ 2ϕ1p

√
kwdβ,

∥zb∥,∥zr∥ ≤ 2(ϕ2T2)
√
md.

(56)

(k + 1)-special soundness: Given (k + 1) distinct challenges (xs)
k
s=0, we

have (k + 1) accepted responses (f
(s)
1 , z

(s)
b)ks=0 with the same commitments

A,B, (Ej)
k−1
j=0 . For each transcript, compute f

(s)
j,0 = xs −

∑β−1
i=1 f

(s)
i,j for all j ∈

40

[0, k), and rebuild f (s) = (f
(s)
0,0 , · · · f

(s)
k−1,β−1). Taking (f (0), z

(0)
b) and (f (1), z

(1)
b),

we have

x0B +A = Comck(f
(0), z

(0)
b), (57)

x1B +A = Comck(f
(1), z

(1)
b). (58)

Subtracting Equation (58) from Equation (57), we get (x0−x1)B = Comck(f
(0)−

f (1), z
(0)
b − z

(1)
b), which gives us an opening of yB with a relaxation factor

y = (x0 − x1):

yB = Comck(f
(0) − f (1), z

(0)
b − z

(1)
b) := Comck(b̂, r̂b). (59)

Subtracting x0 times of (59) from y times of (57), we have:

yA = Comck(yf
(0) − x0b̂; yz

(0)
b − x0r̂b)

=Comck(x0f
(1) − x1f

(0); x0z
(1)
b − x1z

(0)
b) := Comck(â; r̂a).

Obviously, we have xsb̂ + â = yf (s) for s = {0, 1}. Taking each element in

b̂ = (̂bj,i)
β−1,k−1
i=0,j=0 and â = (âj,i)

β−1,k−1
i=0,j=0 , we have

xsb̂j,i + âj,i = yf
(s)
j,i , ∀i ∈ [0, β), j ∈ [0, k). (60)

Since
∑β−1

i=0 f
(s)
j,i = xs, we have

yxs =

β−1∑
i=0

yf
(s)
j,i =

β−1∑
i=0

xsb̂j,i +

β−1∑
i=0

âj,i, (61)

and thus 0 = xs(
∑β−1

i=0 b̂j,i− y)+
∑β−1

i=0 âj,i. Based on the γ-binding property of

the commitment scheme, it holds for s = {0, 1}. Therefore, we have
∑β−1

i=0 b̂j,i −
y = 0 and

∑β−1
i=0 âj,i = 0, and thus

∑β−1
i=0 b̂j,i = y, i.e.,

∑β−1
i=0 b̂j,i = y

∑β−1
i=0 bj,i

for
∑β−1

i=0 bj,i = 1. As fj,0 = x−
∑β−1

i=1 fj,i, we have bj,0 = 1−
∑β−1

i=1 bj,i. Thus,

∥bj,0∥ ≤ 1 + 4ϕ1

√
kd(β − 1) ≈ 4ϕ1

√
kdβ.

Now we construct bi’s for all i ∈ [0, N) with bi =
∏k−1

j=0 bj,ij , where ij ’s are
the digits of representation of i in base β such that i = (i0, · · · , ik−1). Clearly,
bi ̸= 0 if and only if bj,ij ̸= 0 for all j ∈ [0, k).

Based on Equation (59) and Lemma 5, we have

∥bi∥ =

∥∥∥∥∥
k−1∏
j=0

bj,ij

∥∥∥∥∥ ≤ d
k−1
2

k−1∏
j=0

∥∥bj,ij∥∥
≤d

k−1
2 ∥bj,0∥k ≤ (4ϕ1

√
kβ)kdk−

1
2 = γLS.

(62)

Considering the γ-binding property of the commitment scheme, the following
equation holds for (k + 1) challenges

yf
(s)
j,i = xsb̂j,i + âj,i = yxsbj,i + âj,i, s ∈ [0, k]. (63)

41

We compute p̂i(xs) = yk
∏k−1

j=0 f
(s)
j,ij

=
∏k−1

j=0 (yxsbj,ij + âj,ij) for each i ∈
[0, N). Obviously, for all s ∈ [0, k], if p̂i(xs) is a polynomial of degree k, then
bj,ij ̸= 0 for all j ∈ [0, k), which indicates bi ̸= 0. Thus, for all i ∈ [0, β), we have
at least one bi is not zero, i.e., ∥b∥ > 0.

As the last verification step holds, we multiply both sides of the equation by
yk:

N−1∑
i=0

p̂i(xs) · Pi −
k−1∑
j=0

ykEjx
j
s

=xk
sy

k
N−1∑
i=0

Pi +

k−1∑
j=0

E′
jx

j
s = Comck(0; y

kz(s)
r),

(64)

where E′
j ’s are the terms multiplied by the monomials xj

s’s of degree at most
(k − 1) and are independent from xs. Taking all (k + 1) transcripts, we have

1 x0 · · · xk
0

...
...

. . .
...

1 xk · · · xk
k

 ·

E′
0
...

yk
N−1∑
i=0

biPi

 =

Comck(0; y

kz
(0)
r)

...

Comck(0; y
kz

(k)
r)

 . (65)

Let the Vandermonde matrix on the left hand side of Equation (65) be V . Based

on Equation (6), we can obtain (0, ykr̂) as the opening of det(V) ·yk
∑N−1

i=0 biPi,

where r̂ =
∑N−1

i=0 Γiz
(i)
r (Γi is defined in Equation (4)). We have

det(V) · yk
∑N−1

i=0
biPi = Comck(0; y

kr̂)

=⇒yk
(
det(V) ·

∑N−1

i=0
biPi − Comck(0; r̂)

)
= 0

=⇒y
(
det(V) ·

∑N−1

i=0
biPi − Comck(0; r̂)

)
= 0

=⇒det(V) · y
∑N−1

i=0
biPi = Comck(0; yr̂) = 0.

(66)

Thus we extract an opening of det(V)·y
∑N−1

i=0 biPi as (0, yr̂). Let κ = k(k+1)/2
and κ′ = k(k − 1)/2. Based on Lemma 4, we have the bound of ∥yr̂∥:

∥yr̂∥ ≤ (k + 1)d(2p)κ
′+1wκ′

· 2ϕ2T2

√
md

≤(k + 1)2κ
′+2
√
2ϕ2Bmd2wκpκ+1 = γ′

LS.
(67)

SHVZK: Assume that the protocol is not aborted. The simulator samples
r ← {−B, · · · ,B}md, fj,i ← Dd

ϕ1T1
for all i ∈ (0, β) and j ∈ [0, k), zb, zr ←

Dmd
ϕ2T2

, Ej ← U(Rn
q) for all j ∈ (0, k), and sets B = Comck(0; r). Then, given x, it

computes fj,0 = x−
∑β−1

i=1 fj,i for all j ∈ [0, k) and sets f = (f0,0, · · · , fk−1,β−1),

A = Comck(f ; zb) − xB, and E0 =
∑N−1

i=0 (
∏k−1

j=0 fj,ij)Pi − Comck(0; zr) −

42

HMC Challenger

Registration queries

Signing queries

Hash queries for

Signature forgery

Signature forgery
Run times with
the same commitment

Run extractor with all 's
to get and an opening

 for

Queries

Fig. 5: Reduction from “forging a ring signature” to “finding an HMC collision”
for ring signature unforgeability.

∑k−1
j=1 Ejx

j . Set f1 = (fj,i)
k−1,β−1
j=0,i=1 . Obviously, the simulated transcript will be

an accepted one.

Based on Lemma 3, the distributions of f1, zb, zr are statistically close to
the real distributions. The simulated distributions of A and E0 are the same
as the real ones. Due to the hiding property of the commitment scheme, the
distribution of simulated B is computationally indistinguishable from the real
case. Finally, the simulated E1, · · · , Ek−1 are computationally indistinguishable
from the real cases.

E Security Reduction of Theorem 3

Theorem 3 reduces “forging a ring signature” to “finding an HMC collision” for
ring signature unforgeability. The security game can be illustrated in Figure 5.
The security game can be illustrated in Figure 5.

43

Oracle Simulation. A works as a HMC collision finder with the HMC
challenger, and a ring signature challenger with the ring signature forger F . A
simulates the oracles as follows:

Registration query. Assume F can only query N times (N ≥ 1). A randomly
picks l ← {0, 1, · · · , N − 1}. For index l, A sets Pl = Comck(1, 0, · · · , 0; r). For
other indices j ̸= l, A calls the RKeyGen algorithm to generate a public/private
key pair (Pj , rj). Upon the (i+ 1)-th query, A returns the corresponding public
key Pi.

Corruption query. On input a public key Pi, A aborts when i = l. Otherwise,
A returns the corresponding private key ri.

Signing query. When F queries to sign on message mj with a signer Pi in a
public key list Pi = {Pj |j ∈ tj} where tj indicates the indices of the public keys
in {P0, · · · , PN−1}, i.e., ti ⊂ {1, · · · , N − 1}, A processes as follows:

– If i ̸= l, A calls RSign algorithm directly to get the corresponding signature
since he has ri and programs the Hash function (random oracle) if needed.

– If i = l, A runs the simulator in the proof of Theorem 4 (SHVZK prosperity)
to get the signature and programs the Hash function (random oracle) so that
H(ck,mi,Pi, A,B, (Ej)

k−1
j=0) = x.

Hash query. For queries with inputs that have already been programmed, A
returns the corresponding output. Otherwise, A chooses x at random from the
set C\{x0, · · · , xm−1} where xi’s are the previously outputs of the Hash function.
The output for this input is programmed to x.

Signature Forgery. At a given point, F finishes running and outputs a
forgery (mi, σi). Since Pl cannot be distinguished from other Pi’s due to the
hiding property of the HMC commiement scheme and F can only make N times
of registration queries to A, we have the signature is signed by the signer Pl with
non-negligible probability, i.e., bl ̸= 0.

Output. After collecting (k + 1) signature forgeries with the same com-
mitments (this can be done in polynomial time using the forking lemma), A
computes b′i’s and an opening (0, yk−1s) to

∑N−1
i=0 b′iPi by running the extractor

in the proof of Theorem 4. Furthermore, A can find a collision for the HMC
commitment scheme, M0 = ((b′l, 0, · · · , 0), b′lr) and M1 = (0, yk−1s−

∑
i̸=l b

′
iri)

since (b′l, 0, · · · , 0) ̸= 0 (ri’s are the private keys of other users in the ring).

44

	Lattice-based Zero-knowledge Proofs for Blockchain Confidential Transactions

