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Abstract. Multi-key Fully Homomorphic Encryption (MKFHE), based on the Learning With
Error assumption (LWE), usually lifts ciphertexts of different users into new ciphertexts under a
common public key, allowing for homomorphic evaluation. The efficiency of the current Multi-
key Fully Homomorphic Encryption (MKFHE) scheme is mainly restricted by two aspects:
1. Expensive ciphertext expansion : In a boolean circuit with an input length N , multipli-

cation depth L, and security parameter λ, the number of additional encryptions introduced
to achieve ciphertext expansion is O(Nλ6L4).

2. Noise flooding technology leading to a large modulus q: To ensure the security of the
scheme, the introduction of noise flooding technology during the encryption and distributed
decryption stages results in a significant modulus q = 2O(λL)Bχ. This compromises the
whole scheme and leads to sub-exponential approximation factors γ = Õ(n · 2

√
nL).

This paper solves the first problem by presenting a framework called Key-Lifting Multi-key
Fully Homomorphic Encryption (KL-MKFHE). With this key lifting procedure, the number
of encryptions for a local user is reduced to O(N), similar to single-key fully homomorphic
encryption (FHE). For the second problem, we prove the discrete Gaussian version of the
Smudging lemma. Combined with the encryption’s anti-leakage properties, we remove the noise
flooding technique that was previously used in the distributed decryption. Secondly, we propose
an analysis method based on Rényi divergence, which removes the noise flooding technique
during encryption. These approaches significantly reduce the size of the modulus q (where
log q = O(L)) and the computational overhead of the entire scheme.

Keywords: Multi-key homomorphic encryption · Rènyi divergence · Noise flooding · Leakage
resilient cryptography.

1 Introduction

Multi-key Fully Homomorphic Encryption (MKFHE). To address the privacy concerns of
multiple data providers, López-Alt et al. [17] introduced the concept of MKFHE and developed the
first MKFHE scheme based on the modified-NTRU [27]. Conceptually, it enhances the functionality
of Fully Homomorphic Encryption(FHE) by allowing data providers to encrypt data independently
from other parties. Key generation and data encryption are done locally. To obtain the evaluated
result, all parties are required to execute a round of threshold decryption protocol.

After López-Alt et al. proposed the concept of MKFHE, many schemes were developed. In 2015,
Clear and McGoldrick [13] constructed a LWE-based MKFHE scheme. This scheme defined the com-
mon private key as the concatenation of all private keys. It constructed a masking scheme to convert
ciphertext under individual public keys to the common public key by introducing a Common Refer-
ence String (CRS) and the circular-LWE assumptions. In 2016, Mukherjee and Wichs [22], Peikert and
Shiehian [24], and Brakerski and Perlman [10] constructed MKFHE schemes based on GSW, respec-
tively. Mukherjee and Wichs [22] simplified the masking scheme of [13] and focused on constructing
a two-round MPC protocol. Different methods in [24] and [10] were proposed delicately to construct
a multi-hop MKFHE. It is worth mentioning that all MKFHE schemes constructed based on LWE
require a ciphertext expansion procedure.

1.1 Motivation

A series of works [4, 9, 22] have shown that MKFHE is an excellent base tool for building round-
optimal MPC. However, despite its attractive appearance, the construction of MKFHE involves some
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cumbersome operations and unavoidable assumptions. Below, we will provide a description of the
MKFHE scheme and state our goal in the final paragraph of this subsection.

Ciphertext expansion is expensive. Although the MKFHE based on LWE can utilize the Leftover
Hash Lemma (LHL) to remove CRS, to convert the ciphertext under different keys to the ciphertext
under the same key (known as the ciphertext expansion procedure), parties and the computing server
need to do much preparatory work. For ciphertext expansion, it is necessary to encrypt the random
matrix R ∈ Zm×m

q for each ciphertext. For a boolean circuit with an input length of N , multiplication
depth of L, security parameter of λ, and m = n log q + ω(log λ), the additional encryption operation
introduced is O(Nλ6L4), in contrast to O(N) for single-key FHE.

CRS looks inevitable. Due to the compact structure of the polynomial ring and some fascinating
parallel algorithms such as SIMD, it is generally believed that FHE scheme based on RLWE is more
efficient than FHE based on LWE. This is why most current MKFHE schemes, such as [11, 12, 21],
are constructed based on RLWE. The Leftover Hash Lemma (LHL) over the integer ring Z possesses
the leakage-resilient property. It can transform average-quality random sources into higher-quality
ones [16], which can be utilized to get rid of CRS as [9] does. However, the regularity lemma [18] over
polynomial rings does not have corresponding properties, as mentioned in [14]. If the j -th Number
Theoretical Transfer (NTT) coordinate of each ring element in x = (x1, . . . , xl) is leaked, then the
j -th NTT coordinate of al+1 =

∑
aixi is defined. As a result, al+1 is far from being uniform, even

though this is only a 1/n leakage rate. Therefore, it seems to be more difficult to remove CRS for
RLWE-based MKFHE.

Noise flooding technology results in a large modulus q. As far as we know, whether it is
MKFHE or Threshold Fully Homomorphic Encryption (Th-FHE), such as [5, 9, 10, 13, 22], a great
noise needs to be introduced during the encryption or the distributed decryption to ensure security.
Otherwise, the private key may be compromised. To simulate partial decryption, assuming that the
noise accumulated after the evaluation is eeval and the private key is s, the flooding noise esm must
satisfy ⟨eeval, s⟩ /esm = negl(λ). To ensure the correctness of the decryption result, the modulus
q needs to satisfy q ≥ 4esm. Thus, noise flooding results in a q that is exponentially larger than
the q in a single-key FHE. Typically, in [22], the flooding noise esm = 2O(Lλ log λ)Bχ, the modulus
q = 2ω(Lλ log λ)Bχ, and the corresponding approximation factor of GapSVPγ is γ = Õ(n · 2λL) (which
is sub-exponential in n by replacing λ = O(

√
n/L)3.

Our goal : We strive to make MKFHE "closer" to FHE in terms of security assumptions and
efficiency.

– Without CRS : we do not assume the existence of a dealer or a common reference string
– Data providers do as many encryptions as the single-key FHE(O(N) for the circuit with

input length N).
– q = 2O(L)Bχ of the same size as the single-key FHE, while q = 2O(λL)Bχ for those schemes

introduced noise flooding.

1.2 Related works

Except sum type of key structures [5], concatenation structures were studied in [10, 11, 13, 22, 24]
together with CRS. Ananth et al. [3] removed CRS from a higher dimension; instead of using LHL or
regularity lemma, they based on Multiparty Homomorphic Encryption and modified the initialization
method of its root node to achieve this purpose. Brakerski et al. [9] was the first scheme using the
leakage resilient property of LHL to get rid of CRS, which had the concatenation common private key
structure, and ciphertext expansion was essential. All of the above schemes introduced noise flooding
technology in distributed decryption phase.

Recently, the work [2] has proposed an alternative approach: instead of removing it, they proposed
the concept of accountability of CRS, that is, the generator of CRS should be responsible for its
3 To achieve 2λ security against known lattice attacks, one must have n = Ω(λ log q/Bχ)
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randomness; otherwise, the challenging party can provide a publicly verifiable proof that certifies the
authority’s misbehaviour. This could be an effective way to balance authority. We compare some
properties in related work in Table 1.

Table 1. Scheme property comparison

Scheme Key structure CRS Noise flooding Interaction(setup
phase)

THFHE [5] S ✓ ✓ ✓

MKFHE [11] C ✓ ✓ ✕

MKFHE [22] C ✓ ✓ ✕

MKFHE [9] C ✓ ✓ ✓

Our scheme S ✕ ✕ ✓

S" and "C" in the column of Key structure represent the sum or concatenated key structure, respectively. ✓ indicates that
the corresponding operation or assumption needs to be introduced, or ✕ indicates that it is not required.

1.3 Our Contributions

We propose the concept of KL-MKFHE. Compared with MKFHE, it imposes more stringent require-
ments on assumptions, parameters, and computational complexity, making it closer to single-key
FHE. (As a compromise, we allow a limited amount of interaction during the key generation)

KL-MKFHE. Different from the previous definition [22], we abandon the ciphertext expansion
procedure, instead, introduces a key lifting procedure at a lower cost. Informally, the key lifting is an
interactive protocol. The input is the key pair of all parties. After the protocol, the "lifted" key pair
outputs, called the hybrid key, which has such properties :

– Everyone’s hybrid key is different.
– The ciphertext encrypted by different hybrid keys supports homomorphic evaluation.

In addition to the properties that are required by MKFHE, such as Correctness, Compactness,
and Semantic security, KL-MKFHE should satisfy the following three additional properties:

– Plain model : No trusted setup or Common Reference String
– Locally Computationally Compactness : For a computational task corresponds to a Boolean

circuit with an input length of N , a KL-MKFHE scheme is locally computationally compact if the
parties do O(N) encryptions as the single-key FHE scheme.

– Low round complexity : Only two round interaction is allowed in the key lifting procedure.

Smudging lemma over discrete Gaussian. We prove the discrete Gaussian version of the smudg-
ing lemma. Since we are considering the distribution of masked terms, Theorem 1 has smaller noise
terms compared to the general lemma, reducing from superpolynomial to polynomial. This result
should be widely used. As long as the noise you want to drown out is discrete Gaussian, our results
can be utilized instead of the general smudging lemma, which significantly reduces the parameter
size. As an additional contribution, we apply Theorem 1 to remove the noise flooding technique in
DGSW encryption.

Furthermore, by combining the Corollary 1 of this theorem with the properties of leakage-resistant
encryption, we remove the noise flooding technique in the distributed decryption stage.

Theorem 1 Let DZ,σ be the discrete gaussian distribution over Z with variance σ2. Let n > 0 be an
integer. Let e1 ← DZn,σ, e2 ← DZn,σ, M← {0, 1}n×n. Let δ ∈ R and

ρΣ′(Zn)

ρΣ(Zn)
= δ

√
det(Σ′)

det(Σ)

if δ > e−2+
6π

n+1 , we have :
∆(e1M, e1M+ e2) < 2−n

where Σ and Σ′ are the covariance matrix of e1M and e1M+ e2 respectively.
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Remark: You can think of e2 as a term that needs to be hidden. If the smudging lemma is used,
we need ||e1M/e2||∞ = suppoly(n), but in our Theorem 1 we obviously have ||e1M/e2||∞ = O(n).

Corollary 1 Let DZ,σ be the discrete gaussian distribution over Z with variance σ2. Let m > 0,
n > 0 be two integers. Let E1 ← DZm×n,σ, E2 ← DZm×n,σ, M← {0, 1}n×n. Let δ ∈ R and

ρΣ′(Zmn)

ρΣ(Zmn)
= δ

√
det(Σ′)

det(Σ)

if δ > e−2+
2π(m+1)

n+1 + 2
mn , we have

∆(E1M, E1M+E2) < 2−n

where Σ and Σ′ are the covariance matrix of E1M and E1M+E2 respectively.

LWE-based KL-MKFHE under the plain model. Our scheme is based on the LWE assumption.
The common private key is the sum of the private keys of all parties. The MKFHE or Th-FHE
schemes [20] [5] that use this key are based on the CRS model. For a circuit with an input length
N , our scheme has local users to perform O(N) encryption, which is O(Nλ6L4) for schemes that
require ciphertext expansion. In addition, since we remove the noise flooding technique, our scheme
has q = 2O(L), while q = 2O(λL) for other schemes. We give a comparison with schemes [9], [24],
and [5] in Table 2.

Table 2. Scheme complexity comparison

Scheme Module q Extra encryption Interaction(setup phase) CRS

MKFHE [24] 2O(λL)Bχ Õ(Nλ14L9) ✕ ✓

MKFHE [9] 2O(λL)Bχ Õ(Nk3λ15L10) 2 rounds ✕

Th-FHE [5] 2O(λL)Bχ ✕ 1 rounds ✓

Our scheme 2O(L)Bχ ✕ 2 rounds ✕

The notation Õ hides logarithmic factors. The "Module q" column denotes the module base; the "Extra encryption" column
denotes the number of multiplications over Zq ; λ denotes the security parameter, k denotes the number of parties, Bχ

denotes the initial LWE noise, and N , L, W denote the input length, depth, and output length of the circuit, respectively.
In [24], [9], and [5], n represents the dimension of the LWE problem. In order to compare under the same security level, we
replace n with the expression in terms of λ and L. To achieve 2λ security against known lattice attacks, one must have
n = Ω(λ log q/Bχ). For our parameter settings q = 2O(L)Bχ, thus we would have n = Ω(λL), while n = Ω(λ2L) for the
previous scheme with noise flooding.

2 Technical Overview

Before going into a detailed technical description, we first give a general idea so that we can have an
intuitive understanding. The discrete Gaussian version of the smudging lemma is obtained from the
observation of the continuous Gaussian distribution: when n is large enough, the sum of n independent
and identically distributed (iid) Gaussian distributions is almost the same as the sum of n + 1 idd
Gaussian distributions. Let X, Y be Gaussian distributions with variance nσ2 and (n + 1)σ2 in R
respectively, with probability density function

f(x) =
1√
nσ

e−
πx2

nσ2 , g(x) =
1√

n+ 1σ
e
− πx2

(n+1)σ2

As shown in Figure 1, the intersection point of f(x) and g(x) falls outside
√

n+1
2π σ(when x >

√
n+1
2π σ,

it holds that g(x) > f(x)). The statistical distance between X and Y is

∆(X,Y ) =

∫
||x||∞>

√
n+1
2π σ

g(x)− f(x) dx <

∫
||x||∞>

√
n+1
2π σ

g(x) dx = negl(n).
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Fig. 1. Probability density function of one-dimensional Gaussian distribution

That is to say, if the masked item e is Gaussian with variance σ2, we only need to sample e′ from
a Gaussian distribution with variance nσ2. Then, e + e′

stat
≈ e′, and ||e/e′|| = O(n−1) (while for the

general smudging lemma ||e/e′|| = negl(n)).
The one-dimensional case is relatively simple. Now consider the two-dimensional case. Let Σ1, Σ2

be symmetric positive definite matrices on R2×2. Let the probability density functions f(x) and g(x)
be

f(x) =
1√

det(Σ1)
e−πxΣ

−1
1 xT

, g(x) =
1√

det(Σ2)
e−πxΣ

−1
2 xT

as shown in Figure 2.

Fig. 2. Probability density function of two-dimensional Gaussian distribution

At this time, the intersection of f(x) and g(x) is a space curve, as shown in the left panel of Figure
3.
Projected onto the xy plane, it is an ellipse, as shown in the right panel of Figure 3. Let the ellipse
be Eints

Eints :
1

π
ln

(
det(Σ1)

det(Σ2)

)
= x(Σ−12 −Σ−11 )xT

Then the statistical distance between f(x) and g(x is

∆(f(x), g(x)) =

∫
R2\Eints

g(x)− f(x) ≤
∫
R2\Eints

g(x) (1)
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Fig. 3. The intersection of f(x) and g(x)

The upper bound on the right side of Equation 1 is not easy to find, because the integral region and
the integral function are inconsistent. The integral region is determined by the ellipse Σ−12 − Σ−11 ,
while the integral function g(x) is determined by the ellipse Σ2. The isoprobability line of g(x) is
shown in Figure 4 which is determined by the ellipse Σ2. For the integral of the area enclosed by

Fig. 4. Equal probability lines of two-dimensional Gaussian distribution

the isoprobability line, there is a closed analytical expression that can be applied, which is generally
called the tail probability of the Gaussian distribution [?]

Pr[xΣ−12 x ≥ χ2
2(α)] =

∫
xΣ−1

2 xT≥χ2
2(α)

g(x) < 1− α (2)

where χ2
2(α) is the quantile function of the chi-square distribution with 2 degrees of freedom and α

as the probability [?]. Note that the upper bound of the statistical distance between f(x) and g(x)
requires integrating g(x) outside the ellipse Eints, but the existing results support integrating g(x)
outside a region of the ellipse Σ2. Put the isoprobability lines and intersection line in one picture, as
shown in Figure 5. Projecting Figure 5 onto the xy plane, we get the left panel of Figure 6. Since we
only need to find the upper bound of the statistical distance, we can find an ellipse Einsc in the shape
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Fig. 5. Lines of intersection and lines of isoprobability

of Σ2 and inscribe the ellipse Eints. At this time, we have the statistical distance

∆(f(x), g(x)) =

∫
R2\Eints

g(x)− f(x) ≤
∫
R2\Eints

g(x) ≤
∫
R2\Einsc

g(x)

Let the ellipse Einsc be
Einsc : xΣ−12 xT = k

where k ∈ R is the radius to be determined. Then Einsc is exactly the smaller blue ellipse in the right

Fig. 6. Project to xy plane

panel of Figure 6. At this time, the radius k to be determined satisfies kλ1 = λ2, where λ1 is the
maximum eigenvalue of Σ2, and λ2 is the minimum eigenvalue of Σ2 −Σ1. Further, according to the
result of Equation (2), the upper bound of the statistical distance can be determined.
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Extending the above result to a multi-dimensional discrete Gaussian distribution requires solving
the intersection equation, which forms an ellipsoid in this case. Additionally, it involves extending
Banaszczyk’s spherical theorem to the ellipsoid. The discrete Gaussian summation on Zn is not simple.
As a compromise, we use continuous Gaussian integrals instead. Generally speaking, the idea is the
same as that of one dimension: first, find the intersection point, and then the statistical distance.

Asymmetry of ciphertext multiplication. The distributed decryption of the MKFHE will leak
the noise accumulated after the homomorphic evaluation and the decryptor’s private key. In order to
ensure security, previous MKFHE, such as [5,9,11,22], will use a large noise term to "drown out" this
part of the private term. Because we are only concerned with the security of the initial ciphertext
(note that the noise after the homomorphic evaluation may compromise the privacy of the circuit),
it is sufficient to prove that the noise of distributed decryption is independent of the noise in the
initial ciphertext, provided that the scheme is anti-leakage. Then even without the drown term, the
semantic security of the initial ciphertext can still be guaranteed.

For the Dual GSW-like scheme, we observed that the noise after homomorphic multiplication is
highly regular. Let Cmult = C1G

−1(C2), the noise in Cmult hardly contains the noise of C2. In fact,
let E1 and E2 be the noise of C1 and C2, respectively. The noise in Cmult is E1G

−1(C2) + E2. By
our Corollary 1, we have

E1G
−1(C2) +E2

stat
≈ E1G

−1(C2)

In other words, if we left-multiply the initial ciphertext by a "dummy" ciphertext(plaintext is 1),
then the noise in the resulting ciphertext hardly contains the noise in the initial ciphertext. Thus, the
resulting noise by decrypting the ciphertext after homomorphic evaluation hardly contains any noise
in the initial ciphertext, except for the decryptor’s private key.

Suppose our scheme is leakage-resilient and can predict the extent of private key leakage in the
distributed decryption process beforehand. In that case, we only need to cover this portion of the
leakage amount during parameter initialization. Even without the "drown" term in the distributed
decryption, it can guarantee the semantic security of the initial ciphertext. The disadvantage is that
the complexity of our scheme could be more circuit-dependent. However, there is no noise flooding
in encryption and distributed decryption, so we can set q = 2O(L)Bχ to be the same size as the
single-key FHE, where q = 2O(λL)Bχ in [5] [22] with noise flooding technology. Correspondingly, the
approximation factor of Gapsvpγ is reduced to γ = Õ(n · 2L).

Optimized security proof method based on Rényi divergence : In order to prove the se-
curity of a scheme, a routine is to construct an instance of the scheme from a well-known hard
problem instance. Unfortunately, sometimes this process does not go so smoothly. To make the con-
structed distribution statistically indistinguishable from the target distribution, you need to add noise
distribution to bridge the gap between the two. This is where noise flooding comes into play. For ex-
ample, [5] and [9] adopted this method to prove security. Unfortunately, the additional noise tends to
be significant, which reduces the efficiency of the scheme.

Shi et al. [6] pointed out that Rényi divergence can also be used to distinguish between problems.
They proved that, under certain conditions, if there is an algorithm that can distinguish problem P ,
then there is also an algorithm that can distinguish problem P ′. Note that it does not require that the
P problem is indistinguishable from P ′. This is where the Rényi divergence comes into play. Based
on the result of [6, Theorem 4.2], our proof method is as follows:

1. Define the P problem as distinguishing our scheme’s ciphertext from a uniform distribution.
2. Prove that for a given hard problem instance I, there exists a distribution D from which a sample

x can be constructed from this instance I.
3. Define the P ′ problem as distinguishing D from a uniform distribution.

Thus, if there is an adversary who can distinguish the P problem, then they can also distinguish
the P ′ problem and can also distinguish the hard problem instance I from the uniform distribution.

We believe that this Rényi divergence-based proof method provides an alternative approach for
those proofs that do not wish to introduce significant noise to ensure security.
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2.1 Roadmap:

In Section 3, we define some symbols and list some commonly used definitions and our extended
results on lattice. In Section 4, we define the KL-MKFHE. In Section 5, we proved the discrete
Gaussian version of smudging lemma. In Section 6, we constructed the KL-MKFHE scheme based
on LWE. In Section 7 we prove the security of our scheme. In Section 8, we used the asymmetric
properties and anti-leakage properties of DGSW ciphertext to remove the noise flooding technology
in the distributed decryption.

3 Preliminaries

3.1 Notation:

Let λ, n, and q be the security parameter, LWE dimension, and modulus base respectively. Let negl(λ)
be a negligible function parameterized by λ. Lowercase bold letters such as v, unless otherwise spec-
ified, represent vectors. Vectors are typically represented as row vectors, while matrices are denoted
by uppercase bold letters such as M. [k] denotes the set of integers {1, . . . , k}. If X is a distribution,
then a ← X denotes that the value a is chosen according to the distribution X. If X is a finite set,
then a← U(X) denotes that the value of a is uniformly sampled from X. Let ∆(X,Y ) denote the sta-
tistical distance between X and Y . For two distributions X and Y , we use X

stat
≈ Y to represent that

X and Y are statistically indistinguishable, while X
comp
≈ Y represents that they are computationally

indistinguishable.
To decompose elements in Zq into binary, we review the Gadget matrix [1, 19] here. Let G−1(·)

be the computable function that for any M ∈ Zm×n
q , it holds that G−1(M) ∈ {0, 1}ml×n, where

l = ⌈log q⌉. Let g = (1, 2, . . . , 2l−1) ∈ Zl
q, G = Im ⊗ g ∈ Zm×ml

q , it satisfies GG−1(M) = M.

3.2 Some background in probability theory

Definition 1 A distribution ensemble {Dn}n∈[N ] supported over integer, is called B-bounded if :

Pre←Dn
[ |e| > B ] = negl(n).

Lemma 1 (Smudging lemma [5]) Let B1 = B1(λ), and B2 = B2(λ) be positive integers and let
e1 ∈ [−B1, B1] be a fixed integer, let e2 ∈ [−B2, B2] be chosen uniformly, Then the distribution of e2
is statistically indistinguishable from that of e2 + e1 as long as B1/B2 = negl(λ).

Average Conditional Min-Entropy(in [8]) Let X be a random-variable supported on a finite set
X , and let Z be a random variable supported on a finite set Z. The average-conditional min-entropy
H̃∞(X|Z) of X given Z is defined as :

H̃∞(X|Z) = − log(Ez

[
max
x∈X

Pr[X = x|Z = z]

]
).

The Rènyi divergence (in [6]) : For any two discrete probability distributions P and Q such that
Supp(P ) ⊆ Supp(Q) where Supp(P ) = {x : P (x) ̸= 0} and a ∈ (1,+∞), The Rènyi divergence of
order a is defined by :

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

Omitting the a subscript when a = 2, defining the The Rènyi divergence of order 1 and +∞ by :

R1(P ||Q) = exp

 ∑
x∈Supp(P )

P (x) log
P (x)

Q(x)


R∞(P ||Q) = max

x∈Supp(P )

P (x)

Q(x)
.

The definitions are extended naturally to continuous distributions. The divergence R1 is the (expo-
nential of ) the Kullback-Leibler divergence.
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Theorem 2 ( [6, Theorem 4.2]) Let Φ, Φ′ denote two distribution with Supp(Φ) ⊆ Supp(Φ′), and
D0(r) and D1(r) denote two distributions determined by some parameter r ∈ Supp(Φ′). Let P , P ′ be
two decision problems defined as follows :

– Problem P : distinguish whether input x is sampled from distribution X0 or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

– Problem P ′: distinguish whether input x is sampled from distribution X ′0 or X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

Assume that D0(·) and D1(·) satisfy the following public sampleability property: there exists a sampling
algorithm S with run-time TS such that for all (r, b), given any sample x from Db(r):

– S(0, x) outputs a fresh sample distributed as D0(r) over the randomness of S,
– S(1, x) outputs a fresh sample distributed as D1(r) over the randomness of S.

Then, given a T -time distinguisher A for problem P with advantage ϵ, we can construct a dis-
tinguisher A′ for problem P ′ with run-time and distinguishing advantage, respectively, bounded from
above and below by (for any a ∈ (1,+∞]):

64

ϵ2
log

(
8Ra(Φ||Φ′)
ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 ·Ra(Φ||Φ′)
·
( ϵ
2

) a
a−1

.

3.3 Gaussian distribution on Lattice

Definition 2 Let ρσ(x) = exp(−π||x/σ||2) be a Gaussian function scaled by a factor of σ > 0. Let
Λ ⊂ Rn be a lattice, and c ∈ Rn. The discrete Gaussian distribution DΛ+c,σ with support Λ + c is
defined as :

DΛ+c,σ(x) =
ρσ(x)

ρσ(Λ+ c)

We note that ρσ(x) is just a special case of ρΣ(x), where Σ = σ2I. Therefore, some results on σ2I
should be naturally extended to Σ(symmetric positive definite)

Definition 3 Let ρΣ(x) = e−πxΣ
−1xT

be a Gaussian function with covariance matrix Σ(symmetric
positive definite). Let Λ ⊂ Rn be a lattice, and c ∈ Rn. The discrete Gaussian distribution DΛ+c,Σ

with support Λ+ c is defined as :

DΛ+c,Σ(x) =
ρΣ(x)

ρΣ(Λ+ c)

Obviously, the above definition does satisfy the definition of a probability distribution. For a
positive definite matrix Σ, when ||x|| → ∞, ρΣ(x) converges.

Poisson’s summation formula : We recall that the Fourier transform of ρΣ(x) is ρ̂Σ(k) =
det(Σ)ρΣ−1(k). The Poisson’s summation formula of ρΣ(x) on a full-rank lattice Λ is :

ρΣ(Λ) = det(Σ) det(Λ∗)ρΣ−1(Λ∗)

Lemma 2 For positive definite matrix Σ1 and Σ2, if Σ1Σ2 − Σ2 is positive definite, then it holds
that :

ρΣ1Σ2
(Λ) ≤ det(Σ1)ρΣ2

(Λ)

Banaszczyk’s spherical theorem

Theorem 3 ( [7]) Let B = {x ∈ Rm : ||x|| ≤ 1} be the closed ball of radius 1 in Rn, for any lattice
Λ ∈ Rm, parameter σ > 0 and u ≥ 1/

√
2π it holds that

ρσ(Λ\uσ
√
mB) ≤ 2−cu·m · ρσ(Λ),

where cu = − log(
√
2πeu · e−πu2

)
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The ellipsoid version of the Banaszczyk’s spherical Theorem.

Theorem 4 For any lattice Λ ∈ Rm, let Σ ∈ Rm×m be a positive definite matrix, E(k) = {x ∈ Rm :
xΣ−1xT ≤ k} be a ellipsoid in Rn with radius k > 0, then it holds that :

ρΣ(Λ\E(k)) ≤ 2−2k+m · ρΣ(Λ)

We give the proofs of the above theorem and lemma in Appendix B.1B.2

3.4 The Learning With Error(LWE) Problem

The Learning With Error problem was introduced by Regev [26].

Definition 4 (Decision-LWE) Let λ be security parameter, for parameters n = n(λ) be an integer
dimension, q = q(λ) > 2 be an integer, and a distribution χ = χ(λ) over Z, the LWEn,q,χ problem is
to distinguish the following distribution:

– D0 : the jointly distribution (A, z) ∈ (Zm×n
q × Zn

q ) is sampled by A← U(Zm×n
q ) z← U(Zn

q )

– D1: the jointly distribution (A,b) ∈ (Zm×n
q × Zn

q ) is computed by A ← U(Zm×n
q ) b = sA + e,

where s← U(Zn
q ) e← χm

As shown in Regev [26] [23], the LWEn,q,χ problem with χ being discrete Gaussian distribution with
parameter σ = αq ≥ 2

√
n is at least as hard as approximating the shortest independent vector

problem(SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. It leads to the
Decision-LWEn,q,χ assumption D0

comp
≈ D1.

3.5 Dual-GSW(DGSW) Encryption scheme

The DGSW scheme [9] and GSW scheme are similar to the Dual-Regev scheme and Regev scheme,
respectively. The DGSW scheme is defined as follows:

– pp ← Gen(1λ, 1L) : For a given security parameter λ, circuit depth L, choose an appropriate
lattice dimension n = n(λ, L), m = n log q + ω(λ), a discrete Gaussian distribution χ = χ(λ, L)
over Z, which is bounded by Bχ, module q = poly(n) · Bχ, Output pp = (n,m, q, χ,Bχ) as the
initial parameters.

– (pk, sk) ← KeyGen(pp): Let sk = t = (−s, 1), pk = (A,b), where s ← U({0, 1}m−1), A ←
U(Zm−1×n

q ), b = sA mod q.

– C ← Enc(pk, u): Input public key pk and plaintext u ∈ {0, 1}, choose a random matrix R ←
U(Zn×w

q ), w = ml, l = ⌈log q⌉ and an error matrix E← χm×w, Output the ciphertext :

C =

(
A
b

)
R+E+ uG

where G is a gadget Matrix.
– u← Dec(sk,C): Input private key sk, ciphertext C, let w = (0, . . . , ⌈q/2⌉) ∈ Zm

q , v = ⟨tC,G−1(wT )⟩,
output u′ = ⌈ v

q/2⌉.

Leak resistance: Brakerski et al. proved in [9] that DGSW is leak-resistant. Informally, even if a
part of the private key of the DGSW scheme is leaked, the DGSW ciphertext remains semantically
secure. As Lemma 3 states:

Lemma 3 (In [9]) Let χ be LWE noise distribution bounded by Bχ, χ′ a distribution over Z bounded
by Bχ′ , satisfying Bχ/Bχ′ = negl(λ). Let Ai ∈ Z(m−1)×n

q be uniform, and let Aj for all j ̸= i be
chosen by a rushing adversary after seeing Ai. Let si ← {0, 1}m−1 and bi,j = siAj. Let r ∈ Zn

q be
uniform, e← χm−1, e′ ← χ′. Then under the LWE assumption, the vector c = Air+ e and number
c′ = ⟨bi,i, r⟩+ e′ are (jointly) pseudorandom, even given the bi,j’s for all j ∈ [k] and the view of the
adversary that generated the Aj’s.
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3.6 Multi-Key Fully Homomorphic Encryption

We review the definition of MKFHE in detail here, with the main purpose of comparing it to the
definition of KL-MKFHE proposed later.

Definition 5 Let λ be the security parameter, L be the circuit depth, and k be the number of parties.
A leveled multi-key fully homomorphic encryption scheme consists of a tuple of efficient probabilistic
polynomial-time algorithms MKFHE=(Init, Gen, Enc, Expand, Eval, Dec), which are defined as follows.

– pp← Init(1λ, 1L) : Input security parameter λ, circuit depth L, output system parameter pp. We
assume that all algorithms take pp as input.

– (pki, ski) ← Gen(pp, crs) : Input pp, common reference string crs (generated by a third party or
random oracle), output a key pair for party i.

– ci ← Enc(pki, ui) : Input pki and plaintext ui, output ciphertext ci.
– vi ← Enc(pki, ri): Input pki and the random ri used in ciphertext ci, output auxiliary ciphertext

vi.
– c̄i ← Expand({pki}i∈[k], vi, ci):Input the ciphertext ci of party i, the public key set {pki}i∈[k] of all

parties, auxiliary ciphertext vi, output expanded ciphertext c̄i which is under f(ski, . . . skk) whose
structure is undefined.

– c̄eval ← Eval(S, C):Input circuit C, the set of all ciphertext S = {c̄i}i∈[N ] while N is the input
length of circuit C, output evaluated ciphertext c̄eval

– u← Dec(c̄eval, f(sk1 . . . skk)) : Input evaluated ciphertext c̄eval, private key function f(sk1 . . . skk),
output u (This is usually a distributed process).

Remark : Although the definition of MKFHE in [17] does not include auxiliary ciphertext vi and
a ciphertext expansion procedure, the works [13, 22, 25] actually incorporate this procedure to facil-
itate homomorphic evaluation. This procedure seems essential. We list it here for comparison with
KL-MKFHE. The common private key depends on {ski}i∈[k]. The function f is a certain function,
which is not unique; for example, it can be the concatenation of all keys or the sum of all keys.

Properties implicated in the definition of MKFHE: In the above definition, each party is
required to independently generate their keys and complete the encryption operation without any
interaction between them during the key generation and encryption phases. These two phases are
similar to single-key homomorphic encryption. The computational overhead is independent of k and
only related to λ and L. Only during the decryption phase, interaction occurs when parties engage
in a round of decryption protocol.

4 Key Lifting Multi-key Fully Homomorphic Encryption

We avoid expensive ciphertext expansion procedures and introduce a relatively simple Key lifting
procedure to replace it. In addition, a tighter bound is required on the amount of local computation
and parameter size. As a compromise, we allow a small amount of interaction during Key lifting.

Definition 6 A KL-MKFHE scheme is a tuple of probabilistic polynomial-time algorithms (Init, Gen,
KeyLifting, Enc, Eval, Dec), which can be divided into two phases: the online phase (KeyLifting and
Dec) where interaction is allowed between parties, and the local phase (Init, Gen, Enc, and Eval) where
operations do not involve interaction. These five algorithms are described as follows:

– pp← Init(1λ, 1L):Input security parameter λ, circuit depth L, output public parameters pp.
– (pki, ski)← Gen(pp):Input public parameter pp, output the key pair of party i
– {hki}i∈[k] ← KeyLifting({pki, ski}i∈[k]): Input key pair {pki, ski}i∈[k] of all parties, output the

hybrid key {hki}i∈[k] of all parties. (online phase: two-round interaction)
– ci ← Enc(hki, ui): Input plaintext ui and hki, output ciphertext ci
– ĉ← Eval(C, S): Input circuit C, ciphertext set S = {ci}i∈[N ] , output ciphertext ĉ
– u ← Dec(ĉ, f(sk1 . . . skk)): Input evaluated ciphertext ĉ, f(sk1 . . . skk), output C(ui)i∈[N ].(online

phase: one round interaction)
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Remark : KL-MKFHE does not require a ciphertext expansion procedure. In fact, the input cipher-
text set S in Eval(·) is encrypted by parties using their respective hybrid keys hki, which are different
for each party. However, the resulting ciphertext ci supports homomorphic evaluation without any
additional modifications.

we require KL-MKFHE to satisfy the following properties :
Plain model : No trusted setup or Common Reference String

Locally Computationally Compactness : For a computational task corresponds to a Boolean
circuit with an input length of N , a KL-MKFHE scheme is locally computationally compact if the
parties do O(N) encryptions as the single-key FHE scheme.
Two round interaction : Only two round interaction is allow in KeyLifting(·) procedure.
The indistinguishable of initial ciphertext : Let N and W be the input and output length of
a circuit, respectively. Let {ci}i∈[N ], {γi}i∈[W ] be the initial ciphertext and partial decryption result,
respectively. The following two distributions are computationally indistinguishable for any probabilistic
polynomial-time adversary A.

(pp, {pki}i∈[k], {hki}i∈[k], {ci}i∈[N ], {γi}i∈[W ])
comp
≈ (pp, {pki}i∈[k], {hki}i∈[k],U, {γi}i∈[W ])

where U is uniform

Correctness and Compactness : A KL-MKFHE scheme is correct if for a given security
parameter λ, circuit depth L, parties k, we have the following

Pr [Dec(f(sk1 . . . skk), ĉ) ̸= C(u1 . . . uN ) ] = negl(λ).

probability is negligible, where C is a circuit with input length N and depth length less than or equal to
L. A KL-MKFHE scheme is compact if the size ĉ of evaluated ciphertext is bounded by poly(λ, L, k),
but independent of circuit size.

5 Smudging lemma over discrete Gaussian

Next, we will prove two results regarding discrete Gaussians on the integer lattice Zn. Simply put,
when n is large enough, the distribution of the sum of n iid discrete Gaussians is statistically indis-
tinguishable from the distribution of the sum of n + 1 iid discrete Gaussians. This is similar to the
continuous Gaussian distribution.

Theorem 5 Let DZ,σ be the discrete gaussian distribution over Z with variance σ2. Let n > 0 be an
integer. Let e1 ← DZn,σ, e2 ← DZn,σ, M← {0, 1}n×n. Let δ ∈ R and

ρΣ′(Zn)

ρΣ(Zn)
= δ

√
det(Σ′)

det(Σ)

if δ > e−2+
6π

n+1 , we have :
∆(e1M, e1M+ e2) < 2−n

where Σ and Σ′ are the covariance matrix of e1M and e1M+ e2 respectively.

Note that
∫
Rn ρΣ(x) dx =

√
det(Σ). In other words, when the ratio of the discrete Gaussian sum

and the ratio of the continuous Gaussian integral are not significantly different (up to δ), Theorem 5
applies.

Proof. We can think of e1M as an n-dimensional random variable x = (x1, x2, · · · , xn) over Zn,
where {xi =

∑n
j=1 ejzj,i}i∈[n], ej is the j-th element of e1, zj,i is the element in row j and column i

of M. According to the properties of covariance, we have the covariance matrix Σ of x

Σ =


1
2nσ

2 1
4nσ

2 · · · 1
4nσ

2

1
4nσ

2 1
2nσ

2 · · · 1
4nσ

2

· · ·
1
4nσ

2 1
4nσ

2 · · · 1
2nσ

2

 , Cov(xi, xj)


1

2
nσ2, if i = j

1

4
nσ2, if i ̸= j

(3)
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In the same way, we can also regard e1M+e2 as a n-dimensional random variable x′ = (x1+e′1, x2+
e′2, · · · , xn + e′n), where e′i is the i-th element of e2. Let Σ′ be the covariance matrix of x′, by the
properties of covariance, we have Σ′ = Σ + σ2I. Thus, we have x ∼ DZn,Σ(x), and x′ ∼ DZn,Σ′(x).
The probability density function of x and x′ are f(x) and g(x) respectively

f(x) =
ρΣ(x)

ρΣ(Zn)
=

e−πxΣ
−1xT

ρΣ(Zn)
g(x) =

ρΣ′(x)

ρΣ′(Zn)
=

e−πxΣ
′−1xT

ρΣ′(Zn)

Let f(x) = g(x), we have

eπx(Σ
−1−Σ′−1)xT

=
ρΣ′(Zn)

ρΣ(Zn)
.

Because Σ′ = Σ + σ2I, we have Σ′
−1

= Σ−1 − (Σ + 1
σ2Σ

2)−1 by the Woodbury matrix identity or
the Hua’s identity. Thus, we have

eπx(Σ+ 1
σ2 Σ2)−1xT

=
ρΣ′(Zn)

ρΣ(Zn)

take the logarithm, we have

x(Σ +
1

σ2
Σ2)−1xT =

1

π
ln

ρΣ′(Zn)

ρΣ(Zn)

Let B = Σ + 1
σ2Σ

2, a = 1
π ln ρΣ′ (Zn)

ρΣ(Zn) , we have the ellipsoid equation Eints of the intersection of f(x)
and g(x) is

Eints : x
1

a
B−1xT = 1

When x is on the ellipsoid Eints, we have x 1
aB
−1xT = 1, f(x) = g(x), when x is outside Eints, we

have x 1
aB
−1xT > 1, f(x) < g(x), when x is inside the Eints, we have x 1

aB
−1xT < 1, f(x) > g(x).

By the definition of Statistical distance and the above result, we have

∆(x,x′) =
1

2

∑
x∈Zn

|g(x)− f(x)| = 1

2

 ∑
x∈Eints

(f(x)− g(x)) +
∑

x∈Zn\Eints

(g(x)− f(x))

 (4)

also because ∑
x∈Zn

f(x) =
∑

x∈Eints

f(x) +
∑

x∈Zn\Eints

f(x) = 1 (5)

∑
x∈Zn

g(x) =
∑

x∈Eints

g(x) +
∑

x∈Zn\Eints

g(x) = 1 (6)

Let (5) - (6), we have ∑
x∈Eints

(f(x)− g(x)) =
∑

x∈Zn\Eints

(g(x)− f(x)) (7)

Substituting Equation (7) into Equation (4), we have

∆(x,x′) =
∑

x∈Zn\Eints

g(x)− f(x) <
∑

x∈Zn\Eints

g(x)

Because the "shapes" of Eints and g(x) are inconsistent (The "shape" of Eints is 1
aB
−1, and the

"shape" of g(x) is Σ′), we need to find an ellipsoid with the "shape" of Σ′ inscribed in Eints. Let
k > 0 and

kxT =
1

a
Σ′B−1xT .

When k takes the minimum eigenvalue of 1
aΣ
′B−1, we have kxΣ′

−1
xT = 1 is inscribed in Eints. The

minimum eigenvalue of Σ′B−1 and the maximum eigenvalue of BΣ′
−1

= 1
σ2Σ are exactly reciprocals

of each other, which is n(n+1)
4 . Therefore, the ellipsoid Einsc that is inscribed in Eints is

Einsc : xΣ′
−1

xT =
an(n+ 1)

4
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Thus, we have

∆(x,x′) =
∑

x∈Zn\Eints

g(x)− f(x) <
∑

x∈Zn\Eints

g(x) <
∑

x∈Zn\Einsc

g(x)

By Theorem 4 and the assumption δ > e−2+
6π

n+1 , we have∑
x∈Zn\Einsc

g(x) < 2−
an(n+1)

4 +n < 2−n

■

Remark : We cannot accurately obtain the value of the discrete Gaussian sum ρΣ(Zn), so we
can only use the integral of the Gaussian function

∫
Rn ρΣ(x) dx =

√
det(Σ) instead. This is our

motivation for introducing δ. Numerical experiments show that the difference between the two is not
significant, and the ratio is close to 1. Therefore, δ > e−2+

6π
n+1 should be considered a conservative

estimate.

The above results can be easily extended to discrete Gaussian matrices E1.

Corollary 2 Let DZ,σ be the discrete gaussian distribution over Z with variance σ2. Let m > 0,
n > 0 be two integers. Let E1 ← DZm×n,σ, E2 ← DZm×n,σ, M← {0, 1}n×n. Let δ ∈ R and

ρΣ′(Zmn)

ρΣ(Zmn)
= δ

√
det(Σ′)

det(Σ)

if δ > e−2+
2π(m+1)

n+1 + 2
mn , we have

∆(E1M,E1M+E2) < 2−n

where Σ and Σ′ are the covariance matrix of E1M and E1M+E2 respectively.

Proof. The proof of Corollary 2 is exactly the same as the proof of Theorem 5, except that the
covariance matrices of E1M and e1M are different. Also, we can think of E1M as an mn-dimensional
random variable x = (x1, x2, · · · , xmn) over Zmn, where {xi =

∑n
j=1 ec,jzj,d}i∈[mn], c = ⌈ in⌉, d = i

mod n, ec,j is the element in row c and column j of E1, zj,d is the element in row j and column d of
M. Let T ∈ Rn×n be the symmetric matrix

T =


1
2nσ

2 1
4nσ

2 · · · 1
4nσ

2

1
4nσ

2 1
2nσ

2 · · · 1
4nσ

2

· · ·
1
4nσ

2 1
4nσ

2 · · · 1
2nσ

2

 (8)

The covariance matrix Σ ∈ Rmn×mn of the random variable x is

Σ =


T

T
· · ·

T

 Cov(xi, xj)


1

2
nσ2, if i = j

1

4
nσ2, if |i− j| < n, i ̸= j

0, if |i− j| ≥ n, i ̸= j

The following proof is the same as Theorem 5, we omit it here.
■
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5.1 DGSW ciphertext leakage-resilient proof based on Theorem 5

As an application of our Theorem 5, we give the anti-leakage proof of DGSW ciphertext to compare
with the general smudging lemma. For a given DGSW ciphertext :

C =

(
A
b

)
R+

(
E
e

)
where A ← U(Z(m−1)×n

q ), b = sA, s ← {0, 1}m−1, R ← U(Zn×ml
q ), E ← χ(m−1)×ml, e ← χ′

ml,
l = ⌈log q⌉. Let C0 = AR+E, thus C can be rewritten as :

C =

(
C0

sC0 + e− sE

)
(9)

The proof in [9] required ||sE/e||∞ = negl(λ), thus C
stat
≈
(

C0

sC0 + e

)
. Assuming H̃∞(s|f(s)) is

sufficient, using the leftover hash lemma with C0 as a seed and s as a source, they had that (C0, sC0)
were jointly statistically indistinguishable from uniform, which Lemma 3 followed.

Smudging lemma over discrete gaussian : Below we show that ||sE/e||∞ = negl(λ) is not
necessary to prove that DGSW is leakage-resilient. Let r be an integer, assuming H̃∞(s|f(s)) = r.
Because s← {0, 1}m−1, χ is discrete gaussian over Z with variance σ2, we have e2 = sE distributed
like discrete Gaussian on Zml with variance at most (m− 1

2r − 1)σ2. When the bits lost in s are all
1, the maximum variance is obtained. Note that even if the components of e2 are generated by the
same s and the different columns of E, they are independent(this can be checked by calculating their
covariance).

By Theorem 5, in order to "drown out" e2, we can set e = e1M, where e1 ← DZml,(m− 1
2 r−1)σ2 ,

M ← {0, 1}ml×ml. If δ > e−2+
6π

ml+1 , we have ∆(e, e + e2) < 2−n, thus C
stat
≈
(

C0

sC0 + e

)
. The

subsequent proof is the same as above. Note that at this time, we have ||e2/e||∞ = 1
poly(λ) .

6 A KL-MKFHE scheme based on DGSW in the plain model without
noise flooding

Our scheme is based on DGSW. In this section, we first introduce the key lifting process, describe
the entire scheme, and finally give the correctness analysis.

We intentionally place the security proof and the proof of the asymmetric properties of the Dual-
GSW ciphertext in the next two section. This is to emphasize the difference between our approach
and traditional methods which using noise flooding technology. At the same time, in order to clearly
describe these two parts, we really need two separate sections to elaborate on them. We believe this
combination is reasonable.

6.1 Key lifting procedure

Following the definition of KL-MKFHE, the hybrid keys {hki}i∈[k] obtained by the KeyLifting(·)
algorithm are distinct from each other. Each party encrypts their plaintext ui using hki and obtains
Ci. The ciphertexts {Ci∈[N ]} can be evaluated without extra computation, as stated in Claim 1. We
achieve this property by allowing two-round interaction between parties.

{hki}i∈[k] ← KeyLifting({pki, ski}i∈[k]): Input the DGSW key pair {pki, ski}i∈[k] of all parties, where
pki = (Ai,bi,i), Ai ← U(Z(m−1)×n

q ), si ← U{0, 1}m−1, bi,i = siAi mod q. Assuming there is a
broadcast channel, all parties engage in the following two interactions:

– First round : i broadcasts pki and receives {pkj}j∈[k]\i from the channel.
– Second round : i generates and broadcasts {bi,j = siAj}j∈[k]\i, and receives {bj,i = sjAi}j∈[k]\i

from the channel.
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After above two round interaction, i receives {bj,i = sjAi}j∈[k]/i. Let bi =
∑k

j=1 bj,i, i obtains
hybrid key hki = (Ai,bi).

Claim 1 Let t̄ = (−s, 1), s =
∑k

i=1 si, for ciphertext Ci, Cj encrypted by hybrid key hki, hkj
respectively :

Ci =

(
Ai

bi

)
Ri +Ei + uiG, Cj =

(
Aj

bj

)
Rj +Ej + ujG,

it holds that(omit small error) :

t̄Ci ≈ uit̄G, t̄Cj ≈ uj t̄G

t̄(Ci +Cj) ≈ (ui + uj)t̄G, t̄CiG
−1(Cj) ≈ (uiuj)t̄G

Proof. According to the construction of KeyLifting(·), it holds that :

t̄Ci =

(
k∑

i=1

−si, 1

)[(
Ai∑k

j=1 bj,i

)
+Ei + uiG

]
= t̄Ei + uit̄G ≈ uit̄G.

Similarly, t̄Cj ≈ uj t̄G, and t̄(Ci +Cj) ≈ (ui + uj)t̄G

t̄CiG
−1(Cj) ≈ uit̄GG−1(Cj) ≈ uit̄Cj ≈ (uiuj)t̄G

■

Therefore, although Ci and Cj are encrypted by different hybrid keys, they correspond to the same
decryption key t̄ and support homomorphic evaluation without any additional modifications.

6.2 The entire scheme

Our scheme is based on the DGSW scheme, which includes the following five algorithms (Init, Gen,
KeyLifting, Enc, Eval, Dec)

– pp ← Init(1λ, 1L, 1W ) : Let λ be security parameter, L circuit depth, W circuit output length,
lattice dimension n = n(λ, L), noise distribution χ over Z, e← χ, where |e| is bounded by Bχ with
overwhelming probability, modulus q = 2O(L)Bχ, k = poly(λ), m = (kn +W ) log q + λ, suitable
choosing above parameters to make LWEn,m,q,Bχ

is infeasible. Output pp = (k, n,m, q, χ,Bχ)

– (pki, ski) ← Gen(pp) : Input pp, output the DGSW key pair (pki, ski) of parties i, where pki =

(Ai,bi,i), Ai ← U(Z(m−1)×n
q ), si ← U{0, 1}m−1, bi,i = siAi mod q.

– hki ← KeyLifting({pki, ski}i∈[k]) : All parties are engaged in the Key lifting procedure 6.1, output
the hybrid key hki.

– Ci ← Enc(hki, ui): Input hybrid key hki, plaintext ui ∈ {0, 1}, output ciphertext Ci =

(
Ai

bi

)
R+

E+ uiG, where R← U(Zn×ml
q ), l = ⌈log q⌉, E← χm×ml, G = Im ⊗ g is a gadget matrix.

– C(L) ← Eval(S, C) : Input the ciphertext set S = {Ci}i∈[N ] which are encrypted by hybrid key
{hki}i∈[k], circuit C with input length N , depth L, output C(L).

Homomorphic addition and multiplication : Let Ci and Cj be ciphertexts under hybrid keys
hki and hkj respectively. By Claim 1, we have the following results.

– Cadd ← Add(Ci,Cj): Input ciphertext Ci, Cj , output Cadd = Ci+Cj , which t̄Cadd ≈ (ui+uj)t̄G

– Cmult ← Mult(Ci,Cj): Input ciphertext Ci, Cj , output Cmult = CiG
−1(Cj), which t̄Cmult ≈

uiuj t̄G

Distributed decryption Similar to [22], the decryption procedure is a distributed procedure :

– γi ← LocalDec(C(L), si): Input C(L), let C(L) =

(
Cup

clow

)
, where Cup is the first m−1 rows of C(L),

and clow is last row of C(L). i computes γi = ⟨−si, CupG
−1(wT )⟩, where w = (0, . . . , 0, ⌈q/2⌉) ∈

Zm
q , then i broadcast γi

– uL ← FinalDec({γi}i∈[k]): After receiving {γi}i∈[k], let γ =
∑k

i=1 γi + ⟨clow, G−1(wT )⟩, output
uL = ⌈ γ

q/2⌉
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6.3 Correctness analysis

To illustrate the correctness of our scheme, we first study the accumulation of noise. For fresh cipher-

text C =

(
Ai

bi

)
R+

(
E0

e1

)
+ uG under t̄, it holds that t̄C = e1− sE0 + ut̄G. Let einit = e1− sE0,

after L depth circuit evaluation :
t̄C(L) = eL + uLt̄G (10)

According to the noise analysis of GSW in [15], the noise eL in C(L) is bounded by (ml)Leinit. By
the distributed decryption in our scheme, it is proven that:

γ =

k∑
i=1

γi + ⟨clow,G−1(wT )⟩ = ⟨
k∑

i=1

−si,CupG
−1(wT )⟩+ ⟨clow,G−1(wT )⟩

= t̄C(L)G−1(wT ) = ⟨eL,G−1(wT )⟩+ uL⌈
q

2
⌉

In order to decrypt correctly, it requires ⟨eL,G−1(wT )⟩ < q
4 . For our parameter settings :

⟨eL,G−1(wT )⟩ ≤ l · ||eL||∞
≤ l · (ml)L · ||einit||∞
≤ l · (ml)L · (km+ 1)Bχ

Thus, log(⟨eL,G−1(wT )⟩) = Õ(L). For those q = 2O(L)Bχ ≥ 4⟨eL,G−1(wT ⟩, requirements are
fulfilled.

7 Security Proof against Semi-Malicious Adversary

There are two main security concerns about KeyLifting(·). First, a semi-malicious adversary may
generate a matrix A with a trapdoor, and then si is leaked. More specifically, in the KeyLifting(·)
phase, {bi,j = siAj}j∈[k] will lose si at most kn log q bits. Second, a semi-malicious adversary A may
generate bj,i adaptively after observing bi,i. As a result, the hybrid key bi of party i may not be
distributed as required.

This place is very subtle. In the first round of KeyLifting(·), the semi-malicious adversary has
already generated {pkj}j∈[k]\i. However, we have noticed that because {Aj}j∈[k]\i may not be uniform,
the adversary can find multiple groups of {s′j ∈ {0, 1}m−1, s′j ̸= sj} that satisfy s′jAj = sjAj .
So in the second round (we always assume that the adversary makes the last move, that is, the
adversary has already obtained the leakage of si and seen bi,i), the adversary A can choose any s′j
from {s′j ∈ {0, 1}m−1, s′j ̸= sj , s

′
jAj = sjAj} to construct bj,i and control bi as much as possible.

So, for semi-malicious adversaries, we assume that sj in {pkj}j∈[k]/i and s′j in {bj,i}j∈[k]/i can be
different.

The general solution is to introduce a flooding noise in encryption to ensure security. Large en-
cryption noise leads to a large modulus q, which, in turn, results in significant computational and
communication overhead. To address this problem, we proposed an analysis method based on Rényi
divergence and get rid of the flooding noise in the encryption. In the following, we first introduce the
general method and then give an optimization proof method based on Rényi divergence.

7.1 A common approach(By noise flooding)

We complete the simulation by constructing a reduction from our scheme to the DGSW scheme.
We assume that the first party is the Challenger and the other k − 1 parties are controlled by the
adversary A. Consider the following Game:

1. Challenger generates pk1 = (A1,b1,1 = s1A1) where A1 ← U(Z(m−1)×n
q ), s1 ← U{0, 1}m−1 sends

pk1 to adversary A
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2. After receiving pk1,A generates {pki}i∈[k]/1, where pki = (Ai,bi,i = siAi), sends it to Challenger.

3. After receiving {pki}i∈[k]/1, Challenger sets {b1,i = s1Ai}i∈[k]/1(the leakage of s1), sends it to A
4. After receiving {b1,i}i∈[k]/1, A adaptively chooses {s′i}i∈[k]/1, where s′i ∈ {0, 1}m−1, sets {bi,1 =

s′iA1}i∈[k]/1, sends it to Challenger.

5. After receiving {bi,1}i∈[k]/1, Challenger sets hk1 = (A1,
∑k

i=1 bi,1).

6. A chooses a bit u← {0, 1}, sends it to Challenger.

7. Challenger chooses a bit α ← {0, 1}, if α = 0 sets C ← Enc(hk1, u), otherwise C ← U(Zm×ml
q ),

sends C to A.

8. After receiving C, A outputs bit ᾱ, if ᾱ = α, then A wins.

Obviously the above Game simulates the KeyLifting(·) and Enc(·) of our scheme. The first four
steps outline the detailed process of KeyLifting(·), assuming a rushing adversary.

Claim 2 Let Adv = |Pr[ᾱ = α] − 1
2 | denote A’s advantage in winning the game. If A can win the

game with advantage Adv, then A can distinguish between the ciphertext of DGSW and the uniform
distribution with the same(up to negligible) advantage.

Proof. After the third step of the above game, A obtained pk1 and {b1,i}i∈[k]/1(the leakage of s1).
Next, we use the ciphertext of DGSW to construct C. Let :

CDGSW =

(
A1

b1,1

)
R+

(
E0

e1

)
=

(
C0

c1

)
be the Dual-GSW ciphertext generated by pk1, which is semantically secure by Lemma 3, even if s1
is lossy. Let s′ =

∑k
i=2 s

′
i are adaptively chosen by A after seeing pk1 and {b1,i}i∈[k]/1(the leakage of

s1). Let

C′ = CDGSW +

(
0

s′C0

)
it holds that :

s′C0 = s′(A1R+E0) =

k∑
i=2

bi,1R+ s′E0

C′ = CDGSW +

(
0

s′C0

)
=

(
A1

b1,1

)
R+

(
E0

e1

)
+

(
0

s′C0

)
=

(
A1

b1

)
R+

(
E0

e1 + s′E0

)
If ||e1||∞ is bounded by 2λBχ, and ||s′E0||∞ < kmBχ, then s′E0/e1 = negl(λ). By Lemma 1, it holds
that C′

stat
≈ C. If A can distinguish between C and the uniform distribution by advantage Adv, then

he can also distinguish between CDGSW and the uniform distribution with the same (up to negligible)
advantage. ■

Remark: When ||e1||∞ is bounded by 2λBχ, according to the correctness analysis in Section 6.3, the
initial noise einit = e1 − sE0 is bounded by (2λ + km)Bχ. After L-level evaluation, ⟨eL,G−1(wT )⟩
is bounded by l · (ml)L · (2λ + km)Bχ, log(⟨eL,G−1(wT )⟩) = Õ(λ + L). Thus, this results in a
q = 2O(λ+L)Bχ.

7.2 Distinguishing DGSW ciphertext with a linear relationship between noise and
random numbers

In this section, we introduce a new problem: distinguishing DGSW ciphertext with a linear relation-
ship between noise and random numbers. From Lemma 3, we already know that DGSW ciphertext is
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leakage-resistant. This means that even if the key s is lossy, DGSW ciphertext remains semantically
secure. Here, we take it one step further: not only is s lossy, but we also leak the linear relationship
between random numbers and noise in the ciphertext.

This new problem is introduced because we will use it in the optimization proof method based on
Rènyi divergence. We believe it will be useful in other places as well. Below, we will formally define
it.

Definition 7 (DGSWLRL) Let λ be security parameter, n = n(λ), w = w(λ), q = q(λ), m =
O(n log q) be integers satisfying n|w. Let χ = χ(λ) and χ′ = χ′(λ) be two distribution defined over Z,
bounded by Bχ and 2λBχ respectively. Let pkDGSW = (A,b = sA), where A← U(Zm×n

q ), s← {0, 1}m.
Let f(·) be any computable functions. Assuming H̃∞(s|f(s)) ≥ log q+2λ, consider the following Game.

1. Challenger generates the DGSW ciphertext:

CDGSW =

(
A
b

)
R+

(
E
e

)
where R ← U(Zn×w

q ), E ← χm×w, e ← χ′
w. Then computes {vi}i∈[g] by {viRi = ei}, where

Ri ∈ Zn×n
q and ei ∈ Zn

q are the i-th block of R = (R1,R2, · · · ,Rg) and e = (e1, e2, · · · , eg),
respectively. Send {vi}i∈[g] and CDGSW to adversary A.

2. After receiving {vi}i∈[g] and CDGSW, A try to distinguish :(
pkDGSW, {vi}i∈[g], f(s),CDGSW

)
and

(
pkDGSW, {vi}i∈[g], f(s),U

)
If A can distinguish the two by a non-negligible advantage, then A wins, otherwise the challenger
wins.

Obviously, if there are no {vi}i∈[g], then this problem can be directly proved by Lemma 3. Before
starting the proof, let’s take a look at {vi}i∈[g]. For a uniform matrix Ri, it is highly likely to be
reversible, and furthermore, vi = eiR

−1
i . Thus it defines a bijection from Zn

q to Zn
q , so giving vi will

expose the linear relationship between ei and Ri. How much does this linear relationship contribute
to distinguishing DGSW ciphertext? Next, we prove that, to some extent, this linear relationship is
equivalent to reducing the dimension of the LWE problem under the DGSW ciphertext by 1.

For convenience, we abbreviate this problem as DGSWLRL4 problem.

Lemma 4 If there is an adversary who can distinguish the DGSWLRL problem, then he can also
distinguish the DGSW ciphertext (n− 1 dimensional LWE) from a uniform distribution.

Proof. For a given DGSW ciphertext CDGSW and {vi}i∈[g], let c be the last row first n items of
CDGSW. It holds that :

bR1 + e1 = c

v1R1 = e1

}
(11)

Next, we will prove that (11) can be constructed from low-dimensional DGSW ciphertext (note
that R1 ∈ Zn×n

q ). Let c′ be the last row fisrt n items of a n−1 dimensional DGSW ciphertext(without
linear relationship leakage). It holds that :

b′R′1 + e′1 = c′

where b′ = sA′, A′ ← U(Zm×(n−1)
q ), R′1 ← U(Z(n−1)×n

q ), e′1 ← χ′
n. Let

b′ = (b′1, b
′
2, · · · , b′n−1), R′1 =


r′1
r′2
· · ·
r′n−1

 , bn = saTn , an ← U(Zm
q ),

{ri = r′i(I− b′i
−1

bnW)−1}i∈[n−1], W← U(Zn×n
q ), rn = W0 −

n−1∑
i=1

riW,

W0 = e′1T, T← U(Zn×n
q )

4 DGSW ciphertext with linear relationship leakage
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Let b̄ = (b′, bn), R̄1 =


r1
r2
· · ·
rn

, ē1 = e′1, c̄ = c′ + bnW0. It holds that :

b̄R̄1 + ē1 = c̄

Because W0 = rn +
∑n−1

i=1 riW = ē1T, we have

r1WT−1 + r2WT−1 + · · ·+ rn−1WT−1 + rnT
−1 = ē1

Let vi be the eigenvalue of the WT−1 corresponding eigenvector ri, we have {viri = riWT−1}i∈[n−1],
vnrn = rnT

−1 thus
v1r1 + v2r2 + · · ·+ vn−1rn−1 + vnrn = ē1

Thus, we have (12) corresponding to (11) :

b̄R̄1 + ē1 = c̄

v1r1 + v2r2 + · · ·+vn−1rn−1 + vnrn = ē1

}
(12)

Obviously, the distributions of b and b̄ are consistent. For {ri}i∈[n−1], we have

{ri = r′i(I− b′i
−1

bnW)−1}

Because W is uniform over Zn×n
q , (I−b′i

−1
bnW)−1 defines a bijection from Zn

q to Zn
q , so the distribu-

tions of {r′i}i∈[n−1] and {ri}i∈[n−1] are consistent. Furthermore, because T and W are both uniform
and independent on Zn×n

q , rn = ē1T −
∑n−1

i=1 riW is uniform over Zn×n
q . Therefore R1 and R̄1 are

consistent.
Therefore, we completed the construction from n − 1 dimensional DGSW ciphertext (without

linear relationship leakage) to n-dimensional DGSW ciphertext (with linear relationship leakage),
and the former can be directly proved by Lemma 3. Notice that this only completes the construction
of the first block. The remaining g − 1 blocks can be completed using a hybrid argument routine.

■

7.3 Rényi divergence-based optimization :

The work of Shi et al. [6] pointed out that Rényi divergence can also be applied in distinguishing
problems, and in some cases, it can lead to better parameters than statistical distance. Based on these
results, they obtained improved parameters for the Regev encryption scheme. Theorem 2 states that
if there exists an algorithm that can distinguish the P problem, then there also exists an algorithm
that can distinguish the P ′ problem. Our proof method is as follows:

– Define the P problem as distinguishing our ciphertext from a uniform distribution.
– Prove that for a given DGSW ciphertext, there exists a distribution X ′0, and a sample x of X ′0

can be constructed from this DGSW ciphertext.
– Define the P ′ problem as distinguishing X ′0 from a uniform distribution.

Thus, if there is an adversary who can distinguish the P problem, then they can also distinguish the
P ′ problem and the DGSW ciphertext from the uniform distribution.

Claim 3 Let a be a constant in R+. Let the encryption run-time of our scheme be TS. If there is
an adversary who can distinguish the ciphertext of our scheme from a uniform distribution with a
run-time of T and an advantage of ϵ, then the adversary can distinguish the DGSWLRL problem with
a run-time and advantage that are bounded from above and below, respectively:

64

ϵ2
log

(
poly(λ)

ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 · poly(λ)
·
( ϵ
2

) a
a−1

.
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Proof. We first define several distributions. Let 0ml be the zero vector of length ml, Φ be the dis-
tribution of the hybrid key (AH,bH) followed by 0ml, and f(s) be the leakage of the private key s,
which is determined by the KeyLifting(·) procedure.

(AH,bH,0
ml, f(s))←↩ Φ

Obviously, Φ simulates the KeyLifting(·)5 process of our scheme. Let D0(AH,bH,0
ml, f(s)) be the

joint distribution of (AH,bH,0
ml, f(s)) and the ciphertext

(
AH

bH

)
R+

(
E0

e1

)
encrypted by (AH,bH)

over the randomness R← U(Zn×ml
q ), E0 ← χ(m−1)×ml, e1 ← χml :

(AH,bH,0
ml, f(s),

(
AH

bH

)
R+

(
E0

e1

)
)←↩ D0(AH,bH,0

ml, f(s))

Obviously, D0(·) simulates the encryption of our scheme. Let D1(AH,bH,0
ml, f(s)) be the joint dis-

tribution of (AH,bH,0
ml, f(s)) and U← U(Zm×ml

q ) :

(AH,bH,0
ml, f(s),U)←↩ D1(AH,bH,0

ml, f(s))

Define P problem as follows :

– Problem P : distinguish whether input x is sampled from distribution X0 or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

Obviously, the P problem is to distinguish the ciphertext of our scheme from uniform.

Construct auxiliary distribution : Before defining the P ′ problem, we need to construct an
auxiliary distribution. For the random R̄ ← U(Zn×ml

q ) and ē1 ← χ′
ml6, without loss of generality,

assuming ml
n = g, we can divide R̄ into g square matrices

R̄ = (R̄1, R̄2, · · · , R̄g)

where R̄i ∈ Zn×n
q . Similarly

ē1 = (ē1,1, ē1,2, · · · , ē1,g)
where ē1,i ∈ Zn

q . Let {vi ∈ Zn
q }i∈[g] be the solution of equation {viR̄i = ē1,i}i∈[g]. Obviously, if Ri

is random over Zn×n
q , then vi has a unique solution with an overwhelming probability(See Appendix

A). Let D be the distribution over the randomness of R̄ and ē1.

v = (v1,v2, · · · ,vg)←↩ D

Let Φ′ be the joint distribution of hybrid key, D and the leakage of s :

(AH,bH,v, f(s))←↩ Φ′

Let D0(AH,bH,v, f(s)) be the joint distribution of (AH,bH,v, f(s)) and the ciphertext

C =

(
AHR+E0

(bH + v1)R1 + e1,1, (bH + v2)R2 + e1,2, · · · , (bH + vg)Rg + e1,g

)
encrypted by (AH,bH,v) over the randomness R = (R1, · · · ,Rg) ← U(Zn×ml

q ), E0 ← χ(m−1)×ml,
e1 = (e1,1, · · · , e1,g)← χml :

(AH,bH,v, f(s),C)←↩ D0(AH,bH,v, f(s))

Similarly, Let D1(AH,bH,v, f(s)) be the joint distribution of (AH,bH,v, f(s)) and the uniform U

(AH,bH,v, f(s),U)←↩ D1(AH,bH,v, f(s))

Let P ′ be the decision problems defined as follows :
5 Here we ignore the input of Φ, which should be s, AH and other party’s DGSW key pair, but it is irrelevant

here.
6 Note that ||e1||/||ē1|| = negl(λ).
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– Problem P ′ : distinguish whether input x is sampled from distribution X ′0 or X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

So far, we have completed the construction of the P and P ′ problems. Next, we show that some
samples of X ′0 can be constructed from samples of DGSWLRL. Let

(
pkDGSW, {vi}i∈[g], f(s),CDGSW

)
be a DGSWLRL sample generated by Challenger. After receiving s′ from the adversary A, he can
construct a tuple (AH,bH,v, f(s),C

′), by setting AH = ADGSW, bH = bDGSW + s′AH, and C′ =

CDGSW +

(
0

s′C0

)
, where C0 is the first m − 1 rows CDGSW. We note that this tuple is exactly a

sample of X ′0, when r = (AH,bH,v, f(s)), and the R̄ used in v and the R used in D0 are consistent.
Next, we verify the conditions for the establishment of Theorem 2. Firstly, we have Supp(Φ) ⊆

Supp(Φ′), and D0(·), D1(·) are determined by pre-image sample r ∈ Supp(Φ′). Since the outputs of
D0(·) and D1(·) contain the r of the prior distributions Φ and Φ′, thus D0(·) and D1(·) satisfy the
publicly sampleable property required by Theorem 2. The sampling algorithm S is just the encryption
of our scheme with hybrid key (AH,bH,0

ml) or (AH,bH,v), over the randomness of {R,E0, e1}
By Theorem 2, if given a T - time distinguisher A for problem P with advantage ϵ, we can construct

a distinguisher A′ for problem P ′(also for distinguishing DGSWLRL) with run-time and distinguishing
advantage, respectively, bounded from above and below by(for any a ∈ (1,+∞]) :

64

ϵ2
log

(
8Ra(Φ||Φ′)
ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 ·Ra(Φ||Φ′)
·
( ϵ
2

) a
a−1

.

Assume that Ra(Φ||Φ′) is well-behaved7, that is, there is a in R+ such that Ra(Φ||Φ′) = poly(λ),
then we have :

64

ϵ2
log

(
poly(λ)

ϵa/(a−1)+1

)
· (TS + T ) and

ϵ

4 · poly(λ)
·
( ϵ
2

) a
a−1

.

■

Remark : Under the semi-honest adversary model, {Ai}i∈[k] and {si}i∈[k] are sampled as specified
by the protocol, and the security is guaranteed. Under the semi-malicious adversary model, the
common approach assumes that bj,i = sjAi and {sj∈[k]/1} ∈ {0, 1}m−1 are chosen adaptively, and
introduces large noise in the encryption to ensure security. However, in our proof method based on
the Rényi divergence, in order to better quantify Ra(Φ||Φ′), we introduce heuristic assumptions.

8 Decryption without noise flooding

We note that introducing noise flooding in the partial decryption phase is essential to guarantee the
semantic security of fresh ciphertext, and noise flooding achieves this by masking the private key in
the partial decryption noise. For partial decryption to be simulatable, the magnitude of the noise
introduced needs to be exponentially larger than the noise after the homomorphic evaluation.

By noise flooding : To illustrate how our approach works, let us first review the noise flooding

technique. Let C(L) =

(
Cup

clow

)
be the ciphertext after L-layer homomorphic multiplication. With a

flooding noise e′′i ← U [−Bsmdg, Bsmdg], introduced in LocalDec(·), we have

γi = ⟨−si,CupG
−1(wT )⟩+ e′′i

By Equation (10) and FinalDec(·)

γi = uL⌈
q

2
⌉+ ⟨eL,G−1(wT )⟩+ e′′i − ⟨clow,G−1(wT )⟩+ ⟨

k∑
j ̸=i

sj ,CupG
−1(wT )⟩

7 We have not yet found a suitable a. Here we can only introduce this heuristic assumption
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For a simulator S, input {skj}j∈[k]/i, evaluated result uL, ciphertext C(L), output simulated γ′i

γ′i = uL⌈
q

2
⌉+ e′′i − ⟨clow,G−1(wT )⟩+ ⟨

k∑
j ̸=i

sj ,CupG
−1(wT )⟩

In order to make the partial decryption process simulatable, it requires

⟨eL,G−1(wT )⟩+ e′′i
stat
≈ e′′i

For the parameter settings in [22] : Bsmdg = 2Lλ log λBχ, q = 2ω(Lλ log λ)Bχ, it holds that

|⟨eL,G−1(wT )⟩/e′′i | = negl(λ)

thus γi
stat
≈ γ′i. In short, the noise e′′i is introduced to "drown out" the private key si and the noise

Ei in initial ciphertext of party i contained in eL(The noise obtained by decrypting the ciphertext of
level L, t̄C(L) = eL + uLt̄G). Thus the partial decryption result of party i can be simulated.

Without noise flooding : Through the above analysis, we point out that as long as our encryption
scheme is leakage-resilient and eL is independent of the noise {Ei}i∈[N ] in the initial ciphertext, there
is no need to introduce noise flood in the partial decryption. Before the homomorphic evaluation
begins, we can left-multiply each initial ciphertext by a "dummy" ciphertext whose plaintext is 1 to
drown out the noise in the initial ciphertext. For example, let the "dummy" and initial ciphertext be
Cdummy, C, respectively.

Cdummy =

(
A
b

)
R1 +E1 +G, C =

(
A
b

)
R2 +E2 + uG.

After the homomorphic multiplication , we obtain

Cmult = CdummyG
−1(C) = Π + Ψ + uG

where

Π =

(
A
b

)
R1G

−1(C) +

(
A
b

)
R2

Ψ = E1G
−1(C) +E2.

We have t̄Π = 0, Ψ is the noise after the the homomorphic multiplication. By Corollary 2, we have

Ψ
stat
≈ E1G

−1(C).

Therefore, the ciphertext after homomorphic evaluation hardly contains the noise in the initial cipher-
text {Ci}i∈[N ]. Let eL = t̄Ψ , therefore, ⟨eL,G−1(wT )⟩ ∈ Zq leaks party i’s private key si with at most
log q bits. For a circuit with output length W , the partial decryption leaks W log q bits of si. Because
our scheme is leakage-resilient, as long as we set the key length reasonably as m = (kn+W ) log q+λ,
the initial ciphertext {Ci}i∈[N ] are semantically secure.

The key length of our scheme is related to the output length of the circuit. When the circuit
output length W < kn(λ − 1), our scheme has a shorter key than the previous scheme (using noise
flooding technology with key length m′ = kn log q′ + λ, modules q′ = 2O(λL)Bχ). For our scheme,
m = (kn + W ) log q + λ, and q = 2O(L)Bχ, in order to make m < m′, it is only required that
W < kn(λ− 1). Therefore, for circuits with small output fields, our scheme does not result in longer
keys.

8.1 Bootstrapping

In order to eliminate the dependence on circuit depth and achieve full homomorphism, we need to
utilize Gentry’s bootstrapping technology. It is worth noting that the bootstrapping procedure of our
scheme is the same as the single-key homomorphic scheme: After Key lifting procedure, party i uses
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hybrid key hki to encrypt si to obtain evaluation key evki. Because evki and C(L) are both ciphertexts
under t̄ = (−

∑k
i=1 si, 1), homomorphic evaluation of the decryption circuit could be executed directly

as C(L) needs to be refreshed. Therefore, to evaluate any depth circuit, we only need to set the initial
parameters in order to satisfy the homomorphic evaluation of the decryption circuit.

However, for those MKFHE schemes that require ciphertext expansion, additional ciphertext
expansion is necessary. This is because C(L) is the ciphertext under t̄, while {evki}i∈[k] are the
ciphertext under {ti}i∈[k]. In order to expand {evki}i∈[k] → {êvki}i∈[k], party i needs to encrypt the
random matrix of the ciphertext corresponding to evki. The extra encryption of i needs to be done
locally is O(λ9L6).

9 Conclusions

For the LWE-based MKFHE, we proposed the concept of KL-MKFHE to reduce the overhead of the
local parties. This concept introduces a Key lifting procedure, getting rid of expensive ciphertext
expansion operations and allowing the construction of a DGSW style KL-MKFHE under the plain
model. Our scheme is more friendly to local parties than the previous scheme, for which the local
encryption O(Nλ6L4) are reduced to O(N). By abandoning noise flooding, it compresses q from
2O(λL)Bχ to 2O(L)Bχ, reducing the computational scale of the entire scheme. However, the key length
depends on the number of parties and the amount of leakage, which limits the scheme’s application
to some extent. Further work will focus on compressing the key length.
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Appendix

A Probability that {vi}i∈[g] has a solution

Random Matrices : For a prime q, the probability that a uniformly random matrix A ←
U(Zn×m

q )(with m ≥ n) has full rank is :

Pr[rank(A) < n] = 1−
n−1∏
i=0

(1− qi−m).

For equations :
{viRi = e1,i}i∈[g]

if {Ri}i∈[g] are all invertible, obviously {vi}i∈[g] has a solution. For a random matrix R over Zn×n
q ,

the probability that it is invertible is
∏n−1

i=0 (1 − qi−n). For the parameter settings in our scheme,
q = 2O(L)Bχ, m = (kn+W ) log q+ 2λ, g = mL/n, the probability that {Ri}i∈[g] are all invertible is
:

Pr = (

n−1∏
i=0

(1− (2L)i−n)
(kn+W )L2+2λL

n ≥ (1− 2−L)(kn+W )L2+2λL

This probability is close to 1, for 2−L decreases faster than L2. We tested the probability on Maple18
by set q = 2100, k = 50, n = 500, W = 1000, λ = 128(which should be able to cover the actual
application) obtained Pr > 1− 1021.

B The proof of Lemma 2 and Theorem 4

Recall that the integral of ρΣ(x) is det(Σ), thus the Fourier transform of ρΣ(x) is ρ̂Σ(k) = det(Σ)ρΣ−1(k),
and the Poisson summation formula of ρΣ(x) is ρΣ(Λ) = det(Σ) det(Λ∗)ρΣ−1(Λ∗)

https://eprint.iacr.org/2019/961
https://eprint.iacr.org/2019/961
https://eprint.iacr.org/2019/961
https://eprint.iacr.org/2016/196
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B.1 The proof of Lemma 2

By the Poisson summation formula, we have :

ρΣ1Σ2
= det(Σ1) det(Σ2) det(Λ

∗)ρ(Σ1Σ2)−1(Λ∗)

det(Σ1)ρΣ2
= det(Σ1) det(Σ2) det(Λ

∗)ρΣ−1
2

(Λ∗)

If ρΣ−1
2

(Λ∗) > ρ(Σ1Σ2)−1(Λ∗), then we done. For ρΣ−1
2

(x) = e−πxΣ2x
T

, ρ(Σ1Σ2)
−1(x) = e−πxΣ1Σ2x

T

,
if Σ1Σ2 − Σ2 is positive semi-definite, then we have ρΣ−1

2
(x) > ρ(Σ1Σ2)−1(x), thus ρΣ−1

2
(Λ∗) >

ρ(Σ1Σ2)−1(Λ∗).

B.2 The proof of Theorem 4

Let E(k) = {x ∈ Rm : xΣ−12 xT < k} be the ellipsoid with "shape" Σ2 and radius k, and positive
definite matrix Σ1, Σ2, we have :

ρΣ1Σ2(Λ) ≥ ρΣ1Σ2(Λ\E(k))

=
∑

x∈(Λ\E(k))

e−πx(Σ1Σ2)
−1xT+πxΣ−1

2 xT

· e−πxΣ
−1
2 xT

=
∑

x∈(Λ\E(k))

e
1
2πxΣ

−1
2 xT

· e−πxΣ
−1
2 xT

(let Σ1 = 2I)

≥
∑

x∈(Λ\E(k))

e
1
2πk · e−πxΣ

−1
2 xT

= e
π
2 k · ρΣ2

(Λ\E(k))

By Lemma 2 we have 2m · ρΣ2
(Λ) ≥ ρ2Σ2

(Λ) and e
π
2 > 4, thus ρΣ2

(Λ\E(k)) < 2m−2k · ρΣ2
(Λ).
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