
A remark on the Discrete Fourier Transform statistical test

Asandoaiei David, Anghel Florin, Tabacaru Robert

January 13, 2022

Abstract

The study of randomness has always been a topic of significant relevance, and the impor-
tance of this topic in cryptography is undeniable. In this paper, we are going to provide a short
introduction regarding pseudo-random number generators, their applications in cryptography
and an analysis of the Discrete Fourier Transform statistical test.
Our contribution is that of compiling the results of multiple runs on several popular pseudo-
random number generators, and a Python implementation for computing the probability of a
type II error. We intend to underline the weak points of the Discrete Fourier Transform test by
showcasing results on large amounts of data, and showcase how testing bigger sequences of bits
can help reduce the probability of type II errors.

Keywords: NIST Statistical Test Suite, Discrete Fourier Transform.

1 Introduction into Pseudo-Random Number Generators

1.1 Pseudo-Random Number Generators

According to [1], a Pseudo-Random Number Generator (PRNG), also known as Deterministic
Random Bit Generator (DRBG), is an algorithm that produces a sequence of bits that are uniquely
determined from an initial value called a seed. The output of the PRNG ”appears” to be random,
i.e., the output is statistically indistinguishable from random values. A cryptographic PRNG should
have the additional property that the output is unpredictable, given that the seed is not known.

1.2 Cryptographically Secure Pseudo-Random Number Generators

Random numbers are very useful in a variety of cryptographic applications, such as key generation,
nonces, crypto-challenges (as stated in [2]). While there are many algorithms that generate long
sequences of random bits, predicting the next bit in a sequence is difficult but often times not
impossible. Cryptographically Secure Pseudo-Random Number Generators (CSPRNG) use sources
of entropy that are truly unbiased, random and unbreakable by any intruder (as presented in [3]).

1.3 Requirements of a CSPRNG

The main property for a CSPRNG is that there is no existing polynomial time algoritm that can
find the next bit in the sequence given previous bits, without knowlege of the seed.

The term cryptographically secure pseudo random bit describes a bit that is non-deterministic
in nature, safe to use for cryptographic purpose. Such a bit can be identified through the next-bit
test, which consists of finding an algorithm capable of predicting the(k+1)th bit given the previous
k bits with probability higher than 1/2 in polynomial time (according to [3]). Any CSPRNG should

1

be able to produce sequences that are statistically indistinguishable from true randomness. This
means that probabilities for zero and one are equal at any time and are statistically independent
(stated in [4]).

2 The Discrete Fourier Transform (Spectral) Test

The NIST Test Suite is a statistical package consisting of 15 tests that were developed to test the
randomness of (arbitrary long) binary sequences produced by either hardware or software based
cryptographic random or pseudo-random number generators. These tests focus on different types of
non-randomness that could exist in a sequence. In this section we will discuss the Discrete Fourier
Transform (Spectral) test.

The focus of this test is the peak heights in the Discrete Fourier Transform of the sequence. The
purpose of the DFT test is to detect periodic features such as repetitive patterns that are near each
other, in the tested sequence that would indicate a deviation from the assumption of randomness.
We can try to achieve this purpose by detecting whether the number of peaks exceeding the 95%
threshold is significantly different than 5%.

In the following part we will introduce the mathematical concept behind DFT , and after we will
present according to [5] the function call, the test statistic and reference distribution and the test
description.

DFT method
The Discrete Fourier Transform is a method for converting a sequence of n complex numbers
x0, x1, ..., xn−1 to a new sequence of n complex numbersX0, X1, ..., Xn−1, whereXk =

∑n−1
j=0 xje

−2πikj/n,
for each 0 ≤ k ≤ n − 1. The xi are thought of as the values of a function, or signal, at equally
spaced times t = 0, 1, ..., n− 1. The output Xk is a complex number which encodes the amplitude
and phase of a sinusoidal wave with frequency k

n cycles per time unit [6].(This comes from Euler’s

formula e−2πikj/n = cos (2πkj/n) + i sin (2πkj/n)). The effect of computing the Xk is to find the
coefficients of an approximation of the signal by a linear combination of such waves. Since each
wave has an integer number of cycles per n time units, the approximation will be periodic with
period n. This approximation is given by the Inverse Fourier Transform xj =

1
n

∑n−1
k=0 X

e−2πikj/n

k .

As mentioned in [6], the DFT is useful in many applications, including the simple signal spec-
tral analysis outlined above. Knowing how a signal can be expressed as a combination of waves
allows for manipulation of that signal and comparisons of different signals: digitals files (jpg, mp3,
etc.) can be shrunk by eliminating contributions from the least important waves in the combina-
tion, different sound files can be compared by comparing the coefficients Xk of the DFT , radio
waves can be filtered to avoid ”noise” and listen to the important components of the signal.

Function Call
The function is called DiscreteFourierTransform(n), where n represents the length of the bit
string. The function could take an additional parameter ϵ representing the sequence of bits gene-
rated by the RNG or PRNG being tested; this exists as a global structure at the time of the
function call: ϵ = ϵ1, ϵ2, ..., ϵn.

2

Test Statistic and Reference Distribution
We will denote d as the normalized difference between the observed and the expected number of
frequency components that are beyond the 95% threshold. Also, the reference distribution for the
test statistic is the normal distribution.

Test Description

1. The zeros and ones of the input sequence (ϵ) will be converted into −1 and 1, obtaining the
sequence X = x1, x2, ..., xn, where xi = −1 if ϵi = 0 or xi = 1 if ϵi = 1.

2. A Discrete Fourier Transform (DFT) is applied to X to produce S = DFT (X).

3. M is calculated as M = modulus(S
′
), where S

′
represents the sequence of the first n/2

elements in S and modulus function produces a sequence of peak heights.

4. Calculate T =
√

(log 1
0.05)n, which represents the 95% peak height threshold value. Under

the assumption of randomness, 95% of the values obtained from the test should not exceed
T .

5. Calculate N0 = 0.95n/2, which represents the expected theoretical (95%) number of peaks
that are less then T (under the assumption of randomness).

6. Calculate N1 which is the actual number of peaks in M that are less than T .

7. Compute d = N1−N0√
n(0.95)(0.05)/4

.

8. Compute P -value = erfc(|d|√
2
), where erfc represents the complementary error function:

erfc(z) = 2√
π

∫∞
z e−u2

du.

With the final P -value resulted, we can conclude if a sequence is or is not random. If the P -
value< 0.01 then the sequence is non considered random, otherwise the sequence is considered
random. It is recommended that each sequence to be tested should consist of a minimum of 1000
bits (n ≥ 1000).

3 Experiment and Results

This section contains the results of our experiments on the Discrete Fourier Transform (DFT)
statistical test.
The source code for the type II error implementation and the results presented in this paper can
be found at [7].

3.1 Experimental setup and Preliminaries

In order to generate input vectors and perform the statistical tests we used NIST’s statistical test
suite, and various tools that provide access to its features through a graphical user interface. One
can download their STS implementation from [8]. (or use [9], as it also provides a good UI)

NIST’s statistical test suite is designed to test that a specific input sequence is random. This
can also be referred to as the null hypothesis (or H0). Complementary to this is the alternative
hypothesis (Ha), which refers to the case in which the input sequence is not random.

3

Before we move on to the results, it is important to understand some preliminary information about
statistical hypothesis testing, and how we can interpret the results from the NIST statistical suite.

In practice, we find ourselves in one of the following situations:

1. The input data is random.

(a) And our statistical test confirms that it is (accepts H0). (desired behaviour)

(b) And our statistical test fails, accepting Ha. (Type I error)

2. The input is not random.

(a) And our statistical test states that it is random. (Type II error)

(b) And our statistical test confirms that it isn’t. (desired behaviour)

NIST’s suite focuses on determining the probability of type I errors. This probability is often de-
noted by α and its value is usually set to 0.01.
The probability of type II (denoted by β) errors is more complex to co calculate, and it is not
a fixed value. This is because in practice, non-randomness can come in many forms, resulting in
different values for β.
Our contribution also includes a Python implementation for computing β according to the length
of the bitstream that is provided as input, and we will showcase further on in this chapter.

Notations:

• PRNG - Pseudo-Random Number Generator.

• n - number of bits in a sequence

• s - number of sequences

• p−value - the main result of each statistic test comes in the form of a p−value, the probability
that a perfect PRNG would have produced a sequence that is less random than the one that
was tested, based on the feature explored by the current statistical test. A p − value equal
to 1 means that the given input is perfectly random. For DFT, if p− value ≥ α = 0.01, the
sequence passes the test and is accepted as random.

• C1 − C10 - frequency classes for p − values. For example, C1 represents the number of
p− values that fall within the interval [0.0, 0.1), C2 corresponds to [0.1, 0.2) and so on.

• Others: LCG - Linear Congruential, CBG - Cubic Congruential, QDR - Quadratic, BBS -
Blum Blum Shub, 1k = 1000, 10k = 10000, etc..

When working with empirical data in order to evaluate randomness, choosing the right sample size
is critical in order to ensure the validity of the results. For DFT, it is important that each sequence
tested is at least 1000 bits long. To gain a comprehensive overview of the DFT test, we ran tests
for n ∈ {1000, 10000, 100000}, and also tried to experiment with a wide range of PRNG’s.

4

3.2 NIST STS Results

Despite running multiple tests with varying parameters, we will showcase the results we believe
to be most significant. The results on display were ran by setting n = 100000 (100k) (the only
exception being BBS), and observing the results when increasing the number of sequences s.

PRNG s C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 p− value Proportion Result

LCG 1k 116 99 112 90 95 108 113 191 80 86 0.13 0.984 ✓
LCG 10k 1098 93 1064 ... 977 0.0 0.987 ××
LCG 100k 11196 9701 10709 ... 10034 0.0 0.987 ××
CBG 1k 127 90 117 78 88 104 95 121 76 104 0.0008 0.981 ✓
CBG 10k 1280 1025 1099 ... 982 0.0 0.983 ××
CBG 100k 12611 10138 10801 ... 9796 0.0 0.984 ××

GSHA1 1k 102 90 122 77 113 89 93 102 117 95 0.038 0.989 ✓
GSHA1 10k 1085 963 1103 ... 967 0.0 0.988 ×
GSHA1 100k 11075 9760 10772 ... 10115 0.0 0.987 ××
Micali 1k 118 100 99 76 117 105 92 93 87 113 0.0543 0.981 ✓
Micali 10k 1150 967 1050 ... 1031 0.0 0.987 ×
Micali 100k 11019 9675 10749 ... 10274 0.0 0.987 ××
QDR1 1k 111 97 108 84 106 90 107 102 88 107 0.502 0.981 ✓
QDR1 10k 1108 965 1014 ... 1002 0.0 0.986 ××
QDR1 100k 11250 9819 10811 ... 10010 0.0 0.987 ××
QDR2 1k 113 81 112 86 105 94 104 109 94 102 0.298282 0.987 ✓
QDR2 10k 1166 935 1055 ... 1043 0.0 0.986 ××
QDR2 100k 11296 9761 10687 ... 9984 0.0 0.987 ××
XOR 1k 732 42 46 30 28 31 26 29 15 21 0.0 0.375 ××
XOR 10k 3895 874 787 ... 635 0.0 0.737 ××
XOR 100k 4942 1220 1154 ... 988 0.0 0.968 ××
BBS* 100 13 6 6 7 9 14 12 13 4 16 0.0855 1 ✓
BBS* 1k 111 117 76 100 102 123 67 132 74 98 0.000002 0.993 ×

Table 1: Test results

5

To give a better insight into the results on display, for a number of sequences of 1k, the results
are conistently positive. It is worth mentioning that the treshold value that the proportion of passed
tests needs to have depends on the number of sequences s: s = 1k → 0.980, s = 10k → 0.987,
s = 100k → 0.989. The p− value column points out the uniformity of the computed p− values.
Rows that have ×× in the result column fail both the uniformity test and the proportion test,
while one × symbol suggests that only the uniformity test has failed.
It is clear to see that when we generate an input with a size the range of 100MB to 1GB, the
uniformity of the p-values and the proportion of sequences that have a p − value ≥ 0.01 seems to
increase, but not at a desired pace.
However, it is interesting to observe that the proportion of sequences that pass the test still main-
tains a high value for most generators.
One of the biggest problems with the NIST STS however, is that it does not account for the prob-
ability of a type II errors. If a sequence of bits passes the STS, it means that we can consider it to
be random with a confidence of 99%, given α = 0.01.
However, in some cases it is critical to also assess the probability that we have accepted a sequence
to be random, when in reality it is not.

3.3 Computing the probability of type II errors.

The mathematical calculations required for this section were selected from [10], our contribution
being the python implementation of the final formula.

Figure 1: A formula for computing β, as seen in [10]

Notations:

• p0 - this value stands for the null hypothesis test H0 : p = p0, and q0 = 1− p0.

• p1 - in this scenario, we are seeking proof for the alternate hypothesis Ha : p ̸= p0, or
Ha : p = p1.

• ϕ represents the cumulative distribution function, which, when given an input x, outputs
the probability that a random variable, which in our case is a normally distributed random
variable, takes a value ≤ x.

• u1−α
2
and uα

2
are quantiles of the standard normal distribution.

For a short introduction regarding statistical hypothesis tests one can view [11], and for more in-
formation regarding the probability functions used can be found at [12] and [13].

6

Figure 2: Results of β estimation

As we can observe from figure 2, when we increase the length of the sequence we test, the range
of values of p1 for which there exists a probability of a type II error is significantly lower, but not
nonexistent. Outlining the importance of performing tests on large sequences of numbers, and the
need for introducing a type II error calculation into determining the result of every NIST statistical
test.

4 Conclusions and future work

Our research shows that the current version of the DFT statistical test can still be improved, and
one of the first steps in that direction can be the inclusion of the type II error probability as a
meaningful metric that influences the result of the test in the statistical suite.
Our results also show that the test is not as reliable (or efficient, for that matter) when we increase
the sequence size and the number of sequences tested, and several improvements to the version
proposed in the NIST STS have emerged in literature, that tackle just the problem that we raise
in this article. A good example is [14], which aims to reduce the memory consumption and result
accuracy for tests on large sequences (106 − 107 bits).

7

A great direction for future work would be exploring these open issues, as well as testing the
behaviour of the test in relation to the other statistical tests present in the current NIST STS suite.

References

[1] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. Recommendation
for key management – part 1: General (revision 3). NIST Special Publication Revision, 3, 01
2005.

[2] Amalia Beatriz Orúe López, Luis Hernández Encinas, Veronica Fernandez, and Fausto Mon-
toya Vitini. A review of cryptographically secure prngs in constrained devices for the iot. In
Hilde Pérez Garćıa, Javier Alfonso-Cendón, Lidia Sánchez-González, Héctor Quintián, and
Emilio Corchado, editors, International Joint Conference SOCO’17-CISIS’17-ICEUTE’17,
León, Spain, September 6-8, 2017, Proceedings, volume 649 of Advances in Intelligent Sys-
tems and Computing, pages 672–682. Springer, 2017.

[3] Divyanjali, Ankur, and Vikas Pareek. Article: An overview of cryptographically secure pseu-
dorandom number generators and bbs. IJCA Proceedings on International Conference on
Advances in Computer Engineering and Applications, ICACEA(2):19–28, March 2014. Full
text available.

[4] Peter Kietzmann, Thomas C. Schmidt, and Matthias Wählisch. A guideline on pseudorandom
number generation (prng) in the iot. ACM Comput. Surv., 54(6), jul 2021.

[5] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker. A statistical
test suite for random and pseudorandom number generators for cryptographic applications.
NIST Special Publication 800-22, Gaithersburg, MD, US,, 800:163, 05 2001.

[6] Discrete fourier transform. brilliant.org.

[7] https://github.com/anghelflorinm/dft-nist-tests.

[8] https://csrc.nist.gov/projects/random-bit-generation/
documentation-and-software.

[9] https://github.com/sovist/NIST-statistical-test-suite-UI.

[10] Carmina Georgescu and Emil Simion. New results concerning the power of nist randomness
tests. Proceedings of the Romanian Academy - Series A: Mathematics, Physics, Technical
Sciences, Information Science, 18:191–198, 11 2017.

[11] https://www.colorado.edu/amath/sites/default/files/attached-files/lesson9_
hyptests.pdf.

[12] https://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm.

[13] https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm.

[14] Meihui Chen, Hua Chen, Limin Fan, Shaofeng Zhu, Wei Xi, and Dengguo Feng. A new discrete
fourier transform randomness test. Sci. China Inf. Sci., 62(3):32107:1–32107:16, 2019.

8

https://github.com/anghelflorinm/dft-nist-tests
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://github.com/sovist/NIST-statistical-test-suite-UI
https://www.colorado.edu/amath/sites/default/files/attached-files/lesson9_hyptests.pdf
https://www.colorado.edu/amath/sites/default/files/attached-files/lesson9_hyptests.pdf
https://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm

	Introduction into Pseudo-Random Number Generators
	Pseudo-Random Number Generators
	Cryptographically Secure Pseudo-Random Number Generators
	Requirements of a CSPRNG

	The Discrete Fourier Transform (Spectral) Test
	Experiment and Results
	Experimental setup and Preliminaries
	NIST STS Results
	Computing the probability of type II errors.

	Conclusions and future work

