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Abstract. Optimizing the quantum circuit for implementing Advanced
Encryption Standard (AES) is crucial for estimating the necessary re-
sources in attacking AES by Grover algorithm. Previous studies have
reduced the number of qubits required for the quantum circuits of AES-
128/-192/-256 from 984/1112/1336 to 270/334/398, which is close to the
optimal value of 256/320/384. It becomes a challenging task to further
optimize them. Aiming at this task, we find a method about how the
quantum circuit of AES S-box can be designed with the help of automa-
tion tool LIGHTER-R. Particularly, the multiplicative inversion in F28 ,
which is the main part of S-box, is converted into the multiplicative
inversion (and multiplication) in F24 , then the latter can be implement-
ed by LIGHTER-R because its search space is small enough. By this
method, we construct the quantum circuits of S-box for mapping |a⟩|0⟩
to |a⟩|S(a)⟩ and |a⟩|b⟩ to |a⟩|b ⊕ S(a)⟩ with 20 qubits instead of 22 in
the previous studies. Besides, we introduce new techniques to reduce the
number of qubits required by the S-box circuit for mapping |a⟩ to |S(a)⟩
from 22 in the previous studies to 16. Accordingly, we synthesize the
quantum circuits of AES-128/-192/-256 with 264/328/392 qubits, which
implies a new record.
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1 Introduction

The parallelism of quantum computing makes quantum computers have signif-
icant speed-up compared with classical computers in certain specific problems,
such as solving linear systems [1–3], classification [4–8], dimensionality reduc-
tion [9–12], linear regression [12–14], association rule mining [15], anomaly de-
tection [16,17] and so on. Quantum algorithms, such as Shor [18], Grover [19] and
Simon [20], seriously threaten the security of modern cryptography. Although the
scale of quantum computers is not enough to break through the cryptographic
primitives so far, with the development of technology, these quantum algorithms

⋆ Corresponding author



2 Zhenqiang Li, Fei Gao, Sujuan Qin, Qiaoyan Wen

will be realized in the future. Thus, accurately estimating the actual arrival time
of quantum threat is the key to ensuring the steady renewal of the cryptosystem.
With the steady development of quantum computing hardware, evaluating the
minimum quantum resources required to realize Shor, Grover, Simon and other
cryptanalysis quantum algorithms has become one of the main factors affect-
ing the actual arrival time of quantum threat. For example, because T -depth
and number of qubits realized by current quantum computers are limited, they
are regarded as the main optimization goal in most previous studies about the
quantum circuit implementations of the above algorithms.

It is significant to estimate the cost of Grover algorithm attacking Advanced
Encryption Standard (AES) [21]. On the one hand, AES is one of the most s-
tudied and popular symmetric ciphers in the world. On the other hand, the cost
was used as the benchmark to define different security levels of post-quantum
public-key schemes when the National Institute of Standards and Technology
(NIST) [22] called for proposals to the standardization of post-quantum cryptog-
raphy. In the implementation, the quantum circuit of AES is the core of Grover
oracle, which is the most complicated part of the whole algorithm. For this rea-
son, optimizing the quantum circuit of AES becomes an important method of
reducing the quantum resources required for Grover algorithm attacking AES.
While among the tasks in optimizing the quantum circuit of AES, how to use
less resources to realize AES S-box, the only non-linear component, is one of the
main influencing factors.

Some quantum circuits of AES were designed to reduce the T -depth. In 2020,
Jaques et al. [23] constructed a quantum circuit of S-box for |a⟩|b⟩ → |a⟩|b ⊕
S(a)⟩ (a, b and S(a) are 8-bit vectors) with T -depth 6, and then synthesized
the quantum circuit of AES-128 with a T -depth of 120. In 2022, Li et al. [24]
proposed the S-box circuits for |a⟩|0⟩ → |a⟩|S(a)⟩ and |a⟩|b⟩ → |a⟩|b ⊕ S(a)⟩
with T -depth 4, and then reduced the T -depth required for the quantum circuit
of AES-128 to 80. Huang et al. [25] gave the circuit for |a⟩|b⟩ → |a⟩|b ⊕ S(a)⟩
with a T -depth of 3, and then further reduced the T -depth required for the
quantum circuit of AES-128 to 60.

At the same time, quite a few quantum circuits of AES were designed to
reduce the number of qubits (see Table 1). In 2016, Grassl et al. [26] implemented
the quantum circuit of AES-128 with 984 qubits by presenting the 40 qubits
quantum circuit of S-box for C1 : |a⟩|0⟩ → |a⟩|S(a)⟩ and introducing zig-zag
method for round function iteration. In 2018, Almazrooie et al. [27] reduced
the number of qubits required for the quantum circuit of AES-128 to 976 by
finding an improved key expansion iteration method. In 2020, Langenberg et
al. [28] constructed the S-box circuit for C1 with 32 qubits and completed key
expansion iteration by zig-zag method, then realized the quantum circuit of AES-
128 with 864 qubits. Zou et al. [29] proposed circuit for C1 with 22 qubits, and
gave an improved zig-zag method for round function iteration and key expansion
iteration by introducing the 23 qubits quantum circuits of S-box and its inverse
for C2 : |a⟩|b⟩ → |a⟩|b ⊕ S(a)⟩ and C3 : |a⟩|S(a)⟩ → |0⟩|S(a)⟩, then used 512
qubits to construct the quantum circuit of AES-128. In 2022, Wang et al. [30]
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synthesized the 400 qubits quantum circuit of AES-128 by giving straight-line
method for key expansion iteration. Huang et al. [25] proposed the S-box circuit
for C2 with 22 qubits, and introduced straight-line method for round function
iteration by giving the 22 qubits quantum circuit of S-box for C4 : |a⟩ → |S(a)⟩,
then implemented the quantum circuit of AES-128 with 374 qubits. In the same
period as Huang et al., Li et al. [24] synthesized the quantum circuit of AES-128
with 270 qubits by presenting the 22 qubits quantum circuits of S-box for C1, C2
and C4 as well as adopting straight-line method for round function iteration.

Table 1. Summary of the number of qubits required for implementing AES-128. “R-
FIM” and “KSIM” represent round function iteration method and key expansion iter-
ation method respectively.

Schemes S-box(#qubits) RFIM(#qubits) KSIM(#qubits) #Total qubits

[26] C1(40) Zig-zag(536) Pipeline(448) 984

[27] C1(64) Zig-zag(560) Pipeline(416) 976

[28] C1(32) Zig-zag(528) Zig-zag(352) 880

[29]
C1(22)
C2(23)
C3(23)

Improved zig-zag(256) Improved zig-zag(256) 512

[30] C2(32) Improved zig-zag(256) Straight-line(144) 400

[25]
C2(22)
C4(22)

Straight-line(240) Straight-line(134) 374

[24]
C1(22)
C2(22)
C4(22)

Straight-line(142) Straight-line(128) 270

Ours
C1(20)
C2(20)
C4(16)

Straight-line(136) Straight-line(128) 264

It can be seen that the number of qubits required for the quantum circuit of
AES has been greatly improved through the efforts of scholars, approaching the
optimal value of 256/320/384. It seems that further reducing them has become
a challenging task. In this work, we study how the AES S-box can be construct-
ed with fewer qubits, thereby reducing the number of qubits required for the
quantum circuit of AES. Note that any mention of qubits in this work refers to
logical qubits.

1.1 Our Contributions

We find a method to construct the quantum circuit of AES S-box with the
help of automation tool LIGHTER-R, which can reduce the number of qubits
required by C1 and C2 from 22 in the previous studies [24, 25, 29] to 20. Par-
ticularly, the quantum circuit of the multiplicative inversion in F28 is the main
factor affecting the number of qubits required by the quantum circuit of S-box.
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But there is no automatic tool to optimize it. Dasu et al. [31] presented an au-
tomatic tool, namely LIGHTER-R, that can generate the quantum circuit of
effectively implementing the multiplicative inversion in F24 . Unfortunately, the
tool LIGHTER-R cannot give the quantum circuit of implementing the multi-
plicative inversion in F28 since it requires greater search space. We find that
the multiplicative inversion in F28 can be computed through multiplicative in-
version (and multiplication) in F24 , and the latter can be realized by the tool
LIGHTER-R.

We introduce a new technique to construct the quantum circuit of S-box for
C4 : |a⟩ → |S(a)⟩ with only 16 qubits instead of 22 in the previous studies [24,25].
Different from connecting C1 : |a⟩|0⟩ → |a⟩|S(a)⟩ and C3 : |a⟩|S(a)⟩ → |0⟩|S(a)⟩
to obtain C4, we synthesize it in a direct way.

We find that uncomputation for removing ancilla qubits (i.e., reinstate the
initial state |0⟩) in some cases can be completed with less Toffoli and CNOT
gates (without adding additional qubits). Therefore, our S-box circuit for C1
also requires fewer Toffoli and CNOT gates than the previous studies [24, 29].
Note that the number of Toffoli and CNOT gates is often regarded as secondary
optimization goal.

By employing the above quantum circuits of S-box, we synthesize the quan-
tum circuit of AES-128 with 264 qubits instead of 270 in a previous study [24],
which implies a new record. Similarly, we also synthesize the quantum circuits of
AES-192/-256 with 328/392 qubits instead of 334/398 in a previous study [24].

The rest of this paper is organized as follows. In Section 2, we introduce some
quantum gates and briefly review the S-box of AES. In Section 3, we use the tool
LIGHTER-R to obtain the quantum circuit of implementing the multiplicative
inversion in F24 . In Section 4, our quantum circuits of S-box are given. In Section
5, we synthesize the quantum circuit of AES. In Section 6, we conclude the paper.

2 Preliminaries

2.1 Quantum Gates

Unlike a classical bit, a qubit is a two dimensional state and can be the super-
position defined as |ψ⟩ = α|0⟩+ β|1⟩, where α and β are complex numbers with
|α|2 + |β|2 = 1, and |0⟩ =

(
1
0

)
, |1⟩ =

(
0
1

)
. An n-qubit state |u⟩n can be described

as a unit vectors in C2n . In this paper, we also write |u⟩n as |u⟩. Particularly,
when n-qubit state is in |0 · · · 0⟩, we abbreviate it as |0n⟩

We clarify two types of qubits to avoid the confusion.

– Input and output qubits are used to store input and output information
of quantum computation. Note that it is generally not necessary to eliminate
the input and output qubits.

– Ancilla qubits store some intermediate values, which shall be eliminated
at the end of the quantum circuit. Note that the input state of ancilla qubits
takes generally |0⟩.
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Any reversible quantum computation can be described by performing a se-
quence of unitary transformations on an n-qubit state. A unitary transformation
U is a matrix in C2n×2n satisfying UU† = I (U† is the conjugate-transpose of U ,
I is identity transformations). In quantum implementation, any unitary trans-
formation can be approximated arbitrarily closely using a universal quantum
gate set. Toffoli, CNOT and NOT gate are a common universal quantum gates,
as shown in Figure 1.

– NOT/X gate: NOT|a⟩ = |ā⟩ = |1⊕ a⟩, this gate inverts the state of a single
qubit (see Figure 1(a));

– CNOT gate: CNOT|a⟩|b⟩ = |a⟩|b ⊕ a⟩, this gate adds the first qubit to the
second qubit. The first and second qubits are called control qubit and target
qubit respectively(see Figure 1(b));

– Toffoli/CCNOT/C2(X) gate: Toffoli|a⟩|b⟩|c⟩ = |a⟩|b⟩|c⊕ a · b⟩, the gate adds
the result of multiplication of the first two qubits to the third qubit. The
first two qubits are control qubits and the third qubit is target qubit (see
Figure 1(c)). This gate can be generalized with Tofn/C

n−1(X) gate, where
first n-1 qubits are used as control control qubits and the last qubit is target
qubit.

|a⟩ |ā⟩
(a)

|a⟩ • |a⟩
|b⟩ |b⊕ a⟩

(b)

|a⟩ • |a⟩

|b⟩ • |b⟩

|c⟩ |0⟩
(c)

Fig. 1. Universal quantum gates (a) NOT gate (b) CNOT gate (c) Toffoli gate.

The Toffoli-depth is defined as the minimum number of stages of parallel
applications of Toffoli-gates in a circuit, where parallel Toffoli-gates are allowed
when they are acting on different qubits. CNOT and NOT gates typically are
much cheaper than the Toffoli gate. Therefore, the Toffoli depth, instead of
circuit depth, is defined the time cost of quantum computation. Note that the
Toffoli gate can be decomposed into Clifford+T gates [32, 33], and T -gates is
expensive than Clifford gates.

2.2 The S-box of AES

Algebraic structure of S-box. The non-linear transformation S-box first
takes a byte input a ∈ F28 = F2[x]/(x

8 + x4 + x3 + x + 1), then replaces a
with its multiplicative inversion a−1 (when a = 0, set a−1 = 0), and finally
performs an affine transformation which is composed of multiplication by an
invertible matrix and the addition of a constant vector. Specifically, the S-box
transformation is expressed as

S(a) = Aa−1 ⊕ c, (1)
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where

A =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


, c =



1
1
0
0
0
1
1
0


.

The computation of S-box can be divided into two steps, i.e., computing the
multiplicative inversion a−1 and performing the affine transformation. The affine
transformation can be implemented with CNOT and NOT gates only. Thus, how
to realize the quantum circuit of finding a−1 with low costs becomes one of the
main factor optimizing the quantum circuit of S-box.

A decomposition of S-box. In Ref. [34], Wolkerstorfer et al. constructed the
following composite field F(24)2 isomorphic to F28 ,

– The field polynomial of F24 is x4 + x+ 1;

– The field polynomial of F(24)2 is x2 + x+ λ, where λ := x3 + x2 + x ∈ F24 .

Due to isomorphism, the mapping matrix M : F28 → F(24)2 and its inverse
matrix M−1 : F(24)2 → F28 are determined as

M =



1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 1 1 1 0 0 0 1


, M−1 =



1 0 1 1 0 1 0 0
1 0 0 1 1 1 1 0
0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1


. (2)

Based on the composite field F(24)2 , AES’s S-box can be rewritten as

S(a) = AM−1(Ma)−1 ⊕ c,a ∈ F28 . (3)

The multiplication by invertible matricesM , AM−1 (merging of matrices A and
M−1) and the addition of a constant vector c can be implemented with CNOT
and NOT gates only. Thus, the key to optimizing the S-box circuit becomes how
the quantum circuit of finding (Ma)−1 (Ma ∈ F(24)2) can be implemented with
low costs.

As pointed out in Ref. [34], any element p ∈ F(24)2 can be represented as a
linear polynomial with coefficients in F24 , i.e., p = p0 + p1x, p0, p1 ∈ F24 , and
its multiplicative inversion p−1 can be expressed as

p−1 = (p17)−1(p0 + p1) + (p17)−1p1x := n0 + n1x,

p17 = p21 × λ+ (p0 + p1)p0 ∈ F24 .
(4)
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where λ := x3 + x2 + x ∈ F24 . It is necessary for finding p−1 to compute
(p0 + p1)p0, p

2
1 × λ, (p17)−1(p0 + p1) and (p17)−1p1, which mainly involve the

multiplication (including constant multiplication p21 × λ) and multiplicative in-
version operations in F24 .

It can be seen that the implementation of S-box can be divided into three
modules, i.e., the multiplication in F24 , the multiplicative inversion in F24 , the
multiplication by invertible matrices M , AM−1 and the addition of a constant
vector c.

3 Quantum Circuit of Implementing the Multiplicative
Inversion in F24

Some quantum circuits of implementing the multiplicative inversion in F24 have
been proposed. Almazrooie et al. [27] constructed it by employing the quantum
circuit of implementing the multiplication in F24 many times. Saravanan et al.
[35], Chung et al. [36] and Wang et al. [30] implemented it respectively based
on a composite field F(22)2 . Recently, Li et al. [24] constructed it by converting
its classical circuit in Ref. [37] into a quantum version. See Table 3 for specific
resource estimates.

Table 2. Lookup table of the multiplicative inversion in F24 .

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x−1 0 1 9 E D B 7 6 F 2 C 5 A 4 3 8

In Ref. [31], Dasu et al. presented an automation tool, namely LIGHTER-R1,
which can give the quantum circuit implementation of any 4-bit S-box based on
lookup table. The tool LIGHTER-R has been widely applied in the quantum
circuit implementation of lightweight cryptography [38–40]. We found that the
multiplicative inversion in F24 can be seen as a 4-bit S-box, whose lookup table
is shown in Table 2. Thus, to obtain the quantum circuit of implementing the
multiplicative inversion in F24 , we employ the tool LIGHTER-R directly. The
resulting circuit is shown in Figure 2.

The Tof4/C
3(X)/CCCNOT gate in the dashed box of Figure 2 realizes the

function of |a⟩|b⟩|c⟩|d⟩ → |a⟩|b⟩|c⟩|d ⊕ abc⟩ and can be decomposed by some
Toffoli gates with an ancilla qubit (see Figure 3). Specifically, if the ancilla qubit
is an unknown quantum state |g⟩, CCCNOT gate can be decomposed by using
the circuit in Figure 3(a). And if the state of |g⟩ is known to be |0⟩, the last
Toffoli gate in Figure 3(a) is unnecessary which corresponds to Figure 3(b).
Thus, according to Figure 2 and Figure 3, we can obtain two quantum circuits of
implementing the multiplicative inversion in F24 for F24inv0 : |b⟩|0⟩ → |b−1⟩|0⟩
and F24inv1 : |b⟩|g⟩ → |b−1⟩|g⟩. These two quantum circuits will be used to

1 The source code of LIGHTER-R is available at https://github.com/vdasu/lighter-r
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|b0⟩ • • |b−1
0 ⟩

|b1⟩ • • • • • • |b−1
1 ⟩

|b2⟩ • • • • • •
>>

>>
> |b−1

2 ⟩

|b3⟩ • • • •

����� |b−1
3 ⟩

_ _�
�
�
�
�
�

�
�
�
�
�
�_ _

Fig. 2. Quantum circuit of implementing the multiplicative inversion in F24 . Here, b =
(b0, b1, b2, b3) and its inverse b−1 = (b−1

0 , b−1
1 , b−1

2 , b−1
3 ) are the input vector and output

vector, respectively. Note that b corresponds to an element in F24 . Swap operation only
changes the index of qubits and does not require quantum gates.

implement the quantum circuit of AES (8-bit) S-box. In the process, if there is
an idle quantum state |0⟩, we use F24inv0. Otherwise, we use F24inv1.

|a⟩ • • |a⟩
|b⟩ • • |b⟩
|c⟩ • • |c⟩
|d⟩ |d⊕ abc⟩

|g⟩ • • |g⟩
(a)

|a⟩ • • |a⟩
|b⟩ • • |b⟩
|c⟩ • |c⟩
|d⟩ |d⊕ abc⟩

|0⟩ • |0⟩
(b)

Fig. 3. Quantum circuits of CCCNOT

The resource estimates of these two quantum circuits for F24inv0 and F24inv1
are given in Table 3. Compared with the previous studies, our quantum circuits
require fewer qubits.

Table 3. Quantum resource estimates for the implementation of the multiplicative
inversion in F24 . #Toffoli/CNOTmean the number of Toffoli and CNOT gates. #qubits
means the number of qubits.

Schemes #qubits #CNOT #Toffoli Toffoli depth

[35] 18 22 9 4

[27] 16 47 48 39

[36] 16 / 9 6

[30] 8 20 14 14

[24] 6 22 6 6

Ours
5 5 8 8
5 5 9 9
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4 Quantum Circuits of S-box

In the section, we propose three quantum circuits of S-box for C1 : |a⟩|0⟩ →
|a⟩|S(a)⟩, C2 : |a⟩|b⟩ → |a⟩|b ⊕ S(a)⟩ and C4 : |a⟩ → |S(a)⟩ respectively2.
Along the way, we directly adopt Li et al.’s [24] quantum circuits, including UM ,
UAM−1 , Mul, B−Mul and Uq2λ.

– UM : |x⟩ → |Mx⟩ requires 8 qubits, 15 CNOT gates and a total depth of
8; UAM−1 : |x⟩ → |AM−1x⟩ requires 8 qubits, 26 CNOT gates and a total
depth of 10. Here, x ∈ F28 . Matrices A and M are referred in Eq.(1) and
Eq.(2) respectively.

– Mul : |f⟩|g⟩|04⟩ → |f⟩|g⟩|f · g⟩ requires 12 qubits, 9 Toffoli gates, 23 CNOT
gates and a Toffoli depth of 6; B−Mul : |f⟩|g⟩|h⟩ → |f⟩|g⟩|h⊕f · g⟩ requires
12 qubits, 9 Toffoli gates, 28 CNOT gates and Toffoli depth 6. Here, f , g,h ∈
F24 ;

– Uq2λ : |q⟩ → |q2 × λ⟩ requires 4 qubits, 3 CNOT gates and a total depth of
3. Here λ := x3 + x2 + x ∈ F24 , q is an arbitrary element in F24 .

4.1 Quantum Circuit of S-box for C1

In order to implement the quantum circuit of S-box for C1, we first propose a
quantum circuit of finding p−1 for |p⟩|0⟩ → |p⟩|p−1⟩. Here p = p0+p1x ∈ F(24)2

and its multiplicative inversion is p−1 = (p17)−1(p0 + p1) + (p17)−1p1x := n0 +
n1x.

We divide into four steps, i.e., computing p17, calculating the multiplicative
inversion (p17)−1 of p17, obtaining p−1 and uncomputation (i.e., clear up ancilla
qubits), to construct the quantum circuit for |p⟩|0⟩ → |p⟩|p−1⟩. Specifically,
we first give the quantum circuit for Up17 : |p⟩|04⟩ = |p0⟩|p1⟩|04⟩ → |p⟩|p17⟩.
According to p17 = p21×λ+(p0+p1)p0 ∈ F24 , Up17 can be realized by performing
Mul, Up2

1λ
(take q := p1) and some CNOT gates (see the red box in Figure 4).

Then |(p17)−1⟩ is obtained by performing F24inv0 on |p17⟩|0⟩. Here, instead of
adding a new qubit, we use a idle quantum state |0⟩ from output qubits as ancilla
qubit. Next |p−1⟩ = |(p17)−1(p0 + p1)⟩|(p17)−1p1⟩ := |n0⟩|n1⟩ is obtained in
output qubits by performing Mul two times. At this time, the circuit is in state
|p⟩|(p17)−1⟩|p−1⟩. In the end, |(p17)−1⟩ in ancilla qubits has to be removed for
the reuse, i.e., completing uncomputation. As mentioned in Ref. [24], the general

idea of completing the uncomputation is to perform F24inv
†
1 (since there is no

idle quantum state |0⟩) and U†
p17 on |p⟩|(p17)−1⟩. However, due to (p17)−1 =

(p−1)17, (p17)−1 can also be expressed as n21×λ+(n1+n0)n0. Therefore, we only

apply U†
p17 (the inverse circuit of Up17) to implement U†

(p−1)17 : |p−1⟩|(p17)−1⟩ =
|p−1⟩|(p−1)17⟩ → |p−1⟩|0⟩. The resulting quantum circuit, as shown in Figure
4, requires 20 qubits instead of 22 in a previous study [24].

2 The code that verifies the correctness of these S-box circuits is available at
https://github.com/lzq192921/quantum-circuit-implementation-of-AES.git
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Fig. 4. Quantum circuit for |p⟩|012⟩ → |p⟩|p−1⟩|04⟩. p = (p0, p1) and p−1 = (n0, n1)
are 8-bit input and output vectors respectively. CNOT gates between four qubit-sized
wires should be read as multiple parallel CNOT gates applied bitwise. Dashed lines
indicate wires that are not used in the corresponding circuit of the square box. Using
Uq2λ to implement U†

p21λ
due to p1 ∈ F24 . U

†
p21λ

is implemented by the inverse circuit of

Up21λ
. A quantum state |0⟩ from output qubits is used as ancilla qubit of F24 inv0.

By combining the quantum circuit in Figure 4 with UM and UAM−1 , we
obtain the quantum circuit of S-box for C1 in Figure 5, which requires 20 qubits.

|a⟩ 8/ UM

Uout(Ma)−1

UM−1 |a⟩

|08⟩ / UAM−1 |S(a)⟩

|04⟩ / |04⟩

Fig. 5. Quantum circuit of the S-box for C1 : |a⟩|012⟩ → |a⟩|S(a)⟩|04⟩. The input is
one element a ∈ F28 . The output is S(a). Uout(Ma)−1 : |Ma⟩|0⟩ → |Ma⟩|(Ma)−1⟩ is
implemented by the quantum circuit in Figure 4 since Ma is contained in F(24)2 . UM−1

is implemented by the inverse circuit of UM . ⊕ represents that the constant vector c
is added by flipping four qubits with four NOT gates.

The quantum resource estimates of C1 are shown in Table 4. Compared with
the previous studies, our S-box circuit for C1 requires less quantum resources
including the number of qubites.

Table 4. Comparison of our S-box circuit for C1 with previous works.

Schemes #qubits #Toffoli #CNOT #NOT Toffoli Depth

ours 20 44 197 4 32

[24] 22 48 236 4 36

[29] 22 52 326 4 41

[28] 32 55 314 4 40

[26] 40 512 369 4 144
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Remark 1. Compared with the circuit of Li et al., our circuit is different in two
aspects. First, we take an idle qubit from output qubits as ancilla qubits and
then compute (p−1)17 by F24inv0. Second, we find that uncomputation can be

completed only by performing circuit U†
p17 without F24inv

†
1. As a result, our S-

box circuit for C1 requires not only fewer qubits, but also fewer Toffoli gates and
lower Toffoli-depth. Cost estimates can be found in Table 4.

Our results shows that uncomputation for removing ancilla qubits (i.e., re-
instate the initial state |0⟩) can be optimized when the algebraic relationship
between the value in ancilla qubits and f(x) is simpler than that between x and
the value in ancilla qubits. Here, assume that f(x) is an arbitrary invertible non-
linear transformation, the goal circuit Uf : |x⟩|0⟩ → |x⟩|f(x)⟩ is implemented by
introducing some ancilla qubits. For example, in Figure 4, x := p, f(x) := p−1,
after getting the output information p−1, as analyzed above, the value (p17)−1

in ancilla qubits has simpler algebraic relationship with p−1 than with p.

4.2 Quantum Circuit of S-box for C2

In order to implement the quantum circuit of S-box for C2, we first proposed an
improved quantum circuit for |p⟩|h⟩ → |p⟩|h⊕ p−1⟩.

Fig. 6. Quantum circuit for |p⟩|h⟩|04⟩ → |p⟩|h⊕p−1⟩|04⟩. h = (h0, h1) is an arbitrary
8-bit vector. F24 inv1 applies an unknown quantum state |g⟩ from output qubits as its
ancilla qubit, which is returned to the same state at the end of the circuit.

Similar to Figure 4, we divide into four steps to implement |p⟩|h⟩ → |p⟩|h⊕
p−1⟩. First, |p17⟩ is obtained by performing Up17 on |p⟩|04⟩. However, unlike
Figure 4, we only use F24inv1 to compute |(p17)−1⟩ since there is no idle quantum
state |0⟩. The input state in output qubits is |h⟩ = |h0⟩|h1⟩ instead of |08⟩. Next,
|h ⊕ p−1⟩ = |h0 ⊕ n0⟩|h1 ⊕ n1⟩ is obtained by using B−Mul twice instead of
Mul. In the end, we need to clean up |(p17)−1⟩. Unfortunately, the removal has

to be completed by F24inv1 and U†
p17 because the output qubits are in state

|h ⊕ p−1⟩ instead of |p⟩. Note that because of the same function, we only use

F24inv1 instead of F24inv
†
1 (i.e., |b−1⟩|g⟩ → |b⟩|g⟩, (b−1)−1 = b). The resulting
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quantum circuit, as shown in Figure 6, requires 20 qubits instead of 22 in a
previous study [24].

By combining the quantum circuit in Figure 6 with UM and UAM−1 , we
construct the quantum circuit of S-box for C2 : |a⟩|b⟩|04⟩ → |a⟩|b⊕S(a)⟩|04⟩ in
Figure 7, whose number of qubits is 20.

|a⟩ 8/ UM

UMA−1b⊕(Ma)−1

UM−1 |a⟩

|b⟩ 8/ UMA−1 UAM−1 |b⊕ S(a)⟩

|04⟩ / |04⟩

Fig. 7. Quantum circuit for C2 : |a⟩|b⟩|04⟩ → |a⟩|b ⊕ S(a)⟩|04⟩. UMA−1b⊕(Ma)−1 :

|Ma⟩|MA−1b⟩ → |Ma⟩|MA−1b⊕ (Ma)−1⟩ is implemented by the quantum circuit in
Figure 6 because MA−1b and Ma are contained in F(24)2 . UMA−1 is implemented by
the inverse circuit of UAM−1 .

Table 5 summarizes the quantum resources needed to realize C2. Compared
with previous studies, our S-box circuit for C2 requires fewer qubits.

Table 5. Comparison of our S-box circuit for C2 with previous works.

Schemes #qubits #Toffoli #CNOT #NOT Toffoli Depth

ours 20 54 238 4 42

[24] 22 48 272 4 36

[25] 22 52 336 4 41

[29] 23 68 352 4 60

[30] 32 55 322 4 40

Remark 2. Compared with the circuit of Li et al., we take an idle qubit from
output qubits as ancilla qubits and then compute (p−1)17 by F24inv1, resulting
in a reduction in the number of qubits. Cost estimates can be found in Table 5.

4.3 Quantum Circuit of S-box for C4

Based on the idea mentioned in [41], Li et al [24] and Huang et al. [25] real-
ized the goal by connecting two quantum circuits for |a⟩|0⟩ → |a⟩|S(a)⟩ and
|a⟩|S(a)⟩ → |0⟩|S(a)⟩. Here, different from the previous method, we realize the
goal by proposing a quantum circuit for |p⟩ → |p−1⟩.

Similar to Figure 4, we first obtain |p17⟩ by performing Up17 on |p⟩|04⟩,
and then compute |(p17)−1⟩ by performing F24inv0 on |p17⟩|0⟩ (since there is
idle quantum state |0⟩). Next, we perform the circuit In−Mul in Figure 9 of
Observation 1 twice to obtain |n0⟩ and |n1⟩ respectively, i.e., the circuit is in
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state |n1⟩|04⟩|(p17)−1⟩|n0⟩. Along the way, instead of adding additional qubit-
s, |p0⟩ is removed for gaining storage space to place n1 after obtaining |n0⟩.
In the end, |(p17)−1⟩ is removed by executing U†

(p−1)17 on |n0⟩|n1⟩|(p17)−1⟩ =

|p−1⟩|(p17)−1⟩. The resulting quantum circuit, as shown in Figure 8, requires 16
qubits.

Fig. 8. Quantum circuit for |p⟩|08⟩ → |p−1⟩|08⟩.

Observation 1 The quantum circuit for In−Mul : |f⟩|g⟩|0⟩ → |0⟩|g⟩|f · g⟩
can not only get f · g, but also release storage space to place other values if f is
useless in subsequent operations. In−Mul can be implemented as follows

Fig. 9. Quantum circuit for In−Mul : |f⟩|g⟩|0⟩ → |0⟩|g⟩|f · g⟩.

Due to (f · g) ·g−1 = f , the circuit Mul† (|f⟩|g⟩|f · g⟩ → |f⟩|g⟩|0⟩) is used
to convert |f⟩|g−1⟩|f · g⟩ into |0⟩|g−1⟩|f · g⟩. At this moment, there exist an
idle quantum state |0⟩, so |g−1⟩ is converted back into |g⟩ by F24inv0.

|a⟩ 8/ UM
Uin(Ma)−1

UAM−1 |S(a)⟩

|08⟩ / |08⟩

Fig. 10. Quantum circuit for C4 : |a⟩|08⟩ → |S(a)⟩|08⟩. Uin(Ma)−1 : |a⟩ → |(Ma)−1⟩ is
implemented by the quantum circuit in Figure 8 because Ma is contained in F(24)2 .
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By combining the quantum circuit in Figure 8 with UM and UAM−1 , we obtain
the S-box circuit for C4: |a⟩|08⟩ → |S(a)⟩|08⟩ in Figure 10, which requires 16
qubits.

Table 6 summarizes the quantum resources needed to implement the S-box
circuit for C4. Compared with previous studies, our S-box circuit for C4 requires
fewer qubits.

Table 6. Comparison of our S-box circuit for C4 with previous works.

Schemes #qubits #Toffoli #CNOT #NOT Toffoli depth

Ours 16 96 244 4 78

[24] 22 96 410 4 71

[25] 22 104 694 12 82

In order to reduce the number of qubits, we often would like to compute
f(x) with a in-place circuit, i.e., |x⟩ → |f(x)⟩. For example, we directly obtain
the in-place quantum circuit F24inv0 by the tool LIGHTER-R. However, for
some complex functions f(x) (e.g. the multiplicative inversion in F28), directly
designing an in-place quantum circuit is difficult. As mentioned in Ref. [25],
a natural idea is to construct an in-place circuit based on out-of-place sub-
circuits. Huang et al. [25] proposed an in-place quantum circuit for |x⟩ → |f(x)⟩
by connecting two out-of-place circuit |x⟩|0⟩ → |x⟩|f(x)⟩ and |f−1(y)⟩|y⟩ →
|0⟩|y⟩ (f−1 is invertible function of f). Thus, their in-place circuit requires at
least 4n qubits if f(x) : {0, 1}2n → {0, 1}2n is an arbitrary invertible nonlinear
transformation. By connecting |a⟩|0⟩ → |a⟩|S(a)⟩ and |a⟩|S(a)⟩ → |0⟩|S(a)⟩,
Huang et al. [25] and Li et al. [24] gave the quantum circuit of S-box for C4,
whose cost estimates can be found in Table 6.

Fig. 11. An in-place quantum circuit for |x⟩ → |f(x)⟩. Uf0 : |x0⟩n|0⟩n → |0⟩n|f0(x0)⟩n
and Uf1 : |x1⟩n|0⟩n → |0⟩n|f1(x1)⟩n.

Observation 2 |x⟩ → |f(x)⟩ can be constructed with at least 3n qubits, If f(x)
can be expressed as f(x) = f0(x0) ∥ f1(x1) (f0(x0), f1(x1) : {0, 1}n → {0, 1}n
are invertible nonlinear transformation) when x is divided into x0 and x1, i.e.,
x := x0 ∥ x1. Figure 11 shows the circuit.
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|x0⟩ is removed to gain storage space to place f1(x1) only when it is useless
in subsequent operations. In our circuit for |p⟩ → |p−1⟩, x := p = p0 ∥ p1

and f(x) := p−1 = f0(x0) ∥ f1(x1) (note f0(x0) := (p17)−1(p0 + p1), f1(x1) :=
(p17)−1p1), Uf0 and Uf1 are implemented with the circuit in Figure 9 ((p17)−1

is computed in ancilla qubits which is regard as constant in f0(x0) and f1(x1)).

5 Quantum circuit implementations of AES

AES is a family of iterative block ciphers, which encrypts 16 bytes (i.e., 128 bits)
plaintexts and consists of round function and key expansion. The subroutines of
round function includes SubBytes, ShiftRows, MixColumns and AddRoundKey
(note the last round does not perform the MixColumns). The subroutines of key
expansion include SubWord, RotWord and Rcon. AES’s three instances AES-128
(10 iterations), AES-192 (12 iterations) and AES-256 (14 iterations) correspond
to the key lengths of 128, 192 and 256 bits respectively. The full specification of
AES can be found in Ref. [21].

In the present study, we implement the SubBytes (applying 16 S-box substi-
tutions) and SubWord (applying 4 S-box substitutions) by the S-box circuits in
Section 4. For other linear operations, the ShiftRows and Rotword can be im-
plemented by appropriate rewiring. The MixColumns can be implemented with
368 CNOT gates [42]. The AddRoundKey is implemented with 128 CNOT gates.
The Rcon is implemented by applying NOT gates.

In the following, we introduce the methods of round function iteration and
key expansion iteration, then synthesize the quantum circuit of AES.

5.1 Method of Round Function Iteration

As shown in Table 1, quite a few round function iteration methods were intro-
duced. Grassl et al. [26] proposed the zig-zag method, which requires 512+24 =
536 qubits (24 is the number of ancilla qubits required by their S-box circuit
for C1), to implement the round function iteration of AES-128. Almazrooie et
al. [27] and Langenberg et al. [28] employed the zig-zag method to complete the
iteration. Zou et al. [29] proposed an improved zig-zag method which requires at
least 256 qubits. Wang et al. [30] realized the iteration by the improved zig-zag
method. Recently, Li et al. [24] presented a straight-line method, which requires
128+14 = 142 qubits (14 is the number of ancilla qubits required by their S-box
circuit for C4). To make a tradeoff between the number of qubits and Toffoli
depth, Huang et al. [25] completed the iteration by the straight-line method
with 128 + 8 × 14 = 240 qubits (i.e., running S-box circuit for C4 eight time
simultaneously in constructing the SubBytes of Ri).

We also apply Li et al.’s straight-line method to realize the round function
iteration of AES-128. From Figure 10, we can see that our S-box circuit for
C4 reduces the number of ancilla qubits from 14 in the previous studies [24,
25] to 8. As a result, the number of qubits required to implement the round
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|K0⟩ 128/ •
|0128⟩ / R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Output

|08⟩ /

Fig. 12. Straight-line method for the round function iteration of AES-128. Ri means
the round i (i = 1, 2, · · · , 10). |K0⟩ is the 128-bit input key and is used to key expansion.

function iteration of AES-128 becomes 128+8=136. Figure 12 shows the straight-
line method for the round function iteration of AES-128. Similarly, the round
function iteration of AES-192/-256 can also be implemented with 136/136 qubits.

Remark 3. We can also make a trade-off between the number of qubits and
Toffoli depth by adding the number of S-box circuit for C4 in parallel. That is, if
we implement k S-box circuits for C4 in parallel (k divided by 16) each time in
constructing the SubBytes of Ri (i > 1), the number of qubits required for the
round function iteration of AES-128/-192/-256 becomes 128 + 8k.

5.2 Method of key expansion Iteration

Some key expansion iteration methods were proposed. Grassl et al. [26] proposed
the pipeline method, which requires at least 448 + 24 = 472 qubits (24 is the
number of ancilla qubits required by their S-box circuit for C1) , to implement
the key expansion iteration of AES-128. Then Almazrooie et al [27] presented
an improved pipeline method which requires at least 416 + 48 = 464 qubits.
Langenberg et al. [28] found that the zig-zag method can be used to complete
the key expansion iteration, which requires 352+16 = 368 qubits. Zou et al. [29]
proposed an improved zig-zag method to realize the iteration, which requires
256 + 7 = 263 (7 is the number of ancilla qubits required by Zou et al.’s S-box
circuit for C2). Wang et al. [30] presented a straight-line method to implement
the key expansion iteration, which requires 128 + 16 qubits. To make a tradeoff
between the number of qubits and Toffoli depth, Jaques et al. [23] completed the
iteration by the straight-line method with 128+4×121 = 612 qubits (i.e., running
S-box circuit for C2 four time simultaneously in constructing the SubWord of Ki)
Li et al. [24] and Huang et al. [25] adopted the straight-line method to complete
the iteration.

Here, we apply the straight-line method to implement the key expansion
iteration of AES-128. Because our S-box circuit for C2 requires 4 ancilla (see
Figure 7), we can realize the key expansion iteration of AES-128 with 128+4=132
qubits. Figure 13 shows the quantum circuit of implementing the key expansion
in i-th round. Similarly, we perform the key expansion iteration of AES-192/-256
with 196/260 qubits. Of course, as a trade-off between the number of qubits and
Toffoli depth, the number of qubits can also be 128 + 4h/192 + 4h/256 + 4h for
the key expansion iteration of AES-128/-192/-256 (h is the number of running
S-box circuit for C2 in parallel when the SubWord is constructed).
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SubWord

Fig. 13. The quantum circuit of implementing the key expansion of AES-128 in i-th
round for KeyExpan. : |Ki−1⟩ → |Ki⟩. Ki−1 and Ki are i − 1-th and i-th round key
respectively. |ki⟩j means j-th word of round key Ki.

Remark 4. In synthesizing the quantum circuit of AES, if the SubBytes in Ri

and SubWord in key expansion are not constructed simultaneously, we can reuse
idle qubits, which is applied to implemented the round function iteration, to
construct the SubWord. Thus, as the previous studies [24,26–30], they implement
the key expansion without adding additional ancilla (see Table 1). Otherwise,
as a trade-off between the number of qubits and Toffoli depth, it is necessary to
add new qubits as the previous study [23,25].

5.3 Quantum Circuits for implementing AES

Based on the straight-line method above, we synthesize the quantum circuit of
AES-128 with 264 qubits, where 136 qubits and 128 qubits are used to complete
the round function iteration and key expansion iteration. Note that 8 ancilla
qubits in round function iteration are reused to implement the key expansion
iteration.

First, as mentioned in the previous studies [24–26, 29], to save qubits, R0

which adds the key K0 on plaintext m (whitening step) is implemented by apply
NOT gates on some specific qubits of |K0⟩ (at most 128 NOT gates). Then
when |R0⟩ is used to compute the SubBytes in R1 later, |R0⟩ is reinstated |K0⟩
by applying NOT gates (at most 128 NOT gates). Particularly, the SubBytes in
R1 is constructed by running our S-box circuit for C1 sixteen times. The depth
of C1 is 3. The SubWord in K1 is constructed by running the S-box circuit for
C2 four times. The depth of C2 is 2. After realizing the SubWord, as Figure 14,
we perform the Rotword and Rcon to obtain K1 while ShiftRows, MixColumns
are implemented. At last, the AddRoundKey is implemented by performing 128
CNOT in parallel. The quantum circuit for realizing R0 and R1 is shown in
Figure 13. It can be seen that SubBytes and SubWord cannot be constructed in
parallel. Therefore, realizing R0 and R1 require Toffoli depth 3× 32 + 2× 42 =
180. Besides, these two round require 16 × 44 + 4 × 54 = 920 Toffoli gates,
197×16+238×4+96+368+128 = 4696 CNOT gates and 256+4×20+1 = 337
NOT gates.

Then, we implement Ri (i > 1), whose circuit is shown in Figure 15. Because
C4 requires 8 ancilla qubits (see Figure 10), we run the S-box circuit for C4
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|K0⟩128/⊕m

SubBytes1

⊕m
KeyExpan.

• |K1⟩

|08⟩ / |08⟩

|0128⟩ / ShiftRows MixColumns |R1⟩

Fig. 14. The implementation of R0 and R1 of AES-128. ⊕m means that plaintext m is
added on K0 by NOT gates, whose output is |R0⟩. SubBytes1 implements the SubBytes
in R1 with the S-box circuit for C1. KeyExpan. is the circuit of key expansion in Figure
13, which is used to obtain round key K1. |08⟩ are reused as ancilla qubits of KeyExpan.
and SubBytes1.

sixteen times in order to construct the SubBytes. The depth of C4 is 16, i.e., the
Toffoli-depth is 78 × 16 = 1248. Similarly, because C2 requires 4 ancilla qubits
(see Figure 7), two S-box transformations in SubWord of Ki can be implemented
in parallel. Thus, the depth of C2 required for constructing the SubWord is 2, i.e.,
the Toffoli-depth is 42 × 2 = 84. After realizing the SubWord, we perform the
Rotword and Rcon to obtain Ki while ShiftRows, MixColumns are implemented.
The AddRoundKey is finally implemented by performing 128 CNOT in parallel.
As a result, Ri can be constructed with Toffoli depth 1248+84=1332 since the
SubBytes and SubWord cannot be implemented in parallel. Besides, Ri requires
16× 96+ 4 ∗ 54 = 1752 Toffoli gates, 244× 16+ 238× 4+ 96+368+ 128 = 5448
CNOT gates (R10 does not perform the MixColumns and requires 244 × 16 +
238 × 4 + 368 + 128 = 5448 CNOT gates) and 4× 20 + 1 = 81 NOT gates (R9

and R10 require 4× 20 + 4 = 84 NOT gates).

|Ki−1⟩ 128/
KeyExpan.

• |Ki⟩

|08⟩ /
SubBytesi

|08⟩

|Ri−1⟩ 128/ ShiftRows MixColumns |Ri⟩

Fig. 15. The implementation of the i-th round (i.e., Ri) of AES-128 (i > 1). SubBytesi
implements the SubBytes in Ri with the S-box circuit for C4.

At last, combining the quantum circuit in Figure 14 and Figure 15, we can
obtain the quantum circuit of implementing AES-128. Similarly, the quantum
circuit of AES-192/-256 can be implemented with 334/398 qubits, respectively.
Table 7 gives the quantum resources required for implementing AES. Obviously,
our improved quantum circuits of S-box result in a reduction of the number of
qubits.

Remark 5. We can make a trade-off between the number of qubits and Toffoli-
depth. From Figure 7 and Figure 10, it can be seen that the number of ancilla
qubits required for two S-box circuit for C2 is the same as the number of ancilla
qubits required for one S-box circuit for C4. We regard two parallel circuit for
C2 as a whole circuit, and call such circuit and C4, double-width S-box circuit-
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Table 7. Quantum resources for implementing AES.

Algorithm Scheme #qubits #Toffoli #CNOT #NOT Toffoli depth

AES-128

ours 264 16688 53360 1072 12168
[24] 270 16508 81652 1072 11008
ours 328 16664 53496 1072 1472
[25] 374 17888 126016 2528 1558

AES-192
Ours 328 19328 60736 1160 14496
[24] 334 19196 94180 1160 13144

AES-256
Ours 392 23480 74472 1367 17412
[24] 398 23228 114476 1367 15756

s. In this case, 18 double-width S-box circuits are required in constructing the
SubBytes and SubWord of Ri (i > 1). If p double-width S-box circuits is im-
plemented in parallel (p divided by 18, i.e., p = 1, 2, 3, 6, 9, 18), the number of
qubits required for AES-128 will be 256 + 8p.

– When p = 1, the quantum circuit of implementing AES-128 can be obtained
by combining Figure 14 and Figure 15;

– When p > 1, the Toffoli-depth of constructing the SubBytes and SubWord
in Ri (i > 1) becomes 78× 18/p = 1404/p.
• When p = 2, the depth of S-box circuit for C1 in constructing the Sub-

Bytes of R1 is 3, i.e, the Toffoli-depth is 32 × 3 = 96. And the depth
of S-box circuit for C2 in constructing the SubWord of round key K1

becomes 1, i.e., the Toffoli-depth is 42. Thus, R1 is implemented with a
Toffoli-depth of 138;

• When p = 3 or 6, the Toffoli-depth of SubBytes in constructing R1

is 32 × 2 = 64. And the Toffoli-depth of SubWord in constructing the
round key K1 becomes 36. Thus, R1 is implemented with a Toffoli-depth
of 100. Here, the SubWord is constructed with the S-box circuit for C2
in Ref. [24] because it requires lower Toffoli-depth and the ancilla qubits
is also sufficient at this time;

• When p = 9 or 18, the Toffoli-depth of SubBytes in constructing R1 is
32. And the Toffoli-depth of SubWord in constructing the round key K1

becomes 36. Thus, R1 is implemented with a Toffoli-depth of 68. Figure
7 also gives the quantum resources required of AES-128 when p = 9.

6 Conclusion

In this study, we set a new record of the number of qubits required to synthesize
the quantum circuit of AES. First, we find a method to realize the quantum
circuit of AES S-box with the help of automation tool LIGHTER-R. Specifical-
ly, the main part of S-box, i.e., the multiplicative inversion in F28 , is computed
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through the multiplicative inversion (and multiplication) in F24 , then the quan-
tum circuit implementation of the latter is obtained by the tool LIGHTER-R.
Based on this, the quantum circuits of S-box for C1 : |a⟩|0⟩ → |a⟩|S(a)⟩ and
C2 : |a⟩|b⟩ → |a⟩|b ⊕ S(a)⟩ are constructed with 20 qubits instead of 22 in the
previous studies respectively. Second, by introducing new techniques, we reduce
the number of qubits required by the S-box circuit for C4 : |a⟩ → |S(a)⟩ from
22 in the previous studies to 16. At last, by applying these S-box circuits for
C1, C2 and C4, we synthesize the quantum circuits of AES-128/-192/-256 with
264/328/392 qubits instead of 270/334/398 in the previous studies.

Some inspirations can be drawn from our results. On the one hand, automat-
ed tools, for example the LIGHTER-R, should be fully utilized. On the other
hand, similar to our circuit for |a⟩ → |S(a)⟩, we should design the goal cir-
cuit directly as far as possible instead of using the previous trivial method, i.e.,
connecting two circuits. Particularly, since other symmetric ciphers (such as S-
M4 and Camellia) also use a similar S-box, their quantum circuits might be
optimized by our methods.
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