
𝑃3𝑉 : Privacy-Preserving Path Validation System
for Multi-Authority Sliced Networks

Weizhao Jin
weizhaoj@usc.edu

Information Sciences Institute
University of Southern California

Erik Kline
kline@isi.edu

Information Sciences Institute
University of Southern California

T. K. Satish Kumar
tkskwork@gmail.com

Information Sciences Institute
University of Southern California

Lincoln Thurlow
lincoln@isi.edu

Information Sciences Institute
University of Southern California

Srivatsan Ravi
sravi@isi.edu

Information Sciences Institute
University of Southern California

Abstract

In practical operational networks, it is essential to
validate path integrity, especially when untrusted in-
termediate nodes are from numerous network infras-
tructures operated by several network authorities. Cur-
rent solutions often reveal the entire path to all parties
involved, which may potentially expose the network
structures to malicious intermediate attackers. Addi-
tionally, there is no prior work done to provide a sys-
tematic approach combining the complete lifecycle of
packet delivery, i.e., path slicing, path validation and
path rerouting, leaving these highly-intertwined mod-
ules completely separated. In this work, we present a
decentralized privacy-preserving path validation system
𝑃3𝑉 that integrates our novel path validation protocol
with an efficient path slicing algorithm and a malice-
resilient path rerouting mechanism. Specifically, lever-
aging Non-Interactive Zero-Knowledge proofs, our path
validation protocol XOR-Hash-NIZK protects the packet
delivery tasks against information leakage about multi-
hop paths and potentially the underlying network infras-
tructures. We implemented and evaluated our system
on a state-of-the-art 5G Dispersed Computing Testbed
simulating a multi-authority network. Our results show
that while preserving the privacy of paths and nodes and
enhancing the security of network service, our system
optimizes the performance trade-off between network
service quality and security/privacy.

1 Introduction
To satisfy the various requirements for Quality of

Service (QoS) from users, network slicing in 5G net-
works [38] is proposed to allocate utilizable resources
across different Internet infrastructures. The most com-
mon application is to provide dynamic and intelligent
cross-party network paths for content delivery with dif-
ferent service levels specified by users. In an ideal world

where trust can be universally placed, network slicing
solutions with proper consensus mechanisms alone are
sound enough to fulfill dynamic network services re-
quested by various use cases. However, in a mutually-
untrusted collaborative operation network environment
at large, it is catastrophic to blindly assume that packets
will follow the advertised cross-party multi-hop paths
especially through a multi-authority network without a
path validation solution in place. The void of sufficient
path validation posed an obvious threat to service qual-
ity [4, 19, 22]. Therefore, to deliver the promised QoS
of network services and enforce the correct order of
network operations, designing and implementing path
validation solutions that adapt to the evolving network
technology standards is a constant challenge for corre-
sponding network operators. One research direction is
to use PKI-based signatures with third-party authorities
(BGPSec [25] introduced 23 years after the BGP adop-
tion) to validate network paths, which unfortunately
fails to scale with multiple independent network op-
erators. Current scalable path validation solutions [5–
7, 22, 28] usually inform all nodes en route with in-
formation about the path (sometimes even the entire
path), which exposes to all nodes not only the path
but also potentially the underlying network structure.
With rare exceptions, information about substrate net-
work infrastructures is generally regarded as valuable
yet sensitive corporate assets which the network oper-
ators will be reluctant to share openly and fully. More
importantly, such critical exposure enables an adversary
to easily observe and correlate anonymous or private
network traffics [9, 12, 21, 29], launch accurate targeted
attacks on specific network bottlenecks when vulner-
able network structures are pinpointed [2, 13, 14, 33],
and intrude sensitive data centers where critical data is
aggregated [1, 30, 32, 40].
Another challenge is to construct a systematic net-

work path solution that integrates different lifecycle

1

Service
Requests

Network
Infra Specs

VNE-CBS
Path Slicing

XOR-Hash-NIZK
Path Validation

LR Updates

Malicious
Detected?

Network Service
Fulfilled

Exceed LR Attempt
Threshold?Path Destroy Updates

Yes

No

No

Yes

Figure 1. The 3-Stage Modular System Structure of 𝑃3𝑉 : in the Path Slicing module, the slicing oracle takes in service requests from users and
network infrastructure specifications from infrastructure providers, then runs the VNE-CBS algorithm to generate a viable path; in the Path
Validation module, nodes en route execute the XOR-Hash NIZK protocol to validate the path while forwarding packets; in the Path Rerouting
module, if any malicious behavior is detected on the path, the system initializes the malice-resilient rerouting procedure by rerunning the first
modules with updated substrate networks.

stages of the packet forwarding task, namely path slic-
ing, path validation and path rerouting. However, to the
best of our knowledge, there is no prior work that pro-
vides a modular system that thoroughly builds linkages
between each path-related module within the frame-
work. Previous work focused heavily on designing so-
lutions for each individual component for each specific
sub-tasks [5–7, 10, 11, 15, 16, 22, 28, 35, 39, 42]. Simply
assembling these sub-solutions fail to realize a func-
tioning network path resolution system in practice. For
example, most existing path rerouting [16, 35, 39] can-
not be applied to mitigate the malicious intermediate
node behaviors, especially in the context of the multi-
authority 5G environment we defined above, because
these rerouting solutions simply ignore the mechanisms
of path slicing utilized in the first stage, making the path
recovery pragmatically impossible under their schemes.

This paper proposes a decentralized privacy-preserving
path validation system, 𝑃3𝑉 , that provides a systemic
and modular network slicing and validation solution for
multi-authority networks.
Contributions
1. We propose a systematic approach to the path vali-

dation problem in a secure and privacy-preserving
fashion integrating modules like path slicing, path
validation and path rerouting in the system design,
thoroughly covering different stages of the packet
forwarding lifecycle (shown in Figure 1) while per-
forming path validation without revealing neither
the overall path information nor node identities to
the intermediate nodes beyond their predecessor and
successor in the path.

2. We present the design of a decentralized privacy-
preserving path validation protocol XOR-Hash-
NIZK using Non-Interactive Zero-Knowledge (NIZK)

proofs, which provides path/node privacy guaran-
tees. The NIZK-based pairwise validation design also
optimizes the network performance and mitigates
impacts on end-user service quality.

3. We implemented and evaluated our path validation
system both in a simulated 5G environment and on
a state-of-the-art 5G Dispersed Computing Testbed,
where the results substantiate our optimized trade-off
between security, privacy and performance.

Paper roadmap The rest of the paper is structured as
follows: in §2 and §3 we provide an overview of the
background knowledge needed and related work; in §4
we define the path validation problem; in §5 and §6 we
introduce our privacy-preserving path validation proto-
col XOR-Hash-NIZK and the malicious rerouting design
respectively; in §7 and §8, we construct the system and
evaluate our system both in a simulated multi-node 5G
network environment and on a large-scale 5G Dispersed
Computing Testbed.

2 Background
2.1 Network Slicing

Network slicing is used in 5G networks to efficiently
fit dynamic needs of different Service Level Require-
ments (SLR) by slicing and configuring the actual mono-
lithic network infrastructures into multiple logical parts
across parties [41]. For example, data transmission for
first responder service requires low latency and low loss
but low bandwidth whereas home media storage de-
vices require high bandwidth but do not prioritize loss
or latency. With proper network slicing in place, such
various types of services can be efficiently satisfied.

Per Service Level Agreements (SLA), the slicing au-
thorities will provide a suitable network path from the
physical infrastructures for various requests.

2

Virtual Network Embedding The Virtual Network
Embedding (VNE) problem is the combinatorial prob-
lem of embedding Virtual Network Requests (VNRs) into
a Substrate Network (SN) while satisfying constraints
such as bandwidth capacities on the SN edges, CPU ca-
pacities on the SN vertices, and geographical constraints
on the VNR vertices. The embedding maps each VNR
vertex to a unique SN vertex and each VNR edge to
a path in the SN between the corresponding vertices.
A solution to the VNE problem is essentially a set of
multi-hop paths cognizant of network resources.
VNE-CBS The VNE-CBS algorithm [42] is an efficient
algorithm for the VNE problem that minimizes the
amount of physical network resources spent on embed-
ding VNRs. It is a bi-level heuristic search algorithm that
carries out searching in the conflict-resolution space.
As shown in Figure 2, the high-level search detects vio-
lations of constraints and resolves them by branching.
During the high-level searching, the low-level search
performs path planning for VNR vertices under the
restrictions imposed by the high-level search.

Main goal: find and resolve
conflicts in mappings

1. Use cost (primary) and
number of conflicts
(secondary) as heuristics;

2. Detect existing conflicts in
the current graph;

3. Resolve conflicts by
branching and generating
constraints;

4. Enforce tie-breaker by
avoiding SN vertices with
concurrent VNR tasks.

High-Level:
Focal Search

Low-Level:
Best-First Search

Main goal: find a shortest path
from one VNR vertice to another
VNR vertice

1. Search (best-first) starts from
the origin and stops until a
shortest path to the goal is
found;

2. Examine valid neighbors to
avoid paths that creates vertex
conflicts.

Figure 2. VNE-CBS Algorithm (Bi-Level Heuristic Search): the high-
level search detects and resolves conflicts in mappings; the low-level
search finds the shortest path (constrained by the high-level search)
for a VNR vertex to its goal.

Compared to other proposed solutions for the VNE
problem [10, 11, 15], the advantages of the VNE-CBS

algorithm include: (a) the ability to incorporate other
security-related constraints in the high-level and low-
level searches; (b) the ability to exploit independence
and loose interactions between the paths; (c) the ability
to incorporate advances of heuristic searchmethods into
the high-level and low-level searches; (d) the ability to
utilize a small leeway in the optimality of the solution
towards a significant improvement in the running time;
and (e) the completeness and optimality properties.

Another potential advantage of the VNE-CBS frame-
work is that the high-level conflict-resolution search tree
can be stored and reused. Thus, when a new constraint
is added, the incremental computation can be enabled
to update the solution. Such a framework is beneficial
when certain segments of multi-hop paths cannot be
validated, requiring the paths to be updated under the
added restrictions. For the above reasons, we choose the
VNE-CBS algorithm as the underlying solution for path
slicing module in our system.
2.2 Path Validation
Network path validation [4] is used to enforce and

verify cross-party multi-hop paths agreed to satisfy cer-
tain service requirements. Deviating from agreed paths
not only downgrades network service quality but also
disrupts network orchestration at large. The general ob-
jectives of path validation can be defined as follows [22]:
• Enforcement Path validation enforces a packet
is forwarded on the agreed path over each node
en route in the correct order.
• Verification The sender node, intermediate
nodes or the receiver node is able to verify that
the packet forwarding follows the correct path.

It is worth mentioning that the verification objective
enhances the enforcement objective in a sense that to
successfully pass path verification, each node tends to
follow the protocol thus enforcing the path.

General procedure of path validation can be described
as that, after correctly executing its portion of a given
packet forwarding task, a node en route is required to
prove that it indeed follows certain paths/protocols to
either its neighboring nodes or some third-party trusted
authorities/APIs.
2.3 Non-Interactive Zero-Knowledge
Non-Interactive Zero-Knowledge proofs [3, 27] are

zero-knowledge proofs that does not require excessive
interaction (only one exchange) between a prover P to
a verifierV . During the process, P computes a proof 𝜋
to convinceV that a statement 𝑥 ∈ L is true.V verifies
𝜋 then decides to either accept or reject. NIZK proofs
have certain properties:
• Completeness TheV always accepts correct 𝜋
for a statement 𝑥 ∈ L.

3

Protocol Transparent Validation [5–7, 22, 28] Semi-PP Validation [34] XOR-HASH-NIZK

Privacy Guarantee All nodes en route learn
the info about the whole path

Intermediate nodes learn
some info about the
path such as number
of nodes en route

Each intermediate
node only learns

its neighboring nodes

Integration with
Network Slicing No No Yes

Malicious
Rerouting Resolution No No Yes

Cryptographic
Overhead

Lightweight
Encryption/Decryption

Overhead mainly
from Signature
Signing and

Encryption/Decryption

Overhead mainly
from NIZK

Table 1. Comparison of Different Path Validation Protocols: we refer to path validation protocols without much privacy-preserving design as
Transparent Validation and path validation solutions with some privacy-preserving design as Semi-PP (privacy-preserving) Validation. As stated
in §1, protocols from both categories are stand-alone path validation solutions without integration with network slicing algorithms and path
rerouting approaches, which are essential and challenging in practice. Protocol overheads listed are qualitative evaluations based on cryptographic
primitives utilized.

• SoundnessV always rejects any 𝜋 for all 𝑥 ∉ L,
except with negligible probability.
• Zero-knowledge A NIZK proof should guaran-
tee thatV learns nothing from 𝜋 beyond the fact
that 𝑥 ∈ L.

In our protocol, each party obtains the validation to-
ken from its successor after finishing its promised task
and uses NIZK to prove to its predecessor that it cor-
rectly delivers the packet with a statement that this
party possesses the token. Note that this NIZK proof
can be verified by any related party in the system. To be
more specific, the authorities can also verify the proof
for malicious node detection (will be discussed in detail
in §5). The Algorithms 1 and 2 demonstrate the general
process of NIZK with hashing.

Algorithm 1 Prover
1: 𝑠𝑒𝑐𝑟𝑒𝑡 ← 𝑟𝑎𝑛𝑑𝑜𝑚

2: 𝑝𝑟𝑜𝑣𝐾 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 .𝐾𝑒𝑦𝐺𝑒𝑛()
3: Primary input 𝑝𝐼 := SHA256(𝑠𝑒𝑐𝑟𝑒𝑡)
4: Auxiliary input 𝑎𝐼 := 𝑠𝑒𝑐𝑟𝑒𝑡
5: 𝑝 𝑓 := 𝑃 𝑓𝐺𝑒𝑛(𝑝𝑟𝑜𝑣𝐾, 𝑝𝐼, 𝑎𝐼)

Algorithm 2 Verifier
1: 𝑣𝑒𝑟𝑖𝐾 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 .𝐾𝑒𝑦𝐺𝑒𝑛()
2: 𝑝𝐼 ← public values
3: 𝑏𝑜𝑜𝑙 := 𝑃 𝑓𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑣𝑒𝑟𝐾, 𝑝 𝑓 , 𝑝𝐼)

3 Related Work
Several path validation protocols have been proposed

over the years. A path validation protocol by Kim et al.

enables a node to validate all its predecessors en route
before it moves on to delivering the packets [22]. How-
ever, like other works on path validation [5–7, 28], it
fails to protect the privacy of nodes and the path. To
validate the path, their protocol reveals the information
of the entire path to every intermediate node as well
as the identities of the end users. Sengupta et al. pro-
posed a privacy-preserving path validation to tackle this
privacy issue [34], but their work also fails to provide
a completely secure system due to the following ma-
jor reasons: (a) each intermediate node still learns the
number of nodes en route, which can still potentially
leak more information, even the entire path information
under certain attacks; (b) there is no sound malicious
node report mechanism; (c) there is no system-level so-
lution once certain malicious nodes are detected, such
as re-routing and backup paths. With better security
and privacy properties, our protocol guarantees that
intermediate nodes would learn nothing beyond their
predecessor and successor. The summarized comparison
can be found in Table 1
NIZK-based path validation has been adopted and

used in the bitcoin payment channels by Malavolta
et al [26]. Their work uses NIZK to enforce bitcoin
payment-channel transaction orders. However, we lever-
age the idea of NIZK in the content of content delivery
in 5G networks and propose novel solutions like anony-
mous sender verification and pairwise validation to im-
prove efficiency and compatibility with 5G networks
path validation in a more systematic but also thorough
fashion. Note that the use case and detailed design of
our protocol is different from their protocol despite that
both protocols use NIZK.

4

Several network rerouting solutions have been pro-
posed [16, 35, 39], but none of them consider the rerout-
ing scenario where malicious actors are present and
detected. In our work, we propose a complete pipeline
from detecting malicious nodes on packet forwarding
paths to resolving rerouting according to dynamic mali-
cious behaviors.

4 Problem Definition
We model A as a probabilistic polynomial-time ma-

chine and the nodes on the path as interactive Turing
machines.
Definition 1 (Adversary). An adversary A is capable
of corrupting a subset of nodes in the network. A compro-
mised node will divert to A all the received messages and
act as A requests.

As shown in Figure 3, the adversary controlling a
subset of compromised nodes may have the following
malicious behaviors [4]:
• Skipping A malicious node skips its successor
and forwards the packet to another malicious
node later en route.
• Detour A malicious node forwards the packet to
other malicious nodes that are not en route but
eventually returns back to the agreed path.
• Out-of-order A group of malicious nodes for-
wards the packet but not in the agreed order.

All parties can interact with the ideal world func-
tionality F via secure channels and the interaction is
described in Figure 4.
F guarantees such security and privacy properties:
• Path verification Each intermediate node has to
forward the packact received from its predecessor
to its successor per the assigned path order.
• Endhost anonymity The identity of neither the
sender or the receiver will be revealed to inter-
mediate nodes during packet forwarding. Only F
learns the identities.
• Path privacy (1) Even if A compromises inter-
mediate nodes, A is still uncertain about the
sender-receiver pair identity; (2) If there are at
least two adjacent honest nodes between two com-
promised intermediate nodes, A is not certain
whether there is more nodes between this two
honest nodes, which means malicious nodes will
not learn anything beyond its predecessors and
successors. Note that violation of path privacy
also provides attack surface for tracking down
endhosts which impacts endhost anonymity.
• Malicious node detection If any node deviates
from its fair share of the agreed path, it cannot
provide the valid token to F hence the malicious
action is detectable.

(a) Skipping

(c) Out-of-order

(b) Detour

Option 1

Option 2

Figure 3. Examples of Typical Malicious Behaviors En Route: com-
promised nodes (red) can conduct there major malicious behaviors,
namely skipping (skips certain honest nodes between compromised
nodes), detour(reroutes packets via other compromised nodes that are
not on the path) and out-of-order (disrupts the assigned node order).

Initialization
• F generates sends validation tokens for each nodes
en route. F forwards 𝑥𝑖 to each intermediate node
𝑁𝑖 .

Secret Release
• Upon receiving the packet, the node 𝑁𝑖+1 sends the
token 𝑥𝑖+1 to its predecessor.

Secret Submission
• The intermediate 𝑁𝑖 receives the token 𝑥𝑖+1 from
its successor and sends it back to F except for the
receiver node who does not need to send a token to
F .

Secret Verification
• F validates 𝑥𝑖+1 received from 𝑁𝑖 .
Figure 4. Ideal World Functionality: F is computed in the ideal world
by a trusted party. In the ideal world version of 𝑃3𝑉 , F guarantees
security of path validation.

Definition 2 (UC-Security). A protocol 𝜋 is secure if
there exists a simulator S in the ideal world such that, in
the presence of A, for all inputs, probability distributions
of the ideal world and the real world are computationally
indistinguishable.

5

In our protocol, we guarantee properties of the ideal
world functionality using XOR, hashing and NIZK.

5 XOR-Hash-NIZK Path Validation
In this section, we introduce a novel path validation

protocol using hashing, XOR and NIZK to address issues
of previous attempts on the privacy-preserving path val-
idation problem. Our protocol aims to provide security
and privacy without a huge performance compromise.
5.1 Oblivious Anonymous Sender Verification
Traditional path validation methods require the

sender node to reveal its identity to intermediate
nodes [22]. This means that certain authenticity verifi-
cation procedures need to take place. To avoid identity
leakage during this process, we propose to use anony-
mous channels [8] for the sender-node communication
along with a digital signature lightweight anonymous
sender verification method for other nodes to authenti-
cate the sender for each session but without knowing
its actual identity. This is essential to our protocol and
it is executed in the initialization stage.
To prove its anonymous identity to other nodes, the

sender would first generate a pair of the private key and
public key (which will be distributed to each node via
authorities). Then the sender uses its private key to sign
the message containing validation tokens.
5.2 XOR-Hash Approach

A base approach has been introduced using XOR op-
erations and hashing for path validation [20]. In this ap-
proach, XOR operators mask the paths from the current
intermediate nodes to the receiver node and hashing is
used to validate the XORed results of tokens en route.
The protocol interacts as follows:

With a delivery task involving 𝑛 hops, the sender sam-
ples 𝑛 independent strings (𝑥1, . . . , 𝑥𝑛) correspondingly
with 𝑦𝑖 = 𝐻

(⊕𝑛

𝑗=𝑖 𝑥 𝑗

)
using a hash function 𝐻 and the

XOR operator
⊕

. Each intermediate node 𝑖 received
from the sender over an anonymous channel a tuple
(𝑦𝑖+1, 𝑥𝑖). with the exception where the receiver node
receives (𝑦𝑛, 𝑥𝑛).

The validation procedure starts from the receiver by
the receiver node sending the XOR bit string to its pre-
decessor, which should match the hash digest that the
predecessor obtained in the initialization stage. Moving
on from here, the predecessor uses the XOR bit string
with its token to generate a new bit string for validation
at its own predecessor. This procedure propagates until
the sender node and the sender node will then infer a
binary validation result.
Several issues exist in this base approach: (a) each

node needs all the nodes after it on the path to finish

their validation such that it can execute its own valida-
tion procedure, such a serial execution fashion incurs the
excessive overall waiting period from a task perspective;
(b) failures at any point of the path can fail the valida-
tion of all predecessor nodes in the serial execution; (c)
it is hard to pinpoint the locations of malicious nodes,
i.e., the protocol yields a binary result on whether one
or more malicious nodes exist on the path but does not
provide the accurate location of the malicious node(s).
5.3 Improved Design: XOR-Hash-NIZK

To solve the issues mentioned above, atop the vanilla
protocol, we construct a protocol that utilizes the XOR
combiner and the hash function in the form of 𝑦𝑖 =

𝐻

(⊕𝑛

𝑗=𝑖 𝑥 𝑗

)
. However, instead of a pure hash function,

the validation uses NIZK with SHA256. After complet-
ing the content delivery task and receiving its succes-
sor’s secret, each node 𝑁𝑖 generates a NIZK proof as the
prover, proving that 𝑦𝑖 = 𝐻

(⊕𝑛

𝑗=𝑖 𝑥 𝑗

)
without reveal-

ing
⊕𝑛

𝑗=𝑖 𝑥 𝑗 to its predecessor. The predecessor receives
the proof and verifies it. This validation process starts
from the receiver and propagates back to the sender. Un-
fortunately, such an easy alternative using NIZK does
not provide a sound solution and the listed issues still
remain unsolved. Additionally, considering the cost of
NIZK operations, the sequential validation execution
introduces a dramatically increasing overhead, which
makes the protocol impractical in a real-time network.
However, the zero-knowledge property of NIZK pro-
vides us with the possibility to perform local validation
without revealing extra information about the path.

Algorithm 3 𝐼𝑛𝑖𝑡𝑁0 ({𝑁0, 𝑁𝑖 , . . . , 𝑁𝑛}):
1: (𝑠0, 𝑠1) ← 𝑟𝑎𝑛𝑑𝑜𝑚

2: (𝑝𝑢𝑏𝐾, 𝑝𝑟𝑖𝑣𝐾) := 𝐾𝑒𝑦𝐺𝑒𝑛(𝑠0)
3: 𝑆𝑒𝑛𝑑 (𝑂𝐴0, 𝑝𝑢𝑏𝐾)
4: for i from n to 1 do
5: if i == n then
6: (𝑥𝑛, 𝑥𝑛+1) ← 𝑠1
7: else
8: 𝑥𝑖 ← 𝑠1
9: end if
10: 𝑦𝑖 := 𝑥𝑖 ⊕ 𝑥𝑖+1
11: 𝑚𝑖 := 𝑆𝑖𝑔𝑛(𝑝𝑟𝑖𝑣𝐾, (𝑥𝑖 , 𝑦𝑖 , 𝑦𝑖+1, 𝑝𝑟𝑜𝑣𝐾, 𝑣𝑒𝑟𝑖𝐾))
12: 𝑆𝑒𝑛𝑑 (𝑁𝑖 ,𝑚𝑖)
13: end for

To completely overcome these issues, we propose a
pairwise validation version that validates nodes only
using neighboring nodes’ secrets, i.e., each node proves
to its predecessor that it has delivered the content using
its secret and its successor’s secret. The intuition behind
this design is that if the delivery between each pair is

6

⋯⋯ ⋯⋯

Node 0 Node i-1 Node i+1Node i Node n

⓪ (xn, xr, provK, veriK)

⓪ (xi-1, yi-1, yi, provK, veriK)

② check yi = H(xi ⊕ xi+1)
 generate pfi

④ verify pfi+1

Anonymous Channel

① xi ① xi+1

③ pfi ③ pfi+1

⓪ (xi, yi, yi+1, provK, veriK)

⓪ (xi+1, yi+1, yi+2, provK, veriK)

② check yi-1 = H(xi-1 ⊕ xi)
 generate pfi-1

④ verify pfi

Packet Forwarding

Path Validation

Figure 5. XOR-Hash-NIZK Protocol Workflow (Anonymous Sender Verification Omitted In The Figure): blue depicts the packet forwarding process
and red indicates the backward path validation process.

Algorithm 4 𝑃𝑟𝑜𝑣𝑒𝑁𝑖
(𝑥𝑖+1, 𝑝𝑟𝑜𝑣𝐾,𝑚𝑖 , 𝑝𝑢𝑏𝐾):

1: if (𝑦𝑖 == 𝑥𝑖 ⊕ 𝑥𝑖+1 and 𝑉𝑒𝑟𝑖 𝑓 𝑦𝑆𝑖𝑔𝑛(𝑚𝑖 , 𝑝𝑢𝑏𝐾)) is
not true then

2: return error
3: end if
4: 𝑝 𝑓𝑖 := 𝑃 𝑓𝐺𝑒𝑛(𝑝𝑟𝑜𝑣𝐾,𝑦𝑖 , 𝑥𝑖 ⊕ 𝑥𝑖+1)
5: 𝑆𝑒𝑛𝑑 (𝑁𝑖−1, 𝑝 𝑓𝑖)

Algorithm 5 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑁𝑖
(𝑝𝑓𝑖+1, 𝑣𝑒𝑟𝐾):

1: if 𝑃 𝑓𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑣𝑒𝑟𝐾, 𝑝 𝑓𝑖+1, 𝑦𝑖+1) is not True then
𝑆𝑒𝑛𝑑 (𝑂𝐴𝑖 , rptMsg)

2: end if

proven to be valid, the entire path should be valid as well.
We refer to this type of validation as pairwise validation.

Figure 5 and Figure 6 show how the protocol works.
The sender node 𝑁0 first sends to each intermediate
node 𝑁𝑖 along the agreed path its secret 𝑥𝑖 and the
hash value 𝑦𝑖+1 for validating its successor. Each hash
value 𝑦𝑖 = 𝐻 (𝑥𝑖 ⊕ 𝑥𝑖+1), except the receiver’s hash value
𝑦𝑛 = 𝐻 (𝑥𝑛). If a packet is delivered to the next node and
the content of the packet is untampered, the next node
reveals its secret to its predecessor. After the delivery
task is fulfilled, the intermediate 𝑁𝑖 receives the secret
𝑥𝑖+1 from its successor and generates its proof to prove
that it obtains 𝑥𝑖+1. 𝑁𝑖 sends the proof to its predeces-
sor 𝑁𝑖−1. 𝑁𝑖−1 then verifies the proof. The entire path is

validated only when all nodes en route complete their
pairwise validation. Note that the validation process
runs across nodes in a near-parallel fashion and from
the perspective of the entire system it is not a sequential
execution of path validation per node with NIZK, which
to some degree circumvent the overhead constraint in-
troduced by the use of NIZK.
5.4 Malicious Node Detection
NIZK does not only make a privacy-preserving pair-

wise validation solution possible. Additionally, NIZK
proofs can be proved by anyone in the system, which
makes local path validation and distributed malicious
node detection viable. The key idea behind ourmalicious
node detection function is that authorities can also learn
the hash digests of their managed nodes without reveal-
ing any critical information, which means the authority
can step in and also be able to verify potential malicious
nodes using NIZK proofs.
As shown in Figure 7, whenever a potential mali-

cious node is reported, the corresponding authority will
request and then verify the NIZK proof. If the proof
fails or is not received, the authority further investi-
gates the node for potential infrastructure compromise
or malicious attacks like DDoS and reacts according to
its policy; if the proof passes, the authority will mark
the reporting node as suspicious and also conducts an
investigation. Authorities can form certain malicious
behavior policies at their will.

7

Initialization
• The sender node 𝑁0 generates secrets 𝑥 and hash digests 𝑦 for each node along the path. The sender node 𝑁0
sends via an anonymous channel to each intermediate node 𝑁𝑖 along the agreed path directed by the network
slicing authority its secret 𝑥𝑖 (except that the receiver also receives an additional value 𝑥𝑟), its hash value 𝑦𝑖 and
the hash value 𝑦𝑖+1 for validating its successor. Each hash value 𝑦𝑖 = 𝐻 (𝑥𝑖 ⊕ 𝑥𝑖+1), i.e., 𝑦𝑖 is the hash value of
XORing 𝑥𝑖 and 𝑥𝑖+1, except the receiver’s hash value 𝑦𝑛 = 𝐻 (𝑥𝑛 ⊕ 𝑥𝑟). To prove its anonymous identity to other
nodes, the sender also generates a pair of private key and public key (which will be distributed to each node via
authorities). Then the sender uses its private key to sign the message containing validation tokens.
• The authority of each node acts as NIZK Generator to produce a proving key 𝑝𝑘 and a verification key 𝑣𝑘 (which
will be distributed to the node’s predecessor via other authorities).
• Upon receiving messages on the anonymous channel, each node first verifies the anonymous sender’s identity by
checking the signature using the received public key and only proceeds if the identity verification passes.

Secret Release
• After the delivery contract is fulfilled, the node 𝑁𝑖+1 sends the secret 𝑥𝑖+1 to its predecessor.
Proof Generation
• The intermediate 𝑁𝑖 receives the secret 𝑥𝑖+1 from its successor and generates its NIZK proof to prove that it
obtains 𝑥𝑖+1.

Proof Verification
• 𝑁𝑖 sends the proof to its predecessor 𝑁𝑖−1. 𝑁𝑖−1 verifies the proof 𝑦𝑖 = 𝐻 (𝑥𝑖 ⊕ 𝑥𝑖+1).
• If 𝑁𝑖 ’s proof does not pass, 𝑁𝑖−1 reports the potential malicious behavior to its authority. The authority requests
the NIZK proof from 𝑁𝑖 and verifies it. If the proof fails or is not received, the authority punishes the node
according to its policy; if the proof passes, the authority will conduct an investigation on the reporting node per
policy.

Figure 6. XOR-Hash-NIZK Path Validation Protocol

⋯⋯ ⋯⋯

Node 0 Node i-1 Node i Node n

⋯⋯ ⋯⋯

① report Node i ③ request proof ④ resubmit proof

② report Node i ⑤ verify proof

X
⓪ fail proof

Figure 7. Malicious Node Detection

5.5 Security Analysis
Theorem 1. (UC-Security) Let 𝐻 be a random-oracle
hash function and (P,V) be a NIZK proof system, our
protocol 𝜋 securely realizes the ideal functionality F in
the presence of an adversary A.

We use a simulator S to simulate the real-world exe-
cutions and interact with the ideal world functionality
F . Communications among parties are through secure
channels.

In our protocol, the sender is assumed to be an honest
party that obtains the knowledge of the entire path. The
operations of our protocol are redescribed here from
the perspectives of F , S and A. Each honest node 𝑢𝑖
receives a message parsed as (< 𝑢𝑖−1, 𝑢𝑖 >, < 𝑢𝑖 , 𝑢𝑖+1 >
, 𝑥𝑖 , 𝑦𝑖 , 𝑦𝑖+1) with the special case of the honest receiver

as (< 𝑢𝑛−1, 𝑢𝑛 >, 𝑥𝑛, 𝑥𝑟 , 𝑦𝑛). For each 𝑢𝑖 , S checks if
V(𝑦𝑖 = 𝐻 (𝑥𝑖 ⊕ 𝑥𝑖+1)) = 1 (for the receiver, it isV(𝑦𝑖 =
𝐻 (𝑥𝑛 ⊕ 𝑥𝑟)) = 1) and sends F a correct message other-
wise aborts. For each corrupted intermediate node, S is
also notified with (< 𝑢𝑖−1, 𝑢𝑖 >, < 𝑢𝑖 , 𝑢𝑖+1 >, 𝑥𝑖 , 𝑦𝑖 , 𝑦𝑖+1)
from F . S samples an 𝑥 ∈ {0, 1}𝜆 and 𝑥 ′ ∈ {0, 1}𝜆 . On
input (𝑥, 𝑥 ′, 𝐻 (𝑥 ⊕ 𝑥 ′)), S runs the simulation of NIZK
to obtain the proof as P(𝑦 = 𝐻 (𝑥 ⊕ 𝑥 ′)) = 1.A sends ⊤
to F ifA sends 𝑥 ′′ such that 𝑥 ′′ = 𝑥 ⊕𝑥 ′ toS, otherwise
the simulation is aborted.
We then prove that the view of the environment in

such a polynomial-efficient simulation is indistinguish-
able from the view of the execution of the real-world
protocol. Our NIZK-based protocol breaks the multi-
hop validation into a single-hop interaction mode. F
always receives ⊤ returned from each honest node that
completes the delivery and passes the validation, which
means the validation is not interrupted at honest nodes.
S aborts ifA fails to output 𝑥𝑖 ⊕𝑥𝑖+1 for corrupted node
𝑢𝑖 . Additionally, S learns nothing more from F than
identities of the corrupted node’s predecessor and suc-
cessor, which is the same in the real-world execution.
The distributions of real-world protocol executions and
simulated results are probabilistically indifferentiable.

8

6 Malice-Resilient Rerouting
Once malicious nodes en route are detected, it is crit-

ical to restore the content delivery path per service
promised. The principle of service rerouting is to search
for a suboptimal path that excludes the detected mali-
cious nodes and their related entities. Excluding certain
nodes shifts the topology of substrate networks as the
underlying network infrastructures, which in general
should be dynamically adjusted according to the status
of malicious behaviors within the network.
However, it is challenging to apply a rerouting strat-

egy while minimizing impacts on service quality guar-
antee when malicious path-forwarding behaviors are
present. We first study the two fundamental strategies
for path rerouting and then propose an efficient rerout-
ing design integrated with VNE-CBS.
6.1 Base Strategies
There are two basic rerouting strategies for resolv-

ing compromised paths, namely the pre-generated path
backup and the on-the-fly path regenerating:
• Pre-generated path backup When generating
a path for a certain content delivery task, the au-
thorities also produce one or more backup paths
by selectively removing some or even all nodes
from the substrate network.
• On-the-fly (OTF) path regeneratingOnce a set
of malicious nodes are detected, the slicing author-
ities work in real-time to generate a new path that
excludes themalicious nodes and their potentially-
related nodes.

In practice, compared to the OTF path regenerating,
the pre-generated path backup approach has several
problems. First, to obtain decent coverages for potential
malicious nodes, the amount of backup paths needed
increases dramatically with more hops en route. For
example, a 4-hop (3 intermediate nodes) path requires
in total 7 different backup paths and a 6-hop path (5
intermediate nodes) path requires in total 31 backup
paths. Additionally, reserving such a large amount of
resources on the network (from a business perspective,
it does not make sense to service providers to put all
these resources on hold just for failures caused by poten-
tially malicious actors) and storing all the backup path
information and also related tokens on the responding
party are not practical in reality.
However, the OTF path regenerating approach does

not have the issues discussed above by dynamically re-
computing a new path after detecting malicious nodes.
This guarantees that detected malicious nodes will not
be on the new path. Apparently, this OTF approach re-
quires additional communication among parties in the
system, but the extra communicational overhead is also
inevitable using the pre-generated backup paths.

For these reasons, ourmalicious-node-resilient rerout-
ing mainly adopts the OTF path regenerating strategy.
6.2 Efficient and Effective Rerouting

Algorithm 6 𝑅𝑒𝑟𝑜𝑢𝑡𝑖𝑛𝑔(𝐺, 𝑁𝑚𝑎𝑙):
1: Remove 𝑁𝑚𝑎𝑙 from the network 𝐺
2: Scan 𝐺 for edge changes
3: for all egde changes do
4: Update edges and vertices
5: end for
6: Run VNE-CBS focusing on changes within 𝐺

When regenerating OTF paths, the path slicing works
on an updated substrate network with detected mali-
cious nodes removed. This means that the major part of
the network topology remains unchanged. Using this
observation, we leverage the idea from 𝐷∗ Lite [23] to
construct an efficient path regenerating algorithm for
malicious node resolution. The main idea of 𝐷∗ Lite is
that changes in the graph topology (e.g., a new blockage
that was unknown before) only change a small amount
of cells’ estimated goal distances while most of the cells
status stays the same, which means recalculating a path
only involves cells with changed status.
As shown in Algorithm 6, for a network path find-

ing task, detected malicious nodes can be viewed as
new blockages in the network. The removal of these
malicious nodes updates the topology but only on ver-
tices and edges that are changed and relevant. Since
the algorithm does not expand unchanged vertices, it
is efficient compared to rerunning the entire VNE-CBS
from scratch. We refer to this rerouting strategy in our
system as Local Repairing.

In the extreme case that there is no successful subop-
timal path searched with a focus on only changes after
a certain threshold of attempts, we destroy the path by
replacing all nodes and rerouting searching for a com-
pletely new path instead of forcing Local Repairing.

7 System Construction
7.1 Substrate Network
We build our system on a 5G Dispersed Comput-

ing Testbed with up to 1200 available computing nodes
(Ubuntu 18.04.5 LTS with Dual-core Intel E3826 and 2
GB of RAM), which are dynamically configured to be
the substrate network per request. Figure 8 shows an ex-
ample of our network system using such a testbed as the
substrate network. Ansible [17] is used to orchestrate
the nodes within the system.
7.2 Path Slicing
The first module of our system is VNE path slic-

ing/finding. Given a set of network nodes with various
9

Setup Accept Ratio Avg Revenue Avg Cost Revenue/Cost Ratio Avg Runtime (s)
10-20-50 1.00 66.05 66.05 1.00 0.009
10-20-80 0.98 419.81 598.63 0.70 0.106
10-50-50 0.99 114.33 114.33 1.00 0.001
10-50-80 0.96 122.71 122.71 1.00 0.002
20-20-50 0.76 126.12 186.34 0.68 1.001
20-20-80 0.71 159.34 159.72 1.00 1.012
20-50-50 0.74 444.99 512.43 0.87 1.351
20-50-80 0.69 561.44 837.86 0.67 2.211

Table 2.Microbenchmark of VNE-CBS: setup format is {NumberOfVNRs}-{BoundOfCPU}-{BoundOfBandwidth}. Each setup has been executed 100
times and the results are averaged.

(a) Path Slicing (b) Path Forwarding + Validation

Forwarding Validation

Figure 8. Testbed Example: with a substrate network of 12 nodes and
15 edges, an optimal path with 5 hops is found.

available resources of CPU and bandwidth at different
locations, the path finding algorithm will be executed
to generate a suitable path that satisfies QoS/SLA for
a specific task. From an input/output perspective, the
inputs are VNR with the specific sender-receiver re-
lationship and substrate network specifications; the
output is information about nodes selected in order.
We adopt an assumption that each authority sub-

mits information about its available infrastructures to a
trusted party (an oracle) to run the VNE-CBS algorithm
and the oracle returns the path back to slicing author-
ities and then all associated nodes. This is because, to
the best of our knowledge, there is currently no sound
secure multi-party path finding algorithms that fit our
needs. Secure multi-party path finding is not in the re-
search scope of this paper but our system can be easily
modified with a secure path finding algorithm.
7.3 Path Validation

After path slicing, authorities agree on a certain path
for the packet delivery task and then inform each node
en route of its predecessor and successor.
NIZK implementationWeuse a concatenation SHA256
hashing version of NIZK based on libsnark library [24]’s
compression hashing gadget by adding finalization
steps like padding. In the initialization stage upon the
sender’s service request, the sender’s authority (acting

as Generator) is responsible for generating a key pair of
proving key and verifying key. The key pair then will be
distributed to all nodes via authority-to-authority com-
munication. Keys and proofs are serialized/deserialized
using basic ifstream/ofstream.
7.4 Path Rerouting
After malicious nodes are detected, the system re-

moves these nodes from the substrate network by releas-
ing their resources. In our implementation, malicious
nodes are simulated randomly at a given rate. The re-
moval of nodes will update the substrate network, which
will be shared with the path slicing oracle via orchestra-
tion. The oracle will attempt VNE-CBS reruns to find
a malice-free suboptimal path with focusing on edge
changes in the underlying substrate network topology
as discussed in §6. A successful Local Repairing will
yield a semi-new designated path that restarts the sys-
tem pipeline, otherwise a destroy path solution for a
completely new path will be adopted. In our current
system implementation, we manually set an attempt
threshold for path rerouting, i.e., the packet delivery
task in our implementation will be aborted after a fixed
number of attempts.

8 Evaluation
In this section, we present our experimental setup

and a detailed evaluation of the 𝑃3𝑉 system. We seek to
answer the following key questions:
• The effectiveness and efficiency of the VNE-CBS
algorithm with specified service requests on re-
stricted substrate network resources
• The extra overhead introduced by our privacy-
preserving path validation protocol XOR-Hash-
NIZK in both simulation and 5G testbed impleme-
nation as well as the potential impact on service
quality from enhanced security and privacy

8.1 Experimental Setup
We implement our system in C++ and JavaScript with

NZIK library libsnark and OpenSSL [36] for hashing. We

10

Operation (s) Sender Intermediate Receiver
Token Generation + Hashing n: 8.32 0 0

Signature Generation (RSA 1024) n: 48.17 0 0
Signature Verification (RSA 1024) 0 1:0.02 1:0.02

NIZK Proof Generation 0 1:5988.46 1:5988.46
NIZK Proof Verification 1:90.52 1:90.52 0

Table 3. Step Cost of XOR-Hash-NIZK Protocol in Docker Compose Simulation: here shows an example of 100 nodes; in (𝑖 : 𝑗) , 𝑖 means iterations
required across parties and 𝑗 means total runtime (in ms).

Difference of around 6s

Figure 9. Small Scale Comparison in Docker Compose Simulation:
three protocols are ideal world functionality (a trusted central server),
the XOR-Hash protocol and our improved protocol (XOR-Hash-
NIZK); the cost difference of around 6s between XOR-Hash-NIZK
and Ideal/XOR-Hash mainly comes from the execution of one round
of NIZK proof generation and verification.

evaluate our system in two different setups: a Docker
Compose [18] simulation and an actual multi-node 5G
Dispersed Computing Testbed as described above in
§7.1. Specifically, our simulation runs on a machine (In-
tel® Core™ i7-7700 CPU @ 3.60GHz × 8 and 16 GB of
RAM) using Docker Compose to simulate a network
with multiple distributed nodes.

To generate substrate network topologies and random
VNR requests in our VNE experiments, we utilize the
Waxman graphs [37]. TheWaxman graph is a popular al-
gorithm to model random but realistic geometric graphs.
In our experiments, we generate testing communication
networks and network services requests with Waxman
parameters 𝛼 as 0.5 and 𝛽 as 0.2 [31]. In the generated
substrate networks, the node CPU resource values are
bounded within [20, 50] and the edge bandwidth values
are bounded within [50, 100]. For VNRs, we have a set
of different request configurations, with the number of
VNRs being either 10 or 20; the bound of node CPU
resources being 20 or 50; the bound of edge bandwidth
being 50 or 80. These setups are used in microbench-
marking the VNE-CBS path slicing functionality.

0 100 200 300 400 500
Number of Nodes

0

20

40

60

80

100

120

140

Ti
m

e
(s

)

Ideal World Functionality
XOR-Hash
XOR-Hash-NIZK

Figure 10. Large Scale Comparison in Docker Compose Simulation:
the cost comparison of three versions of path validation at a larger
scale with similar setups

8.2 Evaluation Results

VNE-CBS evaluation We first evaluate the perfor-
mance of the VNE-CBS algorithm under our experi-
mental setting. As shown in Table 2, we test the slicing
algorithm using 3 different parameters for configuration
with 2 boundary values for each parameter (i.e., in total
8 setups). In each setup, there are 100 VNR requests and
their results are averaged. Our VNE-CBS evaluation
metrics consist of 4 categories, namely accept ratio (suc-
cess rate of finding a solution before timeout), revenue
(satisfied VNR resources), cost (utilized SN resources),
revenue/cost ratio and runtime (execution time to find
a solution that satisfies the requirements).
Takeaways The evaluation results show that with more
strict service requirements in VNR requests, there are
not always feasible solutions guaranteed in the current
substrate networks and the accept ratio drops. The more
strict requests also result in a longer average runtime
to find satisfied solutions. As for revenues and costs, it
is easier overall to find VNE mappings with high rev-
enue/cost ratios from requests with loose constraints.
In our experiment, we purposefully set generally strict
requirements for testing and the VNE-CBS algorithm is
shown to be efficient as a path slicing solution.

11

Path validation benchmark evaluation We then
benchmark the cost of our path validation protocol in
the simulation environment. In the Docker Compose
simulation, we first break down the overhead of the
protocol by looking at different parties in the system,
i.e., the sender, the intermediate nodes and the receiver
shown in Table 3. The sender needs to generate tokens
with hash digests and also sign the messages. These
operations have to be repeated for all nodes but are
relatively low-cost. The intermediate nodes (and the re-
ceiver) are mainly responsible for verifying the message
signature received. Additionally for the backward path
validation, they need to generate their own NIZK proof
and also verify their predecessor’s proof (but not at the
receiver). Although each node at most is only required
to perform one iteration of NIZK operation, NIZK proofs
are in general computation-demanding cryptographic
primitives where the majority share of the cost resides
in the proof generation phase (with our pairwise opti-
mization in place, the nearly parallel execution of proof
verification still yields around 6 seconds). The effect of
this additional overhead, compared to path validation
protocols that are not based on NIZK (the trusted cen-
tralized server protocol and the XOR-Hash protocol),
can be seen in Figure 9 and Figure 10. In these two
figures, costs involve stages of initialization, validation
token distribution, secret release and validation execu-
tion for each protocol. For the ideal world functionality,
the cost includes an extra step of secret submission; for
the XOR-Hash and XOR-Hash-NIZK protocols, the cost
includes anonymous sender verification, XORing and
hashing tokens, and NIZK proof generation/verification
(only in XOR-Hash-NIZK). Especially in the small-scale
evaluation, it is clearly demonstrated that our NIZK-
based path validation protocol brings in a noticeable
performance gap which although becomes less obvious
with more nodes on the path.
Takeaways Intuitively, this delay of around 6 seconds
will inevitably compromise the service quality for end
users. However, this apparent network performance
compromise can be justified. Recall that our path vali-
dation is carried out in a backward fashion and is also
executed in a pair-wise validation mode. With these two
characteristics, as we focus on the service quality in
terms of user experience, our path validation process
is rather separated from the forward packet delivery
process as a backend service compared to traditional
validate-before-forward approaches and will not be no-
ticed from a user standpoint in normal cases with no
malicious behaviors. With the presence of malicious
parties, the forwarding service is mainly destructed by
malicious behaviors already. For example, in the case of
detouring, the user experience might also not encounter

Init Packet Forward Proof Gen Proof Transfer Proof Verify
Steps

0

10

20

30

40

50

60

70

80

Ti
m

e
(s

)

1.3

77.225

45.318

0.005 0.541

Forward
Backward

Figure 11. Testbed Step Evaluation (Example of 20 Nodes): an end-
user perspective where forward steps (blue) directly impact network
service quality (e.g., the content delivery time cost per communication
constraints) and backward steps (red) are related to the path validation
process running in the backend (in normal cases which will not be
noticed by users)

any huge difference caused by the validation module
but only from the detouring forced by the adversary.
XOR-Hash-NIZK testbed evaluation In addition to
the simulation analysis, we also build and test a path val-
idation system on our 5G Dispersed Computing Testbed.
Our results indicate that our system demonstrates a
similar performance tendency for the path validation
module on the multi-machine testbed compared to the
simulation results shown above. In our testbed system
implementation, we also focus on evaluating the trade-
offs from the end-user perspective. In Figure 11, we use
an example of a path with 20 nodes en route on the
testbed and the sender has requested a forward task of
a 5GB file (the typical file size of an HD movie). The
tested average bandwidth from Node 1 to Node 20 is
around 530.4 Mbps (i.e., 66.3 MB/s).
Takeaways According the mechanism of our validation
process, the backward pairwise validation starts right
after the packet reaches the first hop, which means that
a large portion of the nodes have finished the valida-
tion at the time when forward process completes. As we
discussed in the simulation result part, similarly, from
the end-user experience, the potential performance com-
promise from additional privacy-preserving secure path
validation is inevitable, but to some extent, can be justi-
fiable regarding service quality guarantee.

9 Concluding Remarks
In this work, we propose a decentralized privacy-

preserving path validation system 𝑃3𝑉 , which guaran-
tees the privacy of paths and nodes while further en-
hancing network security during packet delivery tasks
against information leakage about multi-hop paths and

12

potentially the underlying network infrastructures. Ad-
ditionally, our system integrates our path validation
protocol with an efficient path slicing algorithm and
a malice-resilient path rerouting mechanism, which is
built and evaluated in a simulation as well as a testbed
implementation. As for future work, it is crucial to fur-
ther improve the trade-offs between security/privacy
and service quality and provide more complex func-
tionalities (e.g., privacy-preserving multi-authority path
slicing and agreement) in our path validation system.

References
[1] Abdallah Mustafa Abdelrahman, Joel JPC Rodrigues,

Mukhtar ME Mahmoud, Kashif Saleem, Ashok Kumar
Das, Valery Korotaev, and Sergei A Kozlov. Software-defined
networking security for private data center networks and
clouds: vulnerabilities, attacks, countermeasures, and solutions.
International Journal of Communication Systems, 34(4):e4706,
2021.

[2] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error
and attack tolerance of complex networks. nature, 406(6794):378–
382, 2000.

[3] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
From extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, pages
326–349, 2012.

[4] Kai Bu, Avery Laird, Yutian Yang, Linfeng Cheng, Jiaqing Luo,
Yingjiu Li, and Kui Ren. Unveiling the mystery of internet packet
forwarding: A survey of network path validation. ACM Comput-
ing Surveys (CSUR), 53(5):1–34, 2020.

[5] Hao Cai and Tilman Wolf. Source authentication and path vali-
dation with orthogonal network capabilities. In 2015 IEEE Con-
ference on Computer Communications Workshops (INFOCOMWK-
SHPS), pages 111–112. IEEE, 2015.

[6] Hao Cai and Tilman Wolf. Source authentication and path val-
idation in networks using orthogonal sequences. In 2016 25th
International Conference on Computer Communication and Net-
works (ICCCN), pages 1–10. IEEE, 2016.

[7] Kenneth L Calvert, James Griffioen, and Leonid Poutievski. Sep-
arating routing and forwarding: A clean-slate network layer
design. In 2007 Fourth International Conference on Broadband
Communications, Networks and Systems (BROADNETS’07), pages
261–270. IEEE, 2007.

[8] Jan Camenisch and Anna Lysyanskaya. A formal treatment of
onion routing. In Annual International Cryptology Conference,
pages 169–187. Springer, 2005.

[9] Abdelberi Chaabane, Pere Manils, and Mohamed Ali Kaafar. Dig-
ging into anonymous traffic: A deep analysis of the tor anonymiz-
ing network. In 2010 fourth international conference on network
and system security, pages 167–174. IEEE, 2010.

[10] Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun
Yang, Yan Luo, and Jie Wang. Virtual network embedding
through topology-aware node ranking. ACM SIGCOMM Com-
puter Communication Review, 41(2):38–47, 2011.

[11] NM Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and
Raouf Boutaba. Virtual network embedding with coordinated
node and link mapping. In IEEE INFOCOM 2009, pages 783–791.
IEEE, 2009.

[12] Liangdong Deng, Yuzhou Feng, Dong Chen, and Naphtali Rishe.
Iotspot: Identifying the iot devices using their anonymous net-
work traffic data. In MILCOM 2019-2019 IEEE Military Communi-
cations Conference (MILCOM), pages 1–6. IEEE, 2019.

[13] Sergey N Dorogovtsev and José Fernando F Mendes. Scaling be-
haviour of developing and decaying networks. EPL (Europhysics
Letters), 52(1):33, 2000.

[14] Ernesto Estrada. Network robustness to targeted attacks. the
interplay of expansibility and degree distribution. The Euro-
pean Physical Journal B-Condensed Matter and Complex Systems,
52(4):563–574, 2006.

[15] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann
De Meer, and Xavier Hesselbach. Virtual network embedding:
A survey. IEEE Communications Surveys & Tutorials, 15(4):1888–
1906, 2013.

[16] Masoumeh Gholami and Behzad Akbari. Congestion control in
software defined data center networks through flow rerouting.
In 2015 23rd Iranian conference on electrical engineering, pages
654–657. IEEE, 2015.

[17] Red Hat. Ansible is simple it automation, 2022. https://www.
ansible.com/.

[18] Docker Inc. Overview of docker compose, 2022.
[19] Jian Jiang,Wei Li, Junzhou Luo, and Jing Tan. A network account-

ability based verification mechanism for detecting inter-domain
routing path inconsistency. Journal of Network and Computer
Applications, 36(6):1671–1683, 2013.

[20] Weizhao Jin, Srivatsan Ravi, and Erik Kline. Decentralized
privacy-preserving path validation for multi-slicing-authority 5g
networks. In 2022 IEEE Wireless Communications and Networking
Conference (WCNC), pages 31–36. IEEE, 2022.

[21] Ishan Karunanayake, Nadeem Ahmed, Robert Malaney, Rafiqul
Islam, and Sanjay Jha. Anonymity with tor: A survey on tor
attacks. arXiv preprint arXiv:2009.13018, 2020.

[22] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee,
Yih-Chun Hu, and Adrian Perrig. Lightweight source authen-
tication and path validation. In Proceedings of the 2014 ACM
Conference on SIGCOMM, pages 271–282, 2014.

[23] Sven Koenig and Maxim Likhachev. Dˆ* lite. Aaai/iaai, 15:476–
483, 2002.

[24] SCIPR Lab. libsnark: a c++ library for zksnark proofs, 2021.
https://github.com/scipr-lab/libsnark.

[25] Matt Lepinski and Kotikalapudi Sriram. BGPsec Protocol Speci-
fication. RFC 8205, September 2017.

[26] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo
Maffei, and Srivatsan Ravi. Concurrency and privacy with
payment-channel networks. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
pages 455–471, 2017.

[27] Silvio Micali. Computationally sound proofs. SIAM Journal on
Computing, 30(4):1253–1298, 2000.

[28] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazieres,
Michael Miller, and Arun Seehra. Verifying and enforcing net-
work paths with icing. In Proceedings of the Seventh Conference
on Emerging Networking Experiments and Technologies, pages
1–12, 2011.

[29] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr:
Strong flow correlation attacks on tor using deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1962–1976, 2018.

[30] Carlos Natalino, Amaro de Sousa, Lena Wosinska, and Marija
Furdek. Content placement in 5g-enabled edge/core data center
networks resilient to link cut attacks. Networks, 75(4):392–404,
2020.

[31] NetworkX. waxman graph, 2022. https://networkx.org.

13

https://www.ansible.com/
https://www.ansible.com/
https://github.com/scipr-lab/libsnark
https://networkx.org

[32] David R Raymond and Scott F Midkiff. Denial-of-service in
wireless sensor networks: Attacks and defenses. IEEE Pervasive
Computing, 7(1):74–81, 2008.

[33] Nadav Schweitzer, Ariel Stulman, Tirza Hirst, Roy David Mar-
galit, and Asaf Shabtai. Network bottlenecks in olsr based ad-hoc
networks. Ad Hoc Networks, 88:36–54, 2019.

[34] Binanda Sengupta, Yingjiu Li, Kai Bu, and Robert H Deng.
Privacy-preserving network path validation. ACM Transactions
on Internet Technology (TOIT), 20(1):1–27, 2020.

[35] Akash Srikanth, P Varalakshmi, Vignesh Somasundaram, and
Pavithran Ravichandiran. Congestion control mechanism in
software defined networking by traffic rerouting. In 2018 Sec-
ond International Conference on Computing Methodologies and
Communication (ICCMC), pages 55–58. IEEE, 2018.

[36] The OpenSSL Project. OpenSSL: The open source toolkit for
SSL/TLS. www.openssl.org, April 2003.

[37] Bernard M Waxman. Routing of multipoint connections. IEEE
journal on selected areas in communications, 6(9):1617–1622, 1988.

[38] Wikipedia. 5g network slicing, 2022. https://en.wikipedia.org/
wiki/5G_network_slicing.

[39] Eric WM Wong, Andy KM Chan, and T-SP Yum. A taxonomy of
rerouting in circuit-switched networks. IEEE Communications
Magazine, 37(11):116–122, 1999.

[40] Peng Xiao, Wenyu Qu, Heng Qi, and Zhiyang Li. Detecting ddos
attacks against data center with correlation analysis. Computer
Communications, 67:66–74, 2015.

[41] Shunliang Zhang. An overview of network slicing for 5g. IEEE
Wireless Communications, 26(3):111–117, 2019.

[42] Yi Zheng, Srivatsan Ravi, Erik Kline, Sven Koenig, and T. K. Satish
Kumar. Conflict-based search for the virtual network embed-
ding problem. Proceedings of the International Conference on
Automated Planning and Scheduling, 32(1):423–433, Jun. 2022.

14

www.openssl.org
https://en.wikipedia.org/wiki/5G_network_slicing
https://en.wikipedia.org/wiki/5G_network_slicing

	Abstract
	1 Introduction
	2 Background
	2.1 Network Slicing
	2.2 Path Validation
	2.3 Non-Interactive Zero-Knowledge

	3 Related Work
	4 Problem Definition
	5 XOR-Hash-NIZK Path Validation
	5.1 Oblivious Anonymous Sender Verification
	5.2 XOR-Hash Approach
	5.3 Improved Design: XOR-Hash-NIZK
	5.4 Malicious Node Detection
	5.5 Security Analysis

	6 Malice-Resilient Rerouting
	6.1 Base Strategies
	6.2 Efficient and Effective Rerouting

	7 System Construction
	7.1 Substrate Network
	7.2 Path Slicing
	7.3 Path Validation
	7.4 Path Rerouting

	8 Evaluation
	8.1 Experimental Setup
	8.2 Evaluation Results

	9 Concluding Remarks
	References

