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Abstract. The Boomerang attack was one of the first attempts to visu-15

alize a cipher (E) as a composition of two sub-ciphers (E0 ◦E1) to devise16

and exploit two high-probability (say p, q) shorter trails instead of relying17

on a single low probability (say s) longer trail for differential cryptanaly-18

sis. The attack generally works whenever p2 ·q2 > s. However, it was later19

succeeded by the so-called “sandwich attack” which essentially splits the20

cipher in three parts E′
0 ◦ Em ◦ E′

1 adding an additional middle layer21

(Em) with distinguishing probability of p2 · r · q2. It is primarily the gen-22

eralization of a body of research in this direction that investigate what23

is referred to as the switching activity and capture the dependencies and24

potential incompatibilities of the layers that the middle layer separates.25

This work revisits the philosophy of the sandwich attack over multiple26

rounds for NLFSR-based block ciphers and introduces a new method to27

find high probability boomerang distinguishers. The approach formal-28

izes boomerang attacks using only ladder/And switches. The cipher is29

treated as E = Em ◦ E1, a specialized form of a sandwich attack which30

we called as the “open-sandwich attack”. The distinguishing probability31

for this attack configuration is r · q2.32

Using this innovative approach, the study successfully identifies a deter-33

ministic boomerang distinguisher for the keyed permutation of the Tiny-34

Jambu cipher over 320 rounds. Additionally, a 640-round boomerang with35

a probability of 2−22 is presented with 95% success rate. In the related-36

key setting, we unveil full-round boomerangs with probabilities of 2−19,37

2−18, and 2−12 for all three variants, demonstrating a 99% success rate.38

Similarly, for KATAN32, a more effective related-key boomerang spanning39

140 rounds with a probability of 2−15 is uncovered with 70% success rate.40

Further, in the single-key setting, a 84 round boomerang with probability41

2−30 found with success rate of 60%. This research deepens the under-42

standing of boomerang attacks, enhancing the toolkit for cryptanalysts43

to develop efficient and impactful attacks on NLFSR-based block ciphers.44
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mrahman454@gmail.com
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1 Introduction47

The introduction of the Boomerang attack by Wagner [22] was an important48

moment in the history of block cipher cryptanalysis. This was primarily because49

it allowed us to interpret a cipher as a composition of sub-ciphers showcasing50

the interaction of differential trails on orthogonal planes of the Boomerang-Cube.51

This demonstrated that shorter (and hence high probability) trails on orthogo-52

nal plane of the sub-ciphers were better than longer (and hence low probability)53

rails on a single plane of the full block cipher. Thus was born the ‘Boomerang54

Quartet’ whose analysis spawned an entire body of research giving us further55

insight into Boomerang-Cube and its exploitation to deliver some of the best56

distinguishers on block ciphers reported in literature. In the classical boomerang57

attack, the cipher E is considered as a composition of two sub-ciphers E0 and E1,58

i.e., E = E1◦E0, where we suppose that the input difference ∆0 is propagated to59

the difference ∆1 by E0 with probability p and the difference ∇0 is propagated60

to ∇1 by E1 with probability q. This is described in Figure 1 while the expected61

probability of this attack is shown below. Equation 1 shows that by performing62

1
p2·q2 number of adaptively chosen plaintext/cipertext queries with the ∆0 differ-63

ence on the encryption queries and the ∇1 difference on the decryption queries,64

the attacker can distinguish E from the ideal cipher. The most important part of65

this boomerang-style attacks is to select suitable differential characteristics for66

E0 and E1 so that the probability of obtaining a right quartet will be maximized.67

Also, in this type of attacks, the overall probability was calculated based on the68

assumption that the two sub-ciphers E0 and E1 are independent.69

Pr[E−1(E(x)⊕∇1)⊕ E−1(E(x⊕∆0)⊕∇1) = ∆0] = p2 · q2. (1)

One direction in boomerang research entailed improving the boomerang trails70

by the relaxing the assumptions at the edge of the sub-ciphers (like the Amplified71

Boomerang [17] attack) while another attempt was to convert the Boomerang72

attack to a chosen plaintext attack (Rectangle Attack [3]) with the penalty of an73

increased complexity. Yet another direction was inspired by Murphy’s work [18]74

on the impossible Boomerang Quartet (showing incompatibilities between upper75

and lower trails due to incorrectness of the independence assumption). Research76

in this direction lead to many interesting contributions which let to the plane77

at the edge of the sub-ciphers in the Boomerang-Cube to be inflated to a cube78

in itself. This view allowed capture the various dependencies between the upper79

and lower trails and also resolved the problem of incompatible trails.80

Research Exploiting Inter-trail Dependencies in the Boomerang-Cube One of81

the first exploitations of trail dependencies was due to Biryukov et al. in the82

middle round S-box trick [5]. Besides, many improvements taking advantages of83

the dependency between the two differential characteristics have been proposed,84
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such as the ladder switch, S-box switch, and the Feistel switch in [6]. The basic85

idea is that the boundaries of E0 and E1 do not need to be defined on a state,86

instead, the state can be further divided into words, and some words can be in87

E0 and others can be in E1. Suppose, in a boomerang trail, half of the state88

is active in the upper trail E0, the other half is active in the lower trail E1, in89

between them only S-box layer is there. In this case, the probability on all the90

active S-boxes becomes 1. This technique is called ladder switch. Further, in the91

S-box switch, when both the characteristics for E0 and E1 activate the same92

S-box with an identical input difference and an identical output difference, the93

probability of this S-box to generate a quartet becomes p′ instead of p′2.94

Later, in [12,13], Dunkelman et al. formalised the above observations, and95

captured in the framework of sandwich attack. In this attack, the target cipher96

E can be further decomposed into three parts, i.e., E = E1 ◦ Em ◦ E0 where97

the middle part Em consists of relatively short transformations (as depicted in98

Figure 2). Let (x1, x2, x3, x4) and (y1, y2, y3, y4) be the input and the output99

quartet values for Em respectively such that yi = Em(xi). Thus, the probability100

of a valid boomerang quartet would be p2 ·q2 ·r, where r denotes the probability101

of Em satisfying some differential propagation among four texts and is computed102

as follows.103

r = Pr[(x3 ⊕ x4 = ∆1)|(x1 ⊕ x2 = ∆1) ∧ (y1 ⊕ y3 = ∇0) ∧ (y2 ⊕ y4 = ∇0)]. (2)

Therefore, the boomerang switching effects can be integrated as the depen-104

dency between the two characteristics of E0 and E1 which now lie in Em. To105

calculate the probability r of Em in a systematic way, as well as for finding the106

other switches to increase r, Cid et al. in [9] first proposed an efficient technique,107

called Boomerang Connectivity Table (BCT) to capture the boomerang switches108

of Em. The BCT can capture both the incompatibility, indroduced by [18] and109

the observations by [6]. Moreover, BCT shows that the switching effect can be ap-110

plied to increase the probability even when∆1 cannot be propagated to∆2 in the111

DDT. The drawbacks of BCT is that the incompatibility can be avoided by upto112

one round, but it cannot capture the incompatibility when multiple rounds of Em113

are considered. In [23], Wang et al. proposed a modified tool, called Boomerang114

Difference Table (BDT) to improve the BCT when considering multiple rounds.115

Several other improvements on the middle layer for boomerang switch can be116

found in [21,26].117

NLFSR-based Designs. Securing low-end devices like RFID tags is challenging due118

to their constrained environment. The ideal security solution must be compact,119

low-power, and fast enough for real-time protocols. In this context, NLFSR-based120

designs are a suitable choice. They offer several advantages such as low hardware121

cost, efficient parallel computation of rounds, and easy loading of stream input122

data into the state during state updates. These characteristics make NLFSR-123

based designs well-suited for compact, low-power, and real-time protocol require-124

ments. Some well-known NLFSR-based designs include Grain, Trivium, KATAN,125

and TinyJambu. In we demonstrate the application of generalized boomerang126
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switch techniques on the NLFSR-based block cipher KATAN, which is a highly127

efficient hardware-oriented cipher. Additionally, we explore the keyed permuta-128

tion of TinyJambu, which was one of the ten finalists in the NIST lightweight129

authenticated encryption competition [2].130

1.1 Our Contributions131

Our contributions in this work can be summarized as follows:132

– Comprehensive Analysis of Switching Techniques for NLFSR-based ciphers: We133

provide a comprehensive analysis of boomerang attacks, particularly in the134

context of NLFSR-based ciphers. By investigating the impact of different135

switch techniques, we deepen the understanding of how these attacks work136

and how the interdependencies between characteristics influence their suc-137

cess.138

– Introducing the Open-Sandwich Attack: We introduce a novel approach to139

identify boomerang distinguishers by exclusively utilizing the path through140

ladder or And switches. This approach, called as the “open-sandwich attack”,141

offers a new perspective on attack modeling and provides a new way to142

uncover vulnerabilities in ciphers.143

– Best distinguishers on TinyJambu and KATAN32: Using our approach, we suc-144

cessfully identify better boomerang distinguishers for ciphers, like TinyJambu145

and KATAN32. A brief comparison of these attacks are presented in Table 1.146

These discoveries highlight the practical applicability of our methods and147

their potential to uncover weaknesses in real-world cryptographic systems.148

1.2 Outline of the Paper149

The structure of this paper is outlined as follows. In Section 2, we establish the150

foundational knowledge necessary for constructing a novel sandwich attack tai-151

lored for NLFSR-based block ciphers. Section 3 is dedicated to a comprehensive152

discussion on the development of a Mixed Integer Linear Programming (MILP)153

model, effectively dissecting the sandwich attack through the utilization of var-154

ious switches. Section 4 presents empirical results derived from our innovative155

technique, applied to both the related-key and single-key settings for the Tiny-156

Jambu cipher. Additionally, Section 5 extends our methodology to explore and157

discover optimal boomerangs for the KATAN32 cipher under both key settings.158

Subsequently, in Section 6, we engage in a discussion encompassing potential en-159

hancements and future research challenges pertinent to our technique. Finally,160

Section 7 offers concluding remarks that summarize the key findings and impli-161

cations of our work.162

2 Preliminaries163

In this section, we begin by providing a concise overview of the framework of164

boomerang attacks. Following that, we delve into the categorization of the gener-165

alized switching effects for a single AND-based non-linear feedback shift register166
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Table 1: Comparison of Attacks against KATAN32 and TinyJambu variants. Here
SK, RK, KP, ACP represent Single-key, Related-key, Known Plaintext and Adap-
tive Chosen Plaintext respectively

Cipher Techniques
Attack

Model
Key Size Rounds

Distinguishing

Probability
References

T
in
yJ
am

bu

Differential

RK

128 1024
2−16 [11]

2−14 [16]

192
1152 2−12 [11]

2−10 [16]

256
1280 2−10 [11]

2−8 [16]

SK 128

384 2−19 [19]

384 2−14

[16]640 2−42

1024 2−108

Slide

KP 128 ∞ 2−64

[20]ACP 192 ∞ 2−65

ACP 256 ∞ 2−67.5

Boomerang
RK

128 1024 2−19

This Work

Section 5

192 1152 2−18

256 1280 2−12

SK 128 640 2−22

K
A
T
A
N
32

Boomerang

RK 80 140

2−27.2 [15]

2−26.58 [8]

2−15
This Work

Section 6

SK
80

83† 2−21.78 [8]

84 2−30
This Work

Section 6

†The given trail has probability much lower than 2−32.

(NLFSR). This discussion aims to lay the foundation for a comprehensive under-167

standing of boomerang attacks and their applicability in cryptographic analysis.168
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2.1 Differential Propagation through AND Gates169

Differential cryptanalysis was first proposed by Biham and Shamir in the early170

1990s in [4]. It is one of the most fundamental cryptanalytic approach to eval-171

uate the security of block ciphers. For differential cryptanalysis, the basic idea172

is to find the higher probability differential trails by assuming that the state173

differences spreading through the rounds in a cipher are independent. This prob-174

ability comes due to some active non-linear components through the rounds for175

iterated ciphers, and is inversely proportional to the number of rounds. Thus,176

the resistance against differential cryptanalysis for iterated ciphers (based on177

the non-linear components like S-box/Addition/AND operations) is highly de-178

pendent on the non-linearity features of these operations. For an n-bit S-box179

S : {0, 1}n → {0, 1}n, the differential properties of S are typically represented180

by the 2n × 2n Difference Distribution Table (DDT) T , where a row represents181

the input difference (∆i) and a clomun represents the output difference (∆o).182

The entries in T are defined by T (∆i, ∆o) = #{x : S(x)⊕ S(x⊕∆i) = ∆o}.183

Thus, the probability for any given difference pair (∆i, ∆o), i.e., the input dif-184

ference ∆i propagates to the output difference ∆o is T (∆i,∆o)
2n . Also, for an AND185

gate, if (∆a,∆b) denotes the input difference and ∆z as its output difference,186

then we have,187

∆z = a · b⊕ (a+∆a) · (b+∆b) = a ·∆b⊕ b ·∆a⊕∆a ·∆b. (3)

The differential properties of AND gate can also be represented by 4 × 2 DDT188

table T , which is given in Table 2. The entries in the table T are defined by189

T ((∆a,∆b), ∆z) = #{(a, b) : a · b⊕ (a⊕∆a) · (b⊕∆b) = ∆z}.

(∆a, ∆b) ∆z = 0 ∆z = 1

(0, 0) 4 0

(0, 1) 2 2

(1, 0) 2 2

(1, 1) 2 2

Table 2: Difference Distribution Table of AND Gate

Therefore, the probability for the input difference (∆a,∆b) propagates to190

the output difference ∆z will be T ((∆a,∆b),∆z)
4 . According to the Table 2, the191

output difference ∆z follows a uniform distribution for any given non-zero input192

difference (∆a,∆b).193
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Fig. 2: Sandwich Attack

194

2.2 Boomerang Attack195

Now, we give a brief overview of the boomerang attack. Let EK(P ) and EK(C)196

denote the encryption of P and the decryption of C under a key K, respectively.197

Suppose ∆K, ∇K are the master key differences of the differentials. Then, the198

boomerang distinguisher is mounted as follows:199

1. Ask for the ciphertexts C1 = EK(P1) and C2 = EK(P2), where P2 = P1⊕∆0.200

2. Ask for the plaintexts P3 = E−1
K (C3) and P4 = E−1

K (C4), where C3 = C1⊕∇1201

and C4 = C2 ⊕∇1.202

3. Check whether P3 ⊕ P4 = ∆0.203

Also, the boomerang framework in the related-key setting works as follows:204

1. K1 ← K, K2 ← K1 ⊕∆K, K3 ← K1 ⊕∇K, K4 ← K1 ⊕∆K ⊕∇K.205

2. Ask for the ciphertexts C1 = EK1
(P1) and C2 = EK2

(P2), where P2 =206

P1 ⊕∆0.207

3. Ask for the plaintexts P3 = EK−1
3

(C3) and P4 = EK−1
4

(C4), where C3 =208

C1 ⊕∇1 and C4 = C2 ⊕∇1.209

4. Check whether P3 ⊕ P4 = ∆0.210

Switching in Boomerang Attacks. Here, we give a brief overview of the211

switching techniques that are employed in the boomerang attacks tailored for212

Substitution-Permutation Network (SPN) based ciphers. Consider a cipher E213
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(x1, y1)

(x2, y2)

(∆l
1 , ∆l

2 )

∆3

(x3, y3)

(x4, y4)

(∆r
1 , ∆

2)r

∆4

(∇f
1 ,∇f

2 )

(∇b
1,∇b

2)

∇3

∇4

Fig. 3: A Valid Boomerang Quartet of Em as One Round NLFSR

and its decomposition E = E1 ◦Em ◦E0 (refer to Fig. 2) as formalised in [12,13].214

Assume that the last substitution layer partitions x1 into t words, i. e., x1 =215

x0
1|| · · · ||xt−1

1 . Similarly, xi’s (2 ≤ i ≤ 4), yj ’s (1 ≤ j ≤ 4), ∆1 and ∇0 can be216

partitioned into t words (assume that the corresponding s-box is ν×ν). Consider217

the following relation for the k-th word-218

xk−1
1 ⊕ xk−1

2 = ∆k−1
1

For satisfying the E0 trail (in the return path of the boomerang), the following219

relation must hold for 1 ≤ k ≤ t-220

S−1(S(xk−1
1 )⊕∇k−1

0 )⊕ S−1(S(xk−1
2 )⊕∇k−1

0 ) = ∆k−1
1 (4)

where S is the substitution operation applied on each word. Now consider221

the following two cases-222

– Case I:When xk−1
1 = xk−1

2 , Eq. 4 holds with probability one. This particular223

case is designated as ladder switch.224

– Case II: When S(xk−1
1 )⊕S(xk−1

2 ) = ∇k−1
0 , Eq. 4 holds with probability µ

2ν ,225

where µ is entry in the difference distribution table (DDT) of S with ∆k−1
1226

and ∇k−1
0 as the input and output differences, respectively. This particular227

case is designated as s-box switch.228

Next, we introduce a notion similar to these switches when the non-linear229

layer of a cipher consists of AND operations.230

3 Introducing Generalized Switching in NLFSR231

Consider the middle layer Em in a sandwich attack which is composed of a
single round NLFSR-based cipher which has only one AND gate as the non-linear

8



(∇1,∇2)

(0,0) (1,0) (0,1) (1,1)

(∆
1
,∆

2
)

(0,0) 4 4 4 4

(1,0) 4 4 0 0

(0,1) 4 0 4 0

(1,1) 4 0 0 4

Table 3: Boomerang Connectivity Table of Single AND-based NLFSR

component, given in Figure 3. The target cipher is divided into three parts E0,
Em, and E1. Let (x1, y1), (x2, y2), (x3, y3), (x4, y4) ∈ {0, 1}2 are the inputs to
the four AND gates of Em such that x1 ⊕ x2 = x3 ⊕ x4 = ∆l

1=∆r
1 = ∆1 (say),

y1 ⊕ y2 = y3 ⊕ y4 = ∆l
2 = ∆r

2 = ∆2, x1 ⊕ x3 = x2 ⊕ x4 = ∇f
1 = ∇r

1 = ∇1

and y1 ⊕ y3 = y2 ⊕ y4 = ∇f
2 = ∇r

2 = ∇2. Also, let z1, z2, z3, z4 ∈ {0, 1} are the
corresonding output differences such that z1 ⊕ z2 = ∆3 and z3 ⊕ z4 = ∆4. For
(x, y) ∈ {0, 1}2, the output difference of the AND operation in the left plane is
given by

∆3 = x · y ⊕ (x⊕∆1) · (y ⊕∆2).

Similarly,

∆4 = (x⊕∇1) · (y ⊕∇2)⊕ (x⊕∇1 ⊕∆1) · (y ⊕∇2 ⊕∆2).

In order to obtain a right quartet, we can obtain a necessary condition similar232

to Equation 4 for such NLFSR-based ciphers-233

∆3 = ∆4

=⇒ x · y ⊕ (x⊕∆1) · (y ⊕∆2) = (x⊕∇1) · (y ⊕∇2)⊕ (x⊕∇1 ⊕∆1) · (y ⊕∇2 ⊕∆2)

Then, the probability that the above condition holds is given by:234

Pr[∆3 = ∆4]

=
#{(x, y) : (x ⊕ ∇1) · (y ⊕ ∇2) ⊕ (((x ⊕ ∆1) ⊕ ∇1) · ((y ⊕ ∆2) ⊕ ∇2)) = (x · y) ⊕ ((x ⊕ ∆1) · (y ⊕ ∆2))}

22
.

(5)

The evaluation of Equation 5 is illustrated in Figure 2. This is exactly the235

r in Equation 2, when Em is a single AND layer. Similar to the DDT, we eval-236

uate the Boomerang Connectivity Table (BCT) using Equation 5 for all pairs237

of (∆1, ∆2) and (∇1,∇2) as shown in Table 3. Further, according to Figure 3238

different generalized switching techniques are introduced here.239

Trivial switch:240

{∆3 = ∆4 = ∇3 = ∇4 = 0 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) = (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2) = (0, 0).
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Ladder switch:241 {
∆3 = ∆4 = 0,∇3 = ∇4 if (∆l

1, ∆
l
2) = (∆r

1, ∆
r
2) = (0, 0), (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2) ̸= (0, 0),

∆3 = ∆4,∇3 = ∇4 = 0 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) ̸= (0, 0), (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2) = (0, 0).

AND Switch:242

{∆3 = ∆4 = ∇3 = ∇4 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) = (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2) ̸= (0, 0).

Trail Switch:243 

1∆3 ̸= ∆4,∇3 ̸= ∇4 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) ̸= (0, 0),

(∇f
1 ,∇

f
2 ) = (∇b

1,∇
b
2) ̸= (0, 0), (∆l

1, ∆
l
2) ̸= (∇f

1 ,∇
f
2 ),

∆3 = ∆4,∇3 ̸= ∇4 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2), (∇

f
1 ,∇

f
2 ) ̸= (∇b

1,∇
b
2),

∆3 ̸= ∆4,∇3 = ∇4 if (∆l
1, ∆

l
2) ̸= (∆r

1, ∆
r
2), (∇

f
1 ,∇

f
2 ) = (∇b

1,∇
b
2),

∆3 ̸= ∆4,∇3 ̸= ∇4 if

{
(∆l

1, ∆
l
2) ̸= (∆r

1, ∆
r
2), (∇

f
1 ,∇

f
2 ) ̸= (∇b

1,∇
b
2),

(∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) ̸= (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2).

In the context of distinguishing probability, the various switches play a sig-244

nificant role within the framework of the boomerang attack. The objective in245

forming a boomerang quartet is to maintain equal parallel plane (state) differ-246

ences in both the segments. Considering a one-round operation denoted as Em247

(refer to Figure 3), and omitting the shifting operation within the state, taking248

a special case where ∆l
1 = ∆r

1, ∆
l
2 = ∆r

2, ∇f
1 = ∇b

1, and ∇f
2 = ∇b

2, the probabil-249

ities for the corresponding output differences that will be the same under these250

switches are summarized in Figure 4.251

4 Slicing the Sandwich Attack252

In the context of the sandwich attack, the cipher E is conceptualized as the com-253

position of three subciphers: E0, Em, and E1, represented as E = E0 ◦Em ◦E1.254

The intermediary component Em is utilized to incorporate a small number of255

rounds via various switch techniques, directly enhancing the probability of the256

boomerang distinguisher. For ciphers based on Sbox, when only ladder switches257

occur in Em, the value of r becomes 1. Consequently, the distinguishing prob-258

ability simplifies to p2 · q2 · r = p2 · q2. Furthermore, the Sbox or other new259

switches within Em can also contribute to improving the value of r, although260

not significantly compared to the ladder switch. Thus, for the sandwich attack261

(as illustrated in Figure 2), constructing single or very few rounds of Em using262

Sbox or other new switches is relatively straightforward. However, employing263

switch techniques for a large number of rounds in Em can introduce compat-264

ibility challenges. To address this, several systematic techniques [21,23,14] are265

introduced to effectively resolve these incompatibility issues as the number of266

rounds increases.267

1 This sub-case of the Trail Switch category covers all switches except Trivial, Lad-
der, and AND when we require two opposite plane differences to be equal (refer to
Table 4). The remaining sub-cases within the Trail Switch category occur when no
specific conditions are imposed on opposite plane differences.
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∆1 ∆2 ∇1 ∇2 Switch Pr[∆3 = ∆4,∇3 = ∇4]

0 0 0 0 - 1

0 0 0 1 Ladder 1

0 0 1 0 Ladder 1

0 0 1 1 Ladder 1

0 1 0 0 Ladder 1

0 1 0 1 And 1

0 1 1 0 Trail 0

0 1 1 1 Trail 0

1 0 0 0 Ladder 1

1 0 0 1 Trail 0

1 0 1 0 And 1

1 0 1 1 Trail 0

1 1 0 0 Ladder 1

1 1 0 1 Trail 0

1 1 1 0 Trail 0

1 1 1 1 And 1

Table 4: Different Switching Probabilities to Maintain Equal Plane Differences
in Em.

∆0
∆0

∆1
∆1

x1

x2

y1

y2

x3

x4

y3

y4

Em

Em

Em

Em

E1

E1

E1

E1

C1

C2

C3

C4

∇0

∇0

∇1

∇1

Fig. 4: Open-Sandwich Attack
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For NLFSR-based block ciphers, it is important to highlight that only ladder268

or And switches have the potential to enhance the value of r in Em and simulta-269

neously maintain equality in their opposite plane (state) differences. In contrast,270

other switch cases result in unequal opposite plane differences. While employing271

other switch techniques might allow the attacker to obtain the input difference272

∆0 through boomerang-style attacks, the resulting distinguishing probability is273

notably lower compared to the scenarios where only ladder or And switches are274

used.275

In this study, our primary focus is to delve into the discussion of boomerang276

attacks exclusively through the utilization of ladder or And switches. Within277

the scope of this work, we particularly concentrate on exploring and analyzing278

these switches. It is worth noting that in the pursuit of identifying the optimal279

boomerang for NLFSR-based block ciphers, a useful approach is to conceptualize280

the cipher E as the composition of Em and E1, expressed as E = Em ◦ E1.281

This framework essentially constitutes a special case of a sandwich attack, with282

E0 being omitted. We refer to this technique as the “open-face sandwich at-283

tack”. The distinguishing probability of this attack will be r · q2. This attack is284

demonstrated in Figure 4.285

4.1 Our Observations286

Consider a straightforward boomerang structure E = E0 ◦ E1 (as depicted in287

Figure 1), which corresponds to optimal differentials ∆0 → ∆1 of E0 with a288

probability of p, and ∇0 → ∇1 of E1 with a probability of q. In this context,289

the probability of success for this boomerang distinguisher can be approximately290

evaluated using the formula p2·q2. Now, for the simple boomerang within NLFSR-291

based block ciphers, let p represent the count of active AND gates for the differ-292

ential ∆0 → ∆1 in one of the two opposing upper planes within E0. Likewise,293

let q denote the count of active AND gates for the differential ∇0 → ∇1 in one294

of the two opposing lower planes within E1. However, it is important to note295

that in this scenario, the actual probability of satisfying this boomerang tends296

to be notably higher than the theoretical probability p2 · q2. This discrepancy297

between theoretical and actual probabilities sparked our curiosity to further ex-298

plore the behavior of such boomerang attacks within NLFSR-based ciphers and299

to accurately estimate the theoretical probability.300

In NLFSR-based block ciphers, AND gates constitute the sole non-linear op-301

erations utilized within the cipher structure. When examining a boomerang sce-302

nario (as illustrated in Figure 4), consider the differential ∆0 → ∆1 pertaining303

to Em and the differential ∇0 → ∇1 associated with E1. Within the boomerang304

quartet, the plane differences in each round align with the category of distinct305

switches mentioned earlier.306

Boomerangs involving trail switches cause the opposite plane differences to307

become unequal, simultaneously compelling the increase of trail switches across308

rounds. Consequently, these trail switch-based boomerangs lead to a significant309

reduction in the overall probability. As a result, the quest for an improved310

boomerang distinguisher involves seeking a promising differential boomerang311
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path that traverses through various switches while excluding the other switches.312

Upon discovering such an optimal boomerang path, characterized by the right313

number of ladder or And switches, the probability can be precisely computed314

using the formula r · q2.315

4.2 Searching of Good Boomerang Trails316

In our pursuit of identifying effective boomerang trails for the cipher, our strat-317

egy revolves around optimizing the number of ladder or And switches necessary318

to create a boomerang effect. To accomplish this, we have developed a straight-319

forward model that employs mixed-integer linear programming (MILP) to search320

for the optimal boomerang trails.321

In this MILP model, a pragmatic approach is taken: we maintain four state322

differences and focus on optimizing the plane differences by assigning appropriate323

weights to the ladder or And switches. Specifically, when dealing with rounds of324

Em, we assign a weight of 1 to the ladder or And switches. Conversely, for the325

lower part (E1), we assign a weight of 2 to the ladder or And switches. Within326

the framework of the optimal boomerang trail, let us denote w1 and w2 as the327

cumulative weights of Em and E1, respectively. Consequently, the probability328

associated with the boomerang trail can be expressed as r · q2 = 2−w1−w2 . This329

formulation allows us to effectively determine and optimize the probability of330

the boomerang trail.331

It is important to note that this probability accurately represents the boomerang’s332

success when both differences ∆1 and ∇1 are predetermined. However, if ∆1 and333

∇1 are arbitrary differences, the calculated probability can potentially experi-334

ence a notable enhancement due to the existence of multiple paths within the335

boomerang or due to the inclusion of trail switches. In such scenarios, the actual336

probability of obtaining a right boomerang quartet could be higher than the337

calculated value due to the increased flexibility introduced by these variations.338

5 Attacks on TinyJambu339

The TinyJambu [25] is an authentication scheme that is chosen as one of the fi-340

nalists in the NIST lightweight cryptography (LWC) competition. It employs an341

NLFSR-based keyed permutation as its internal structure, without a key sched-342

ule function. TinyJambu provides three versions with key sizes of 128, 192, and343

256 bits respectively. During initialization, the initial version of TinyJambu [24]344

utilizes 384 rounds to process the nonce and associated data, while for process-345

ing the message, it employs 1024/1152/1280 rounds depending on the key size346

of 128/192/256 bits. However, in 2020, Saha et al. [19] demonstrated a forgery347

attack on the full-round TinyJambu scheme with a probability close to 2−70.64,348

indicating a security level near 64 bits. In response, the designers increased the349

number of rounds from 384 to 640 to enhance the scheme’s security. For a more350

comprehensive understanding of TinyJambu’s specifications, please refer to [25].351

Regarding the keyed permutation of TinyJambu in the secret key setting, further352
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research has revealed certain vulnerabilities. In the work [20], key-recovery at-353

tacks on all variant sizes were presented, achieving results close to the birthday354

bound of 264.355

Dunkelman et al. [10] demonstrated a zero-sum distinguisher for 544 rounds356

out of the 1024-round TinyJambu keyed permutation, achieving this with a com-357

plexity of 223. Furthermore, in their work [11], the authors revealed related-key358

forgery attacks targeting various TinyJambu variants. These attacks exhibited359

differential probabilities of 2−16, 2−12 and 2−10 for 128, 192, and 256-bit keys,360

respectively, emphasizing potential security concerns.361

In another development, Jana et al. [16] identified a full-round differen-362

tial trail within the 1024-round TinyJambu keyed permutation. This trail dis-363

played an exceptionally low probability of 2−108, revealing non-random prop-364

erties within the keyed permutation. Additionally, in this attack, the authors365

demonstrated improved related-key differential probabilities of 2−14, 2−10 and366

2−8 for 128, 192, and 256-bit keys, respectively, highlighting potential vulnera-367

bilities in TinyJambu’s security characteristics.368

In this section, our focus is on the TinyJambu keyed permutation, where we369

investigate the application of different switch techniques to explore boomerang370

properties. By employing these techniques, we achieve significant advancements371

in the analysis of TinyJambu with 640 rounds in the secret-key settings, surpass-372

ing the success rates of previous attacks. Furthermore, we present the related-key373

boomerang attacks for all the TinyJambu variants.374

5.1 Specification375

TinyJambu is an authenticated encryption with associated data (AEAD) scheme,376

featuring a 128-bit non-linear feedback shift register (NLFSR)-based keyed per-377

mutation with a 128-bit state size and 32-bit message block size. It was se-378

lected as one of the top ten finalists in the NIST Lightweight Cryptography379

(LWC) competition, competing among 56 submissions. The 128-bit keyed per-380

mutation, represented as PK
l , comprises l rounds, with the secret key K be-381

longing to F|K|
2 , where K is defined as (k|K|−1, k|K|−2, · · · , k1, k0). This per-382

mutation offers support for three key sizes: 128 bits, 192 bits, and 256 bits.383

In this work, we denote an l-round keyed permutation of TinyJambu as Pl.384

Each round of the permutation, PK
l : F128

2 → F128
2 , transforms an initial state385

(s127, s126, · · · , s1, s0) into a final state (sf , s127, s126, · · · , s2, s1), where sf is386

calculated as s0 ⊕ s47 ⊕ s70s85 ⊕ s91 ⊕ ki mod |K|. Figure 5 refers to a visual387

representation of this permutation.388

TinyJambu offers three variants, denoted as TinyJambu-128, TinyJambu-192,389

and TinyJambu-256, each defined by specific parameters listed in Table 5. The390

encryption process in TinyJambu involves four main phases: Initialization, Asso-391

ciated Data Processing, Encryption, and Finalization. We refer to Figure 6 for392

an overview of the TinyJambu mode’s overall structure. Detailed specifications393

for the permutations Pl and P̂l can be found in Table 5. The complete details of394

this scheme can be found in [25].395
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Table 5: TinyJambu Variants
AEAD Variants of Size in bits Number of Rounds in

TinyJambu Mode State Key Nonce Tag Pl P̂l

TinyJambu-128 128 128 96 64 640 1024
TinyJambu-192 128 192 96 64 640 1152
TinyJambu-256 128 256 96 64 640 1280
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Fig. 6: The Description of TinyJambu Mode

5.2 MILP Modelling396

When employing MILP modeling for a boomerang attack on TinyJambu, there397

are several approaches to consider.398

One approach involves utilizing MILP modeling to discover optimal differen-399

tial trails for both the upper part (E0) and the lower part (E1) of the TinyJambu400

cipher. This optimization of differential trails can significantly enhance the ef-401

fectiveness of the attack. Another approach entails partitioning the TinyJambu402

cipher into four separate planes, each corresponding to an individual TinyJambu403

function. In this setup, the MILP model is responsible for determining the mini-404

mum count of active AND gates in Em and E1. However, it is worth noting that405

as the number of variables and constraints increases, this model might experience406

a notable slowdown in computational speed.407

To enhance the computational efficiency of the MILP model and reduce the408

required computational time, it is possible to implement the attack by focusing409

on two planes rather than four. By minimizing the ladder/And switches, an effi-410

cient and effective boomerang distinguisher can be developed while maintaining411

a reasonable level of modeling speed. In essence, the objective of implementing412

the boomerang attack using MILP modeling for TinyJambu is to treat the Tiny-413
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Jambu cipher as Em ◦ E1, with a focus on minimizing the ladder/And switches414

to create a potent boomerang distinguisher that is both efficient and effective.415

Table 6: Boomerang Distinguishers of TinyJambu through MILP Search

Rounds
Ladder

Switch

And

Switch

Distinguishing

Probability

Input Difference

(Upper Plane)

Output Difference

(Lower Plane)

Success

Probability

320

6 0 2−9
∆0 = 0x00000120 00000000 02000000 00000400 ∇0 = 0x00000001 20000000 00020000 00000004

99.9%
∆1 = 0x00000000 00000000 00000400 00000020 ∇1 = 0x00000000 00000000 00000004 00000000

7 0 2−10
∆0 = 0x00004000 00000000 80000000 00000000 ∇0 = 0x00000001 20000000 00020000 00000004

99.9%
∆1 = 0x00000000 80000000 04000020 00204000 ∇1 = 0x00000000 00000000 00000004 00000000

384

8 0 2−12
∆0 = 0x00000241 00020000 04000000 00000800 ∇0 = 0x00020010 00000004 80000000 00080000

99.9%
∆1 = 0x00000000 00000800 00000040 00020002 ∇1 = 0x00000000 00000000 00000010 00000000

4 4 2−12
∆0 = 0x00020010 00000004 80000000 00080000 ∇0 = 0x00200100 00000048 00000000 00800000

100%
∆1 = 0x00000000 00000000 00000010 00000000 ∇1 = 0x00000000 00000000 00000100 00000008

6401 24 2 2−39
∆0 = 0x00001000 80000000 24000000 00004000 ∇0 = 0x00008004 00000001 20000000 00020000

–
∆1 = 0x04000000 00204000 00010000 80000810 ∇1 = 0x20000000 01020000 00080004 00004081

Table 7: Amplified Boomerang Distinguishers of TinyJambu

Rounds
Distinguishing

Probability

Input Difference

(Upper Plane)

Output Difference

(Lower Plane)

Success

Probability

288 1 ∆0 = 0x00004000 00000000 80000000 00000000 ∇1 = 0x00000000 00000000 00000400 00000020 100%

320
1

∆0 = 0x00001000 00000000 20000000 00000000 ∇1 = 0x00000000 00000000 00000040 00000002 100%

∆0 = 0x00004000 00000000 80000000 00000000 ∇1 = 0x00000000 00000000 00000004 00000000 100%

2−4 ∆0 = 0x00000120 00000000 02000000 00000400 ∇1 = 0x00000000 00000000 00000004 00000000 99.8%

384
2−4 ∆0 = 0x00000241 00020000 04000000 00000800 ∇1 = 0x00000000 00000000 00000010 00000000 98%

2−4
∆0 = 0x00020010 00000004 80000000 00080000 ∇1 = 0x00000000 00000000 00000100 00000008 97.6%

640
2−22

∆0 = 0x00048200 04000008 00000000 00100000 ∇1 = 0x00000000 00000000 20000000 01000000 95%

2−24 ∆0 = 0x00001000 80000000 24000000 00004000 ∇1 = 0x20000000 01020000 00080004 00004081 95%

5.3 Results on TinyJambu416

Single-key Boomerang Attacks By employing our proposed MILP modeling,417

we have successfully identified a boomerang distinguisher for TinyJambu span-418

ning up to 320 rounds. Our optimal solution involves 6 ladder switches occurring419

at specific rounds: 0, 32, 47, 168, 200, and 215. Additionally, the second best so-420

lution consists of 7 ladder switches at rounds 107, 122, 144, 159, 168, 200, and421

215. These boomerang trails are detailed in Table 6.422

2 Sub-optimal solution due to MILP solver limitations.
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Our search approach treats E as two equal subciphers: Em and E1. For the423

optimal solution, we find three ladder switches in each of Em and E1. This424

results in r = 2−3 and q = 2−3, yielding a distinguishing probability of r · q2 =425

2−9. Similarly, for the second best solution, we have r = 2−4, q = 2−3, and a426

probability of 2−10.427

Alternatively, if we consider the boomerang trail as two distinct differentials428

of 160 rounds each, denoted as E = E0 ◦ E1, the distinguishing probability429

becomes p2 · q2, where p = Pr(∆0 → ∆1) and q = Pr(∇0 → ∇1). For the first430

320-round boomerang distinguisher in Table 6, we have p = 2−3 and q = 2−3,431

resulting in a probability of 2−12. Similarly, for the second distinguisher of 320432

rounds, with p = 2−4 and q = 2−3, the probability is 2−14.433

In our comprehensive investigation, we have delved into the intricacies of434

boomerang paths, particularly focusing on larger rounds, namely 384 rounds435

and 640 rounds. For the 384-round scenario, our diligent analysis led to the dis-436

covery of an optimal boomerang path, meticulously comprising 8 ladder switches437

strategically activated at specific rounds: 31, 46, 159, 174, 215, 230, 262, and 277.438

When considering fixed values for ∆1 and ∇0, this carefully designed boomerang439

path yields a probability for the boomerang distinguisher, precisely calculated as440

r · q2 = 2−4 · 2−8 = 2−12. This finding underscores that even with a substantial441

number of cipher rounds, the likelihood of success for this boomerang attack442

remains relatively low.443

In a more extensive scenario involving 640 rounds, our investigation led to444

the identification of an intricate boomerang trail. This path involves the acti-445

vation of 26 ladder/And switches, consisting of 24 ladder switches and 2 And446

switches, thoughtfully positioned throughout the rounds. The resulting distin-447

guishing probability for this extensive boomerang path is significantly lower,448

quantified as 2−41. This difference emphasizes the escalating difficulty and dimin-449

ishing success rate associated with boomerang attacks as the number of rounds450

in the cipher increases. Our approach to identifying these optimal boomerang451

trails through various switches effectively captures the probability distribution,452

shedding light on the challenging landscape of NLFSR-based cryptographic ci-453

pher analysis.454

Moreover, we have explored the concept of amplified boomerangs in this455

context to enhance the overall probability of boomerang distinguishers. Our ap-456

proach involves deliberately seeking suboptimal solutions from our MILP search.457

The goal is to create a boomerang with the input difference ∆0 and the output458

difference ∇1 that possesses numerous alternate paths. This strategic manipu-459

lation has led to notably improved probabilities for these rounds of TinyJambu,460

which are detailed in Table 7.461

Related-key Boomerang Attacks In a similar manner, we applied the MILP462

model to investigate related-key boomerang trails for the TinyJambu-128 cipher.463

For a 384-round cipher, we identified an optimal solution that resulted in a464

deterministic boomerang trail, requiring no ladder or And switches.465
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In the case of a 512-round cipher, our analysis yielded an optimal solution466

involving four ladder switches positioned at 21, 36, 261, and 502. In this specific467

path, two switches were activated during the initial 256 rounds, while the other468

two switches became active during the final 256 rounds. This configuration led469

to a boomerang distinguisher with a probability of 2−2 · 2−4 = 2−6.470

In addition to our findings for various round counts, we encountered intrigu-471

ing results when exploring boomerang distinguishers in a 640-round cipher. The472

optimal solution in this scenario featured five ladder switches strategically po-473

sitioned at rounds 12, 172, 187, 476, and 491. Within this trail, three of these474

switches were actively involved during the initial 320 rounds, while the remaining475

two switches occured in the final 320 rounds. As a result, this arrangement gave476

rise to a boomerang distinguisher with a probability calculated as 2−3·2−4 = 2−7.477

For a cipher spanning 1024 rounds, we uncovered a sub-optimal boomerang478

path characterized by the presence of sixteen ladder switches. Eight of these479

switches were active during the initial 512 rounds, and the remaining eight480

switches came into play during the subsequent 512 rounds. This specific config-481

uration led to a boomerang distinguisher with a probability of 2−8 · 216 = 2−24.482

Table 9: Related-key Amplified Boomerang Distinguishers of TinyJambu Vari-
ants

V
ar
ia
n
ts

R
o
u
n
d
s

D
is
ti
n
g
u
is
h
in
g

P
ro
b
ab

ili
ty Upper trail Input Difference

Lower Trail Output Difference

Upper Key Difference

Lower Key Difference S
u
cc
es
s

P
ro
b
ab

ili
ty

T
in
yJ
am

bu
12
8

384 1
∆0 = 0x00102400000000204000000000000000 0x00000400000000204000000000000000

100%

∇1 = 0x00000000000000000000020000000010 0x04000000000000000000020000000000

512 2−6
∆0 = 0x00090000000000100000000000200000 0x00000000000000000000000000200000

99%

∇1 = 0x00000000000000000010000000008000 0x00000000000000000010000000000000

640 2−7
∆0 = 0x40000000120000000000200000000000 0x40000000020000000000200000000000

62%

∇1 = 0x00000000000000000000020000000010 0x20000000000040000000020000000000

1024 2−19
∆0 = 0x00000000000000000000080000000000 0x00000000040000000000000000000040

99%

∇1 = 0x00000000000000000000080000000000 0x00000000040000000000000000000040

T
in
yJ
am

bu
19
2

512 1
∆0 = 0x40902201800081204c00000000000000 0x00000401800081204c000000000000000000000000000000

100%

∇1 = 0x00000000000000000000040000000020 0x000000000000000000000400000000000800000000000000

640 2−6
∆0 = 0x12000000000020000000000040000000 0x000000000000000000000000400000000000000000000000

99%

∇1 = 0x00000000000000000004000000002000 0x000400000000000000000000000000000000000000000000

1152 2−18
∆0 = 0x00000000000000000000000000040000 0x000020000000000200000000000400000000000000040000

99%

∇1 = 0x00000000000002000000000000000000 0x010000000000020000000000000002000000001000000000

T
in
yJ
am

bu
25
6

640 1
∆0 = 0x40180400220080300800000000000000 0x0000000022008030080000000000000000000000000000000000000000000000

100%

∇1 = 0x00000000000000000000000d26c00020 0x00000000000000000000000d26c0002080000000000000000000000000000000

1280 2−12
∆0 = 0x00000000000000004000000000000000 0x0000200000000000400000000000000000000000000000004000000002000000

99%

∇1 = 0x00000000000000000000000000000000 0x0100000000080000000000800000000001000000000000000000000000000000
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Furthermore, our exploration extended to related-key boomerang distinguish-483

ers, where we successfully identified deterministic distinguishers spanning 512484

and 640 rounds for TinyJambu-192 and TinyJambu-256, respectively. In the485

case of full rounds for TinyJambu-192, we discovered a sub-optimal boomerang486

path featuring twelve ladder switches, resulting in a distinguishing probability of487

2−18. Similarly, for the complete rounds of TinyJambu-1280, we encountered a488

sub-optimal solution characterized by eight ladder switches, resulting in a prob-489

ability of 2−18.490

We have summarized these discovered trails and their respective character-491

istics in Table 8. Furthermore, our exploration extended to finding amplified492

boomerang trails by considering sub-optimal solutions, thereby increasing the493

overall probability of these distinguishers. Detailed information about these am-494

plified boomerang trails and their success probabilities can also be found in495

Table 9.496

Experimental Results Under both single-key and related-key settings, we497

have rigorously conducted practical verifications for all the boomerang paths498

of TinyJambu presented in Tables 6,8. These paths were discovered using the499

MILP (Mixed-Integer Linear Programming) search method. This meticulous val-500

idation process ensures the reliability and practical applicability of our reported501

boomerang paths. Furthermore, we have subjected our findings related to the502

best amplified boomerang attacks on TinyJambu, as outlined in Tables 7,9, to503

thorough validation across scenarios involving both single-key and related-key504

settings. For a comprehensive understanding of our verification process, as well505

as access to detailed results and supporting information, we refer to [1]. These506

verifications constitute substantial evidence that our reported boomerang paths,507

success rates, and findings have undergone rigorous real-world testing and anal-508

ysis, affirming their reliability and practical utility.509

6 Attacks on KATAN510

The KATAN cipher, as described in [7], is a family of NLFSR-based block ciphers511

with three variants corresponding to block sizes of 32, 48, and 64 bits. The512

state of the KATAN cipher consists of two registers, namely L1 and L2, which513

have different sizes based on their state sizes. All variants of KATAN employ514

254 rounds and use an 80-bit key to derive 508 subkey bits through a linear515

feedback shift register (LFSR) in the key schedule function. In the round function516

of KATAN, both registers, L1 and L2, function as NLFSRs. The feedback bit of517

L1 is fed into the least significant bit (LSB) of L2, and vice versa. Additionally,518

the state bits are shifted by one position from the least significant bit (LSB) to519

the most significant bit (MSB) in each round. For the KATAN48 and KATAN64520

variants, the round function is repeated 2 and 3 times respectively, using the521

same subkeys. For more detailed information about the KATAN cipher, please522

refer to [7].523
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In previous research, Isobe et al.[15] introduced a related-key boomerang524

distinguisher for KATAN32 consisting of 140 rounds, achieving a distinguisher525

probability of 2−27.2. Building upon their work, Chen et al.[8] further enhanced526

the boomerang distinguisher by employing the branch-and-bound method, re-527

sulting in an improved probability of 2−26.58. These advancements demonstrated528

the vulnerability of KATAN32 to related-key boomerang attacks.529

In a distinct research direction, a recent work by Jana et al. [16] introduced530

the DEEPAND model, specifically designed for analyzing the impact of multiple531

AND gates within NLFSR-based ciphers like KATAN. This model capitalizes on532

exploiting correlations among these AND gates to enhance the probability of533

differential trails. Through this technique, the researchers successfully elevated534

the efficiency of a differential trail. Leveraging the capabilities of the DEEPAND535

model, the authors achieved significant advancements. They managed to iden-536

tify and establish highly effective differential trails, encompassing a remarkable537

70 rounds. This achievement resulted in the development of a notably potent538

related-key boomerang distinguisher. By employing this innovative approach, a539

deeper understanding of the cipher’s vulnerabilities was obtained, and this, in540

turn, facilitated the creation of more powerful and effective attack strategies.541

6.1 Specification542

The KATAN family is an efficient hardware-oriented block cipher, featuring three543

variants: KATAN32, KATAN48, and KATAN64, designed for 32-bit, 48-bit, and544

64-bit block sizes, respectively. All variants employ 254 rounds and utilize the545

non-linear functions NF1 and NF2. They share a common LFSR-based key546

schedule that takes an 80-bit key as input. The fundamental structure of the547

KATAN cipher involves loading plaintext into two registers, L1 and L2. During548

each round, several bits from these registers are processed by the non-linear549

functions NF1 and NF2, and the results are loaded into the least significant550

bits of the registers. The key schedule function expands the 80-bit user-provided551

key ki (0 ≤ i < 80) into a 508-bit subkey ski (0 ≤ i < 508) using specific linear552

operations.553

ski =

{
ki, 0 ≤ i < 80

ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13, 80 ≤ x < 508.

Also, the two non-linear functions are defined as follows:

NF1(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka

NF2(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6]))⊕ kb,

The KATAN cipher employs a predefined round constant known as IR (details554

provided in [?]), along with two subkey bits, ka and kb, in its operations. The555

selection of specific bits, denoted as xi for 1 ≤ i ≤ 5 and yi for 1 ≤ i ≤ 6,556

is variant-specific and outlined in Table 10. In the case of KATAN32, the i-th557

round function, illustrated in Figure 7, assigns ka the value of k2i and kb the558
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Fig. 7: Round Function of KATAN [32]

value of k2i+1. After 254 rounds, the values contained in the registers are output559

as ciphertext. In KATAN48, a unique feature is the application of the non-linear560

functions NF1 and NF2 twice within a single round. Initially, the first pair of561

NF1 and NF2 is applied, and following the update of the registers, they are562

reapplied using the same subkeys. Likewise, in the KATAN64 variant, each round563

involves three consecutive applications of NF1 and NF2 with the same key bits.564

More details regarding the specifications of the KATAN family of ciphers can be565

found in [7].566

Table 10: Parameters of KATAN Variants
KATAN Variants | L1 | | L2 | x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN [32] 13 19 12 7 8 5 3 18 7 12 10 8 3

KATAN [48] 19 29 18 12 15 7 6 28 19 21 13 15 6

KATAN [64] 25 39 24 15 20 11 9 38 25 33 21 14 9

6.2 MILP Modelling567

In our approach to attacking KATAN, we have chosen to simplify things by568

narrowing our focus from four planes to just two. This decision aims to make the569

attack more efficient in terms of both computation and time. When it comes to570

using MILP modeling for attacking KATAN, we follow a straightforward strategy.571

We treat the KATAN cipher as if it is the middle part, denoted as Em, in the572

model. The main goal is to reduce the use of ladder/And switches as much as573

possible. This emphasis on minimizing these specific switches helps us create574

a powerful boomerang distinguisher that is not only efficient but also highly575

effective in exploiting the cipher’s vulnerabilities.576
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Table 11: Related-key Boomerang Distinguishers of KATAN32 through MILP
Search

Rounds
Ladder

Switch

And

Switch

Distinguishing

Probability

Upper Trail

Differences

Upper Trail

Differences

Key Difference

(Upper Trail)

Key Difference

(Lower Trail)

Success

Probability

120

5 2 2−11
∆0 = 0x00042000 ∇0 = 0x8400c010

0x40110020000000000802 0x026008401808a041a660 86.6%

∆1 = 0x08000002 ∇1 = 0x01000002

5 2 2−11
∆0 = 0x00004000 ∇0 = 0x20058400

0x00010044008000000200 0x241157c289ba4c354b3b 86.5%

∆1 = 0x00f80084 ∇1 = 0x01000000

1401

14 0 2−21
∆0 = 0x00062000 ∇0 = 0xa4024010

0x4051 00200000 0000080a 0x63c4 cf451630 862a0c25 97%

∆1 = 0x00400801 ∇1 = 0x00b80084

10 4 2−21
∆0 = 0x80031000 ∇0 = 0xa4024010

0x0140 00800000 00002029 0x63c4 cf451630 762a0c25 25%

∆1 = 0x01200400 ∇1 = 0x00b80084

6.3 Results on KATAN577

Related-key Boomerang Attacks Through the application of our MILP578

model to KATAN32, we have successfully uncovered a related-key boomerang579

distinguisher spanning up to 120 rounds. Our optimal solution entails the acti-580

vation of two And switches at positions 32 and 35, as well as five ladder switches581

at positions 57, 61, 64, 66, and 68. Additionally, we have identified another op-582

timal solution with the same configuration: two And switches at positions 95583

and 98, and five ladder switches at positions 25, 28, 56, 60, and 62. Notably, in584

both cases, three switches are engaged in the first 60 rounds, while four switches585

are triggered in the subsequent 60 rounds. Consequently, the probability of the586

boomerang distinguisher is determined to be r · q2 = 2−3 · 2−8 = 2−11.587

In our pursuit of effective boomerang trails spanning 140 rounds, we have588

uncovered multiple optimal solutions using our MILP search. Among these, one589

solution stands out prominently. This particular solution involves the activation590

of fourteen ladder switches at distinct positions: 32, 35, 57, 60, 62, 69, 71, 74, 76,591

78, 105, 108, and 136. This boomerang boasts a probability of r·q2 = 2−7 ·2−14 =592

2−21. Another noteworthy solution we have identified features four And switches593

at positions 1, 58, 61, and 136, accompanied by ten ladder switches at positions594

33, 36, 63, 68, 71, 74, 76, 78, 105, and 108. These intricate details of the optimal595

boomerang trails for 140 rounds are meticulously documented in Table 11.596

Table 12: Related-key Amplified Boomerang Distinguishers of KATAN32

Rounds
Distinguishing

Probability

Input Difference

(Upper Trail)

Output Difference

(Lower Trail)

Key Difference

(Upper Trail)

Key Difference

(Lower Trail)

Success

Probability

120 2−7 ∆0 = 0x00042000 ∇1 = 0x01000002 0x4011 00200000 00000802 0x0260 08401808 a041a660 64%

140 2−15 ∆0 = 0x00062000 ∇1 = 0x00b80084 0x4051 00200000 0000080a 0x63c4 cf451630 862a0c25 70%
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Table 13: Single-key Boomerang Distinguishers of KATAN32 through MILP
Search

Rounds
Ladder

Switch

And

Switch

Distinguishing

Probability

Upper Trail

Differences

Lower Trail

Differences

Success

Probability

60

9 4 2−19
∆0 = 0x00020040 ∇0 = 0x0001a020

71%
∆1 = 0x00100210 ∇1 = 0x00080108

8 5 2−19
∆0 = 0x00034040 ∇0 = 0x00018020

70%
∆1 = 0x00100210 ∇1 = 0x00080108

72 13 9 2−31
∆0 = 0x00020040 ∇0 = 0x8004c600

−−
∆1 = 0x0420840a ∇1 = 0x00080108

84 14 10 2−34
∆0 = 0x10042080 ∇0 = 0x10068080

−−
∆1 = 0x00400840 ∇1 = 0x00400840

Our dedicated efforts are directed towards identifying efficient and potent597

boomerang distinguishers within the domain of cryptographic ciphers. Addition-598

ally, we have explored amplified boomerang trials through suboptimal solutions,599

further enhancing the overall probability of these distinguishers. A comprehen-600

sive list of these trails, along with their amplified probabilities, is provided in601

Table 12.602

Single-key Boomerang Attacks In the context of single-key settings, we603

employed an MILP model to successfully identify a boomerang distinguisher for604

various numbers of rounds. Here are the details of our findings:605

For a 60-round cipher, we discovered two optimal solutions for the boomerang606

distinguisher. In the first solution, the boomerang path involved nine ladder607

Table 14: Amplified Boomerang Distinguishers of KATAN32

Rounds
Distinguishing

Probability

Input Difference

(Upper Trail)

Output Difference

(Lower Trail)

Success

Probability

60
2−14 ∆0 = 0x00020040 ∇1 = 0x00080108 72%

2−14 ∆0 = 0x00034040 ∇1 = 0x00080108 70%

72 2−24 ∆0 = 0x00020040 ∇1 = 0x00080108 65%

84 2−30 ∆0 = 0x10042080 ∇1 = 0x00400840 60%
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switches occurring at positions 18, 21, 24, 29, 33, 35, 37, 49, and 52, along with608

four AND switches at positions 2, 4, 6, and 55. In the second solution, the path609

consisted of eight ladder switches at positions 18, 21, 24, 29, 33, 35, 37, and 49,610

along with five AND switches at positions 2, 4, 6, 52, and 55. In both cases, seven611

switches were active during the initial 60 rounds, and six switches were active612

during the latter 60 rounds. As a result, the probability of the distinguisher was613

computed as r · q2 = 2−7 · 2−12 = 2−19.614

Similarly, for a 72-round cipher, we identified a boomerang path comprising615

a total of twenty-two ladder and AND switches. Thirteen switches were active616

during the first 36 rounds, and nine switches were active during the last 36617

rounds. This yielded a probability of 2−13 · 2−18 = 2−31 for the distinguisher’s618

success.619

Finally, in the case of an 84-round cipher, our investigation led to the dis-620

covery of a boomerang path involving thirty-four ladder and AND switches.621

Fourteen switches were active during the upper 42 rounds, and ten switches622

were active during the lower 42 rounds. Consequently, the probability of this623

boomerang distinguisher was calculated as 2−14 · 2−20 = 2−34.624

We also delved into the exploration of amplified boomerang trails through625

optimal solutions to enhance the overall probability of these distinguishers. The626

details of these trails and their amplified probabilities are given in Table 14.627

Experimental Results We have meticulously conducted practical validations628

for all the boomerang paths associated with KATAN32, as presented in Tables 13629

and 11. These paths were discovered using the MILP (Mixed-Integer Linear Pro-630

gramming) search method, and we rigorously assessed their validity under both631

single-key and related-key settings. This comprehensive validation process en-632

sures the dependability and practical applicability of the reported boomerang633

paths. Furthermore, our investigations into the best amplified boomerang attacks634

on KATAN32, which are detailed in Tables 14 and 12, have undergone extensive635

verification across various scenarios, encompassing both single-key and related-636

key settings. For a more comprehensive understanding of our validation process,637

detailed results, and supporting information, we refer to [1]. These rigorous val-638

idations provide robust evidence that our reported boomerang paths, success639

rates, and discoveries have been subjected to stringent real-world testing and640

analysis, affirming their practical relevance and reliability.641

7 Discussion642

The findings presented in this work represent a significant leap forward in the643

field of cryptanalysis, specifically in the domain of boomerang attacks on non-644

linear feedback shift register (NLFSR)-based block ciphers such as TinyJambu and645

KATAN32. The successful identification of enhanced boomerang distinguishers646

through our proposed methodology underscores its effectiveness. This discussion647

will delve into the implications of these discoveries, their broader relevance within648

the cryptographic landscape, and potential areas for future research.649
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Our approach employs a two-plane method in the Mixed Integer Linear Pro-650

gramming (MILP) search, a strategy aimed at optimizing efficiency and expand-651

ing the scope of coverage across rounds. However, it is worth noting that in652

certain instances, the success rate of the boomerang path identified through653

the MILP search may be relatively low. One possible reason behind this phe-654

nomenon is that, for the upper part (i.e., the Em part) of the cipher, a ladder655

or And switch at a specific round may transform into Trail switch due to the656

differential propagation through the lower part (E1). To present a more accu-657

rate model, assumptions considering equal differences in the opposite planes can658

be relaxed which can leverage on the Trail switches. This presents an intrigu-659

ing open problem: how can constraints be integrated into the MILP model to660

effectively bypass these paths and discover the optimal boomerang path? Ad-661

ditionally, there is room for improving the MILP model’s efficiency to facilitate662

the exploration of a larger number of rounds.663

Another avenue for future research lies in the exploration of unequal round664

allocations between Em and E1. Currently, our approach assumes an equal num-665

ber of rounds for both components. Investigating whether an uneven distribution666

of rounds can lead to the discovery of superior boomerang paths is an intriguing667

question that merits further investigation.668

The practical implications of the improved boomerang distinguishers are sub-669

stantial. They empower cryptanalysts with more potent tools to assess the secu-670

rity of cryptographic algorithms, potentially revealing vulnerabilities that may671

have remained hidden using conventional boomerang methods. Addressing the672

challenge of the vast number of variables in the MILP approach, we intend to673

explore the utilization of four planes within the MILP to refine the search for674

optimal boomerang paths through various switches, including other switches.675

Additionally, our future work will focus on systematically calculating the overall676

probability for amplified boomerangs, further enhancing our ability to analyze677

and assess the security of cryptographic systems.678

Finally, this research demonstrates the evolving landscape of cryptanalysis679

and underscores the need for continued innovation in the quest for robust cryp-680

tographic solutions. The challenges identified here offer exciting opportunities681

for future investigations, ultimately contributing to the advancement of crypto-682

graphic theory and practice.683

8 Conclusion684

To sum up, our study focused on a technique called boomerang attacks, which685

are used to break block ciphers. Specifically, we were interested in ciphers that686

use a particular structure known as NLFSR. We investigated different ways to687

make these attacks more effective, with a special focus on a type of operation688

called ladder or And switches.689

In our exploration, we made an interesting discovery. The usual method to690

calculate the likelihood of success in these attacks might not always give us the691

right answer. We came up with a new way to estimate this probability, which692
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turned out to be different from what was commonly thought. This finding has693

implications for how well these attacks can work in practice.694

We then introduced a new approach to these attacks. We concentrated on695

using ladder or And switches exclusively. This approach is somewhat similar to696

crafting a unique type of sandwich attack. By doing this, we were able to uncover697

vulnerabilities in NLFSR-based ciphers like TinyJambu and KATAN32.698

In conclusion, Our study does not just provide new insights into these boomerang699

attacks; it equips experts with improved strategies for making attacks more suc-700

cessful. In the future, these findings will play a vital role in enhancing the security701

of NLFSR-based block ciphers.702
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