
Monotone Policy BARGs from
BARGs and Additively Homomorphic Encryption

Shafik Nassar
UT Austin

shafik@cs.utexas.edu

Brent Waters
UT Austin and NTT Research
bwaters@cs.utexas.edu

David J. Wu
UT Austin

dwu4@cs.utexas.edu

Abstract
Amonotone policy batchNP languageLR,𝑃 is parameterized by amonotone policy 𝑃 : {0, 1}𝑘 → {0, 1} and anNP

relationR. A statement (𝑥1, . . . , 𝑥𝑘) is a yes instance if there exists𝑤1, . . . ,𝑤𝑘 where 𝑃 (R(𝑥1,𝑤1), . . . ,R(𝑥𝑘 ,𝑤𝑘)) = 1.
For example, we might say that an instance (𝑥1, . . . , 𝑥𝑘) is a yes instance if a majority of the statements are true. A
monotone policy batch argument (BARG) for NP allows a prover to prove that (𝑥1, . . . , 𝑥𝑘) ∈ LR,𝑃 with a proof of
size poly(𝜆, |R |, log𝑘), where 𝜆 is the security parameter, |R | is the size of the Boolean circuit that computes R, and
𝑘 is the number of instances. Recently, Brakerski, Brodsky, Kalai, Lombardi, and Paneth (CRYPTO 2023) gave the
first monotone policy BARG for NP from the learning with errors (LWE) assumption.

In this work, we describe a generic approach for constructing monotone policy BARGs from any BARG for NP
together with an additively homomorphic encryption scheme. This yields the first constructions of monotone policy
BARGs from the 𝑘-Lin assumption in prime-order pairing groups as well as the (subexponential) DDH assumption in
pairing-free groups. Central to our construction is a notion of a zero-fixing hash function, which is a relaxed version
of a predicate-extractable hash function from the work of Brakerski et al. Our relaxation enables a direct realization
of zero-fixing hash functions from BARGs for NP and additively homomorphic encryption, whereas the previous
notion relied on leveled homomorphic encryption, and by extension, the LWE assumption.

As an application, we also show how to combine a monotone policy BARG with a puncturable signature scheme
to obtain a monotone policy aggregate signature scheme. Our work yields the first (statically-secure) monotone policy
aggregate signatures that supports general monotone Boolean circuits from standard pairing-based assumptions.
Previously, this was only known from LWE.

1 Introduction
A non-interactive batch argument (BARG) forNP allows a prover to convince a verifier that a collection of 𝑘 statements
𝑥1, . . . , 𝑥𝑘 is true with a proof whose size scales sublinearly with 𝑘 . Beyond the immediate application to amortizing
the communication cost of NP verification, batch arguments for NP also play a key role in constructing delegation
for RAM programs (also known as a succinct non-interactive argument (SNARG) for P) [KVZ21, CJJ21b, KLVW23]
and incrementally verifiable computation [DGKV22, PP22]. These objects have received extensive study recently, and
to date, we have constructions from most standard algebraic assumptions in cryptography such as the learning with
errors (LWE) assumption [CJJ21b], the 𝑘-Lin assumption on groups with bilinear maps [WW22], the (sub-exponential)
decisional Diffie-Hellman (DDH) assumption in pairing-free groups [CGJ+23], or combinations of quadratic residuosity
and (sub-exponential) DDH in pairing-free groups [CJJ21a, HJKS22].

Beyond batch NP and P. The recent successes in constructing succinct arguments for batch NP and for P from
standard cryptographic assumptions has motivated the study of other (sub)-classes of NP for which we can build
succinct non-interactive arguments from standard (falsifiable) assumptions. Very recently, Brakerski, Brodsky, Kalai,
Lombardi, and Paneth [BBK+23] showed how to construct SNARGs for monotone policy batch NP. At a high level,
the monotone policy batch NP language LR,𝑃 is defined with respect to an NP relation R together with a monotone
policy 𝑃 : {0, 1}𝑘 → {0, 1} as follows:

LR,𝑃 = {(𝑥1, . . . , 𝑥𝑘) | ∃(𝑤1, . . . ,𝑤𝑘) : 𝑃 (R(𝑥1,𝑤1), . . . ,R(𝑥𝑘 ,𝑤𝑘)) = 1} .

1

mailto:shafik@cs.utexas.edu
mailto:bwaters@cs.utexas.edu
mailto:dwu4@cs.utexas.edu

In words, an instance (𝑥1, . . . , 𝑥𝑘) is true as long as an acceptable subset of the statements are true (as determined by
the policy 𝑃). Such “monotone policy batch arguments” capture policies like majority, general thresholds, and more.
The standard batch argument corresponds to the special case where the policy 𝑃 is a simple conjunction.

Brakerski et al. [BBK+23] provided two constructions of monotone policy BARGs for NP. The first construction
only relies on standard (somewhere extractable) BARGs and collision-resistant hash functions, but could only support
monotone policies of logarithmic depth (i.e., monotone NC1). To extend to monotone policies of arbitrary polynomial
depth, they combine standard BARGs with a new notion of a predicate-extractable hash function, which they then
build from the LWE assumption (specifically, they rely on leveled homomorphic encryption). This yields a monotone
policy batch argument for arbitrary monotone policies from the LWE assumption. Due to the current reliance on
leveled homomorphic encryption to construct the predicate-extractable hash function, instantiations of monotone
policy BARGs for arbitrary-depth policies rely on the LWE assumption.

1.1 Our Results
Our main result in this work is showing how to construct BARGs for monotone policies by combining a (standard)
BARG with an additively homomorphic encryption scheme (which can in turn be built from most number-theoretic
assumptions [Gam84, Pai99, Reg05]). Combined with the recent progress on constructing BARGs from pairing-based
groups [WW22] and pairing-free groups [CGJ+23], we obtain the first monotone policy BARGs for NP from the
𝑘-Lin assumption over pairing groups and from the (sub-exponentially) DDH assumption in pairing-free groups. We
provide an overview of our techniques in Section 1.2 and summarize our main results in the following theorem:

Theorem 1.1 (Informal). Assuming any of (1) the plain LWE assumption, (2) the 𝑘-Lin assumption over pairing groups
for any constant 𝑘 ∈ N, or (3) the (sub-exponential) DDH assumption in pairing-free groups, there exists a monotone policy
BARG for all polynomial-size monotone circuit policies. The monotone policy BARG satisfies non-adaptive soundness and
the proof size is poly(𝜆 + |𝐶 | + log |𝑃 |), where |𝐶 | denotes the size of the Boolean circuit computing the NP relation, and
|𝑃 | is the size of the monotone policy.

Monotone policy aggregate signatures. A key difference between Theorem 1.1 and the previous LWE-based
construction [BBK+23] is that we obtain a non-adaptively-sound BARG for monotone circuit policies whereas the
[BBK+23] construction satisfied a stronger “somewhere extractability” notion. That is, in [BBK+23], the common
reference string (CRS) can be sampled in a trapdoor mode and the trapdoor can be used to recover a witness for
some 𝑥𝑖 given a valid proof on statements (𝑥1, . . . , 𝑥𝑘). While extractability is often useful to have in a cryptographic
primitive, it is not always essential.

As an illustrative example, we show how to use monotone policy BARGs in conjunction with (puncturable)
signatures [GVW19] to construct a monotone policy aggregate multi-signature scheme. In an aggregate multi-
signature scheme, there is a set of 𝑘 signers, each with a signing/verification key-pair (sk𝑖 , vk𝑖). Given a policy 𝑃 and
a set of signatures 𝜎𝑖 for 𝑖 ∈ 𝑆 (where 𝜎𝑖 verifies with respect to vk𝑖) on a common message𝑚, if the set 𝑆 satisfies
the policy 𝑃 , then it is possible to aggregate {𝜎𝑖 }𝑖∈𝑆 into a single short signature whose size is sublinear in |𝑆 |. For
instance, 𝑃 might encode a “threshold” policy that accepts all sets of size at least 𝑡 . Crucially, static security of our
monotone policy aggregate signature scheme only relies on non-adaptive soundness of the monotone policy BARG and
security of the puncturable signature scheme. There is no need for an explicit extraction requirement. Very briefly, a
puncturable signature scheme allows one to sample a “punctured” verification key vk (and associated signing key) for
some message𝑚∗. The punctured verification key is computationally indistinguishable from a normal verification
key, but has the property that there does not exist any signatures on the punctured message𝑚∗ with respect to the
punctured key. As shown in [GVW19], puncturable (or “all-but-one signatures”) can be constructed from many
standard number-theoretic assumptions. We summarize this result in the following theorem:

Theorem 1.2 (Informal). Assuming the existence of a non-adaptively sound monotone BARG and a puncturable signature
scheme, there exists a monotone policy aggregate multi-signature scheme. The scheme satisfies static unforgeability and
the size of the aggregate signature is poly(𝜆 + log |𝑃 |), where |𝑃 | denotes the size of the circuit computing the monotone
policy.

2

Theorem 1.2 shows that in combination with puncturable signatures, soundness alone is sufficient for building
aggregate signatures for general monotone policies. Notably, Theorem 1.2 also provides the first monotone policy
aggregate signature from pairing-based assumptions (in the plain model). Previous work have shown how to build
vanilla aggregate signatures using (vanilla) non-interactive batch arguments [WW22, DGKV22]. In an independent
and concurrent work, [BCJP24] also show how to construct a monotone policy aggregate multi-signature. Their work
provides two constructions of monotone policy aggregate (multi)-signatures. The first scheme supports monotone
policies that can be implemented by a read-once, bounded-space Turing machine and is also adaptively secure. This
scheme relies on somewhere extractable BARGs and a verifiable private information retrieval scheme [BKP22],
and can be instantiated from standard pairing-based or lattice-based assumptions. The second scheme supports
policies implemented by an arbitrary monotone Boolean circuit, but achieves a weaker security definition (closer to
static security) and also relies on fully homomorphic encryption (which to date, is not known from pairing-based
assumptions). Theorem 1.2 gives a statically-secure monotone policy aggregate signature scheme that supports all
monotone Boolean circuits, and does not rely on fully homomorphic encryption. This enables a new instantiation
from pairings.

Soundness vs. extraction. While Theorem 1.2 shows that extraction is unnecessary for all applications of mono-
tone policy BARGs, our proof strategy for arguing soundness can nonetheless be extended to achieve a notion of
extractability (see Section 8). The notion we achieve is similar to the somewhere extractability notion from [BBK+23],
where for every monotone policy 𝑃 , they define a notion of a “necessary set” associated with 𝑃 (i.e., a set with
the property that for every satisfying input (𝑥1, . . . , 𝑥𝑛) to 𝑃 , there exists 𝑖 ∈ 𝑆 where 𝑥𝑖 = 1). The somewhere
extractability notion from [BBK+23] programs 𝑆 into the common reference string, and asserts that whenever the
prover comes up with an accepting proof for statements (𝑥1, . . . , 𝑥𝑘) for an NP relation R and policy 𝑃 , then the
extractor will output 𝑤𝑖 for 𝑖 ∈ 𝑆 where R(𝑥𝑖 ,𝑤𝑖) = 1. Our construction satisfies a looser variant of this property
where the success probability of the extractor is smaller by a factor of 1/𝑘 . We refer to this notion as semi-somewhere
extractability. While our construction does achieve this notion of extraction with essentially no modification (see
Section 8), we choose to focus on the simpler notion of non-adaptive soundness in the core part of this paper. Our
rationale is twofold:

• First, there is a lack of consensus on what the “right” notion of extraction is when it comes to the setting of
monotone policy BARGs. Notably, the recent and concurrent work of [BCJP24] that builds monotone policy
aggregate signatures highlighted the inadequacy of the somewhere extractability notion from [BBK+23] for
their particular application to constructing monotone policy aggregate signatures. Indeed, the work of [BCJP24]
propose two different and seemingly incomparable notions of extraction for their application. This illustrates
that the most useful or desirable notion of extraction for monotone policy BARGs may be application-dependent.

• Second, while it is straightforward to show that our construction satisfies some notion of extractability, proving
this property does not appear to confer additional capabilities. For the main application to statically-secure
aggregate signatures, we showed above that non-adaptive soundness already suffices. There is no need for
extraction if this is the end goal. The main advantage of having some kind of extractability definition is we can
apply this construction to compile any digital signature scheme into a monotone policy aggregate signature
scheme, as opposed to restricting ourselves to puncturable signatures (and we show this in Section 8.1). While
there is a qualitative benefit to this, we do not view it as strong evidence that semi-somewhere extractability is
a clearly more powerful or more useful notion than non-adaptive soundness.

A new application: general-policy BARGs for NP ∩ coNP. We also highlight a simple application of BARGs for
monotone policy batch NP to constructing a BARG that supports arbitrary policies over languages in NP ∩ coNP.
Our observation essentially follows the similar strategy of extending monotone closure of SZK to non-monotone
closure [Vad06]. Specifically, for a language X ∈ NP ∩ coNP and an arbitrary policy 𝑃 : {0, 1}𝑘 → {0, 1}, we define
the language

LX,𝑃 = {(𝑥1, . . . , 𝑥𝑘) | 𝑃 (𝑏1, . . . , 𝑏𝑘) = 1 where 𝑏𝑖 = 1 {𝑥𝑖 ∈ X}} ,
where 1 {𝑥𝑖 ∈ X} is the indicator function that outputs 1 if 𝑥𝑖 ∈ X and 0 otherwise. Importantly, in this context,
we allow 𝑃 to be any arbitrary (possibly non-monotone) Boolean circuit. It is not difficult to see that a BARG for

3

monotone policy batch NP immediately implies a BARG for LX,𝑃 . Namely, we first re-express the circuit 𝑃 on 𝑘

inputs 𝑏1, . . . , 𝑏𝑘 as a new monotone circuit 𝑃 ′ on 2𝑘 inputs corresponding to the original input bits 𝑏1, . . . , 𝑏𝑘 as well
as their negations 𝑏1, . . . , 𝑏𝑘 . We can then apply a BARG for monotone policy batch NP on the set of 2𝑘 inputs with
the policy 𝑃 ′. For this transformation to work, it is important that for each statement 𝑥𝑖 , the prover can either provide
a proof of membership 𝑥𝑖 ∈ X (which sets 𝑏𝑖 = 1) or a proof of non-membership 𝑥𝑖 ∉ X (which sets 𝑏𝑖 = 1).

1.2 Technical Overview
The starting point of our BARG construction is the “canonical protocol” from [BBK+23, §2.1]. We recall this below. In
our description, we will consider the NP relation of Boolean circuit satisfiability.

• Given a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a monotone policy 𝑃 : {0, 1}𝑘 → {0, 1}, statements
𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , witnesses𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ , the prover first computes 𝑏𝑖 ← 𝐶 (𝑥𝑖 ,𝑤𝑖) for all 𝑖 ∈ [𝑘].

• The prover then evaluates the circuit 𝑃 (𝑏1, . . . , 𝑏𝑘). The prover commits to all of the wire values in 𝑃 (𝑏1, . . . , 𝑏𝑘)
using a succinct commitment com that supports local openings. We index the input wires with the integers
1, . . . , 𝑘 , the output wire by 𝑠 (where 𝑠 is the number of wires in 𝑃), and the intermediate wires with 𝑘+1, . . . , 𝑠−1.

• The prover uses a batch argument to prove the following statements with respect to the commitment com:

– Input wires: For every input wire 𝑗 ∈ [𝑘], it proves that there exists a local opening of com to a value
𝑏 𝑗 ∈ {0, 1} at index 𝑗 , and moreover, 𝑏 𝑗 = 𝐶 (𝑥 𝑗 ,𝑤 𝑗).

– Gate computation: For every gate 𝑔 in 𝑃 with input wires 𝑗l, 𝑗r and output wire 𝑗 , it proves that there
exists a local opening of com to wire values 𝑏 𝑗l , 𝑏 𝑗r , 𝑏𝑖 ∈ {0, 1} at indices 𝑗l, 𝑗r, 𝑗 ∈ [𝑠], respectively, and
moreover, 𝑏 𝑗 = 𝑔(𝑏 𝑗l , 𝑏 𝑗r).

– Output wire: It proves that there exists a local opening to the value 1 at index 𝑠 for com.

The proof consists of the commitment com together with the batch argument 𝜋 .

When the policy circuit 𝑃 has logarithmic depth, the authors of [BBK+23] describe a simple inductive argument to
argue the security of this construction by relying on somewhere extractability of the underlying BARG. Somewhere
extractability says that the common reference string of the BARG can be programmed at a small number of (hidden)
indices 𝑖1, . . . , 𝑖ℓ . Given a valid proof 𝜋 for (𝑥1, . . . , 𝑥𝑛) along with a trapdoor, one can extract witnesses for 𝑥𝑖1 , . . . , 𝑥𝑖ℓ .
However, when 𝑃 has super-logarithmic depth, the basic inductive argument no longer suffices (specifically, the
security loss of the reduction decays exponentially in the depth of 𝑃).

Predicate-extractable hash functions for bit-fixing constraints. To construct monotone policy BARGs for
policies 𝑃 of arbitrary depth, the authors of [BBK+23] replace the Merkle hash of the wire values with a more
sophisticated “predicate-extractable” hash function for bit-fixing constraints.1

A predicate-extractable hash function for bit-fixing predicates is a hash function where the hash key can be
programmed in one of two computationally indistinguishable modes: (1) a normal mode and (2) a bit-fixing mode. In
bit-fixing mode, the setup algorithm takes as input a set of indices 𝑆 ⊆ [𝑛] along with a collection of bits {(𝑖, 𝑦𝑖)}𝑖∈𝑆 ,
where 𝑛 is the input length. It outputs a hash key hk and an extraction trapdoor td. The correctness requirement says
that if dig = Hash(hk, x) for an input x where 𝑥𝑖 = 𝑦𝑖 for all 𝑖 ∈ 𝑆 , then Extract(td, dig) = Matching. Alternatively,
if dig is a digest for an input x where 𝑥𝑖 ≠ 𝑦𝑖 for some 𝑖 ∈ 𝑆 , then Extract(td, dig) should output (NotMatching, 𝑖∗)
where 𝑖∗ ∈ 𝑆 is an index where 𝑥𝑖∗ ≠ 𝑦𝑖∗ . Essentially, the extractor is deciding whether dig corresponds to the hash
of an input that is consistent with {(𝑖, 𝑦𝑖)}𝑖∈𝑆 . If the hash is declared inconsistent, the extractor outputs one of the
inconsistent indices. Finally, the hash function supports succinct local openings to individual bits of an input. The
two key security properties are as follows:

• For a hash digest digwhere Extract(td, dig) = Matching, then it should be computationally difficult to construct
an opening for dig to a value 𝑥𝑖 ≠ 𝑦𝑖 for any 𝑖 ∈ 𝑆 .

1This is conceptually similar to the notion of function-binding hash functions introduced concurrently in [FWW23].

4

• For a hash digest dig where Extract(td, dig) = (NotMatching, 𝑖∗), then it should be computationally difficult
for the adversary to open index 𝑖∗ to the value 𝑦𝑖∗ .

In the monotone BARG construction, the prover takes the Boolean circuit 𝐶 , the policy 𝑃 , the statements (𝑥1, . . . , 𝑥𝑘)
and the witnesses (𝑤1, . . . ,𝑤𝑘), and computes 𝑏𝑖 ← 𝐶 (𝑥𝑖 ,𝑤𝑖) and 𝑃 (𝑏1, . . . , 𝑏𝑘). Let (𝑏1, . . . , 𝑏𝑠) be the complete set
of wire values in 𝑃 (𝑏1, . . . , 𝑏𝑘), arranged in topological order. The prover hashes the wire values (𝑏1, . . . , 𝑏𝑠) using
the predicate-extractable hash function. In fact, the prover computes two independent hashes dig1, dig2 of the wire
values, and the BARG will check validity of the openings against both hashes. To argue non-adaptive soundness, the
authors of [BBK+23] first define the zero-set 𝐽 associated with a circuit 𝐶 , policy 𝑃 , and statement (𝑥1, . . . , 𝑥𝑘):

• For each 𝑖 ∈ [𝑘], let 𝛽∗𝑖 = 1 if there exists𝑤𝑖 such that 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 and let 𝛽∗𝑖 = 0 otherwise.

• Let 𝛽∗1, . . . , 𝛽∗𝑠 = 𝑃 (𝛽∗1, . . . , 𝛽∗𝑘) be the wire values in 𝑃 (𝛽∗1, . . . , 𝛽∗𝑠), where the wires are ordered topologically.

• Let 𝐽 =
{
𝑖 ∈ [𝑘] : 𝛽∗𝑖 = 0

}
. For a layer index 𝑡 , define 𝐽𝑡 ⊆ 𝐽 to just contain the indices of wires in layer 𝑡 of 𝑃 .

The proof of non-adaptive soundness now proceeds as follows:2

• Take any circuit 𝐶 , monotone policy 𝑃 , and statements 𝑥1, . . . , 𝑥𝑘 . The invariant they use roughly says the
following: if hk0, hk1 are programmed to bind to the all-zeroes string on the zero-sets 𝐽𝑖 , 𝐽𝑖−1 for layers 𝑖 and
𝑖 − 1 of 𝑃 , and the digest associated with the upper layer is NotMatching, then the digest associated with the
lower layer is also NotMatching.

• To establish this invariant, the proof critically relies on BARG security and security of the predicate-extractable
hash function. Namely, if the extractor declares an index 𝑗 ∈ 𝐽𝑖 in the upper layer to be NotMatching and the
BARG is set to be extracting on wire 𝑗 , then that means the adversary must have opened one of the input
wires 𝑗 ′ (to the gate computing wire 𝑗) to a 1 where 𝑗 ′ ∈ 𝐽𝑖−1 (since the policy 𝑃 is monotone). Security of
the hash function then says that the extractor must declare the digest associated with the lower layer to be
NotMatching.

• To complete the proof, they argue that the output layer must be NotMatching (by programming the BARG
to be extracting on the output wire). By propagating the invariant to the input wires, they conclude that the
input layer must be NotMatching (when one of the hash keys is programmed to bind on the input layer). In
this case, programming the BARG to be extracting on the wire identified by the NotMatching input (output
by the extractor for the hash function) yields a contradiction (in this case, the BARG extractor would need to
output a witness for a false NP statement).

The authors of [BBK+23] then show how to construct a predicate-extractable hash function for bit-fixing predicates
using the learning with errors (LWE) assumption. Their construction specifically relies on leveled homomorphic
encryption (similar to the construction of somewhere statistically binding hash functions [HW15]). In conjunction
with BARGs for NP based on LWE [CJJ21b], this yields a monotone policy BARG for NP from LWE.

This work: zero-fixing hash functions. The starting point of our work is a relaxation of a predicate-extractable
hash function for bit-fixing predicates we call a zero-fixing hash function. Like the predicate-extractable hash
function, the zero-fixing hash function supports succinct local openings and moreover, the hash key for a zero-fixing
hash function can be sampled in one of two computationally-indistinguishable modes: (1) a normal mode and (2)
a zero-fixing mode. In zero-fixing mode, the setup algorithm takes as input a set 𝑆 ⊆ [𝑛] of indices (that should
be zero) and outputs a hash key hk along with a trapdoor td. There is also an extract algorithm Extract that takes
as input the hash key hk and a digest dig, and outputs eitherMatching or NotMatching. The key distinction with
predicate-extractable hash functions is that Extract only outputs the flag; it does not output an index when it declares a
digest NotMatching. Correspondingly, the zero-fixing security requirement only imposes a requirement for matching
digests:
2With a suitable strengthening of the notion of predicate-extractable hash functions, the authors of [BBK+23] also show how to obtain a somewhere
extractable monotone policy BARG. In this work, we focus on achieving the core notion of non-adaptive soundness.

5

• Zero-fixing: Suppose (hk, td) are sampled in zero-fixing mode for a set 𝑆 . Then, for any digest dig where
Extract(td, dig) outputsMatching, it should be hard to find an opening to an index 𝑖 ∈ 𝑆 to the value 1.

While this distinction of having the extractor output a mismatching index 𝑗 or not might seem like a small difference,
it has two significant implications:

• Simpler to construct: By only requiring the zero-fixing hash function declare whether a digest is Matching
or NotMatching, we significantly simplify the construction of the hash function. Whereas computing and
propagating an index of a “mismatching bit” (as in [BBK+23]) relies heavily on (leveled) homomorphic encryption,
checking whether there exists a mismatching index or not can be realized from simpler tools. As we show
in this work (and describe later on), we can construct zero-fixing hash functions generically from BARGs
for NP together with any additively homomorphic encryption scheme (Section 5). If we prefer to avoid non-
black-box techniques altogether, we also describe a direct algebraic construction using composite-order pairing
groups (Section 6). This is the critical distinction that allows us to obtain monotone policy BARGs from group-
based assumptions (which give additively homomorphic encryption [Gam84] but not leveled homomorphic
encryption).

• Sufficient for monotone policy BARGs: A second important fact is that our notion of zero-fixing hash
function still suffices to build monotone policy BARGs. As noted in the preceding sketch, the soundness analysis
from [BBK+23] critically relied on the hash function extractor outputting an index of a mismatching bit. This
is so that when the BARG is programmed to bind on the wire associated with the mismatching index, the
NotMatching invariant propagates from the output layer to the input layer. In our setting, the zero-fixing
extractor only outputsMatching or NotMatching, and in the case where the extractor outputs NotMatching,
we cannot definitively declare an index to be “mismatching.” This requires a new proof strategy as well as
imposing additional security requirements on the zero-fixing hash function. We describe these properties as
well as our new proof strategy in more detail below.

Monotone policy BARGs from zero-fixing hash functions. Our main construction is similar to the canonical
protocol from [BBK+23] sketched above, except the prover commits to all of the wires of the policy circuit 𝑃 using two
zero-fixing hash functions (with hash keys hk1 and hk2). Our security analysis takes a different bottom-up approach
rather than the previous top-down approach. The bottom-up approach is more natural when using our zero-fixing
hash function. Here, we provide a sketch of our non-adaptive soundness analysis.

To argue non-adaptive soundness, fix a Boolean circuit 𝐶 , a monotone policy 𝑃 (assumed to be a layered Boolean
circuit), and a false statement (𝑥1, . . . , 𝑥𝑘). Similar to [BBK+23], we define the zero-set 𝐽 associated with 𝐶 , 𝑃 , and
(𝑥1, . . . , 𝑥𝑘). The zero-set 𝐽 contains the indices of the wires with value 0 in the computation 𝑃 (𝛽∗1, . . . , 𝛽∗𝑘) where
𝛽∗𝑖 = 1 if there exists𝑤𝑖 where 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 and 0 otherwise. Since 𝑃 is monotone, for all𝑤1, . . . ,𝑤𝑘 , the wire values
of 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝑘 ,𝑤𝑘)) on the set 𝐽 will be zero. As before, let 𝐽𝑖 ⊂ 𝐽 be the subset of wires in layer 𝑖 of 𝑃 .

Our soundness argument proceeds layer-by-layer, starting from the input layer (i.e., layer 1) and progressing to
the output layer (i.e., layer 𝑑 , where 𝑑 is the depth of 𝑃). Our goal establishes the following invariant: if the hash keys
hk1 and hk2 are zero-fixing on 𝐽𝑖 and 𝐽𝑖+1 and the digest associated with the lower layer (i.e., layer 𝑖) is Matching,
then the digest associated with the upper layer (i.e., layer 𝑖 + 1) is alsoMatching. We provide a sketch of this step. For
ease of exposition, suppose hk1 is zero-fixing on 𝐽𝑖 and the digest dig1 isMatching. The goal is to show that hk2 is
zero-fixing on 𝐽𝑖+1, then the digest dig2 is alsoMatching:3

• Initially, we set hk2 to be binding on the empty set. We require in this case that dig2 is alwaysMatching. We
refer to this property as an extractor validity property on the zero-fixing hash function.

• We now iteratively build up hk2. Let 𝐽𝑖+1 [1] be the first element of 𝐽𝑖+1. We set hk2 to be binding on the set
{𝐽𝑖+1 [1]}. Our goal is to argue that dig2 is still Matching. While it might seem like this property should follow

3This step is straightforward if we had a predicate-extractable hash function where the extractor outputs a mismatching index. Namely, if the
upper layer digest is NotMatching, then the extractor outputs an index 𝑗 ∈ 𝐽𝑖+1 that is mismatching (i.e., cannot be opened to a 0). This means
the efficient adversary can only open wire 𝑗 to the value 1. Now, if the BARG is extracting on the statement associated with wire 𝑗 , then we either
(1) obtain the opening of some index 𝑗 ′ ∈ 𝐽𝑖 to a 1, which breaks security of the hash function (since the lower layer digest isMatching); or (2)
the value of wire 𝑗 is inconsistent with the input wires associated with the gate computing wire 𝑗 , which breaks security of the BARG.

6

assuming a basic index hiding property on the zero-fixing hash function (i.e., that the hash key hk hides which
set it is binding on), this is insufficient. The reason is that when hk2 is binding on ∅, the adversary might output
a Matching digest dig2, but if hk2 is binding on {𝐽𝑖+1 [1]}, the output digest dig2 might be NotMatching. We
cannot use such an adversary to construct an index hiding distinguisher, because in the index hiding security
game, the distinguisher does not have the extraction trapdoor. As such, an attempted reduction algorithm
cannot efficiently decide whether the adversary was successful or not. Indeed, this is a fundamental issue since
knowledge of the extraction trapdoor would trivially break index hiding.

• To advance the proof, we introduce a stronger notion of index hiding security for zero-fixing hash functions,
which essentially requires that no efficient adversary can output a digest dig that causes the output of Extract
to differ depending on whether the hash key is binding on a set 𝑆 or a set 𝑆 \ {𝑖}.4 Of course, this is only
meaningful when the digest is computed over an input that is 0 on index 𝑖 .5 Thus, we require this stronger
index hiding with extracted guess property to hold only for digests dig where the adversary can provide an
opening to index 0 for the target index 𝑖 . We define this property formally in Definition 3.1.

• To leverage the index hiding with extracted guess property, we need to enforce the fact that dig2 opens to
a 0 on index 𝐽𝑖+1 [1]. We ensure this by appealing to the somewhere extractability of the BARG along with
zero-fixing security of the hash function. Specifically, suppose that the BARG is binding on wire 𝐽𝑖+1 [1]. The
BARG extractor then produces openings to the wire 𝐽𝑖+1 [1] with respect to dig2 as well as opening to the
wires 𝑗l, 𝑗r with respect to dig1 (corresponding to the input wires for the gate computing 𝐽𝑖+1 [1]). Since dig1 is
zero-fixing on 𝐽𝑖 and dig1 is alsoMatching, if either 𝑗l, 𝑗r ∈ 𝐽𝑖 , then the extracted openings must be openings
to 0 (otherwise, we break zero-fixing of the hash function). But by monotonicity of 𝑃 , this means the value of
the output wire 𝐽𝑖+1 [1] must also be 0, and thus the BARG extractor produces an opening to 0 for wire 𝐽𝑖+1 [1].
Now, by the index hiding with extracted guess property, we conclude that programming hk2 to zero-fix on set
{𝐽𝑖+1 [1]} will still cause dig2 to be Matching (except with a negligible loss in probability).

• We can now iteratively apply the argument and build up hk2 until it is binding on all of 𝐽𝑖+1.

To complete the proof, we consider the input and output layers for 𝑃 :

• Handling the input layers: The base case in our analysis is to show that if hk1 is binding on 𝐽1 (the input layer),
then it isMatching. This follows using the same layer-wise strategy sketched above for proving our invariance,
except for each index 𝐽1 [𝑖], we rely on the fact that the associated statement 𝑥𝑖 is false (i.e., no witness exists) to
argue that the only valid opening for dig1 on index 𝑖 is 0. Otherwise, we either break somewhere extractability
of the BARG (i.e., extracting an invalid witness for index 𝑖) or the index hiding with extracted guess property.

• Output layer: Starting from the input layer, we now iteratively apply our basic invariant to argue that when
the hash keys are binding to 𝐽𝑑 (the output layer), the associated digests are also Matching. Now, if we have a
valid proof, and the BARG is set to extract on the output layer, then the BARG extractor outputs an opening of
the output wire to 1 with respect to the hash digests. However, since the output wire is contained in 𝐽𝑑 (since
the statement is false), and the digest is matching, this breaks zero-fixing security of the hash function.

Thus, the above analysis suffices to show non-adaptive soundness of our construction. The critical security requirement
we require on our zero-fixing hash function is the strengthened index hiding with extracted guess property. This
property allows us to complete the proof via an iterative approach without needing to rely on the extractor outputting
a mismatching index as in previous work [BBK+23]. As we discuss below, this is an easier property to realize than
full-fledged index extraction. We refer to Section 3 for the formal definition of zero-fixing hash functions and Section 4
for our construction of monotone policy BARGs.
4This type of property where the output of the extractor does not change for different choices of the CRS is often referred to as a “no-signaling”
extraction property [PR17, KPY19, GZ21, KVZ21, CJJ21b].

5Otherwise, an honest digest on the input that is 1 at index 𝑖 (and 0 everywhere else) would be declared Matching if the hash key was zero-fixing
on a set 𝑆 that contains 𝑖 and NotMatching if the hash key was zero-fixing on the set 𝑆 \ {𝑖 }

7

Constructing zero-fixing hash functions. Our second contribution in this work is a generic construction of
zero-fixing hash functions from vanilla BARGs together with an additively homomorphic encryption scheme. We
start with a basic construction that captures the key ideas underlying our construction and refer to Section 5 for the
formal description and analysis:

• Let 𝑛 ∈ N be the input length. For ease of exposition, we assume that 𝑛 = 2𝑘 is a power-of-two. Suppose we
want to zero-fix on a (possibly-empty) set 𝑆 ⊆ [𝑛]. The setup algorithm first samples a public/secret key-pair
(pk, sk) for an additively homomorphic encryption scheme. For each 𝑖 ∈ [𝑛], the setup algorithm construct an
encryption ct𝑖 ← Enc(pk, 1) of 1 if 𝑖 ∈ 𝑆 and an encryption of ct𝑖 ← Enc(pk, 0) of 0 if 𝑖 ∉ 𝑆 . It also constructs an
encryption ctzero ← Enc(pk, 0) of 0. Finally, it constructs a commitment comhk to the ciphertexts (ct1, . . . , ct𝑛).
The hash key is then hk = (pk, ctzero, ct1, . . . , ct𝑛, comhk), and the extraction trapdoor is the decryption key sk.

• To hash an input 𝑥 ∈ {0, 1}𝑛 , the user constructs a complete binary tree where each of the 𝑛 leaves is associated
with a ciphertext. If 𝑥𝑖 = 1, then the user associates leaf 𝑖 with ct𝑖 , and if 𝑥𝑖 = 0, then the user associates
leaf 𝑖 with ctzero. The value of each internal node in the binary tree is defined to be the sum of the ciphertexts
associated with its two children. By construction, the value of the root node is an encryption of the sum of the
values associated with the 𝑛 leaf nodes. We refer to the tree of ciphertexts as the “ciphertext-evaluation tree.”
The digest dig then consists of the ciphertext ctroot associated with the root node along with a commitment
comct to all of the ciphertexts in the ciphertext-evaluation tree.

• A local opening for index 𝑖∗ and value 𝑏𝑖∗ ∈ {0, 1} for the digest dig = (ctroot, comct) is a BARG proof. The
BARG statements correspond to the indices of the nodes in the ciphertext-evaluation tree. The associated
relation is parameterized by the target index 𝑖∗, the root ciphertext ctroot, the encryption ctzero of 0 from the
hash key, and the commitment to the input ciphertexts comhk. The BARG relation then checks the following:

– Leaf nodes: For each leaf node 𝑖 , comct opens to either ctzero or ct𝑖 at index 𝑖 . For the particular index 𝑖∗, it
checks that comct opens to ctzero if 𝑏𝑖∗ = 0 and comct opens to ct𝑖∗ if 𝑏𝑖∗ = 1. Since the BARG relation only
has comhk and not ct𝑖 itself, the prover provides ct𝑖 as part of its witness along with a proof of opening
for ct𝑖 with respect to comhk. The proof of opening ensures that the correct ct𝑖 is provided.

– Internal nodes: For an internal node 𝑖 (with children indexed 𝑗l, 𝑗r), the BARG checks that comct opens
to ciphertexts ct𝑖 , ct𝑗l , ct𝑗r where ct𝑖 is the sum of ciphertexts ct𝑗l and ct𝑗r .

– Root node: For the root node, the BARG checks that comct opens to ctroot.

• To test whether a digest dig = (ctroot, comct) is matching or not, the Extract algorithm outputs Matching if
ctroot decrypts to 0 and NotMatching otherwise.

By definition, the ciphertext ctroot in any (honestly-generated) hash digest is the sum of the ciphertexts associated with
the leaves of the ciphertext-evaluation tree. On an input 𝑥 , if 𝑥𝑖 = 0, then the associated ciphertext is an encryption of
0 and does not contribute to the sum. If 𝑥𝑖 = 1, then the ciphertext associated with the leaf is an encryption of 1 if
𝑖 ∈ 𝑆 and encryption of 0 otherwise. Thus, the sum is only incremented if 𝑥𝑖 = 1 for some 𝑖 ∈ 𝑆 . This is precisely
when Extract outputs NotMatching (i.e., the digest is for an input 𝑥 where 𝑥𝑖 = 1 for 𝑖 ∈ 𝑆).

To argue that it is hard to open aMatching, but possibly-malformed digest to a 1 at an index 𝑖 ∈ 𝑆 , we appeal to
soundness of the BARG. In this case, the root ciphertext ctroot in dig decrypts to a non-zero value, and yet the user
constructed a valid BARG proof of opening for an index 𝑖 ∈ 𝑆 . The key observation is that the structure of the BARG
used in the above construction is very similar to the structure of the canonical protocol from [BBK+23] described
at the beginning of Section 1.2 for demonstrating correct evaluation of a monotone circuit. Moreover, because the
ciphertext-evaluation tree is perfectly balanced, it has depth log𝑛, where 𝑛 = poly(𝜆) is the input length. As such, we
are able to adapt the proof strategy for arguing soundness of the monotone policy BARGs for log-depth circuits to
directly argue zero-fixing security of our hash function. Specifically, we rely on BARG security to ensure that if the
adversary uses an encryption of 1 as one of the leaves to the ciphertext (which it must if it opens an index 𝑖 ∈ 𝑆 to a 1),
then the root ciphertext necessarily is an encryption of a non-zero value. We provide the full details in Section 5.1.3.

While the core construction described here satisfies zero-fixing security, we need to augment the construction to
satisfy the additional security requirements we impose on a zero-fixing hash function. We summarize these here, and
defer to the technical sections (Sections 5, 5.1.4 and 5.1.5) for the full details:

8

• Extractor validity: Recall that this property says that when the hash function is zero-fixing on the empty set,
it should be hard for an adversary to come up with a “valid” digest that is NotMatching. To satisfy this property,
we simply include a BARG proof of validity to the digest, where the BARG proof of validity simply checks that
the ciphertext-evaluation tree was correctly constructed. When the hash key is binding to the empty set, all of
the ciphertexts ct𝑖 are an encryption of 0, so the root of a properly computed ciphertext-evaluation tree will
also be an encryption of 0. We provide the details in Section 5.1.4.

• Index hiding with extracted guess: Recall that this property says that the adversary cannot produce a digest
dig where the extractor output disagrees depending on whether the hash key is zero-fixing on a set 𝑆 or a set
𝑆 \ {𝑖} (provided that the adversary provides an opening to 0 for index 𝑖). The only difference between the
hash keys in these two cases is ct𝑖 in the CRS changes from an encryption of 0 to an encryption of 1, which
we could in principle show using semantic security. However, the reduction algorithm would have no way
of checking whether a digest dig output by the adversary isMatching or NotMatching (since it does not and
cannot know the decryption key). Thus, to argue this we adopt a Naor-Yung type of strategy [NY90] and
encrypt twice. Namely, we introduce two parallel copies of the scheme (i.e., two independent public keys and
two independent sets of ciphertexts). The digest now consists of two ciphertexts ct(0)root, ct

(1)
root for the roots of the

two ciphertext-evaluation trees. The same BARG would validate both roots. The key idea now is we can switch
ct(0)

𝑖
from an encryption of 0 (i.e., zero-fixing at 𝑆 \ {𝑖}) to an encryption of 1 (i.e., zero-fixing at 𝑆) while being

able to decrypt (i.e., extract) for the parallel encryption scheme. We can leverage soundness of the BARG to
argue that for a valid digest/opening, both ct(0)root and ct(1)root encrypt identical values. This allows us to leverage
semantic security to switch the ciphertexts for one scheme while being able to detect whether the output of
Extract changed or not (using knowledge of the secret key for the parallel scheme). We provide the full details
in Section 5.1.5.

Taken together, we obtain a zero-fixing hash function from any standard BARG together with an additively-
homomorphic encryption scheme. By instantiating with BARGs from the 𝑘-Lin assumption over groups with
bilinear maps [WW22] or the (sub-exponential) DDH assumption over pairing-free groups [CGJ+23], we obtain
zero-fixing hash functions from the same underlying assumptions. In conjunction with our generic construction from
above, this yields Theorem 1.1.

An algebraic construction of zero-fixing hash functions. As another contribution, we also describe an algebraic
approach to construct zero-fixing hash functions directly from (composite-order) bilinear maps. This construction
has the advantage that it only makes black-box use of cryptography. We give a brief sketch of the construction here,
but defer the details to Section 6. The basic version is an adaptation of the Catalano-Fiore vector commitment [CF13]:

• Let G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) be a composite-order bilinear group of order 𝑁 , generator 𝑔, and an efficiently-
computable non-degenerate bilinear map 𝑒 : G ×G→ G𝑇 . In the actual construction, we will require that 𝑁 be
a product of six primes. In the description here, we will just describe the basic scheme that operates primarily
in just two subgroups. Let 𝑔1 and 𝑔2 be generators of two orthogonal subgroups of G.

• To sample a hash key for a set 𝑆 ⊆ [𝑛], the setup algorithm samples exponents 𝛼𝑖 , 𝛽𝑖 r← Z𝑁 . If 𝑖 ∈ 𝑆 , it
sets 𝐴𝑖 ← (𝑔1𝑔2)𝛼𝑖 and if 𝑖 ∉ 𝑆 , it sets 𝐴𝑖 ← 𝑔

𝛼𝑖
1 . It sets 𝐵𝑖 ← 𝑔

𝛽𝑖
1 and for 𝑖 ≠ 𝑗 , it computes the cross term

𝐶𝑖, 𝑗 ← 𝑔
𝛼𝑖𝛽 𝑗

1 . The hash key then contains 𝐴𝑖 , 𝐵𝑖 for 𝑖 ∈ [𝑛] and 𝐶𝑖, 𝑗 for all 𝑖 ≠ 𝑗 .

• The hash of an input 𝑥 ∈ {0, 1}𝑛 is then dig =
∏

𝑖∈[𝑛] 𝐴
𝑥𝑖
𝑖
. The opening to an index 𝑖 is 𝑉 =

∏
𝑗≠𝑖 𝐶

𝑥 𝑗

𝑗,𝑖
. To verify

an opening to a bit 𝑏 at index 𝑖 , the verifier checks

𝑒 (dig, 𝐵𝑖) = 𝑒 (𝐴𝑖 , 𝐵𝑖)𝑏 · 𝑒 (𝑔1,𝑉).

• To check whether a digest dig isMatching or not, the extraction algorithm outputMatching if 𝑒 (dig, 𝑔2) = 1
and NotMatching otherwise.

9

The basic principle is to move the “encoding elements” 𝐴𝑖 for 𝑖 ∈ 𝑆 to have a component in the span of 𝑔2. The
components 𝐴𝑖 for 𝑖 ∉ 𝑆 are only in the span of 𝑔1. Then, any digest that includes an index 𝑖 ∈ 𝑆 will contain a
non-zero element in the span of 𝑔2, and thus, be declared NotMatching. Arguing the security of this scheme is more
delicate and will require introducing a number of additional randomizing components (and subgroups). We refer to
Section 6 for the details.

Constructingmonotone policy aggregatemulti-signatures Our final contribution is a construction ofmonotone
policy aggregate multi-signatures. While previous construction of aggregate signatures relied on extractable BARGs
[WW22, DGKV22], a similar implication is possible by combining a non-adaptively-sound BARG together with a
“puncturable signature” scheme (also called an all-but-one signature scheme) [GVW19]. We sketch our construction
below, and provide the full details in Section 7.

In a puncturable signature scheme, it is possible to puncture a verification key on a message𝑚∗. The property
is that there does not exist signatures on𝑚∗ that verify with respect to the punctured verification key. Moreover, a
punctured verification key is computationally indistinguishable from an honestly-generated verification key, even if
the adversary is able to see signatures on arbitrary messages𝑚 ≠𝑚∗. Goyal, Vusirikala, and Waters [GVW19] showed
how to construct puncturable signatures from most standard number-theoretic assumptions (e.g., RSA, pairing-based
assumptions, and LWE). We can use a non-adaptively-sound monotone policy BARG together with a puncturable
signature scheme to construct a (statically-secure)6 aggregate multi-signature scheme for any policy computed by a
monotone Boolean circuit. We provide a sketch below:

• Setup: Consider a scheme with 𝑘 signers. Each signer 𝑖 ∈ [𝑘] has a signing key sk𝑖 and a verification key vk𝑖
for the punctured signature scheme. The public parameters of the aggregation scheme contain the common
reference string for a monotone policy BARG.

• Signing: To sign a message𝑚, each user signs with their individual signing key.

• Aggregation: Given a set of signatures {𝜎𝑖 }𝑖∈𝑆 on the same message𝑚 and a (monotone) aggregation policy
𝑃 , a user can aggregate the signatures by giving a monotone policy BARG proof for the policy 𝑃 with respect
to the natural relation R[𝑚] = {(vk, 𝜎) : Verify(vk,𝑚, 𝜎)}. The aggregate signature is simply the BARG proof
for the statements (vk1, . . . , vk𝑘) with the witness (𝜎1, . . . , 𝜎𝑘).

• Verification: To verify an aggregate multi-signature with respect to a policy 𝑃 , the verifier just checks the
BARG proof.

Note that one could also construct an aggregate multi-signature by sending the set 𝑆 where 𝑃 (𝑆) = 1 and then
use a vanilla BARG to prove knowledge of a signature 𝜎𝑖 for every 𝑖 ∈ 𝑆 . However, this approach would require
communicating the set 𝑆 as part of the aggregate signature. Using monotone policy BARGs, the aggregate signature
only consists of the BARG proof, and thus has size, poly(𝜆, log |𝑃 |). It is straightforward to prove static security of
the above multi-signature scheme just assuming non-adaptive-soundness on the underlying BARG. We sketch the
reduction below:

• In the static security game, the adversary has to pre-commit to the message𝑚∗ it wants to forge on, the set
of verification keys (vk∗1, . . . , vk∗𝑘) it wants to use (which can be a mix of honest verification keys chosen by
the challenger and verification keys chosen adversarially), and the aggregation policy 𝑃 before seeing the
aggregation parameters.

• Let 𝑆 ⊆ [𝑘] be the set of indices 𝑖 where the chosen key vk∗𝑖 is uncorrupted (i.e., chosen by the challenger). The
admissibility requirement is that 𝑃 (𝑏1, . . . , 𝑏𝑘) = 0 where 𝑏𝑖 = 0 if 𝑖 ∈ 𝑆 and 𝑏𝑖 = 1 otherwise; this is saying that
the adversary cannot satisfy the policy 𝑃 just by providing signatures under keys it controls.

• In the security reduction, we first puncture the honest users’ verification keys vk𝑖 on the challenge message𝑚∗.
This means that there does not exist valid signatures on the challenge message𝑚∗ with respect to the honest
users’ verification keys vk𝑖

6In the static security model, we require that the adversary declare the set of corrupted verification keys, its challenge message, and the aggregation
policy at the beginning of the security game.

10

• Consider the relation R[𝑚∗] used for verification. By definition of the set 𝑆 and the fact that the honest
verification keys are punctured at𝑚∗, the statement (vk∗1, . . . , vk∗𝑘) is false for the policy 𝑃 with respect to the
relation R[𝑚∗]. By non-adaptive soundness of the monotone policy BARG, the probability that the adversary
can produce a valid aggregate signature (i.e., a valid proof on a false statement) is negligible.

Observe that in the above sketch, the verification time is linear in 𝑘 . However, using a RAM delegation scheme, we
can achieve fast verification. We refer to Remark 7.8 for additional details.

2 Preliminaries
Throughout this work, we write 𝜆 to denote the security parameter. For 𝑛 ∈ N, we write [𝑛] to denote the set
{1, . . . , 𝑛}. For 𝑎, 𝑏 ∈ N we write [𝑎, 𝑏] to denote the set {𝑎, 𝑎 + 1, . . . , 𝑏}. We write poly(𝜆) to denote a function that
is bounded by a fixed polynomial in 𝜆, and negl(𝜆) to denote a function that is 𝑜 (𝜆−𝑐) for all 𝑐 ∈ N. We say an event
happens with overwhelming probability if its complement occurs with negligible probability. For a finite set 𝑆 , we
write 𝑥 r← 𝑆 to denote that 𝑥 is a uniformly random element of 𝑆 . For a distribution D we write 𝑥 ← D to denote
that 𝑥 is a random draw from D.

We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. A non-uniform
algorithm A consists of a pair of algorithms (A1,A2) where A1 is a (possibly-unbounded) algorithm that takes as
input 1𝜆 and outputs an advice string 𝜌𝜆 of poly(𝜆) size. Algorithm A2 is an efficient algorithm. The output of A on
an input 𝑥 ∈ {0, 1}𝜆 is defined as first computing the advice string 𝜌𝜆 ← A1 (1𝜆) and then outputting A2 (𝑥, 𝜌𝜆). We
say two ensembles of distributions D1 =

{
D1,𝜆

}
𝜆∈N and D2 =

{
D2,𝜆

}
𝜆∈N are computationally indistinguishable if no

efficient adversary can distinguish them with non-negligible probability. We say they are statistically indistinguishable
if their statistical distance is bounded by negl(𝜆).

2.1 Cryptographic Building Blocks
In this section, we recall the definition of a few standard cryptographic building blocks we use in this work.

Additively-homomorphic encryption. We start by reviewing the notion of an additively homomorphic en-
cryption. For our applications, it suffices to consider constructions that only support decryption of values residing
in a bounded message space. Such additively homomorphic encryption schemes can be built from most standard
number-theoretic assumptions that imply public-key encryption such as the decisional Diffie-Hellman (DDH) assump-
tion [Gam84], decisional composite residuosity (DCR) [Pai99], or the learning with errors (LWE) assumption [Reg05].

Definition 2.1 (Additively Homomorphic Encryption). An additively homomorphic encryption with bounded
support is a tuple of polynomial time algorithms ΠHE = (Gen, Enc,Dec,Add) with the following syntax:

• Gen(1𝜆, 1𝑛) → (sk, pk): On input a security parameter 𝜆 ∈ N and a range parameter 𝑛 ∈ N, the key-generation
algorithm outputs a secret key sk and a public key pk. We assume that the secret key and the public key
includes an implicit description of the range parameter 1𝑛 .

• Enc(pk,msg) → ct: On input a public key pk and an integermsg ∈ {0, . . . , 𝑛}, the encryption algorithm outputs
a ciphertext ct.

• Dec(sk, ct) → msg: On input a secret key sk and a ciphertext ct, the decryption algorithm either outputs a
plaintext msg ∈ {0, . . . , 𝑛} or a special symbol msg = ⊥. The decryption algorithm is deterministic.

• Add(pk, ct1, ct2) → ct′: On input a public key pk and two ciphertexts ct1, ct2, the homomorphic addition
algorithm outputs a new ciphertext ct′. The addition algorithm is deterministic.

We require the following properties:

• Correctness: For all 𝜆, 𝑛 ∈ N and all messages msg ∈ {0, . . . , 𝑛}, it holds that:

Pr
[
Dec(sk, ct) = msg : (sk, pk) ← Gen(1𝜆, 1𝑛)

ct← Enc(pk,msg)

]
= 1.

11

• Evaluation correctness: For all 𝜆, 𝑛 ∈ N, all (sk, pk) in the support of Gen(1𝜆, 1𝑛) and all ciphertexts ct1, ct2
where Dec(sk, ct1) ≠ ⊥, Dec(sk, ct2) ≠ ⊥, and Dec(sk, ct1) + Dec(sk, ct2) ∈ {0, . . . , 𝑛}, it holds that

Dec(sk,Add(pk, ct1, ct2)) = Dec(sk, ct1) + Dec(sk, ct2).

• Compactness: There exists a polynomial poly(·) such that for all 𝜆, 𝑛 ∈ N, all (sk, pk) in the support of
Gen(1𝜆, 1𝑛), all ciphertexts ct in the support of Enc(pk, ·) and Add(pk, ·, ·), it holds that |pk| ≤ poly(𝜆 + log𝑛)
and |ct| ≤ poly(𝜆 + log𝑛).

• CPA-security: For an adversary A and a bit 𝑏 ∈ {0, 1}, define the CPA-security experiment ExptSSA (𝜆,𝑏) as
follows:

1. On input the security parameter 1𝜆 , the adversary A starts by outputting a range parameter 1𝑛 .
2. The challenger samples a key pair (sk, pk) ← Gen(1𝜆, 1𝑛) and sends pk to the adversary.
3. The adversary can now make (arbitrarily many) queries on pairs of messages (msg0,msg1). On each

query, the challenger replies with Enc(pk,msg𝑏).
4. After the adversary A is done making queries, it outputs a guess 𝑏′ ∈ {0, 1}.

We say that ΠHE is semantically secure if for every efficient adversary A, there exists a negligible function
negl(·) such that

��Pr[ExptSSA (𝜆, 1) = 1] − Pr[ExptSSA (𝜆, 0) = 1]
�� = negl(𝜆).

Fact 2.2 (Additively Homomorphic Encryption [Gam84, Pai99, Reg05]). Assuming any of (1) the decisional Diffie-
Hellman assumption (DDH), (2) the decisional composite residuosity assumption (DCR), or (3) the learning with
errors (LWE) assumption, there exists an additively homomorphic encryption scheme with a bounded support.

Vector commitments. Next, we recall the notion of a vector commitment scheme with succinct local openings.
Such commitments can be built from any collision-resistant hash function [Mer87].

Definition 2.3 (Vector Commitment). A vector commitment with local openings is a tuple of efficient algorithms
ΠCom = (Setup,Commit,Verify) with the following properties:

• Setup(1𝜆, 1𝑛, ℓ) → crs: On input the security parameter 𝜆 ∈ N, the block length 𝑛 ∈ N, and the vector length
ℓ ∈ N (in binary), the setup algorithm outputs a common reference string crs. We assume the common reference
string implicitly contains the parameters 1𝑛 and ℓ .

• Commit(crs, (𝑥1, . . . , 𝑥𝑡)) → (com, 𝜎1, . . . , 𝜎𝑡): On input the common reference string crs and a vector of 𝑡 ≤ ℓ

messages 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}𝑛 , the commit algorithm outputs a commitment com and openings 𝜎1, . . . , 𝜎𝑡 .

• Verify(crs, com, 𝑖, 𝑦, 𝜎) → 𝑏′: On input the common reference string crs, the commitment com, an index 𝑖 ∈ [ℓ],
a message 𝑦 ∈ {0, 1}𝑛 , and an opening 𝜎 , the verification algorithm outputs a bit 𝑏′ ∈ {0, 1}.

Moreover, ΠCom should satisfy the following properties:

• Correctness: For all 𝜆, 𝑛, ℓ ∈ N, and all positive 𝑡 ≤ ℓ , all 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}𝑛 , and indices 𝑖 ∈ [𝑡],

Pr
[
Verify(crs, com, 𝑖, 𝑥𝑖 , 𝜎𝑖) = 1 : crs← Setup(1𝜆, 1𝑛, 1ℓ),

(com, 𝜎1, . . . , 𝜎𝑡) ← Commit(crs, (𝑥1, . . . , 𝑥𝑡))

]
= 1.

• Computational binding: For an adversary A, define the computational binding experiment as follows:

1. On input the security parameter 1𝜆 , algorithm A starts by outputting the block length 1𝑛 and vector
length ℓ .

2. The challenger responds with crs← Setup(1𝜆, 1𝑛, ℓ).
3. Algorithm A outputs a commitment com, an index 𝑖 ∈ [ℓ], and openings (𝑦0, 𝜎0) and (𝑦1, 𝜎1).

12

4. The output of the experiment is 𝑏 = 1 if Verify(crs, com, 𝑖, 𝑦0, 𝜎0) = 1 = Verify(crs, com, 𝑖, 𝑦1, 𝜎1) and
𝑦0 ≠ 𝑦1. Otherwise, the output is 𝑏 = 0.

The commitment scheme is binding if for all efficient adversaries A, there exists a negligible function negl(·)
such that Pr[𝑏 = 1] = negl(𝜆) in the binding experiment.

• Succinctness: There exists a universal polynomial poly(·) such that for all 𝜆, 𝑛, ℓ ∈ N, all crs in the support of
Setup(1𝜆, 1𝑛, ℓ), all 𝑡 ≤ ℓ , and all (com, 𝜎1, . . . , 𝜎𝑡) in the support of Commit(crs, ·), the following holds:

– Succinct CRS: |crs| = poly(𝜆 + log𝑛 + log ℓ).
– Succinct commitment: |com| = poly(𝜆 + log𝑛 + log ℓ).
– Succinct local opening: For all 𝑖 ∈ [ℓ], |𝜎𝑖 | = poly(𝜆 + log𝑛 + log ℓ).

Fact 2.4 (Vector Commitments from Collision-Resistant Hash Functions [Mer87]). Assuming the existence of
collision-resistant hash functions, there exists a vector commitment scheme with local openings.

2.2 Batch Arguments for NP
In this section, we recall the notion of a non-interactive batch argument (BARG) for NP, the special case of a BARG for
index languages (i.e., an “index BARG” [CJJ21b]) and the notion of a BARG for monotone policy batch NP [BBK+23].

Batch arguments for NP. We begin with the notion of a somewhere extractable batch argument for NP. Our
presentation is adapted from [CJJ21b, WW22]. Here, we provide a more general syntax where the batch arguments
supports extraction on up to ℓ indices.

Definition 2.5 (Boolean Circuit Satisfiability). We define the circuit satisfiability language LCSAT as

LCSAT =

{
(𝐶, 𝑥)

��� 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, 𝑥 ∈ {0, 1}𝑛
∃𝑤 ∈ {0, 1}∗ : 𝐶 (𝑥,𝑤) = 1

}
.

Definition 2.6 (Non-Interactive Batch Argument). A somewhere extractable non-interactive batch argument (BARG)
for Boolean circuit satisfiability is a tuple of efficient algorithms ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) with
the following syntax:

• Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ) → (crs, vk): On input the security parameter 𝜆 ∈ N, the number of instances 𝑘 ∈ N,
the instance length 𝑛 ∈ N, a bound on the size of the Boolean circuit 𝑠 ∈ N, and a bound on the size of the
extraction set ℓ ∈ N, the generator algorithm outputs a common reference string crs and a verification key vk.

• Prove(crs,𝐶, (𝑥1, . . . , 𝑥𝑘), (𝑤1, . . . ,𝑤𝑘)) → 𝜋 : On input the common reference string crs, a Boolean circuit
𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑘 , and witnesses 𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ , the prove
algorithm outputs a proof 𝜋 .

• Verify(vk,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋) → 𝑏: On input the verification key vk, a Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1},
statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

• TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , 𝑆) → (crs, vk, td): On input the security parameter 𝜆 ∈ N, the number of instances
𝑘 ∈ N, the instance size 𝑛 ∈ N, a bound on the size of the Boolean circuit 𝑠 ∈ N, a bound on the size of the
extraction set ℓ ∈ N, and a set 𝑆 ⊆ [𝑘] of size at most ℓ , the trapdoor generator algorithm outputs a common
reference string crs, a verification key vk and an extraction trapdoor td.

• Extract(td,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋, 𝑖) → 𝑤 . On input the trapdoor td, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
a collection of statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , a proof 𝜋 and an index 𝑖 ∈ [𝑘], the extraction algorithm outputs
a witness𝑤 .

13

For notational convenience, when ℓ = 1, we omit the final input 1ℓ and instead, write Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠) to denote
Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11). Similarly, we write TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 𝑖) to denote TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, {𝑖}). Finally,
we require that ΠBARG satisfy the following properties:

• Completeness: For all 𝜆, 𝑘, 𝑛, 𝑠, ℓ ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , all
statements 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ {0, 1}𝑘𝑛 and witnesses 𝑤 = (𝑤1, . . . ,𝑤𝑘) ∈ {0, 1}𝑘ℎ where 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 for all
𝑖 ∈ [𝑘],

Pr
[
Verify(vk,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋) = 1 : (crs, vk) ← Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ)

𝜋 ← Prove(crs,𝐶, 𝑥,𝑤)

]
= 1

• Set hiding: For an adversaryA and a bit 𝑏 ∈ {0, 1}, define the set hiding experiment ExptSHA (𝜆,𝑏) as follows:

1. On input the security parameter 1𝜆 , algorithm A starts by outputting the number of instances 1𝑘 , the
instance size 1𝑛 , the bound on the circuit size 1𝑠 , the bound on the size of the extraction set 1ℓ , and a set
𝑆 ⊆ [𝑘] of size at most ℓ .

2. If 𝑏 = 0, the challenger gives (crs, vk) ← Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ) to A. If 𝑏 = 1, the challenger samples
(crs, vk, td) ← TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , 𝑆) and gives (crs, vk) to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satisfies set hiding if for every efficient adversary A, there exists a negligible function negl(·)
such that ��Pr[ExptSHA (𝜆, 0) = 1] − Pr[ExptSHA (𝜆, 1) = 1]

�� = negl(𝜆).

When ℓ = 1, we might refer to this property as index hiding.

• Somewhere extractable in trapdoor mode: For an adversary A, define the somewhere extractable security
game as follows:

1. On input the security parameter 1𝜆 , algorithm A starts by outputting the number of instances 1𝑘 , the
instance size 1𝑛 , the bound on the circuit size 1𝑠 , a bound on the size of the extraction set 1ℓ , and a
nonempty set 𝑆 ⊆ [𝑘] of size at most ℓ .

2. The challenger samples (crs, vk, td) ← TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , 𝑆) and gives (crs, vk) to A.
3. Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , statements

𝑥1, . . . , 𝑥𝑚 ∈ {0, 1}𝑛 , and a proof 𝜋 .
4. The output of the game is 𝑏 = 1 if Verify(vk,𝐶, (𝑥1, . . . , 𝑥𝑚), 𝜋) = 1 and there exists an index 𝑖 ∈ 𝑆 for

which 𝐶 (𝑥𝑖 ,𝑤𝑖) ≠ 1 where𝑤𝑖 ← Extract(td,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋, 𝑖). Otherwise, the output is 𝑏 = 0.

Then ΠBARG is somewhere extractable in trapdoor mode if for every adversary A, there exists a negligible
function negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the somewhere extractable game.

• Succinctness: There exists a fixed polynomial poly(·) such that for all 𝜆, 𝑘, 𝑛, 𝑠, ℓ ∈ N, all crs in the support
of Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ), and all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , the following
properties hold:

– Succinct proofs: The proof 𝜋 output by Prove(crs,𝐶, ·, ·) satisfies |𝜋 | ≤ poly(𝜆 + log𝑘 + 𝑠 + ℓ).
– Succinct CRS: |crs| ≤ poly(𝜆 + 𝑘 + 𝑛 + ℓ) + poly(𝜆 + log𝑘 + 𝑠 + ℓ).
– Succinct verification key: |vk| ≤ poly(𝜆 + log𝑘 + 𝑠 + ℓ).

Fact 2.7 (BatchArguments forNP [CJJ21b,WW22, KLVW23, CGJ+23]). Assuming any of (1) the plain LWE assumption,
(2) the 𝑘-Lin assumption over pairing groups for any constant 𝑘 ∈ N, or (3) the (sub-exponential) DDH assumption in
pairing-free groups, there exists a non-interactive batch argument for NP.

14

Set hiding with extraction. For our main construction (Section 5), we require a slight strengthening of the
somewhere extractability property from Definition 2.6. Our stronger set-hiding property essentially says that if the
extraction key is programmed to extract either on 𝑆0 ⊆ [𝑘] or 𝑆1 ⊆ [𝑘], then the extracted witness on “common
indices” 𝑖∗ ∈ 𝑆0 ∩ 𝑆1 is computationally indistinguishable in the two cases. This type of property is often referred to
as a “no-signaling” extraction property [PR17, KPY19, GZ21, KVZ21, CJJ21b] . We define this formally below and
show that it follows generically from the standard vanilla extractability in Appendix A.

Definition 2.8 (Set Hiding with Extraction). Let ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) be a somewhere
extractable batch argument for Boolean circuit satisfiability (Definition 2.6). For an adversary A and a bit 𝑏 ∈ {0, 1},
define the set hiding with extraction experiment ExptSHwEA (𝜆,𝑏) as follows:

1. On input the security parameter 𝜆, algorithm A starts by outputting the number of instances 1𝑘 , the instance
length 1𝑛 , the bound on the circuit size 1𝑠 , the bound on the extraction set 1ℓ , a set 𝑆 ⊆ [𝑘] of size at most ℓ ,
and an index 𝑖∗ ∈ 𝑆 .

2. If 𝑏 = 0, the challenger samples (crs, vk, td) ← TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , 𝑆). If 𝑏 = 1, the challenger samples
(crs, vk, td) ← TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , {𝑖∗}). The challenger replies to A with (crs, vk).

3. Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and a
proof 𝜋 .

4. If Verify(vk,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋) ≠ 1, then the experiment halts with output 0. Otherwise, the challenger replies
with𝑤∗ ← Extract(td,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋, 𝑖∗).

5. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satisfies set hiding with extraction if for every efficient adversary A, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N,��Pr[ExptSHwEA (𝜆, 0) = 1] − Pr[ExptSHwEA (𝜆, 1) = 1]

�� = negl(𝜆).

Index BARGs. An index BARG [CJJ21b] is a batch argument for the batch index language where the instance is
always the tuple (1, . . . , 𝑘). Since the statements are the integers, they have a succinct description, so we can impose
a stronger requirement on the running time of the Verify algorithm. We define this below:

Definition 2.9 (Index BARG [CJJ21b]). An index BARG is a special case of a BARG where the instances (𝑥1, . . . , 𝑥𝑘)
are restricted to the integers (1, . . . , 𝑘). In this setting, the Gen algorithm to the index BARG does not separately take
in the instance length 𝑛 as a separate input. Moreover, instead of providing 𝑥1, . . . , 𝑥𝑘 as input to the Prove, Verify,
and Extract algorithms, we just give the single index 𝑘 (in binary). Moreover, we require the additional succinctness
property on the running time of Verify:

• Succinct verification time: There exists a fixed polynomial poly(·) such that for all 𝜆, 𝑘, 𝑛, 𝑠, ℓ ∈ N, all (crs, vk)
in the support of Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ) and all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 ,
the running time of Verify(vk,𝐶, 𝑘, ·) is bounded by poly(𝜆 + log𝑘 + 𝑠 + ℓ).

Monotone policy BARG. Next, we recall the notion of a SNARG for monotone policy BatchNP [BBK+23], which
we refer to more succinctly as a “monotone policy BARG.” In this work, we just focus on the simplest notion of
non-adaptive soundness.

Definition 2.10 (Monotone Policy BatchNP). A Boolean circuit 𝑃 : {0, 1}𝑘 → {0, 1} is a monotone Boolean policy if
𝑃 is a Boolean circuit comprised entirely of and and or gates. Let 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} be a Boolean circuit
and 𝑃 : {0, 1}𝑘 → {0, 1} be a monotone Boolean policy. We define the monotone policy BatchNP language LMP-CSAT
to be

LMP-CSAT =

{
(𝐶, 𝑃, 𝑥1, . . . , 𝑥𝑘)

��� 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, 𝑃 : {0, 1}𝑘 → {0, 1}, 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛
∃𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ : 𝑃

(
𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝑘 ,𝑤𝑘)

)
= 1

}
.

15

Definition 2.11 (Monotone Policy BARG [BBK+23, adapted]). A monotone policy BARG is a tuple ΠMP-BARG =

(Gen, Prove,Verify) of efficient algorithms with the following syntax:

• Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝) → crs: On input the security parameter 𝜆 ∈ N, the instance size 𝑛 ∈ N, a bound on the size
of the Boolean circuit 𝑠𝑐 ∈ N, and a bound on the size of the policy 𝑠𝑝 ∈ N, the generator algorithm outputs a
common reference string crs.

• Prove(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), (𝑤1, . . . ,𝑤𝑘)) → 𝜋 : On input the common reference string crs, a Boolean circuit
𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a monotone Boolean policy 𝑃 : {0, 1}𝑘 → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 ,
and witnesses𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ , the prove algorithm outputs a proof 𝜋 .

• Verify(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋) → 𝑏: On input the common reference string crs, a Boolean circuit 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, a monotone Boolean policy 𝑃 : {0, 1}𝑘 → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and a proof 𝜋 ,
the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, ΠMP-BARG should satisfy the following properties:

• Completeness: For all 𝜆, 𝑛, 𝑠𝑐 , 𝑠𝑝 ∈ N, Boolean circuits𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1} of size at most 𝑠𝑐 , monotone
Boolean policies 𝑃 : {0, 1}𝑘 → {0, 1} of size at most 𝑠𝑝 , statements 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ {0, 1}𝑘𝑛 and witnesses
𝑤 = (𝑤1, . . . ,𝑤𝑘) ∈ {0, 1}𝑘ℎ where 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝑘 ,𝑤𝑘)) = 1, it holds that

Pr
[
Verify(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋) = 1 : crs← Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝)

𝜋 ← Prove(crs,𝐶, 𝑃, 𝑥,𝑤)

]
= 1.

• Non-adaptive soundness: For any adversary A, define the non-adaptive soundness game as follows:

1. On input the security parameter 1𝜆 , algorithmA starts by outputting the instance size 1𝑛 , the bound on the
size of the NP relation 1𝑠𝑐 , the bound on the size of the policy 1𝑠𝑝 , a Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1} of size at most 𝑠𝑐 , a monotone Boolean circuit 𝑃 : {0, 1}𝑘 → {0, 1} of size at most 𝑠𝑝 , and statements
𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 .

2. The challenger samples crs← Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝) and gives it to A.
3. Algorithm A outputs a proof 𝜋 .
4. The output of the game is 𝑏 = 1 if Verify(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋) = 1 and (𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘)) ∉ LMP-CSAT.

We say that ΠMP-BARG is non-adaptively sound if for every efficient adversary A, there exists a negligible
function negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the non-adaptive soundness game.

• Succinctness: There exists a fixed polynomial poly(·) such that for all 𝜆, 𝑛, 𝑠𝑐 , 𝑠𝑝 ∈ N, all crs in the support
of Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝), all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠𝑐 , and all monotone
Boolean policies 𝑃 : {0, 1}𝑘 → {0, 1} of size |𝑃 | ≤ 𝑠𝑝 , the following properties hold:

– Slightly succinct proofs: The proof 𝜋 output by Prove(crs,𝐶, 𝑃, ·, ·) satisfies |𝜋 | ≤ poly(𝜆 + 𝑠𝑐 + log 𝑠𝑝).
– Succinct proofs: The proof 𝜋 output by Prove(crs,𝐶, 𝑃, ·, ·) satisfies |𝜋 | ≤ poly(𝜆 + 𝑠𝑐 + log |𝑃 |).

Remark 2.12 (Slightly Succinct Proofs to Succinct Proofs). In a “slightly succinct” proof system, the size of the proof
scales logarithmically with the bound 𝑠𝑝 on the size of the policy circuit, rather than the size of the policy circuit
itself. It is straightforward to transform a scheme with slightly succinct proofs into one that satisfies the standard
notion of succinctness. We use a “powers-of-two” construction. Namely, we generate ℓ = ⌈log 𝑠𝑝⌉ different common
reference strings, where the 𝑖th CRS supports policies of size at most 2𝑖 . The prover and verifier will use the CRS for
scheme 𝑖 when proving or verifying statements with respect to policies of size between 2𝑖−1 and 2𝑖 . In this case, the
size of the proof scales polylogarithmically with the size of the policy 𝑃 rather than the bound 𝑠𝑝 . This approach only
incurs logarithmic overhead in the CRS size. In the rest of this work, we will focus on constructions satisfying the
simpler requirement of having slightly succinct proofs.

16

Remark 2.13 (Short Verification Key via RAM Delegation). In Definition 2.11, the setup algorithm outputs a single
CRS that is used both for generating proofs and for verifying proofs. The size of the CRS is allowed to grow with the
size of both the circuit 𝐶 and the size of the monotone policy 𝑃 . It is possible to obtain a construction with a short
verification key (that grows polylogarithmically with |𝐶 | and |𝑃 |) by “delegating” the verification process using a RAM
delegation scheme [CJJ21b, WW22, KLVW23, CGJ+23]. In this case, the verification key would be a succinct hash of
the actual CRS. Since this provides a generic approach for realizing a short verification key, in our constructions, we
will not explicitly decompose the CRS into a proving key and a separate short verification key. A similar approach
was also used in [BBK+23] in their construction of predicate-extractable hash functions.

3 Zero-Fixing Hash Functions
In this section, we formally introduce the notion of a zero-fixing hash function. As we show in Section 4, we can
combine a zero-fixing hash function with a vanilla BARG to obtain a monotone policy BARG. Recall from Section 1.2
that a zero-fixing hash function is a keyed hash function that supports succinct local openings. Moreover, the hash
key is associated with a set of indices 𝑆 ⊆ [𝑛], where 𝑛 is the input length. Moreover, there is a trapdoor td associated
with the hash key hk that can be used to decide whether a hash digest dig isMatching or NotMatching on the set
𝑆 . The zero-fixing security requirement then says that if the extractor outputsMatching for a digest dig, it must be
computationally hard to open dig to a 1 on any index 𝑖 ∈ 𝑆 .

As discussed in Section 1.2, our zero-fixing hash function is similar to the predicate-extractable hash function for
bit-fixing predicates from [BBK+23]. A key distinction is that when the extraction algorithm outputs NotMatching,
the predicate-extractable hash function also outputs an index 𝑖 ∈ [𝑛] where it is computationally infeasible to open
the digest to a 1. In contrast, with our zero-fixing hash function, the extraction algorithm only outputs a single
Matching or NotMatching flag. At the same time, we require our zero-fixing hash functions to satisfy additional
security requirements that were not required in [BBK+23]. These additional security properties are necessary for our
construction of monotone policy BARGs (Section 4). We now give the formal definition:

Definition 3.1 (Zero-Fixing Hash Function). A zero-fixing hash function is a tuple of polynomial-time algorithms
ΠH = (Setup,Hash, ProveOpen,VerOpen, Extract,ValidateDigest) with the following syntax:

• Setup(1𝜆, 1𝑛, 𝑆) → (hk, vk, td): On input a security parameter 𝜆, an input length 𝑛, and a set 𝑆 ⊆ [𝑛], the setup
algorithm outputs a hash key hk, a verification key vk and a trapdoor td. We implicitly assume that hk includes
𝜆 and 𝑛.

• Hash(hk, 𝑥) → dig: On input a hash key hk and a string 𝑥 ∈ {0, 1}𝑛 , the hash algorithm outputs a digest dig.
This algorithm is deterministic.

• ValidateDigest(vk, dig) → 𝑏: On input a hash key vk and a digest dig, the digest validation algorithm outputs
a bit 𝑏 ∈ {0, 1}. This algorithm is deterministic.

• ProveOpen(hk, 𝑥, 𝑖) → 𝜎 : On input a hash key hk, a string 𝑥 ∈ {0, 1}𝑛 and an index 𝑖 ∈ [𝑛], the prove algorithm
outputs an opening 𝜎 .

• VerOpen(vk, dig, 𝑖, 𝑏, 𝜎) → 𝑏′: On input a hash key vk, a digest dig, an index 𝑖 ∈ [𝑛], a bit 𝑏 ∈ {0, 1} and an
opening 𝜎 , the verification algorithm outputs a bit 𝑏′ ∈ {0, 1}. The verification algorithm is deterministic.

• Extract(td, dig) → 𝑚: On input a trapdoor td and a digest dig, the extraction algorithm outputs a value
𝑚 ∈ {Matching,NotMatching}. This algorithm is deterministic.

We require ΠH satisfy the following efficiency and correctness properties:

• Succinctness: There exists a universal polynomial poly(·) such that for all parameters 𝜆, 𝑛 ∈ N, all (hk, vk, td)
in the support of Setup(1𝜆, 1𝑛, ·), all inputs 𝑥 ∈ {0, 1}𝑛 and all indices 𝑖 ∈ [𝑛], the following properties hold:

– Succinct verification key: |vk| ≤ poly(𝜆 + log𝑛).

17

– Succinct digest: The digest dig output by Hash(hk, 𝑥) satisfies |dig| ≤ poly(𝜆 + log𝑛).
– Succinct openings: The opening 𝜎 output by ProveOpen(hk, 𝑥, 𝑖) satisfies |𝜎 | ≤ poly(𝜆 + log𝑛).
– Succinct verification: The running time of VerOpen(vk, ·, ·, ·, ·) is poly(𝜆 + log𝑛).

• Correctness: For all 𝜆, 𝑛 ∈ N, every 𝑥 ∈ {0, 1}𝑛 , and every 𝑖 ∈ [𝑛], the following properties hold:

– Opening correctness:

Pr
[
VerOpen(vk, dig, 𝑖, 𝑥𝑖 , 𝜎) = 1 : (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅)

dig← Hash(hk, 𝑥), 𝜎 ← ProveOpen(hk, 𝑥, 𝑖)

]
= 1.

– Digest correctness:

Pr
[
ValidateDigest(vk, dig) = 1 : (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅), dig← Hash(hk, 𝑥)

]
= 1.

We additionally require the following security properties:

• Set hiding: For a bit 𝑏 ∈ {0, 1} and an adversary A, we define the set hiding game ExptSHA (𝜆,𝑏) as follows:

1. On input 1𝜆 , the adversary A outputs 1𝑛 and a set 𝑆 ⊆ [𝑛].
2. If 𝑏 = 0, the challenger samples (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅) and if 𝑏 = 1, the challenger samples
(hk, vk, td) ← Setup(1𝜆, 1𝑛, 𝑆). It gives (hk, vk) to A.

3. Algorithm A outputs a bit 𝑏′ which is the output of the experiment.

The hash function satisfies set binding if for all efficient adversariesA, there exists a negligible function negl(·)
such that ��Pr[ExptSHA (𝜆, 0) = 1] − Pr[ExptSHA (𝜆, 1) = 1]

�� = negl(𝜆).

• Index hiding with extracted guess: For an adversary A and a bit 𝑏 ∈ {0, 1}, we define the index hiding
with extracted guess game ExptIHEA (𝜆,𝑏) as follows:

1. On input 1𝜆 , algorithm A outputs 1𝑛 , a set 𝑆 ⊆ [𝑛], and an index 𝑖∗ ∈ 𝑆 .
2. If 𝑏 = 0, the challenger samples (hk, vk, td) ← Setup(1𝜆, 1𝑛, 𝑆 \ {𝑖∗}). Otherwise, it samples (hk, vk, td) ←

Setup(1𝜆, 1𝑛, 𝑆). The challenger sends (hk, vk) to A.
3. Algorithm A outputs a digest dig and an opening 𝜎 .
4. The output of the experiment is 1 if VerOpen(hk, dig, 𝑖∗, 0, 𝜎) = 1 and Extract(td, dig) outputsMatching.

Otherwise, the output is 0.

The hash function satisfies index hiding with extracted guess if for all efficient adversaries A, there exists a
negligible function negl(·) such that��Pr[ExptIHEA (𝜆, 0) = 1] − Pr[ExptIHEA (𝜆, 1) = 1]

�� = negl(𝜆).

• Zero fixing: For an adversary A, we define the adaptive zero-fixing game ExptZFA (𝜆) as follows:

1. On input 1𝜆 , algorithm A outputs 1𝑛 and a set 𝑆 ⊆ [𝑛].
2. The challenger samples (hk, vk, td) ← Setup(1𝜆, 1𝑛, 𝑆) and gives (hk, vk) to A.
3. Algorithm A outputs a digest dig, an index 𝑖 ∈ 𝑆 and an opening 𝜎 .
4. The output of the experiment is 1 if VerOpen(hk, dig, 𝑖, 1, 𝜎) = 1 and Extract(td, dig) outputs Matching.

Otherwise, the output is 0.

The hash function satisfies zero-fixing if for all efficient adversariesA, there exists a negligible function negl(·)
such that Pr[ExptZFA (𝜆) = 1] = negl(𝜆).

18

• Extractor validity: For an adversary A, we define the extractor validity game ExptEVA (𝜆) as follows:

1. On input 1𝜆 , the adversary A outputs 1𝑛 .
2. The challenger samples (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅) and sends (hk, vk) to the adversary.
3. Algorithm A outputs a digest dig.
4. The output of the experiment is 1 ifValidateDigest(hk, dig) = 1 and Extract(td, dig) outputsNotMatching.

Otherwise, the output is 0.

The hash function satisfies the extractor validity property if for every efficient adversary A, there exists a
negligible function negl(·) such that Pr[ExptEVA (𝜆) = 1] = negl(𝜆).

Remark 3.2 (Selective Zero-Fixing Security). We can define a weaker selective notion of zero-fixing security where
the adversary outputs the index 𝑖 ∈ 𝑆 at the beginning of the security game (i.e., before seeing hk and vk). Note
that the selective zero-fixing security definition is equivalent to the zero-fixing definition in Definition 3.1. To see
that selective zero fixing implies standard zero-fixing, consider a reduction algorithm that guesses the index 𝑖 r← 𝑆

at the beginning of the security reduction and aborts whenever the guess is incorrect. This reduction succeeds
with probability 1/|𝑆 |; since |𝑆 | = poly(𝜆), this incurs only a polynomial loss in advantage. In our construction
(Construction 4.4), we will work with the adaptive notion of security, but in our constructions (Constructions 5.2
and 6.3), we will work with the simpler selective definition.

One-sided index hiding. For our application, it suffices to consider a weaker notion of “one-sided” index hiding
where we only require that the adversary’s advantage cannot increase (but could decrease). Proving one-sided security
is often easier than proving two-sided security, so we define the simpler notion here:

Definition 3.3 (One-Sided Index-Hiding with Extracted Guess). We say a zero-fixing hash function ΠH satisfies
one-sided index-hiding with extracted guess security if for all efficient adversariesA, there exists a negligible function
negl(·) such that

Pr[ExptIHEA (𝜆, 1) = 1] ≥ Pr[ExptIHEA (𝜆, 0) = 1] − negl(𝜆).

4 Constructing Monotone Policy BARGs
In this section, we describe how to construct monotone policy BARGs from a standard batch argument forNP together
with a zero-fixing hash function. We start by defining the conventions we use for describing Boolean circuits.

Definition 4.1 (Monotone Circuit Wire Indexing). Let 𝑃 : {0, 1}𝑘 → {0, 1} be a monotone Boolean circuit consisting
exclusively of and and or gates with fan-in two. Let 𝑠 be the size of 𝑃 (i.e., the number of wires in 𝑃). A topological
indexing of the wires of 𝐶 is an assignment of an index 𝑖 ∈ [𝑠] to each wire in 𝑃 with the following properties:

• Input wire: For 𝑖 ∈ [𝑘], the 𝑖th input to 𝑃 is associated with the index 𝑖 .

• Output wire: The output wire is associated with the index 𝑠 .

• Intermediate wires: The intermediate wires are associated with an index 𝑖 ∈ {𝑘 + 1, . . . , 𝑠 − 1} with the
property that the value of index 𝑖 is completely determined by the values of the wires with indices 𝑗𝑖,1, 𝑗𝑖,2 ∈
{1, . . . , 𝑖 − 1}.

Every monotone circuit 𝑃 has a canonical topological indexing that can be computed efficiently (e.g., by applying a
deterministic topological sort to the wires of 𝑃).

Definition 4.2 (Layered Monotone Circuit). Let 𝑃 : {0, 1}𝑘 → {0, 1} be a (monotone) Boolean circuit of size 𝑠 . We
denote by 𝐿𝑃 (𝑖) the layer of the wire 𝑖 and define it as follows:

• If 𝑖 ∈ [𝑘] (i.e., an input wire), then 𝐿𝑃 (𝑖) = 1.

19

• If 𝑖 > 𝑘 then 𝐿𝑃 (𝑖) = 1 +max{𝐿𝑃 (𝑗𝑖,1), 𝐿𝑃 (𝑗𝑖,2)}, where 𝑗𝑖,1, 𝑗𝑖,2 ∈ {1, . . . , 𝑖 − 1} are the indices of the input wires
to the gate that computes the value of wire 𝑖 .

The depth of the circuit is defined to be the layer associated with the output wire: 𝑑 = 𝐿𝑃 (𝑠). A circuit is layered if
for every 𝑖 ∈ {𝑘 + 1, . . . , 𝑠}, it holds that 𝐿𝑃 (𝑗𝑖,1) = 𝐿𝑃 (𝑗𝑖,2). For a layer index ℓ ∈ [𝑑], we define layerℓ (𝑃) = {𝑖 ∈ [𝑠] :
𝐿𝑃 (𝑖) = ℓ} to be the set of wire indices in layer ℓ of the circuit.

Remark 4.3 (Layered Monotone Circuit). Every monotone circuit 𝑃 : {0, 1}𝑘 → {0, 1} of size 𝑠 can be converted
into a layered monotone circuit of size poly(𝑠). Thus, without loss of generality, we exclusively consider layered
monotone circuits in the remainder of this work.

4.1 Monotone Policy BARG Construction
We now describe our construction of a monotone policy BARG for NP.

Construction 4.4 (Monotone Policy BARG). Let Π′BARG = (Gen′, Prove′,Verify′, TrapGen′, Extract′) be a somewhere
extractable BARG for Boolean circuit satisfiability. Let ΠH = (H.Setup,H.Hash,H.ProveOpen,H.VerOpen,H.Extract,
H.ValidateDigest) be a zero-fixing hash function. We construct a monotone policy BARG ΠMP-BARG = (Gen, Prove,
Verify) as follows:

• Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝): On input the security parameter 𝜆, the input length 𝑛, the bound on the size of the Boolean
circuit 𝑠𝑐 , and the bound on the size of the monotone policy 𝑠𝑝 , the setup algorithm proceeds as follows:

– Sample two hash keys

(hk0, vk0, td0) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅)
(hk1, vk1, td1) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).

– Let 𝑠′ be a bound on the size of the circuit that computes the relation R[𝐶, 𝑘, 𝑠𝑝 , vk0, vk1, dig0, dig1] from
Fig. 1 when instantiated with an arbitrary Boolean circuit 𝐶 of size at most 𝑠𝑐 , an input length 𝑘 ≤ 𝑠𝑝
and digests dig0, dig1 associated with the hash and verification keys (hk0, vk0) and (hk1, vk1). Let 𝑛′ =
3 · ⌈log 𝑠𝑝⌉ + 1 be the bound on the statement length. Sample (crsBARG, vkBARG) ← Gen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′).7

It outputs the common reference string crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1).

• Prove(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), (𝑤1, . . . ,𝑤𝑘)): On input a CRS crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1), a circuit
𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a monotone layered Boolean policy circuit 𝑃 : {0, 1}𝑘 → {0, 1}, statements
𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and witnesses𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ , the prove algorithm does the following:

– Let 𝑠 be the size of 𝑃 . Index the wires of 𝑃 under a canonical topological ordering (Definition 4.1). For
each wire 𝑖 ∈ {𝑘 + 1, . . . , 𝑠}, let 𝑔𝑖 ∈ {and, or} be its type. Let 𝑗𝑖,1, 𝑗𝑖,2 ∈ {1, . . . , 𝑖 − 1} be the indices of the
input wires to the gate 𝑖 .

– For each 𝑖 ∈ [𝑠], let 𝛽𝑖 ∈ {0, 1} be the value of the 𝑖th wire in the evaluation of 𝑃 on the input bits
(𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝑘 ,𝑤𝑘)). For 𝑖 ∈

{
𝑠 + 1, . . . , 𝑠𝑝

}
, let 𝛽𝑖 = 0. (This corresponds to “padding” the 𝑠𝑝 − 𝑠

unused slots).
– Compute the digest dig0 ← H.Hash(hk0, (𝛽1, . . . , 𝛽𝑠𝑝)) and dig1 ← H.Hash(hk1, (𝛽1, . . . , 𝛽𝑠𝑝)).

– For each 𝑖 ∈ [𝑠] and each 𝑏 ∈ {0, 1}, compute 𝜎 (𝑏)
𝑖
← H.ProveOpen(hk𝑏, (𝛽1, . . . , 𝛽𝑠𝑝), 𝑖) .

– Let 𝐶aug be the circuit that computes the relation R[𝐶, 𝑘, 𝑠, vk0, vk1, dig0, dig1] shown in Fig. 1.
– For each 𝑖 ∈ [𝑠𝑝], construct the statement 𝑥𝑖 and witness 𝑤̂𝑖 as follows:

∗ If 𝑖 ∈ [𝑘], let 𝑥𝑖 = (𝑖, 𝑥𝑖) and 𝑤̂𝑖 =
(
𝛽𝑖 , 𝜎

(0)
𝑖

, 𝜎
(1)
𝑖

,𝑤𝑖

)
.

7Recall that when the bound on the extraction set parameter ℓ is not given, it defaults to the value 1.

20

Statement: index 𝑖 and auxiliary statement 𝑥
Witness: value 𝑏, openings (𝜎 (0) , 𝜎 (1)) and auxiliary witness𝑤
Hard-Coded: circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, the number of inputs 𝑘 , the policy size 𝑠 , the hash keys
hk0, hk1, and the digests dig0, dig1

On input a statement (𝑖, 𝑥) and a witness (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤):

– If 𝑖 ≤ 𝑘 , output 1 if all of the following conditions are met, otherwise output 0:

∗ Opening validity: For all 𝛼 ∈ {0, 1}, H.VerOpen
(
vk𝛼 , dig𝛼 , 𝑖, 𝑏, 𝜎

(𝛼)) = 1.
∗ Wire consistency: 𝐶 (𝑥,𝑤) = 𝑏.

– If 𝑖 ∈ {𝑘 + 1, . . . , 𝑠}, parse 𝑥 = (𝑔, 𝑗1, 𝑗2) where 𝑔 ∈ {and, or} and 𝑗1, 𝑗2 ∈ {1, . . . , 𝑖 − 1}. Parse 𝑤 =

(𝑏1, 𝜎
(0)
1 , 𝜎

(1)
1 , 𝑏2, 𝜎

(0)
2 , 𝜎

(1)
2). Check each of the following conditions for 𝛼 ∈ {0, 1}: Output 1 if all of the

following conditions are met, otherwise output 0:

∗ Opening validity: For all 𝛼 ∈ {0, 1}, all of the following holds:

– H.VerOpen
(
vk𝛼 , dig𝛼 , 𝑗1, 𝑏1, 𝜎

(𝛼)
1

)
= 1;

– H.VerOpen
(
vk𝛼 , dig𝛼 , 𝑗2, 𝑏2, 𝜎

(𝛼)
2

)
= 1;

– H.VerOpen
(
vk𝛼 , dig𝛼 , 𝑖, 𝑏, 𝜎

(𝛼)) = 1.
∗ Wire consistency: 𝑏 = 𝑔(𝑏1, 𝑏2).
∗ Output gate: If 𝑖 = 𝑠 , check that 𝑏 = 1.

– If 𝑖 > 𝑠 , then output 1.

Figure 1: The relation R[𝐶, 𝑘, 𝑠, vk0, vk1, dig0, dig1].

∗ If 𝑖 ∈ [𝑘 + 1, 𝑠], let 𝑥𝑖 = (𝑖, (𝑔𝑖 , 𝑗𝑖,1, 𝑗𝑖,2)) and

𝑤̂𝑖 =
(
𝛽𝑖 , 𝜎

(0)
𝑖

, 𝜎
(1)
𝑖

,
(
𝛽 𝑗𝑖,1 , 𝜎

(0)
𝑗𝑖,1

, 𝜎
(1)
𝑗𝑖,1

, 𝛽 𝑗𝑖,2 , 𝜎
(0)
𝑗𝑖,2

, 𝜎
(1)
𝑗𝑖,2

))
.

∗ If 𝑖 > 𝑠 , let 𝑥𝑖 = ⊥ and 𝑤̂𝑖 = ⊥.
Essentially, there is an instance 𝑥𝑖 associated with each wire 𝑖 of 𝑃 .

– Compute the BARG proof 𝜋BARG ← Prove′ (crsBARG,𝐶aug, (𝑥1, . . . , 𝑥𝑠𝑝), (𝑤̂1, . . . , 𝑤̂𝑠𝑝)) and output 𝜋 =

(dig0, dig1, 𝜋BARG).

• Verify(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋): On input a common reference string crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1),
a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a layered monotone Boolean policy 𝑃 : {0, 1}𝑘 → {0, 1},
statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and a proof 𝜋 = (dig0, dig1, 𝜋BARG), the verification algorithm does the following:

– If H.ValidateDigest(vk0, dig0) = 0 or H.ValidateDigest(vk1, dig1) = 0, then output 0.
– Let 𝑠 be the size of 𝑃 . Index the wires of 𝑃 under a canonical topological ordering (Definition 4.1). For

each wire 𝑖 ∈ {𝑘 + 1, . . . , 𝑠}, let 𝑗𝑖,1, 𝑗𝑖,2 ∈ {1, . . . , 𝑖 − 1} be the indices of the input wires of the gate
𝑔𝑖 ∈ {and, or} that computes wire 𝑖 . For each 𝑖 ∈ [𝑠𝑝], construct the statement 𝑥𝑖 as follows:

∗ If 𝑖 ∈ [𝑘], let 𝑥𝑖 = (𝑖, 𝑥𝑖).
∗ If 𝑖 ∈ {𝑘 + 1, . . . , 𝑠}, let 𝑥𝑖 = (𝑖, (𝑔𝑖 , 𝑗𝑖,1, 𝑗𝑖,2)).
∗ If 𝑖 > 𝑠 , let 𝑥𝑖 = ⊥.

21

– Let 𝐶aug be the circuit that computes the relation R[𝐶, 𝑘, 𝑠, vk0, vk1, dig0, dig1] from Fig. 1.
– Output Verify′ (vkBARG,𝐶aug, (𝑥1, . . . , 𝑥𝑠𝑝), 𝜋BARG).

Theorem 4.5 (Completeness). If Π′BARG is complete and ΠH is correct, then Construction 4.4 is complete.

Proof. Take any 𝜆, 𝑛, 𝑠𝑐 , 𝑠𝑝 ∈ N, any Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠𝑐 , and any monotone
Boolean policy 𝑃 : {0, 1}𝑘 → {0, 1} of size 𝑠 ≤ 𝑠𝑝 . Let 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 and𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ be a collection of
statements and witnesses such that 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝑡 ,𝑤𝑡)) = 1. We start by defining the following quantities:

• For each 𝑖 ∈ [𝑠𝑝], let 𝛽𝑖 ∈ {0, 1} be the value of wire 𝑖 for predicate 𝑃 on input (𝐶 (𝑥1,𝑤𝑡), . . . ,𝐶 (𝑥𝑡 ,𝑤𝑡)).

• Let crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) ← Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝). By construction, the hash keys are
sampled as (hk𝑏, vk𝑏, td𝑏) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅) for each 𝑏 ∈ {0, 1}.

• Let 𝜋 ← Prove(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), (𝑤1, . . . ,𝑤𝑘)). Let

dig0 = H.Hash(hk0, (𝛽1, . . . , 𝛽𝑠𝑝)) and dig1 = H.Hash(hk1, (𝛽1, . . . , 𝛽𝑠𝑝))

be the digests computed by the Prove algorithm. Moreover, by correctness of ΠH, for each 𝑏 ∈ {0, 1}, we have
H.ValidateDigest(vk𝑏, dig𝑏) = 1.

Consider now the relation R[𝐶, 𝑘, 𝑠, vk0, vk1, dig0, dig1] defined in Fig. 1. We show that for all 𝑖 ∈ [𝑠𝑝], the statement
(𝑥𝑖 , 𝑤̂𝑖) defined in Prove satisfies the relation. First, for all 𝑖 ∈ [𝑠𝑝] and 𝑏 ∈ {0, 1}, the Prove algorithm computes
𝜎
(𝑏)
𝑖
← H.ProveOpen(hk𝑏, (𝛽1, . . . , 𝛽𝑠𝑝), 𝑖). Correspondingly, by correctness of ΠH, we conclude that for all 𝑖 ∈ [𝑠𝑝]

and 𝑏 ∈ {0, 1},
H.VerOpen

(
vk𝑏, dig𝑏, 𝑖, 𝛽𝑖 , 𝜎

(𝑏)
𝑖

)
= 1. (4.1)

We now consider each index 𝑖 ∈ [𝑠𝑝]:

• If 𝑖 ∈ [𝑘], then 𝑥𝑖 = (𝑖, 𝑥𝑖) and 𝑤̂𝑖 =
(
𝛽𝑖 , 𝜎

(0)
𝑖

, 𝜎
(1)
𝑖

,𝑤𝑖

)
. In this case, the opening validity passes by Eq. (4.1).

Moreover, by definition, we have that 𝛽𝑖 = 𝐶 (𝑥𝑖 ,𝑤𝑖). Hence, the relation is satisfied.

• If 𝑖 ∈ {𝑘 + 1, . . . , 𝑠}, let 𝑥𝑖 = (𝑖, (𝑔𝑖 , 𝑗𝑖,1, 𝑗𝑖,2)) and 𝑤̂𝑖 =
(
𝛽𝑖 , 𝜎

(0)
𝑖

, 𝜎
(1)
𝑖

,
(
𝛽 𝑗𝑖,1 , 𝜎

(0)
𝑗𝑖,1

, 𝜎
(1)
𝑗𝑖,1

, 𝛽 𝑗𝑖,2 , 𝜎
(0)
𝑗𝑖,2

, 𝜎
(1)
𝑗𝑖,2

))
. Again, the

opening validity check passes by Eq. (4.1). Moreover, by definition, 𝛽𝑖 = 𝑔𝑖
(
𝛽 𝑗𝑖,1 , 𝛽 𝑗𝑖,2

)
so the wire consistency-

check passes. Finally, if 𝑖 = 𝑠 , then 𝛽𝑠 = 𝑃 (𝐶 (𝑥1,𝑤1), . . . , (𝑥𝑡 ,𝑤𝑡)) = 1 by construction.

• Finally, if 𝑖 > 𝑠 , the relation is always satisfied.

Thus, we conclude that for all 𝑖 ∈ [𝑠𝑝], the relation R is always satisfied. By completeness of Π′BARG, this means
Verify′ (vkBARG,𝐶aug, (𝑥1, . . . , 𝑥𝑠𝑝), 𝜋BARG) = 1, where 𝜋BARG ← Prove′ (crsBARG,𝐶aug, (𝑥1, . . . , 𝑥𝑠𝑝), (𝑤̂1, . . . , 𝑤̂𝑠𝑝)).
Letting 𝜋 = (dig0, dig1, 𝜋BARG), we conclude that Verify(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋) = 1, and completeness follows. □

Theorem 4.6 (Succinctness). If Π′BARG and ΠH satisfy succinctness, then Construction 4.4 has slightly succinct proofs.

Proof. Fix 𝜆, 𝑛, 𝑠𝑐 , 𝑠𝑝 ∈ N, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠𝑐 , and a monotone Boolean
policy 𝑃 : {0, 1}𝑘 → {0, 1} of size 𝑠 ≤ 𝑠𝑝 . Take any crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) in the support of
Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝). Consider any collection of statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 and witnesses 𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ
where 𝑃 (𝐶 (𝑥1,𝑤1), . . . ,𝐶 (𝑥𝑡 ,𝑤𝑡)) = 1. We bound the size of 𝜋BARG ← Prove(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), (𝑤1, . . . ,𝑤𝑘)):

• First, the Prove algorithm computes dig0 and dig1 using the hash keys hk0 and hk1, respectively. Since
(hk, vk, td) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅), we appeal to succinctness of ΠH to conclude that |dig0 |, |dig1 | ≤ poly(𝜆 +
log 𝑠𝑝).

• Next, consider the size of the BARG proof 𝜋BARG. We first bound the size of the circuit 𝐶aug for computing the
relation R[𝐶, 𝑘, 𝑠, vk0, vk1, dig0, dig1] from Fig. 1. By construction, 𝐶aug performs a constant number of calls to
H.VerOpen and also needs to evaluate the underlying circuit 𝐶 (which has size at most 𝑠𝑐). By succinctness of
ΠH, each invocation of H.VerOpen can be computed by a circuit of size poly(𝜆 + log 𝑠𝑝). Hence, the size of the
circuit𝐶aug can be bounded by poly(𝜆 + log 𝑠𝑝 + 𝑠𝑐). By succinctness of ΠBARG, we conclude that the size of the
proof 𝜋BARG output by Prove′ is bounded by poly(𝜆 + |𝐶aug | + log 𝑠𝑝) ≤ poly(𝜆 + 𝑠𝑐 + log 𝑠𝑝).

22

Putting the pieces together, the proof 𝜋 = (dig0, dig1, 𝜋BARG) output by Prove is bounded by poly(𝜆 + 𝑠𝑐 + log 𝑠𝑝), and
(slight) succinctness follows. □

Soundness. We now state the soundness theorem, but give the proof in the subsequent section (Section 4.2).

Theorem 4.7 (Non-Adaptive Soundness). If ΠH satisfies set hiding, index hiding with extracted guess, zero fixing and
extractor validity against non-uniform adversaries, and ΠBARG is somewhere extractable and satisfies set hiding against
non-uniform adversaries, then Construction 4.4 satisfies non-adaptive soundness against non-uniform adversaries.

4.2 Proof of Theorem 4.7 (Non-Adaptive Soundness)
In this section, we prove non-adaptive soundness of Construction 4.4. Take any efficient non-uniform adversary
A = (A1,A2) for the non-adaptive soundness game. Then let (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 ,𝐶, 𝑃, x, stA) ← A1 (1𝜆) for any 𝜆 ∈ N,
where

• 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} is a Boolean circuit of size at most 𝑠𝑐 ;

• 𝑃 : {0, 1}𝑘 → {0, 1} is a layered monotone Boolean circuit of size 𝑠 ≤ 𝑠𝑝 ; and

• x = (𝑥1, . . . , 𝑥𝑘) ∈ {0, 1}𝑘𝑛 where 𝑥𝑖 ∈ {0, 1}𝑛 for all 𝑖 ∈ [𝑘].

Let 𝑑 be the depth of 𝑃 . For each 𝑖 ∈ [𝑘], let 𝛽𝑖 ∈ {0, 1} be equal to 1 if (𝐶, 𝑥𝑖) ∈ LCSAT and 0 otherwise. Extending
the definition to all 𝑖 ∈ [𝑠], let 𝛽𝑖 ∈ {0, 1} be the value of wire 𝑖 in the evaluation of 𝑃 on input (𝛽1, . . . , 𝛽𝑘). For each
layer 𝑖 ∈ [𝑑], define

𝐽𝑖 = { 𝑗 ∈ layer𝑖 (𝑃) : 𝛽 𝑗 = 0} (4.2)

to be the indices of the zero wires in layer 𝑖 of 𝑃 (𝛽1, . . . , 𝛽𝑘). We model each 𝐽𝑖 as an ordered set (ordered in ascending
order). We write 𝐽𝑖 [𝑡] to denote the 𝑡 th element in 𝐽𝑖 and 𝐽𝑖 [1, . . . , 𝑡] =

⋃
𝑗∈[𝑡] 𝐽𝑖 [𝑗] to denote the first 𝑡 elements of 𝐽𝑖 .

4.2.1 Hybrid Experiment Specification

To prove Theorem 4.7, we start by defining a sequence of hybrid experiments. Each of these hybrids is indexed
implicitly by the security parameter 𝜆, but we omit this for ease of exposition.

Outer games. We start by defining a sequence of “outer hybrids.” Here, we provide a general overview of our
methodology. The initial hybrid Hyb0 corresponds to the real non-adaptive soundness game, while Hyb𝑖 corresponds
to the hybrid where one of the zero-fixing hash keys is binding on the set 𝐽𝑖 (as defined by Eq. (4.2)). We show that
the outputs of each adjacent pair of hybrid distributions can only change by a negligible amount, and moreover, that
the zero-fixing hash function binding on 𝐽𝑖 in Hyb𝑖 outputs Matching. Finally, in hybrid Hyb𝑑 , the following two
conditions hold:

• The hash key is zero-fixing on the single output wire (since we know that 𝑃 (𝛽1, . . . , 𝛽𝑘) = 0, where 𝛽𝑖 is the
indicator bit for whether (𝐶, 𝑥𝑖) ∈ LCSAT).

• The hash function declares the output bit to beMatching.

Consider the probability that the proof verifies in Hyb𝑑 :

• Suppose the BARG is extractable on the instance associated with the output wire of 𝑃 . In this case, if the proof
verifies in Hyb𝑑 , then somewhere extractability of the BARG allows us to extract an opening to 1 with respect
to both zero-fixing hash functions. This follows by definition of the instance 𝑥𝑠 in Prove and Verify (where 𝑠 is
the size of 𝑃).

• Since 𝑃 (𝛽1, . . . , 𝛽𝑘) = 0, one of the zero-fixing hash functions will be zero-fixing on the output wire in hybrid
Hyb𝑑 . Moreover, this hash function outputsMatching. If we can extract an opening to 1 for the output wire,
this breaks zero-fixing security of the hash function.

23

Thus, when the BARG is extractable on the instance associated with the output wire, the probability that the proof
verifies in Hyb𝑑 is negligible. Finally, if the outputs of each adjacent pair of hybrids cannot differ by a non-negligible
amount, we conclude the probability that the proof verifies in Hyb0 is also negligible. This demonstrates non-adaptive
soundness. We now define the sequence of games:

• Hyb0: This is the non-adaptive soundness game. For ease of exposition, we partition the game into two phases:

– Phase 1: On input the security parameter 1𝜆 , algorithmA1 outputs 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , a Boolean circuit𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1} of size at most 𝑠𝑐 , a monotone Boolean circuit 𝑃 : {0, 1}𝑘 → {0, 1} of size 𝑠 ≤ 𝑠𝑝 , an instance
x = (𝑥1, . . . , 𝑥𝑘) ∈ {0, 1}𝑘𝑛 , and the state stA . If (𝐶, 𝑃, x) ∈ LMP-CSAT, then the experiment outputs 0.

– Phase 2: The challenger computes crs ← Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝). Specifically, the challenger samples the
following components:

∗ (crsBARG, vkBARG) ← Gen′
(
1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′).

∗ (hk0, vk0, td0) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).
∗ (hk1, vk1, td1) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.

• Hyb𝑖 for 𝑖 ∈ [𝑑]: Same as Hyb0, but hklow binds on 𝐽𝑖 , where low = 𝑖 mod 2 and high = 1 − low. Specifically,
the game proceeds as follows:

– Phase 1: On input the security parameter 1𝜆 , algorithmA1 outputs 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , a Boolean circuit𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1} of size at most 𝑠𝑐 , a monotone Boolean circuit 𝑃 : {0, 1}𝑘 → {0, 1} of size 𝑠 ≤ 𝑠𝑝 , an instance
x = (𝑥1, . . . , 𝑥𝑘) ∈ {0, 1}𝑘𝑛 , and the state stA . If (𝐶, 𝑃, x) ∈ LMP-CSAT, then the experiment outputs 0. In
addition, the challenger computes the following quantities:

∗ For 𝑗 ∈ [𝑘], let 𝛽 𝑗 = 1 if (𝐶, 𝑥 𝑗) ∈ LCSAT (Definition 2.5) and 𝛽 𝑗 = 0 otherwise.
∗ For 𝑗 ∈ [𝑘 + 1, 𝑠], let 𝛽𝑖 to be the value of the wire 𝑗 in the evaluation of 𝑃 on (𝛽1, . . . , 𝛽𝑘).
∗ For each layer ℓ ∈ [𝑑], let 𝐽ℓ = { 𝑗 ∈ layerℓ (𝑃) : 𝛽 𝑗 = 0}.

– Phase 2: The challenger samples the following components:
∗ (crsBARG, vkBARG) ← Gen′

(
1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′).

∗ (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ H.Extract(tdlow, diglow) = Matching.

Inner games. To argue that each pair of outer hybrids is computationally indistinguishable, we now define a
sequence of “inner hybrids.” Whereas the outer hybrids advance layer by layer, the inner hybrids advance across
a layer. In more detail, recall that the difference between Hyb𝑖 and Hyb𝑖+1 is that one of the two hash keys (i.e.,
hklow) goes from binding on 𝐽𝑖 to binding on 𝐽𝑖+1. The idea in the inner hybrids is to program the other hash key (i.e.,
hkhigh) to be binding on 𝐽𝑖+1. Initially, hkhigh is binding on the empty set. We then step through |𝐽𝑖+1 | intermediate
hybrids, where on the 𝑡 th step, the hash key hkhigh goes from being binding on 𝐽𝑖+1 [1, . . . , 𝑡 − 1] to being binding on
𝐽𝑖+1 [1, . . . , 𝑡]. Each transition relies on the security of the BARG and the zero-fixing hash function. We now define
the full sequence of hybrids; each one is indexed by 𝑖 ∈ {0, . . . , 𝑑}.

24

• Hyb𝑖,𝑡,1 for 𝑡 ∈ [|𝐽𝑖+1 |]: Same as Hyb𝑖 , but hkhigh binds on the first 𝑡 − 1 wires in 𝐽𝑖+1.

– Phase 1: Same as Hyb𝑖 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, vkBARG) ← Gen′
(
1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′).

∗ If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, it samples (hklow, vklow, tdlow) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).

∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡 − 1]).
The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ If 𝑖 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.

• Hyb𝑖,𝑡,2 for 𝑡 ∈ [|𝐽𝑖+1 |]: Same as Hyb𝑖,𝑡,1, but crsBARG is set to be extractable on index 𝐽𝑖+1 [𝑡].

– Phase 1: Same as Hyb𝑖 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, tdBARG) ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝐽𝑖+1 [𝑡]).
∗ If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, it samples (hklow, vklow, tdlow) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).

∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡 − 1]).
The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ If 𝑖 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.

• Hyb𝑖,𝑡,3 for 𝑡 ∈ [|𝐽𝑖+1 |]: Same as Hyb𝑖,𝑡,2, but the challenger additionally checks that it extracts a valid witness
for 𝑥 𝐽𝑖+1 [𝑡] .

– Phase 1: Same as Hyb𝑖 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, tdBARG) ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝐽𝑖+1 [𝑡]).
∗ If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, it samples (hklow, vklow, tdlow) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).

∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡 − 1]).
The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ If 𝑖 ≥ 1, then H.Extract(tdlow, diglow) = Matching.

25

∗ H.Extract(tdhigh, dighigh) = Matching.
∗ 𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 1 where 𝑤̂ = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽𝑖+1 [𝑡]).

• Hyb𝑖,𝑡,4 for 𝑡 ∈ [|𝐽𝑖+1 |]: Same as Hyb𝑖,𝑡,3, but the challenger additionally checks that the extracted value for
wire 𝐽𝑖+1 [𝑡] is a 0.

– Phase 1: Same as Hyb𝑖 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, tdBARG) ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝐽𝑖+1 [𝑡]).
∗ If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, it samples (hklow, vklow, tdlow) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).

∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡 − 1]).
The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ If 𝑖 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.
∗ 𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 1 and 𝑏 = 0 where 𝑤̂ = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽𝑖+1 [𝑡]) .

• Hyb𝑖,𝑡,5 for 𝑡 ∈ [|𝐽𝑖+1 |]: Same as Hyb𝑖,𝑡,4 but hkhigh now binds on 𝐽𝑖+1 [1, . . . , 𝑡].

– Phase 1: Same as Hyb𝑖 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, tdBARG) ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝐽𝑖+1 [𝑡]).
∗ If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, it samples (hklow, vklow, tdlow) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).

∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡]).
The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ If 𝑖 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.
∗ 𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 1 and 𝑏 = 0 where 𝑤̂ = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽𝑖+1 [𝑡]) .

• Hyb𝑖,𝑡,6 for 𝑡 ∈ [|𝐽𝑖+1 |]: Same as Hyb𝑖,𝑡,5 but the challenger does not check the extracted witnesses.

– Phase 1: Same as Hyb𝑖 .
– Phase 2: The challenger samples the following components:

∗ (crsBARG, tdBARG) ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝐽𝑖+1 [𝑡]).
∗ If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, it samples (hklow, vklow, tdlow) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).

∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡]).

26

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ If 𝑖 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.

In particular, the challenger does not extract a witness 𝑤̂ ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽𝑖+1 [𝑡]) nor
checks any conditions on it.

• Hyb𝑖,𝑡,7 for 𝑡 ∈ [|𝐽𝑖+1 |]: Same as Hyb𝑖,𝑡,6, except the BARG is restored to normal mode.

– Phase 1: Same as Hyb𝑖 .
– Phase 2: The challenger samples the following components:

∗ crsBARG ← Gen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′).
∗ If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, it samples (hklow, vklow, tdlow) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).

∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡]).
The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ If 𝑖 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
∗ H.Extract(tdhigh, dighigh) = Matching.

• Hyb𝑖,final: Same as Hyb𝑖, | 𝐽𝑖+1 |,7, but we no longer checks that diglow matches the binding set 𝐽𝑖 .

– Phase 1: Same as Hyb𝑖 .
– Phase 2: The challenger samples the following components:

∗ crsBARG ← Gen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′).
∗ If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, it samples (hklow, vklow, tdlow) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).

∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1).
The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ H.Extract(tdhigh, dighigh) = Matching.

In particular, the challenger no longer checks if H.Extract(tdlow, diglow) = Matching when 𝑖 > 1.

4.2.2 Analysis of Hybrid Experiments

We now show that the probability of a hybrid experiment outputting 1 cannot decrease by a non-negligible amount
when transitioning from one hybrid to the next. The goal is to eventually show that Pr[Hyb𝑖−1 (A) = 1] is negligibly
close to Pr[Hyb𝑖 (A) = 1] for all 𝑖 ∈ [𝑑]. We argue this via a sequence of non-uniform reductions to the security
properties of the underlying zero-fixing hash function and BARG. Specifically, our reduction algorithms construct

27

a non-uniform adversary where there is an initial (inefficient) preprocessing phase that outputs an advice string
of polynomial size, and a polynomial-time online algorithm that takes the advice as input and interacts with the
challenger according to the specifications of the target security game. Our reductions share a common preprocessing
phase, which we abstract out as a standalone Preprocess algorithm defined as follows:

• Preprocess(𝐶, 𝑃, x): On input a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a monotone Boolean policy
𝑃 : {0, 1}𝑘 → {0, 1} of size 𝑠 , and an instance x = (𝑥1, . . . , 𝑥𝑘) ∈ {0, 1}𝑘𝑛 , the preprocessing algorithm first
checks if (𝐶, 𝑃, x) ∈ LMP-CSAT. If so, it outputs ⊥. Otherwise, it computes 𝛽𝑖 ∈ {0, 1} for 𝑖 ∈ [𝑠] as follows:

– For 𝑖 ∈ [𝑘], set 𝛽𝑖 = 1 if and only if (𝐶, 𝑥𝑖) ∈ LCSAT.
– For 𝑖 ∈ [𝑘 + 1, 𝑠], set 𝛽𝑖 to be the value of the wire 𝑖 in the evaluation of 𝑃 on (𝛽1, . . . , 𝛽𝑘).

Output 𝜏 =
(
𝐶, 𝑃, x, (𝛽1, . . . , 𝛽𝑠)

)
.

We now analyze each pair of adjacent hybrid experiments.

Claim 4.8. If ΠH satisfies extractor validity against efficient non-uniform adversaries, then there exists a negligible
function negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1}, it holds that��Pr[Hyb𝑖 (A) = 1] − Pr[Hyb𝑖,1,1 (A) = 1]

�� ≤ negl(𝜆).

Proof. Take any 𝑖 ∈ {0, . . . , 𝑑 − 1} and suppose
��Pr[Hyb𝑖 (A) = 1] − Pr[Hyb𝑖,1,1 (A) = 1]

�� = 𝜀 (𝜆) for some non-
negligible 𝜀. By construction, the only difference between Hyb𝑖 and Hyb𝑖,1,1 is the additional check in Hyb𝑖,1,1:

H.Extract(tdhigh, dighigh) = Matching.

Thus, with probability at least 𝜀, the adversary A in an execution of Hyb𝑖,1,1 and Hyb𝑖 outputs a proof 𝜋 =

(dig0, dig1, 𝜋BARG) where H.ValidateDigest(vkhigh, dighigh) = 1 and H.Extract(tdhigh, dighigh) = NotMatching. In
all other cases, the output of the two experiments are identical. We use A to construct a non-uniform adversary B
that breaks extract validity of ΠH as follows:

• Preprocessing phase: On input the security parameter 1𝜆 , run (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 ,𝐶, 𝑃, x, stA) ← A1 (1𝜆). Compute
𝜏 ← Preprocess(𝐶, 𝑃, x) and output stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA).

• Online phase: On input the state stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA) where 𝜏 =
(
𝐶, 𝑃, x, (𝛽1, . . . , 𝛽𝑠)

)
, proceed as follows:

1. Send 1𝑠𝑝 and the set ∅ to the challenger. The challenger replies with a hash key hk and a verification key
vk.

2. Sample (crsBARG, vkBARG) ← Gen′
(
1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′), where 𝑛′, 𝑠′ are defined as in Construction 4.4. If 𝑖 = 0,

sample (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, if 𝑖 ≠ 0, sample (hklow, vklow, tdlow) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖), where 𝐽𝑖 = { 𝑗 ∈ layer𝑖 (𝑃) : 𝛽 𝑗 = 0}. Let hkhigh ← hk and vkhigh ← vk.

3. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run 𝜋 ← A2 (crs, stA). Parse 𝜋 = (dig0, dig1, 𝜋BARG) and output
dighigh.

By construction, algorithm B perfectly simulates an execution of Hyb𝑖 and Hyb𝑖,1,1 for A, so with probability at
least 𝜀, the digest dighigh satisfies H.ValidateDigest(vkhigh, dighigh) = 1 and H.Extract(tdhigh, dighigh) = NotMatching.
Correspondingly, algorithm B breaks extractor validity with advantage 𝜀. □

Claim 4.9. If ΠBARG satisfies set hiding against efficient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1} and 𝑡 ∈ [|𝐽𝑖+1 |], it holds that��Pr[Hyb𝑖,𝑡,1 (A) = 1] − Pr[Hyb𝑖,𝑡,2 (A) = 1]

�� ≤ negl(𝜆).

Proof. Take any 𝑖 ∈ {0, . . . , 𝑑 − 1} and 𝑡 ∈ [|𝐽𝑖+1 |]. Suppose
��Pr[Hyb𝑖,𝑡,1 (A) = 1] − Pr[Hyb𝑖,𝑡,2 (A) = 1]

�� = 𝜀 (𝜆) for
some non-negligible 𝜀. We construct a non-uniform adversary B that breaks set hiding of ΠBARG:

28

• Preprocessing phase: On input the security parameter 1𝜆 , run (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 ,𝐶, 𝑃, x, stA) ← A1 (1𝜆). Compute
𝜏 ← Preprocess(𝐶, 𝑃, x) and output stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA).

• Online phase: On input the state stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA) where 𝜏 =
(
𝐶, 𝑃, x, (𝛽1, . . . , 𝛽𝑠)

)
, proceed as follows:

1. Compute 𝐽𝑖 = { 𝑗 ∈ layer𝑖 (𝑃) : 𝛽 𝑗 = 0} and 𝐽𝑖+1 = { 𝑗 ∈ layer𝑖+1 (𝑃) : 𝛽 𝑗 = 0}.
2. Send 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , and the index 𝐽𝑖+1 [𝑡] to the challenger, where 𝑛′, 𝑠′ are computed as in Construction 4.4.

The challenger replies with crsBARG.
3. If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, sample (hklow, vklow, tdlow) ←

H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).
4. Sample (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡 − 1]).
5. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run 𝜋 ← A2 (crs, stA).
6. Let 𝜋 = (dig0, dig1, 𝜋BARG) and let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in Con-

struction 4.4. Output 1 if all of the following conditions hold (and abort with ⊥ otherwise):
– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
– If 𝑖 ≥ 1 then H.Extract(tdlow, diglow) = Matching.
– H.Extract(tdhigh, dighigh) = Matching

We consider two possibilities:

• In ExptSHB (𝜆, 0), the challenger samples crsBARG ← Gen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′). In this case, by the construction of
B, it holds that crs is sampled exactly as in Hyb𝑖,𝑡,1. Moreover, B computes its output exactly as specified by
Hyb𝑖,𝑡,1. This means that B perfectly simulates Hyb𝑖,𝑡,1 (A) and thus

Pr[ExptSHB (𝜆, 0) = 1] = Pr[Hyb𝑖,𝑡,1 (A) = 1] .

• In ExptSHB (𝜆, 1), the challenger samples crsBARG ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝐽𝑖+1 [𝑡]). In this case, by the
construction of B, it holds that crs is sampled exactly as in Hyb𝑖,𝑡,2. Moreover, B computes its output exactly
as specified by Hyb𝑖,𝑡,2. This means that B perfectly simulates Hyb𝑖,𝑡,2 (A) and thus

Pr[ExptSHB (𝜆, 1) = 1] = Pr[Hyb𝑖,𝑡,2 (A) = 1] .

We conclude that algorithm B breaks the index hiding property of ΠBARG with the same advantage 𝜀. □

Claim 4.10. If ΠBARG satisfies somewhere extractability in trapdoor mode against efficient non-uniform adversaries,
then there exists a negligible function negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1}, 𝑡 ∈ [|𝐽𝑖+1 |], it holds that��Pr[Hyb𝑖,𝑡,2 (A) = 1] − Pr[Hyb𝑖,𝑡,3 (A) = 1]

�� ≤ negl(𝜆).

Proof. Take any 𝑖 ∈ {0, . . . , 𝑑 − 1} and 𝑡 ∈ [|𝐽𝑖+1 |]. Suppose
��Pr[Hyb𝑖,𝑡,2 (A) = 1] − Pr[Hyb𝑖,𝑡,3 (A) = 1]

�� = 𝜀 (𝜆) for
some non-negligible 𝜀. By construction, the only difference between Hyb𝑖,𝑡,2 and Hyb𝑖,𝑡,3 is the additional check in
Hyb𝑖,𝑡,3:

𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 1 where 𝑤̂ ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽𝑖+1 [𝑡]). (4.3)

Thus, with probability at least 𝜀, the adversary A in an execution of Hyb𝑖,𝑡,2 and Hyb𝑖,𝑡,3 outputs a proof 𝜋 =

(dig0, dig1, 𝜋BARG) where Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1 and Eq. (4.3) does not hold (i.e., 𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 0).
In all other cases, the outputs of Hyb𝑖,𝑡,2 and Hyb𝑖,𝑡,3 are identical. We use A to construct an adversary B for the
somewhere extractability game of ΠBARG:

• Preprocessing phase: On input the security parameter 1𝜆 , run (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 ,𝐶, 𝑃, x, stA) ← A1 (1𝜆). Compute
𝜏 ← Preprocess(𝐶, 𝑃, x) and output stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA).

29

• Online phase: On input the state stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA) where 𝜏 =
(
𝐶, 𝑃, x, (𝛽1, . . . , 𝛽𝑠)

)
, proceed as follows:

1. Compute 𝐽𝑖 = { 𝑗 ∈ layer𝑖 (𝑃) : 𝛽 𝑗 = 0} and 𝐽𝑖+1 = { 𝑗 ∈ layer𝑖+1 (𝑃) : 𝛽 𝑗 = 0}.
2. Send 1𝑠𝑝 , 1𝑛′ , 1𝑠′ and the index 𝐽𝑖+1 [𝑡] to the challenger, where 𝑛′, 𝑠′ are computed as in Construction 4.4.

The challenger replies with crsBARG.
3. If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, sample (hklow, vklow, tdlow) ←

H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).
4. Sample (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡 − 1]).
5. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run 𝜋 ← A2 (crs, stA). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as

defined in Prove and Verify in Construction 4.4. Parse 𝜋 = (dig0, dig1, 𝜋BARG) and output the circuit 𝐶aug,
the statements x̂, and the proof 𝜋BARG.

By construction, algorithmB perfectly simulates an execution ofHyb𝑖,𝑡,2 andHyb𝑖,𝑡,3 forA, so with probability 𝜀, it out-
puts 𝜋BARG such that Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1 and Eq. (4.3) does not hold. In particular, this means the proof
𝜋BARG verifies with respect to crsBARG and yet𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 0where 𝑤̂ ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽𝑖+1 [𝑡]),
and tdBARG is the trapdoor associated with crsBARG that the challenger sampled. This means B wins the somewhere
extractability game with the same advantage 𝜀. □

Claim 4.11. If ΠH satisfies zero-fixing against efficient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1}, 𝑡 ∈ [|𝐽𝑖+1 |], it holds that��Pr[Hyb𝑖,𝑡,3 (A) = 1] − Pr[Hyb𝑖,𝑡,4 (A) = 1]

�� ≤ negl(𝜆).

Proof. By construction, the only difference between Hyb𝑖,𝑡,3 and Hyb𝑖,𝑡,4 is the additional check in Hyb𝑖,𝑡,4 that the
extracted bit 𝑏 satisfies 𝑏 = 0. We consider two cases in our analysis:

• Suppose 𝑖 = 0. In this case, 𝐽1 [𝑡] refers to an input wire in 𝑃 , which means 𝐽1 [𝑡] ≤ 𝑘 . Suppose Hyb𝑖,𝑡,3 (A)
outputs 1. This means that 𝐶aug

(
𝑥 𝐽1 [𝑘], 𝑤̂

)
= 1 where

𝑤̂ =
(
𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤

)
← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽1 [𝑡]).

Since 𝐽1 [𝑘] ≤ 𝑘 and by construction of x̂, we have that 𝑥 𝐽1 [𝑘] =
(
𝐽1 [𝑘], 𝑥 𝐽1 [𝑘]

)
. By definition of 𝐶aug (see Fig. 1),

we have that 𝐶aug (𝑥 𝐽1 [𝑘], 𝑤̂) = 1 only if 𝐶 (𝑥 𝐽1 [𝑘],𝑤) = 𝑏. However, by definition of 𝐽1, it must be the case that(
𝐶, 𝑥 𝐽1 [𝑘]

)
∉ LCSAT. This means 𝐶 (𝑥 𝐽1 [𝑘],𝑤) = 0 = 𝑏. In this case, Hyb𝑖,𝑡,4 (A) also outputs 1. Conversely,

since the verification conditions in Hyb𝑖,𝑡,4 are a superset of the conditions in Hyb𝑖,𝑡,3, if Hyb𝑖,𝑡,4 (A) = 1, then
Hyb𝑖,𝑡,3 (A) = 1. We conclude that in this case

Pr[Hyb𝑖,𝑡,3 (A) = 1]] = Pr[Hyb𝑖,𝑡,4 = 1] .

• Suppose 𝑖 > 0. In this case, security reduces to the zero-fixing security of ΠH. We give this proof below.

To argue the second case, take any 𝑖 ∈ {1, . . . , 𝑑 − 1} and 𝑡 ∈ [|𝐽𝑖+1 |], and suppose that��Pr[Hyb𝑖,𝑡,3 (A) = 1] − Pr[Hyb𝑖,𝑡,4 (A) = 1]
�� = 𝜀 (𝜆)

for some non-negligible 𝜀. By construction, the only difference between Hyb𝑖,𝑡,3 and Hyb𝑖,𝑡,4 is the additional check in
Hyb𝑖,𝑡,4 that 𝑏 = 0 where 𝑤̂ = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽𝑖+1 [𝑡]). Thus, with probability at
least 𝜀, the adversary A in an execution of Hyb𝑖,𝑡,3 and Hyb𝑖,𝑡,4 will output a proof 𝜋 = (dig0, dig1, 𝜋BARG) where

H.Extract(tdlow, diglow) = Matching and 𝐶aug
(
𝑥 𝐽𝑖+1 [𝑡], 𝑤̂

)
= 1 and 𝑏 ≠ 0. (4.4)

In all other cases, the outputs of Hyb𝑖,𝑡,3 and Hyb𝑖,𝑡,4 are identical. We use A to construct an adversary B for the
zero-fixing game for ΠH:

30

• Preprocessing phase: On input the security parameter 1𝜆 , run (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 ,𝐶, 𝑃, x, stA) ← A1 (1𝜆). Compute
𝜏 ← Preprocess(𝐶, 𝑃, x) and output stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA).

• Online phase: On input the state stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA) where 𝜏 =
(
𝐶, 𝑃, x, (𝛽1, . . . , 𝛽𝑠)

)
, proceed as follows:

1. Compute 𝐽𝑖 = { 𝑗 ∈ layer𝑖 (𝑃) : 𝛽 𝑗 = 0} and 𝐽𝑖+1 = { 𝑗 ∈ layer𝑖+1 (𝑃) : 𝛽 𝑗 = 0}.
2. Send 1𝑠𝑝 and the set 𝐽𝑖 to the challenger. The challenger replies with a hash key hk and a verification key

vk.
3. Set (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡 − 1]), hklow ← hk, and vklow ← vk. Finally,

sample (crsBARG, tdBARG) ← TrapGen′
(
1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝐽𝑖+1 [𝑡]), where 𝑠′ is defined as in Construction 4.4.

4. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run 𝜋 ← A2 (crs, stA).
5. Let 𝜋 = (dig0, dig1, 𝜋BARG) and suppose x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in

Construction 4.4. Compute

𝑤̂ = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽𝑖+1 [𝑡]),

and parse the extracted witness𝑤 as𝑤 =
(
𝑏1, 𝜎

(0)
1 , 𝜎

(1)
1 , 𝑏2, 𝜎

(0)
2 , 𝜎

(1)
2

)
.

6. Parse 𝑥 𝐽𝑖+1 [𝑡] = (𝑔, 𝑗1, 𝑗2). If there exists 𝛼 ∈ {1, 2} such that 𝑗𝛼 ∈ 𝐽𝑖 and 𝑏𝛼 = 1, output the digest diglow,
the index 𝑗𝛼 , and the opening 𝜎 (low)𝛼 .

By construction, algorithm B perfectly simulates an execution of Hyb𝑖,𝑡,3 and Hyb𝑖,𝑡,4 for A. Thus, with probability
at least 𝜀, algorithm A will output a proof 𝜋 = (dig0, dig1, 𝜋BARG) where Eq. (4.4) holds. Since 𝐶aug

(
𝑥 𝐽𝑖+1 [𝑡], 𝑤̂

)
= 1,

the following properties hold:

• 𝑏 = 𝑔(𝑏1, 𝑏2), where 𝑔 = 𝑔𝐽𝑖+1 [𝑡] ∈ {and, or} is the gate in the circuit 𝑃 that computes wire 𝐽𝑖+1 [𝑡].

• H.VerOpen
(
vklow, diglow, 𝑗1, 𝑏1, 𝜎

(low)
1

)
= 1 and H.VerOpen

(
vklow, diglow, 𝑗2, 𝑏2, 𝜎

(low)
2

)
= 1.

By definition, 𝑗1, 𝑗2 are the indices of the input wires to the gate whose output wire is 𝐽𝑖+1 [𝑡]. We consider two
possibilities:

• Suppose 𝑏1 ≤ 𝛽 𝑗1 and 𝑏2 ≤ 𝛽 𝑗2 . By definition (see the details of the Preprocess algorithm), 𝛽 𝐽𝑖+1 [𝑡] = 𝑔(𝛽 𝑗1 , 𝛽 𝑗2).
Since 𝐽𝑖+1 [𝑡] ∈ 𝐽𝑖+1, this means 𝛽 𝐽𝑖+1 [𝑡] = 0. Since 𝑔 is a monotone gate and 𝑏1 ≤ 𝛽 𝑗1 and 𝑏2 ≤ 𝛽 𝑗2 , we have that
𝑏 = 𝑔(𝑏1, 𝑏2) ≤ 𝑔(𝛽 𝑗1 , 𝛽 𝑗2) = 0. Since 𝑏 ∈ {0, 1}, this means that 𝑏 = 0. However, if Eq. (4.4) holds, then 𝑏 ≠ 0, so
this case does not happen.

• Suppose there exist 𝛼 ∈ {1, 2} such that 𝑏𝛼 > 𝛽 𝑗𝛼 . This means that 𝛽 𝑗𝛼 = 0 and 𝑏𝛼 = 1. Since 𝑃 is a layered
monotone circuit, this means 𝑗1, 𝑗2 ∈ layer𝑖 (𝑃). Since 𝛽 𝑗𝛼 = 0, this means that 𝑗𝛼 ∈ 𝐽𝑖 . In conjunction with
Eq. (4.4), this means

H.Extract(tdlow, diglow) = Matching and H.VerOpen
(
vklow, diglow, 𝑗𝛼 , 1, 𝜎

(low)
𝛼

)
= 1 and 𝑗𝛼 ∈ 𝐽𝑖 ,

where (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖) is the hash function parameters sampled by the zero-fixing
challenger. In this case, algorithm B wins the zero-fixing game.

We conclude that if the proof 𝜋 output byA satisfies Eq. (4.4) with probability 𝜀, then algorithm B wins the zero-fixing
game with advantage at least 𝜀. □

Claim 4.12. If ΠH satisfies one-sided index hiding with extracted guess security against efficient non-uniform adversaries,
then there exists a negligible function negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1}, 𝑡 ∈ [|𝐽𝑖+1 |], it holds that

Pr[Hyb𝑖,𝑡,5 (A) = 1] ≥ Pr[Hyb𝑖,𝑡,4 (A) = 1] − negl(𝜆).

31

Proof. Take any 𝑖 ∈ {0, . . . , 𝑑 − 1} and 𝑡 ∈ [|𝐽𝑖+1 |]. Suppose Pr[Hyb𝑖,𝑡,5 (A) = 1] ≤ Pr[Hyb𝑖,𝑡,4 (A)] − 𝜀 (𝜆) for some
non-negligible 𝜀. We use A to construct a non-uniform adversary B for the index hiding with extracted guess game
of ΠH:

• Preprocessing phase: On input the security parameter 1𝜆 , run (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 ,𝐶, 𝑃, x, stA) ← A1 (1𝜆). Compute
𝜏 ← Preprocess(𝐶, 𝑃, x) and output stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA).

• Online phase: On input the state stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA) where 𝜏 =
(
𝐶, 𝑃, x, (𝛽1, . . . , 𝛽𝑠)

)
, proceed as follows:

1. Compute 𝐽𝑖 = { 𝑗 ∈ layer𝑖 (𝑃) : 𝛽 𝑗 = 0} and 𝐽𝑖+1 = { 𝑗 ∈ layer𝑖+1 (𝑃) : 𝛽 𝑗 = 0}.
2. Send 1𝑠𝑝 , the set 𝐽𝑖+1 [1, . . . , 𝑡], and the index 𝐽𝑖+1 [𝑡] to the challenger. The challenger replies with hk and

vk.
3. If 𝑖 = 0, then (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). Otherwise, sample (hklow, vklow, tdlow) ←

H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖). Let hkhigh ← hk and vkhigh ← vk.
4. Sample (crsBARG, tdBARG) ← TrapGen′

(
1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝐽𝑖+1 [𝑡]), where 𝑠′ is defined as in Construction 4.4.

5. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run 𝜋 ← A2 (crs, stA). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be
as defined in Prove and Verify in Construction 4.4. Parse 𝜋 = (dig0, dig1, 𝜋BARG) and compute 𝑤̂ =

(𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽𝑖+1 [𝑡]).
6. Check each of the following conditions:

– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
– If 𝑖 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
– 𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 1 and 𝑏 = 0.

If any condition fails to verify, then output ⊥. Otherwise, output the digest dighigh and the opening 𝜎 (high) .

We consider the two possibilities:

• Suppose the challenger responds according to the specification of ExptIHEB (𝜆, 0). In this case, the challenger
samples (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡 − 1]). By construction, algorithm B perfectly
simulates an execution of Hyb𝑖,𝑡,4 for A. The output of ExptIHEB (𝜆, 0) is 1 if and only if all of the following
events occur:

– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
– If 𝑖 ≥ 1, then H.Extract(tdlow, diglow) = Matching.
– 𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 1 and 𝑏 = 0.
– H.VerOpen

(
vkhigh, dighigh, 𝐽𝑖+1 [𝑡], 0, 𝜎 (high)

)
= 1 and H.Extract

(
tdhigh, dighigh

)
= Matching.

We now argue that
ExptIHEB (𝜆, 0) = 1 ⇐⇒ Hyb𝑖,𝑡,4 (A) = 1.

The forward direction is immediate since the set of conditions under which ExptIHEB (𝜆, 0) outputs 1 is a strict
superset of the conditions under which Hyb𝑖,𝑡,4 (A) outputs 1. For the backward direction, we show that if
𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 1 and 𝑏 = 0, then H.VerOpen

(
vkhigh, dighigh, 𝐽𝑖+1 [𝑡], 0, 𝜎 (high)

)
= 1. By construction of 𝐶aug,

we have that 𝐶aug (𝑥 𝐽𝑖+1 [𝑡], 𝑤̂) = 1 implies that for all 𝛼 ∈ {1, 2}, it holds that

H.VerOpen
(
vk𝛼 , dig𝛼 , 𝐽𝑖+1 [𝑡], 0, 𝜎 (𝛼)

)
= 1.

In particular, this holds for 𝛼 = high, so the claim holds. We conclude then that

Pr[ExptIHEB (𝜆, 0) = 1] = Pr[Hyb𝑖,𝑡,4 (A) = 1] .

32

• Suppose the challenger responds according to the specification of ExptIHEB (𝜆, 1). In this case, the challenger
samples (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1 [1, . . . , 𝑡]). Thus, algorithm B perfectly simulates an
execution of Hyb𝑖,𝑡,5 for A. Since Hyb𝑖,𝑡,4 and Hyb𝑖,𝑡,5 share identical verification conditions, we can appeal to
the same argument as before to argue that

ExptIHEB (𝜆, 1) = 1 ⇐⇒ Hyb𝑖,𝑡,5 (A) = 1.

Correspondingly,
Pr[ExptIHEB (𝜆, 1) = 1] = Pr[Hyb𝑖,𝑡,5 (A) = 1] .

We conclude that B breaks the one-sided index hiding with extracted guess with the same advantage 𝜀. □

Claim 4.13. For every 𝑖 ∈ {0, . . . , 𝑑 − 1}, 𝑡 ∈ [|𝐽𝑖+1 |], it holds that

Pr[Hyb𝑖,𝑡,6 (A) = 1] ≥ Pr[Hyb𝑖,𝑡,5 (A) = 1] .

Proof. The only difference betweenHyb𝑖,𝑡,5 andHyb𝑖,𝑡,6 is thatHyb𝑖,𝑡,5 performs an additional check that the extracted
witness 𝑤̂ satisfies certain properties. Thus, whenever Hyb𝑖,𝑡,6 outputs 1, hybrid Hyb𝑖,𝑡,5 also outputs 1 and the claim
follows. □

Claim 4.14. If ΠBARG satisfies set hiding against efficient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1} and 𝑡 ∈ [|𝐽𝑖+1 |], it holds that��Pr[Hyb𝑖,𝑡,6 (A) = 1] − Pr[Hyb𝑖,𝑡,7 (A) = 1]

�� ≤ negl(𝜆).

Proof. This follows by a similar argument as the proof of Claim 4.9. □

Claim 4.15. For every 𝑖 ∈ {0, . . . , 𝑑 − 1}, it holds that

Pr[Hyb𝑖,final (A) = 1] ≥ Pr[Hyb𝑖, | 𝐽𝑖+1 |,7 (A) = 1] .

Proof. The only difference between Hyb𝑖, | 𝐽𝑖+1 |,7 and Hyb𝑖,final is that Hyb𝑖, | 𝐽𝑖+1 |,7 performs an additional check that
diglow is Matching. Thus, whenever Hyb𝑖,final outputs 1, hybrid Hyb𝑖, | 𝐽𝑖+1 |,7 also outputs 1 and the claim follows. □

Claim 4.16. If ΠH satisfies set hiding property against efficient non-uniform adversaries then there exists a negligible
function negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1}, it holds that��Pr[Hyb𝑖,final (A) = 1] − Pr[Hyb𝑖+1 (A) = 1]

�� ≤ negl(𝜆).

Proof. We consider two cases in our analysis:

• Suppose 𝑖 = 0. Then, in hybrid Hyb0,final, the challenger samples (hk0, vk0, td0) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅) and
(hk1, vk1, td1) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽1). This is identical to how the challenger samples hk0 and hk1 in Hyb1.
Similarly, the verification conditions in the two experiments are identical, so we conclude that

Pr[Hyb0,final (A) = 1] = Pr[Hyb𝑖+1 (A) = 1] .

• Suppose 𝑖 > 0. Let 𝛼 = 𝑖 mod 2. By construction, in hybrid Hyb𝑖,final, the challenger samples

(hk𝛼 , vk𝛼 , td𝛼) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖) and (hk1−𝛼 , vk1−𝛼 , td1−𝛼) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1).

In hybrid Hyb𝑖+1, the challenger samples

(hk𝛼 , vk𝛼 , td𝛼) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅) and (hk1−𝛼 , vk1−𝛼 , td1−𝛼) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1). (4.5)

Both experiments check H.Extract(td1−𝛼 , dig1−𝛼) = Matching. Thus, the only difference between Hyb𝑖,final and
Hyb𝑖+1 is the distribution of hk𝛼 . In this case, security reduces to the set hiding security of ΠH. We give this
proof below.

33

To argue the second case, take any 𝑖 ∈ {1, . . . , 𝑑 − 1} and suppose that | Pr[Hyb𝑖,final (A) = 1] − Pr[Hyb𝑖+1 (A) = 1] | =
𝜀 (𝜆) for some non-negligible 𝜀. We use A to build an efficient non-uniform adversary B that breaks set hiding of ΠH
as follows:

• Preprocessing phase: On input the security parameter 1𝜆 , run (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 ,𝐶, 𝑃, x, stA) ← A1 (1𝜆). Compute
𝜏 ← Preprocess(𝐶, 𝑃, x) and output stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA).

• Online phase: On input the state stB = (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝜏, stA) where 𝜏 =
(
𝐶, 𝑃, x, (𝛽1, . . . , 𝛽𝑠)

)
, proceed as follows:

1. Compute 𝐽𝑖 = { 𝑗 ∈ layer𝑖 (𝑃) : 𝛽 𝑗 = 0} and 𝐽𝑖+1 = { 𝑗 ∈ layer𝑖+1 (𝑃) : 𝛽 𝑗 = 0}.
2. Send 1𝑠𝑝 and the set 𝐽𝑖 to the challenger. The challenger replies with hk and vk.
3. Sample (crsBARG, vkBARG) ← Gen′

(
1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′), where 𝑠′ is defined as in Construction 4.4. Let 𝛼 =

𝑖 mod 2. Sample (hk1−𝛼 , vk1−𝛼 , td1−𝛼) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖+1) and set hk𝛼 ← hk, vk𝛼 ← vk.
4. Let crs = (crsBARG, hk0, hk1, vk0, vk1) and run 𝜋 ← A2 (crs, stA).
5. Let 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in Construc-

tion 4.4. Output 1 if all of the following conditions hold (and 0 otherwise):
– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
– H.Extract(td1−𝛼 , dig1−𝛼) = Matching.

We now consider two possibilities:

• In ExptSHB (𝜆, 0), the challenger samples (hk, vk, td) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅). In this case, algorithm B samples
crs according to the specification of Hyb𝑖+1. Moreover, algorithm B computes its output exactly as described in
Hyb𝑖+1. This means that B perfectly simulates Hyb𝑖+1 (A) and thus

Pr[ExptSHB (𝜆, 0) = 1] = Pr[Hyb𝑖+1 (A) = 1] .

• In ExptSHB (𝜆, 1), the challenger samples (hk, vk, td) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖). In this case, algorithm B samples
crs according to the specification of Hyb𝑖,final. Moreover, algorithm B computes the output exactly as described
in Hyb𝑖,final. This means that B perfectly simulates Hyb𝑖,final (A) and thus:

Pr[ExptSHB (𝜆, 1) = 1] = Pr[Hyb𝑖,final (A) = 1] .

We conclude that algorithm B breaks the set hiding property with advantage 𝜀 in this case and the claim follows. □

Completing the proof. Combining Claims 4.8 to 4.16, we conclude that there exists a negligible function 𝜇 (·) such
that for all 𝑖 ∈ [𝑑],

Pr[Hyb𝑖 (A) = 1] ≥ Pr[Hyb𝑖−1 (A) = 1] −𝑂 (1) · |𝐽𝑖 | · 𝜇 (𝜆).

Moreover, by the same sequence, we conclude that

Pr[Hyb𝑑−1,1,4 (A) = 1] ≥ Pr[Hyb𝑑−1 (A) = 1] −𝑂 (1) · 𝜇 (𝜆).

Putting the pieces together,

Pr[Hyb𝑑−1,1,4 (A) = 1] ≥ Pr[Hyb0 (A) = 1] −𝑂 (1) · 𝑑 · |𝐽𝑖 | · 𝜇 (𝜆) = Pr[Hyb0 (A) = 1] − negl(𝜆),

since 𝑑 · |𝐽𝑖 | ≤ 𝑠 = poly(𝜆). Note that we take Hyb𝑑−1,1,4 to be our final hybrid since it imposes the most constraints
(subsequent hybrids remove requirements from the experiment). To complete the proof we show that for all adversaries
A, Pr[Hyb𝑑−1,1,4 (A) = 1] = negl(𝜆).

Claim 4.17. For all adversaries A, Pr[Hyb𝑑−1,1,4 (A) = 1] = 0.

34

Proof. Fix an adversary A = (A1,A2) and let (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 ,𝐶, 𝑃, x, stA) be the output of A1 (1𝜆). Let 𝑠 = |𝑃 | and 𝑑 be
the depth of 𝑃 . As usual, for 𝑖 ∈ [𝑘], let 𝛽𝑖 = 1 if (𝐶, 𝑥𝑖) ∈ LCSAT and 𝛽𝑖 = 0 otherwise. For 𝑖 ∈ [𝑘 + 1, 𝑠], let 𝛽𝑖 be the
value of wire 𝑖 in the evaluation of 𝑃 on (𝛽1, . . . , 𝛽𝑘). By construction, all hybrids require that 𝛽𝑠 = 𝑃 (𝛽1, . . . , 𝛽𝑘) = 0,
and therefore 𝐽𝑑 [1] = {𝛽𝑠 }. However, the conditions for H̃yb𝑑−1,1,4 to output 1 cannot hold simultaneously:

• On the one hand, there must exist a witness 𝑤̂ = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) for instance 𝑥𝑠 (of the relation in Fig. 1) where
𝑏 = 0.

• On the other hand, by definition of instance 𝑥𝑠 , since 𝑠 is the output wire, it must be that 𝑏 = 1.

Therefore H̃yb𝑑−1,1,4 is unwinnable. □

Combining Eq. (4.5) and Claim 4.17, we conclude that there exists a negligible function negl(·) such that

0 ≥ Pr[Hyb0 (A) = 1] − negl(𝜆).

This means that Pr[Hyb0 (A) = 1] ≤ negl(𝜆), which proves Theorem 4.7. □

5 Generic Construction of Zero-Fixing Hash Functions
In this section, we show how to construct a zero-fixing hash function by combining an index BARG (Definition 2.9), an
additively homomorphic encryption scheme with bounded support (Definition 2.1), and a vector encryption scheme
with succinct local openings (Definition 2.3).

Binary tree indexing. In the following construction, we will work with complete binary trees. We will use the
following procedure to associate a unique index with each node in the binary tree:

Definition 5.1 (Binary Tree Indexing). Let T be a complete binary tree with 𝑛 = 2𝑘 leaves. Then T contains exactly
2𝑛 − 1 nodes. We associate a unique index 𝑖 ∈ [2𝑛 − 1] via the following procedure:

• First, associate the value 𝑣 = 1 to the root node.

• If 𝑣 is the value associated with a node, then associate values 2𝑣 and 2𝑣+1 with its left and right child. Recursively
apply this process to assign a value to every node in the tree.

• The index 𝑖 associated with a node is defined to be 2𝑛 − 𝑣 , where 𝑣 is the value associated with the node.

By design, Definition 5.1 has the following properties:

• The leaf nodes are indexed 1 through 𝑛 and the root node is indexed 2𝑛 − 1.

• The index of every non-leaf node is greater than the index of its children.

• Given the index of any non-leaf node, we can efficiently compute the indices of its left and right child.

Construction 5.2 (Zero-Fixing Hash Function). Our construction will rely on the following building blocks:

• Let Π′BARG = (Gen′, Prove′,Verify′, TrapGen′, Extract′) be a somewhere extractable index BARG (Definition 2.9).

• Let ΠHE = (HE.Gen,HE.Enc,HE.Dec,HE.Add) be an additively homomorphic encryption scheme with bounded
support (Definition 2.1). For a security parameter 𝜆 and a range parameter 𝑛, let ℓct (𝜆, 𝑛) be a bound on the
length of the ciphertexts output by either HE.Enc(pk, ·) or HE.Add(pk, ·, ·) for any (sk, pk) in the support of
HE.Gen(1𝜆, 1𝑛).

• Let ΠCom = (Com.Setup,Com.Commit,Com.Verify) be a vector commitment scheme with succinct local
openings (Definition 2.3).

35

We construct a zero-fixing hash ΠH = (Setup,Hash, ProveOpen,VerOpen, Extract,ValidateDigest). In the following
description, we assume without loss of generality that the bound on the input length 𝑛 ∈ N is a power of two (i.e.,
𝑛 = 2𝑘 for some integer 𝑘 ∈ N). Next, we define the following NP relation which we will be using in our construction:

Statement: index 𝑖 ∈ [𝑛]
Witness: ciphertexts 𝑣 (0) , 𝑣 (1) , openings 𝜎 (0) , 𝜎 (1) , and an auxiliary witness 𝑤̃
Hard-coded: the common reference string crsCom for ΠCom, an index 𝑖∗ ∈ [𝑛] ∪ {⊥}, a value 𝑦 ∈ {0, 1,⊥}, and
for each 𝑏 ∈ {0, 1}, a public key pk𝑏 for ΠHE, commitments com(𝑏)hk and two ciphertexts ct(𝑏)zero, ct(𝑏)root

On input a statement 𝑖 ∈ [𝑛] and a witness
(
𝑣 (0) , 𝑣 (1) , 𝜎 (0) , 𝜎 (1) , 𝑤̃

)
:

• Leaf nodes: If 𝑖 ∈ [𝑛], then parse 𝑤̃ =
(
ĉt(0) , ĉt(1) , 𝜎 (0)hk , 𝜎

(1)
hk

)
. Output 1 if the following conditions hold:

1. Opening to ciphertext: for 𝑏 ∈ {0, 1}, Com.Verify
(
crsCom, com𝑏, 𝑖, 𝑣

(𝑏) , 𝜎 (𝑏)
)
= 1.

2. Opening to ciphertext in hk: for 𝑏 ∈ {0, 1}, Com.Verify
(
crsCom, com

(𝑏)
hk , 𝑖, ĉt

(𝑏)
, 𝜎
(𝑏)
hk

)
= 1.

3. Consistent choice of ciphertexts:
(
𝑣 (0) = ct(0)zero ∧ 𝑣 (1) = ct(1)zero

)
or

(
𝑣 (0) = ĉt(0) ∧ 𝑣 (1) = ĉt(1)

)
.

4. Validity of ciphertext at target index: If 𝑖 = 𝑖∗, then additionally check that:

𝑣 (𝑏) =

{
ct(𝑏)zero 𝑦 = 0
ĉt(𝑏) 𝑦 = 1.

If any of these conditions are not satisfied, output 0.

• Non-leaf nodes: If 𝑖 ∈ [𝑛 + 1, 2𝑛 − 1], then parse 𝑤̃ = (𝑤̃l, 𝑤̃r), where 𝑤̃𝑑 =
(
𝑣
(0)
𝑑

, 𝑣
(1)
𝑑

, 𝜎
(0)
𝑑

, 𝜎
(1)
𝑑

)
for

𝑑 ∈ {l, r}. Output 1 if all of the following conditions hold for all 𝑏 ∈ {0, 1}:

1. Opening to ciphertext: Com.Verify
(
crsCom, com𝑏, 𝑖, 𝑣

(𝑏) , 𝜎 (𝑏)
)
= 1.

2. Opening to child ciphertexts: Com.Verify(crsCom, com𝑏, 𝑖l, 𝑣
(𝑏)
l , 𝜎

(𝑏)
l) = 1 and

Com.Verify(crsCom, com𝑏, 𝑖r, 𝑣
(𝑏)
r , 𝜎

(𝑏)
r) = 1, where 𝑖l and 𝑖r are the indices of the left and

right child of 𝑖 (according to the indexing scheme from Definition 5.1).

3. Correctness of evaluation: 𝑣 (𝑏) = HE.Add
(
pk𝑏, 𝑣

(𝑏)
l , 𝑣

(𝑏)
r

)
.

4. Validity of root: If 𝑖 = 2𝑛 − 1 then 𝑣 (𝑏) = ct(𝑏)root.

If any of these conditions are not satisfied, output 0.

Figure 2: The index relation R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1}, 𝑖

∗, 𝑦
]
.

We describe our construction below:

• Setup(1𝜆, 1𝑛, 𝑆): On input a security parameter 𝜆, the input length 𝑛 = 2𝑘 , and a set 𝑆 ⊆ [𝑛], the setup algorithm
starts by sampling the following:

– Sample two key pairs: (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
– Sample the CRS for the commitment scheme with block length ℓct (𝜆, 𝑛) and up to 2𝑛 − 1 blocks: crsCom ←

Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1).
– Sample the CRS for an index BARG: (crsBARG, vkBARG) ← Gen′ (1𝜆, 12𝑛−1, 1𝑠 , 13), where 𝑠 is a bound on

the size of the circuit computing the index relation from Fig. 2. Here, the CRS is extractable on up to 3
positions. Note that since ΠBARG is an index BARG, Gen′ does not separately take the statement length as
input (Definition 2.9).

36

Next, for each 𝑏 ∈ {0, 1}, construct an encryption of 0: ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Next, for each 𝑖 ∈ 𝑆 and
𝑏 ∈ {0, 1}, construct the hash key ciphertexts as follows:

– If 𝑖 ∈ 𝑆 , compute ct(𝑏)
𝑖
← HE.Enc(pk𝑏, 1).

– If 𝑖 ∉ 𝑆 , compute ct(𝑏)
𝑖
← HE.Enc(pk𝑏, 0).

Next, the setup algorithm constructs a commitment to the ciphertexts associated with the hash key. Specifically,
for each 𝑏 ∈ {0, 1}, it computes(

com(𝑏)hk , 𝜎
(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
.

Finally, the setup algorithm constructs the hash key hk, the verification key vk, and the trapdoor td as follows:

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
(5.1)

vk =
(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
(5.2)

td = (sk0, sk1). (5.3)

• Hash(hk, 𝑥): On input a hash key hk (parsed as in Eq. (5.1)) and a string 𝑥 ∈ {0, 1}𝑛 , the hashing algorithm
proceeds as follows:

– Construct two complete binary trees T0,T1, each with 𝑛 leaves. For each tree T𝑏 , we assign a ciphertext
𝑣
(𝑏)
𝑖

to each node 𝑖 ∈ [2𝑠 − 1] in the tree as follows (where the nodes are indexed using Definition 5.1):

∗ If 𝑖 ∈ [𝑛], let 𝑣 (𝑏)
𝑖
← ct(𝑏)zero if 𝑥𝑖 = 0 and 𝑣 (𝑏)

𝑖
← ct(𝑏)

𝑖
if 𝑥𝑖 = 1.

∗ For each internal node 𝑖 ∈ [𝑛 + 1, 2𝑛 − 1], compute 𝑣 (𝑏)
𝑖
← HE.Add

(
pk𝑏, 𝑣

(𝑏)
𝑖l

, 𝑣
(𝑏)
𝑖r

)
, where 𝑖l and 𝑖r

are the indices associated with the left and right child of node 𝑖 under the canonical tree indexing
scheme (Definition 5.1).

– For 𝑏 ∈ {0, 1}, construct commitments (com𝑏, 𝜎
(𝑏)
1 , . . . , 𝜎

(𝑏)
2𝑛−1) ← Com.Commit(crsCom, (𝑣 (𝑏)1 , . . . , 𝑣

(𝑏)
2𝑛−1))

to the ciphertexts associated with T𝑏 .
– For 𝑏 ∈ {0, 1}, let ct(𝑏)root = 𝑣

(𝑏)
2𝑛−1 (i.e., the ciphertext associated with the root of T𝑏). Let 𝐶⊥ be the circuit

that computes the following instantiation of the relation from Fig. 2:

R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1},⊥,⊥

]
.

– For each 𝑖 ∈ [2𝑛 − 1], let 𝜏𝑖 =
(
𝑣
(0)
𝑖

, 𝑣
(1)
𝑖

, 𝜎
(0)
𝑖

, 𝜎
(1)
𝑖

)
be the opening for the ciphertexts associated with node

𝑖 in T0 and T1. Then, for each 𝑖 ∈ [2𝑠 − 1], define the auxiliary witness 𝑤̃𝑖 to be
∗ If 𝑖 ∈ [𝑛] then 𝑤̃𝑖 =

(
ct(0)

𝑖
, ct(1)

𝑖
, 𝜎
(0)
hk,𝑖 , 𝜎

(1)
hk,𝑖

)
.

∗ If 𝑖 ∈ [𝑛 + 1, 2𝑛 − 1] then 𝑤̃𝑖 = (𝜏𝑖l , 𝜏𝑖r) where 𝑖l, 𝑖r are the indices of the left and right child of node 𝑖 ,
respectively.

Finally, let𝑤𝑖 = (𝜏𝑖 , 𝑤̃𝑖) for each 𝑖 ∈ [2𝑛 − 1]. Compute the BARG proof 𝜋dig ← Prove′ (crsBARG,𝐶⊥, 2𝑛 −
1, (𝑤1, . . . ,𝑤2𝑛−1)).

– Output the digest
dig =

(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
.

• ProveOpen(hk, 𝑥, 𝑖∗): On input a hash key hk (parsed as in Eq. (5.1)), a string 𝑥 ∈ {0, 1}𝑛 and an index 𝑖∗ ∈ [𝑛],
the opening algorithm proceeds as follows:

– Let 𝐶𝑖∗,𝑥𝑖∗ be the circuit that computes the following instantiation of the relation from Fig. 2:

R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1}, 𝑖

∗, 𝑥𝑖∗
]
.

37

– Compute the witnesses𝑤𝑖 for each 𝑖 ∈ [2𝑛 − 1] using the same procedure as in the Hash algorithm.
– Output the opening 𝜎 ← Prove′ (crsBARG,𝐶𝑖∗,𝑥𝑖∗ , 2𝑛 − 1, (𝑤1, . . . ,𝑤2𝑛−1))

• VerOpen(vk, dig, 𝑖, 𝑏, 𝜎): On input the verification key vk (parsed according to Eq. (5.2)), a digest dig =(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
, an index 𝑖∗ ∈ [𝑛], a bit 𝑏 ∈ {0, 1} and an opening 𝜎 , the verification algo-

rithm outputs Verify′ (vkBARG,𝐶𝑖∗,𝑏, 2𝑛 − 1, 𝜎) where 𝐶𝑖∗,𝑏 is the circuit computing the following relation from
Fig. 2:

R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1}, 𝑖

∗, 𝑏
]
.

• Extract(td, dig): On input a trapdoor td = (sk0, sk1) and a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
, the ex-

traction algorithm outputsMatching ifHE.Dec(sk0, ct
(0)
root) = 0. Otherwise, the algorithm outputsNotMatching.

• ValidateDigest(vk, dig): On input the verification key vk (parsed according to Eq. (5.2)) and a digest dig =(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
, the digest-validation algorithm outputs Verify′ (vkBARG,𝐶⊥, 2𝑛 − 1, 𝜋dig) where

𝐶⊥ is the circuit computing the following relation from Fig. 2:

R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1},⊥,⊥

]
.

Theorem 5.3 (Correctness). Suppose ΠCom is correct and Π′BARG is complete. Then, Construction 5.2 is correct.

Proof. Take any 𝜆, 𝑛 ∈ N and 𝑥 ∈ {0, 1}𝑛 . Suppose (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅). Parse

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
td = (sk0, sk1).

We now show each property individually.

Opening correctness. Take any index 𝑖∗ ∈ [𝑛] and let 𝜎 ← ProveOpen(hk, 𝑥, 𝑖∗). By definition, this means
𝜎 ← Prove′ (crsBARG,𝐶𝑖∗,𝑥𝑖∗ , 2𝑛 − 1, (𝑤1, . . . ,𝑤2𝑛−1)), where 𝐶𝑖∗,𝑥𝑖∗ is the circuit that computes the index relation

R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1}, 𝑖

∗, 𝑥𝑖∗
]

from Fig. 2. By construction of ProveOpen (and by correspondence, Hash),𝑤𝑖 = (𝜏𝑖 , 𝑤̃𝑖) and 𝜏𝑖 =
(
𝑣
(0)
𝑖

, 𝑣
(1)
𝑖

, 𝜎
(0)
𝑖

, 𝜎
(1)
𝑖

)
.

We now show that 𝐶𝑖∗,𝑥𝑖∗ (𝑖,𝑤𝑖) = 1 for all 𝑖 ∈ [2𝑛 − 1]:

• Leaf nodes: Suppose 𝑖 ∈ [𝑛]. Then, 𝑤̃𝑖 =
(
ct(0)

𝑖
, ct(1)

𝑖
, 𝜎
(0)
hk,𝑖 , 𝜎

(1)
hk,𝑖

)
. Consider each of the conditions:

1. Opening to ciphertext: By construction of Hash, for 𝑏 ∈ {0, 1}, the commitment com𝑏 is a vector
commitment to

(
𝑣
(𝑏)
1 , . . . , 𝑣

(𝑏)
2𝑛−1

)
, and the opening for position 𝑖 is 𝜎 (𝑏)

𝑖
. This check follows by correctness

of the vector commitment scheme.
2. Opening to ciphertext in hk: By construction of Setup, for 𝑏 ∈ {0, 1}, the commitment com(𝑏)hk is a

vector commitment to
(
ct(𝑏)1 , . . . , ct(𝑏)𝑛

)
with opening 𝜎 (𝑏)hk,𝑖 . This check follows by correctness of the vector

commitment scheme.
3. Consistent choice of ciphertexts: By construction of Hash, for 𝑏 ∈ {0, 1}, we have that depending on

the value of 𝑥𝑖 , either 𝑣 (𝑏)𝑖
= ct(𝑏)zero or 𝑣 (𝑏)𝑖

= ct(𝑏)
𝑖

, and the check passes.

4. Validity of ciphertext at target index: By construction of Hash, 𝑣 (𝑏)
𝑖∗ = ct(𝑏)zero if 𝑥𝑖∗ = 0 and 𝑣 (𝑏)

𝑖∗ = ct(𝑏)

if 𝑥𝑖∗ = 1. As such, this check passes.

38

• Non-leaf nodes: Suppose 𝑖 ∈ [𝑛 + 1, 2𝑛 − 1]. Then, 𝑤̃𝑖 =
(
𝜏𝑖l , 𝜏𝑖r

)
. Consider each of the conditions:

1. Opening to ciphertext: This follows by the same reason as above.
2. Opening to child ciphertexts: This also follows by construction of com𝑏 (namely, com𝑏 is a vector

commitment to
(
𝑣
(𝑏)
1 , . . . , 𝑣

(𝑏)
2𝑛−1

)
with openings 𝜎 (𝑏)1 , . . . , 𝜎

(𝑏)
2𝑛−1).

3. Correctness of evaluation: By construction of Hash, for all non-leaf nodes 𝑖 ∈ [𝑛 + 1, 2𝑛 − 1], it holds
that 𝑣 (𝑏)

𝑖
← HE.Add

(
pk𝑏, 𝑣

(𝑏)
𝑖l

, 𝑣
(𝑏)
𝑖r

)
, and the checks passes (since HE.Add is deterministic).

4. Validity of root: The Hash algorithm defines ct(𝑏)root = 𝑣
(𝑏)
2𝑛−1, so this condition is trivially satisfied.

Since 𝐶𝑖∗,𝑥𝑖∗ (𝑖,𝑤𝑖) = 1 for all 𝑖 ∈ [2𝑛 − 1], correctness follows by completeness of Π′BARG.

Digest correctness. This follows by an analogous argument as that used to argue opening correctness, with the
one difference being the circuit 𝐶⊥ computes the the index relation

R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1},⊥,⊥

]
.

In other words, 𝐶⊥ (as defined in Hash and in ValidateDigest) does not define a target index 𝑖∗ or value 𝑏 ∈ {0, 1},
and thus checks a strict subset of the conditions as 𝐶𝑖∗,𝑥𝑖∗ defined in VerOpen. Finally, the witness (𝑤1, . . . ,𝑤2𝑛−1) is
defined in an identical manner as before, so all of the required conditions checked by 𝐶⊥ are satisfied. □

Theorem 5.4 (Succinctness). If ΠHE is compact and ΠCom, ΠBARG are succinct, then Construction 5.2 is succinct.

Proof. Take any 𝜆, 𝑛 ∈ N and any (hk, vk, td) in the support of Setup(1𝜆, 1𝑛,∅). Take any input 𝑥 ∈ {0, 1}𝑛 and index
𝑖 ∈ [𝑛], and let dig← Hash(hk, 𝑥), 𝜋ProveOpen ← ProveOpen(hk, 𝑥, 𝑖). Parse

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
td = (sk0, sk1)

dig =

(
ct(0)root, ct

(1)
root, com0, com1, 𝜋Hash

)
By compactness of ΠHE, the lengths of the public keys pk0, pk1 as well as the ciphertexts ct

(𝑏)
zero, ct

(𝑏)
𝑖

for all 𝑖 ∈ [𝑛] and
𝑏 ∈ {0, 1} are bounded by poly(𝜆 + log𝑛). By succinctness of ΠCom, it holds that crsCom, com(0)hk , com

(1)
hk , com0 and

com1 all have length poly(𝜆 + log𝑛). Next, let 𝑠 be a bound on the size of the circuits computing the relation in Fig. 2
The relation in Fig. 2 requires a constant number of opening of ciphertext checks, each of which can be implemented
by a circuit of size poly(𝜆 + log𝑛). Similarly, the correctness of homomorphic evaluation check and the constant
number of ciphertext comparisons also require a circuit of size poly(𝜆 + log𝑛). Thus, the size 𝑠 of the circuit in Fig. 2
is bounded by poly(𝜆 + log𝑛). By succinctness of ΠBARG, it holds that the length of the verification key vkBARG and
the proofs 𝜋Hash and 𝜋ProveOpen have size poly(𝜆 + log𝑛). In total, everything is polynomial in poly(𝜆 + log𝑛) and
therefore all of the succinctness requirements (Definition 3.1) are satisfied by Construction 5.2. □

Security. In the subsequent sections, we prove each of the required security properties on Construction 5.2.
Instantiating the underlying batch argument (Fact 2.7), the additively homomorphic encryption (Fact 2.2), and the
vector commitment scheme with existing constructions (Fact 2.4), we obtain the following corollary:

Corollary 5.5 (Zero-Fixing Hash Functions). Assuming any of (1) the plain LWE assumption, (2) the 𝑘-Lin assumption
over pairing groups for any constant 𝑘 , or (3) the (sub-exponential) DDH assumption in pairing-free groups, there exists a
zero-fixing hash function.

Theorem 1.1 now follows in conjunction with our generic construction (Construction 4.4).

39

5.1 Security Analysis of Construction 5.2
In this section, we prove that Construction 5.2 satisfies the security requirements on a zero-fixing hash function.

5.1.1 Additive Invariants on Ciphertexts and Predicate Propagation

At a high level, the different security properties of the zero-fixing hash function (zero fixing, extractor validity, and
index hiding with extracted guess) will rely on reasoning about various properties on the ciphertext associated
with the root node in our tree of ciphertexts (i.e., the hash digest). The analysis of each of these properties follow
a similar strategy where we first establish that a certain predicate holds for the ciphertexts in the leaves (i.e., the
honestly-generated ciphertexts in the hash key). Then, we appeal to the security of the BARG to “propagate” the
invariants to the root ciphertext. In this section, we describe a general abstraction for this predicate-propagation
strategy that will help unify the analysis of the different security requirements. This construction exploits the fact
that the ciphertext tree is perfectly balanced and has depth log𝑛 (where 𝑛 is the input length); as such, we can rely
on a similar type of inductive analysis as that in [BBK+23] for arguing soundness of a monotone policy BARG for
log-depth predicates. We start by formally defining the type of invariants we consider in our security analysis.

Definition 5.6 (Tree-Based Additive Invariant on Ciphertexts). Let 𝑛 be a power of two and let ΠHE = (Gen, Enc,
Dec,Add) be a homomorphic encryption scheme. We say that an efficiently-computable predicate 𝑃 : {0, 1}∗ → {0, 1}
is a tree-based additive invariant for ΠHE if for all 𝜆, 𝑛 ∈ N, all indices 𝑖∗ ∈ [𝑛] ∪ {⊥}, all key-pairs (sk0, pk0), (sk1, pk1)
in the support of Gen(1𝜆, 1𝑛), all indices 𝑗, 𝑗l, 𝑗r ∈ [2𝑛 − 1] where 𝑗l and 𝑗r are the children of 𝑗 according to the
indexing scheme in Definition 5.1, and all ciphertexts

(
ct(0)l , ct(1)l

)
,
(
ct(0)r , ct(1)r

)
where

𝑃
(
𝑖∗, ct(0)l , ct(1)l , sk, sk′, 𝑗l

)
= 1 and 𝑃

(
𝑖∗, ct(0)r , ct(1)r , sk, sk′, 𝑗r

)
= 1,

it holds that
𝑃
(
𝑖∗, ctsum, ct′sum, sk, sk

′, 𝑗
)
= 1,

where ct(0)sum = Add
(
pk0, ct

(0)
l , ct(0)r

)
and ct(1)sum = Add

(
pk1, ct

(1)
l , ct(1)r

)
. This implies that if 𝑃 holds for the two children

of a node, then it also holds for the parent node.

Predicate propagation experiment. We now define the general predicate propagation experiment we use in the
analysis of Construction 5.2. This is a general experiment specification that captures the structure of the security
definitions for a zero-fixing hash function.

Definition 5.7 (Predicate Propagation Experiment). The predicate propagation experiment for Construction 5.2 is
parameterized by the following two components:

• A tree-based additive invariant 𝑃 (Definition 5.6) for the homomorphic encryption scheme ΠHE.

• An efficiently-computable “challenge-derivation” function DeriveChal(𝑆, 𝑖) that takes as input a set 𝑆 ⊆ [𝑛]
and an index 𝑖 ∈ [𝑛] and outputs two sets 𝑆0, 𝑆1 ⊆ [𝑛] and an index idx that is either a pair (𝑖∗, 𝑦∗) or ⊥. In the
predicate propagation experiment, the sets 𝑆0 and 𝑆1 will determine the distribution of the ciphertexts in the
common reference string. The index idx will determine the verification check. Each of the security properties
(i.e., zero fixing, extractor validity, and index hiding with extracted guess) will induce a different choice of
DeriveChal (to be specified in their respective proofs).

We now define the predicate propagation experiment Expt[𝑃,DeriveChal] between a challenger and an adversary A:

1. On input the security parameter 1𝜆 , algorithmA outputs the input length 1𝑛 , a set 𝑆 ⊆ [𝑛], and an index 𝑖∗ ∈ 𝑆
(or a special symbol ⊥).

2. The challenger computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗).

3. The challenger now samples the following quantities as in Setup:

40

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1).
• Sample (crsBARG, vkBARG) ← Gen′ (1𝜆, 12𝑛−1, 1𝑠 , 13), where 𝑠 is a bound on the size of the circuit computing
the index relation from Fig. 2.

• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆𝑏 ,
sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
4. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

6. The output of the experiment is 1 if

Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1 and 𝑃
(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
= 0.

Otherwise, the output is 0. Here, the circuit 𝐶idx computes the relation from Fig. 2:

• If idx = (𝑖, 𝑦), then 𝐶idx computes the relation R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1}, 𝑖, 𝑦

]
as

in VerOpen.
• If idx = ⊥, then 𝐶idx computes the relation R

[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1},⊥,⊥

]
as in

ValidateDigest.

In words, the adversary “wins” the game if it produces a proof 𝜋 that verifies, but the digest does not satisfy the
tree-based additive invariant 𝑃 .

Proof strategy. As we show in the subsequent sections (Sections 5.1.2 to 5.1.5), most of the security properties for
the zero-fixing hash function (zero fixing, extractor validity, and index hiding with extracted guess) are a special case
of the general predicate propagation experiment (with a suitable choice of the tree-based additive invariant 𝑃 and the
challenge-derivation function DeriveChal). Our goal below is to show that if specific “pre-conditions” hold, then for
all efficient adversaries A, the probability that Expt[𝑃,DeriveChal] outputs 1 is negligible. In turn, this will imply
the desired security properties on the zero-fixing hash function.

Predicate propagation hybrid experiment. The proof 𝜋 the adversary outputs is a BARG on 2𝑛 − 1 statements.
We can associate these 2𝑛 − 1 statements with the nodes of a complete binary tree with 𝑛 leaves. For each 𝑗 ∈ [2𝑛 − 1],
we now define an intermediate predicate propagation experiment Expt𝑗 [𝑃,DeriveChal] where instead of checking
the tree-based additive invariant holds for the values ct(0)root, ct

(1)
root from the digest dig, the challenger instead checks

the invariant for the value associated with node 𝑗 in the tree obtained by extracting a witness from the BARG. In the
subsequent analysis (Theorem 5.9), we show (inductively) that if the invariant holds for the values extracted from the
children of a node 𝑗 , then it also holds for the values extracted from node 𝑗 itself. In this way, if the invariant 𝑃 holds
for all the values associated with the leaves of the tree, then the invariant also holds for the values associated with
the root of the tree. Finally, the relation in Fig. 2 from Construction 5.2 enforces that the adversarially-chosen values
ct(0)root, ct

(1)
root are consistent with the values that would be extracted from the root of the tree. This allows us to reason

about properties of the adversarially-chosen values ct(0)root, ct
(1)
root. We define this experiment below and then state the

main predicate propagation theorem (Theorem 5.9).

41

Definition 5.8 (Predicate Propagation Hybrid Experiment). Let 𝑗 ∈ N be an index. For a tree-based additive
invariant 𝑃 and a challenge-derivation function DeriveChal, we define the predicate propagation hybrid experiment
Expt𝑗 [𝑃,DeriveChal] between a challenger and an adversary A as follows:

1. On input the security parameter 1𝜆 , algorithmA outputs the input length 1𝑛 , a set 𝑆 ⊆ [𝑛], and an index 𝑖∗ ∈ 𝑆 .

2. The challenger computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗).

3. The challenger now samples the following quantities as in Setup:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗}), where 𝑠 is a bound on the size of the
circuit computing the index relation from Fig. 2.

• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆𝑏 ,
sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
4. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

6. The challenger computes
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗

)
← Extract′ (tdBARG, 𝜋, 𝑗).

7. The output of the experiment is 1 if the following conditions hold:

• Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

• 𝐶idx
(
𝑗, (𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗)
)
= 1.

• 𝑃
(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 0.

Otherwise, the output is 0. As in Definition 5.7, the circuit 𝐶idx computes the relation from Fig. 2:

• If idx = (𝑖, 𝑦), then 𝐶idx computes the relation R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1}, 𝑖, 𝑦

]
.

• If idx = ⊥, then 𝐶idx computes the relation R
[
crsCom,

{
pk𝑏, com

(𝑏)
hk , com𝑏, ct

(𝑏)
zero, ct

(𝑏)
root

}
𝑏∈{0,1},⊥,⊥

]
.

Otherwise, the output is 0.

Theorem 5.9 (Predicate Propagation). Let 𝑃 be a tree-based additive invariant and let DeriveChal be a challenge-
derivation function. Suppose ΠCom satisfies computational binding and ΠBARG satisfies set hiding with extraction, set
hiding, and somewhere extractability. LetA be any efficient adversary for the predicate propagation experiment. Suppose
that for every index 𝑗 ∈ [𝑛] (where 𝑛 = 𝑛(𝜆) is the input length chosen by A), there exists a negligible function 𝜀 𝑗 (·)
such that

Pr[Expt𝑗 [𝑃,DeriveChal] (A) = 1] = 𝜀 𝑗 (𝜆).

Then there exists a negligible function negl(·) such that

Pr[Expt[𝑃,DeriveChal] (A) = 1] = negl(𝜆).

42

Proof. To simplify notation, we write Expt := Expt[𝑃,DeriveChal] and Expt𝑗 := Expt𝑗 [𝑃,DeriveChal] in the following
proof. Fix an adversaryA and let𝑛 be the input length chosen byA. We proceed by induction on the index 𝑗 ∈ [2𝑛−1].
In the following, we will view the index 𝑗 as an index of a node in a (complete) binary tree with 𝑛 leaves (indexed
according to Definition 5.1). As such, we can refer to the “height” of an index 𝑗 . Then, we show the following lemma:

Lemma 5.10. Suppose the conditions of Theorem 5.9 hold. Take any index 𝑗 ∈ [2𝑛 − 1] and let ℎ be the height of node 𝑗
(where the leaf nodes have height 0). Then, there exists a negligible function 𝜀 𝑗 (𝜆) such that

Pr[Expt𝑗 (A) = 1] = 2ℎ · 𝜀 𝑗 (𝜆).

Proof. Suppose the conditions of Theorem 5.9 hold. We prove the lemma by induction on the height ℎ of the index
𝑗 ∈ [2𝑛 − 1].

Base case. For the indices 𝑗 ∈ [𝑛] of height 0 (i.e., the leaves of the tree), the lemma follows by assumption.

Inductive step. Suppose the inductive hypothesis holds for every index 𝑗 ′ ∈ [2𝑛 − 1] of height ℎ. Let 𝑗 ∈ [2𝑛 − 1]
be an index with height ℎ + 1. Let 𝑗l, 𝑗r ∈ [2𝑛 − 1] be the indices of the left and right child of node 𝑗 (as defined in
Definition 5.1). By construction, 𝑗l and 𝑗r have height ℎ. The inductive hypothesis now asserts that for 𝑗∗ ∈ { 𝑗l, 𝑗r},

Pr
[
Expt𝑗∗ (A) = 1

]
= 2ℎ · 𝜀 𝑗∗ (𝜆), (5.4)

for some negligible function 𝜀 𝑗∗ (𝜆). We now define an intermediate experiment Expt′𝑗 for each node 𝑗 of height ℎ > 0:

1. On input the security parameter 1𝜆 , algorithmA outputs the input length 1𝑛 , a set 𝑆 ⊆ [𝑛], and an index 𝑖∗ ∈ 𝑆 .

2. The challenger computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗).

3. The challenger now samples the following quantities as in Setup:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}), where 𝑠 is a bound on the size
of the circuit computing the index relation from Fig. 2.

• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆𝑏 ,
sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
4. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
The challenger gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

6. The challenger computes
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗

)
← Extract′ (tdBARG, 𝜋, 𝑗).

7. The output of the experiment is 1 if the following conditions hold:

• Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

• 𝐶idx
(
𝑗, (𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗)
)
= 1.

43

• 𝑃
(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 0.

Otherwise, the output is 0.

In our analysis below, we define an additional set of events in an execution of Expt′𝑗 withA. First, define the following
two quantities:

•
(
𝑣
(0)
𝑗l

, 𝑣
(1)
𝑗l

, 𝜎
(0)
𝑗l

, 𝜎
(1)
𝑗l

, 𝑤̃ 𝑗l

)
← Extract′ (tdBARG, 𝜋, 𝑗l).

•
(
𝑣
(0)
𝑗r

, 𝑣
(1)
𝑗r

, 𝜎
(0)
𝑗r

, 𝜎
(1)
𝑗r

, 𝑤̃ 𝑗r

)
← Extract′ (tdBARG, 𝜋, 𝑗r).

Now, define the following events:

• E(𝑗)Verify: This is the event that Verify
′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

• E(𝑗)
𝑃,𝑗∗ for each 𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r}: This is the event where 𝑃

(
𝑖∗, 𝑣 (0)

𝑗∗ , 𝑣
(1)
𝑗∗ , sk0, sk1, 𝑗

∗) = 1.

• E(𝑗)ValidCom, 𝑗∗ for each 𝑗∗ ∈ { 𝑗l, 𝑗r}: This is the event

Com.Verify
(
crsCom, com0, 𝑗

∗, 𝑣 (0)
𝑗∗ , 𝜎

(0)
𝑗∗

)
= 1 = Com.Verify

(
crsCom, com1, 𝑗

∗, 𝑣 (1)
𝑗∗ , 𝜎

(1)
𝑗∗

)
.

• E(𝑗)SAT, 𝑗∗ for each 𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r}: This is the event 𝐶idx
(
𝑗∗,

(
𝑣
(0)
𝑗∗ , 𝑣

(1)
𝑗∗ , 𝜎

(0)
𝑗∗ , 𝜎

(1)
𝑗∗ , 𝑤̃ 𝑗∗

))
= 1.

We now relate the probability that Expt𝑗 (A) outputs 1 to the probability that Expt𝑗l (A) and Expt𝑗r (A) outputs 1. To
do so, we first program the BARG to be extracting on the set { 𝑗, 𝑗l, 𝑗r}. We then argue via somewhere extractability
of the BARG and computational binding of the commitment scheme that if the values associated with the nodes 𝑗l
and 𝑗r satisfy the predicate 𝑃 and the proof verifies, then the value associated with 𝑗 must also satisfy the predicate 𝑃 .
In this case, the output of Expt𝑗 (A) is guaranteed to be 0.

Claim 5.11. If ΠBARG satisfies set hiding with extraction, then there exists a negligible function negl(·) such that for all
𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r}, it holds that���Pr[Expt𝑗∗ (A) = 1] − Pr

[
E(𝑗)Verify ∧ E

(𝑗)
SAT, 𝑗∗ ∧ ¬E

(𝑗)
𝑃,𝑗∗

] ��� = negl(𝜆).

Proof. Take any 𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r} and suppose���Pr[Expt𝑗∗ (A) = 1] − Pr
[
E(𝑗)Verify ∧ E

(𝑗)
SAT, 𝑗∗ ∧ ¬E

(𝑗)
𝑃,𝑗∗

] ��� ≥ 𝜀 (𝜆),

for some non-negligible 𝜀. Importantly, note that the events E(𝑗)Verify, E
(𝑗)
SAT, 𝑗∗ , and E(𝑗)

𝑃,𝑗∗ are defined for Expt′𝑗 and not
Expt𝑗∗ . We use A to construct an adversary B for the set hiding with extraction game of ΠBARG:

1. On input the security parameter 1𝜆 , algorithm B runs algorithmA to obtain the input length 1𝑛 , the set 𝑆 ⊆ [𝑛],
and an index 𝑖∗ ∈ 𝑆 .

2. Algorithm B outputs 12𝑛−1, 1𝑠 , 13, the challenge set 𝐽 = { 𝑗, 𝑗l, 𝑗r}, and the challenge index 𝑗∗ ∈ 𝐽 to the chal-
lenger, where 𝑠 is the bound on the size of the circuit in Fig. 2. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1).
• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆𝑏 ,
sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

44

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

6. Let 𝐶idx be the circuit as defined in Definition 5.7. Algorithm B first checks

Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

If the check fails, algorithm B aborts with output ⊥. Otherwise, algorithm B sends the circuit𝐶idx, the instance
number 2𝑛 − 1, and the proof 𝜋 to the challenger. The challenger replies with a string which B parses as(
𝑣
(0)
𝑗∗ , 𝑣

(1)
𝑗∗ , 𝜎

(0)
𝑗∗ , 𝜎

(1)
𝑗∗ , 𝑤̃ 𝑗∗

)
.

7. Algorithm B outputs 1 if

𝐶idx
(
𝑗∗,

(
𝑣
(0)
𝑗∗ , 𝑣

(1)
𝑗∗ , 𝜎

(0)
𝑗∗ , 𝜎

(1)
𝑗∗ , 𝑤̃ 𝑗∗

))
= 1 and 𝑃

(
𝑖∗, 𝑣 (0)

𝑗∗ , 𝑣
(1)
𝑗∗ , sk0, sk1, 𝑗

)
= 0.

Otherwise, algorithm B outputs 0.

Let (crsBARG, vkBARG, tdBARG) be the parameters sampled by the challenger in the set hiding with extraction game.
In the game, after B outputs (𝐶idx, 2𝑛 − 1, 𝜋), the challenger checks Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1. If the check
passes, it replies with

(
𝑣
(0)
𝑗∗ , 𝑣

(1)
𝑗∗ , 𝜎

(0)
𝑗∗ , 𝜎

(1)
𝑗∗ , 𝑤̃ 𝑗∗

)
← Extract′ (tdBARG, 𝜋, 𝑗∗). We now consider the two possibilities:

• Suppose the challenger responds according to the specification of ExptIHEA (𝜆, 0). In this case, the chal-
lenger samples (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}). Thus, algorithm B per-
fectly simulates for A an execution of Expt′𝑗 . We claim that algorithm B outputs 1 if and only if the event
E(𝑗)Verify ∧ E

(𝑗)
SAT, 𝑗∗ ∧ ¬E

(𝑗)
𝑃,𝑗∗ occurs. This event corresponds to the following set of conditions:

Verify′ (vkBARG,𝐶idx, 2𝑛−1, 𝜋) = 1 and𝐶idx
(
𝑗∗, (𝑣 (0)

𝑗∗ , 𝑣
(1)
𝑗∗ , 𝜎

(0)
𝑗∗ , 𝜎

(1)
𝑗∗ , 𝑤̃ 𝑗∗)

)
= 1 and 𝑃

(
𝑖∗, 𝑣 (0)

𝑗∗ , 𝑣
(1)
𝑗∗ , sk0, sk1, 𝑗

∗) = 0.

where
(
𝑣
(0)
𝑗∗ , 𝑣

(1)
𝑗∗ , 𝜎

(0)
𝑗∗ , 𝜎

(1)
𝑗∗ , 𝑤̃ 𝑗∗

)
← Extract′ (tdBARG, 𝜋, 𝑗∗). This is the same set of conditions that algorithm B

checks, so algorithm B outputs 1 with probability Pr
[
E(𝑗)Verify ∧ E

(𝑗)
SAT, 𝑗∗ ∧ ¬E

(𝑗)
𝑃,𝑗∗

]
in this case.

• Suppose the challenger responds according to the specification of ExptIHEA (𝜆, 1). In this case, the challenger
samples (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗∗}). Thus, algorithm B simulates for A an
execution of Expt𝑗∗ . We claim that algorithm B outputs 1 if and only if Expt𝑗∗ (A) outputs 1. The latter
corresponds to the following conditions being satisfied:

Verify′ (vkBARG,𝐶idx, 2𝑛−1, 𝜋) = 1 and𝐶idx
(
𝑗∗, (𝑣 (0)

𝑗∗ , 𝑣
(1)
𝑗∗ , 𝜎

(0)
𝑗∗ , 𝜎

(1)
𝑗∗ , 𝑤̃ 𝑗∗)

)
= 1 and 𝑃

(
𝑖∗, 𝑣 (0)

𝑗∗ , 𝑣
(1)
𝑗∗ , sk0, sk1, 𝑗

∗) = 0.

where
(
𝑣
(0)
𝑗∗ , 𝑣

(1)
𝑗∗ , 𝜎

(0)
𝑗∗ , 𝜎

(1)
𝑗∗ , 𝑤̃ 𝑗∗

)
← Extract′ (tdBARG, 𝜋, 𝑗∗). Once again, this is the same set of conditions that

B checks. Thus, in this case algorithm B outputs 1 with probability Pr[Expt𝑗∗ (A) = 1].

We conclude that the distinguishing advantage of B is precisely���Pr[Expt𝑗∗ (A) = 1] − Pr
[
E(𝑗)Verify ∧ E

(𝑗)
SAT, 𝑗∗ ∧ ¬E

(𝑗)
𝑃,𝑗∗

] ��� = 𝜀,

which completes the proof. □

45

Claim 5.12. If ΠBARG is somewhere extractable then there exists a negligible function negl(·) such that for all 𝑗∗ ∈
{ 𝑗, 𝑗l, 𝑗r}, it holds that Pr

[
E(𝑗)Verify ∧ ¬E

(𝑗)
SAT, 𝑗∗

]
= negl(𝜆).

Proof. Take any 𝑗∗ ∈ { 𝑗, 𝑗l, 𝑗r} and suppose Pr
[
E(𝑗)Verify ∧ ¬E

(𝑗)
SAT, 𝑗∗

]
≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to

construct an adversary B that breaks somewhere extractability of ΠBARG:

1. On input the security parameter 1𝜆 , algorithm B runs algorithmA to obtain the input length 1𝑛 , the set 𝑆 ⊆ [𝑛],
and an index 𝑖∗ ∈ 𝑆 .

2. AlgorithmB outputs 12𝑛−1, 1𝑠 , 13, the challenge set 𝐽 = { 𝑗, 𝑗l, 𝑗r}, and the challenge index 𝑗∗ ∈ 𝐽 to the challenger,
where 𝑠 is the bound on the size of the circuit in Fig. 2. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1).
• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆𝑏 ,
sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

6. Let 𝐶idx be the circuit as defined in Definition 5.7. Algorithm B outputs the circuit 𝐶idx, the instance number
2𝑛 − 1, and the proof 𝜋 .

By construction, algorithm B perfectly simulates an execution of Expt𝑗 . Thus, with probability at least 𝜀, the digest
dig and proof 𝜋 output by A satisfies E(𝑗)Verify but not E

(𝑗)
SAT, 𝑗∗ . This means

Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1 and 𝐶idx
(
𝑗∗,

(
𝑣
(0)
𝑗∗ , 𝑣

(1)
𝑗∗ , 𝜎

(0)
𝑗∗ , 𝜎

(1)
𝑗∗ , 𝑤̃ 𝑗∗

))
= 0.

This means algorithm B successfully breaks somewhere extractability of ΠBARG and the claim holds. □

Claim 5.13. Suppose the conditions in Claims 5.11 and 5.12 hold. Then, there exists a negligible function negl(·) such
that

Pr
[
Expt′𝑗 (A) = 1 ∧

(
¬E(𝑗)ValidCom, 𝑗l

∨ ¬E(𝑗)
𝑃,𝑗l
∨ ¬E(𝑗)ValidCom, 𝑗r

∨ ¬𝐸 (𝑗)
𝑃,𝑗r

)]
≤ 2ℎ+1 · 𝜀 𝑗 (𝜆) + negl(𝜆),

where 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)).

Proof. By Claim 5.11 there exists a negligible function negl1 (·) such that for all 𝑗∗ ∈ { 𝑗l, 𝑗r}, it holds that:���Pr[Expt𝑗∗ (A) = 1] − Pr
[
E(𝑗)Verify ∧ E

(𝑗)
SAT, 𝑗∗ ∧ ¬E

(𝑗)
𝑃,𝑗∗

] ��� ≤ negl1 (𝜆). (5.5)

By Claim 5.12 there exists a negligible function negl2 (·) such that for all 𝑗∗ ∈ { 𝑗l, 𝑗r} it holds that

Pr
[
E(𝑗)Verify ∧ ¬E

(𝑗)
SAT, 𝑗∗

]
≤ negl2 (𝜆). (5.6)

46

By definition, if Expt′𝑗 (A) = 1, then event E(𝑗)Verify also occurs. Thus, for all events E, it holds that

Pr[Expt′𝑗 (A) = 1 ∧ E] ≤ Pr
[
E(𝑗)Verify ∧ E

]
. (5.7)

Similarly, by construction of the circuit 𝐶idx, the event ¬E(𝑗)ValidCom, 𝑗∗ implies event ¬E(𝑗)SAT, 𝑗∗ . Thus, for any event E, it
holds that

Pr
[
¬E(𝑗)ValidCom, 𝑗∗ ∧ E

]
≤ Pr

[
¬E(𝑗)SAT, 𝑗∗ ∧ E

]
. (5.8)

Take any 𝑗∗ ∈ { 𝑗l, 𝑗r}. Since the height of 𝑗∗ is ℎ, the inductive hypothesis applies and Eq. (5.4) holds. We first show
that

Pr
[
Expt′𝑗 (A) = 1 ∧ ¬E(𝑗)

𝑃,𝑗∗
]
≤ 2ℎ · 𝜀 𝑗∗ (𝜆) + negl1 (𝜆) + negl2 (𝜆). (5.9)

This follows by the following sequence of calculations:

Pr
[
Expt′𝑗 (A) = 1 ∧ ¬E(𝑗)

𝑃,𝑗∗
]
≤ Pr

[
E(𝑗)Verify ∧ ¬E

(𝑗)
𝑃,𝑗∗

]
by Eq. (5.7)

= Pr
[
E(𝑗)Verify ∧ E

(𝑗)
SAT, 𝑗∗ ∧ ¬E

(𝑗)
𝑃,𝑗∗

]
+ Pr

[
E(𝑗)Verify ∧ ¬E

(𝑗)
SAT, 𝑗∗ ∧ ¬E

(𝑗)
𝑃,𝑗∗

]
≤ Pr[E(𝑗)Verify ∧ E

(𝑗)
SAT, 𝑗∗ ∧ ¬E

(𝑗)
𝑃,𝑗∗] + negl2 (𝜆) by Eq. (5.6)

≤ Pr[Expt𝑗∗ (A) = 1] + negl1 (𝜆) + negl2 (𝜆) by Eq. (5.5)

≤ 2ℎ · 𝜀 𝑗∗ (𝜆) + negl1 (𝜆) + negl2 (𝜆) by Eq. (5.4).

Next, we have

Pr
[
Expt′𝑗 (A) = 1 ∧ ¬EValidCom, 𝑗∗

]
≤ Pr

[
E(𝑗)Verify ∧ ¬EValidCom, 𝑗∗

]
by Eq. (5.7)

≤ Pr
[
E(𝑗)Verify ∧ ¬ESAT, 𝑗∗

]
by Eq. (5.8)

≤ negl2 (𝜆) by Eq. (5.6).

Combined with Eq. (5.9) and applying a union bound, we have

Pr
[
Expt′𝑗 (A) = 1 ∧

(
¬E(𝑗)ValidCom, 𝑗l

∨ ¬E(𝑗)
𝑃,𝑗l
∨ ¬E(𝑗)ValidCom, 𝑗r

∨ ¬𝐸 (𝑗)
𝑃,𝑗r

)]
≤ 2ℎ ·

(
𝜀 𝑗l (𝜆) + 𝜀 𝑗r (𝜆)

)
+ 𝛿 (𝜆)

≤ 2ℎ+1 · 𝜀 𝑗 (𝜆) + 𝛿 (𝜆),

where 𝛿 (𝜆) = 2negl1 (𝜆) + 4negl2 (𝜆) = negl(𝜆) and 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)). □

Claim 5.14. If 𝑃 is a tree-based additive invariant and ΠCom is computationally binding, then there exists a negligible
function negl(·) such that

Pr
[
Expt′𝑗 (A) = 1 ∧ E(𝑗)ValidCom, 𝑗l

∧ E(𝑗)
𝑃,𝑗l
∧ E(𝑗)ValidCom, 𝑗r

∧ E(𝑗)
𝑃,𝑗r

]
≤ negl(𝜆).

Proof. Suppose
Pr

[
Expt′𝑗 (A) = 1 ∧ E(𝑗)ValidCom, 𝑗l

∧ E(𝑗)
𝑃,𝑗l
∧ E(𝑗)ValidCom, 𝑗r

∧ E(𝑗)
𝑃,𝑗r

]
≥ 𝜀 (𝜆),

for some non-negligible 𝜀. We use A to construct an adversary B for the binding game for ΠCom as follows:

1. On input the security parameter 1𝜆 , algorithm B runs algorithmA to obtain the input length 1𝑛 , the set 𝑆 ⊆ [𝑛],
and an index 𝑖∗ ∈ 𝑆 .

2. Algorithm B outputs the block length 1ℓct (𝜆,𝑛) and the vector length 2𝑛 − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).

47

• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}).
• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆𝑏 ,
sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

6. Algorithm B computes the following:

•
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗

)
← Extract′ (tdBARG, 𝜋, 𝑗).

•
(
𝑣
(0)
𝑗l

, 𝑣
(1)
𝑗l

, 𝜎
(0)
𝑗l

, 𝜎
(1)
𝑗l

, 𝑤̃ 𝑗l

)
← Extract′ (tdBARG, 𝜋, 𝑗l).

•
(
𝑣
(0)
𝑗r

, 𝑣
(1)
𝑗r

, 𝜎
(0)
𝑗r

, 𝜎
(1)
𝑗r

, 𝑤̃ 𝑗r

)
← Extract′ (tdBARG, 𝜋, 𝑗r).

In addition, it parses 𝑤̃ 𝑗 = (𝑤̃ 𝑗,l, 𝑤̃ 𝑗,r) and 𝑤̃ 𝑗,l =
(
𝑣
(0)
𝑗,l , 𝑣

(1)
𝑗,l , 𝜎

(0)
𝑗,l , 𝜎

(1)
𝑗,l

)
and 𝑤̃ 𝑗,r =

(
𝑣
(0)
𝑗,r , 𝑣

(1)
𝑗,r , 𝜎

(0)
𝑗,r , 𝜎

(1)
𝑗,r

)
.

7. Algorithm B checks if there exists 𝑏 ∈ {0, 1} and 𝑑 ∈ {l, r} such that 𝑣 (𝑏)
𝑗𝑑

≠ 𝑣
(𝑏)
𝑗,𝑑

and

Com.Verify
(
crsCom, com𝑏, 𝑗𝑑 , 𝑣

(𝑏)
𝑗,𝑑

, 𝜎
(𝑏)
𝑗,𝑑

)
= 1 and Com.Verify

(
crsCom, com𝑏, 𝑗𝑑 , 𝑣

(𝑏)
𝑗𝑑

, 𝜎
(𝑏)
𝑗𝑑

)
= 1.

If so, it outputs the commitment com𝑏 , the index 𝑗𝑑 ∈ [2𝑛 − 1], and the value-opening pairs
(
𝑣
(𝑏)
𝑗,𝑑

, 𝜎
(𝑏)
𝑗,𝑑

)
and(

𝑣
(𝑏)
𝑗𝑑

, 𝜎
(𝑏)
𝑗𝑑

)
. Otherwise, algorithm B aborts with output ⊥.

By construction, algorithm B perfectly simulates an execution of Expt′𝑗 for adversary A. By assumption, with
probability at least 𝜀, algorithm A will output a digest dig and a proof 𝜋 such that the following conditions hold:

• Expt′𝑗 (A) = 1: This means Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1, 𝐶idx
(
𝑗, (𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗)
)
= 1, and

𝑃
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 0.

• E(𝑗)ValidCom, 𝑗∗ for 𝑗
∗ ∈ { 𝑗l, 𝑗r}: This means

Com.Verify
(
crsCom, com0, 𝑗

∗, 𝑣 (0)
𝑗∗ , 𝜎

(0)
𝑗∗

)
= 1 = Com.Verify

(
crsCom, com1, 𝑗

∗, 𝑣 (1)
𝑗∗ , 𝜎

(1)
𝑗∗

)
.

• E(𝑗)
𝑃,𝑗∗ for 𝑗

∗ ∈ { 𝑗l, 𝑗r}: This means 𝑃
(
𝑣
(0)
𝑗∗ , 𝑣

(1)
𝑗∗ , sk0, sk1, 𝑗

∗) = 1.
We consider two possibilities:

• Suppose for all 𝑏 ∈ {0, 1}, we have 𝑣 (𝑏)
𝑗l

= 𝑣
(𝑏)
𝑗,l and 𝑣 (𝑏)

𝑗r
= 𝑣
(𝑏)
𝑗,r . Since 𝐶𝑖∗,𝑦

(
𝑗, (𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗)
)
= 1, this

means that 𝑣 (𝑏)
𝑗

= HE.Add
(
pk𝑏, 𝑣

(𝑏)
𝑗,l , 𝑣

(𝑏)
𝑗,r

)
for all 𝑏 ∈ {0, 1}. Combined with the third condition, this means

𝑃
(
𝑖∗, 𝑣 (0)

𝑗,l , 𝑣
(1)
𝑗,l , sk0, sk1, 𝑗l

)
= 𝑃

(
𝑖∗, 𝑣 (0)

𝑗l
, 𝑣
(1)
𝑗l

, sk0, sk1, 𝑗l
)
= 1

𝑃
(
𝑖∗, 𝑣 (0)

𝑗,r , 𝑣
(1)
𝑗,r , sk0, sk1, 𝑗r

)
= 𝑃

(
𝑖∗, 𝑣 (0)

𝑗r
, 𝑣
(1)
𝑗r

, sk0, sk1, 𝑗r
)
= 1.

Since 𝑃 is a tree-based additive invariant, this means that

𝑃
(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 1.

However, this contradicts the condition that 𝑃
(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 0, so this case does not occur.

48

• Suppose there exists 𝑏 ∈ {0, 1} and 𝑑 ∈ {l, r} where 𝑣 (𝑏)
𝑗𝑑

≠ 𝑣
(𝑏)
𝑗,𝑑

. From Fig. 2, since

𝐶𝑖∗,𝑦
(
𝑗, (𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗)
)
= 1,

this means that Com.Verify
(
crsCom, com𝑏, 𝑗𝑑 , 𝑣

(𝑏)
𝑗,𝑑

, 𝜎
(𝑏)
𝑗,𝑑

)
= 1. By the second condition, we also have

Com.Verify
(
crsCom, com𝑏, 𝑗𝑑 , 𝑣

(𝑏)
𝑗𝑑

, 𝜎
(𝑏)
𝑗𝑑

)
= 1.

In this case, algorithm B outputs the commitment com𝑏 , the index 𝑗𝑑 , and the value-opening pairs
(
𝑣
(𝑏)
𝑗,𝑑

, 𝜎
(𝑏)
𝑗,𝑑

)
and

(
𝑣
(𝑏)
𝑗𝑑

, 𝜎
(𝑏)
𝑗𝑑

)
. This is a pair of valid openings for com𝑏 so algorithm B wins the binding game.

We conclude that algorithm B succeeds with the same advantage 𝜀 and the claim follows. □

Claim 5.15. Suppose the conditions of Claims 5.13 and 5.14 hold. Then there exists a negligible function negl(·) such that

Pr[Expt′𝑗 (A) = 1] ≤ 2ℎ+1 · 𝜀 𝑗 (𝜆) + negl(𝜆),

where 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)).

Proof. By the law of total probability, we have

Pr[Expt′𝑗 (A) = 1] ≤ Pr
[
Expt′𝑗 (A) = 1 ∧ E(𝑗)ValidCom, 𝑗l

∧ E(𝑗)
𝑃,𝑗l
∧ E(𝑗)ValidCom, 𝑗r

∧ E(𝑗)
𝑃,𝑗r

]
+

Pr
[
Expt′𝑗 (A) = 1 ∧

(
¬E(𝑗)ValidCom, 𝑗l

∨ ¬E(𝑗)
𝑃,𝑗l
∨ ¬E(𝑗)ValidCom, 𝑗r

∨ ¬E(𝑗)
𝑃,𝑗r

)]
.

By Claims 5.13 and 5.14, there exist negligible functions negl1 (·) and negl2 (·) such that:

Pr
[
Expt′𝑗 (A) = 1 ∧

(
¬E(𝑗)ValidCom, 𝑗l

∨ ¬E(𝑗)
𝑃,𝑗l
∨ ¬E(𝑗)ValidCom, 𝑗r

∨ ¬E(𝑗)
𝑃,𝑗r

)]
≤ 2ℎ+1 · 𝜀 𝑗 (𝜆) + negl1 (𝜆)

Pr
[
Expt′𝑗 (A) = 1 ∧ E(𝑗)ValidCom, 𝑗l

∧ E(𝑗)
𝑃,𝑗l
∧ E(𝑗)ValidCom, 𝑗r

∧ E(𝑗)
𝑃,𝑗r

]
≤ negl2 (𝜆).

where 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)). The claim follows. □

Completing the proof of Lemma 5.10. To complete the proof of the inductive step (for Lemma 5.10), we first
appeal to Claim 5.15 to conclude that there exists negligible function negl1 (·) such that

Pr[Expt′𝑗 (A) = 1] ≤ 2ℎ+1 · 𝜀 𝑗 (𝜆) + negl1 (𝜆),

where 𝜀 𝑗 (𝜆) = max(𝜀 𝑗l (𝜆), 𝜀 𝑗r (𝜆)). From the inductive hypothesis, 𝜀 𝑗l (𝜆) and 𝜀 𝑗r (𝜆) are both negligible functions. By
definition of Expt′𝑗 , we have that

Pr[Expt′𝑗 (A) = 1] = Pr
[
E(𝑗)Verify ∧ E

(𝑗)
SAT, 𝑗 ∧ ¬E

(𝑗)
𝑃,𝑗

]
.

By Claim 5.11, there exists a negligible function negl2 (·) such that���Pr[Expt𝑗 (A) = 1] − Pr[Expt′𝑗 (A) = 1]
��� ≤ negl2 (𝜆).

We conclude that
Pr[Expt𝑗 (A) = 1] ≤ 2ℎ+1 · 𝜀 𝑗 (𝜆) + negl1 (𝜆) + negl2 (𝜆).

Setting 𝜀′𝑗 (𝜆) = max
(
𝜀 𝑗 (𝜆), (negl1 (𝜆) + negl2 (𝜆))/2ℎ+1

)
, we have that Pr[Expt𝑗 (A) = 1] ≤ 2ℎ+1 · 𝜀′𝑗 (𝜆), where 𝜀′𝑗 (𝜆)

is a negligible function. Lemma 5.10 now follows by induction on the height ℎ. □

49

Completing the proof of Theorem 5.9. We now use Lemma 5.10 to complete the proof of Theorem 5.9. Suppose
the conditions of Theorem 5.9 hold. Noting that the index 2𝑛 − 1 has height ℎ = log𝑛 in a complete binary tree with 𝑛
leaves, we appeal to Lemma 5.10 and conclude that there exists a negligible function negl(·) such that

Pr[Expt2𝑛−1 (A) = 1] ≤ 𝑛 · negl(𝜆). (5.10)

To complete the proof, we define a sequence of hybrid experiments:

• Hyb0: This is the experiment Expt2𝑛−1 [𝑃,DeriveChal] with adversary A.

• Hyb1: Same as Hyb0, except the output of the experiment is 1 if the following properties hold:

– Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1;
– 𝐶idx

(
2𝑛 − 1,

(
𝑣
(0)
2𝑛−1, 𝑣

(1)
2𝑛−1, 𝜎

(0)
2𝑛−1, 𝜎

(1)
2𝑛−1, 𝑤̃2𝑛−1

))
= 1; and

– 𝑃
(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
= 1.

• Hyb2: Same as Hyb1, except the output of the experiment is 1 if the following properties hold:

– Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1; and
– 𝑃

(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
= 1.

In particular, the challenger no longer checks the value of 𝐶idx. Note that in this experiment, the challenger’s
behavior no longer depends on the BARG trapdoor tdBARG.

• Hyb3: Same as Hyb2, except when sampling the BARG parameters at the beginning of the experiment, the
challenger now samples (crsBARG, vkBARG) ← Gen′ (1𝜆, 12𝑛−1, 1𝑠 , 13). This corresponds to the experiment
Expt[𝑃,DeriveChal] with adversary A.

For an adversary A, we write Hyb𝑖 (A) = 1 to denote the output of Hyb𝑖 with adversary A. We now analyze each
pair of adjacent experiments.

Claim 5.16. It holds that Pr[Hyb1 (A) = 1] = Pr[Hyb0 (A) = 1].

Proof. These experiments are identical. Specifically, by definition of 𝐶idx (and specifically, the relation in Fig. 2), if
𝐶idx

(
2𝑛 − 1,

(
𝑣
(0)
2𝑛−1, 𝑣

(1)
2𝑛−1, 𝜎

(0)
2𝑛−1, 𝜎

(1)
2𝑛−1, 𝑤̃2𝑛−1

))
= 1, then 𝑣

(𝑏)
2𝑛−1 = ct(𝑏)root for 𝑏 ∈ {0, 1}. This means that

𝑃
(
𝑖∗, 𝑣 (0)2𝑛−1, 𝑣

(1)
2𝑛−1, sk0, sk1, 2𝑛 − 1

)
= 𝑃

(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
.

Thus, the output of Hyb0 (A) is identical to that of Hyb1 (A). □

Claim 5.17. If ΠBARG is somewhere extractable, then there exists a negligible function negl(·) such that��Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(𝜆).

Proof. Suppose Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] ≥ 𝜀 (𝜆), for some non-negligible 𝜀. Since the only difference
between Hyb1 and Hyb2 is the conditions the challenger checks at the very end of the experiment, this means that
with probability at least 𝜀, the adversary in Hyb1 will output a digest dig and a proof 𝜋 such that the following
conditions hold:

• Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

• 𝑃
(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
= 1.

• 𝐶idx
(
2𝑛 − 1,

(
𝑣
(0)
2𝑛−1, 𝑣

(1)
2𝑛−1, 𝜎

(0)
2𝑛−1, 𝜎

(1)
2𝑛−1, 𝑤̃2𝑛−1

))
= 0.

In all other settings, the output of the two experiments are identical. We use A to construct an adversary B that
breaks somewhere extractability of ΠBARG (similar to the proof of Claim 5.12):

50

1. On input the security parameter 1𝜆 , algorithm B runs algorithmA to obtain the input length 1𝑛 , the set 𝑆 ⊆ [𝑛],
and an index 𝑖∗ ∈ 𝑆 .

2. Let 𝑗 = 2𝑛−1 and 𝑗l, 𝑗r be the indices of the input wires that determine the value of the output wire 𝑗 . Algorithm
B outputs 12𝑛−1, 1𝑠 , 13, the challenge set 𝐽 = { 𝑗, 𝑗r, 𝑗l}, and the challenge index 𝑗 = 2𝑛 − 1 to the challenger.
Here, 𝑠 is the bound on the size of the circuit in Fig. 2. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes (𝑆0, 𝑆1, idx) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1).
• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆𝑏 ,
sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

6. Let 𝐶idx be the circuit as defined in Definition 5.7. Algorithm B outputs the circuit 𝐶idx, the instance number
2𝑛 − 1, and the proof 𝜋 .

By definition, the challenger samples (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}). This means
algorithm B perfectly simulates an execution of Hyb1. Thus, with probability at least 𝜀, the digest dig and proof 𝜋
output by A satisfies

Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1 and 𝐶idx
(
2𝑛 − 1,

(
𝑣
(0)
2𝑛−1, 𝑣

(1)
2𝑛−1, 𝜎

(0)
2𝑛−1, 𝜎

(1)
2𝑛−1, 𝑤̃2𝑛−1

))
= 0,

where
(
𝑣
(0)
2𝑛−1, 𝑣

(1)
2𝑛−1, 𝜎

(0)
2𝑛−1, 𝜎

(1)
2𝑛−1, 𝑤̃2𝑛−1

)
← Extract′ (tdBARG, 𝜋, 2𝑛 − 1). This means algorithm B successfully breaks

somewhere extractability of ΠBARG and the claim holds. □

Claim 5.18. If ΠBARG satisfies set hiding then there exists a negligible function negl(·) such that��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(𝜆).

Proof. Suppose
��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]

�� ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an
adversary B that breaks set hiding of ΠBARG:

1. On input the security parameter 1𝜆 , algorithm B runs algorithmA to obtain the input length 1𝑛 , the set 𝑆 ⊆ [𝑛],
and an index 𝑖∗ ∈ 𝑆 .

2. Let 𝑗 = 2𝑛−1 and 𝑗l, 𝑗r be the indices of the input wires that determine the value of the output wire 𝑗 . Algorithm
B outputs 12𝑛−1, 1𝑠 , 13 and the challenge set 𝐽 = { 𝑗, 𝑗l, 𝑗r} to the challenger. Here, 𝑠 is the bound on the size of
the circuit in Fig. 2. The challenger responds with (crsBARG, vkBARG).

3. Algorithm B computes (𝑆0, 𝑆1) ← DeriveChal(𝑆, 𝑖). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1).

51

• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆𝑏 ,
sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆𝑏 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

6. Let 𝐶𝑖∗,𝑥𝑖∗ be the circuit as defined in Definition 5.7. Algorithm B outputs 1 if

Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1 and 𝑃
(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
= 1

Otherwise, algorithm B outputs 0.

We now consider the two possibilities:

• Suppose the challenger responds according to the specification of ExptSHA (𝜆, 0). In this case, the challenger
samples (crsBARG, vkBARG) ← Gen′ (1𝜆, 12𝑛−1, 1𝑠 , 13). In this case, algorithm B perfectly simulates an execution
of Hyb3 for A. Moreover, algorithm B computes the outputs according to the same specification of Hyb3, so
we conclude that algorithm B outputs 1 with Pr[Hyb3 (A) = 1].

• Suppose the challenger responds according to the specification of ExptSHA (𝜆, 1). In this case, the chal-
lenger samples (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗, 𝑗l, 𝑗r}). In this case, algorithm B
perfectly simulates an execution of Hyb2 for A, and correspondingly, algorithm B outputs 1 with probability
Pr[Hyb2 (A) = 1].

We conclude that the distinguishing advantage of B is exactly 𝜀, which concludes the proof. □

Combining Claims 5.16 to 5.18, we conclude that
��Pr[Hyb0 (A) = 1] − Pr[Hyb3 (A) = 1]

�� = negl(𝜆). By construction,
Hyb0 (A) ≡ Expt2𝑛−1 (A) and Hyb3 (A) ≡ Expt(A). From Eq. (5.10), we have that Pr[Expt2𝑛−1 (A) = 1] = negl(𝜆)
and Theorem 5.9 follows. □

5.1.2 Set Hiding

In this section, we show that Construction 5.2 satisfies set hiding. This follows immediately from CPA-security of the
underlying encryption scheme. Recall that in Construction 5.2, the only difference between a hash key that binds to
the empty set ∅ versus the set 𝑆 is that some of the ciphertexts in the hash key switch from encryptions of 0 (when
binding to the empty set) to an encryption of 1 (when binding to the set 𝑆). We formalize this below:

Theorem 5.19 (Set Hiding). If ΠHE is CPA-secure, then Construction 5.2 satisfies set hiding.

Proof. Let A be an adversary for the set hiding game. We define a hybrid experiment Hyb𝛽 for each 𝛽 ∈ {0, 1, 2} as
follows:

1. On input 1𝜆 , algorithm A outputs the input length 1𝑛 and set 𝑆 ⊆ [𝑛].

2. The challenger now samples the following quantities:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1). and (crsBARG, vkBARG) ← Gen′ (1𝜆, 12𝑛−1, 1𝑠 , 13).

52

• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0).
• For each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆 and 𝑏 < 𝛽 , the challenger samples ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1).

Otherwise, if 𝑖 ∉ 𝑆 or 𝑏 ≥ 𝛽 , it samples ct(𝑏)
𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
3. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

4. Algorithm A outputs a bit 𝑏′ which is the output of the experiment.

Let Hyb𝛽 (A) be the output of Hyb𝛽 with adversary A. By construction ExptSHA (𝜆, 0) ≡ Hyb0 (A) and similarly,
ExptSHA (𝜆, 1) ≡ Hyb2 (A). We now argue that each adjacent pair of hybrid distributions are computationally
indistinguishable.

Claim 5.20. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1]
�� = negl(𝜆).

Proof. Suppose that
��Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1]

�� = 1] ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We construct a
CPA-security adversary B against ΠHE as follows:

1. On input 1𝜆 , algorithm B runs A to obtain the input length 1𝑛 and a set 𝑆 ⊆ [𝑛]. Denote 𝑆 = {𝑖1, . . . , 𝑖𝑡 } ⊆ [𝑛],
where 𝑡 = |𝑆 |. Algorithm B sends 1𝑛 to the challenger as the input range. The challenger replies with a public
key pk0.

2. Algorithm B samples (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛). It also samples the common reference strings crsCom ←
Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛−1) and (crsBARG, vkBARG) ← Gen′ (1𝜆, 12𝑛, 1𝑠 , 13). Finally, for 𝑏 ∈ {0, 1}, it computes
ct(𝑏)zero ← HE.Enc(pk𝑏, 0) for 𝑏 ∈ {0, 1}.

3. Then, for each 𝑖 ∈ [𝑛], algorithm B does the following:

• If 𝑖 ∈ 𝑆 , then it makes an encryption query on the pair (0, 1) and receives the ciphertext ct∗𝑖 . Algorithm B
sets ct(0)

𝑖
= ct∗𝑖 . If 𝑖 ∉ 𝑆 , it sets ct(0)

𝑖
← HE.Enc(pk0, 0).

• It computes ct(1)
𝑖
← HE.Enc(pk1, 0).

4. Finally, for 𝑏 ∈ {0, 1}, compute
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛

))
.

5. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2) and gives (hk, vk) to A.

6. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

Observe that if the ct∗𝑖 are encryptions of 0 then B perfectly simulates Hyb0. If ct∗𝑖 are encryptions of 1, then B
perfectly simulates Hyb1 for A. We conclude that the advantage of B is 𝜀. □

Claim 5.21. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Claim 5.20. The only difference is the reduction algorithm
B sets pk1 and the ciphertexts ct(1)

𝑖
for 𝑖 ∈ 𝑆 to be the public key and challenge ciphertexts it receives for the CPA

challenger, respectively. □

Theorem 5.19 now follows by combining Claims 5.20 and 5.21. □

53

5.1.3 Zero Fixing

In this section, we show that Construction 5.2 satisfies zero-fixing security. In the zero-fixing game, the hash key in
Construction 5.2 is chosen to bind to a set 𝑆 . This means that the ciphertext in the hash key associated with the set 𝑆
are replaced by encryptions of 1. Suppose the adversary constructs an opening to 1 for an index 𝑖 ∈ 𝑆 . This means the
adversary must have “used” the ciphertext associated with index 𝑖 (which encrypts 1) when constructing the digest;
formally, this will be enforced by the BARG. Since one of ciphertexts in the ciphertext tree is an encryption of 1, we
can appeal to the predicate propagation property (Theorem 5.9) to argue that the root of the tree must encrypt a
value that is non-zero. In this case, the extraction algorithm would declare the digest NotMatching and zero-fixing
holds. We now give the formal argument:

Theorem 5.22 (Zero Fixing). Suppose ΠHE satisfies perfect correctness and evaluation correctness, ΠCom is compu-
tationally binding, and ΠBARG satisfies set hiding with extraction, set hiding, and is somewhere extractable. Then
Construction 5.2 satisfies selective zero-fixing.

Proof. We will leverage Theorem 5.9. We start by defining a tree-based additive invariant 𝑃 as follows. Let 𝑛 be a
power-of-two and take any index 𝑖∗ ∈ [𝑛]. We now inductively associate an interval 𝐼 (𝑖

∗)
𝑗

with each node 𝑗 ∈ [2𝑛 − 1]
of a complete binary tree with 𝑛 leaves (indexed according to Definition 5.1) as follows:

• For 𝑗 ∈ [𝑛], if 𝑗 = 𝑖∗ then let 𝐼 (𝑖
∗)

𝑗
= [1, 1]. Otherwise, let 𝐼 (𝑖

∗)
𝑗

= [0, 1].

• For an index 𝑗 ∈ [𝑛 + 1, 2𝑛 − 1], let 𝑗l, 𝑗r be the indices of the children of 𝑗 according to Definition 5.1. If
𝐼
(𝑖∗)
𝑗l

= [𝑎l, 𝑏l] and 𝐼 (𝑖
∗)

𝑗r
= [𝑎r, 𝑏r], then define 𝐼 (𝑖

∗)
𝑗

= [𝑎l + 𝑎r, 𝑏l + 𝑏r] = 𝐼
(𝑖∗)
𝑗l
+ 𝐼 (𝑖

∗)
𝑗r

, where we define interval
addition to be component-wide addition: [𝑎l, 𝑏l] + [𝑎r, 𝑏r] = [𝑎l + 𝑎r, 𝑏l + 𝑏r].

We now define the interval-validity predicate 𝑃ValidInt as follows: 𝑃ValidInt : {0, 1}∗ → {0, 1} as follows:

𝑃ValidInt
(
𝑖∗, ct(0) , ct(1) , sk0, sk1, 𝑗

)
:=

{
1 HE.Dec

(
sk0, ct(0)

)
∈ 𝐼 (𝑖

∗)
𝑗

0 HE.Dec
(
sk0, ct(0)

)
∉ 𝐼
(𝑖∗)
𝑗

.
(5.11)

We now show that 𝑃ValidInt is a tree-based additive invariant. We start by characterizing the intervals 𝐼 (𝑖
∗)

𝑗
for all

𝑗 ∈ [2𝑛 − 1].

Claim 5.23. For all 𝑖∗ ∈ [𝑛] and any node 𝑗 ∈ [2𝑛 − 1] of height ℎ in the binary tree, if 𝑖∗ is in the subtree rooted at 𝑗
then 𝐼

(𝑖∗)
𝑗

= [1, 2ℎ]. Otherwise, 𝐼 (𝑖
∗)

𝑗
= [0, 2ℎ].

Proof. This follows by induction starting from the leaves. For every leaf node 𝑗 ∈ [𝑛], the associated interval 𝐼 (𝑖
∗)

𝑗
is

[0, 1] if 𝑗 ≠ 𝑖∗ and [1, 1] if 𝑗 = 𝑖∗. Thus, the claim holds for all of the leaf nodes. For the induction step, suppose 𝑗 is a
node of height ℎ + 1. Let 𝑗l, 𝑗r be the indices of the children of 𝑗 . If 𝑖∗ is in the subtree of 𝑗 , then it is either in the
subtree of 𝑗l or 𝑗r but not both. By the induction hypothesis, 𝐼 (𝑖

∗)
𝑗l
+ 𝐼 (𝑖

∗)
𝑗r

= [0, 2ℎ] + [1, 2ℎ] = [1, 2ℎ+1]. If 𝑖∗ is not in
the subtree of 𝑗 , then by the induction hypothesis, 𝐼 (𝑖

∗)
𝑗l
+ 𝐼 (𝑖

∗)
𝑗r

= [0, 2ℎ] + [0, 2ℎ] = [0, 2ℎ+1]. □

Claim 5.24. If ΠHE satisfies evaluation correctness, then 𝑃ValidInt is a tree-based additive invariant.

Proof. Take any 𝑖∗ ∈ [𝑛], (sk0, pk0), (sk1, pk1) in the support ofHE.Gen(1𝜆, 1𝑛), any triple of indices 𝑗, 𝑗l, 𝑗r ∈ [2𝑛−1]
where 𝑗l, 𝑗r are the indices of the children of 𝑗 , and any set of ciphertexts

(
ct(0)l , ct(1)l

)
,
(
ct(0)r , ct(1)r

)
. Suppose 𝑗 has

height ℎ ≤ log𝑛. Let ct(0)sum = HE.Add
(
pk0, ct

(0)
l , ct(0)r

)
and ct(1)sum = HE.Add

(
pk1, ct

(1)
l , ct(1)r

)
. Suppose

𝑃ValidInt
(
𝑖∗, ct(0)l , ct(1)l , sk0, sk1, 𝑗l

)
= 1 and 𝑃ValidInt

(
𝑖∗, ct(0)r , ct(1)r , sk0, sk1, 𝑗r

)
= 1.

This means HE.Dec
(
sk0, ct

(0)
l

)
∈ 𝐼 (𝑖

∗)
𝑗l

and HE.Dec
(
sk0, ct

(0)
r) ∈ 𝐼 (𝑖

∗)
𝑗r

. By Claim 5.23, this means

HE.Dec
(
sk0, ct

(0)
l

)
,HE.Dec

(
sk0, ct

(0)
r

)
∈ [0, 2ℎ−1] .

54

Since 2ℎ−1 ≤ 𝑛/2, we can appeal to evaluation correctness of ΠH and conclude that

HE.Dec
(
sk0,HE.Add

(
pk0, ct

(0)
l , ct(0)r

))
= HE.Dec

(
sk0, ct

(0)
l

)
+ HE.Dec

(
sk0, ct

(0)
r

)
∈ 𝐼 (𝑖

∗)
𝑗l
+ 𝐼 (𝑖

∗)
𝑗r

= 𝐼
(𝑖∗)
𝑗

.

We conclude that 𝑃ValidInt
(
𝑖∗, ct(0)sum, ct

(1)
sum, sk0, sk1, 𝑗

)
= 1. □

Proof of Theorem 5.22. Returning now to the proof of Theorem 5.22, let A be any efficient adversary for the
zero-fixing security game. We start by defining a mapping DeriveChal as

DeriveChal(𝑆, 𝑖) := (𝑆, 𝑖) ↦→ (𝑆, 𝑆, (𝑖, 1)).

Let Expt := Expt[𝑃ValidInt,DeriveChal] be the predicate propagation experiment from Definition 5.7. First, we claim
that

Pr[ExptZFA (𝜆) = 1] ≤ Pr[Expt(A) = 1] . (5.12)

By construction, the adversary’s view in ExptZF and Expt is identical. It suffices to consider the outputs of the two
experiments. Suppose ExptZFA (𝜆) = 1. This means the adversary A outputs dig =

(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and an opening 𝜋 such that VerOpen(hk, dig, 𝑖, 1, 𝜋) = 1 and Extract(td, dig) = Matching. This means the following:

• By construction, Extract(td, dig) outputsMatching if HE.Dec(sk0, ct
(0)
root) = 0. From Claim 5.24, we have that

𝐼
(𝑖∗)
2𝑛−1 = [1, 𝑛]. Hence, in this case, HE.Dec

(
sk0, ct

(0)
root

)
∉ 𝐼
(𝑖∗)
2𝑛−1, which implies that

𝑃ValidInt
(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
= 0

in the predicate propagation experiment Expt(A).

• By definition, VerOpen outputs 1 if Verify′ (vkBARG,𝐶𝑖∗,1, 2𝑛 − 1, 𝜋) = 1, where 𝑖∗ ∈ 𝑆 is the index chosen by the
adversary at the beginning of the (selective) zero-fixing game. By construction of DeriveChal, we have that
idx = (𝑖∗, 1) in the execution of Expt(A). This means that Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

Since 𝑃ValidInt
(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
= 0 and Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1, the predicate propagation

experiment Expt(A) also outputs 1. We now show using Theorem 5.9 that Pr[Expt(A) = 1] ≤ negl(𝜆). To leverage
Theorem 5.9, we analyze the predicate propagation hybrid experiment Expt𝑗 := Expt𝑗 [𝑃ValidInt,DeriveChal] from
Definition 5.8.

Claim 5.25. If ΠHE is perfectly correct and ΠCom satisfies computational binding, then there exists a negligible function
negl(·) such that for all 𝑗 ∈ [𝑛], it holds that Pr[Expt𝑗 (A) = 1] = negl(𝜆).

Proof. Suppose there exists some 𝑗 ∈ [𝑛] where Pr[Expt𝑗 (A) = 1] ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to
construct an adversary B that breaks computational binding of ΠCom:

1. On input the security parameter 1𝜆 , algorithm B runs algorithmA to obtain the input length 1𝑛 , the set 𝑆 ⊆ [𝑛],
and an index 𝑖∗ ∈ 𝑆 .

2. Algorithm B outputs the block length 1ℓct (𝜆,𝑛) and the vector length 2𝑛 − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes (𝑆, 𝑆, (𝑖∗, 1)) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗}).
• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆 , sample
ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
55

4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

6. Algorithm B extracts
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗

)
← Extract′ (tdBARG, 𝜋, 𝑗) and parses the auxiliary witness 𝑤̃ 𝑗 =(

ĉt(0) , ĉt(1) , 𝜎 (0)hk , 𝜎
(1)
hk

)
.

7. Output the commitment com(0)hk , the index 𝑗 , and the value-opening pairs
(
ct(0)

𝑗
, 𝜎
(0)
hk, 𝑗

)
and

(
ĉt(0) , 𝜎 (0)hk

)
.

By construction, the challenger samples crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1), which matches the specification
in Expt𝑗 . This, algorithm B perfectly simulates an execution of Expt𝑗 for A. By assumption, with probability 𝜀,
algorithm A outputs dig and 𝜋 such that the experiment outputs 1. This means the following conditions hold:

𝐶𝑖∗,1
(
𝑗,
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗

))
= 1 and 𝑃ValidInt

(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 0.

By definition of 𝐶𝑖∗,1 and using the fact that 𝑗 ∈ [𝑛], this means

Com.Verify
(
crscom, com

(0)
hk , 𝑗, ĉt

(0)
, 𝜎
(0)
hk

)
= 1 and 𝑣

(0)
𝑗
∈
{
ct(0)zero , ĉt

(0)}
.

If 𝑗 = 𝑖∗, we additionally have that 𝑣 (0)
𝑗

= ĉt(0) . Next, by correctness of ΠCom,

Com.Verify
(
crscom, com

(0)
hk , 𝑗, ct

(0)
𝑗
, 𝜎
(0)
hk, 𝑗

)
= 1.

It suffices to argue that ct(0)
𝑗

≠ ĉt(0) . We consider two cases:

• Suppose 𝑗 = 𝑖∗. Recall that in this case, 𝑣 (0)
𝑗

= ĉt(0) . By Claim 5.24, we have that 𝐼 (𝑖
∗)

𝑗
= [1, 1]. Since

𝑃ValidInt
(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 0, this means that HE.Dec(sk0, 𝑣

(0)
𝑗
) ∉ 𝐼

(𝑖∗)
𝑗

. By definition of 𝐼 (𝑖
∗)

𝑗
, this implies

HE.Dec(sk0, 𝑣
(0)
𝑗
) ≠ 1. Next, algorithm B constructs ct(0)

𝑗
to be an encryption of 1 (since 𝑗 = 𝑖∗ ∈ 𝑆). By perfect

correctness of ΠHE, this means that ĉt(0) = 𝑣
(0)
𝑗

≠ ct(0)
𝑗

.

• Suppose 𝑗 ≠ 𝑖∗. By Claim 5.24, we have that 𝐼 (𝑖
∗)

𝑗
= [0, 1]. By the same reasoning as in the previous case, this

means that HE.Dec(sk0, 𝑣
(0)
𝑗
) ∉ 𝐼

(𝑖∗)
𝑗

. In other words, HE.Dec(sk0, 𝑣
(0)
𝑗
) ∉ {0, 1}. By construction, ct(0)zero is an

encryption of 0, so by perfect correctness of ΠHE, we have that 𝑣 (0)𝑗
≠ ct(0)zero. Hence, it must be the case that

𝑣
(0)
𝑗

= ĉt(0) . Next, the ciphertext ct(0)
𝑗

is an encryption of either 0 or 1, so we conclude that ĉt(0) = 𝑣
(0)
𝑗

≠ ct(0)
𝑗

.

In both cases, we conclude that ĉt(0) ≠ ct(0)
𝑗
. In this case, algorithm B successfully opens com(0)hk to two distinct

values ct(0)
𝑗

≠ ĉt(0) . Thus algorithm B breaks binding with the same advantage 𝜀. □

Since for all 𝑗 ∈ [𝑛], it holds that Pr[Expt𝑗 (A) = 1] ≤ negl(𝜆), we can invoke Theorem 5.9 to conclude that
Pr[Expt(A) = 1] ≤ negl(𝜆). Zero-fixing security now follows via Eq. (5.12). □

56

5.1.4 Extractor Validity

In this section, we show that Construction 5.2 satisfies extractor validity. In the extractor validity game, the hash key
is sampled to be zero-fixing on the empty set ∅, and the goal of the adversary is to produce a valid, but non-matching
digest. In this setting, the ciphertexts in the hash key are all encryptions of 0. In order to break the extractor validity
property, the adversary needs to produce a root ciphertext that encrypts a non-zero value, and yet, still argue that the
root ciphertext was derived by summing a collection of ciphertexts that each encryption 0. The latter is ensured by
security of the BARG, and specifically the predicate propagation theorem (Theorem 5.9). We give the formal theorem
statement and proof below:

Theorem 5.26. If ΠHE satisfies perfect correctness and evaluation correctness, ΠCom is computationally binding, and
ΠBARG satisfies set hiding, set hiding with extraction, and somewhere extractability, then Construction 5.2 satisfies
extractor validity.

Proof. Similar to the proof of Theorem 5.22, we leverage Theorem 5.9. We start by defining a tree-based additive
invariant 𝑃 as follows. Define the “matching” predicate 𝑃Matching : {0, 1}∗ → {0, 1} as follows:

𝑃Matching (𝑖∗, ct(0) , ct(1) , sk0, sk1, 𝑗) :=
{

1 HE.Dec(sk0, ct(0)) = 0
0 HE.Dec(sk0, ct(0)) ≠ 0.

We first show that 𝑃Matching is a tree-based additive invariant.

Claim 5.27. If ΠHE satisfies evaluation correctness, then 𝑃Matching is a tree-based additive invariant.

Proof. Take any 𝑖∗ ∈ [𝑛], any (sk0, pk0), (sk1, pk1) in the support of HE.Gen(1𝜆, 1𝑛), any triple of indices 𝑗, 𝑗l, 𝑗r ∈
[2𝑛 − 1] where 𝑗l, 𝑗r are the indices of the children of 𝑗 , and any set of ciphertexts

(
ct(0)l , ct(1)l

)
,
(
ct(0)r , ct(1)r

)
. Suppose

𝑃Matching (𝑖∗, ct(0)l , ct(1)l , sk0, sk1, 𝑗l) = 𝑃Matching (𝑖∗, ct(0)r , ct(1)r , sk0, sk1, 𝑗r) = 1.

This means HE.Dec(sk0, ct
(0)
l) = 0 and HE.Dec(sk0, ct

(0)
r) = 0. Let ct(𝑏)sum = HE.Add

(
pk𝑏, ct

(𝑏)
l , ct(𝑏)r

)
for 𝑏 ∈ {0, 1}. By

evaluation correctness of ΠHE, we have HE.Dec(sk0, ct
(0)
sum) = 0 and so by definition

𝑃Matching
(
𝑖∗, ct(0)sum, ct

(1)
sum, sk0, sk1, 𝑗

)
= 1.

□

Let A be an efficient adversary for the extractor-validity game. Define the mapping DeriveChal as

DeriveChal(𝑆, 𝑖) := (𝑆, 𝑖) ↦→ (∅,∅,⊥).

Let Expt := Expt[𝑃Matching,DeriveChal] be the predicate propagation experiment from Definition 5.7. First, we claim
that we can use A to construct an adversary A′ such that

Pr[ExptEVA (𝜆) = 1] ≤ Pr[Expt(A′) = 1] . (5.13)

Algorithm A′ works as follows:

1. On input the security parameter 1𝜆 , algorithm A′ runs A on the same security parameter. Algorithm A
outputs an input length 1𝑛 . Algorithm A′ outputs the input length 1𝑛 , the set 𝑆 = ∅, and the index 𝑖∗ = ⊥.

2. The challenger replies with (hk, vk) which A′ forwards to A.

3. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
. Algorithm A′ outputs the same digest dig

and 𝜋 = 𝜋dig.

57

We now show that Eq. (5.13) holds. By construction, the pair (hk, vk) sampled by the challenger are distributed
according to the real setup algorithm. Thus, algorithmA perfectly simulates an execution of ExptEVA for adversaryA.
Thus, with probability Pr[ExptEVA (𝜆) = 1], algorithmA outputs a digest digwhere Extract(td, dig) = NotMatching
and ValidateDigest(hk, dig) = 1. This means the following:

• By construction, Extract(td, dig) outputs NotMatching if HE.Dec(sk0, ct
(0)
root) ≠ 0. By construction of 𝑃Matching,

this means 𝑃Matching
(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
= 0.

• Next, ValidateDigest outputs 1 if Verify′ (vkBARG,𝐶⊥, 2𝑛 − 1, 𝜋dig) = 1. By construction of DeriveChal, we have
that idx = ⊥ in the execution of Expt(A), so this means that Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋dig) = 1.

Since 𝑃Matching
(
𝑖∗, ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛− 1

)
= 0 and Verify′ (vkBARG,𝐶idx, 2𝑛− 1, 𝜋dig) = 1, the predicate propagation

experiment Expt(A′) also outputs 1. Hence, we conclude that Pr[Expt(A′) = 1] ≥ Pr[ExptEVA (𝜆) = 1]. To complete
the proof, we now show using Theorem 5.9 that Pr[Expt(A′) = 1] ≤ negl(𝜆). To leverage Theorem 5.9, we analyze
the predicate propagation hybrid experiment Expt𝑗 := Expt𝑗 [𝑃Matching,DeriveChal] from Definition 5.8.

Claim 5.28. If ΠHE is perfectly correct and ΠCom satisfies computational binding, then there exists a negligible function
negl(·) such that for all 𝑗 ∈ [𝑛], it holds that Pr[Expt𝑗 (A′) = 1] = negl(𝜆).

Proof. Suppose there exists some 𝑗 ∈ [𝑛] where Pr[Expt𝑗 (A′) = 1] ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A′ to
construct an adversary B that breaks computational binding of ΠCom.

1. On input the security parameter 1𝜆 , algorithm B runs algorithmA′ to obtain the input length 1𝑛 , the set 𝑆 = ∅,
and the index 𝑖∗ = ⊥.

2. Algorithm B outputs the block length 1ℓct (𝜆,𝑛) and the vector length 2𝑛 − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes (∅,∅,⊥) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗}).
• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, sample
ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
.

4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A′.

5. Algorithm A′ outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 = 𝜋dig.

6. Algorithm B extracts
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗

)
← Extract′ (tdBARG, 𝜋, 𝑗) and parses the auxiliary witness 𝑤̃ 𝑗 =(

ĉt(0) , ĉt(1) , 𝜎 (0)hk , 𝜎
(1)
hk

)
.

7. Output the commitment com(0)hk , the index 𝑗 , and the value-opening pairs
(
ct(0)

𝑗
, 𝜎
(0)
hk, 𝑗

)
and

(
ĉt(0) , 𝜎 (0)hk

)
.

58

By construction, the challenger samples crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1), which matches the specification
in Expt𝑗 . Thus, algorithm B perfectly simulates an execution of Expt𝑗 for A′. By assumption, with probability 𝜀,
algorithm A′ outputs dig and 𝜋 such that the experiment outputs 1. This means the following conditions hold:

𝐶⊥
(
𝑗,
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗

))
= 1 and 𝑃Matching

(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 0.

By definition of 𝐶⊥ and using the fact that 𝑗 ∈ [𝑛], this means

Com.Verify
(
crscom, com

(0)
hk , 𝑗, ĉt

(0)
, 𝜎
(0)
hk

)
= 1 and 𝑣

(0)
𝑗
∈
{
ct(0)zero , ĉt

(0)}
.

Next, by correctness of ΠCom,
Com.Verify

(
crscom, com

(0)
hk , 𝑗, ct

(0)
𝑗
, 𝜎
(0)
hk, 𝑗

)
= 1.

It suffices to argue that ct(0)
𝑗

≠ ĉt(0) . Since 𝑃Matching
(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 0, we have HE.Dec(sk0, 𝑣

(0)
𝑗
) ≠ 0. Since

ct(0)zero is an encryption of 0, we can appeal to perfect correctness of ΠHE to conclude that 𝑣 (0)
𝑗

≠ ct(0)zero. This means
that 𝑣 (0)

𝑗
= ĉt(0) . Moreover, ct(0)

𝑗
is also an encryption of 0, so again by perfect correctness of the encryption scheme,

we can conclude that ct(0)
𝑗

≠ 𝑣
(0)
𝑗

= ĉt(0) . In this case, algorithm B successfully opens com(0)hk to two distinct values
ct(0)

𝑗
≠ ĉt(0) . Thus algorithm B breaks binding with the same advantage 𝜀. □

Since for all 𝑗 ∈ [𝑛], it holds that Pr[Expt𝑗 (A′) = 1] ≤ negl(𝜆), we can invoke Theorem 5.9 to conclude that
Pr[Expt(A′) = 1] ≤ negl(𝜆). Extractor-validity security now follows via Eq. (5.13). □

5.1.5 Index Hiding with Extracted Guess

In this section, we show that Construction 5.2 satisfies the index hiding with extracted guess property. The challenge
in this reduction is we need to switch from an encryption of 0 to an encryption of 1 (in the hash key) while retaining
the ability to decide whether the digest is “Matching” or not (which in the real scheme, requires knowledge of the
secret key for the underlying encryption scheme). As described in Section 1.2, we solve this by adopting a Naor-Yung
proof strategy.

Theorem 5.29. If ΠHE satisfies perfect correctness, evaluation correctness, and CPA-security, ΠCom is computationally
binding and ΠBARG satisfies set hiding with extraction, set hiding, and is somewhere extractable, then Construction 5.2
satisfies index hiding with extracted guess.

Proof. Let A be an efficient adversary for the index hiding with extracted guess security game. We define a sequence
of hybrid experiments:

• Hyb0: This is ExptIHEA (𝜆, 0). Specifically, the game proceeds as follows:

1. On input the security parameter 1𝜆 , algorithm A outputs the input length 1𝑛 , a set 𝑆 ⊆ [𝑛], and an index
𝑖∗ ∈ 𝑆 .

2. The challenger now samples the following quantities as in Setup:
– Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
– Sample crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1).
– Sample (crsBARG, vkBARG) ← Gen′ (1𝜆, 12𝑛−1, 1𝑠 , 13), where 𝑠 is a bound on the size of the circuit

computing the index relation from Fig. 2.
– For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0). Then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, if
𝑖 ∈ 𝑆 \ {𝑖∗}, sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 0).

– For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)

59

3. The challenger constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
The challenger gives (hk, vk) to A.

4. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and an opening 𝜋 .

5. The output of the experiment is 1 if

Verify′ (vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1 and HE.Dec
(
sk0, ct

(0)
root

)
= 0.

Otherwise, the output is 0.

• Hyb1: Same as Hyb0, except the challenger samples ct(1)
𝑖∗ ← HE.Enc(pk1, 1).

• Hyb2: Same as Hyb1, except the output of the experiment is 1 if

Verify′ (vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1 and HE.Dec
(
sk1, ct

(1)
root

)
= 0.

Notably, the challenger’s behavior in this experiment does not depend on sk0.

• Hyb3: Same as Hyb2, except the output of the challenger samples ct(0)
𝑖∗ ← HE.Enc(pk0, 1).

• Hyb4: Same as Hyb3, except the output of the experiment is 1 if

Verify′ (vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1 and HE.Dec
(
sk0, ct

(0)
root

)
= 0.

This is experiment ExptIHEA (𝜆, 1).

We write Hyb𝑖 (A) to denote the output of experiment of Hyb𝑖 with adversary A. We now analyze each pair of
hybrid experiments.

Claim 5.30. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1]
�� = negl(𝜆).

Proof. Suppose | Pr[Hyb1 (A) = 1] − Pr[Hyb0 (A) = 1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an
algorithm B that breaks CPA security of ΠHE:

1. On input the security parameter 1𝜆 , algorithm B runs algorithmA on the same input to obtain the input length
1𝑛 , the set 𝑆 ⊆ [𝑛], and an index 𝑖∗ ∈ 𝑆 .

2. Algorithm B sends 1𝑛 as the input range. The challenger replies with a public key pk1.

3. Algorithm B now samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗}).
• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0).
• For each 𝑖 ∈ [𝑛] \ {𝑖∗} and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆 , sample ct(𝑏)

𝑖
← HE.Enc(pk𝑏, 1); otherwise, if 𝑖 ∉ 𝑆 , sample

ct(𝑏)
𝑖
← HE.Enc(pk𝑏, 0).

4. Algorithm B makes an encryption query on the pair (0, 1). The challenger replies with a ciphertext ct(1)
𝑖∗ .

Algorithm B also computes ct(0)
𝑖∗ ← HE.Enc(pk0, 0).

60

5. Finally, for each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
. Next, algo-

rithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

6. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 .

7. Algorithm B outputs 1 if

Verify′ (vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1 and HE.Dec
(
sk0, ct

(0)
root

)
= 0,

where 𝐶𝑖∗,0 is the circuit computing the relation from Fig. 2 (which is a function of the components from hk
and dig).

Observe that if ct(1)
𝑖∗ is an encryption of 0 (under pk1), then algorithm B perfectly simulates Hyb0 forA. Alternatively,

if ct(1)
𝑖∗ is an encryption of 1 (under pk1), then algorithm B perfectly simulates Hyb1 for A. We conclude that the

advantage of B is 𝜀. □

Claim 5.31. If ΠHE is perfectly correct and satisfies evaluation correctness, ΠCom is computationally binding, ΠBARG
satisfies set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(·)
such that | Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] | = negl(𝜆).

Proof. By construction, the only difference between the execution of Hyb1 and Hyb2 is the output condition. Let E be
the following event in an execution of Hyb1 and Hyb2:

Verify′ (vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1 and HE.Dec
(
sk0, ct

(0)
root

)
≠ HE.Dec

(
sk1, ct

(1)
root

)
. (5.14)

Observe that if E does not occur, then the output of Hyb1 and Hyb2 is identical. This means that

| Pr[Hyb2 (A) = 1] − Pr[Hyb1 (A) = 1] | ≤ Pr[E] .

We now leverage Theorem 5.9 to argue that Pr[E] = negl(𝜆). To do so, we start by defining a suitable tree-based
additive invariant. Similar to the proof of Theorem 5.22, we first associate a “validity interval” with each index
𝑗 ∈ [2𝑛 − 1]. For an index 𝑖∗ ∈ [𝑛], we define the interval 𝐼 (𝑖

∗)
𝑗

with each node 𝑗 as follows:

• For 𝑗 ∈ [𝑛], if 𝑗 = 𝑖∗, let 𝐼 (𝑖
∗)

𝑗
= [0, 0]. Otherwise, let 𝐼 (𝑖

∗)
𝑗

= [0, 1].

• For an index 𝑗 ∈ [𝑛 + 1, 2𝑛 − 1], let 𝑗l, 𝑗r be the indices of the children of 𝑗 according to Definition 5.1. If
𝐼
(𝑖∗)
𝑗l

= [𝑎l, 𝑏l] and 𝐼 (𝑖
∗)

𝑗r
= [𝑎r, 𝑏r], then define 𝐼 (𝑖

∗)
𝑗

= [𝑎l + 𝑎r, 𝑏l + 𝑏r] = 𝐼
(𝑖∗)
𝑗l
+ 𝐼 (𝑖

∗)
𝑗r

, where we define interval
addition to be component-wide addition: [𝑎l, 𝑏l] + [𝑎r, 𝑏r] = [𝑎l + 𝑎r, 𝑏l + 𝑏r].

By the same argument as in the proof of Claim 5.23, for all 𝑗 ∈ [2𝑛 − 1] and all 𝑖∗ ∈ [𝑛], we have that 𝐼 (𝑖
∗)

𝑗
⊆ [0, 2ℎ],

where ℎ is the height of node 𝑗 . Now, we define the validity predicate 𝑃Valid : {0, 1}∗ → {0, 1} as follows:

• On input (𝑖∗, ct(0) , ct(1) , sk0, sk1, 𝑗), compute 𝑥𝑏 ← HE.Dec(sk𝑏, ct(𝑏)) for each 𝑏 ∈ {0, 1}.

• Output 1 if 𝑥0 = 𝑥1 ∈ 𝐼 (𝑖
∗)

𝑗
and 0 otherwise.

In other words, the tuple (𝑖∗, ct(0) , ct(1) , sk0, sk1, 𝑗) is valid if the ciphertexts encrypt the same value, and moreover,
they are within the valid range.8 We now show that 𝑃Valid is a tree-based additive invariant.
8The range check is needed to ensure that all of the ciphertexts decrypt to values within the (bounded) support of the homomorphic encryption
scheme. This is necessary to invoke evaluation correctness of ΠHE (see the proof of Lemma 5.32).

61

Lemma 5.32. If ΠHE satisfies evaluation correctness, then 𝑃Valid is a tree-based additive invariant.

Proof. Take any 𝑖∗ ∈ [𝑛], any (sk0, pk0), (sk1, pk1) in the support of HE.Gen(1𝜆, 1𝑛), any triple of indices 𝑗, 𝑗l, 𝑗r ∈
[2𝑛 − 1] where 𝑗l, 𝑗r are the indices of the children of 𝑗 , and any set of ciphertexts

(
ct(0)l , ct(1)l

)
,
(
ct(0)r , ct(1)r

)
. Suppose

𝑗 has height ℎ ≤ log𝑛. For 𝑏 ∈ {0, 1}, let ct(𝑏)sum = HE.Add
(
pk𝑏, ct

(𝑏)
l , ct(𝑏)r

)
. Suppose

𝑃Valid (𝑖∗, ct(0)l , ct(1)l , sk0, sk1, 𝑗l) = 𝑃Valid (𝑖∗, ct(0)r , ct(1)r , sk0, sk1, 𝑗r) = 1.

This means HE.Dec(sk0, ct
(0)
l) = HE.Dec(sk1, ct

(1)
l) ∈ 𝐼

(𝑖∗)
𝑗l

and HE.Dec(sk0, ct
(0)
r) = HE.Dec(sk1, ct

(1)
r) ∈ 𝐼

(𝑖∗)
𝑗r

. As
argued above, since 𝑗l, 𝑗r have height ℎ − 1, we conclude that for 𝑏 ∈ {0, 1},

HE.Dec
(
sk𝑏, ct

(𝑏)
l

)
,HE.Dec

(
sk𝑏, ct

(𝑏)
r

)
∈ [0, 2ℎ−1] .

Since 2ℎ−1 ≤ 𝑛/2, we can appeal to evaluation correctness of ΠH and conclude that

HE.Dec
(
sk0, ct

(0)
sum

)
= HE.Dec

(
sk0, ct

(0)
l

)
+ HE.Dec

(
sk0, ct

(0)
r

)
= HE.Dec

(
sk1, ct

(1)
l

)
+ HE.Dec

(
sk1, ct

(1)
r

)
= HE.Dec

(
sk1, ct

(1)
sum

)
∈ 𝐼 𝑗l + 𝐼 𝑗r = 𝐼 𝑗 ,

We conclude that 𝑃Valid
(
𝑖∗, ct(0)sum, ct

(1)
sum, sk0, sk1, 𝑗

)
= 1. □

To leverage the predicate-propagation theorem (Theorem 5.9) to prove Claim 5.31, we now define a mapping
DeriveChal as

DeriveChal(𝑆, 𝑖) := (𝑆, 𝑖) ↦→ (𝑆 \ {𝑖} , 𝑆, (𝑖, 0)).
Let Expt := Expt[𝑃Valid,DeriveChal] be the predicate propagation experiment from Definition 5.7. First, we argue that

Pr[E] ≤ Pr[Expt(A) = 1], (5.15)

where E is the event from Eq. (5.14). By construction, the adversary’s view in Hyb1 and Expt is identical. Suppose E
occurs in an execution of Hyb1. Then the following hold:

• First Verify′ (vkBARG,𝐶𝑖∗,0, 2𝑛 − 1, 𝜋) = 1. By construction of DeriveChal, we have that idx = (𝑖∗, 0) in the
execution of Expt(A). Hence, this means that Verify′ (vkBARG,𝐶idx, 2𝑛 − 1, 𝜋) = 1.

• Next, HE.Dec
(
sk0, ct

(0)
root

)
≠ HE.Dec

(
sk1, ct

(1)
root

)
. This means 𝑃Valid

(
ct(0)root, ct

(1)
root, sk0, sk1, 2𝑛 − 1

)
= 0.

Correspondingly, the output in Expt is also 1 in this case. Hence, we conclude that Pr[Expt(A) = 1] ≥ Pr[E]. To
complete the proof, we analyze the predicate propagation hybrid experiment Expt𝑗 := Expt𝑗 [𝑃Valid,DeriveChal].

Lemma 5.33. If ΠHE is perfectly correct and ΠCom satisfies computational binding, then there exists a negligible function
negl(·) such that for all 𝑗 ∈ [𝑛], it holds that Pr[Expt𝑗 (A) = 1] = negl(𝜆).

Proof. Suppose there exists some 𝑗 ∈ [𝑛] where Pr[Expt𝑗 (A) = 1] ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to
construct an adversary B that breaks computational binding of ΠCom.

1. On input the security parameter 1𝜆 , algorithm B runs algorithm A to obtain the input length 1𝑛 , a set 𝑆 ⊆ [𝑛],
and an index 𝑖∗ ∈ 𝑆 .

2. Algorithm B outputs the block length 1ℓct (𝜆,𝑛) and the vector length 2𝑛 − 1 to the challenger. The challenger
responds with crsCom.

3. Algorithm B computes (𝑆 \ {𝑖∗} , 𝑆, (𝑖∗, 0)) ← DeriveChal(𝑆, 𝑖∗). It then samples the following components:

• Sample (sk0, pk0) ← HE.Gen(1𝜆, 1𝑛) and (sk1, pk1) ← HE.Gen(1𝜆, 1𝑛).
• Sample (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 12𝑛−1, 1𝑠 , 13, { 𝑗}).
• For each 𝑏 ∈ {0, 1}, sample ct(𝑏)zero ← HE.Enc(pk𝑏, 0).

62

• For each 𝑖 ∈ [𝑛] \ {𝑖∗} and 𝑏 ∈ {0, 1}, if 𝑖 ∈ 𝑆 , sample ct(𝑏)
𝑖
← HE.Enc(pk𝑏, 1). If 𝑖 ∉ 𝑆 , sample

ct(𝑏)
𝑖
← HE.Enc(pk𝑏, 0).

• Sample ct(0)
𝑖∗ ← HE.Enc(pk0, 0) and ct(1)

𝑖∗ ← HE.Enc(pk1, 1).

• For each 𝑏 ∈ {0, 1}, let
(
com(𝑏)hk , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

)
← Com.Commit

(
crsCom, (ct(𝑏)1 , . . . , ct(𝑏)𝑛)

)
.

4. Algorithm B constructs hk and vk according to Eqs. (5.1) and (5.2):

hk =

(
crsCom, crsBARG,

{
pk𝑏, ct

(𝑏)
zero, ct

(𝑏)
1 , . . . , ct(𝑏)𝑛 , 𝜎

(𝑏)
hk,1, . . . , 𝜎

(𝑏)
hk,𝑛

}
𝑏∈{0,1}

)
vk =

(
crsCom, vkBARG, pk0, pk1, ct

(0)
zero, ct

(1)
zero, com

(0)
hk , com

(1)
hk

)
Algorithm B gives (hk, vk) to A.

5. Algorithm A outputs a digest dig =
(
ct(0)root, ct

(1)
root, com0, com1, 𝜋dig

)
and a proof 𝜋 = 𝜋dig.

6. Algorithm B extracts
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗

)
← Extract′ (tdBARG, 𝜋, 𝑗) and parses the auxiliary witness 𝑤̃ 𝑗 =(

ĉt(0) , ĉt(1) , 𝜎 (0)hk , 𝜎
(1)
hk

)
.

7. Algorithm B checks if there exists 𝑏 ∈ {0, 1} where Com.Verify
(
crsCom, com

(𝑏)
hk , 𝑗, ĉt

(𝑏)
, 𝜎
(𝑏)
hk

)
= 1 and ĉt(𝑏) ≠

ct(𝑏)
𝑗

. If so, it outputs the commitment com(𝑏)hk , the index 𝑗 , and the value-opening pairs
(
ct(𝑏)

𝑗
, 𝜎
(𝑏)
hk, 𝑗

)
and(

ĉt(𝑏) , 𝜎 (𝑏)hk

)
.

By construction, the challenger samples crsCom ← Com.Setup(1𝜆, 1ℓct (𝜆,𝑛) , 2𝑛 − 1), which matches the specification
in Expt𝑗 . This, algorithm B perfectly simulates an execution of Expt𝑗 for A. By assumption, with probability 𝜀,
algorithm A outputs dig and 𝜋 such that the experiment outputs 1. This means the following conditions hold:

𝐶𝑖∗,0
(
𝑗,
(
𝑣
(0)
𝑗

, 𝑣
(1)
𝑗

, 𝜎
(0)
𝑗

, 𝜎
(1)
𝑗

, 𝑤̃ 𝑗

))
= 1 and 𝑃Valid

(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 0.

We consider two possibilities:

• Suppose 𝑗 = 𝑖∗. By construction of𝐶𝑖∗,0 (see Fig. 2), this means 𝑣 (𝑏)
𝑗

= ct(𝑏)zero for 𝑏 ∈ {0, 1}. By construction, ct(𝑏)zero

is an encryption of 0 under pk𝑏 . In this case, 𝑃Valid
(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 1, which contradicts the premise.

• Suppose 𝑗 ≠ 𝑖∗. By construction of 𝐶𝑖∗,0, there are now two more possibilities:

– Suppose for 𝑏 ∈ {0, 1}, 𝑣 (𝑏)
𝑗

= ct(𝑏)zero. As in the first case, this means 𝑣 (0)
𝑗

and 𝑣 (1)
𝑗

decrypt to 0 under sk0

and sk1, respectively. In this case 𝑃Valid
(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 1, which again contradicts the premise.

– Suppose for 𝑏 ∈ {0, 1}, 𝑣 (𝑏)
𝑗

= ĉt(𝑏) . In this case, we also have

Com.Verify
(
crsCom, com

(0)
hk , 𝑗, ĉt

(0)
, 𝜎
(0)
hk

)
= 1

Com.Verify
(
crsCom, com

(1)
hk , 𝑗, ĉt

(1)
, 𝜎
(1)
hk

)
= 1.

Suppose ĉt(𝑏) = ct(𝑏)
𝑗

for all 𝑏 ∈ {0, 1}. In this case, since 𝑗 ≠ 𝑖∗, the ciphertexts ct(0)
𝑗
, ct(1)

𝑗
are either both

encryptions of 0 (if 𝑗 ∉ 𝑆) or both encryptions of 1 (if 𝑗 ∈ 𝑆). In this case,

𝑃Valid
(
𝑖∗, 𝑣 (0)

𝑗
, 𝑣
(1)
𝑗

, sk0, sk1, 𝑗
)
= 𝑃Valid

(
𝑖∗, ct(0)

𝑗
, ct(1)

𝑗
, sk0, sk1, 𝑗

)
= 1,

which contradicts the premise. Thus, if 𝑃Valid is not satisfied, we conclude that there exists some 𝑏 ∈ {0, 1}
such that ĉt(𝑏) ≠ ct(𝑏)

𝑗
.

63

Thus, there exists some 𝑏 ∈ {0, 1} such that the following holds:

ĉt(𝑏) ≠ ct(𝑏)
𝑗

and Com.Verify
(
crsCom, com

(𝑏)
hk , 𝑗, ĉt

(𝑏)
, 𝜎
(𝑏)
hk

)
= 1.

Moreover, by correctness of ΠCom, we have that

Com.Verify
(
crsCom, com

(𝑏)
hk , 𝑗, ct

(𝑏)
𝑗

, 𝜎
(𝑏)
hk, 𝑗

)
= 1.

In this case, algorithm B successfully breaks the binding property of the commitment scheme. □

Since for all 𝑗 ∈ [𝑛], it holds that Pr[Expt𝑗 (A) = 1] = negl(𝜆), we can invoke Theorem 5.9 to conclude that
Pr[Expt(A) = 1] = negl(𝜆). Claim 5.31 now follows via Eqs. (5.14) and (5.15). □

Claim 5.34. If ΠHE is CPA-secure, then there exists a negligible function negl(·) such that��Pr[Hyb3 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Claim 5.30. In particular, the reduction obtains pk0 and ct
(0)
𝑖∗

from the challenger. It samples (pk1, sk1) itself which it can use to compute the output (according to the specification
in Hyb2 and Hyb3). □

Claim 5.35. If ΠHE is perfectly correct and satisfies evaluation correctness, ΠCom is computationally binding, and ΠBARG
satisfies set hiding with extraction, set hiding, and is somewhere extractable, then there exists a negligible function negl(·)
such that | Pr[Hyb4 (A) = 1] − Pr[Hyb3 (A) = 1] | = negl(𝜆).

Proof. Follows by an analogous argument as the proof of Claim 5.31. The only difference is that we take the mapping
DeriveChal to be

DeriveChal(𝑆, 𝑖) := (𝑆, 𝑖) ↦→ (𝑆, 𝑆, (𝑖, 0)).

The rest of the analysis proceeds exactly as before. □

Theorem 5.29 now follows by combining Claims 5.30, 5.31, 5.34 and 5.35. □

6 Zero-Fixing Hash Function from Bilinear Maps
In this section, we give a direct construction of a zero-fixing hash function from composite-order pairing groups. This
construction does not require making non-black-box use of cryptography (in contrast to the construction from Sec-
tion 5) and highlights an algebraic approach for building zero-fixing hash functions. We begin by recalling the concept
of composite-order pairing groups [BGN05] and the generalized family of subgroup decision assumptions [BWY11].

Definition 6.1 (Composite-Order Bilinear Group). Let 𝑘 ∈ N be a constant. A symmetric 𝑘-prime composite-order
bilinear group generator is an efficient algorithm CompGroupGen that takes as input the security parameter 𝜆 and
outputs a description (G,G𝑇 , {𝑝𝑖 }𝑖∈[𝑘] , 𝑔, 𝑒) of a bilinear group where each 𝑝𝑖 is a distinct prime where 𝑝𝑖 = 2Ω (𝜆) ,
G and G𝑇 are cyclic groups of order 𝑁 =

∏
𝑖∈[𝑘] 𝑝𝑖 , 𝑔 is a generator of G, and 𝑒 : G × G→ G𝑇 is a non-degenerate

bilinear map (called the “pairing”). We require that the group operation in G and G𝑇 as well as the pairing operation
be efficiently computable.

Notation. Let G be a cyclic group with order 𝑁 =
∏

𝑖∈[𝑘] 𝑝𝑖 and generator 𝑔. We write Z𝑁 to denote the ring of
integers modulo 𝑁 . In the following, for 𝑖 ∈ [𝑘], we write G𝑖 = ⟨𝑔𝑁 /𝑝𝑖 ⟩ to denote the subgroup of G of order 𝑝𝑖 .
Throughout this section, we will write 𝑔𝑖 to denote a random generator of G𝑖 . For a set 𝑆 ⊆ [𝑘], we write G(𝑆) to
denote subgroup of G of order

∏
𝑖∈𝑆 𝑝𝑖 . By the Chinese Remainder Theorem, we can write G as a direct product

G � G𝑝1 × · · · × G𝑝𝑘 . For a group element ℎ ∈ G, we can write ℎ =
∏

𝑖∈[𝑘] ℎ𝑖 where each ℎ𝑖 ∈ G𝑖 ; we refer to ℎ𝑖 as
the component of ℎ in the subgroup G𝑖 . If two elements ℎ1, ℎ2 ∈ G are equal (i.e., ℎ1 = ℎ2), then for all 𝑖 ∈ [𝑘], the
component of ℎ1 and ℎ2 in G𝑖 are also equal. We extend this terminology to G𝑇 .

64

General subgroup decision assumption. We now recall the general subgroup decision assumption formalized in
[BWY11]. The general subgroup decision assumption essentially states that for sets 𝑆0, 𝑆1 ⊆ [𝑘], no efficient adversary
can distinguish between a random element of G(𝑆0) from G(𝑆1) even given random elements from G(𝑆) for any
𝑆 ⊆ [𝑘] where 𝑆 ∩ 𝑆0 and 𝑆 ∩ 𝑆1 are both empty or both non-empty. We give the formal definition below:

Definition 6.2 (General Subgroup Decision [BWY11, adapted]). Let 𝑘 ∈ N be a constant and let CompGroupGen be
a symmetric 𝑘-prime composite-order bilinear group generator. For an adversary A and a bit 𝑏 ∈ {0, 1}, we define
the general subgroup decision game ExptSubgroupA (𝜆,𝑏) for CompGroupGen as follows:

1. At the beginning of the game, algorithm A outputs two non-empty sets 𝑆0, 𝑆1 ⊆ [𝑘] and any number of sets
𝑇1, . . . ,𝑇𝑛 ⊆ [𝑘]. We require that for all 𝑖 ∈ [𝑛] either 𝑆0 ∩𝑇𝑖 = ∅ = 𝑆1 ∩𝑇𝑖 or 𝑆0 ∩𝑇𝑖 ≠ ∅ ≠ 𝑆1 ∩𝑇𝑖 .

2. The challenger samples (G,G𝑇 , {𝑝𝑖 }𝑖∈[𝑘] , 𝑔, 𝑒) ← CompGroupGen(1𝜆). It compute 𝑁 =
∏

𝑖∈[𝑘] 𝑝𝑖 and sets
G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒). For each 𝑖 ∈ [𝑛], the challenger samples 𝑋𝑖

r← G(𝑇𝑖). It also samples 𝑍 ← G(𝑆𝑏), and
gives the challenge (G, 𝑋1, . . . , 𝑋𝑛, 𝑍) to the adversary.

3. The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that the general subgroup decision assumption holds with respect to CompGroupGen if for all efficient
adversaries A

��Pr[ExptSubgroupA (𝜆, 0) = 1] − Pr[ExptSubgroupA (𝜆, 1)]
�� ≤ negl(𝜆).

Constructing zero-fixing hash functions. We now describe our construction of a zero-fixing hash function from
composite-order bilinear groups. To simplify the main construction, we will describe our construction with a long
verification key. The verification algorithm of our construction only requires local access to the long verification key,
so it is straightforward to compile our construction into one with a short verification key using a collision-resistant
hash function (see Remark 6.5).

Construction 6.3 (Zero-Fixing Hash Function from Composite-Order Bilinear Maps). Let CompGroupGen be a
6-prime composite-order pairing group. We construct a zero-fixing hash function ΠH = (Setup,Hash, ProveOpen,
VerOpen, Extract,ValidateDigest) as follows:

• Setup(1𝜆, 1𝑛, 𝑆): On input a security parameter 𝜆, an input length 𝑛, and a set 𝑆 ⊆ [𝑛], the setup algorithm
samples (G,G𝑇 , {𝑝𝑖 }𝑖∈[6] , 𝑔, 𝑒) ← CompGroupGen(1𝜆). Let 𝑁 =

∏
𝑖∈[6] 𝑝𝑖 . For each 𝑖 ∈ [6], let 𝑔𝑖 r← G𝑖 be a

random generator of G𝑖 . Let G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) be the group description. The setup algorithm now constructs
the hash key components as follows:

– Main components: For each 𝑖 ∈ [𝑛], sample 𝛼𝑖 , 𝛽𝑖 r← Z𝑁 . Set

𝐴𝑖 =

{
(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

(𝑔1𝑔2𝑔3𝑔4)𝛼𝑖 𝑖 ∈ 𝑆.

For each 𝑖 ∈ [𝑛], let 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 .

– Cross-terms: For each 𝑖, 𝑗 ∈ [𝑛] where 𝑖 ≠ 𝑗 , sample 𝑟𝑖, 𝑗 r← Z𝑁 and let 𝐶𝑖, 𝑗 ← 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 .
– Digest validation components: Sample 𝛽∗ r← Z𝑁 and let 𝐵∗ = (𝑔1𝑔5)𝛽

∗ . For each 𝑖 ∈ [𝑛], sample
𝑟 ∗𝑖

r← Z𝑁 and let 𝐷𝑖 = 𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 .

Output the hash key hk and verification key vk where

hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
along with the extraction trapdoor td = 𝑔2𝑔3.

• Hash(hk, 𝑥): On input a hash key hk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and an input 𝑥 ∈ {0, 1}𝑛 , the hash

algorithm computes ℎ =
∏

𝑖∈[𝑛] 𝐴
𝑥𝑖
𝑖
and 𝑢 =

∏
𝑖∈[𝑛] 𝐷

𝑥𝑖
𝑖
. It outputs the digest dig = (ℎ,𝑢).

65

• ValidateDigest(vk, dig): On input the verification key vk =
(
G, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and a digest

dig = (ℎ,𝑢), the digest-validation algorithm outputs 1 if 𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 0 otherwise.

• ProveOpen(hk, 𝑥, 𝑖): On input a hash key hk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
, a string 𝑥 ∈ {0, 1}𝑛 , and

an index 𝑖 ∈ [𝑛], the prove algorithm outputs 𝜎 =
∏

𝑗≠𝑖 𝐶
𝑥 𝑗

𝑗,𝑖
.

• VerOpen(vk, dig, 𝑖, 𝑏, 𝜎): On input a hash key vk =
(
G, 𝑔1, {(𝐴𝑖 , 𝐵𝑖)}𝑖∈[𝑛], 𝐵∗

)
, a digest dig = (ℎ, 𝜋), an index

𝑖 ∈ [𝑛], a bit 𝑏 ∈ {0, 1}, and an opening 𝜎 , the verification algorithm outputs 1 if 𝑒 (ℎ, 𝐵𝑖) = 𝑒 (𝐴𝑖 , 𝐵𝑖)𝑏 · 𝑒 (𝑔1, 𝜎)
and 0 otherwise.

• Extract(td, dig): On input a trapdoor td and a digest dig = (ℎ,𝑢), the extraction algorithm outputs Matching if
𝑒 (ℎ, td) = 1 and NotMatching otherwise.

Theorem 6.4 (Correctness). Construction 6.3 is correct.

Proof. Take any 𝜆, 𝑛 ∈ N and 𝑥 ∈ {0, 1}𝑛 . Let 𝑖 ∈ [𝑛] be an index. Suppose (hk, vk, td) ← Setup(1𝜆, 1𝑛,∅),
dig← Hash(hk, 𝑥) and 𝜎 ← ProveOpen(hk, 𝑥, 𝑖). By construction,

hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
.

Next, dig = (ℎ,𝑢) where ℎ =
∏

𝑖∈[𝑛] 𝐴
𝑥𝑖
𝑖
and 𝑢 =

∏
𝑖∈[𝑛] 𝐷

𝑥𝑖
𝑖
. We consider the two properties:

• Opening correctness: By construction, 𝜎 =
∏

𝑗≠𝑖 𝐶
𝑥 𝑗

𝑗,𝑖
. By orthogonality, we have 𝑒 (𝐴 𝑗 , 𝐵𝑖) = 𝑒 (𝑔1,𝐶 𝑗,𝑖). Then,

𝑒 (ℎ, 𝐵𝑖) =
∏
𝑗∈[𝑛]

𝑒 (𝐴 𝑗 , 𝐵𝑖)𝑥 𝑗 = 𝑒 (𝐴𝑖 , 𝐵𝑖)𝑥𝑖
∏
𝑗≠𝑖

𝑒 (𝐴 𝑗 , 𝐵𝑖)𝑥 𝑗 = 𝑒 (𝐴𝑖 , 𝐵𝑖)𝑥𝑖
∏
𝑗≠𝑖

𝑒 (𝑔1,𝐶 𝑗,𝑖)𝑥 𝑗 = 𝑒 (𝐴𝑖 , 𝐵𝑖)𝑥𝑖𝑒 (𝑔1, 𝜎),

so VerOpen(vk, dig, 𝑖, 𝑥𝑖 , 𝜎) = 1, as required.

• Digest correctness: Again by orthogonality, we have 𝑒 (𝐴𝑖 , 𝐵
∗) = 𝑒 (𝑔1, 𝐷𝑖), so

𝑒 (ℎ, 𝐵∗) =
∏
𝑗∈[𝑛]

𝑒 (𝐴𝑖 , 𝐵
∗)𝑥𝑖 =

∏
𝑗∈[𝑛]

𝑒 (𝑔1, 𝐷𝑖)𝑥𝑖 = 𝑒 (𝑔1, 𝑢),

and ValidateDigest(vk, dig) = 1. □

Remark 6.5 (Supporting Fast Verification). As described, the size of the verification key in Construction 6.3 scales
linearly with the input length 𝑛. This is incompatible with the succinctness requirements needed by our monotone
BARG construction (Construction 4.4). However, it is straightforward to compress the verification key using a
collision-resistant hash function. Observe that the verification algorithm VerOpen in Construction 6.3 only requires
local access to the verification key (i.e., it only needs to read elements 𝐴𝑖 and 𝐵𝑖). The approach then is to only include
a succinct commitment com to (𝐴1, 𝐵1), . . . , (𝐴𝑛, 𝐵𝑛) in the verification key; the associated openings are included as
part of the (long) hash key. Then, the opening for an index 𝑖 would additionally contain the elements 𝐴𝑖 , 𝐵𝑖 as well as
their openings with respect to com. The verifier would check that the correct elements 𝐴𝑖 and 𝐵𝑖 were provided and
that they satisfy the verification relation. Security still holds as long as the scheme is computationally binding (since
a computationally-bounded adversary would not be able to open com at 𝑖 to any value other than (𝐴𝑖 , 𝐵𝑖)).

Security properties. We now show that each of the security requirements from Definition 3.1 holds under the
(general) subgroup decision assumption.

Theorem 6.6 (Set Hiding). If the general subgroup decision holds with respect to CompGroupGen, then Construction 6.3
satisfies set hiding.

Proof. LetA be an efficient adversary for the set hiding game. We begin by defining a sequence of hybrid experiments:

66

• Hyb0: This is experiment ExptSHA (𝜆, 0). At the beginning of the game, the adversary outputs an input length
𝑛 and a set 𝑆 ⊆ [𝑛]. Then the challenger samples (G,G𝑇 , {𝑝𝑖 }𝑖∈[6] , 𝑔, 𝑒) ← CompGroupGen(1𝜆). It samples
generators 𝑔𝑖 r← G𝑖 and sets G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) where 𝑁 =

∏
𝑖∈[6] 𝑝𝑖 . It constructs the hash key components

as follows:

– Main components: For each 𝑖 ∈ [𝑛], sample 𝛼𝑖 , 𝛽𝑖 r← Z𝑁 Set 𝐴𝑖 = (𝑔1𝑔4)𝛼𝑖 and 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 .

– Cross-terms: For each 𝑖, 𝑗 ∈ [𝑛] where 𝑖 ≠ 𝑗 , sample 𝑟𝑖, 𝑗 r← Z𝑁 and let 𝐶𝑖, 𝑗 = 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 .
– Digest validation components: Sample 𝛽∗ r← Z𝑁 and let 𝐵∗ = (𝑔1𝑔5)𝛽

∗ . For each 𝑖 ∈ [𝑛], sample
𝑟 ∗𝑖

r← Z𝑁 and let 𝐷𝑖 = 𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 .

The challenger gives the hash key hk and verification key vk to A where

hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
.

Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb1: Same as Hyb0, except the challenger now sets 𝐶𝑖, 𝑗 = 𝐴
𝛽 𝑗

𝑖
(𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 and 𝐷𝑖 = 𝐴

𝛽∗

𝑖
(𝑔2𝑔3𝑔4𝑔5)𝑟

∗
𝑖 . In

particular, in this experiment, the exponents 𝛼𝑖 only show up in the definition of 𝐴𝑖 .

• Hyb2: Same as Hyb1, except for 𝑖 ∈ 𝑆 , the challenger now sets 𝐴𝑖 = (𝑔1𝑔2𝑔3𝑔4)𝛼𝑖 .

• Hyb3: Same as Hyb2, except the challenger now sets 𝐶𝑖, 𝑗 = 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 and 𝐷𝑖 = 𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 . This

is experiment ExptSHA (𝜆, 1).

We write Hyb𝑖 (A) to denote the output of an execution of Hyb𝑖 with adversary A. We now analyze each pair of
adjacent hybrid experiments.

Lemma 6.7. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1]

Proof. The outputs of Hyb0 (A) and Hyb1 (A) are identically distributed. The only difference between these two
distributions is the distribution of the cross-terms 𝐶𝑖, 𝑗 and 𝐷𝑖 . According to the specification of Hyb1,

𝐶𝑖, 𝑗 = 𝐴
𝛽 𝑗

𝑖
(𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 = (𝑔1𝑔4)𝛼𝑖𝛽 𝑗 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 = 𝑔

𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔5)𝑟𝑖,𝑗𝑔
𝑟𝑖,𝑗+𝛼𝑖𝛽 𝑗

4 .

Since 𝑟𝑖, 𝑗 r← Z𝑁 (and independent of all other quantities in hk, vk), the distribution of 𝑟𝑖, 𝑗 + 𝛼𝑖𝛽 𝑗 mod 𝑝4 is uniform
over Z𝑝4 . We conclude that the distribution of𝐶𝑖, 𝑗 in Hyb1 is distributed exactly as in Hyb0. A similar analysis applies
to 𝐷𝑖 , and the claim holds. □

Lemma 6.8. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(𝜆).

Proof. Suppose there exists an adversary A where
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� ≥ 𝜀 (𝜆) for some non-
negligible 𝜀. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {1, 4} and 𝑆1 = {1, 2, 3, 4} and the sets {1}, {4}, {2, 3, 4},
and {5} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔4, 𝑋234, 𝑔5, 𝑍), where 𝑔𝑖 is used to denote the random generator
of G𝑖 and 𝑋234

r← G({2, 3, 4}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 and a set 𝑆 ⊆ [𝑛]. The challenger
samples 𝛼𝑖 r← Z𝑁 , 𝛽𝑖 r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It constructs the components of the hash key as follows:

𝐴𝑖 =

{
(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

𝑍𝛼𝑖 𝑖 ∈ 𝑆
and 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 and 𝐶𝑖, 𝑗 = 𝐴

𝛽 𝑗

𝑖
(𝑋234𝑔5)𝑟𝑖,𝑗 .

67

Next, it samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛]. It sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 = 𝐴

𝛽∗

𝑖
(𝑋234𝑔5)𝑟

∗
𝑖 .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which algorithm B also outputs.

The subgroup decision challenger samples the generators 𝑔𝑖 r← G𝑖 exactly as in Hyb1 and Hyb2. Moreover, 𝑋234 =
(𝑔2𝑔3𝑔4)𝛾 for 𝛾 r← Z𝑁 . Since the only element that depends on 𝑟𝑖, 𝑗 is 𝐶𝑖, 𝑗 and 𝑟𝑖, 𝑗 r← Z𝑁 , the distribution of 𝑋 𝑟𝑖,𝑗

234 is
identical to the distribution of (𝑔2𝑔3𝑔4)𝑟𝑖,𝑗 . Similarly, the distribution of 𝑋 𝑟 ∗𝑖

234 is identically distributed to (𝑔2𝑔3𝑔4)𝑟
∗
𝑖 .

We now consider the two possibilities:

• Suppose 𝑍 = (𝑔1𝑔4)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb1 with 𝛼𝑖 replaced by 𝛼𝑖𝑡 when
𝑖 ∈ 𝑆 . As long as 𝑡 is non-zero modulo 𝑝1 and 𝑝4 (which happens with negligible probability), the distribution
of 𝛼𝑖𝑡 is uniform over Z𝑝1𝑝4 . In this case, algorithm B outputs 1 with probability Pr[Hyb1 (A) = 1].

• Suppose 𝑍 = (𝑔1𝑔2𝑔3𝑔4)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb2 with 𝛼𝑖 replaced by
𝛼𝑖𝑡 whenever 𝑖 ∈ 𝑆 . As long as 𝑡 is non-zero modulo 𝑝1, 𝑝2, 𝑝3, and 𝑝4 (which happens with negligible
probability), the distribution of 𝛼𝑖𝑡 is uniform over Z𝑝1𝑝2𝑝3𝑝4 . In this case, algorithm B outputs 1 with probability
Pr[Hyb2 (A) = 1].

We conclude that algorithm B succeeds with probability that is negligibly close to 𝜀 and the claim holds. □

Lemma 6.9. Pr[Hyb2 (A) = 1] = Pr[Hyb3 (A) = 1].

Proof. The outputs of Hyb2 (A) and Hyb3 (A) are identically distributed by an analogous argument as the proof of
Lemma 6.7. In particular, in Hyb2, for 𝑖 ∈ 𝑆 ,

𝐶𝑖, 𝑗 = 𝐴
𝛽 𝑗

𝑖
(𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 = (𝑔1𝑔2𝑔3𝑔4)𝛼𝑖𝛽 𝑗 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 = 𝑔

𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4)𝑟𝑖,𝑗+𝛼𝑖𝛽 𝑗𝑔
𝑟𝑖,𝑗
5 .

Again since 𝑟𝑖, 𝑗 r← Z𝑁 and independent of all other quantities in hk, vk, the distribution of 𝑟𝑖, 𝑗 + 𝛼𝑖𝛽 𝑗 mod 𝑝2𝑝3𝑝4 is
identical to the distribution of 𝑟𝑖, 𝑗 r← Z𝑝2𝑝3𝑝4 . A similar argument applies to 𝐶𝑖, 𝑗 for 𝑖 ∉ 𝑆 and the 𝐷𝑖 terms. □

Set hiding now follows by combining Lemmas 6.7 to 6.9. □

Theorem 6.10 (Index Hiding with Extracted Guess). Assume the general subgroup decision holds with respect to
CompGroupGen, then Construction 6.3 satisfies one-sided index hiding with extracted guess (Definition 3.3).

Proof. LetA be an efficient adversary for the index hiding with extracted guess game. We define a sequence of hybrid
experiments:

• Hyb0: This is the index hiding with extracted guess experiment ExptIHEA (𝜆, 0). Namely, the adversary
starts by outputting the input length 1𝑛 , a set 𝑆 ⊆ [𝑛] and an index 𝑖∗ ∈ 𝑆 . The challenger samples
(G,G𝑇 , {𝑝𝑖 }𝑖∈[6] , 𝑔, 𝑒) ← CompGroupGen(1𝜆). It samples generators 𝑔𝑖 r← G𝑖 and sets G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒)
where 𝑁 =

∏
𝑖∈[6] 𝑝𝑖 . It constructs the hash key components as follows:

– Main components: For each 𝑖 ∈ [𝑛], sample 𝛼𝑖 , 𝛽𝑖 r← Z𝑁 Set 𝐴𝑖 = (𝑔1𝑔2𝑔3𝑔4)𝛼𝑖 if 𝑖 ∈ 𝑆 \ {𝑖∗} and
𝐴𝑖 = (𝑔1𝑔4)𝛼𝑖 if 𝑖 ∉ 𝑆 . Set 𝐴𝑖∗ = (𝑔1𝑔4)𝛼𝑖∗ . Then, set 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 .

– Cross-terms: For each 𝑖, 𝑗 ∈ [𝑛] where 𝑖 ≠ 𝑗 , sample 𝑟𝑖, 𝑗 r← Z𝑁 and let 𝐶𝑖, 𝑗 = 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 .
– Digest validation components: Sample 𝛽∗ r← Z𝑁 and let 𝐵∗ = (𝑔1𝑔5)𝛽

∗ . For each 𝑖 ∈ [𝑛], sample
𝑟 ∗𝑖

r← Z𝑁 and let 𝐷𝑖 = 𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 .

68

The challenger gives the hash key hk and verification key vk to A where

hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
.

Algorithm A then outputs a digest dig = (ℎ,𝑢) and an opening 𝜎 . The output of the experiment is 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2𝑔3) = 1.

• Hyb1: Same asHyb0 except the challenger sets𝐶𝑖∗, 𝑗 = 𝐴
𝛽 𝑗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖∗, 𝑗 for all 𝑗 ≠ 𝑖∗ and𝐶𝑖,𝑖∗ = 𝐵
𝛼𝑖
𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗

for all 𝑖 ≠ 𝑖∗. Similarly, the challenger sets 𝐷𝑖∗ = 𝐴
𝛽∗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 . In particular, the exponents 𝛼𝑖∗ and 𝛽𝑖∗ only

shows up in 𝐴𝑖∗ and 𝐵𝑖∗ , respectively.

• Hyb2: Same as Hyb1 except the challenger sets 𝐵𝑖∗ = (𝑔1𝑔5𝑔6)𝛽𝑖∗ .

• Hyb3: Same as Hyb2 except the challenger sets 𝐴𝑖∗ = (𝑔1𝑔4𝑔6)𝛼𝑖∗ .

• Hyb4: Same as Hyb3 except the challenger sets 𝐴𝑖∗ = (𝑔1𝑔2𝑔4𝑔6)𝛼𝑖∗ .

• Hyb5: Same as Hyb4 except the challenger sets 𝐴𝑖∗ = (𝑔1𝑔2𝑔3𝑔4𝑔6)𝛼𝑖∗ .

• Hyb6: Same as Hyb5 except the challenger sets 𝐴𝑖∗ = (𝑔1𝑔2𝑔3𝑔4)𝛼𝑖∗ . Namely, there is no longer a G6 component
in 𝐴𝑖∗ .

• Hyb7: Same as Hyb6 except the challenger sets 𝐵𝑖∗ = (𝑔1𝑔5)𝛽𝑖∗ . Namely, there is no longer a G6 component in
𝐵𝑖∗ .

• Hyb8: Same as Hyb7 except the challenger sets 𝐶𝑖∗, 𝑗 = 𝑔
𝛼𝑖∗𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔4)𝑟𝑖∗, 𝑗 and 𝐶𝑖,𝑖∗ = 𝑔
𝛼𝑖𝛽𝑖∗
1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗ .

Similarly, the challenger sets 𝐷𝑖∗ = 𝑔
𝛼𝑖∗𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 . This is experiment ExptIHEA (𝜆, 1).

We write Hyb𝑖 (A) to denote the output of an execution of Hyb𝑖 with adversary A. We now analyze each pair of
adjacent hybrid experiments. Our goal is to show that Pr[Hyb8 (A) = 1] ≥ Pr[Hyb0 (A) = 1] − negl(𝜆).

Lemma 6.11. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1]

Proof. The outputs of Hyb0 (A) and Hyb1 (A) are identically distributed. The only difference between these two
distributions is the distribution of 𝐶𝑖∗, 𝑗 , 𝐶𝑖,𝑖∗ , and 𝐷𝑖∗ . According to the specification of Hyb1,

𝐶𝑖∗, 𝑗 = 𝐴
𝛽 𝑗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖∗, 𝑗 = (𝑔1𝑔4)𝛼𝑖∗𝛽 𝑗 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖∗, 𝑗 = 𝑔
𝛼𝑖∗𝛽 𝑗

1 𝑔
𝑟𝑖∗, 𝑗+𝛼𝑖∗𝛽 𝑗

4 (𝑔2𝑔3𝑔5)𝑟𝑖∗, 𝑗

𝐶𝑖,𝑖∗ = 𝐵
𝛼𝑖
𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗ = (𝑔1𝑔5)𝛼𝑖𝛽𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗ = 𝑔

𝛼𝑖𝛽𝑖∗
1 (𝑔2𝑔3𝑔4)𝑟𝑖,𝑖∗𝑔

𝑟𝑖,𝑖∗+𝛼𝑖𝛽𝑖∗
5

𝐷𝑖∗ = 𝐴
𝛽∗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖∗ = (𝑔1𝑔4)𝛼𝑖∗𝛽

∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖∗ = 𝑔

𝛼𝑖∗𝛽
∗

1 𝑔
𝑟 ∗
𝑖∗+𝛼𝑖∗𝛽

∗

4 (𝑔2𝑔3𝑔5)𝑟
∗
𝑖∗

Since 𝑟𝑖∗, 𝑗 , 𝑟𝑖,𝑖∗ , 𝑟 ∗𝑖∗
r← Z𝑁 (and independent of all other quantities in hk, vk), the elements𝐶𝑖∗, 𝑗 ,𝐶𝑖,𝑖∗ , 𝐷𝑖∗ are distributed

exactly as in Hyb0. □

Lemma 6.12. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(𝜆).

Proof. Suppose there exists an adversary A where
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� ≥ 𝜀 (𝜆) for some non-
negligible 𝜀. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {1, 5} and 𝑆1 = {1, 5, 6} and the sets {1}, {2}, {3}, {4},
{5} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑍), where𝑔𝑖 is used to denote the random generator
of G𝑖 .

69

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 , a set 𝑆 ⊆ [𝑛] and an index 𝑖∗ ∈ 𝑆 .
Algorithm B samples 𝛼𝑖 r← Z𝑁 , 𝛽𝑖 r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 =

{
(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆 \ {𝑖∗}
(𝑔1𝑔2𝑔3𝑔4)𝛼𝑖 𝑖 ∈ 𝑆 \ {𝑖∗}

and 𝐵𝑖 =

{
𝑍 𝑖 = 𝑖∗

(𝑔1𝑔5)𝛽𝑖 𝑖 ≠ 𝑖∗
and 𝐶𝑖, 𝑗 =


𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 𝑖, 𝑗 ≠ 𝑖∗

𝐴
𝛽 𝑗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖∗, 𝑗 𝑖 = 𝑖∗

𝐵
𝛼𝑖
𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗ 𝑗 = 𝑖∗ .

Next, it samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛]. It sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 =

{
𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 𝑖 ≠ 𝑖∗

𝐴
𝛽∗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖∗ 𝑖 = 𝑖∗ .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ℎ,𝑢) and an opening 𝜎 . Algorithm B outputs 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2𝑔3) = 1.

The subgroup decision challenger samples the generators 𝑔𝑖 r← G𝑖 exactly as in Hyb1 and Hyb2. Moreover, all of the
components other than 𝐵𝑖∗ is constructed exactly as described in Hyb1 and Hyb2. Thus, it suffices to consider the
distribution of 𝐵∗. We consider the two possibilities:

• Suppose 𝑍 = (𝑔1𝑔5)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb1 with 𝛽𝑖∗ = 𝑡 . In this case,
algorithm B outputs 1 with probability Pr[Hyb1 (A) = 1].

• Suppose 𝑍 = (𝑔1𝑔5𝑔6)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb2 with 𝛽𝑖∗ = 𝑡 . In this case,
algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

We conclude that algorithm B succeeds with probability 𝜀 and the claim holds. □

Lemma 6.13. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]
�� = negl(𝜆).

Proof. Suppose there exists an adversary A where
��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]

�� ≥ 𝜀 (𝜆) for some non-
negligible 𝜀. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {1, 4} and 𝑆1 = {1, 4, 6} and the sets {1}, {2}, {3}, {4},
{5}, {1, 6} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑋16, 𝑍), where 𝑔𝑖 is used to denote the random
generator of G𝑖 and 𝑋16

r← G({1, 6}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 =


𝑍 𝑖 = 𝑖∗

(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

(𝑔1𝑔2𝑔3𝑔4)𝛼𝑖 𝑖 ∈ 𝑆 \ {𝑖∗}
and 𝐵𝑖 =

{
𝑋16𝑔

𝛽𝑖∗
5 𝑖 = 𝑖∗

(𝑔1𝑔5)𝛽𝑖 𝑖 ≠ 𝑖∗
and 𝐶𝑖, 𝑗 =


𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 𝑖, 𝑗 ≠ 𝑖∗

𝐴
𝛽 𝑗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖∗, 𝑗 𝑖 = 𝑖∗

𝐵
𝛼𝑖
𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗ 𝑗 = 𝑖∗ .

Next, it samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛]. It sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 =

{
𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 𝑖 ≠ 𝑖∗

𝐴
𝛽∗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖∗ 𝑖 = 𝑖∗ .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

70

4. Algorithm A outputs a digest dig = (ℎ,𝑢) and an opening 𝜎 . Algorithm B outputs 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2𝑔3) = 1.

The subgroup decision challenger samples the generators 𝑔𝑖 r← G𝑖 exactly as in Hyb2 and Hyb3. We can write
𝑋16 = (𝑔1𝑔6)𝛾16 where 𝛾16

r← Z𝑁 . The value 𝛾16 mod 𝑝1𝑝6 corresponds to the value of 𝛽𝑖∗ mod 𝑝1𝑝6 in Hyb2 and Hyb3.
The remaining components other than𝐴𝑖∗ are sampled exactly as required in Hyb2 and Hyb3, so it suffices to consider
𝐴𝑖∗ . We consider the two possibilities:

• Suppose 𝑍 = (𝑔1𝑔4)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb1 with 𝛼𝑖∗ = 𝑡 . In this case,
algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

• Suppose 𝑍 = (𝑔1𝑔4𝑔6)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb3 with 𝛼𝑖∗ = 𝑡 . In this case,
algorithm B outputs 1 with probability Pr[Hyb3 (A) = 1].

We conclude that algorithm B succeeds with probability 𝜀 and the claim holds. □

Lemma 6.14. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb4 (A) = 1] ≥ Pr[Hyb3 (A) = 1] − negl(𝜆).

Proof. Let dig = (ℎ,𝑢) be the digest output byA in an execution of Hyb3 and Hyb4. For an index 𝑖 ∈ {3, 4}, we define
events E𝑖,1 and E𝑖,2:

• E𝑖,1: This is the event 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔3) = 1 occurring in Hyb𝑖 .

• E𝑖,2: This is the event that 𝑒 (ℎ,𝑔2) = 1 occurring in Hyb𝑖 .

By definition, the output in Hyb𝑖 is 1 if and only if both events E𝑖,1 and E𝑖,2 occur. To complete the proof, we start by
showing the following two properties: (1)

��Pr[E3,1] − Pr[E4,1]
�� = negl(𝜆); and (2) Pr[E4,1 ∧ ¬E4,2] = negl(𝜆).

Claim 6.15. If the subgroup decision assumption holds with respect to CompGroupGen, then
��Pr[E3,1] − Pr[E4,1]

�� =
negl(𝜆).

Proof. Suppose
��Pr[E3,1] − Pr[E4,1]

�� ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {1, 4, 6} and 𝑆1 = {1, 2, 4, 6} and the sets {1}, {3}, {4},
{5}, {6}, {2, 3, 4}.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑋234, 𝑍) where 𝑔𝑖 is a random generator of G𝑖 and
𝑋234

r← G({2, 3, 4}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 =


𝑍 𝑖 = 𝑖∗

(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

(𝑔1𝑋234)𝛼𝑖 𝑖 ∈ 𝑆 \ {𝑖∗}
and 𝐵𝑖 =

{
(𝑔1𝑔5𝑔6)𝛽𝑖∗ 𝑖 = 𝑖∗

(𝑔1𝑔5)𝛽𝑖 𝑖 ≠ 𝑖∗
and 𝐶𝑖, 𝑗 =


𝑔
𝛼𝑖𝛽 𝑗

1 (𝑋234𝑔5)𝑟𝑖,𝑗 𝑖, 𝑗 ≠ 𝑖∗

𝐴
𝛽 𝑗

𝑖∗ (𝑋234𝑔5)𝑟𝑖∗, 𝑗 𝑖 = 𝑖∗

𝐵
𝛼𝑖
𝑖∗ (𝑋234𝑔5)𝑟𝑖,𝑖∗ 𝑗 = 𝑖∗ .

It samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛], and sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 =

{
𝑔
𝛼𝑖𝛽

∗

1 (𝑋234𝑔5)𝑟
∗
𝑖 𝑖 ≠ 𝑖∗

𝐴
𝛽∗

𝑖∗ (𝑋234𝑔5)𝑟
∗
𝑖∗ 𝑖 = 𝑖∗ .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

71

4. After A outputs the digest dig = (ℎ,𝑢), algorithm B outputs 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔3) = 1.

We first argue that B correctly simulates the hash key according to the specification of Hyb3 and Hyb4. First, we can
write 𝑋234 = (𝑔2𝑔3𝑔4)𝛾234 where 𝛾234

r← Z𝑁 . Since the challenger samples 𝑟𝑖, 𝑗 and 𝑟 ∗𝑖
r← Z𝑁 and each of these values

is used exactly once in the construction of hk, the distributions of 𝐶𝑖, 𝑗 and 𝐷𝑖 are distributed exactly as they are in
Hyb3 and Hyb4 unless 𝛾234 is zero in the 𝑝2, 𝑝3, or 𝑝4 components. This happens with negligible probability over the
choice of 𝛾234. Similarly, 𝐴𝑖 for 𝑖 ∈ 𝑆 \ {𝑖∗} is distributed identically; the distributions of 𝛼𝑖 mod 𝑝2𝑝3𝑝4 and that of
𝛼𝑖𝛾234 mod 𝑝2𝑝3𝑝4 when 𝛼𝑖

r← Z𝑁 are identical as long as 𝛾234 is non-zero in the 𝑝2, 𝑝3, and 𝑝4 subgroups. It suffices
to consider the distribution of 𝐴𝑖∗ :

• Suppose 𝑍 = (𝑔1𝑔4𝑔6)𝑡 for 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb3 with 𝛼𝑖∗ = 𝑡 mod 𝑝1𝑝4𝑝6. Thus,
algorithm B outputs 1 with probability Pr[E3,1].

• Suppose 𝑍 = (𝑔1𝑔2𝑔4𝑔6)𝑡 for 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb2 with 𝛼𝑖∗ = 𝑡 mod 𝑝1𝑝4𝑝6. In
this case, algorithm B outputs 1 with probability Pr[E4,1].

We conclude that B succeeds with probability 𝜀 and the claim holds. □

Claim 6.16. If the subgroup decision assumption holds with respect to CompGroupGen, then Pr[E4,1∧¬E4,2] = negl(𝜆).

Proof. Suppose Pr[E4,1 ∧ ¬E4,2] ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an adversary B that breaks
the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {3, 6} and 𝑆1 = {2, 3, 6} and the sets {1}, {3}, {4}, {5},
{6}, {2, 3}, {2, 6}.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑋23, 𝑋26, 𝑍) where 𝑔𝑖 is a random generator of G𝑖 ,
𝑋23

r← G({2, 3}), and 𝑋26
r← G({2, 6}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 =


(𝑔1𝑔4)𝛼𝑖∗𝑋26 𝑖 = 𝑖∗

(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

(𝑔1𝑔4𝑋23)𝛼𝑖 𝑖 ∈ 𝑆 \ {𝑖∗}
and 𝐵𝑖 =

{
(𝑔1𝑔5𝑔6)𝛽𝑖∗ 𝑖 = 𝑖∗

(𝑔1𝑔5)𝛽𝑖 𝑖 ≠ 𝑖∗
and 𝐶𝑖, 𝑗 =


𝑔
𝛼𝑖𝛽 𝑗

1 (𝑋23𝑔4𝑔5)𝑟𝑖,𝑗 𝑖, 𝑗 ≠ 𝑖∗

𝐴
𝛽 𝑗

𝑖∗ (𝑋23𝑔4𝑔5)𝑟𝑖∗, 𝑗 𝑖 = 𝑖∗

𝐵
𝛼𝑖
𝑖∗ (𝑋23𝑔4𝑔5)𝑟𝑖,𝑖∗ 𝑗 = 𝑖∗ .

It samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛], and sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 =

{
𝑔
𝛼𝑖𝛽

∗

1 (𝑋23𝑔4𝑔5)𝑟
∗
𝑖 𝑖 ≠ 𝑖∗

𝐴
𝛽∗

𝑖∗ (𝑋23𝑔4𝑔5)𝑟
∗
𝑖∗ 𝑖 = 𝑖∗ .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,𝑢), algorithm B outputs 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔3) = 1 and 𝑒 (ℎ, 𝑍) = 1.

We first argue that algorithm B correctly simulates an execution of Hyb4 for A. First, we can write 𝑋23 = (𝑔2𝑔3)𝛾23

and 𝑋26 = (𝑔2𝑔6)𝛾26 , where 𝛾23, 𝛾26
r← Z𝑁 . With overwhelming probability, 𝛾23 is non-zero in the 𝑝2 and 𝑝3 subgroups.

In the following, we will assume this is the case. Since the challenger samples 𝑟𝑖, 𝑗 , 𝑟 ∗𝑖
r← Z𝑁 and each of these values

is used exactly once in the construction of hk, the distributions of 𝐶𝑖, 𝑗 and 𝐷𝑖 are distributed exactly as required
in Hyb4. Similarly, the distribution of 𝐴𝑖∗ coincides with setting 𝛼𝑖∗ mod 𝑝2𝑝6 as 𝛾26 mod 𝑝2𝑝6 and 𝛼𝑖 mod 𝑝2𝑝3 as

72

𝛼𝑖𝛾23 mod 𝑝2𝑝3. Since each 𝛼𝑖
r← Z𝑁 and 𝛾26

r← Z𝑁 , this matches the distribution in Hyb4. Thus, with probability at
least 𝜀 − negl(𝜆), algorithm B outputs dig = (ℎ,𝑢) such that

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔3) = 1 and 𝑒 (ℎ,𝑔2) ≠ 1. (6.1)

Suppose Eq. (6.1) holds. We first claim that with overwhelming probability, 𝑒 (ℎ,𝑔6) = 1. Suppose otherwise. If
𝛽𝑖∗ ≠ 0 mod 𝑝6 (which happens with overwhelming probability), then 𝐵𝑖∗ is non-zero in the order 𝑝6 subgroup. If
𝑒 (ℎ,𝑔6) ≠ 1, then 𝑒 (ℎ, 𝐵𝑖∗) is non-zero in the 𝑝6 subgroup. By construction 𝑒 (𝑔1, 𝜎) is necessarily 0 in the 𝑝6 subgroup,
so it can no longer be the case that 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎). Now consider the probability that B outputs 1:

• Suppose 𝑍 = (𝑔3𝑔6)𝑡 for some 𝑡 r← Z𝑁 . As argued previously, with overwhelming probability, if Eq. (6.1) holds,
then 𝑒 (ℎ,𝑔6) = 1. Since 𝑒 (ℎ,𝑔3) = 1, this means 𝑒 (ℎ, 𝑍) = 1 and algorithm B outputs 1 with overwhelming
probability.

• Suppose 𝑍 = (𝑔2𝑔3𝑔6)𝑡 for some 𝑡 r← Z𝑁 . Since 𝑒 (ℎ,𝑔2) ≠ 1, then 𝑒 (ℎ, 𝑍) ≠ 1 so long as 𝑡 ≠ 0 mod 𝑝2, which
holds with overwhelming probability. Thus, in this case, algorithm B outputs 1 with negligible probability.

We now compute the advantage of B. We consider three possibilities:

• Suppose A outputs (ℎ,𝑢) such that 𝑒 (ℎ, 𝐵𝑖∗) ≠ 𝑒 (𝑔1, 𝜎) or 𝑒 (ℎ,𝑔3) ≠ 1. Then, the output of B is always 0.

• SupposeA outputs (ℎ,𝑢) such that 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔3) = 1 and 𝑒 (ℎ,𝑔2) = 1. By the previous analysis,
if 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎), then 𝑒 (ℎ,𝑔6) = 1 with overwhelming probability. Since 𝑍 = (𝑔3𝑔6)𝑡 or 𝑍 = (𝑔2𝑔3𝑔6)𝑡 , this
means that B outputs 1 with overwhelming probability regardless for both possible values of 𝑍 .

• Suppose A outputs (ℎ,𝑢) such that 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔3) = 1 and (ℎ,𝑔2) ≠ 1. By the earlier analysis,
this case occurs with probability at least 𝜀 − negl(𝜆), and in this case, algorithm B outputs 1 with probability
1 − negl(𝜆) if 𝑍 = (𝑔3𝑔6)𝑡 and with probability negl(𝜆) if 𝑍 = (𝑔2𝑔3𝑔6)𝑡 .

Let 𝜌1, 𝜌2, 𝜌3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupB (𝜆, 0) = 1] = 𝜌2 (1 − negl(𝜆)) + 𝜌3 · (1 − negl(𝜆))
Pr[ExptSubgroupB (𝜆, 1) = 1] = 𝜌2 (1 − negl(𝜆)) + 𝜌3 · negl(𝜆)

The advantage of B is thus 𝜌3 − negl(𝜆) ≥ 𝜀 − negl(𝜆), and the claim holds. □

To complete the proof we have that

Pr[Hyb4 (A) = 1] = Pr[E4,1 ∧ E4,2]
= Pr[E4,1] − Pr[E4,1 ∧ ¬E4,2]
≥ Pr[E4,1] − negl(𝜆) by Claim 6.16
≥ Pr[E3,1] − negl(𝜆) by Claim 6.15,

and Lemma 6.14 follows. □

Lemma 6.17. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb5 (A) = 1] ≥ Pr[Hyb4 (A) = 1] − negl(𝜆).

Proof. The proof follows by a similar argument as that of Lemma 6.14. Let dig = (ℎ,𝑢) be the digest output by A in
an execution of Hyb4 and Hyb5. For an index 𝑖 ∈ {4, 5}, we define events E𝑖,1 and E𝑖,2 as in the proof of Lemma 6.14
(changes marked in green):

• E𝑖,1: This is the event 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2) = 1 occurring in Hyb𝑖 .

• E𝑖,2: This is the event that 𝑒 (ℎ,𝑔3) = 1 occurring in Hyb𝑖 .

73

By definition, the output in Hyb𝑖 is 1 if and only if both events E𝑖,1 and E𝑖,2 occur. To complete the proof, we start by
showing the following two properties: (1)

��Pr[E4,1] − Pr[E5,1]
�� = negl(𝜆); and (2) Pr[E5,1 ∧ ¬E5,2] = negl(𝜆).

Claim 6.18. If the subgroup decision assumption holds with respect to CompGroupGen, then
��Pr[E4,1] − Pr[E5,1]

�� =
negl(𝜆).

Proof. Suppose
��Pr[E4,1] − Pr[E5,1]

�� ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {1, 2, 4, 6} and 𝑆1 = {1, 2, 3, 4, 6} and the sets {1}, {2},
{4}, {5}, {6}, {2, 3, 4}.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔2, 𝑔4, 𝑔5, 𝑔6, 𝑋234, 𝑍) where 𝑔𝑖 is a random generator of G𝑖 and
𝑋234

r← G({2, 3, 4}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 =


𝑍 𝑖 = 𝑖∗

(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

(𝑔1𝑋234)𝛼𝑖 𝑖 ∈ 𝑆 \ {𝑖∗}
and 𝐵𝑖 =

{
(𝑔1𝑔5𝑔6)𝛽𝑖∗ 𝑖 = 𝑖∗

(𝑔1𝑔5)𝛽𝑖 𝑖 ≠ 𝑖∗
and 𝐶𝑖, 𝑗 =


𝑔
𝛼𝑖𝛽 𝑗

1 (𝑋234𝑔5)𝑟𝑖,𝑗 𝑖, 𝑗 ≠ 𝑖∗

𝐴
𝛽 𝑗

𝑖∗ (𝑋234𝑔5)𝑟𝑖∗, 𝑗 𝑖 = 𝑖∗

𝐵
𝛼𝑖
𝑖∗ (𝑋234𝑔5)𝑟𝑖,𝑖∗ 𝑗 = 𝑖∗ .

It samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛], and sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 =

{
𝑔
𝛼𝑖𝛽

∗

1 (𝑋234𝑔5)𝑟
∗
𝑖 𝑖 ≠ 𝑖∗

𝐴
𝛽∗

𝑖∗ (𝑋234𝑔5)𝑟
∗
𝑖∗ 𝑖 = 𝑖∗ .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,𝑢), algorithm B outputs 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2) = 1.

We first argue that B correctly simulates the hash key according to the specification of Hyb4 and Hyb5. First, we can
write 𝑋234 = (𝑔2𝑔3𝑔4)𝛾234 where 𝛾234

r← Z𝑁 . Since the challenger samples 𝑟𝑖, 𝑗 and 𝑟 ∗𝑖
r← Z𝑁 and each of these values

is used exactly once in the construction of hk, the distributions of 𝐶𝑖, 𝑗 and 𝐷𝑖 are distributed exactly as they are in
Hyb4 and Hyb5 unless 𝛾234 is zero in the 𝑝2, 𝑝3, or 𝑝4 components. This happens with negligible probability over
the choice of 𝛾234. Similarly, 𝐴𝑖 for 𝑖 ∈ 𝑆 \ {𝑖∗} is distributed identically; the reduction algorithm effectively samples
𝛼𝑖 mod 𝑝2𝑝3𝑝4, 𝛼𝑖𝛾234 mod 𝑝2𝑝3𝑝4 which are identically distributed when 𝛼𝑖

r← Z𝑁 and 𝛾234 is non-zero in the 𝑝2, 𝑝3,
and 𝑝4 subgroups. It suffices to consider the distribution of A𝑖∗ :

• Suppose 𝑍 = (𝑔1𝑔2𝑔4𝑔6)𝑡 for 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb4 with 𝛼𝑖∗ = 𝑡 mod 𝑝1𝑝2𝑝4𝑝6.
Thus, algorithm B outputs 1 with probability Pr[E4,1].

• Suppose 𝑍 = (𝑔1𝑔2𝑔3𝑔4𝑔6)𝑡 for 𝑡 r← Z𝑁 . This corresponds to an execution ofHyb5 with 𝛼𝑖∗ = 𝑡 mod 𝑝1𝑝2𝑝3𝑝4𝑝6.
In this case, algorithm B outputs 1 with probability Pr[E5,1].

We conclude that B succeeds with probability 𝜀 and the claim holds. □

Claim 6.19. If the subgroup decision assumption holds with respect to CompGroupGen, then Pr[E5,1∧¬E5,2] = negl(𝜆).

Proof. Suppose Pr[E5,1 ∧ ¬E5,2] ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an adversary B that breaks
the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {2, 6} and 𝑆1 = {2, 3, 6} and the sets {1}, {2}, {4}, {5},
{6}, {2, 3}, {3, 6}.

74

2. The challenger replies with the challenge (G, 𝑔1, 𝑔2, 𝑔4, 𝑔5, 𝑔6, 𝑋23, 𝑋36, 𝑍) where 𝑔𝑖 is a random generator of G𝑖 ,
𝑋23

r← G({2, 3}), and 𝑋36
r← G({3, 6}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 =


(𝑔1𝑔2𝑔4)𝛼𝑖∗𝑋36 𝑖 = 𝑖∗

(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

(𝑔1𝑔4𝑋23)𝛼𝑖 𝑖 ∈ 𝑆 \ {𝑖∗}
and 𝐵𝑖 =

{
(𝑔1𝑔5𝑔6)𝛽𝑖∗ 𝑖 = 𝑖∗

(𝑔1𝑔5)𝛽𝑖 𝑖 ≠ 𝑖∗
and 𝐶𝑖, 𝑗 =


𝑔
𝛼𝑖𝛽 𝑗

1 (𝑋23𝑔4𝑔5)𝑟𝑖,𝑗 𝑖, 𝑗 ≠ 𝑖∗

𝐴
𝛽 𝑗

𝑖∗ (𝑋23𝑔4𝑔5)𝑟𝑖∗, 𝑗 𝑖 = 𝑖∗

𝐵
𝛼𝑖
𝑖∗ (𝑋23𝑔4𝑔5)𝑟𝑖,𝑖∗ 𝑗 = 𝑖∗ .

It samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛], and sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 =

{
𝑔
𝛼𝑖𝛽

∗

1 (𝑋23𝑔4𝑔5)𝑟
∗
𝑖 𝑖 ≠ 𝑖∗

𝐴
𝛽∗

𝑖∗ (𝑋23𝑔4𝑔5)𝑟
∗
𝑖∗ 𝑖 = 𝑖∗ .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,𝑢), algorithm B outputs 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2) = 1 and 𝑒 (ℎ, 𝑍) = 1.

We first argue that algorithm B correctly simulates an execution of Hyb4 for A. First, we can write 𝑋23 = (𝑔2𝑔3)𝛾23

and 𝑋36 = (𝑔3𝑔6)𝛾36 , where 𝛾23, 𝛾36
r← Z𝑁 . With overwhelming probability 𝛾23 is non-zero in the 𝑝2 and 𝑝3 subgroups.

In the following, we will assume this is the case. Since the challenger samples 𝑟𝑖, 𝑗 , 𝑟 ∗𝑖
r← Z𝑁 and each of these values

is used exactly once in the construction of hk, the distributions of 𝐶𝑖, 𝑗 and 𝐷𝑖 are distributed exactly as required in
Hyb5. Similarly, the distribution of 𝐴𝑖∗ coincides with setting 𝛼𝑖∗ mod 𝑝2𝑝3𝑝6 as 𝛾236 mod 𝑝2𝑝3𝑝6 and 𝛼𝑖 mod 𝑝2𝑝3 as
𝛼𝑖𝛾23 mod 𝑝2𝑝3. Since each 𝛼𝑖 r← Z𝑁 and 𝛾23, 𝛾236

r← Z𝑁 , this matches the distribution inHyb5. Thus, with probability
at least 𝜀 − negl(𝜆), algorithm B outputs dig = (ℎ,𝑢) such that

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2) = 1 and 𝑒 (ℎ,𝑔3) ≠ 1. (6.2)

Suppose Eq. (6.2) holds. We first claim that with overwhelming probability, 𝑒 (ℎ,𝑔6) = 1. Suppose otherwise. If
𝛽𝑖∗ ≠ 0 mod 𝑝6 (which happens with overwhelming probability), then 𝐵𝑖∗ is non-zero in the order 𝑝6 subgroup. If
𝑒 (ℎ,𝑔6) ≠ 1, then 𝑒 (ℎ, 𝐵𝑖∗) is non-zero in the 𝑝6 subgroup. By construction 𝑒 (𝑔1, 𝜎) is necessarily 0 in the 𝑝6 subgroup,
so it can no longer be the case that 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎). Now consider the probability that B outputs 1:

• Suppose 𝑍 = (𝑔2𝑔6)𝑡 for some 𝑡 r← Z𝑁 . As argued previously, with overwhelming probability, if Eq. (6.2)
holds, then 𝑒 (ℎ,𝑔6). Since 𝑒 (ℎ,𝑔2) = 1, this means 𝑒 (ℎ, 𝑍) = 1 and algorithm B outputs 1 with overwhelming
probability.

• Suppose 𝑍 = (𝑔2𝑔3𝑔6)𝑡 for some 𝑡 r← Z𝑁 . Since 𝑒 (ℎ,𝑔3) ≠ 1, then 𝑒 (ℎ, 𝑍) ≠ 1 so long as 𝑡 ≠ 0 mod 𝑝3, which
holds with overwhelming probability. Thus, in this case, algorithm B outputs 1 with negligible probability.

We now compute the advantage of B. We consider three possibilities:

• Suppose A outputs (ℎ,𝑢) such that 𝑒 (ℎ, 𝐵𝑖∗) ≠ 𝑒 (𝑔1, 𝜎) or 𝑒 (ℎ,𝑔2) ≠ 1. Then, the output of B is always 0.

• SupposeA outputs (ℎ,𝑢) such that 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2) = 1 and 𝑒 (ℎ,𝑔3) = 1. By the previous analysis,
if 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎), then 𝑒 (ℎ,𝑔6) = 1 with overwhelming probability. Since 𝑍 = (𝑔2𝑔6)𝑡 or 𝑍 = (𝑔2𝑔3𝑔6)𝑡 , this
means that B outputs 1 with overwhelming probability regardless for both possible values of 𝑍 .

• Suppose A outputs (ℎ,𝑢) such that 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2) = 1 and (ℎ,𝑔3) ≠ 1. By the earlier analysis,
this case occurs with probability at least 𝜀 − negl(𝜆), and in this case, algorithm B outputs 1 with probability
1 − negl(𝜆) if 𝑍 = (𝑔2𝑔6)𝑡 and with probability negl(𝜆) if 𝑍 = (𝑔2𝑔3𝑔6)𝑡 .

75

Let 𝜌1, 𝜌2, 𝜌3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupB (𝜆, 0) = 1] = 𝜌2 (1 − negl(𝜆)) + 𝜌3 · (1 − negl(𝜆))
Pr[ExptSubgroupB (𝜆, 1) = 1] = 𝜌2 (1 − negl(𝜆)) + 𝜌3 · negl(𝜆)

The advantage of B is thus 𝜌3 − negl(𝜆) ≥ 𝜀 − negl(𝜆), and the claim holds. □

To complete the proof we have that

Pr[Hyb5 (A) = 1] = Pr[E5,1 ∧ E5,2]
= Pr[E5,1] − Pr[E5,1 ∧ ¬E5,2]
≥ Pr[E5,1] − negl(𝜆) by Claim 6.19
≥ Pr[E4,1] − negl(𝜆) by Claim 6.18,

and Lemma 6.17 follows. □

Lemma 6.20. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb5 (A) = 1] − Pr[Hyb6 (A) = 1]
�� = negl(𝜆).

Proof. The proof is analogous to the proof of Lemma 6.13, except that the challenge subgroups are 𝑆0 = {1, 2, 3, 4}
and 𝑆1 = {1, 2, 3, 4, 6}. □

Lemma 6.21. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb6 (A) = 1] − Pr[Hyb7 (A) = 1]
�� = negl(𝜆).

Proof. The proof is analogous to the proof of Lemma 6.12, except that 𝐴𝑖∗ is now in G({1, 2, 3, 4}). □

Lemma 6.22. Pr[Hyb7 (A) = 1] = Pr[Hyb8 (A) = 1].

Proof. This follows by an analogous argument as the proof of Lemma 6.11. □

Combining Lemmas 6.11 to 6.14, 6.17 and 6.20 to 6.22, the index hiding with extracted guess property holds. □

Theorem 6.23 (Zero Fixing). If the general subgroup decision holds with respect to CompGroupGen, then Construc-
tion 6.3 satisfies selective zero-fixing.

Proof. LetA be an efficient adversary for the zero fixing game. We begin by defining a sequence of hybrid experiments:

• Hyb0: This is the selective version of the experiment ExptZFA (𝜆). Namely, the adversary starts by outputting
an input length 1𝑛 , a set 𝑆 ⊆ [𝑛], and an index 𝑖∗ ∈ 𝑆 . The challenger samples (G,G𝑇 , {𝑝𝑖 }𝑖∈[6] , 𝑔, 𝑒) ←
CompGroupGen(1𝜆). It samples generators 𝑔𝑖 r← G𝑖 and sets G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) where 𝑁 =

∏
𝑖∈[6] 𝑝𝑖 . It

constructs the hash key components as follows:

– Main components: For each 𝑖 ∈ [𝑛], sample 𝛼𝑖 , 𝛽𝑖 r← Z𝑁 Set 𝐴𝑖 = (𝑔1𝑔4)𝛼𝑖 if 𝑖 ∉ 𝑆 and 𝐴𝑖 = (𝑔1𝑔2𝑔3𝑔4)𝛼𝑖
if 𝑖 ∈ 𝑆 . Then, set 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 .

– Cross-terms: For each 𝑖, 𝑗 ∈ [𝑛] where 𝑖 ≠ 𝑗 , sample 𝑟𝑖, 𝑗 r← Z𝑁 and let 𝐶𝑖, 𝑗 = 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 .
– Digest validation components: Sample 𝛽∗ r← Z𝑁 and let 𝐵∗ = (𝑔1𝑔5)𝛽

∗ . For each 𝑖 ∈ [𝑛], sample
𝑟 ∗𝑖

r← Z𝑁 and let 𝐷𝑖 = 𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 .

The challenger gives the hash key hk and verification key vk to A where

hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
.

Algorithm A then outputs a digest dig = (ℎ,𝑢) and an opening 𝜎 . The output of the experiment is 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2𝑔3) = 1.

76

• Hyb1: Same as Hyb0 except the challenger now sets 𝐶𝑖∗, 𝑗 = 𝐴
𝛽 𝑗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖∗, 𝑗 for all 𝑗 ≠ 𝑖∗ and 𝐶𝑖,𝑖∗ =

𝐵
𝛼𝑖
𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗ for all 𝑖 ≠ 𝑖∗. Similarly, the challenger sets 𝐷𝑖∗ = 𝐴

𝛽∗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 . In particular, the exponents

𝛼𝑖∗ and 𝛽𝑖∗ only shows up in 𝐴𝑖∗ and 𝐵𝑖∗ , respectively.

• Hyb2: Same as Hyb1 except the challenger now sets 𝐵𝑖∗ = (𝑔1𝑔5𝑔6)𝛽𝑖∗ .

• Hyb3: Same as Hyb2 except the challenger now sets 𝐴𝑖∗ = (𝑔1𝑔2𝑔3𝑔4𝑔6)𝛼𝑖∗

• Hyb4: Same as Hyb3 except the experiment outputs 0 if 𝑒 (ℎ,𝑔6) ≠ 1.

We write Hyb𝑖 (A) to denote the output of an execution of Hyb𝑖 with adversary A. We now analyze each pair of
adjacent hybrid experiments.

Lemma 6.24. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1]

Proof. This follows by the same argument as in the proof of Lemma 6.11. □

Lemma 6.25. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(𝜆).

Proof. Suppose there exists an adversary A where
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� ≥ 𝜀 (𝜆) for some non-
negligible 𝜀. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {1, 5} and 𝑆1 = {1, 5, 6} and the sets {1}, {2}, {3}, {4},
{5} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑍), where𝑔𝑖 is used to denote the random generator
of G𝑖 .

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 , a set 𝑆 ⊆ [𝑛] and an index 𝑖∗ ∈ 𝑆 .
Algorithm B samples 𝛼𝑖 r← Z𝑁 , 𝛽𝑖 r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 =

{
(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

(𝑔1𝑔2𝑔3𝑔4)𝛼𝑖 𝑖 ∈ 𝑆
and 𝐵𝑖 =

{
𝑍 𝑖 = 𝑖∗

(𝑔1𝑔5)𝛽𝑖 𝑖 ≠ 𝑖∗
and 𝐶𝑖, 𝑗 =


𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 𝑖, 𝑗 ≠ 𝑖∗

𝐴
𝛽 𝑗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖∗, 𝑗 𝑖 = 𝑖∗

𝐵
𝛼𝑖
𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗ 𝑗 = 𝑖∗ .

Next, it samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛]. It sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 =

{
𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 𝑖 ≠ 𝑖∗

𝐴
𝛽∗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖∗ 𝑖 = 𝑖∗ .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ℎ,𝑢) and an opening 𝜎 . Algorithm B outputs 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2𝑔3) = 1.

The subgroup decision challenger samples the generators 𝑔𝑖 r← G𝑖 exactly as in Hyb1 and Hyb2. Moreover, all of the
components other than 𝐵𝑖∗ is constructed exactly as described in Hyb1 and Hyb2. Thus, it suffices to consider the
distribution of 𝐵∗. We consider the two possibilities:

• Suppose 𝑍 = (𝑔1𝑔5)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb1 with 𝛽𝑖∗ = 𝑡 . In this case,
algorithm B outputs 1 with probability Pr[Hyb1 (A) = 1].

• Suppose 𝑍 = (𝑔1𝑔5𝑔6)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb2 with 𝛽𝑖∗ = 𝑡 . In this case,
algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

77

We conclude that algorithm B succeeds with probability 𝜀 and the claim holds. □

Lemma 6.26. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]
�� = negl(𝜆).

Proof. Suppose there exists an adversary A where
��Pr[Hyb2 (A) = 1] − Pr[Hyb3 (A) = 1]

�� ≥ 𝜀 (𝜆) for some non-
negligible 𝜀. We use A to construct an adversary B that breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {1, 2, 3, 4} and 𝑆1 = {1, 2, 3, 4, 6} and the sets {1}, {2},
{3}, {4}, {5}, {1, 6} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑋16, 𝑍), where 𝑔𝑖 is used to denote the random
generator of G𝑖 and 𝑋16

r← G({1, 6}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 =


𝑍 𝑖 = 𝑖∗

(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

(𝑔1𝑔2𝑔3𝑔4)𝛼𝑖 𝑖 ∈ 𝑆 \ {𝑖∗}
and 𝐵𝑖 =

{
𝑋16𝑔

𝛽𝑖∗
5 𝑖 = 𝑖∗

(𝑔1𝑔5)𝛽𝑖 𝑖 ≠ 𝑖∗
and 𝐶𝑖, 𝑗 =


𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 𝑖, 𝑗 ≠ 𝑖∗

𝐴
𝛽 𝑗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖∗, 𝑗 𝑖 = 𝑖∗

𝐵
𝛼𝑖
𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗ 𝑗 = 𝑖∗ .

Next, it samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛]. It sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 =

{
𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 𝑖 ≠ 𝑖∗

𝐴
𝛽∗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖∗ 𝑖 = 𝑖∗ .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ℎ,𝑢) and an opening 𝜎 . Algorithm B outputs 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2𝑔3) = 1.

The subgroup decision challenger samples the generators 𝑔𝑖 r← G𝑖 exactly as in Hyb2 and Hyb3. We can write
𝑋16 = (𝑔1𝑔6)𝛾16 where 𝛾16

r← Z𝑁 . The value 𝛾16 mod 𝑝1𝑝6 corresponds to the value of 𝛽𝑖∗ mod 𝑝1𝑝6 in Hyb2 and Hyb3.
The remaining components other than𝐴𝑖∗ are sampled exactly as required in Hyb2 and Hyb3, so it suffices to consider
𝐴𝑖∗ . We consider the two possibilities:

• Suppose 𝑍 = (𝑔1𝑔2𝑔3𝑔4)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb1 with 𝛼𝑖∗ = 𝑡 . In this case,
algorithm B outputs 1 with probability Pr[Hyb2 (A) = 1].

• Suppose 𝑍 = (𝑔1𝑔2𝑔3𝑔4𝑔6)𝑡 where 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb3 with 𝛼𝑖∗ = 𝑡 . In this case,
algorithm B outputs 1 with probability Pr[Hyb3 (A) = 1].

We conclude that algorithm B succeeds with probability 𝜀 and the claim holds. □

Lemma 6.27. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that��Pr[Hyb3 (A) = 1] − Pr[Hyb4 (A) = 1]
�� = negl(𝜆).

Proof. Suppose there exists an adversary A where
��Pr[Hyb3 (A) = 1] − Pr[Hyb4 (A) = 1]

�� ≥ 𝜀 (𝜆) for some non-
negligible 𝜀. Since the only difference between Hyb3 and Hyb4 is the extra condition, it must be the case that with
probability 𝜀, algorithm A outputs (ℎ,𝑢, 𝜎) such that

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2𝑔3) = 1 and 𝑒 (ℎ,𝑔6) ≠ 1. (6.3)

In all other cases, the output in Hyb3 and Hyb4 are identical. We use A to construct an adversary B for the general
subgroup decision assumption:

78

1. At the beginning of the game, algorithm B submits 𝑆0 = {2, 3, 5} and 𝑆1 = {2, 3, 5, 6} and the sets {1}, {2}, {3},
{4}, {5}, {2, 6} , {5, 6} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑋26, 𝑋56, 𝑍), where 𝑔𝑖 is used to denote the random
generator of G𝑖 , 𝑋26

r← G({2, 6}), and 𝑋56
r← G({5, 6}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 =


(𝑔1𝑔3𝑔4)𝛼𝑖∗𝑋26 𝑖 = 𝑖∗

(𝑔1𝑔4)𝛼𝑖 𝑖 ∉ 𝑆

(𝑔1𝑔2𝑔3𝑔4)𝛼𝑖 𝑖 ∈ 𝑆 \ {𝑖∗}
and 𝐵𝑖 =

{
𝑔
𝛽𝑖∗
1 𝑋56 𝑖 = 𝑖∗

(𝑔1𝑔5)𝛽𝑖 𝑖 ≠ 𝑖∗
and 𝐶𝑖, 𝑗 =


𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 𝑖, 𝑗 ≠ 𝑖∗

𝐴
𝛽 𝑗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖∗, 𝑗 𝑖 = 𝑖∗

𝐵
𝛼𝑖
𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑖∗ 𝑗 = 𝑖∗ .

Next, it samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛]. It sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 =

{
𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 𝑖 ≠ 𝑖∗

𝐴
𝛽∗

𝑖∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖∗ 𝑖 = 𝑖∗ .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. Algorithm A outputs a digest dig = (ℎ,𝑢) and an opening 𝜎 . Algorithm B outputs 1 if

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2𝑔3) = 1 and 𝑒 (ℎ, 𝑍) = 1.

The subgroup decision challenger samples the generators 𝑔𝑖 r← G𝑖 exactly as in Hyb3 and Hyb4. We can write
𝑋26 = (𝑔2𝑔6)𝛾26 and 𝑋56 = (𝑔5𝑔6)𝛾56 where 𝛾26, 𝛾56

r← Z𝑁 . The value 𝛾26 mod 𝑝1𝑝6 corresponds to the value of
𝛼𝑖∗ mod 𝑝2𝑝6 while the value 𝛾56 corresponds to the value of 𝛽𝑖∗ mod 𝑝5𝑝6. Thus, algorithm B perfectly simulates
the hash key for algorithm A. Thus, with probability at least 𝜀 − negl(𝜆), algorithm A outputs (ℎ,𝑢, 𝜎) that satisfies
Eq. (6.3). Then, we have the following:

• It must be the case that 𝑒 (ℎ,𝑔5) = 1. Suppose otherwise. This means that ℎ is non-zero in the 𝐺5 subgroup.
Consider the first verification condition 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎). If ℎ is non-zero in the G5 component,
then the left-hand side 𝑒 (ℎ, 𝐵𝑖∗) is non-zero in the order-𝑝5 subgroup unless 𝛾56 = 0 mod 𝑝5, which happens
with negligible probability. However, the right-hand side is guaranteed to be zero in the order 𝑝5 subgroup
(since neither 𝐴𝑖∗ nor 𝑔1 have non-zero components in G5).

• Suppose 𝑍 = (𝑔2𝑔3𝑔5)𝑡 for some 𝑡 r← Z𝑁 . Since 𝑒 (ℎ,𝑔2𝑔3) = 1 and 𝑒 (ℎ,𝑔5) = 1, this means that 𝑒 (𝑔, 𝑍) = 1 and
algorithm B always outputs 1.

• Suppose 𝑍 = (𝑔2𝑔3𝑔5𝑔6)𝑡 for some 𝑡 r← Z𝑁 . From Eq. (6.3), we have that 𝑒 (ℎ,𝑔6) ≠ 1, so ℎ has a non-zero
component in the𝐺6 subgroup. As long as 𝑡 mod 𝑝6 is non-zero (which happens with overwhelming probability),
then 𝑒 (ℎ, 𝑍) ≠ 1. In this case, algorithm B outputs 1 with negligible probability.

We have established that when Eq. (6.3) holds, algorithm B is able to successfully distinguish the subgroup decision
challenge. To complete the proof, we show that when Eq. (6.3) does not hold,9 then algorithm B’s behavior is
independent of the challenge 𝑍 .

1. SupposeA outputs (ℎ,𝑢, 𝜎) where either 𝑒 (ℎ, 𝐵𝑖∗) ≠ 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) ·𝑒 (𝑔1, 𝜎) or 𝑒 (ℎ,𝑔2𝑔3) ≠ 1. In this case, algorithm
B always outputs 0.

9Note that algorithm B cannot check for itself whether Eq. (6.3) occurs or not since it does not know 𝑔6 (and indeed, knowledge of 𝑔6 would
trivially break the subgroup decision assumption). Thus, our proof strategy is simply to argue that when Eq. (6.3) does not happen, then the
behavior of algorithm B is independent of the challenge 𝑍 .

79

2. Suppose A outputs (ℎ,𝑢, 𝜎) where 𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎), 𝑒 (ℎ,𝑔2𝑔3) = 1, and 𝑒 (ℎ,𝑔6) = 1. Since
𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎), our earlier analysis implies that with overwhelming probability over the choice
of 𝛾56, 𝑒 (ℎ,𝑔5) = 1. Thus, in this case, 𝑒 (ℎ,𝑔2𝑔3𝑔5𝑔6) = 1, so 𝑒 (ℎ, 𝑍) = 1 for both possible choice of 𝑍 . As such,
algorithm B always outputs 1 in this case.

3. Finally, suppose A outputs (ℎ,𝑢, 𝜎) that satisfies Eq. (6.3). By our analysis above, algorithm B outputs 1 with
probability 1 when 𝑍 = (𝑔2𝑔3𝑔5)𝑡 and probability negl(𝜆) when 𝑍 = (𝑔2𝑔3𝑔5𝑔6)𝑡 .

If we let 𝜌1, 𝜌2, 𝜌3 be the probabilities of each of these possible cases, then we have

Pr[ExptSubgroupB (𝜆, 0) = 1] = 𝜌2 + 𝜌3

Pr[ExptSubgroupB (𝜆, 1) = 1] = 𝜌2 + 𝜌3 · negl(𝜆)

The advantage of B is thus 𝜌3 (1− negl(𝜆)). By our above analysis, we have that 𝜌3 ≥ 𝜀 − negl(𝜆) and so algorithm B
breaks the general subgroup decision assumption with advantage at least 𝜀 − negl(𝜆). □

Lemma 6.28. Pr[Hyb4 (A) = 1] = negl(𝜆).

Proof. In order for the output of Hyb4 to be 1, the adversary A must output (ℎ,𝑢, 𝜎) such that

𝑒 (ℎ, 𝐵𝑖∗) = 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) · 𝑒 (𝑔1, 𝜎) and 𝑒 (ℎ,𝑔2𝑔3) = 1 and 𝑒 (ℎ,𝑔6) = 1.

We claim that this can only happen with negligible probability over the choice of 𝛼𝑖∗ and 𝛽𝑖∗ . By construction in
Hyb4, as long as 𝛼𝑖∗ , 𝛽𝑖∗ ≠ 0 mod 𝑝6 (which holds with overwhelming probability), 𝑒 (𝐴𝑖∗ , 𝐵𝑖∗) will have a non-zero
component in the order 𝑝6-subgroup. However, if 𝑒 (ℎ,𝑔6) = 1, then ℎ is zero in the order 𝑝6-subgroup. Likewise,
𝑒 (𝑔1, 𝜎) does not have an order 𝑝6 subgroup. This means the left-hand side of the verification relation is zero in the
order-𝑝6 subgroup while the right-hand side is non-zero. As such, the verification relation is unsatisfiable as long as
𝛼𝑖∗ , 𝛽𝑖∗ ≠ 0 mod 𝑝6. □

Combining Lemmas 6.24 to 6.28, we have that Pr[Hyb0 (A) = 1] = negl(𝜆), and zero fixing security holds. □

Theorem 6.29 (Extractor Validity). If the general subgroup decision holds with respect to CompGroupGen, then
Construction 6.3 satisfies extractor validity.

Proof. Let A be an efficient adversary for the extractor validity game. We begin by defining a sequence of hybrid
experiments:

• Hyb0: This is experiment ExptEVA (𝜆). Namely, the adversary starts by outputting an input length 1𝑛 . The
challenger samples (G,G𝑇 , {𝑝𝑖 }𝑖∈[6] , 𝑔, 𝑒) ← CompGroupGen(1𝜆). It samples generators 𝑔𝑖 r← G𝑖 and sets
G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒), where 𝑁 =

∏
𝑖∈[6] 𝑝𝑖 . It constructs the hash key components as follows:

– Main components: For each 𝑖 ∈ [𝑛], sample 𝛼𝑖 , 𝛽𝑖 r← Z𝑁 Set 𝐴𝑖 = (𝑔1𝑔4)𝛼𝑖 and 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 .

– Cross-terms: For each 𝑖, 𝑗 ∈ [𝑛] where 𝑖 ≠ 𝑗 , sample 𝑟𝑖, 𝑗 r← Z𝑁 and let 𝐶𝑖, 𝑗 = 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟𝑖,𝑗 .
– Digest validation components: Sample 𝛽∗ r← Z𝑁 and let 𝐵∗ = (𝑔1𝑔5)𝛽

∗ . For each 𝑖 ∈ [𝑛], sample
𝑟 ∗𝑖

r← Z𝑁 and let 𝐷𝑖 = 𝑔
𝛼𝑖𝛽

∗

1 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 .

The challenger gives the hash key hk and verification key vk to A where

hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
.

Algorithm A then outputs a digest dig = (ℎ,𝑢) and the output of the experiment is 1 if

𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔2𝑔3) ≠ 1.

• Hyb1: Same as Hyb0, except the challenger now sets 𝐷𝑖 = (𝐵∗)𝛼𝑖 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 for all 𝑖 ∈ [𝑛]. In particular, the

exponent 𝛽∗ only shows up in the definition of 𝐵∗.

80

• Hyb2: Same as Hyb1, except the challenger now sets 𝐵∗ = (𝑔1𝑔2𝑔5)𝛽
∗ .

• Hyb3: Same as Hyb2, except the challenger now sets 𝐵∗ = (𝑔1𝑔2𝑔3𝑔5)𝛽
∗ .

We write Hyb𝑖 (A) to denote the output of an execution of Hyb𝑖 with adversary A. We now analyze each pair of
adjacent hybrid experiments.

Lemma 6.30. Pr[Hyb0 (A) = 1] = Pr[Hyb1 (A) = 1]

Proof. The outputs of Hyb0 (A) and Hyb1 (A) are identically distributed. The only difference between these two
distributions is the distribution of 𝐷𝑖 . According to the specification of Hyb1,

𝐷𝑖 = (𝐵∗)𝛼𝑖 (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 = (𝑔1𝑔5)𝛼𝑖𝛽

∗ (𝑔2𝑔3𝑔4𝑔5)𝑟
∗
𝑖 = 𝑔

𝛼𝑖𝛽
∗

1 (𝑔2𝑔3𝑔4)𝑟
∗
𝑖 𝑔

𝑟 ∗𝑖 +𝛼𝑖𝛽∗
5 .

Since 𝑟 ∗𝑖
r← Z𝑁 (and independent of all other quantities in hk, vk), the distribution of 𝑟 ∗𝑖 + 𝛼𝑖𝛽∗ mod 𝑝5 is uniform

over Z𝑝5 . We conclude that the distribution of 𝐷𝑖 in Hyb1 is distributed exactly as in Hyb0. □

Lemma 6.31. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb1 (A) = 1] ≤ Pr[Hyb2 (A) = 1] + negl(𝜆).

Proof. Let dig = (ℎ,𝑢) be the digest output byA in an execution of Hyb1 and Hyb2. For an index 𝑖 ∈ {1, 2}, we define
events E𝑖,1 and E𝑖,2:

• E𝑖,1: This is the event 𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔3) ≠ 1 occurring in Hyb𝑖 .

• E𝑖,2: This is the event 𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔3) = 1 and 𝑒 (ℎ,𝑔2) ≠ 1 occurring in Hyb𝑖 .

If the output of Hyb𝑖 is 1, exactly one of E𝑖,1 or E𝑖,2 must happen (note that these events are mutually exclusive). Thus,
for 𝑖 ∈ {1, 2}, we can write

Pr[Hyb𝑖 (A) = 1] = Pr[E𝑖,1] + Pr[E𝑖,2] . (6.4)

We now analyze the probabilities of these events:

Claim 6.32. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
| Pr[E1,1] − Pr[E2,1] | = negl(𝜆).

Proof. Suppose | Pr[E1,1] − Pr[E2,1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {5} and 𝑆1 = {2, 5} and the sets {1}, {3}, {4}, {5},
{2, 5}.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔3, 𝑔4, 𝑔5, 𝑋25, 𝑍) where 𝑔𝑖 is a random generator of G𝑖 , 𝑋25
r←

G({2, 5}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 = (𝑔1𝑔4)𝛼𝑖 and 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 and 𝐶𝑖, 𝑗 = 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑋25𝑔3𝑔4)𝑟𝑖,𝑗 .

It samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛], and sets

𝐵∗ = 𝑔
𝛽∗

1 𝑍 and 𝐷𝑖 = (𝐵∗)𝛼𝑖 (𝑋25𝑔3𝑔4)𝑟
∗
𝑖 .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,𝑢), algorithm B outputs 1 if

𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔3) ≠ 1.

81

We first argue that B correctly simulates the hash key according to the specification of Hyb1 and Hyb2. First, we can
write 𝑋25 = (𝑔2𝑔5)𝛾25 where 𝛾25

r← Z𝑁 . Since the challenger samples 𝑟𝑖, 𝑗 and 𝑟 ∗𝑖
r← Z𝑁 and each of these values is

used exactly once in the construction of hk, the distributions of𝐶𝑖, 𝑗 and 𝐷𝑖 are distributed exactly as they are in Hyb1
and Hyb2 unless 𝛾25 is zero in the 𝑝2 or 𝑝5 components. This happens with negligible probability over the choice of
𝛾25. It suffices to consider the distribution of 𝐵∗:

• Suppose 𝑍 = 𝑔𝑡5 for 𝑡
r← Z𝑁 . This corresponds to an execution of Hyb1 with 𝛽∗ = 𝑡 mod 𝑝5. Thus, algorithm B

outputs 1 with probability Pr[E1,1].

• Suppose 𝑍 = (𝑔2𝑔5)𝑡 for 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb2 with 𝛽∗ = 𝑡 mod 𝑝2𝑝5. In this case,
algorithm B outputs 1 with probability Pr[E2,1].

We conclude that algorithm B succeeds with advantage 𝜀 − negl(𝜆) and the claim follows. □

Claim 6.33. If the general subgroup decision assumption holds with respect to CompGroupGen, then Pr[E1,2] = negl(𝜆).

Proof. Suppose Pr[E1,2] ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an adversary B that breaks the
general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {2, 3} and 𝑆1 = {3} and the sets {1}, {3}, {4}, {5},
{2, 3} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔3, 𝑔4, 𝑔5, 𝑋23, 𝑍) where 𝑔𝑖 is a random generator of G𝑖 and
𝑋23

r← G({2, 3}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 = (𝑔1𝑔4)𝛼𝑖 and 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 and 𝐶𝑖, 𝑗 = 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑋23𝑔4𝑔5)𝑟𝑖,𝑗 .

It samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛], and sets

𝐵∗ = (𝑔1𝑔5)𝛽
∗ and 𝐷𝑖 = (𝐵∗)𝛼𝑖 (𝑋23𝑔4𝑔5)𝑟

∗
𝑖 .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,𝑢), algorithm B output 1 if the following hold:

𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔3) = 1 and 𝑒 (ℎ, 𝑍) = 1.

We first argue that algorithm B correctly simulates an execution of Hyb1 for A. First, we can write 𝑋23 = (𝑔2𝑔3)𝛾23

where 𝛾23
r← Z𝑁 . Since the challenger samples 𝑟𝑖, 𝑗 , 𝑟 ∗𝑖

r← Z𝑁 and each of these values is used exactly once in the
construction of hk, the distributions of 𝐶𝑖, 𝑗 and 𝐷𝑖 are statistically close to that in Hyb1 unless 𝛾23 is zero in the 𝑝2 or
𝑝3 components. This happens with negligible probability over the choice of 𝛾23. In the following analysis, we assume
that 𝛾23 is non-zero in both its 𝑝2 and 𝑝3 components. Thus, with probability at least 𝜀 − negl(𝜆), algorithm B outputs
dig = (ℎ,𝑢) such that event E1,2 occurs. This means

𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔3) = 1 and 𝑒 (ℎ,𝑔2) ≠ 1. (6.5)

Suppose Eq. (6.5) holds. We consider the probability that B outputs 1:

• If𝑍 = (𝑔2𝑔3)𝑡 for some 𝑡 r← Z𝑁 and 𝑒 (ℎ,𝑔2) ≠ 1, then as long as 𝑡 ≠ 0 mod 𝑝2, it will be the case that 𝑒 (ℎ, 𝑍) ≠ 1,
so algorithm B outputs 0.

• If 𝑍 = 𝑔𝑡3 for some 𝑡 r← Z𝑁 and 𝑒 (ℎ,𝑔3) = 1, then algorithm B always outputs 1.

We now compute the advantage of B. We consider three possibilities:

82

1. Suppose A outputs (ℎ,𝑢) where either 𝑒 (ℎ, 𝐵∗) ≠ 𝑒 (𝑔1, 𝑢) or 𝑒 (ℎ,𝑔3) ≠ 1. Then, the output of B is always 0.

2. Suppose A outputs (ℎ,𝑢) where 𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢), 𝑒 (ℎ,𝑔3) = 1, and 𝑒 (ℎ,𝑔2) = 1. Since 𝑍 = (𝑔2𝑔3)𝑡 or 𝑍 = 𝑔𝑡3,
in both cases, 𝑒 (ℎ, 𝑍) = 1 and algorithm B always outputs 1.

3. Suppose A outputs (ℎ,𝑢) such that Eq. (6.5) holds. By the above analysis, this case happens with probability at
least 𝜀 − negl(𝜆). Then algorithm B outputs 1 with negligible probability if 𝑍 = (𝑔2𝑔3)𝑡 and with probability 1
if 𝑍 = 𝑔𝑡3.

Let 𝜌1, 𝜌2, 𝜌3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupB (𝜆, 0) = 1] = 𝜌2 + 𝜌3 · negl(𝜆)
Pr[ExptSubgroupB (𝜆, 1) = 1] = 𝜌2 + 𝜌3

The advantage of B is thus 𝜌3 (1 − negl(𝜆)) ≥ 𝜀 − negl(𝜆), and the claim holds. □

Returning to the proof of Lemma 6.31, we appeal to Eq. (6.4) to write

Pr[Hyb1 (A) = 1] = Pr[E1,1] + Pr[E1,2] by Eq. (6.4)
≤ Pr[E1,1] + negl(𝜆) by Claim 6.33
≤ Pr[E2,1] + negl(𝜆) by Claim 6.32
≤ Pr[E2,1] + Pr[E2,2] + negl(𝜆)
= Pr[Hyb2 (A) = 1] + negl(𝜆) by Eq. (6.4),

which proves the lemma. □

Lemma 6.34. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
Pr[Hyb2 (A) = 1] ≤ Pr[Hyb3 (A) = 1] + negl(𝜆).

Proof. This follows by a similar argument as the proof of Lemma 6.31. Let dig = (ℎ,𝑢) be the digest output by A in
an execution of Hyb2 and Hyb3. For an index 𝑖 ∈ {2, 3}, we define an analogous set of events E𝑖,1 and E𝑖,2 as in the
proof of Lemma 6.31 (changes marked in green):

• E𝑖,1: This is the event 𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔2) ≠ 1 occurring in Hyb𝑖 .

• E𝑖,2: This is the event 𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔2) = 1 and 𝑒 (ℎ,𝑔3) ≠ 1 occurring in Hyb𝑖 .
Once again, we can write Pr[Hyb𝑖 (A) = 1] Pr[E𝑖,1] + Pr[E𝑖,2]. We analyze the probabilities of each of these events:

Claim 6.35. If the general subgroup decision assumption holds with respect to CompGroupGen, then it holds that
| Pr[E2,1] − Pr[E3,1] | = negl(𝜆).

Proof. Suppose | Pr[E2,1] − Pr[E3,1] | ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an adversary B that
breaks the general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {5} and 𝑆1 = {3, 5} and the sets {1}, {2}, {4}, {5},
{3, 5}.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔2, 𝑔4, 𝑔5, 𝑋35, 𝑍) where 𝑔𝑖 is a random generator of G𝑖 , 𝑋35
r←

G({3, 5}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 = (𝑔1𝑔4)𝛼𝑖 and 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 and 𝐶𝑖, 𝑗 = 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑋35𝑔2𝑔4)𝑟𝑖,𝑗 .

It samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛], and sets

𝐵∗ = (𝑔1𝑔2)𝛽
∗
𝑍 and 𝐷𝑖 = (𝐵∗)𝛼𝑖 (𝑋35𝑔2𝑔4)𝑟

∗
𝑖 .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

83

4. After A outputs the digest dig = (ℎ,𝑢), algorithm B outputs 1 if

𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔2) ≠ 1.

We first argue that B correctly simulates the hash key according to the specification of Hyb2 and Hyb3. First, we can
write 𝑋35 = (𝑔3𝑔5)𝛾35 where 𝛾35

r← Z𝑁 . Since the challenger samples 𝑟𝑖, 𝑗 and 𝑟 ∗𝑖
r← Z𝑁 and each of these values is

used exactly once in the construction of hk, the distributions of𝐶𝑖, 𝑗 and 𝐷𝑖 are distributed exactly as they are in Hyb2
and Hyb3 unless 𝛾35 is zero in the 𝑝3 or 𝑝5 components. This happens with negligible probability over the choice of
𝛾35. It suffices to consider the distribution of 𝐵∗:

• Suppose 𝑍 = 𝑔𝑡5 for 𝑡
r← Z𝑁 . This corresponds to an execution of Hyb2 with 𝛽∗ = 𝑡 mod 𝑝5. Thus, algorithm B

outputs 1 with probability Pr[E2,1].

• Suppose 𝑍 = (𝑔2𝑔5)𝑡 for 𝑡 r← Z𝑁 . This corresponds to an execution of Hyb3 with 𝛽∗ = 𝑡 mod 𝑝2𝑝5. In this case,
algorithm B outputs 1 with probability Pr[E3,1].

We conclude that algorithm B succeeds with advantage 𝜀 − negl(𝜆) and the claim follows. □

Claim 6.36. If the general subgroup decision assumption holds with respect to CompGroupGen, then Pr[E2,2] = negl(𝜆).

Proof. Suppose Pr[E2,2] ≥ 𝜀 (𝜆) for some non-negligible 𝜀. We use A to construct an adversary B that breaks the
general subgroup decision assumption:

1. At the beginning of the game, algorithm B submits 𝑆0 = {2, 3} and 𝑆1 = {2} and the sets {1}, {2}, {4}, {5},
{2, 3} to the subgroup decision challenger.

2. The challenger replies with the challenge (G, 𝑔1, 𝑔2, 𝑔4, 𝑔5, 𝑋23, 𝑍) where 𝑔𝑖 is a random generator of G𝑖 and
𝑋23

r← G({2, 3}).

3. Algorithm B starts running algorithm A who outputs the input length 1𝑛 . Algorithm B samples 𝛼𝑖 r← Z𝑁 ,
𝛽𝑖

r← Z𝑁 , 𝑟𝑖, 𝑗 r← Z𝑁 for 𝑖, 𝑗 ∈ [𝑛]. It sets

𝐴𝑖 = (𝑔1𝑔4)𝛼𝑖 and 𝐵𝑖 = (𝑔1𝑔5)𝛽𝑖 and 𝐶𝑖, 𝑗 = 𝑔
𝛼𝑖𝛽 𝑗

1 (𝑋23𝑔4𝑔5)𝑟𝑖,𝑗 .

It samples 𝛽∗ r← Z𝑁 and 𝑟 ∗𝑖
r← Z𝑁 for each 𝑖 ∈ [𝑛], and sets

𝐵∗ = (𝑔1𝑔2𝑔5)𝛽
∗ and 𝐷𝑖 = (𝐵∗)𝛼𝑖 (𝑋23𝑔4𝑔5)𝑟

∗
𝑖 .

It sets hk = vk =
(
G, 𝑔1, {𝐴𝑖 , 𝐵𝑖 , 𝐷𝑖 }𝑖∈[𝑛], {𝐶𝑖, 𝑗 }𝑖≠𝑗 , 𝐵∗

)
and gives (hk, vk) to A.

4. After A outputs the digest dig = (ℎ,𝑢), algorithm B output 1 if the following hold:

𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔2) = 1 and 𝑒 (ℎ, 𝑍) = 1.

We first argue that algorithm B correctly simulates an execution of Hyb2 for A. First, we can write 𝑋23 = (𝑔2𝑔3)𝛾23

where 𝛾23
r← Z𝑁 . Since the challenger samples 𝑟𝑖, 𝑗 , 𝑟 ∗𝑖

r← Z𝑁 and each of these values is used exactly once in the
construction of hk, the distributions of 𝐶𝑖, 𝑗 and 𝐷𝑖 are statistically close to that in Hyb2 unless 𝛾23 is zero in the 𝑝2
or 𝑝3 component. This happens with negligible probability over the choice of 𝛾23, so in the following analysis, we
assume that this is not the case. Thus, with probability at least 𝜀 − negl(𝜆), algorithm B outputs dig = (ℎ,𝑢) such that

𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔2) = 1 and 𝑒 (ℎ,𝑔3) ≠ 1. (6.6)

Suppose Eq. (6.6) holds. We consider the probability that B outputs 1:

• If 𝑍 = (𝑔2𝑔3)𝑡 for some 𝑡 r← Z𝑁 and 𝑒 (ℎ,𝑔3) ≠ 1, then with overwhelming probability over the choice of 𝑡 ,
𝑒 (ℎ, 𝑍) ≠ 1, and algorithm B outputs 0.

84

• If 𝑍 = 𝑔𝑡2 for some 𝑡 r← Z𝑁 and 𝑒 (ℎ,𝑔2) = 1, so algorithm B outputs 1.

We now compute the advantage of B. We consider three possibilities:

1. Suppose A outputs (ℎ,𝑢) where either 𝑒 (ℎ, 𝐵∗) ≠ 𝑒 (𝑔1, 𝑢) or 𝑒 (ℎ,𝑔2) ≠ 1. Then, the output of B is always 0.

2. Suppose A outputs (ℎ,𝑢) where 𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢), 𝑒 (ℎ,𝑔2) = 1, and 𝑒 (ℎ,𝑔3) = 1. Since either 𝑍 = (𝑔2𝑔3)𝑡 or
𝑍 = 𝑔𝑡2, in both cases, 𝑒 (ℎ, 𝑍) = 1 and algorithm B outputs 1.

3. Suppose A outputs (ℎ,𝑢) such that Eq. (6.6) holds. By the above analysis, this case happens with probability at
least 𝜀 − negl(𝜆). Then algorithm B outputs 1 with negligible probability if 𝑍 = (𝑔2𝑔3)𝑡 and with probability 1
if 𝑍 = 𝑔𝑡2.

Let 𝜌1, 𝜌2, 𝜌3 be the probabilities of each of these cases. Then,

Pr[ExptSubgroupB (𝜆, 0) = 1] = 𝜌2 + 𝜌3 · negl(𝜆)
Pr[ExptSubgroupB (𝜆, 1) = 1] = 𝜌2 + 𝜌3

The advantage of B is thus 𝜌3 (1 − negl(𝜆)) ≥ 𝜀 − negl(𝜆), and the claim holds. □

Returning to the proof of Lemma 6.34, we can now write

Pr[Hyb2 (A) = 1] = Pr[E2,1] + Pr[E2,2]
≤ Pr[E2,1] + negl(𝜆) by Claim 6.36
≤ Pr[E3,1] + negl(𝜆) by Claim 6.35
≤ Pr[E3,1] + Pr[E3,2] + negl(𝜆)
= Pr[Hyb3 (A) = 1] + negl(𝜆),

and the lemma holds. □

Lemma 6.37. Pr[Hyb3 (A) = 1] = negl(𝜆).

Proof. In order for the output in Hyb3 to be 1, the adversary A must output (ℎ,𝑢, 𝜎) such that

𝑒 (ℎ, 𝐵∗) = 𝑒 (𝑔1, 𝑢) and 𝑒 (ℎ,𝑔2𝑔3) ≠ 1.

We claim that this can only happen with negligible probability over the choice of 𝛽∗. Specifically, if 𝛽∗ is non-zero in
the 𝑝2 and 𝑝3 subgroups, and 𝑒 (ℎ,𝑔2𝑔3) ≠ 1, then 𝑒 (ℎ, 𝐵∗) is non-zero in the order 𝑝2𝑝3 subgroup. However 𝑒 (𝑔1, 𝑢) is
always zero in the order 𝑝2𝑝3 subgroup, so the verification relation is unsatisfiable. □

By Lemmas 6.30, 6.31 and 6.34, we have that Pr[Hyb0 (A) = 1] ≤ Pr[Hyb3 (A) = 1] +negl(𝜆) By Lemma 6.37, we have
that Pr[Hyb3 (A) = 1] ≤ negl(𝜆). We conclude that Pr[Hyb0 (A) = 1] ≤ negl(𝜆) and extractor validity holds. □

7 Monotone-Policy Aggregate Signatures
In this section, we formalize our construction of monotone policy aggregate signatures from a non-adaptively sound
monotone policy BARG for NP together with a “puncturable” signature scheme (called an all-but-one signature
scheme in [GVW19]).

Definition 7.1 (Puncturable Signature [GVW19, adapted]). An puncturable (or all-but-one) signature scheme with
message space {0, 1}𝜆 is a tuple of efficient algorithms ΠPunctSig = (Gen,GenPunc, Sign,Verify) with the following
syntax:

• Gen(1𝜆) → (vk, sk): On input the security parameter 𝜆, the key-generation algorithm outputs a key pair
(vk, sk).

85

• GenPunc(1𝜆,𝑚∗) → (vk, sk): On input a security parameter 𝜆 and a message𝑚∗ ∈ {0, 1}𝜆 , the punctured key
generation algorithm outputs a key pair (vk, sk).

• Sign(sk,𝑚) → 𝜎 : On input a signing key sk and a message 𝑚 ∈ {0, 1}𝜆 , the signing algorithm outputs a
signature 𝜎 .

• Verify(vk,𝑚, 𝜎) → 𝑏: On input a verification key vk, a message𝑚 ∈ {0, 1}𝜆 , and a signature 𝜎 , the verification
algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, the puncturable signature scheme should satisfy the following properties:

• Correctness: For all 𝜆 ∈ N and all𝑚 ∈ {0, 1}𝜆 , it holds that

Pr
[
Verify(vk,𝑚, 𝜎) = 1 : (vk, sk) ← Gen(1𝜆)

𝜎 ← Sign(sk,𝑚)

]
= 1.

• Punctured correctness: For all 𝜆 ∈ N, all𝑚∗ ∈ {0, 1}𝜆 , and all 𝜎∗ ∈ {0, 1}∗, it holds that

Pr
[
Verify(vk,𝑚∗, 𝜎∗) = 1 : (vk, sk) ← GenPunc(1𝜆,𝑚∗)

]
= 0.

• Verification key indistinguishability: For any adversary A and any 𝑏 ∈ {0, 1}, we define the verification
key indistinguishability experiment ExptVKIA (𝜆,𝑏) as follows:

1. On input a security parameter 𝜆, the adversary A outputs a message𝑚∗ ∈ {0, 1}𝜆 and sends it to the
challenger.

2. The challenger samples (vk0, sk0) ← Gen(1𝜆) and (vk1, sk1) ← GenPunc(1𝜆,𝑚∗) and gives vk𝑏 to the
adversary.

3. Next, the challenger can make signing queries on messages𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}. On each signing query,
the challenger replies with 𝜎 ← Sign(sk𝑏,𝑚).

4. The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPunctSig satisfies verification key indistinguishability if for any efficient adversaryA there exists a
negligible function negl(·) such that��Pr[ExptVKIA (𝜆, 0) = 1] − Pr[ExptVKIA (𝜆, 1) = 1]

�� = negl(𝜆).

Remark 7.2 (Multiple Verification Keys). By a standard hybrid argument, we can show that any puncturable signature
scheme that satisfies verification key indistinguishability also satisfies a stronger multi-key version of the definition
where the adversary can ask for multiple verification keys (punctured at the same message𝑚∗) and signatures on
messages𝑚 ≠𝑚∗ with respect to those keys. We define this formally below:

• Multiple verification keys indistinguishability: For any adversary A and any 𝑏 ∈ {0, 1}, we define the
multiple verification key indistinguishability experiment ExptMVKIA (𝜆,𝑏) as follows:

1. On input a security parameter 𝜆, the adversary A outputs the number of challenge keys 1𝑛 together with
a message a message𝑚∗ ∈ {0, 1}𝜆 .

2. For each 𝑖 ∈ [𝑛], the challenger samples the key pairs (vk(𝑖)0 , sk(𝑖)0) ← Gen(1𝜆) and a punctured key pair
(vk(𝑖)1 , sk(𝑖)1) ← GenPunc(1𝜆,𝑚∗). It gives the verification keys vk(1)

𝑏
, . . . , vk(𝑛)

𝑏
to the adversary.

3. The adversary can now make signature queries. Each signing query consists of an index 𝑖 ∈ [𝑛] and a
message𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}. The challenger responds with 𝜎 ← Sign

(
sk(𝑖)

𝑏
,𝑚

)
.

4. The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

86

We say that ΠPunctSig satisfies multiple verification key indistinguishability if for all efficient adversaries A,
there exists a negligible function negl(·) such that��Pr[ExptMVKIA (𝜆, 0) = 1] − Pr[ExptMVKIA (𝜆, 1) = 1]

�� = negl(𝜆).

Fact 7.3 (Puncturable Signatures [GVW19]). Assuming either (1) the plain LWE assumption, or (2) the decision linear
assumption in a pairing group, there exists a puncturable signature scheme.

Monotone policy aggregate signature. We now define the notion of a monotone policy aggregate (multi)-
signature.

Definition 7.4 (Monotone Policy Aggregate Signatures). Let ΠSig = (Gen, Sign,Verify) be a digital signature scheme
with message space {0, 1}𝜆 . A monotone policy aggregation scheme for ΠSig is a tuple of polynomial time algorithms
ΠAgg = (Setup,Aggregate,AggVerify) with the following syntax:

• Setup(1𝜆, 1𝑘 , 1𝑠𝑝) → crs: On input a security parameter 𝜆, a bound on the number of signers 𝑘 , and a bound 𝑠𝑝
on the policy size, the setup algorithm outputs a common reference string crs.

• Aggregate
(
crs,𝑚, 𝑃, (vk1, 𝜎1), . . . , (vk𝑘 , 𝜎𝑘)

)
→ 𝜎agg: On input the common reference string crs, a message

𝑚 ∈ {0, 1}𝜆 , a policy circuit 𝑃 : {0, 1}𝑘 → {0, 1}, a collection of verification key/signature pairs (vk𝑖 , 𝜎𝑖), the
aggregation algorithm produces an aggregate signature 𝜎agg.

• AggVerify
(
crs,𝑚, 𝑃, (vk1, . . . , vk𝑘), 𝜎agg

)
→ 𝑏: On input the common reference string crs, a message𝑚, a policy

circuit 𝑃 : {0, 1}𝑘 → {0, 1}, a tuple of 𝑘 verification keys and an aggregate signature 𝜎agg, the aggregate
verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, ΠAgg must satisfy the following properties:

• Correctness: For all 𝜆, 𝑘, 𝑠𝑝 ∈ N, all messages𝑚 ∈ {0, 1}𝜆 , all monotone circuits 𝑃 : {0, 1}𝑘 → {0, 1} and all
key and signature tuples {(𝑖, vk𝑖 , 𝜎𝑖)}𝑖∈[𝑘] where 𝑃 (Verify(vk1,𝑚, 𝜎1), . . . ,Verify(vk𝑘 ,𝑚, 𝜎𝑘)) = 1, it holds that

Pr
[
AggVerify

(
crs,𝑚, 𝑃, (vk1, . . . , vk𝑘), 𝜎agg

)
= 1 : crs← Setup(1𝜆, 1𝑘 , 1𝑠𝑝)

𝜎agg ← Aggregate
(
crs,𝑚, 𝑃, (vk1, 𝜎1), . . . , (vk𝑘 , 𝜎𝑘)

)]
= 1.

• Succinctness: There exists a fixed polynomial poly(·) such that for all 𝜆, 𝑘, 𝑠𝑝 ∈ N, all messages𝑚 ∈ {0, 1}𝜆 ,
all monotone circuits 𝑃 : {0, 1}𝑘 → {0, 1} and all pairs {(vk𝑖 , 𝜎𝑖)}𝑖∈[𝑘] , the size of the aggregate signature 𝜎agg
in the correctness experiment satisfies |𝜎agg | = poly(𝜆 + log |𝑃 |).

• Static security: For any adversary A define the static unforgeability experiment ExptSUA (𝜆) as follows:

1. On input the security parameter 𝜆, the adversary A outputs the number of parties 1𝑘 , a number of
verification keys 1𝑛 , the bound on the policy size 1𝑠𝑝 , a challenge message𝑚∗ ∈ {0, 1}𝜆 , and a monotone
policy 𝑃 : {0, 1}𝑘 → {0, 1}.

2. The challenger samples key-pairs (vk𝑖 , sk𝑖) ← Gen(1𝜆) for all 𝑖 ∈ [𝑛] and sends vk1, . . . , vk𝑘 to the
adversary.

3. The adversary A can now issue signing queries. Each signing query consists of an index 𝑖 ∈ [𝑛] and a
message𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}. The challenger responds with 𝜎 ← Sign(sk𝑖 ,𝑚).

4. After the adversary is finished making signing queries, it outputs a tuple of verification keys (vk∗1, . . . , vk∗𝑘).
5. The challenger replies with the common reference string crs← Setup(1𝜆, 1𝑘 , 1𝑠𝑝).
6. The adversary A can continue to make signing queries. The challenger responds to these exactly as

before.
7. The adversary outputs the aggregate signature 𝜎∗agg.

87

8. The output of the experiment is 1 if all of the following holds:
– For each 𝑖 ∈ [𝑘], let 𝑏𝑖 = 0 if vk∗𝑖 = vk𝑗 for some 𝑗 ∈ [𝑛]. Otherwise, let 𝑏𝑖 = 1. Then, it holds that

𝑃 (𝑏1, . . . , 𝑏𝑘) = 0.
– AggVerify

(
crs,𝑚∗, 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎∗agg

)
= 1.

Otherwise, the output is 0.

We say that ΠAgg satisfies static security if for every efficient adversary A, there exists a negligible function
negl(·) such that Pr[ExptSUA (𝜆) = 1] = negl(𝜆).

Aggregating puncturable signatures. We now show that we can combine any monotone policy BARG (satisfying
non-adaptive soundness) with a puncturable signature scheme to obtain a statically-secure monotone policy aggregate
signature scheme.

Construction 7.5 (Monotone Policy Aggregate Signature). The construction uses the following ingredients: let
ΠBARG = (BARG.Gen,BARG.Prove,BARG.Verify) be a monotone policy BARG for NP and let ΠPunctSig = (PS.Gen,
PS.GenPunc, PS.Sign, PS.Verify) be a puncturable signature scheme with message space {0, 1}𝜆 . Let ℓvk = ℓvk (𝜆) be
a bound on the length of the verification keys of ΠPunctSig. For any message𝑚 ∈ {0, 1}𝜆 , define the binary relation
R[𝑚] where

R[𝑚] (vk, 𝜎) =
{

1 PS.Verify(vk,𝑚, 𝜎) = 1
0 otherwise.

Let 𝐶𝑚 be the Boolean circuit that computes the relation R[𝑚], and let 𝑠𝑐 = 𝑠𝑐 (𝜆) be a bound on the size of 𝐶𝑚 . We
construct a monotone aggregate scheme ΠAgg = (Setup,Aggregate,AggVerify) for ΠPunctSig as follows:

• Setup(1𝜆, 1𝑘 , 1𝑠𝑝): Sample crs← BARG.Gen(1𝜆, 1ℓvk , 1𝑠𝑐 , 1𝑠𝑝) and output crs.

• Aggregate
(
crs,𝑚, 𝑃, (vk1, 𝜎1), . . . , (vk𝑘 , 𝜎𝑘)

)
: Output BARG.Prove(crs,𝐶𝑚, 𝑃, (vk1, . . . , vk𝑘), (𝜎1, . . . , 𝜎𝑘)).

• AggVerify
(
crs,𝑚, 𝑃, (vk1, . . . , vk𝑘), 𝜎agg

)
: Output BARG.Verify(crs,𝐶𝑚, 𝑃, (vk1, . . . , vk𝑘), 𝜎agg).

Theorem 7.6 (Correctness). If ΠBARG is complete, then Construction 7.5 is correct.

Proof. Fix 𝜆, 𝑘, 𝑠𝑝 ∈ N, message𝑚 ∈ {0, 1}𝜆 , a monotone policy 𝑃 : {0, 1}𝑘 → {0, 1} and 𝑘 tuples {(𝑖, vk𝑖 , 𝜎𝑖)}𝑖∈[𝑘]
such that 𝑃 (Verify(vk1,𝑚, 𝜎1), . . . ,Verify(vk𝑘 ,𝑚, 𝜎𝑘)) = 1. By construction of 𝐶𝑚 , it holds that 𝐶𝑚 (vk𝑖 , 𝜎𝑖) =

Verify(vk𝑖 ,𝑚, 𝜎𝑖) for all 𝑖 ∈ [𝑘]. Thus, 𝑃 (𝐶𝑚 (vk1, 𝜎1), . . . ,𝐶𝑚 (vk𝑘 , 𝜎𝑘)) = 1. The theorem now follows by com-
pleteness of ΠBARG. □

Theorem 7.7 (Succinctness). If ΠBARG is succinct then Construction 7.5 has succinct aggregate signatures.

Proof. This follows directly from the succinctness of ΠBARG and the fact that the aggregate signature is simply a BARG
proof. Fix 𝜆, 𝑘, 𝑠𝑝 ∈ N, message𝑚 ∈ {0, 1}𝜆 , a monotone policy 𝑃 : {0, 1}𝑘 → {0, 1} and 𝑘 tuples {(𝑖, vk𝑖 , 𝜎𝑖)}𝑖∈[𝑘] . The
aggregate signature 𝜎agg is a BARG proof for circuit 𝐶𝑚 , policy 𝑃 , the statements (vk1, . . . , vk𝑘) and the signatures
(𝜎1, . . . , 𝜎𝑘). By succinctness of the BARG, the length of 𝜎agg is poly(𝜆 + 𝑠𝑐 + log |𝑃 |). For every message𝑚 ∈ {0, 1}𝜆 ,
the circuit𝐶𝑚 simply checks whether the input verification key and signature verify the message𝑚, so 𝑠𝑐 (𝜆) = poly(𝜆).
Hence, the overall proof size is poly(𝜆 + log |𝑃 |) and the claim follows. □

Remark 7.8 (Fast Verification via RAM Delegation). Similar to Remark 2.13 it is possible to use a RAM delega-
tion scheme [CJJ21b, WW22, KLVW23, CGJ+23] to delegate the aggregate signature verification to the aggregator.
Currently, the aggregate verification algorithm AggVerify in Construction 7.5 runs in time poly(𝜆 + |𝑃 |). This is
because the aggregation algorithm needs to read the policy as well as the verification keys vk1, . . . , vk𝑘 . If the
policy 𝑃 and the verification keys are known in advance, the aggregator can include a proof 𝜋 that the function
𝐹crs,𝑃,(vk1,...,vk𝑘) (𝑚,𝜎agg) := AggVerify(crs,𝑚, 𝑃, (vk1, . . . , vk𝑘), 𝜎agg) satisfies 𝐹crs,𝑃,(vk1,...,vk𝑘) (𝑚,𝜎agg) = 1. In this case,
the common reference string would also contain a CRS for the RAM delegation scheme. The new aggregate verification
algorithm would only check the RAM delegation proof (with respect to the function 𝐹crs,𝑃,(vk1,...,vk𝑘)); formally, the

88

RAM delegation scheme would take as input a hash ℎ of the parameters (crs, 𝑃, (vk1, . . . , vk𝑘)), and the verification
algorithm for the RAM program only needs to take the (honestly-precomputed) hash ℎ, the message𝑚, and the
signature 𝜎agg. With this modification, the aggregate verification algortihm (given the precomputed hash ℎ) runs in
time poly(𝜆 + log |𝑃 |).

Theorem 7.9 (Static Security). If ΠPunctSig satisfies (multiple) verification key indistinguishability and ΠBARG satisfies
non-adaptive soundness, then Construction 7.5 is statically unforgeable.

Proof. Let A be any efficient adversary for the static security game. We begin by defining a sequence of hybrid
experiments:

• Hyb0: This is the static unforgeability experiment:

1. On input the security parameter 𝜆, the adversary A outputs the number of parties 1𝑘 , a number of
verification keys 1𝑛 , a bound on the policy size 1𝑠𝑝 , a challenge message𝑚∗ ∈ {0, 1}𝜆 , and a monotone
policy 𝑃 : {0, 1}𝑘 → {0, 1}.

2. The challenger samples key-pairs (vk𝑖 , sk𝑖) ← PS.Gen(1𝜆) for all 𝑖 ∈ [𝑛] and sends vk1, . . . , vk𝑘 to the
adversary.

3. The adversary A can now issue signing queries. Each signing query consists of an index 𝑖 ∈ I and a
message𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}. The challenger responds with 𝜎 ← PS.Sign(sk𝑖 ,𝑚).

4. After the adversary is finished making signing queries, it outputs a tuple of verification keys (vk∗1, . . . , vk∗𝑘).
5. The challenger replies with the common reference string crs← BARG.Gen(1𝜆, 1ℓvk , 1𝑠𝑐 , 1𝑠𝑝).
6. The adversary A can continue to make signing queries. The challenger responds to these exactly as

before. When A finishes making signing queries, the adversary outputs the aggregate signature 𝜎∗agg.
7. The output of the experiment is 1 if all of the following holds:

– For each 𝑖 ∈ [𝑘], let 𝑏𝑖 = 0 if vk∗𝑖 = vk𝑗 for some 𝑗 ∈ [𝑛]. Otherwise, let 𝑏𝑖 = 1. Then, it holds that
𝑃 (𝑏1, . . . , 𝑏𝑘) = 0.

– BARG.Verify
(
crs,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎∗agg

)
= 1.

Otherwise, the output is 0.

• Hyb1: Same as Hyb0, except the challenger uses the following modified procedure to sample key-pairs (Step 2):

– For all 𝑖 ∈ [𝑛], sample (vk𝑖 , sk𝑖) ← PS.GenPunc(1𝜆,𝑚∗).

For an adversary A, we write Hyb𝑖 (A) to denote the output of Hyb𝑖 with adversary A. We now show that the
output distributions of Hyb0 and Hyb1 are computationally indistinguishable, and moreover, that for all efficient
adversaries A, the output of Hyb1 (A) is 1 with negligible probability.

Lemma 7.10. If ΠPunctSig satisfies verification key indistinguishability, then there exists a negligible function negl(·)
such that | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | = negl(𝜆).

Proof. Suppose
��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]

�� = 𝜀 for some non-negligible 𝜀. We construct an adversary B
for the multiple verification key indistinguishability game of ΠPunctSig as follows:

1. On input the security parameter 1𝜆 , algorithm B computes (1𝑘 , 1𝑛, 1𝑠𝑝 ,𝑚∗, 𝑃) ← A(1𝜆). Algorithm B forwards
𝑚∗ and 1𝑛 , to the challenger.

2. The challenger replies with a tuple of verification keys (vk1, . . . , vk𝑛). Algorithm B forwards (vk1, . . . , vk𝑛) to
A.

3. Whenever A makes a signing query on an index 𝑖 ∈ [𝑛] and a message 𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}, algorithm B
forwards (𝑖,𝑚) to the challenger to obtain a signature 𝜎 . Algorithm B replies to A with 𝜎 .

89

4. When the adversary A outputs a tuple (vk∗1, . . . , vk∗𝑘), algorithm B computes the common reference string
crs← BARG.Gen(1𝜆, 1ℓvk , 1𝑠𝑐 , 1𝑠𝑝) and gives crs to A.

5. Whenever algorithm A makes additional signing queries, algorithm B responds in the same manner as before.

6. When A outputs a signature 𝜎∗agg, algorithm B checks the following:

• For each 𝑖 ∈ [𝑘], let 𝑏𝑖 = 0 if vk∗𝑖 = vk𝑗 for some 𝑗 ∈ [𝑛]. Otherwise, let 𝑏𝑖 = 1. Then, check that
𝑃 (𝑏1, . . . , 𝑏𝑘) = 0.

• AggVerify
(
crs,𝑚∗, 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎∗agg

)
= 1.

Algorithm B outputs 1 if both checks pass and 0 otherwise.

By construction, algorithm B constructs the key-pairs (vk𝑖 , sk𝑖) for 𝑖 ∈ [𝑘] \ I exactly as required in Hyb0 and Hyb1.
It suffices to consider the distribution of the verification keys vk𝑖 for 𝑖 ∈ I and the responses to the signing queries.
We consider the two possibilities:

• If the challenger responds according to the specification of ExptMVKIB (𝜆, 0), then it samples (vk𝑖 , sk𝑖) ←
Gen(1𝜆). Moreover, the challenger responds to a signing query on (𝑗,𝑚) where 𝑗 ∈ [𝑛] and𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}
with 𝜎 ← Sign(sk𝑖 ,𝑚). This is precisely the distribution inHyb0 (A). Finally, algorithm B computes the output
using the same procedure as in Hyb0 and Hyb1. Therefore, Pr[Hyb0 (A) = 1] = Pr[ExptMVKIB (𝜆, 0) = 1].

• If the challenger responds according to the specification of ExptMVKIB (𝜆, 1), then it samples (vk𝑖 , sk𝑖) ←
GenPunc(1𝜆,𝑚∗). Moreover, the challenger responds to a signing query on (𝑗,𝑚) where 𝑗 ∈ [𝑛] and 𝑚 ∈
{0, 1}𝜆 \ {𝑚∗} with 𝜎 ← Sign(sk𝑖 ,𝑚). This is precisely the distribution in Hyb1 (A). We conclude that
Pr[Hyb1 (A) = 1] = Pr[ExptMVKIB (𝜆, 1) = 1].

We conclude that algorithm B wins the multiple verification key indistinguishability game with the same non-
negligible advantage 𝜀, and the claim follows. □

Lemma 7.11. If ΠBARG satisfies non-adaptive soundness, and ΠPunctSig satisfies punctured correctness, then there exists
a negligible function negl(·) such that Pr[Hyb1 (A) = 1] = negl(𝜆).

Proof. Suppose Pr[Hyb1 (A) = 1] = 𝜀 for some non-negligible 𝜀. We construct an adversary B for the non-adaptive
soundness game as follows:

1. On input the security parameter 1𝜆 , algorithm B runs (1𝑘 , 1𝑛, 1𝑠𝑝 ,𝑚∗, 𝑃) ← A(1𝜆). Algorithm B then samples
(vk𝑖 , sk𝑖) ← PS.GenPunc(1𝜆,𝑚∗) for all 𝑖 ∈ [𝑛]. It forwards the verification keys (vk1, . . . , vk𝑛).

2. Whenever algorithmA makes a signing query on an index 𝑖 ∈ [𝑛] and a message𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}, algorithm
B replies with a signature 𝜎 ← Sign(𝑠𝑘𝑖 ,𝑚).

3. When the adversaryA outputs a tuple (vk∗1, . . . , vk∗𝑘), algorithmB forwards the instance size 1ℓvk , the circuit size
1𝑠𝑐 , the monotone policy size bound 1𝑠𝑝 , the circuit𝐶𝑚∗ , the monotone policy 𝑃 , and the instance (vk∗1, . . . , vk∗𝑘)
to the BARG challenger. The challenger replies with a common reference string crs which B forwards to A.

4. Whenever algorithm A makes additional signing queries, algorithm B responds in the same manner as before.

5. At the end of the game, algorithm A outputs an aggregate signature 𝜎agg. Algorithm B forwards 𝜋 = 𝜎agg to
the challenger.

The challenger constructs the common reference string as crs ← BARG.Gen(1𝜆, 1ℓvk , 1𝑠𝑐 , 1𝑠𝑝). Thus, algorithm B
perfectly simulates an execution of Hyb1 for A. Thus, with probability at least 𝜀, algorithm A outputs an aggregate
signature 𝜎agg where

BARG.Verify(crs,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎agg) = 1,

and 𝑃 (𝑏1, . . . , 𝑏𝑘) = 0 where 𝑏𝑖 = 0 if vk∗𝑖 = vk𝑗 for some 𝑗 ∈ [𝑛] and 𝑏𝑖 = 1 otherwise. We argue that algorithm B
wins the non-adaptive soundness game when this happens:

90

• By punctured correctness of ΠPunctSig, for all 𝜎 ∈ {0, 1}∗, it holds that Verify(vk𝑖 ,𝑚∗, 𝜎) = 0 for all 𝑖 ∈ [𝑛].
Correspondingly, this means that for all 𝑖 ∈ [𝑛], it holds that 𝐶𝑚∗ (vk𝑖 , 𝜎) = 0 for all inputs 𝜎 ∈ {0, 1}∗.

• Thus for all 𝑖 ∈ [𝑘], if vk∗𝑖 = vk𝑗 for some 𝑗 ∈ [𝑛], then𝐶𝑚∗ (vk∗𝑗 , 𝜎) = 0 for all 𝜎 ∈ {0, 1}∗. Next 𝑃 (𝑏1, . . . , 𝑏𝑘) = 0
where 𝑏𝑖 = 0 whenever vk∗𝑖 = vk𝑗 for some 𝑗 ∈ [𝑛], and 𝑏𝑖 = 1 otherwise. This means (𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘)) ∉
LMP-CSAT.

• If BARG.Verify(crs,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎agg) = 1, and (𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘)) ∉ LMP-CSAT, then algorithm B
wins the non-adaptive soundness game.

Thus, algorithm B breaks the non-adaptive soundness of ΠBARG with the same advantage 𝜀. □

Theorem 7.9 now follows by Lemmas 7.10 and 7.11 and a hybrid argument. □

8 Semi-Somewhere Extractability of Monotone Policy BARGs
In this section, we show that our proof of non-adaptive soundness for our monotone policy BARG in Section 4 easily
extends to achieve a notion of extractability.10 Our notion of extractability is a relaxed version of the somewhere
extractability notion from [BBK+23]. In the notion from [BBK+23], there is a trapdoor setup algorithm that takes
as input a set of indices 𝑆 and outputs an extraction trapdoor. The guarantee is that whenever the prover produces
a proof for a tuple of statements (𝑥1, . . . , 𝑥𝑘) with respect to a circuit 𝐶 and policy 𝑃 for which 𝑆 is “critical,” then
the extraction algorithm will output a witness𝑤𝑖 where 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 for some index 𝑖 ∈ 𝑆 . In this setting, a set 𝑆 is
critical for a policy 𝑃 if every input (𝑏1, . . . , 𝑏𝑘) ∈ {0, 1}𝑘 where 𝑃 (𝑏1, . . . , 𝑏𝑘) = 1 has an index 𝑖 ∈ 𝑆 where 𝑏𝑖 = 1 (i.e.,
every input that satisfies the policy 𝑃 must set some index in the critical set 𝑆 to 1). In addition, the trapdoor CRS
should hide the set 𝑆 .

Semi-somewhere extractability. To extract a witness from the critical set 𝑆 , the [BBK+23] construction program
𝑆 into the CRS and then rely on an FHE-based hash function to homomorphically “propagate” one of the witnesses in
𝑆 into the hash digest. This enables an efficient extraction procedure. In our setting, we do not use FHE. Instead, we
observe that our existing proof in Section 4 already achieves a notion of extractability by relying only on somewhere
extractability of the underlying (vanilla) BARG. The caveat of our notion is that there is a 1/𝑘 loss in the success
probability of our extractor. Namely, if an adversary produces a proof on (𝑥1, . . . , 𝑥𝑘) with probability 𝜀, then the
extractor will output a witness𝑤𝑖 for some 𝑖 ∈ 𝑆 with probability 𝜀/𝑘 . We refer to our notion as semi-somewhere
extractability. We give the formal definition below:

Definition 8.1 (Semi-Somewhere Extractable Monotone BARG). A semi-somewhere extractable monotone policy
BARG for Boolean circuit satisfiability is a tuple of polynomial time algorithms ΠMP-BARG = (Gen, Prove,Verify,
TrapGen, Extract) such that (Gen, Prove,Verify) is monotone policy BARG for Boolean circuit satisfiability and the
two additional algorithms (TrapGen, Extract) have the following syntax:

• TrapGen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆) → (crs, td): On input the security parameter 𝜆 ∈ N, the instance size 𝑛 ∈ N, the
number of instances 𝑘 ∈ N, a bound on the size of the Boolean circuit 𝑠𝑐 ∈ N, a bound on the size of the policy
𝑠𝑝 ∈ N, and a subset 𝑆 ⊆ [𝑘], the indexed generator algorithm outputs a common reference string crs and a
trapdoor td.

• Extract(td,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋) → (𝑖,𝑤𝑖): On input a trapdoor td, a Boolean circuit 𝐶 , a monotone policy 𝑃 ,
instances 𝑥1, . . . , 𝑥𝑘 , a proof 𝜋 , and an index 𝑖 , the extraction algorithm outputs an index 𝑖 and an NP witness
𝑤𝑖 .

Moreover, ΠMP-BARG should satisfy the following properties:
10As we discussed in Section 1.1, it is not clear what the right or most useful notion of extraction is in the context of monotone policy BARGs.
The desired notion of extractability may in fact be application-dependent. For this reason, we focus on non-adaptive soundness for the main
construction and include this section primarily as an illustration that our approach can support some non-trivial form of extractability.

91

• Set hiding: For an adversaryA and a bit 𝑏 ∈ {0, 1}, define the set hiding experiment ExptSHA (𝜆,𝑏) as follows:

1. On input a security parameter 𝜆, algorithm A starts by outputting the instance size 1𝑛 , the bound on the
size of the NP relation 1𝑠𝑐 , the bound on the size of the policy 1𝑠𝑝 , the number of instances 1𝑘 , and a set
𝑆 ⊆ [𝑘].

2. If 𝑏 = 0, the challenger samples crs← Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝). Otherwise, if 𝑏 = 1, the challenger samples
(crs, td) ← TrapGen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆). The challenger sends crs to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

We say that ΠMP-BARG satisfies set hiding if for every efficient adversary A there exists a negligible function
negl(·) such that ��Pr[ExptSHA (𝜆, 0) = 1] − Pr[ExptSHA (𝜆, 1) = 1]

�� = negl(𝜆).

• Semi-somewhere extractability: For an integer 𝑘 ∈ N and an adversary A, define the semi-somewhere
extractability experiment ExptSEA (𝜆, 𝑘) as follows:

1. On input the security parameter 1𝜆 , algorithm A starts by outputting the instance size 1𝑛 , the bound
on the size of the NP relation 1𝑠𝑐 , the bound on the size of the policy 1𝑠𝑝 , a monotone Boolean circuit
𝑃 : {0, 1}𝑘 → {0, 1} of size at most 𝑠𝑝 , and a set 𝑆 ⊆ [𝑘].

2. The challenger samples (crs, td) ← Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆) and sends crs to A.
3. Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠𝑐 , statements

𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and a proof 𝜋 .
4. The challenger extracts a witness (𝑖,𝑤𝑖) ← Extract(td,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋).
5. The output of the experiment is 1 if 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 and 𝑖 ∈ 𝑆 . Otherwise, the output is 0.

An adversary A is admissible if it outputs a set 𝑆 ⊆ [𝑘] and a policy 𝑃 such that 𝑃 (𝑏1, . . . , 𝑏𝑘) = 0 where 𝑏𝑖 = 0
if 𝑖 ∈ 𝑆 and 𝑏𝑖 = 1 otherwise. Let

𝜀A (𝜆, 𝑘) := Pr[Verify(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋) = 1] (8.1)

in an execution of ExptSEA (𝜆, 𝑘). We say that ΠBARG is semi-somewhere extractable if for every polynomial
𝑘 = 𝑘 (𝜆) and every efficient and admissible adversary A, there exists a negligible function negl(·) such that

Pr[ExptSEA (𝜆, 𝑘) = 1] ≥ 1
𝑘
· 𝜀A (𝜆, 𝑘) − negl(𝜆) .

Remark 8.2 (On Semi-Somewhere Extractability). An important caveat of the semi-somewhere extractability notion
in Definition 8.1 is that we allow the extractor to succeed with smaller probability (by an inverse polynomial factor)
than the honest prover. While this is still sufficient for applications to monotone policy aggregate signatures (see
Section 8.1), this may not be the case in all settings where an extraction guarantee might be employed. As an example,
suppose we have an adversary A that samples statements from one of two distributions D1 and D2 (with equal
probability) and produces a valid proof on the statement with probability 𝜀. Normally, we would hope that the
extractor algorithm would be able to extract witnesses for statements sampled from both D1 and D2. However, since
we allow for an inverse polynomial loss in the extractor’s success probability, it could be the case that the extractor
only works for instances sampled from D1 and never outputs witnesses for instances sampled from D2. If this were
to happen in a security proof which relies on the ability to extract witnesses from instances drawn from D2, then the
proof would no longer go through. Thus, using the semi-somewhere extractability notion in the context of a security
proof could require some extra care.

92

Adapting Construction 4.4. We now show how to extend Construction 4.4 to support semi-somewhere extractabil-
ity. The construction relies on the fact that the proof of Construction 4.4 (Section 4.2) implicitly achieves a notion of
extractability.

Construction 8.3 (Semi-Somewhere Extractable Monotone BARG). Let (Gen, Prove,Verify) be the monotone policy
BARG of Construction 4.4. Let Π′BARG = (Gen′, Prove′,Verify′, TrapGen′, Extract′) be the underlying somewhere
extractable BARG for Boolean circuit satisfiability, and ΠH = (H.Setup,H.Hash,H.ProveOpen,H.VerOpen,H.Extract,
H.ValidateDigest) be the underlying zero-fixing hash function. We extend Construction 4.4 with the following
algorithms:

• TrapGenIndex(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆, 𝑗) → (crs, td𝑗): On input the security parameter 𝜆 ∈ N, the instance size
𝑛 ∈ N, a bound on the size of the Boolean circuit 𝑠𝑐 ∈ N, a bound on the size of the policy 𝑠𝑝 ∈ N, the number
of instances 𝑘 , a set 𝑆 ⊆ [𝑘], and an index 𝑗 ∈ 𝑆 , the indexed trapdoor generator algorithm proceeds as follows:

– Let 𝑗1, . . . , 𝑗 |𝑆 | ∈ 𝑆 be the elements of 𝑆 in ascending order. Let 𝑡 ∈ [|𝑆 |] be the index where 𝑗 = 𝑗𝑡 . Define
the set 𝑆𝑡 = { 𝑗1, . . . , 𝑗𝑡−1} if 𝑡 > 1 and 𝑆𝑡 = ∅ otherwise.

– Sample two hash keys (hk0, vk0, td0) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅) and (hk1, vk1, td1) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝑆𝑡).
– Let 𝑠′ be a bound on the size of the circuit that computes the relation R[𝐶, 𝑘, 𝑠𝑝 , vk0, vk1, dig0, dig1]

from Fig. 1 when instantiated with an arbitrary Boolean circuit 𝐶 of size at most 𝑠𝑐 , an input length
𝑘 ≤ 𝑠𝑝 and digests dig0, dig1 associated with the hash and verification keys (hk0, vk0) and (hk1, vk1).
Let 𝑛′ = 3 · ⌈log 𝑠𝑝⌉ + 1 be the bound on the statement length. Sample (crsBARG, vkBARG, tdBARG) ←
TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝑗).

– Outputs the common reference string crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) and the trapdoor td𝑗 =

tdBARG.

Looking ahead, the helper algorithm TrapGenIndex(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆, 𝑗𝑡) implements the setup algorithm
according to the specification of the hybrid experiments H̃yb0,𝑡,3 and H̃yb0,𝑡,4 in the proof of Theorem 8.7. These
are the analogs of the hybrid experiments Hyb0,𝑡,3 and Hyb0,𝑡,4 from the proof of Theorem 4.7 in Section 4.2.

• TrapGen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆) → (crs, td): On input the security parameter 𝜆 ∈ N, the instance size 𝑛 ∈ N,
a bound on the size of the Boolean circuit 𝑠𝑐 ∈ N, a bound on the size of the policy 𝑠𝑝 ∈ N, the number of
instances 𝑘 , and a set 𝑆 ⊆ [𝑘], the generator algorithm proceeds as follows:

– Sample a random 𝑗
r← 𝑆 .

– Compute (crs, td𝑗) ← TrapGenIndex(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑗).
– Output the common reference string crs, and the trapdoor td = (𝑗, td𝑗).

• Extract(td,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋) → (𝑗,𝑤 𝑗): On input a trapdoor td = (𝑗, td𝑗), a Boolean circuit 𝐶 , a monotone
policy 𝑃 , instances 𝑥1, . . . , 𝑥𝑘 , and a proof 𝜋 , the algorithm computes 𝑤̂ 𝑗 ← Extract(td𝑗 ,𝐶aug, (𝑥1, . . . , 𝑥𝑠𝑝), 𝜋, 𝑗),
where the circuit 𝐶aug and the instances 𝑥1, . . . , 𝑥𝑠𝑝 are computed from 𝐶, 𝑃, 𝑥1, . . . , 𝑥𝑘 as in Construction 4.4.
Parse 𝑤̂ 𝑗 = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) and if 𝑏 = 1, output (𝑗,𝑤). If 𝑏 ≠ 1, output ⊥.

Theorem 8.4 (Set Hiding). If ΠBARG satisfies index hiding and ΠH satisfies set hiding, then Construction 8.3 satisfies set
hiding.

Proof. Let A be an efficient non-uniform adversary for the set hiding game of ΠMP-BARG. We proceed via a hybrid
argument:

• Hyb0: This is experiment ExptSHA [𝜆, 0]:

1. On input a security parameter 𝜆, algorithm A starts by outputting the instance size 1𝑛 , the bound on the
size of the NP relation 1𝑠𝑐 , the bound on the size of the policy 1𝑠𝑝 , the number of instances 1𝑘 , and a set
𝑆 ⊆ [𝑘].

93

2. The challenger samples crs← Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝). Namely, it samples
– (hk0, vk0, td0) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).
– (hk1, vk1, td1) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).
– (crsBARG, vkBARG) ← Gen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′), where 𝑛′, 𝑠′ are defined as in Construction 8.3.

The challenger sends crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) to A.
3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

• Hyb1: Same as Hyb0, except the challenger samples crsBARG to bind to a random index 𝑗𝑡 ∈ 𝑆 . Concretely, the
challenger samples a random index 𝑗 r← 𝑆 and samples (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝑗).

• Hyb2: Same asHyb1, except the challenger samples hk1, vk1 to be zero-fixing on the set 𝑆𝑡 . This is ExptSHA [𝜆, 1].
Specifically, in this experiment, the challenger samples the keys for the zero-fixing hash (hk1, vk1, td1) ←
H.Setup(1𝜆, 1𝑠𝑝 , 𝑆𝑡), where 𝑆𝑡 = { 𝑗1, . . . , 𝑗𝑡−1}, the indices 𝑗1, . . . , 𝑗 |𝑆 | are the elements of 𝑆 in ascending order,
and 𝑡 ∈ [|𝑆 |] is the index where 𝑗 = 𝑗𝑡 .

We write Hyb𝑖 (A) to denote the output of Hyb𝑖 with adversary A. We now show that each pair of adjacent output
distributions are computationally indistinguishable.

Claim 8.5. If ΠBARG satisfies index hiding, then there exists a negligible function negl(·) such that��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(𝜆).

Proof. Suppose | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | = 𝜀 for some non-negligible 𝜀. We use A to construct an
adversary B for the index hiding game of ΠBARG as follows:

1. On input the security parameter 1𝜆 , algorithm B runs A on input 1𝜆 to obtain (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆).

2. Algorithm B samples 𝑗
r← 𝑆 and send (1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝑗) to the BARG challenger. The challenger replies with

(crsBARG, vkBARG).

3. Algorithm B computes (hk0, vk0, td0) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅) and (hk1, vk1, td1) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).

4. Algorithm B sets crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) and gives crs to A. It outputs whatever A outputs.

If the challenger samples (crsBARG, vkBARG) ← Gen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′), then algorithmB perfectly simulatesHyb0 forA.
Conversely, if it samples (crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝑗), algorithm B perfectly simulates
Hyb1 for A. We conclude that the advantage of algorithm B is 𝜀, and the claim holds. □

Claim 8.6. If ΠH satisfies set hiding, then there exists a negligible function negl(·) such that��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]
�� = negl(𝜆).

Proof. Suppose | Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1] | = 𝜀 for some non-negligible 𝜀. We construct an attacker B
for the set hiding game of ΠH as follows:

1. On input the security parameter 1𝜆 , algorithm B runs A on input 1𝜆 to obtain (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆).

2. Let 𝑗1, . . . , 𝑗 |𝑆 | ∈ 𝑆 be the elements of 𝑆 in ascending order. Algorithm B samples 𝑗 r← 𝑆 and sets 𝑡 ∈ [|𝑆 |] to
be the index where 𝑗 = 𝑗𝑡 . Algorithm B send (1𝑠𝑝 , 𝑆𝑡) to the challenger, where 𝑆𝑡 = { 𝑗1, . . . , 𝑗𝑡−1} if 𝑡 > 1 and
𝑆𝑡 = ∅ otherwise. The challenger replies with (hk1, vk1).

3. Algorithm B samples a hash key (hk0, vk0, td0) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅) along with the BARG parameters
(crsBARG, vkBARG, tdBARG) ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝑗) .

4. Algorithm B sets crs = (crsBARG, vkBARG, hk0, hk1, vk0, vk1) and gives crs to A. It outputs whatever A outputs.

94

If the challenger samples (hk1, vk1, td1) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅), then algorithm B perfectly simulates Hyb1 for A.
Conversely, if the challenger samples (hk1, vk1, td1) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝑆𝑡), then algorithm B perfectly simulates
Hyb2 for A. Correspondingly, the advantage of algorithm B is 𝜀, and the claim follows. □

Theorem 8.4 now follows from Claims 8.5 and 8.6. □

Theorem 8.7. If ΠH satisfies set hiding, index hiding with extracted guess, zero fixing and extractor validity against
non-uniform adversaries, and ΠBARG is somewhere extractable and satisfies set hiding against non-uniform adversaries,
then Construction 8.3 is semi-somewhere extractable against non-uniform adversaries.

Proof. To prove Theorem 8.7, we use a similar strategy as in the proof of Theorem 4.7 (Section 4.2). Here, we give a
high-level overview. Specifically, we start by defining sequence of hybrids Hyb0, . . . ,Hyb𝑑 , where 𝑑 is the depth of
the monotone circuit 𝑃 . These are essentially the same experiments from the proof of Theorem 4.7 in Section 4.2. The
initial hybrid corresponds to the semi-somewhere extractability experiment where the output is 1 if the adversary
outputs an accepting proof (i.e., the output in the initial hybrid is 1 with probability 𝜀A (𝜆, 𝑘) as defined in Eq. (8.1)).
In the final hybrid, we show that the output is 1 probability 0. Finally, we argue that any difference in advantage
between adjacent hybrids can only occur in settings where the extractor is successful. There are a maximum of 𝑘 such
experiments (one associated with each of the inputs to 𝑃). Since the probability of an experiments drops from 𝜀 to 0,
in at least one of these intermediary experiments, the probability must decrease by 𝜀/𝑘 (up to negligible differences);
this directly translates into the extractor succeeding with probability at least 𝜀/𝑘 (up to negligible differences). We
give the formal argument below.

Outer hybrids. Take any polynomial 𝑘 = 𝑘 (𝜆) and any efficient (non-uniform) and admissible adversary A =

(A1,A2). Let 𝑃 : {0, 1}𝑘 → {0, 1} and 𝑆 ⊆ [𝑘] be the monotone policy and the challenge set that algorithm A1
outputs (on input the security parameter 𝜆). Let 𝑑 be the depth of 𝑃 and 𝑠 be its size. We now define the sequence of
outer hybrids:

• H̃yb0: This is the analog of Hyb0 from the proof of Theorem 4.7 (Section 4.2). We define it here:

– Phase 1: On input the security parameter 1𝜆 , algorithm A1 outputs 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , a monotone Boolean circuit
𝑃 : {0, 1}𝑘 → {0, 1} of size 𝑠 ≤ 𝑠𝑝 , a set 𝑆 ⊆ [𝑘] and the state stA . The experiment outputs 0 if 𝑃 (𝑏1, . . . , 𝑏𝑘) = 1
where 𝑏𝑖 = 0 if 𝑖 ∈ 𝑆 and 𝑏𝑖 = 1 otherwise.

– Phase 2: The challenger computes crs ← Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝). Specifically, the challenger samples the
following components:

∗ (crsBARG, vkBARG) ← Gen′
(
1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′).

∗ (hk0, vk0, td0) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).
∗ (hk1, vk1, td1) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a Boolean circuit 𝐶 of size at most 𝑠𝑐 , an instance x = (𝑥1, . . . , 𝑥𝑘), and a proof string 𝜋 = (dig0, dig1, 𝜋BARG).
Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in Construction 4.4. The output of the
experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.

• H̃yb𝑖 for 𝑖 ∈ [𝑑]: Same as Hyb0, but hklow binds on 𝐽𝑖 , where low = 𝑖 mod 2 and high = 1 − low. This is the
analog of Hyb1 from the proof of Theorem 4.7 (Section 4.2). Specifically, the game proceeds as follows:

– Phase 1: On input the security parameter 1𝜆 , algorithm A1 outputs 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , a monotone Boolean circuit
𝑃 : {0, 1}𝑘 → {0, 1} of size 𝑠 ≤ 𝑠𝑝 , a set 𝑆 ⊆ [𝑘] and the state stA . The experiment outputs 0 if 𝑃 (𝑏1, . . . , 𝑏𝑘) = 1
where 𝑏𝑖 = 0 if 𝑖 ∈ 𝑆 and 𝑏𝑖 = 1 otherwise. The challenger then computes the following quantities:

∗ For each 𝑗 ∈ [𝑘], let 𝛽 𝑗 = if 𝑗 ∈ 𝑆 and 𝛽 𝑗 = 1 otherwise.

95

∗ For 𝑗 ∈ [𝑘 + 1, 𝑠] let 𝛽 𝑗 be the value of the wire 𝑗 in the evaluation of 𝑃 on input (𝛽1, . . . , 𝛽𝑘).
∗ For each layer ℓ ∈ [𝑑], let 𝐽ℓ =

{
𝑗 ∈ layerℓ (𝑃) : 𝛽 𝑗 = 0

}
.

– Phase 2: The challenger samples the following components:
∗ (crsBARG, vkBARG) ← Gen′

(
1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′).

∗ (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽𝑖).
∗ (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runsA2 on input (crs, stA). AlgorithmA2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The output of the experiment is 1 if all of the following conditions hold (and 0 otherwise):

∗ H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
∗ Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
∗ H.Extract(tdlow, diglow) = Matching.

Inner games. To argue that each pair of outer hybrids is computationally indistinguishable, we define a sequence
of “inner hybrids” exactly as in the proof of Theorem 4.7 in Section 4.2. Specifically, for each 𝑖 ∈ {0, . . . , 𝑑}, each
𝑡 ∈ [|𝐽𝑖 |] and each ℓ ∈ {1, . . . , 7}, we define H̃yb𝑖,𝑡,ℓ as follows:

• Phase 1: Same as �Hyb𝑖 . Note that algorithm A1 does not output the Boolean circuit 𝐶 or the statements x in
this phase.

• Phase 2: Same as in Hyb𝑖,𝑡,ℓ from Section 4.2, except the adversary additionally outputs the Boolean circuit 𝐶
and the instances x in this phase (as in �Hyb𝑖).

We now analyze each pair of hybrid experiments. With the exception of one of the transitions (from H̃yb0,𝑡,3 to
H̃yb0,𝑡,4), each transition follows by a similar argument as the corresponding transition in the proof of Theorem 4.7.

Claim 8.8. If ΠH satisfies extractor validity against efficient non-uniform adversaries, then there exists a negligible
function negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1}, it holds that���Pr[H̃yb𝑖 (A) = 1] − Pr[H̃yb𝑖,1,1 (A) = 1]

��� ≤ negl(𝜆).

Proof. Follows by a similar argument as the proof of Claim 4.8. □

Claim 8.9. If ΠBARG satisfies set hiding against efficient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1} and 𝑡 ∈ [|𝐽𝑖+1 |], it holds that���Pr[H̃yb𝑖,𝑡,1 (A) = 1] − Pr[H̃yb𝑖,𝑡,2 (A) = 1]

��� ≤ negl(𝜆).

Proof. Follows by a similar argument as the proof of Claim 4.9. □

Claim 8.10. If ΠBARG satisfies somewhere extractability in trapdoor mode against efficient non-uniform adversaries,
then there exists a negligible function negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1}, 𝑡 ∈ [|𝐽𝑖+1 |], it holds that���Pr[H̃yb𝑖,𝑡,2 (A) = 1] − Pr[H̃yb𝑖,𝑡,3 (A) = 1]

��� ≤ negl(𝜆).

Proof. Follows by a similar argument as the proof of Claim 4.10. □

96

Extracting valid witnesses. As mentioned above the transition from H̃yb0,𝑡,3 to H̃yb0,𝑡,4 diverges from the corre-
sponding analysis (Claim 4.11) in the proof of Theorem 4.7. In Claim 4.11, the relevant statement 𝑥 𝐽1 [𝑡] was false,
and thus, by somewhere extractability of the BARG, we were able to argue that the outputs of Hyb0,𝑡,3 to Hyb0,𝑡,4
could only change by a negligible amount. Upon closer inspection, the proof of Claim 4.11 actually shows a stronger
property: the difference between these two hybrids is exactly equal to the probability of extracting a valid witness for
the instance 𝑥 𝐽1 [𝑡] . In the case of Claim 4.11, the statement 𝑥 𝐽1 [𝑡] was false, so this probability was identically 0. In the
somewhere extractability game, this probability could be noticeable. But that means our extractor succeeds with
noticeable probability. To formalize this, we start with a full specification of H̃yb0,𝑡,3:

• Phase 1: Same as �Hyb𝑖 .
• Phase 2: The challenger samples the following components.

– (crsBARG, tdBARG) ← TrapGen′ (1𝜆, 1𝑠𝑝 , 1𝑛′ , 1𝑠′ , 𝐽1 [𝑡]).
– (hklow, vklow, tdlow) ← H.Setup(1𝜆, 1𝑠𝑝 ,∅).
– (hkhigh, vkhigh, tdhigh) ← H.Setup(1𝜆, 1𝑠𝑝 , 𝐽1 [1, . . . , 𝑡 − 1]).

The challenger sets crs = (crsBARG, hk0, hk1, vk0, vk1) and runs A2 on input (crs, stA). Algorithm A2 outputs
a proof string 𝜋 = (dig0, dig1, 𝜋BARG). Let x̂ = (𝑥1, . . . , 𝑥𝑠𝑝) and 𝐶aug be as defined in Prove and Verify in
Construction 4.4. The challenger then computes 𝑤̂ = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) ← Extract′ (tdBARG,𝐶aug, x̂, 𝜋BARG, 𝐽1 [𝑡]).
The output is 1 if the following conditions hold (and 0 otherwise):

– H.ValidateDigest(vk0, dig0) = H.ValidateDigest(vk1, dig1) = 1.
– Verify′ (vkBARG,𝐶aug, x̂, 𝜋BARG) = 1.
– H.Extract(tdhigh, dighigh) = Matching.
– 𝐶aug (𝑥 𝑗𝑡 , 𝑤̂) = 1.

Since 𝑆 = 𝐽1 by construction, the challenger in H̃yb0,𝑡,3 is sampling the common reference string crs according to
the specification of TrapGenIndex(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆, 𝑡). Similarly, the witness 𝑤̂ = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) in H̃yb0,𝑡,3 is
computed using the same procedure as Extract(td,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋) where td = (𝐽1 [𝑡], tdBARG). For 𝑡 ∈ [|𝐽1 |], let

𝑝𝑡 := Pr
[
H̃yb0,𝑡,3 (A) = 1 ∧ 𝑏 = 1 in the execution of H̃yb0,𝑡,3

]
.

By definition of 𝐶aug, if H̃yb0,𝑡,3 (A) outputs 1 and the extracted bit 𝑏 satisfies 𝑏 = 1, this means that 𝐶 (𝑥 𝐽1 [𝑡],𝑤) = 1.
In this case, Extract(td,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋) outputs𝑤 such that 𝐶 (𝑥 𝐽1 [𝑡],𝑤) = 1. In particular, this means that

𝑝𝑡 ≥ Pr

𝐶 (𝑥𝑆 [𝑡],𝑤) = 1 :

(1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝑃, 𝑆, stA) ← A1 (1𝜆)
(crs, td) ← TrapGenIndex(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆, 𝑆 [𝑡])

(𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋) ← A2 (crs, stA)
(𝑡 ′,𝑤) ← Extract(td,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋).

 , (8.2)

where we write 𝑆 [𝑡] to denote the 𝑡 th value in 𝑆 in ascending order. We now show that the difference between the
outputs of H̃yb0,𝑡,3 and H̃yb0,𝑡,3 is exactly 𝑝𝑡 :

Claim 8.11. It holds that Pr[H̃yb0,𝑡,3 (A) = 1] = Pr[H̃yb0,𝑡,4 (A) = 1] + 𝑝𝑡 .

Proof. By construction, the only difference between H̃yb0,𝑡,3 and H̃yb0,𝑡,4 is the additional check in Hyb0,𝑡,4 that the
extracted bit 𝑏 satisfies 𝑏 = 0. Let E0 be the event that 𝑏 = 0 in the execution of H̃yb0,𝑡,3 and E1 be the event that 𝑏 = 1.
Then,

Pr[H̃yb0,𝑡,4 (A) = 1] = Pr[H̃yb0,𝑡,3 (A) = 1 ∧ E0]
= Pr[H̃yb0,𝑡,3 (A) = 1] − Pr[H̃yb0,𝑡,3 (A) = 1 ∧ E1]
= Pr[H̃yb0,𝑡,3 (A) = 1] − 𝑝𝑡 .

The claim follows. □

97

Claim 8.12. If ΠH satisfies zero-fixing against efficient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 𝑖 ∈ {1, . . . , 𝑑 − 1}, 𝑡 ∈ [|𝐽𝑖+1 |], it holds that���Pr[H̃yb𝑖,𝑡,3 (A) = 1] − Pr[H̃yb𝑖,𝑡,4 (A) = 1]

��� ≤ negl(𝜆).

Proof. Follows by a similar argument as the proof of Claim 4.11 (for the case where 𝑖 > 0). □

Claim 8.13. If ΠH satisfies one-sided index hiding with extracted guess security against efficient non-uniform adversaries,
then there exists a negligible function negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1}, 𝑡 ∈ [|𝐽𝑖+1 |], it holds that

Pr[H̃yb𝑖,𝑡,4 (A) = 1] ≤ Pr[H̃yb𝑖,𝑡,5 (A) = 1] + negl(𝜆).

Proof. Follows by a similar argument as the proof of Claim 4.12. □

Claim 8.14. For every 𝑖 ∈ {0, . . . , 𝑑 − 1}, 𝑡 ∈ [|𝐽𝑖+1 |], it holds that

Pr[H̃yb𝑖,𝑡,6 (A) = 1] ≥ Pr[H̃yb𝑖,𝑡,5 (A) = 1] .

Proof. Follows by a similar argument as the proof of Claim 4.13. □

Claim 8.15. If ΠBARG satisfies set hiding against efficient non-uniform adversaries, then there exists a negligible function
negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1} and 𝑡 ∈ [|𝐽𝑖+1 |], it holds that���Pr[H̃yb𝑖,𝑡,6 (A) = 1] − Pr[H̃yb𝑖,𝑡,7 (A) = 1]

��� ≤ negl(𝜆).

Proof. Follows by a similar argument as the proof of Claim 4.14. □

Claim 8.16. For every 𝑖 ∈ {0, . . . , 𝑑 − 1}, it holds that

Pr[H̃yb𝑖, | 𝐽𝑖+1 |,7 (A) = 1] ≤ Pr[H̃yb𝑖,final (A) = 1] .

Proof. Follows by a similar argument as the proof of Claim 4.15. □

Claim 8.17. If ΠH satisfies set hiding property against efficient non-uniform adversaries then there exists a negligible
function negl(·) such that for every 𝑖 ∈ {0, . . . , 𝑑 − 1}, it holds that���Pr[H̃yb𝑖,final (A) = 1] − Pr[H̃yb𝑖+1 (A) = 1]

��� ≤ negl(𝜆).

Proof. Follows by a similar argument as the proof of Claim 4.16. □

Claim 8.18. If A is admissible, then Pr[H̃yb𝑑−1,1,4 (A) = 1] = 0.

Proof. The proof is almost identical to that of Claim 4.17, but relies on the fact that A is an admissible adversary.
Namely, if A is admissible for the semi-somewhere extractability game, then it outputs a set 𝑆 and a policy 𝑃 such
that 𝑃 (𝑏1, . . . , 𝑏𝑘) = 0 where 𝑏𝑖 = 0 if 𝑖 ∈ 𝑆 and 𝑏𝑖 = 1 otherwise. By construction, the challenger in H̃yb𝑑−1,1,4 (A) = 1
sets 𝛽𝑖 = 𝑏𝑖 for all 𝑖 ∈ [𝑘], and 𝛽𝑘+1, . . . , 𝛽𝑠 to be the wire values for 𝑃 (𝑏1, . . . , 𝑏𝑘). In particular, this means that 𝛽𝑠 = 0,
and therefore 𝐽𝑑 [1] = {𝛽𝑠 }. In this case, H̃yb𝑑−1,1,4 cannot always output 1 since the following two conditions must
simultaneously hold:

• On the one hand, there must exist a witness 𝑤̂ = (𝑏, 𝜎 (0) , 𝜎 (1) ,𝑤) for instance 𝑥𝑠 (of the relation in Fig. 1) where
𝑏 = 0.

• On the other hand, by definition of instance 𝑥𝑠 , since 𝑠 is the output wire, it must be that 𝑏 = 1.

Therefore the output in H̃yb𝑑−1,1,4 is always 0. □

98

Combining Claims 8.8 to 8.18, we conclude that

Pr[H̃yb0 (A) = 1] ≤
∑︁

𝑡 ∈[|𝑆 |]
𝑝𝑡 + negl(𝜆). (8.3)

To complete the proof, we relate the probability 𝜀A (𝜆, 𝑘) from Eq. (8.1) that A outputs a valid proof in the semi-
somewhere extractability game to the probability that H̃yb0 (A) outputs 1. The only difference between H̃yb0 and the
semi-somewhere extractability game is the fact that in �Hyb0, the common reference string is norm (output by Gen)
whereas in the semi-somewhere extractability game, it is output by TrapGen. We give the formal reduction below:

Claim 8.19. If Construction 8.3 satisfies set hiding, then there exists a negligible function negl(·) such that

| Pr[H̃yb0 (A) = 1] − 𝜀A (𝜆, 𝑘) | ≤ negl(𝜆)

where 𝜀A is the probability that A outputs a verifying proof in the ExptSE experiment from Definition 8.1.

Proof. Suppose | Pr[H̃yb0 (A) = 1] − 𝜀A (𝜆, 𝑘) | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct an adversary B
for the set hiding game:

1. On input the security parameter 1𝜆 , algorithm B runs (1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 𝑃, 𝑆, stA) ← A1 (1𝜆). Algorithm B then
forwards 1𝑛 , 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 (𝜆) , and 𝑆 to the challenger.

2. The challenger replies with crs. Algorithm B runs (𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋) ← A2 (crs, stA). Algorithm B then
outputs Verify(crs,𝐶, 𝑃, (𝑥1, . . . , 𝑥𝑘), 𝜋).

If the challenger samples crs← Gen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝), then B perfectly simulates the distribution H̃yb0 and outputs 1
with probability Pr[H̃yb0 (A)] = 1]. If the challenger samples crs← TrapGen(1𝜆, 1𝑛, 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆), then B perfectly
simulates the distribution ExptSEA (𝜆, 𝑘) and outputs 1 with probability 𝜀A (𝜆, 𝑘). We conclude that algorithm B
succeeds with the same advantage 𝜀. □

Combining Eq. (8.3) with Claim 8.19, we have that

𝜀A (𝜆, 𝑘) ≤
∑︁

𝑡 ∈[|𝑆 |]
𝑝𝑡 + negl(𝜆).

Next, since TrapGen invokes TrapGenIndex on a random 𝑡 ∈ 𝑆 and appealing to Eq. (8.2), we conclude that

Pr[ExptSEA (𝜆) = 1] =
∑︁

𝑡 ∈[|𝑆 |]

𝑝𝑡

|𝑆 | ≥
∑︁

𝑡 ∈[|𝑆 |]

𝑝𝑡

𝑘
≥ 1

𝑘
· 𝜀A (𝜆, 𝑘) − negl(𝜆). □

8.1 Monotone Policy Aggregate Signature via Semi-Somewhere Extractability
In Section 7, we showed how to combine a non-adaptively-sound monotone BARG with a puncturable signature
scheme to obtain a monotone policy aggregate signature scheme. In this section, we show that the same construction
is also secure for any signature scheme (not necessarily puncturable) if we rely on semi-somewhere extractability
instead. We first recall the notion of a standard (non-puncturable) signature scheme:

Definition 8.20 (Digital Signature). An digital signature scheme with message space {0, 1}𝜆 is a tuple of efficient
algorithms ΠSig = (Gen, Sign,Verify) with the following syntax:

• Gen(1𝜆) → (vk, sk): On input the security parameter 𝜆, the key-generation algorithm outputs a key pair
(vk, sk).

• Sign(sk,𝑚) → 𝜎 : On input a signing key sk and a message 𝑚 ∈ {0, 1}𝜆 , the signing algorithm outputs a
signature 𝜎 .

99

• Verify(vk,𝑚, 𝜎) → 𝑏: On input a verification key vk, a message𝑚 ∈ {0, 1}𝜆 , and a signature 𝜎 , the verification
algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, the signature scheme should satisfy the following properties:

• Correctness: For all 𝜆 ∈ N and all𝑚 ∈ {0, 1}𝜆 , it holds that

Pr
[
Verify(vk,𝑚, 𝜎) = 1 : (vk, sk) ← Gen(1𝜆)

𝜎 ← Sign(sk,𝑚)

]
= 1.

• Unforgeability: For all efficient and admissible adversaries A, there exists a negligible function negl(·) such
that

Pr
[
Verify(vk,𝑚∗, 𝜎∗) = 1 : (vk, sk) ← Gen(1𝜆)

(𝑚∗, 𝜎∗) ← ASign(sk,·) (1𝜆, vk)

]
= negl(𝜆),

where we sayA is admissible if it does not query the signing oracle Sign(sk, ·) on the message𝑚∗ in the above
security game.

Theorem 8.21 (Static Unforgeability). Consider an instantiation of Construction 4.4 where the puncturable signature
schemeΠPunctSig is replaced by a standard digital signature schemeΠSig = (Sig.Gen, Sig.Sign, Sig.Verify) (Definition 8.20).
If ΠMP-BARG is semi-somewhere extractable and satisfies set hiding, and ΠSig is unforgeable, then Construction 7.5 is
statically unforgeable.

Proof. Let A be any efficient adversary for the static security game. We begin by defining a sequence of hybrid
experiments:

• Hyb0: This is the static unforgeability experiment:

1. On input the security parameter 𝜆, the adversary A outputs the number of parties 1𝑘 , a number of
verification keys 1𝑛 , a bound on the policy size 1𝑠𝑝 , a challenge message𝑚∗ ∈ {0, 1}𝜆 , and a monotone
policy 𝑃 : {0, 1}𝑘 → {0, 1}.

2. The challenger samples key-pairs (vk𝑖 , sk𝑖) ← Sig.Gen(1𝜆) for all 𝑖 ∈ [𝑛] and sends vk1, . . . , vk𝑛 to the
adversary.

3. The adversary A can now issue signing queries. Each signing query consists of an index 𝑖 ∈ [𝑛] and a
message𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}. The challenger responds with 𝜎 ← Sig.Sign(sk𝑖 ,𝑚).

4. After the adversary is finished making signing queries, it outputs a tuple of verification keys (vk∗1, . . . , vk∗𝑘).
5. The challenger replies with the common reference string crs← BARG.Gen(1𝜆, 1ℓvk , 1𝑠𝑐 , 1𝑠𝑝).
6. The adversary A can continue to make signing queries. The challenger responds to these exactly as

before. When A finishes making signing queries, the adversary outputs the aggregate signature 𝜎∗agg.
7. The output of the experiment is 1 if all of the following holds:

– For each 𝑖 ∈ [𝑘], let 𝑏𝑖 = 0 if vk∗𝑖 = vk𝑗 for some 𝑗 ∈ [𝑛]. Otherwise, let 𝑏𝑖 = 1. Then, it holds that
𝑃 (𝑏1, . . . , 𝑏𝑘) = 0.

– BARG.Verify
(
crs,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎∗agg

)
= 1.

Otherwise, the output is 0.

• Hyb1: Same asHyb0, except the challenger uses the following modified procedure to sample the BARG common
reference string:

– Sample the common reference string (crs, td) ← BARG.TrapGen(1𝜆, 1ℓvk , 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆), where 𝑆 ={
𝑖 ∈ [𝑘] | ∃ 𝑗 ∈ [𝑛] : vk∗𝑖 = vk𝑗

}
.

• Hyb2: Same as Hyb1, except the experiment outputs 1 if all of the following holds:

100

– For each 𝑖 ∈ [𝑘], let 𝑏𝑖 = 0 if vk∗𝑖 = vk𝑗 for some 𝑗 ∈ [𝑛]. Otherwise, let 𝑏𝑖 = 1. Then, it holds that
𝑃 (𝑏1, . . . , 𝑏𝑘) = 0.

– Extract the instance and witness (𝑖, 𝜎𝑖) ← BARG.Extract(tdBARG,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎∗agg) and check
that 𝐶𝑚∗ (vk∗𝑖 , 𝜎𝑖) = 1 and 𝑖 ∈ 𝑆 .

If either check fails, then the challenger outputs 0. Notably, the experiment no longer checks the condition
BARG.Verify

(
crs,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎∗agg

)
= 1.

• Hyb3: Same as Hyb2, except the challenger samples a random index 𝑖∗ r← [𝑛] at the beginning of the security
game. After computing (𝑖, 𝜎𝑖) ← BARG.Extract(tdBARG,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎∗agg), the challenger additionally
checks that vk∗𝑖 = vk𝑖∗ . If the check fails, the challenger outputs 0.

Lemma 8.22. If ΠMP-BARG satisfies set hiding, then there exists a negligible function negl(·) such that��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]
�� = negl(𝜆).

Proof. Suppose | Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct an
adversary B for the set hiding game as follows:

1. On input a security parameter 1𝜆 , compute (1𝑘 , 1𝑛, 1𝑠𝑝 ,𝑚∗, 𝑃) ← A(1𝜆).

2. Algorithm B samples key-pairs (vk𝑖 , sk𝑖) ← Sig.Gen(1𝜆) for all 𝑖 ∈ [𝑛] and send vk1, . . . , vk𝑛 to A.

3. Whenever algorithmA makes a signing query on an index 𝑖 ∈ [𝑛] and a message𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}, algorithm
B responds with 𝜎 ← Sig.Sign(sk𝑖 ,𝑚).

4. After A is finished making signing queries, it outputs a tuple of verification keys (vk∗1, . . . , vk∗𝑘).

5. Let 𝑆 =
{
𝑖 ∈ [𝑘] | ∃ 𝑗 ∈ [𝑛] : vk∗𝑖 = vk𝑗

}
. Algorithm B sends the tuple (1ℓvk , 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆) to the ΠMP-BARG

challenger. The challenger replies with a common reference string crs, which algorithm B forwards to
algorithm A.

6. Algorithm B responds to additional signing queries exactly as before.

7. Upon receiving an aggregate signature 𝜎∗agg from A, algorithm B outputs 1 if all of the following holds:

(a) 𝑃 (𝑏1, . . . , 𝑏𝑘) = 0 where 𝑏𝑖 = 0 if 𝑖 ∈ 𝑆 and 𝑏𝑖 = 1 otherwise.
(b) BARG.Verify

(
crs,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎∗agg

)
= 1.

Otherwise, algorithm B outputs 0.

If the set hiding challenger samples crs← BARG.Gen(1𝜆, 1ℓvk , 1𝑠𝑐 , 1𝑠𝑝), then B perfectly simulates Hyb0 for A and
outputs 1 with probability Pr[Hyb0 (A) = 1]. On the other hand, if the set hiding challenger samples (crs, td) ←
BARG.TrapGen(1𝜆, 1ℓvk , 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆), then B perfectly simulates an execution of Hyb1 for A and outputs 1 with
probability Pr[Hyb1 (A) = 1]. We conclude that algorithm B breaks set hiding with the same advantage 𝜀. □

Lemma 8.23. If ΠMP-BARG is semi-somewhere extractable, then there exists a negligible function such that

Pr[Hyb2 (A) = 1] ≥ 1
𝑘
· Pr[Hyb1 (A) = 1] − negl(𝜆).

Proof. Let 𝑘 = 𝑘 (𝜆) be the number of parties that algorithm A outputs.11 We use A to construct an adversary B for
the semi-somewhere extractability game (with parameter 𝑘 = 𝑘 (𝜆) as follows:

1. On input a security parameter 1𝜆 , algorithm B computes (1𝑘 , 1𝑛, 1𝑠𝑝 ,𝑚∗, 𝑃) ← A(1𝜆).
11We can assume that for each value of 𝜆 ∈ N, algorithm A always picks a fixed value of 𝑘 . This can be the value that maximizes its success
probability for each value of 𝜆 (formally, we can take this “maximizing” value of 𝑘 to be non-uniform advice provided to A).

101

2. Algorithm B samples key-pairs (vk𝑖 , sk𝑖) ← Sig.Gen(1𝜆) for all 𝑖 ∈ [𝑛] and send vk1, . . . , vk𝑛 to A.

3. Whenever algorithmA makes a signing query on an index 𝑖 ∈ [𝑛] and a message𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}, algorithm
B responds with 𝜎 ← Sig.Sign(sk𝑖 ,𝑚).

4. After A is finished making signing queries, it outputs a tuple of verification keys (vk∗1, . . . , vk∗𝑘).

5. Let 𝑆 =
{
𝑖 ∈ [𝑘] | ∃ 𝑗 ∈ [𝑛] : vk∗𝑖 = vk𝑗

}
. Let 𝑏𝑖 = 0 if 𝑖 ∈ 𝑆 and 𝑏𝑖 = 1 otherwise. If 𝑃 (𝑏1, . . . , 𝑏𝑘) = 0, then

algorithm B aborts with output ⊥. Otherwise, algorithm B sends the tuple (1ℓvk , 1𝑠𝑐 , 1𝑠𝑝 , 𝑃, 𝑆) to the challenger
and receives a common reference string crs. Algorithm B forwards crs to A.

6. Algorithm B responds to additional signing queries exactly as before.

7. Upon receiving an aggregate signature 𝜎∗agg from A, algorithm B outputs the circuit 𝐶𝑚∗ , the instances
(vk∗1, . . . , vk∗𝑘) and the proof 𝜎∗agg.

Algorithm B is admissible by construction (since 𝑃 (𝑏1, . . . , 𝑏𝑘) = 0 where 𝑏𝑖 = 0 if 𝑖 ∈ 𝑆 and 𝑏𝑖 = 1 otherwise). Next,
algorithm B perfectly simulates the view of A in the hybrids Hyb1 and Hyb2. By assumption, with probability
Pr[Hyb1 (A) = 1], algorithm A outputs 𝜎agg where

BARG.Verify
(
crs,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎

∗
agg

)
= 1.

This means that

𝜀B (𝜆, 𝑘) = Pr[BARG.Verify
(
crs,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎

∗
agg

)
= 1] = Pr[Hyb1 (A) = 1], (8.4)

where 𝜀B (𝜆, 𝑘) is the quantity from Eq. (8.1). By somewhere extractability of ΠMP-BARG, there exists a negligible
function negl(·) such that

Pr[ExptSEB (𝜆, 𝑘) = 1] ≥ 1
𝑘
· 𝜀B (𝜆, 𝑘) − negl(𝜆), (8.5)

Next, the output of ExptSEB (𝜆, 𝑘) is 1 if 𝐶𝑚∗ (vk∗𝑖 , 𝜎𝑖) = 1 and 𝑖 ∈ 𝑆 where

(𝑖, 𝜎𝑖) ← BARG.Extract(tdBARG,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎
∗
agg).

This is the same set of conditions checked in Hyb2 and we conclude that

Pr[ExptSEB (𝜆, 𝑘) = 1] = Pr[Hyb2 (A) = 1] . (8.6)

Combining Eqs. (8.4) to (8.6), we have that

Pr[Hyb2 (A) = 1] ≥ 1
𝑘
· Pr[Hyb1 (A) = 1] − negl(𝜆). □

Lemma 8.24. Pr[Hyb3 (A) = 1] = 1
𝑛
· Pr[Hyb2 (A) = 1].

Proof. By construction, the adversary’s view in Hyb2 and Hyb3 is identical. The only difference is how the output of
the experiment is computed. Suppose Pr[Hyb2 (A) = 1] = 𝜀. Then, with probability 𝜀, the extracted value (𝑖, 𝜎𝑖) in
Hyb2 and Hyb3 satisfies 𝑖 ∈ 𝑆 . By definition of 𝑆 , there exists some 𝑗 ∈ [𝑛] such that vk∗𝑖 = vk𝑗 . Since 𝑖∗ r← [𝑛] (and
is entirely independent of the view of the adversary), Pr[𝑗 = 𝑖∗] = 1/𝑛. When 𝑗 = 𝑖∗, the output in Hyb3 is also 1 (and
otherwise, it is 0). As such, Pr[Hyb3 (A) = 1] = 1

𝑛
Pr[Hyb2 (A) = 1] and the claim follows. □

Lemma 8.25. If ΠSig is unforgeable, then there exists a negligible function negl(·) such that Pr[Hyb3 (A) = 1] = negl(𝜆).

Proof. Suppose Pr[Hyb3 (A) = 1] > 𝜀 for some non-negligible 𝜀. We useA to construct an efficient adversary B that
breaks unforgeability of ΠSig:

1. At the beginning of the game, algorithm B receives a verification key vk from the challenger.

102

2. On input a security parameter 1𝜆 , algorithm B computes (1𝑘 , 1𝑛, 1𝑠𝑝 ,𝑚∗, 𝑃) ← A(1𝜆).

3. AlgorithmB samples a random index 𝑖∗ r← [𝑛]. For 𝑖 ∈ [𝑛]\{𝑖∗}, algorithmB samples (vk𝑖 , sk𝑖) ← Sig.Gen(1𝜆).
It sets vk𝑖∗ := vk and send vk1, . . . , vk𝑛 to A.

4. Whenever A makes a signing query on an index 𝑖 ∈ [𝑛] and a message𝑚 ∈ {0, 1}𝜆 \ {𝑚∗}, if 𝑖 = 𝑖∗, then
algorithm B forwards the query to the challenger and receives a signature 𝜎 . Algorithm B replies to A with 𝜎 .
If 𝑖 ≠ 𝑖∗, then algorithm B replies with 𝜎 ← Sign(sk𝑖 ,𝑚).

5. At some point, algorithm A outputs a collection of verification keys (vk∗1, . . . , vk∗𝑘).

6. Let 𝑆 =
{
𝑖 ∈ [𝑘] | ∃ 𝑗 ∈ [𝑛] : vk∗𝑖 = vk𝑗

}
. For each 𝑖 ∈ 𝑆 , set 𝑏𝑖 = 0 and set 𝑏𝑖 = 1 otherwise. If 𝑃 (𝑏1, . . . , 𝑏𝑘) =

1, then algorithm B aborts. Otherwise, algorithm B samples the common reference string (crs, td) ←
BARG.TrapGen(1𝜆, 1ℓvk , 1𝑠𝑐 , 1𝑠𝑝 , 1𝑘 , 𝑆) and send crs to A.

7. Algorithm B responds to additional signing queries exactly as before.

8. Upon receiving an aggregate signature 𝜎∗agg from A, algorithm B computes

(𝑖, 𝜎𝑖) ← BARG.Extract(tdBARG,𝐶𝑚∗ , 𝑃, (vk∗1, . . . , vk∗𝑘), 𝜎
∗
agg) .

If vk∗𝑖 ≠ vk𝑖∗ = vk then algorithm B aborts. Otherwise, algorithm output 𝜎∗ = 𝜎𝑖 and𝑚∗.

Algorithm B is admissible since it never needs to query its challenger for a signature on𝑚∗. Next, algorithm B
perfectly simulates an execution of Hyb3 for A. Thus, with probability 𝜀, algorithm A outputs a tuple of verification
keys (vk∗1, . . . , vk∗𝑘) and a signature 𝜎agg such that the extracted index-signature pair (𝑖, 𝜎𝑖) satisfies vk∗𝑖 = vk𝑖∗ = vk
and 𝐶𝑚∗ (vk∗𝑖 , 𝜎𝑖) = 1. By definition of 𝐶𝑚∗ , this means that

1 = Verify(vk∗𝑖 ,𝑚∗, 𝜎𝑖) = Verify(vk,𝑚∗, 𝜎𝑖),

in which case B wins the unforgeability game. □

Theorem 8.21 now follows immediately from Lemmas 8.22 to 8.25. □

Acknowledgments
We thank Yuval Ishai for helpful pointers on batch arguments. Brent Waters is supported by NSF CNS-1908611,
CNS-2318701, and a Simons Investigator award. David J. Wu is supported by NSF CNS-2151131, CNS-2140975,
CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References
[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth. SNARGs

for monotone policy batch NP. In CRYPTO, pages 252–283, 2023.

[BCJP24] Maya Farber Brodsky, Arka Rai Choudhuri, Abhishek Jain, and Omer Paneth. Monotone-policy aggregate
signatures. In EUROCRYPT, 2024.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In TCC, pages
325–341, 2005.

[BKP22] Shany Ben-David, Yael Tauman Kalai, and Omer Paneth. Verifiable private information retrieval. In TCC,
pages 3–32, 2022.

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption secure against selective opening
attack. In TCC, pages 235–252, 2011.

103

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC, pages 55–72, 2013.

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Correlation
intractability and snargs from sub-exponential DDH. In CRYPTO, pages 635–668, 2023.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from
standard assumptions. In CRYPTO, pages 394–423, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, pages
68–79, 2021.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive arguments
for batch-NP and applications. In FOCS, pages 1057–1068, 2022.

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered abe,
flexible broadcast, and more. In CRYPTO, pages 498–531, 2023.

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
CRYPTO, pages 10–18, 1984.

[GVW19] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. Collusion resistant broadcast and trace from
positional witness encryption. In PKC, pages 3–33, 2019.

[GZ21] Alonso González and Alexandros Zacharakis. Succinct publicly verifiable computation. IACR Cryptol.
ePrint Arch., page 353, 2021.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs for P from sub-
exponential DDH and QR. In EUROCRYPT, pages 520–549, 2022.

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure function evaluation with
long output. In ITCS, pages 163–172, 2015.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments and
RAM delegation. In STOC, pages 1545–1552, 2023.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In STOC, pages
1115–1124, 2019.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical soundness,
post-quantum security, and SNARGs. In TCC, pages 330–368, 2021.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO, pages
369–378, 1987.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In STOC, pages 427–437, 1990.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch arguments. In FOCS,
pages 1045–1056, 2022.

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and publicly verifiable
non-interactive arguments. In TCC, pages 283–315, 2017.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages
84–93, 2005.

104

[Vad06] Salil P. Vadhan. An unconditional study of computational zero knowledge. SIAM J. Comput., 36(4):1160–
1214, 2006.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group assump-
tions. In CRYPTO, pages 433–463, 2022.

A Set Hiding with Extraction for BARGs
We now show to construct a BARG satisfying Definition 2.8 from any somewhere extractable BARG that supports
extraction on a single instance (e.g., [CJJ21b, WW22, HJKS22, DGKV22, KLVW23]). Our construction is a direct
parallel of the analogous constructions from [GZ21, CJJ21b] in the setting of somewhere extractable commitments.

Construction A.1 (BARGs Satisfying Set Hiding with Extraction). Let Π′BARG = (Gen′, Prove′,Verify′, TrapGen′,
Extract′) be a somewhere-extractable BARG for Boolean circuit satisfiability that supports extraction on a single
instance. We use Π′BARG to construct a new BARG ΠBARG = (Gen, Prove,Verify, TrapGen, Extract) that supports
extraction on multiple instances and which satisfies Definition 2.8:

• Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ): On input the security parameter 𝜆, the number of instances 𝑘 , the instance length 𝑛, the
bound on the size of the Boolean circuit 𝑠 , and the bound on the size of the extraction set ℓ , the generator
algorithm samples (crs′𝑖 , vk

′
𝑖) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11) for each 𝑖 ∈ [ℓ]. Then, it samples a random permutation

𝜏 : [ℓ] → [ℓ] and outputs crs =
(
crs′

𝜏 (1) , . . . , crs
′
𝜏 (ℓ)

)
and vk =

(
vk′

𝜏 (1) , . . . , vk
′
𝜏 (ℓ)

)
.

• Prove(crs,𝐶, (𝑥1, . . . , 𝑥𝑘), (𝑤1, . . . ,𝑤𝑘)): On input the common reference string crs = (crs′1, . . . , crs′ℓ), a Boolean
circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and witnesses 𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ ,
the prove algorithm computes 𝜋 ′𝑖 ← Prove′ (crs′𝑖 ,𝐶, (𝑥1, . . . , 𝑥𝑘), (𝑤1, . . . ,𝑤𝑘)) for all 𝑖 ∈ [𝑘] and outputs
𝜋 = (𝜋 ′1, . . . , 𝜋 ′ℓ).

• Verify(vk,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋): On input the verification key vk = (vk′1, . . . , vk′ℓ), a Boolean circuit 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and a proof 𝜋 = (𝜋 ′1, . . . , 𝜋 ′ℓ), the verification algorithm outputs
1 if for all 𝑖 ∈ [ℓ], it holds that Verify′ (vk′𝑖 ,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋 ′𝑖) = 1. Otherwise, it outputs 0.

• TrapGen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ , 𝑆): On input the security parameter 𝜆, the number of instances 𝑘 , the instance size 𝑛,
the bound on the size of the Boolean circuit 𝑠 , the bound on the size of the extraction set ℓ , and a set of indices
𝑆 ⊆ [𝑘] of size at most ℓ , the trapdoor-generator algorithm proceeds as follows:

– Let 𝑆 = { 𝑗1, . . . , 𝑗𝑑 } where 𝑗1 < 𝑗2 < · · · < 𝑗𝑑 are in sorted order.
– For each 𝑖 ∈ [𝑑], sample (crs′𝑖 , vk

′
𝑖 , td

′
𝑖) ← TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, { 𝑗𝑖 }). For each 𝑖 ∈ {𝑑 + 1, . . . , ℓ},

sample crs′𝑖 ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11).
– Sample a random permutation 𝜏 : [ℓ] → [ℓ], and define the dictionary D where D[𝑗𝑖] ↦→

(
𝜏−1 (𝑖), td′𝑖

)
for

all 𝑖 ∈ 𝑆 . Output crs =
(
crs′

𝜏 (1) , . . . , crs
′
𝜏 (ℓ)

)
, vk =

(
vk′

𝜏 (1) , . . . , vk
′
𝜏 (ℓ)

)
, and td = D.

• Extract(td,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋, 𝑖): On input the trapdoor td = D, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , a proof 𝜋 = (𝜋 ′1, . . . , 𝜋 ′ℓ), and an index 𝑖 , the extraction algorithm outputs ⊥ if
𝑖 ∉ D. Otherwise, let (𝑡, td′) ← D[𝑖] and output Extract′

(
td′,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋 ′𝑡 , 𝑖

)
.

Theorem A.2 (Completeness). If Π′BARG satisfies completeness, then ΠBARG in Construction A.1 is also complete.

Proof. This follows by construction. Specifically, take any 𝜆, 𝑘, 𝑛, 𝑠, ℓ ∈ N, any Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1} of size at most 𝑠 , any sequence of statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 along with witnesses 𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}ℎ
where 𝐶 (𝑥𝑖 ,𝑤𝑖) = 1 for all 𝑖 ∈ [𝑘]. Then, the following properties hold:

• Suppose (crs, vk) ← Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ). By construction, this means crs = (crs′1, . . . , crs′ℓ) and vk =

(vk′1, . . . , vk′ℓ). Moreover, for all 𝑖 ∈ [ℓ], we have that (crs′𝑖 , vk
′
𝑖) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11).

105

• Let 𝜋 ← Prove(crs,𝐶, (𝑥1, . . . , 𝑥𝑘), (𝑤1, . . . ,𝑤𝑘)). By construction, 𝜋 = (𝜋 ′1, . . . , 𝜋 ′ℓ) where for all 𝑖 ∈ [ℓ], we
have that 𝜋 ′𝑖 ← Prove′ (crs′𝑖 ,𝐶, (𝑥1, . . . , 𝑥𝑘), (𝑤1, . . . ,𝑤𝑘)).

• By completeness of Π′BARG, Verify
′ (vk′𝑖 ,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋 ′𝑖) = 1 for all 𝑖 ∈ [ℓ]. Thus Verify(vk,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋)

outputs 1 and completeness holds. □

Theorem A.3 (Set Hiding). If Π′BARG satisfies set hiding, then ΠBARG in Construction A.1 also satisfies set hiding.

Proof. We start by defining a sequence of hybrid experiments.

• Hyb0: This is experiment ExptSHA (𝜆, 0). Namely, after the adversary chooses the parameters 𝑘, 𝑛, 𝑠, ℓ ∈ N
and the set 𝑆 ⊆ [𝑘], the challenger replies with crs =

(
crs′

𝜏 (1) , . . . , crs
′
𝜏 (ℓ)

)
and vk =

(
vk′

𝜏 (1) , . . . , vk
′
𝜏 (ℓ)

)
where

(crs′𝑖 , vk
′
𝑖) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11) for all 𝑖 ∈ [ℓ] and 𝜏 is a random permutation. At the end of the experiment,

the adversary outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

• Hyb𝑖 for 𝑖 ∈ [𝑑]: Same as Hyb0, except for indices 𝑡 ≤ 𝑖 , the challenger computes (crs′𝑡 , vk′𝑡 , td′𝑡) ←
TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, { 𝑗𝑡 }), where 𝑆 = { 𝑗1, . . . , 𝑗𝑑 } and 𝑗1 < · · · < 𝑗𝑑 .

For an adversary A, we write Hyb𝑖 (A) to denote the output of an execution of hybrid Hyb𝑖 with adversary A. By
construction, Hyb0 (A) ≡ ExptSHA (𝜆, 0) and Hyb𝑑 (A) ≡ ExptSHA (𝜆, 1). We now show that if Π′BARG satisfies set
hiding, then for all 𝑖 ∈ [𝑑], and for all efficient adversaries A, the output distributions Hyb𝑖−1 (A) and Hyb𝑖 (A) are
computationally indistinguishable. To see this, suppose there exists an efficient adversary A such that��Pr[Hyb𝑖−1 (A) = 1] − Pr[Hyb𝑖 (A) = 1]

�� ≥ 𝜀 (𝜆),

for some non-negligible 𝜀. We use A to construct an efficient algorithm B that breaks set hiding of Π′BARG:

1. On input the security parameter 1𝜆 , algorithm B starts by running adversaryA on the same security parameter.
Algorithm A outputs 1𝑘 , 1𝑛 , 1𝑠 , 1ℓ , and a set 𝑆 = { 𝑗1, . . . , 𝑗𝑑 }, where 𝑗1 < · · · < 𝑗𝑑 .

2. Algorithm B sends 1𝑘 , 1𝑛 , 1𝑠 , 11, and { 𝑗𝑖 } to the set hiding challenger for Π′BARG and receives a pair (crs∗, vk∗).
It sets crs′𝑖 = crs∗ and vk′𝑖 = vk∗.

3. For 𝑡 < 𝑖 , algorithm B samples (crs′𝑡 , vk′𝑡 , td′𝑡) ← TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, { 𝑗𝑡 }). For 𝑡 ∈ [𝑖 + 1, ℓ], it samples
(crs′𝑗 , vk

′
𝑗) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11).

4. Finally, algorithm B samples a random permutation 𝜏 : [ℓ] → [ℓ] and gives crs =
(
crs′

𝜏 (1) , . . . , crs
′
𝜏 (ℓ)

)
and

vk =
(
vk′

𝜏 (1) , . . . , vk
′
𝜏 (ℓ)

)
to A. It outputs whatever A outputs.

By design, if (crs∗, vk∗) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11), then algorithm B perfectly simulates Hyb𝑖−1 for A and outputs 1
with probability Pr[Hyb𝑖−1 (A) = 1]. If (crs∗, vk∗, td∗) ← TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, { 𝑗𝑖 }), then algorithm B perfectly
simulates Hyb𝑖 for A and outputs 1 with probability Pr[Hyb𝑖 (A) = 1]. We conclude that algorithm B breaks set
hiding of Π′BARG with the same non-negligible advantage 𝜀. The claim now follows by a hybrid argument. □

Theorem A.4 (Set Hiding with Extraction). If Π′BARG satisfies set hiding, then ΠBARG in Construction A.1 satisfies set
hiding with extraction.

Proof. We begin by defining a sequence of hybrid experiments:

• Hyb0: This is experiment ExptSHwEA (𝜆, 0):

– At the beginning of the game, the adversary chooses the parameters 𝑘, 𝑛, 𝑠, ℓ ∈ N, the set 𝑆 ⊆ [𝑘], and the
index 𝑖∗ ∈ 𝑆 . Let 𝑆 = { 𝑗1, . . . , 𝑗𝑑 } where 𝑗1 < · · · < 𝑗𝑑 . Let 𝑡∗ ∈ [𝑑] be the index where 𝑖∗ = 𝑗𝑡∗ .

– Then, for each 𝑖 ∈ [𝑑], the challenger samples (crs′𝑖 , vk
′
𝑖 , td

′
𝑖) ← TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, { 𝑗𝑖 }). For each

𝑖 ∈ {𝑑 + 1, . . . , ℓ}, sample (crs′𝑖 , vk
′
𝑖) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11). Then, it samples a random permutation

𝜏 : [ℓ] → [ℓ]. It gives crs =
(
crs′

𝜏 (1) , . . . , crs
′
𝜏 (ℓ)

)
and vk =

(
vk′

𝜏 (1) , . . . , vk
′
𝜏 (ℓ)

)
to A. The challenger also

sets td′ = td′𝑡∗ and 𝑧 = 𝜏−1 (𝑡∗).

106

– Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and
a proof 𝜋 = (𝜋 ′1, . . . , 𝜋 ′ℓ).

– The challenger checks that for all 𝑖 ∈ [ℓ], it holds that Verify′ (vk𝜏 (𝑖) ,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋 ′𝑖) = 1. If not, the
challenger halts with output 0. Otherwise, the challenger replies with Extract′ (td′,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋 ′𝑧, 𝑖∗).

– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb1: Same asHyb0, except the challenger swaps (crs′1, vk
′
1) with (crs′𝑡∗ , vk

′
𝑡∗). In more detail, the challenger sam-

ples (crs′1, vk
′
1, td

′
1) ← TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, { 𝑗𝑡∗ }) and (crs′𝑡∗ , vk

′
𝑡∗ , td

′
𝑡∗) ← TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, { 𝑗1}).

In addition, it sets td′ = td′1 and 𝑧 = 𝜏−1 (1). The remainder of the experiment proceeds as in Hyb0.

• Hyb𝑖 for 𝑖 ∈ {2, . . . , 𝑑}: Same as Hyb1 except for indices 𝑡 ∈ {2, . . . , 𝑖}, the challenger now computes
(crs′𝑖 , vk

′
𝑖) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11).

For an adversary A, we write Hyb𝑖 (A) to denote the output distribution of an execution of hybrid Hyb𝑖 with
adversary A. By construction Hyb0 (A) ≡ ExptSHwEA (𝜆, 0) while Hyb𝑑 (A) ≡ ExptSHwEA (𝜆, 1). To complete the
proof, we now show that the output of each adjacent pair of hybrid experiments are indistinguishable.

Lemma A.5. For all adversaries A, we have that Hyb0 (A) ≡ Hyb1 (A).

Proof. The view of the adversary in the two experiments is identical since 𝜏 is a random permutation. More precisely,
the distribution in Hyb1 corresponds to the distribution in Hyb0 where the permutation 𝜏 is replaced by 𝜏 ◦ 𝜎 where
𝜎 : [ℓ] → [ℓ] is the elementary permutation that transposes 𝑗1 with 𝑗𝑡∗ (and fixes all other inputs). Since 𝜏 is uniform,
the distributions of 𝜏 and 𝜏 ◦ 𝜎 are identical. □

Lemma A.6. If Π′BARG satisfies set hiding, then for all 𝑖 ∈ {2, . . . , 𝑑} and all efficient adversaries A, it holds that��Pr[Hyb𝑖−1 (A) = 1] − Pr[Hyb𝑖 (A) = 1]
�� = negl(𝜆).

Proof. Suppose there exists an efficient adversaryA where
��Pr[Hyb𝑖−1 (A) = 1] − Pr[Hyb𝑖 (A) = 1]

�� ≥ 𝜀 (𝜆) for some
non-negligible 𝜀. We use A to construct an efficient adversary B that breaks set hiding of Π′BARG:

1. On input the security parameter 1𝜆 , algorithm B starts running adversary A on the same security parameter.
Algorithm A outputs 1𝑘 , 1𝑛 , 1𝑠 , 1ℓ , a set 𝑆 = { 𝑗1, . . . , 𝑗𝑑 } where 𝑗1 < · · · < 𝑗𝑑 , and an index 𝑖∗ ∈ 𝑆 . Let 𝑡∗ ∈ [𝑑]
be the index where 𝑖∗ = 𝑗𝑡∗ . Let 𝜌1 = 𝑗𝑡∗ , 𝜌𝑡∗ = 𝑗1, and 𝜌𝑖 = 𝑗𝑖 for all 𝑖 ∉ {1, 𝑡∗}.

2. Algorithm B sends 1𝑘 , 1𝑛 , 1𝑠 , 11, and {𝜌𝑖 } to the set hiding challenger for Π′BARG and receives a common
reference string crs∗ and verification key vk∗.

3. Algorithm B samples (crs′1, vk
′
1, td

′
1) ← TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 11, {𝜌1}). For 2 ≤ 𝑡 < 𝑖 , algorithm B samples

(crs′𝑖 , vk
′
𝑖) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11). Finally, for all indices 𝑡 ∈ {𝑖 + 1, . . . , 𝑑}, it samples (crs′𝑖 , vk

′
𝑖 , td

′
𝑖) ←

TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, {𝜌𝑖 }). For each 𝑡 ∈ {𝑑 + 1, . . . , ℓ}, it samples (crs′𝑖 , vk
′
𝑖) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11). It

sets crs′𝑖 = crs∗ and vk′𝑖 = vk∗.

4. Algorithm B samples a random permutation 𝜏 : [ℓ] → [ℓ] and gives crs =
(
crs′

𝜏 (1) , . . . , crs
′
𝜏 (ℓ)

)
and vk =(

vk′
𝜏 (1) , . . . , vk

′
𝜏 (ℓ)

)
to A. It also sets td′ = td′1 and 𝑧 = 𝜏−1 (1).

5. Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 , and a
proof 𝜋 = (𝜋 ′1, . . . , 𝜋 ′ℓ).

6. Algorithm B first checks that for all 𝑖 ∈ [ℓ], it holds that Verify′ (vk𝜏 (𝑖) ,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋 ′𝑖) = 1. If not, it halts
with output 0. Otherwise, algorithm B replies with Extract′ (td′,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋 ′𝑧, 𝑖∗).

7. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

By design, if (crs∗, vk∗, td∗) ← TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, {𝜌𝑖 }), then algorithm B perfectly simulates Hyb𝑖−1 for A,
so algorithm B outputs 1 with probability Pr[Hyb𝑖−1 (A) = 1]. Conversely, if (crs∗, vk∗) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11),
then algorithm B perfectly simulates Hyb𝑖 forA and algorithm B outputs 1 with probability Pr[Hyb𝑖 (A) = 1]. Thus,
the distinguishing advantage of algorithm B is at least 𝜀, which is non-negligible by assumption. □

107

Security now follows by combining Lemmas A.5 and A.6 and appealing to the fact that 𝑑 ≤ ℓ = poly(𝜆). □

Theorem A.7 (Somewhere Extraction). If Π′BARG is somewhere extractable in trapdoor mode, then ΠBARG in Construc-
tion A.1 is also somewhere extractable in trapdoor mode.

Proof. Suppose there exists an efficient adversary A that breaks the somewhere extractability of Construction A.1
with non-negligible probability 𝜀 (𝜆). We use A to construct an efficient adversary B that breaks the somewhere
extractability of ΠBARG:

1. On input the security parameter 1𝜆 , algorithm B starts by running algorithm A on the same parameter.
Algorithm A outputs 1𝑘 , 1𝑛 , 1𝑠 , 1ℓ , and a set 𝑆 = { 𝑗1, . . . , 𝑗𝑑 }, where 𝑗1 < · · · < 𝑗𝑑 . Algorithm B samples a
random index 𝑡∗ r← [𝑑] and sends 1𝑘 , 1𝑛 , 1𝑠 , 11, and { 𝑗𝑡∗ } to its challenger. It receives a common reference
string crs∗ and a verification key vk∗.

2. For 𝑡 ∈ [𝑑] \ {𝑡∗}, algorithm B samples (crs′𝑡 , vk′𝑡 , td′𝑡) ← TrapGen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11, { 𝑗𝑡 }). For each 𝑖 ∈
{𝑑 + 1, . . . , ℓ}, it samples (crs′𝑖 , vk

′
𝑖) ← Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11). Finally, it sets crs′

𝑡∗ = crs∗.

3. Finally, algorithm B samples a random permutation 𝜏 : [ℓ] → [ℓ] and gives crs =
(
crs′

𝜏 (1) , . . . , crs
′
𝜏 (ℓ)

)
and

vk =
(
vk′

𝜏 (1) , . . . , vk
′
𝜏 (ℓ)

)
to A.

4. AlgorithmA outputs a Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 and a proof
𝜋 = (𝜋 ′1, . . . , 𝜋 ′ℓ). Algorithm B outputs the circuit 𝐶 , the statement 𝑥 𝑗∗𝑡 , and the proof 𝜋 ′

𝜏−1 (𝑡∗) .

First, algorithm B perfectly simulates the common reference string crs forA, so with probability at least 𝜀, algorithm
A outputs (𝐶, 𝑥1, . . . , 𝑥𝑘 , 𝜋) such that there exists some 𝑡 ∈ [𝑑] such that the following two conditions hold:

• Verify′
(
vk′

𝜏 (𝑧) ,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋 ′𝑧
)
= 1 where 𝑧 = 𝜏−1 (𝑡) ∈ [ℓ]; and

• 𝐶 (𝑥 𝑗𝑡 ,𝑤 𝑗𝑡) ≠ 1 where𝑤 𝑗𝑡 ← Extract′
(
td′𝑡 ,𝐶, (𝑥1, . . . , 𝑥𝑘), 𝜋 ′𝑧, 𝑗𝑡

)
.

Moreover, the special index 𝑡∗ is perfectly hidden from the view of A, so with probability 1/|𝑆 | ≥ 1/ℓ , it will be
the case that 𝑡∗ = 𝑡 . In this case, 𝜏 (𝑧) = 𝜏 (𝜏−1 (𝑡)) = 𝑡 , so we have that 𝜋 ′𝑧 verifies with respect to vk′

𝜏 (𝑧) = vk′𝑡∗ , but
the extracted witness 𝑤 𝑗𝑡∗ is such that 𝐶 (𝑥 𝑗𝑡∗ ,𝑤 𝑗𝑡∗) ≠ 1. This breaks somewhere extractability of ΠBARG. Thus, if
A succeeds with advantage 𝜀, then algorithm B succeeds with advantage at least 𝜀/ℓ , which is non-negligible as
ℓ = poly(𝜆). □

Theorem A.8 (Succinctness). If Π′BARG is succinct, then ΠBARG in Construction A.1 is also succinct.

Proof. Take any 𝜆, 𝑘, 𝑛, 𝑠, ℓ ∈ N and any (crs, vk) in the support of Gen(1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 1ℓ). Then, crs = (crs′1, . . . , crs′ℓ)
and vk = (vk′1, . . . , vk′ℓ), where (crs′𝑖 , vk

′
𝑖) is in the support of Gen′ (1𝜆, 1𝑘 , 1𝑛, 1𝑠 , 11). Take any Boolean circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}. We consider each condition separately:

• Succinct proof: By succinctness of ΠBARG, the proofs 𝜋 ′ output by Prove′ (crs′,𝐶, ·, ·) satisfy
��𝜋 ′𝑖 �� ≤ poly(𝜆 +

log𝑘 + 𝑠). Then, the proofs output by Prove(crs,𝐶, ·, ·) satisfy |𝜋 | ≤ ℓ ·
��𝜋 ′𝑖 �� ≤ poly(𝜆 + log𝑘 + 𝑠 + ℓ).

• Succinct CRS: By succinctness of Π′BARG, each crs′𝑖 satisfies
��crs′𝑖 �� ≤ poly(𝜆 + 𝑘 + 𝑛) + poly(𝜆 + log𝑚 + 𝑠). The

total size of the CRS is a factor of ℓ larger which satisfies the succinctness requirement.

• Succinct verification key: By succinctness of Π′BARG, each vk′𝑖 satisfies
��vk′𝑖 �� ≤ poly(𝜆 + log𝑘 + 𝑠). The

verification key vk output by Setup is a factor ℓ larger, which satisfies the succinctness requirement. □

Remark A.9 (Index BARGs). While we described Construction A.1 for the case of standard BARGs, the same
construction directly extends to the case of index BARGs, and moreover, the construction preserves the efficiency
requirements of an index BARG (since it is simply a concatenation of ℓ copies of the underlying BARG).

108

	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Cryptographic Building Blocks
	Batch Arguments for NP

	Zero-Fixing Hash Functions
	Constructing Monotone Policy BARGs
	Monotone Policy BARG Construction
	Proof of thm:non-adaptive-sound (Non-Adaptive Soundness)
	Hybrid Experiment Specification
	Analysis of Hybrid Experiments

	Generic Construction of Zero-Fixing Hash Functions
	Security Analysis of cons:he-zfh
	Additive Invariants on Ciphertexts and Predicate Propagation
	Set Hiding
	Zero Fixing
	Extractor Validity
	Index Hiding with Extracted Guess

	Zero-Fixing Hash Function from Bilinear Maps
	Monotone-Policy Aggregate Signatures
	Semi-Somewhere Extractability of Monotone Policy BARGs
	Monotone Policy Aggregate Signature via Semi-Somewhere Extractability

	Set Hiding with Extraction for BARGs

