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ABSTRACT
A Key Derivation Function (KDF) generates a uniform and highly

random key-stream from weakly random key material. KDFs are

broadly used in various security protocols such as digital signatures

and key exchange protocols. HKDF, the most deployed KDF in prac-

tice, is based on the extract-then-expand paradigm. It is presently

used, among others, in the Signal Protocol for end-to-end encrypted

messaging.

HKDF is a generic KDF for general input sources and thus is

not optimized for source-specific use cases such as key derivation

from Diffie-Hellman (DH) sources (i.e. DH shared secrets as key

material). Furthermore, the sequential HKDF design is unnecessar-

ily slow on some general-purpose platforms that can benefit from

parallelization.

In this work, we propose a novel, efficient and secure KDF called

Skye. Skye follows the extract-then-expand paradigm and consists

of two algorithms: efficient deterministic randomness extractor and

expansion functions. Instantiating our extractor for dedicated source-

specific (e.g. DH sources) inputs leads to a significant efficiency gain

over HKDF while maintaining its security level. We provide con-

crete security analysis of Skye and both its underlying algorithms

in the standard model.

We provide a software performance comparison of Skyewith the
AES-based expanding PRF ButterKnife and HKDF with SHA-256 (as
used in practice). Our results show that in isolation Skye performs

from 4x to 47x faster than HKDF, depending on the availability

of AES or SHA instruction support. We further demonstrate that

with such a performance gain, when Skye is integrated within the

current Signal implementation, we can achieve significant overall

improvements ranging from 38% to 64% relative speedup in unidi-

rectional messaging. Even in bidirectional messaging, that includes

DH computation with dominating computational cost, Skye still
contributes to 12-36% relative speedup when just 10 messages are

sent and received at once.

1 INTRODUCTION
A Cryptographic Key Derivation Function (KDF) outputs a uniform

and “highly” random arbitrarily long key-stream when provided

with a non-uniform or “weak” random key input. KDF is an im-

portant cryptographic primitive in practice and generate random-

ness for encryption, digital signatures, key exchange protocols,

etc. HKDF [27] was introduced in 2010 by Krawczyk et al. as a

secure, generic cryptographic KDF and by now is the most de-

ployed KDF. It follows the extract-then-expand paradigm [27]. For

a given non-uniform or “weak” random key, HKDF extracts a rel-

atively small but uniform and “highly” random string via an in-

ternal randomness extractor. Then, the extracted value is passed to

a randomness expander: a pseudorandom function PRF with vari-

able length output. The output is a uniform and “highly” random

key-stream. HKDF is used in the Signal Protocol [34] for end-to-

end encrypted messaging where it generates the message keys.

There HKDF is used in conjunction with the triple Elliptic-curve

Diffie–Hellman handshake [35] (X3DH) key agreement protocol.

A number of applications of end-to-end encryption also make use

of Signal and internally call the X3DH handshake and a secure

(H)KDF to establish a key for later cryptographic use. Examples

are the popular instant messaging apps WhatsApp [33], Facebook

Messenger [2], Skype [30], Allo [32], Status [5], Secure Chat, Viber

and Forsta. HKDF is a main component in the Noise Protocol Frame-

work (NPF) [38], Message Layer Security (MLS) [3], and is used in

TLS1.3.

HKDF is a key derivation function for processing general input-

sources of some desired min-entropy. However, in many applica-

tions the sources are predefined, fixed and contain a nice algebric

structure, such as the triple Elliptic-curve Diffie–Hellman hand-

shake [35] (X3DH) protocol in Signal. As a generic or non-source-

specific KDF, HKDF meets basic security and performance goals,

yet for concrete use cases, it might not be best optimized for: 1.

source-specific (randomness) extraction; 2. performance on com-

mon platforms; 3. reliance on weaker assumptions than the random

oracle for the SHA-256 hash function in HKDF. A dedicated KDF can

efficiently leverage the structure of the input randomness source

during the extraction phase to optimize the process. The possibility

of constructing (input) source-specific extractor in a KDF under the

extract-then-expand paradigm, was discussed in [27]. Concrete ex-

amples here are the works on deterministic randomness extraction

from Diffie-Hellman schemes [14, 22].

To achieve secure and more efficient randomness expansion, a

candidate building block is one that, unlike SHA-2, naturally ex-

pands its inputs. Cryptographically, such a function needs to come

with some pseudorandom properties or behave as a fixed output

length expanding pseudorandom function (PRF). Forkciphers [8] are

such expanding functions, yet, they come with extra functionalities

of inversion and reconstruction that are not necessary for random-

ness expansion and limit the PRF security to birthday-bound (in the
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block size). The recently proposed PRF ButterKnife [7] is a fixed-
length expanding PRF design and a natural KDF building block

candidate. ButterKnife takes 256-bit inputs and produces 1024-bit

outputs. It is based on AES andDeoxys-BC [25]. Its structure allows

its implementation with AES native instructions (NI) on all AES-NI

supporting processors. ButterKnife is proven secure both generi-

cally and analyzed cryptanalytically in [7].ButterKnife’s security, in
addition to its own security analysis, is further backed by the crypt-

analysis results for AES-PRF [20, 37] andDeoxys-BC [16, 25, 29, 43].

Expanding primitives naturally fit better the concept of KDFs un-

der the extract-then-expand paradigm, as opposed to the presently

used compressing ones, e.g. SHA-2 in HKDF. The study of expand-

ing PRFs for KDFs is cryptographically interesting in its own right

and to the best of our knowledge, it is not done in the literature.

1.1 Our Results
In this work we propose Skye, a novel extract-then-expand KDF

based on an expanding PRF. We provide a detailed security analysis

of Skye and demonstrate empirically the efficiency advantages

of Skye over HKDF, both directly and when used in Signal. We

note that Skye applications are not limited to Signal and provide a

discussion on other applications. Our contributions are:

Deterministic extension for randomness extraction.
We build a novel, generic and deterministic function DExt𝑓 that

aggregates the amount of extracted randomness for any random-

ness extractor 𝑓 for multiple and independent input samples. We

prove that the outputs of DExt𝑓 are indistinguishable from random

binary strings (see Sec. 5). Considering the randomness aggregation

and extraction of the X3DH handshake of Signal input samples of

multiple (three or four) DH shared secrets, DExt𝑓 handles multiple

independent samples and is hence well-suited for optimal random-

ness extraction. In this work, DExt𝑓 is developed to be used in

Skye for key derivation but we emphasize that this novel result is

independent and quite interesting on its own.

Secure DExt𝑓 instantiation for DH samples.We provide

a 128-bit secure simple and efficient deterministic extractor as an

instantiation of DExt𝑓 . This is achieved by choosing a DH source-

specific extractor function to instantiate 𝑓 in DExt𝑓 . Applying the

above-mentioned general result (in Sec. 5), we construct an extrac-

tor with a higher security margin from the msb/lsb (most/least

significant bits based) extractor function for Diffie-Hellman (DH)

schemes in [14]. We prove the security of our instantiation by com-

bining the analysis of the genericDExt𝑓 and the security ofmsb/lsb
based extractor [14] (see Sec. 5.2).

Secure randomness expander. The outputs of the determin-

istic extractor are processed by a variable-output-length (VOL) PRF

or randomness expander FExp. Two approaches to construct ran-
domness expanders are presented in [27] – based on a counter or

feedback encryption modes. HKDF uses as a randomness expander,

a keyed feedback mode over the HMAC [28] pseudorandom func-

tion (PRF). To avoid the frequent rekeying of the feedback mode and

the consequent speed reduction for the target 128-bit security level,

we adopt a counter mode-like approach. FExp is motivated by the

CTR$ [39] encryption mode and it benefits from the expanding PRF

function, as opposed to a block cipher. The FExp design achieves

both security and efficiency improvements over the CTR$ [39]

mode in the randomness expansion context. When compared to

the CTR$ mode, FExp accommodates larger and arbitrary (not nec-

essarily random) inputs and provides full 𝑛 = 128-bit security, as

opposed to the birthday-bound 𝑛/2 = 64-bit, when instantiated

with ButterKnife [7]. We give a security proof of FExp via the no-

tion of indistinguishability from random binary strings, a notion

equivalent to the IND$ [39] notion (see Sec. 6).

Skye: secure and more efficient alternative to HKDF
in source-specific applications. In Sec. 4, we propose the

Skye scheme as a dedicated KDF following the extract-then-expand

approach and using the two above-mentioned novel extractor and

expander functions DExt𝑓 and FExp, respectively. Skye[𝑓 , PRF𝑠 ]
is based on two underlying primitives - a weak source-specific

extractor 𝑓 (processed under DExt𝑓 extension) and an expanding

PRF PRF𝑠 (processed under FExp mode). We consider DH samples

over Curve25519 as the input source to exemplify the performance

and concrete security gain of Skye over HKDF and instantiate 𝑓

with lsb. In Sec. 7, we show that when Skye is instantiated with

ButterKnife, it achieves 128-bit CCS security [15, 27]. HKDF [27]

is also shown secure under the CCS security notion and informally,

CCS-security is defined as the indistinguishability of the KDF out-

puts from truly random strings under a chosen input attack. Here,

we prove the security of Skye under a more practical (non random

oracle) assumption than HKDF.

Our results of Theorem 5.1 and 7.1 show that similarly to HKDF,

Skye can also be used with any type of input source with a well-

defined weak extractor 𝑓 (for that input source). More concretely,

given an input source Σ, the KDF input set𝑍 with elements sampled

from Σ, an 𝑟 -bit secure extractor 𝑓 (w.r.t. Σ) and an 𝑛-bit secure PRF
PRF𝑠 , the Skye[𝑓 , PRF𝑠 ] KDF providesmin{𝑛, 𝑐 (𝑟 −1)} bits of CCS
security. Here 𝑐 is a finite positive number that is directly propor-

tional to the size of the input set 𝑍 and is inversely proportional to

the desired extraction length (see Sec. 5.1 for details).

The security and performance of Skye for a given source de-

pends on the underlying function 𝑓 and hence it can be improved

over HKDF for applications with known efficient extractors (as

illustrated in this work with DH sources).

Software Performance of Skye. We provide software per-

formance comparison (in Sec. 9) of Skye with HKDF under their

standard functionalities. Our results show that in isolation, Skye
performs from 4x to 47x faster than HKDF in various settings de-

pending on the availability of native instruction sets. We then con-

sider Signal to further illustrate the performance benefits of Skye.
We integrate Skye within the current implementation of Signal [1]

and show that under various settings with and without available na-

tive instruction sets, Skye is able to provide 38-64% relative speedup

in unidirectional messaging. In bidirectional messaging, where cost

is dominated by the DH computation, the speedup depends on the

number of messages sent at once. With a single message, Skye
achieves 3%-11% relative speedup; after sending just 10 messages,

the speedup rises to 12-36%, and with a further increase in the

number of messages, it converges to the unidirectional speedup.
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1.2 Related Works

Randomness amplification. The result of Maurer et al. [36,

Corollary 2] can be applied to obtain similar security as DExt𝑓 by
iterating a set of independent input samples (with some weak ex-

tractor 𝑓 ) and defining the ★ operation is the XOR. Yet, our design

approach is more general by allowing us to optimally extract (up to

100%) more randomness than that existing solution. For example,

consider 𝑣 input samples each providing 𝑤 bits of extracted ran-

domness and 𝜆 bits of security when passed through some weak

extractor 𝑓 . Now, if we need a higher security of 𝑐𝜆 bits for some

integer 𝑐 , then the solution of [36] provides randomness only up to

(𝑣/𝑐)𝑤 bits. Our solution DExt𝑓 offers up to ⌊(𝑣 − 𝑐)/⌈𝑐/2⌉⌋ + 1)𝑤
bits of security which is optimal (see App. B) for various values of

(𝑣, 𝑐).We generalize the result of Maurer et al. [36, Corollary 2] by

offering a relatively simple proof that: 1. increases confidence in the

existing analysis 2. generalizes and improves the bound (optimal)

for reasonable/practical sample sizes.

Related KDF notion. In the formal analysis of the Double

Ratchet protocol, Alwen et al. [4] formalized a KDF syntax called

PRF-PRNG and it’s security notion called P. HKDF also satisfies

this notion. For source-specific samples, our KDF Skye targets the
stronger KDF notion of CCS-security, which implies the P-security
when KDF is used as a PRF-PRNG (in the context of Signal). We refer

the reader to App. D for more details on the PRF-PRNG syntax, how

to convert a standard syntax KDF into a PRF-PRNG and a formal

claim with full proof of CCS to P security reduction.

Alwen et al. [4] provide a standard model proof for the Double

Ratchet and Signal Protocol, however, their analysis is not RO-free

when the KDF is instantiated with HKDF or alternatives with ideal-

ized assumptions (see App. D). This leads us to naturally consider

the possibility of designing a KDF for applications like (but not

limited to) the Signal Protocol that is RO-free and is equally or more

efficient than the current HKDF solution. The Skye KDF follows the
standard KDF syntax [27] and is proven to be CCS [15, 27]-secure

in the standard model.

2 NOTATIONS

Strings. All strings are binary strings. The set of all strings of

length 𝑛 (for a positive integer 𝑛) is denoted by {0, 1}𝑛 and the

set of all strings of all possible lengths is denoted by {0, 1}∗. We

denote by Func(𝑚,𝑛) the set of all functions with domain {0, 1}𝑚
and range {0, 1}𝑛 . For a string 𝑋 of ℓ bits, we let 𝑋 [𝑖] denote the 𝑖th
bit of 𝑋 for 𝑖 = 0, . . . , ℓ − 1 (starting from the left) and 𝑋 [𝑖 . . . 𝑗] =
𝑋 [𝑖] ∥𝑋 [𝑖 + 1] ∥ . . . ∥𝑋 [ 𝑗] for 0 ≤ 𝑖 < 𝑗 < ℓ . We let msbℓ (𝑋 ) =
𝑋 [0 . . . (ℓ − 1)] denote the ℓ leftmost (most significant) bits of 𝑋

and lsb𝑟 (𝑋 ) = 𝑋 [( |𝑋 | − 𝑟 ) . . . ( |𝑋 | − 1)] the 𝑟 rightmost (least

significant) bits of 𝑋 , such that 𝑋 = msb𝜒 (𝑋 )∥lsb |𝑋 |−𝜒 (𝑋 ) for any
0 ≤ 𝜒 ≤ |𝑋 |. Given an 𝑥𝑛-bit string 𝑋 , we let 𝑋1, . . . , 𝑋𝑥

𝑛←− 𝑋
denote a partitioning of 𝑋 into 𝑛-bit blocks, such that |𝑋𝑖 | = 𝑛 for

𝑖 = 1, . . . , 𝑥 .

Miscellaneous. The symbol ⊥ denotes an error signal, or an

undefined value. We denote by 𝑋 ←$ X, a sampling of an element

𝑋 from a finite set X following the uniform distribution. We use

lexicographic comparison of tuples of integers; i.e. (𝑖′, 𝑗 ′) < (𝑖, 𝑗)
iff 𝑖′ < 𝑖 or 𝑖′ = 𝑖 and 𝑗 ′ < 𝑗 . We denote the set of natural numbers

by N. For a matrix𝑀 , we use𝑀 [𝑖 𝑗] to denote the 𝑖 𝑗𝑡ℎ entry of𝑀 .

For equations 𝐸𝑖s with 1 ≤ 𝑖 ≤ 𝑎 (for some 𝑎 ∈ N), we use the

indexed set 𝑆 = {𝐸𝑖 |1 ≤ 𝑖 ≤ 𝑎} to denote the system of equations

𝐸𝑖s.

3 KEY DERIVATION FUNCTION
KDFs derive one or more cryptographically secure secret keys (of

any fixed length) from a source of initial key material (IKM) that

can contain some good amount of randomness but is not distributed

uniformly. The notion of cryptographically secure keys is usually

associated with pseudorandom keys, i.e. keys that are computation-

ally indistinguishable from a uniformly random string of the same

length. Formally, a source of IKM can be defined as follows.

Definition 3.1 (Source of IKM [27]). A source of initial keying

material (or simply source) Σ is a two-valued probability distribution

(𝑍, C𝑍 ) generated by an efficient probabilistic algorithm (we will

refer to both the probability distribution as well as the generating

algorithm by Σ).

Here,𝑍 values are used to denote the random secret IKM samples

with required entropy (e.g., DH shared secrets) whereas C𝑍 provides

the public info associated to 𝑍 (e.g., DH public keys and group

parameters). See Sec. 7 for more details.

A KDF function tackles the case when the initial key material is

not pseudorandom or uniformly random, e.g. the initial keymaterial

is obtained from a weak process that uses renewable sources of

randomness, a weak random number generator, random sampling

over a group or DH values computed in a (key-exchange) protocol.

In these settings a KDF function is constructed using the so-called

extract-then-expand paradigm.

3.1 Extract-then-Expand Paradigm
A KDF following the extract-then-expand paradigm has two com-

ponents: 1. a randomness extractor Ext that extracts a fixed-length
pseudorandom key 𝐾 from an “imperfect” source of initial key

material; 2. randomness expander Exp that expands 𝐾 to a variable-

length output. The latter is usually built using a regular pseudoran-

dom function (PRF) with output extension via counter or feedback

encryption modes [27, 39]. Ext produces “close-to-random” out-

puts (in a computational or statistical sense) from an input that

is sampled from the corresponding source key distribution. The

extraction may have an additional non-secret input or salt value,

that is either randomized or constant. When it is constant, the ex-

tractor and the corresponding KDF are called deterministic extractor

and deterministic KDF, respectively. The expander Exp uses 𝐾 to

produce cryptographic keys 𝐾𝑘𝑑 𝑓 of a specified length. Exp takes

the output length parameter as one of the inputs.

A KDF scheme is defined over the inputs: a source key 𝑍 , the

extractor salt salt (null or constant), the length ℓ of key bits to be

output by KDF, and a context variable or auxiliary info string 𝛾

(may be null). The latter string includes key-related information

that is uniquely (and cryptographically) bound to the produced

output. For example, includes information about the application or

protocol calling the KDF, session-specific information like nonces,

3
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time, session identifiers, etc. The KDF evaluation is defined as:

𝐾 = Ext(salt;𝑍 ), 𝐾𝑘𝑑 𝑓 = Exp(𝐾 ;𝛾 ; ℓ).

HKDF key derivation function. In the expansion phase the

output is 𝐾𝑘𝑑 𝑓 = 𝐾1∥𝐾2∥ . . . ∥𝐾𝑡 [1 . . . ℓ] where 𝑡 = ⌈ℓ/𝑛HMAC⌉ ∈
N, ℓ is the desired output length and 𝑛HMAC is the HMAC output

size. 𝐾𝑖 are obtained as:

𝐾1 = HMAC(𝐾,𝛾 ∥0), 𝐾𝑖+1 = HMAC(𝐾,𝐾𝑖 ∥𝛾 ∥𝑖) , 1 ≤ 𝑖 < 𝑡,
where 𝛾 denotes the context variable.

3.2 Deterministic Multi-sample KDF
A KDF is multi-sample if it takes multiple independent samples

from its input source and combines those for relatively large and

highly random output with the same or increased security than its

single-sample variant. Formally, a deterministic multi-sample KDF

Π : ({0, 1}∗)𝑣 × Γ × N → {0, 1}∗ takes three arguments; a set 𝑍

of 𝑣 values 𝑍𝑖s (binary strings) sampled from a source of keying

material (defined in Def. 3.1), a context variable or auxiliary info 𝛾

(optional, i.e., null string or a constant) and the desired output length

ℓ . The function returns an ℓ-bit binary string 𝐾𝑘𝑑 𝑓 . HKDF [27] is a

deterministic multi-sample KDF scheme when its salt value is set

to a constant.

4 Skye: AN EXPANDING PRF BASED KDF
In this section, we define a new KDF called Skye. Skye is based on

an expanding pseudorandom function PRF𝑠 where PRF𝑠 : {0, 1}𝑘 ×
{0, 1}2𝑛 → {0, 1}𝑠𝑛 is a symmetric primitive that transforms a fixed

length (2𝑛-bit) input 𝑋 into a larger fixed-length (𝑠𝑛-bit with 𝑠 ≥ 2)

output 𝑌 via a secret key 𝐾 ∈ K of 𝑘 bits.

Definition 4.1 (PRF Security). For PRF𝑠 : {0, 1}𝑘 × {0, 1}2𝑛 →
{0, 1}𝑠𝑛 , letA be an adversary whose goal is to distinguish PRF𝑠 (𝐾, ·)
and a uniform random function 𝑅(·) : {0, 1}2𝑛 → {0, 1}𝑠𝑛 by their

oracle access. The prf-security of PRF𝑠 is defined as:

AdvprfPRF𝑠
(A) =

��
Pr[𝐾 ←$ K : APRF𝑠 (𝐾,· ) ⇒ 1]

− Pr[𝑅 ←$
Func(2𝑛, 𝑠𝑛) : A𝑅 ( ·) ⇒ 1]

��.
Description of Skye. Skye is a deterministic multi-sample KDF

that follows the extract-then-expand approach by using a determin-

istic source-specific extractor DExt𝑓 and an expanding prf PRF𝑠 -
based randomness expander FExp, respectively.

More specifically, for inputs; a set of 𝑣 binary strings 𝑍 , a context

variable 𝛾 (from some finite set Γ) and an output length ℓ ∈ N,
Skye : ({0, 1}∗)𝑣 × Γ × N→ {0, 1}∗ is defined as

Skye(𝑍,𝛾, ℓ) = FExp(𝐾𝑒𝑥𝑡 , 𝛾, ℓ) = 𝐾𝑒𝑥𝑝
where 𝐾𝑒𝑥𝑡 = DExt𝑓 (𝑍 ) and |𝐾𝑒𝑥𝑝 | = ℓ .

In the following sections, we define the two components DExt𝑓
and FExp in full detail using their corresponding underlying func-

tions; the deterministic extractor 𝑓 and the expanding PRF PRF𝑠 ,
respectively. With these components defined, any instantiation of

Skye[𝑓 , PRF𝑠 ] can be solely described by the two primitive func-

tions 𝑓 and PRF𝑠 .
For real instantiations (see Sec. 8), we use ButterKnife [7] as the

PRF𝑠 in Skyewith 𝑛 = 128 bits and 𝑠 = 8. ButterKnife is well-suited

due to its AES internal structure and as a result benefiting from the

AES native instructions (NI) on all supporting processors. Addition-

ally, it has a very large expansion of 𝑠 = 8 for performance gains

and efficient key-scheduling [7] that saves the cost of frequent key

scheduling. ButterKnife comes with dedicated cryptanalysis and a

generic proof of security [7] and is backed by further cryptanalytic

results for AES-PRF [20, 37] and Deoxys-BC [16, 25, 29, 43].

In contrast to PRF𝑠 , instantiating 𝑓 is not that simple as it de-

pends on the KDF application and the input source of extraction.

In other words, a secure extractor for some input source may not

work or be secure for others. A large set of KDF applications as

mentioned in Sec. 1 deal with multi-DH sources such as X3DH

based applications or Signal-like protocols. Therefore, to illustrate

the performance and security advantages of Skye in these appli-

cations, we consider multi-DH as the exemplary input source and

instantiate 𝑓 with the least significant bits function lsb (analyzed
for multi-DH sources in Sec. 5.2).

For brevity, in the remainder of the paper, we drop 𝑓 from the

global inputs whenever it is fixed to lsb, i.e. when we are working

with multi-DH sources. We note that for any other source (i.e. ap-

plications beyond multi-DH sources) with a suitable weak extractor

𝑓0, Skye can be simply defined by reinstantiating 𝑓 with 𝑓0 instead

of lsb.

5 RANDOMNESS EXTRACTION PHASE
We first recall some preliminary definitions that are needed for the

upcoming results.

Definition 5.1 (Statistical Distance). Let 𝑋 and 𝑌 be two

random variables taking values from a finite set X. The statistical
distance between 𝑋 and 𝑌 is the value of the following expression:

SD(𝑋,𝑌 ) = 1

2

∑︁
𝑥∈X
| Pr[𝑋 = 𝑥] − Pr[𝑌 = 𝑥] | .

EllipticCurveDecisionalDiffie-Hellman (ECDDH)Prob-
lem [11]. Let 𝐺 be a public cyclic subgroup (of size a prime 𝑞) of

an elliptic curve group E(F𝑝 ) over the finite field F𝑝 of size prime 𝑝 .

Let 𝑃 be a randomly chosen generator of𝐺 , then for some secret and

randomly chosen 𝑎, 𝑐 ∈ Z∗𝑞 and a randomly chosen𝑄 ∈ 𝐺 , it is hard
to determine whether 𝑄 = 𝑎𝑐𝑃 or 𝑄 ≠ 𝑎𝑐𝑃 when provided with

𝑃, 𝑎𝑃, 𝑐𝑃 and 𝑄 . Formally, we define the advantage of an adversary

A against solving ECDDH in 𝐺 as

Advecddh𝐺 (A) = | Pr[A(𝑃, 𝑎𝑃, 𝑐𝑃, 𝑎𝑐𝑃) = 1]
− Pr[A(𝑃, 𝑎𝑃, 𝑐𝑃,𝑄) = 1] |

where the probability is over the random choices of 𝑎, 𝑐 ∈
Z∗𝑞, 𝑃,𝑄 ∈ G and the internal randomness of A.

The ECDDH assumption (with respect to 𝐺) states that for all

efficient adversaries, the value of advantage Advecddh
𝐺

(A) is rea-
sonably small.

In the remaining section, we now show how to build a strong

extractor from a weak extractor and provide its security analysis.

Formally, an extractor is defined as follows:

Definition 5.2 ((𝑋, 𝜖)-extractor [27]). Let 𝑋 be a random

variable that takes values in {0, 1}𝑥 and𝑈𝑤 denote a random variable

uniformly distributed in {0, 1}𝑤 for some positive integers 𝑥 and𝑤 ,

4
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where𝑈𝑤 and 𝑋 are independent. We say that for some non-negative

integer 𝑑 , the function 𝑓 : {0, 1}𝑥 × {0, 1}𝑑 → {0, 1}𝑤 is an (𝑋, 𝜖)-
extractor if

SD((𝑓 (𝑋, salt), salt), (𝑈𝑤 , salt)) ≤ 𝜖
where the salt is a 𝑑-bit value which is made public upon sampling.

We note that the salt value can be a null string or constant (in

case of deterministic extractors). Further, since the salt sampling is

independent to 𝑓 , 𝑋 and 𝑈𝑤 , for simplicity, we slightly abuse the

notation and omit both salt terms from the second arguments in

the expression of Def. 5.2 . In other words, the expression becomes

SD(𝑓 (𝑋, salt),𝑈𝑤) ≤ 𝜖 .

5.1 DExt: A Generic and Deterministic
Extension Towards Improved Security of
any Extractor

In this section, we describe how to build a stronger extractor DExt𝑓
which can more securely extract the same or larger amount of

randomness from a relatively weak extractor 𝑓 given multiple in-

dependent samples. Our construction uses only simple and cheap

operators like concatenation and XOR to avoid additional com-

putational cost. Unlike the prior works based on extraction from

multiple sources [17, 18, 21, 26, 41], our construction requires in-

dependence only within the samples where the source of these

samples can still remain the same. An example here is multiple

independent DH handshakes defined over the same source group.

Definition of DExt𝑓 . We provide a definition of the extended

extractor DExt𝑓 in Fig. 1 as a function that takes as inputs:

• a set 𝑍 = {𝑍1, 𝑍2, . . . , 𝑍𝑣} of 𝑣 many 𝑧-bit (when repre-

sented in binary) independent samples chosen from some

public finite sets 𝑆1, 𝑆2, . . . , 𝑆𝑣 , respectively (all of these sets

could be same) for some positive integer 𝑧;

• the desired output length 𝑘 ;

• a positive integer 𝑒 (security parameter);

• a pair (𝑓 , 𝜖) with 𝑓 : {0, 1}𝑧 × {0, 1}𝑑 → {0, 1}𝑤 being a

(𝑈𝑍𝑖 , 𝜖)-extractor for some 𝜖 > 0, positive integers 𝑑 and𝑤

and all 1 ≤ 𝑖 ≤ 𝑣 ;
• a 𝑑-bit salt value salt (if any).

DExt𝑓 then uses the (𝑈𝑍𝑖 , 𝜖)-extractor (for all 1 ≤ 𝑖 ≤ 𝑣) 𝑓 and
the function invXOR (defined in Def. 5.3) and outputs a 𝑘-bit string

𝐾𝑒𝑥𝑡 if 𝑘 ≤ 𝑤𝑏 or⊥ otherwise. Here,𝑈𝑍𝑖 denotes a random variable

distributed according to the sampling of 𝑍𝑖s from the set 𝑆𝑖 for all

𝑖s, respectively, 𝑏 =
⌊
𝑣−𝑐
⌈𝑐/2⌉

⌋
+ 1 and 𝑐 = min𝑖 {𝑐𝑖 ∈ N| 𝑏𝑖 (2𝜖)𝑐𝑖 ≤

2
−𝑒+1, 𝑏𝑖 =

⌊ 𝑣−𝑐𝑖
⌈𝑐𝑖/2⌉

⌋
+ 1} . We note that the parameters 𝑐, 𝑒, 𝑏 and

the function 𝑓 are important to define DExt𝑓 , its design optimality

(Theorem B.2) and security (Theorem 5.1 and its following corol-

lary).

Definition 5.3 (XOR-based Involvement). We define invXOR
as a function that maps a𝑤𝑣-bit binary string 𝑎1∥𝑎2∥ · · · ∥𝑎𝑣 where
all 𝑎𝑖 s are𝑤-bit binary strings (equivalently elements of F2𝑤 for some

integer 𝑤 ≥ 0) and an integer 𝑐 < 𝑣 to an 𝑤𝑏-bit binary string as

follows:

invXOR(𝑎1 ∥𝑎2 ∥ · · · ∥𝑎𝑣 , 𝑐 ) = ⊕𝑐𝑖=1𝑎𝑖 ∥ ⊕
𝑖=𝑐+⌈𝑐/2⌉
𝑖=1+⌈𝑐/2⌉ 𝑎𝑖 ∥ · · · ∥ ⊕

𝑖=𝑐+(𝑏−1) ⌈𝑐/2⌉
𝑖=1+(𝑏−1) ⌈𝑐/2⌉ 𝑎𝑖

Figure 1: DExt𝑓 : A (𝑈𝑍 , 𝑏 (2𝜖)𝑐/2)-extractor (with upto𝑤𝑏 bits
of extraction) parameterized by a relatively small and weak
(𝑈𝑍𝑖 , 𝜖)-extractor 𝑓 (with upto𝑤 bits of extraction). Here𝑈𝑍𝑖
and𝑈𝑍 denote random variables distributed according to the
sampling of 𝑍𝑖s from 𝑆𝑖s for all 𝑖s and of corresponding 𝑍
from the Cartesian product of all 𝑆𝑖s, respectively.

where 𝑏 = ⌊(𝑣 − 𝑐)/⌈𝑐/2⌉⌋ + 1 .

We refer the reader to App. B for a detailed analysis and discussion

on the (sub-)optimality of the DExt𝑓 construction. This analysis

shows that although finding an optimal extension for randomness

extraction over arbitrary values of 𝑣, 𝑐 is hard, it is possible to

construct one for 𝑣 < 6 (the relevant case in practice) and DExt𝑓 is

one example of such extensions.

With all necessary definitions in place, we are now ready to give

the formal security statement of DExt𝑓 in Theorem 5.1.

Theorem 5.1. Let 𝑍1, 𝑍2, . . . , 𝑍𝑣 be 𝑣 independent 𝑧-bit binary

strings that are chosen from the public finite sets 𝑆1, 𝑆2, . . . , 𝑆𝑣 , respec-

tively for some positive integer 𝑧. Let 𝑓 be a public function with a

range in {0, 1}𝑤 for some positive integer𝑤 . Let𝑘 and 𝑐 be two positive

integers, such that 𝑐 ≤ 𝑣 and 𝑘 ≤ 𝑤𝑏 where 𝑏 = ⌊(𝑣 − 𝑐)/⌈𝑐/2⌉⌋ + 1.
If there exists an 𝜖 > 0 such that 𝑓 is a (𝑈𝑍𝑖 , 𝜖)-extractor for all 𝑖
then, we have

SD(𝑈𝐷 ,𝑈𝑘 ) ≤
𝑏

2

(2𝜖)𝑐 .
Here 𝑈𝑍𝑖 is a random variable distributed according to the sampling

of 𝑍𝑖 s in the set 𝑆𝑖 .𝑈𝑘 is a random variable uniformly distributed over

{0, 1}𝑘 . 𝑈𝐷 is a random variable distributed according to the outputs

of DExt𝑓 (of size 𝑘 bits) when provided with 𝑍1, 𝑍2, . . . , 𝑍𝑣, 𝑘, 𝑐 and

salt (if any) as inputs.

Increasing the value of 𝑐 for a fixed distribution of 𝑍𝑖s will increase

the security margin of the final outputs linearly, but will also hyper-

bolically decrease the maximum possible length of the final outputs.

This trade-off is important and explains why it is good to leave 𝑐 a

free variable in the theorem (this can later be defined according to

the requirements of an application).

Proof of Theorem 5.1. We are given 𝑣 independent 𝑧-bit el-

ements 𝑍1, . . . , 𝑍𝑣 (when represented as binary strings) that are

chosen from some public finite sets 𝑆1, 𝑆2, . . . , 𝑆𝑣 , respectively for

some positive integer 𝑧 and a public function 𝑓 (that may or may

not require a random salt value for its evaluation) with a range

in {0, 1}𝑤 for some positive integer𝑤 . Let us now consider𝑈𝑤 as

a random variable uniformly distributed over {0, 1}𝑤 . For some

𝜖 > 0, we have SD(𝑓 (𝑈𝑍𝑖 , salt),𝑈𝑤) ≤ 𝜖 for all 𝑖 . Since the value of
salt is sampled once and used for all values of 𝑍𝑖 , for simplicity, we

denote 𝑓 (𝑈𝑍𝑖 , salt) by 𝑓 (𝑈𝑍𝑖 ) in the rest of the proof. Let 𝑐, 𝑘 be two
positive integers and 𝑏 = ⌊(𝑣 − 𝑐)/⌈𝑐/2⌉⌋ + 1 such that𝑤 = ⌈𝑘/𝑏⌉.
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Now, from the definition of SD and 𝜖 we have

SD(𝑓 (𝑈𝑍𝑖 ),𝑈𝑤) =
1

2

∑︁
𝑥∈𝑈𝑤

����Pr[𝑓 (𝑈𝑍𝑖 ) = 𝑥] − 1

2
𝑤

���� ≤ 𝜖 . (1)

Also, since an element of 𝑈𝐷 of size 𝑘 that corre-

sponds to 𝑍1, . . . , 𝑍𝑣 can be equivalently defined as

invXOR(𝑓 (𝑍1)∥ 𝑓 (𝑍2)∥ · · · ∥ 𝑓 (𝑍𝑣), 𝑐) [1 . . . 𝑘], we have for

𝑘′ = 𝑏 ⌈𝑘/𝑏⌉,
SD(𝑈𝐷 ,𝑈𝑘 ) ≤ SD(invXOR(𝑓 (𝑈𝑍1

)∥ 𝑓 (𝑈𝑍2
)∥ · · ·

· · · ∥ 𝑓 (𝑈𝑍𝑣
), 𝑐),𝑈𝑘 ′ )

= SD(⊕𝑐𝑖=1 𝑓 (𝑈𝑍𝑖 )∥ ⊕
𝑖=𝑐+⌈𝑐/2⌉
𝑖=1+⌈𝑐/2⌉ 𝑓 (𝑈𝑍𝑖 )∥ · · ·

· · · ∥ ⊕𝑖=𝑐+(𝑏−1) ⌈𝑐/2⌉
𝑖=1+(𝑏−1) ⌈𝑐/2⌉ 𝑓 (𝑈𝑍𝑖 ),𝑈𝑘 ′ )

We denote ⊕𝑖=𝑐+( 𝑗−1) ⌈𝑐/2⌉
𝑖=1+( 𝑗−1) ⌈𝑐/2⌉ 𝑓 (𝑈𝑍𝑖 ) by𝑈𝑓𝑗 . Hence, we have

SD(𝑈𝐷 ,𝑈𝑘 ) ≤ SD(𝑈𝑓1 ∥𝑈𝑓2 ∥ · · · ∥𝑈𝑓𝑏
,𝑈𝑘′ )

=
1

2

∑︁
𝑥 ∈𝑈𝑘′

��
Pr[𝑈𝑓1 ∥𝑈𝑓2 ∥ · · · ∥𝑈𝑓𝑏

= 𝑥 ] − Pr[𝑈𝑘′ = 𝑥 ]
��

=
1

2

∑︁
𝑥 ∈𝑈𝑘′

𝑥1,...,𝑥𝑏
𝑤←−𝑥

����� 𝑏∏
𝑗=1

Pr[𝑈𝑓𝑗 = 𝑥 𝑗 ] −
1

2
𝑘′

����� .
The last equality holds due to the fact that for each𝑈𝑓𝑗 the corre-

sponding subset of 𝑍𝑖s contains at least one new/fresh independent

element from the corresponding main set 𝑍 (note that this is true

for all positive values of 𝑐). Hence all 𝑈𝑓𝑗 s can be considered in-

dependent from each other. Now, with some basic algebra we can

show that for all 𝑦 𝑗 s

𝑏∏
𝑗=1

𝑦 𝑗 −
1

2
𝑘 ′

=

𝑏∑︁
𝑗=1


(
1

2
𝑤

) 𝑗−1 (
𝑦 𝑗 −

1

2
𝑤

) 𝑏∏
𝑗 ′=𝑗+1

𝑦 𝑗 ′

 .
Hence, we have SD(𝑈𝐷 ,𝑈𝑘 )

≤ 1

2

∑︁
𝑥 ∈𝑈𝑘′

𝑥
1
,...,𝑥𝑏

𝑤←−𝑥

𝑏∑︁
𝑗=1

������
(
1

2
𝑤

) 𝑗−1 (
Pr[𝑈𝑓𝑗

= 𝑥 𝑗 ] −
1

2
𝑤

) 𝑏∏
𝑗 ′=𝑗+1

Pr[𝑈𝑓𝑗 ′ = 𝑥 𝑗 ′ ]

������
=

𝑏∑︁
𝑗=1

1

2
𝑤𝑗−𝑤+1

∑︁
𝑥 ∈𝑈𝑘′

𝑥
1
,...,𝑥𝑏

𝑤←−𝑥

������
(
Pr[𝑈𝑓𝑗

= 𝑥 𝑗 ] −
1

2
𝑤

) 𝑏∏
𝑗 ′=𝑗+1

Pr[𝑈𝑓𝑗 ′ = 𝑥 𝑗 ′ ]

������
=

𝑏∑︁
𝑗=1

1

2
𝑤𝑗−𝑤+1

©«
∑︁

𝑥𝑗 ∈𝑈𝑤

����Pr[𝑈𝑓𝑗
= 𝑥 𝑗 ] −

1

2
𝑤

����ª®¬©«
𝑏∏

𝑗 ′=𝑗+1

∑︁
𝑥𝑗 ′ ∈𝑈𝑤

Pr[𝑈𝑓𝑗 ′ = 𝑥 𝑗 ′ ]
ª®®¬
©«
𝑗−1∏
𝑗 ′=1

∑︁
𝑥𝑗 ′ ∈𝑈𝑤

1

ª®®¬
=

𝑏∑︁
𝑗=1

SD(𝑈𝑓𝑗
,𝑈𝑤 ) . (2)

Claim 1 (1). For 𝜖 > 0 defined as above we have SD(𝑈𝑓𝑗 ,𝑈𝑤) ≤
(2𝜖)𝑐/2 for all 1 ≤ 𝑗 ≤ 𝑏.

Let us assume for a moment that Claim (1) holds then combin-

ing this result with Eqn. 2 gives us the result of Theorem 5.1 and

completes its proof. We now prove the result of Claim (1). Let us

recall that 𝑈𝑓𝑗 = ⊕𝑖=𝑐+( 𝑗−1) ⌈𝑐/2⌉
𝑖=1+( 𝑗−1) ⌈𝑐/2⌉ 𝑓 (𝑈𝑍𝑖 ) for all 1 ≤ 𝑗 ≤ 𝑏. Again,

for simplicity, we denote 1 + ( 𝑗 − 1) ⌈𝑐/2⌉ and 𝑐 + ( 𝑗 − 1) ⌈𝑐/2⌉ by
𝛼 and 𝛽 , respectively. This implies

SD(𝑈𝑓𝑗 ,𝑈𝑤 )

= SD(⊕𝛽
𝑖=𝛼

𝑓 (𝑈𝑍𝑖
),𝑈𝑤 )

=
1

2

∑︁
𝑥 𝑗 ∈𝑈𝑤

����Pr[⊕𝛽𝑖=𝛼 𝑓 (𝑈𝑍𝑖
) = 𝑥 𝑗 ] −

1

2
𝑤

����
=

1

2

∑︁
𝑥 𝑗 ∈𝑈𝑤

����������
∑︁

⊕𝛽
𝑖=𝛼

𝑥𝑖 𝑗=𝑥 𝑗 ,

𝑥𝑖 𝑗 ∈𝑓 (𝑈𝑍𝑖
)

Pr[∧𝛽
𝑖=𝛼
(𝑓 (𝑈𝑍𝑖

) = 𝑥𝑖 𝑗 ) ] −
1

2
𝑤

���������� .
As we know, the system of linear equations that corresponds to

the outputs of invXOR (i.e. a system with equations defined by the

concatenated blocks of an invXOR output) has mdi = 𝑐 − 1, which
means every variable 𝑓 (𝑈𝑍𝑖 ) in the equation 𝐸 𝑗 := ⊕𝛽𝑖=𝛼 𝑓 (𝑈𝑍𝑖 ) =
𝑥 𝑗 has at least 𝑐 − 1 degree of involvement. Now, since for all 𝑗s, 𝐸 𝑗
contains exactly 𝛽 − 𝛼 = 𝑐 − 1 variables, we have for all 𝐸 𝑗 s and 𝑥𝑖 𝑗
as defined above

Pr[∧𝛽
𝑖=𝛼
(𝑓 (𝑈𝑍𝑖 ) = 𝑥𝑖 𝑗 )] =

𝛽∏
𝑖=𝛼

Pr[𝑓 (𝑈𝑍𝑖 ) = 𝑥𝑖 𝑗 ] .

Hence, we get SD(𝑈𝑓𝑗 ,𝑈𝑤)

=
1

2

∑︁
𝑥𝑗 ∈𝑈𝑤

�����������
∑︁

⊕𝛽
𝑖=𝛼

𝑥𝑖 𝑗 =𝑥𝑗 ,

𝑥𝑖 𝑗 ∈𝑓 (𝑈𝑍𝑖
)

𝛽∏
𝑖=𝛼

Pr[ 𝑓 (𝑈𝑍𝑖
) = 𝑥𝑖 𝑗 ] −

1

2
𝑤

�����������
=

1

2

∑︁
𝑥𝑗 ∈𝑈𝑤

�����������
∑︁

⊕𝛽
𝑖=𝛼

𝑥𝑖 𝑗 =𝑥𝑗 ,

𝑥𝑖 𝑗 ∈𝑓 (𝑈𝑍𝑖
)

𝛽∏
𝑖=𝛼

Pr[ 𝑓 (𝑈𝑍𝑖
) = 𝑥𝑖 𝑗 ] −

∑︁
⊕𝛽
𝑖=𝛼

𝑥𝑖 𝑗 =𝑥𝑗 ,

𝑥𝑖 𝑗 ∈𝑈𝑤

𝛽∏
𝑖=𝛼

1

2
𝑤

�����������
≤ 1

2

∑︁
𝑥𝑗 ∈𝑈𝑤

�����������
∑︁

⊕𝛽
𝑖=𝛼

𝑥𝑖 𝑗 =𝑥𝑗 ,

𝑥𝑖 𝑗 ∈𝑈𝑤

𝛽∏
𝑖=𝛼

Pr[ 𝑓 (𝑈𝑍𝑖
) = 𝑥𝑖 𝑗 ] −

∑︁
⊕𝛽
𝑖=𝛼

𝑥𝑖 𝑗 =𝑥𝑗 ,

𝑥𝑖 𝑗 ∈𝑈𝑤

𝛽∏
𝑖=𝛼

1

2
𝑤

�����������
≤ 1

2

∑︁
𝑥𝑗 ∈𝑈𝑤

∑︁
⊕𝛽
𝑖=𝛼

𝑥𝑖 𝑗 =𝑥𝑗 ,

𝑥𝑖 𝑗 ∈𝑈𝑤

𝛽∏
𝑖=𝛼

����Pr[ 𝑓 (𝑈𝑍𝑖
) = 𝑥𝑖 𝑗 ] −

1

2
𝑤

����
=

1

2

∑︁
𝑥𝑖 𝑗 ∈𝑈𝑤

𝛽∏
𝑖=𝛼

����Pr[ 𝑓 (𝑈𝑍𝑖
) = 𝑥𝑖 𝑗 ] −

1

2
𝑤

����
=

1

2

𝛽∏
𝑖=𝛼

2 · SD(𝑓 (𝑈𝑍𝑖
),𝑈𝑤 ) ≤

1

2

(2𝜖 )𝑐 .

Here the first inequality holds because |𝑓 (𝑈𝑍𝑖 ) | ≤ |𝑈𝑤 | = 2
𝑤
for

all 1 ≤ 𝑖 ≤ 𝑣 and the last inequality follows from Eqn. 1. □

5.2 DExt𝑓 Instantiation based on msb/lsb
Function

In this section, we show that for applications with multi-DH in-

put sources such as the Signal Protocol where the KDF source of

6
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inputs is a subgroup of an elliptic curve group and the inputs are

DH elements over it i.e. the input distribution is computationally

indistinguishable from the uniform distribution over the source,

one can instantiate the underlying function 𝑓 of DExt𝑓 by the func-
tions msb or lsb. More concretely, we recall one of the two main

theorems from the work of Chevalier et al. [14] on the security of

lsb𝑘 function as a deterministic extractor (this function does not re-

quire any additional salt during its evaluation) and combine it with

Theorem 5.1 to amplify the extracted output’s size and security.

 

 

 

Figure 2: DExtlsb: A deterministic extractor that can extract
up to 212 bits of randomness with 128 bits of security from
3 or 4 random, independent and fresh DH shared secrets
that are X3DH outputs over Curve25519. Heremsb and lsb are
the most and least significant bits functions, respectively, as
defined in Sec. 2.

Theorem 5.2 (msb/lsb extraction, Theorem 14, [14]). Let 𝑝

be an ℓ𝑝 -bit prime,𝐺 a subgroup of E(F𝑝 ) of cardinality 𝑞 generated

by 𝑃0, 𝑞 being an ℓ𝑞-bit prime,𝑈𝐺 and𝑈𝑘 be two random variables

uniformly distributed in𝐺 and {0, 1}𝑘 , respectively for some positive

integer 𝑘 . Then we have

SD(lsb𝑘 (𝑈𝐺 ),𝑈𝑘 ) ≤ 2
(𝑘+ℓ𝑝+log2 ℓ𝑝 )/2+3−ℓ𝑞 .

By combining the results from Theorem 5.1 and 5.2 we obtain the

following corollary:

Corollary 5.2.1. Let 𝑝 be an ℓ𝑝 -bit prime,𝐺 a subgroup of E(F𝑝 )
of cardinality𝑞 generated by 𝑃0,𝑞 being an ℓ𝑞-bit prime,𝑈𝐷 a random

variable distributed according to the outputs of DExtlsb for 𝑣 many

chosen uniform and independent samples from 𝐺 with two positive

integers𝑘 and 𝑐 (< 𝑣) and𝑏 = ⌊(𝑣 − 𝑐)/⌈𝑐/2⌉⌋+1. Let𝑈𝑘 be a random
variable uniformly distributed in {0, 1}𝑘 . We have SD(𝑈𝐷 ,𝑈𝑘 ) ≤ 2

−𝑒

for some positive integer 𝑒 if

2ℓ𝑞 − ℓ𝑝 − log2 ℓ𝑝 − 6 ≥
2(𝑒 + log

2
𝑏 − 1)

𝑐
+
⌈
𝑘

𝑏

⌉
.

In the concrete settings of the Signal Protocol, we have the source

group𝐺 defined as the cyclic subgroup of Curve25519 [10] using the

base point 𝑥 = 9 (one of the NIST standards for ECC [13] targeting

128-bit security) with ℓ𝑝 = 256 bits and 253 ≥ ℓ𝑞 ≥ 252. Further,

under the ECDDH [11] assumption (see Sec. 5), the X3DH [35]

handshake over 𝐺 provides at least 3 uniform and independent

group elements as DH shared secrets. Hence, from Corollary 5.2.1,

we have thatDExt can output upto 𝑘 = 212 bits of randomness with

security of 𝑒 = 128 bits when provided with fresh, independent and

random X3DH outputs with the least significant byte (a.k.a. the

clamped [31] byte that contains three fixed bits as 0s) dropped.

Note that with the results from [14] (Theorem 5.2) one can

achieve the same amount of randomness, i.e. 𝑘 ≈ 212 bits by con-

catenating the outputs of 𝑓 = lsb, but with at most security of 𝑒 = 82

bits when provided with at least 𝑣 = 3 uniform and independent

samples from the group 𝐺 .

Let us consider the following example to clarify a different impli-

cation of this result. For a fixed sample size 𝑣 = 10, source settings

𝑝 = 256 and 𝑞 ≥ 252, and a security parameter 𝑒 = 80, the input size

that can be extracted in the final concatenated output (computed as

concatenation of the outputs of 𝑓 = lsb) is only ≈ 26% (according

to the results of [14]). On the other hand, the same is improved to

52% (according to our results) when evaluated with DExtlsb under
the same settings.

To summarize, for a given X3DH output with 3 (resp. 4)

random, independent and fresh DH samples (defined af-

ter dropping the fixed/clamped byte) as 𝐷𝐻1∥𝐷𝐻2∥𝐷𝐻3
(resp. 𝐷𝐻1∥𝐷𝐻2∥𝐷𝐻3∥𝐷𝐻4) over Curve25519, we have

shown that under the ECDDH assumption the string

lsb⌈𝑘/2⌉ (𝐷𝐻1 ⊕ 𝐷𝐻2)∥lsb𝑘−⌈𝑘/2⌉ (𝐷𝐻2 ⊕ 𝐷𝐻3) (resp.

lsb⌈𝑘/3⌉ (𝐷𝐻1 ⊕𝐷𝐻2)∥lsb⌈𝑘/3⌉ (𝐷𝐻2 ⊕𝐷𝐻3)∥lsb𝑘−2⌈𝑘/3⌉ (𝐷𝐻3 ⊕
𝐷𝐻4)) is indistinguishable from a 𝑘-bit uniform random string

with a security of at least 128 bits when 𝑘 ≤ 212. A simplified

diagram of DExt𝑓 with 𝑓 defined as the lsb function for Signal-like

applications is provided in Fig. 2.

6 RANDOMNESS EXPANSION PHASE
Randomness expansion or key-stream generation is a process to

generate a large amount of random bits from relatively smaller

random and secret keys. Formally, a randomness expander scheme

Π : K×Γ×N→ {0, 1}∗ takes a 𝑘-bit key𝐾 ∈ K , the desired output

length ℓ ∈ N and an additional arbitrary but fixed length binary

string 𝛾 ∈ Γ as inputs and returns an ℓ-bit binary string 𝐾𝑒𝑥𝑝 as an

output.

In [27], two approaches are discussed to construct randomness

expanders: counter and feedback encryptionmode style. HKDF uses

a randomness expander that is defined using a key feedback mode

over HMAC. HMAC in key feedback mode performs slow due to the

frequent rekeying in HMAC calls (consequence of using feedback

mode) and double hashing per HMAC call (consequence of using

HMAC). In order to avoid these speed breakers, while maintaining

128-bit security level, we turn to the counter mode-like approach

and consider some built-in expanding primitives such as a PRF𝑠
with 𝑠 ≥ 2 as the underlying primitive. The known counter mode

CTR$ (CTR with random IV) [39] is a good randomness expander,

however, in its original form it accommodates 𝛾s only if they are

chosen uniformly at random and are of size 𝑛 bits (where 𝑛 is the

underlying block size).

Our proposal FExp is a highly efficient randomness expander

that can accommodate arbitrary 𝛾s of size 2𝑛 bits. Further, unlike

CTR$ mode which can only provide 𝑛/2 bits of security under

7
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the indistinguishability from random strings IND$ [39] notion, we

show that FExp mode (for a given secret random key) provides full

𝑛-bit security under the same security notion. We adjust the notion

under the syntax of a randomness expander scheme and denote it

by gexp below.

gexp Security. The security of a randomness expander or in

short, Exp scheme Π is defined with the help of the games gexp-
real and gexp-ideal in Fig. 4. The security of Π is measured as

the indistinguishability of its outputs from random strings in a

chosen input attack. More precisely, given Π and an adversary A
who interacts with either gexp-real or gexp-ideal, we define A’s

advantage at breaking the gexp security of Π as:

AdvgexpΠ (A) =
���Pr[Agexp-real ⇒ 1] − Pr[Agexp-ideal ⇒ 1]

��� .
6.1 FExp: A PRF𝑠-based Randomness Expander
We provide a definition for our randomness expansion scheme

based on an expanding (fixed output length) PRF PRF𝑠 .

Definition of FExp. For a fixed expanding PRF PRF𝑠 : K ×
{0, 1}2𝑛 → {0, 1}𝑠𝑛 with 𝑠 ≥ 2, FExp takes in a key 𝐾 ∈ K , the
auxiliary info 𝛾 ∈ {0, 1}2𝑛 and the desired output length ℓ ∈ N as

inputs. It then uses the PRF𝑠 as shown in Fig. 3a and outputs the

key-stream 𝐾𝑒𝑥𝑝 ∈ {0, 1}ℓ .

(a)

FExp(K,γ, ℓ)

//K ∈ K, γ ∈ {0, 1}2n, ℓ ∈ N

K1,K2, . . . ,Ks ← PRFs(K, γ), jlast ← ⌊⌈ℓ/n⌉/s⌋, slast ← ⌈ℓ/n⌉ − jlasts

for j in [0...jlast − 2] do

K(j+1)s+1,K(j+1)s+2, . . . ,K(j+2)s ← PRFs(K,K1∥(K2 ⊕ ⟨j⟩))
Kjlasts+1,Kjlasts+2, . . . ,K⌈ℓ/n⌉ ← PRFslast(K,K1∥(K2 ⊕ ⟨jlast⟩))
Kexp ← K1∥ . . . ∥K⌈ℓ/n⌉[1 . . . ℓ]

return Kexp

(b)

Figure 3: (a) FExp mode of randomness expansion. Here 𝐾
denotes the secret key to the PRF𝑠 and ⟨ 𝑗⟩ is a suitable 𝑛-bit
binary encoding of 𝑗 (e.g., 0𝑛−⌈log2 ( 𝑗 ) ⌉ ∥ 𝑗). Here each concate-
nation separates 𝑛-bit (block size) strings. (b) FExpmode pseu-
docode.

We give a formal statement of the FExp security and support it with
a security proof. The formal security claim is stated in Theorem 6.1.

Theorem 6.1 (Security of FExp). Let PRF𝑠 be an expanding

pseudorandom function with a secret and uniform random key𝐾 ∈ K
and 𝑠 ≥ 2. Then for any adversary A who makes at most 𝑞 FExp
queries such that the total number of PRF𝑠 calls induced by all the

queries is at most 𝜎 =
∑𝑞
𝑖=1

ℓ𝑖 with ℓ𝑖 being the output length (in

𝑠𝑛-bit blocks) of 𝑖𝑡ℎ query, we have

AdvgexpFExp (A) ≤ AdvprfPRF𝑠
(B) + 2𝑞(𝜎 − 𝑞)

2
2𝑛

for some adversary B who makes at most 𝜎 queries, and runs in time

given by the running time of A plus 𝛾0 · 𝜎 for some constant 𝛾0.

Game gexp-real

//K ←$ {0, 1}k

Oracle E(γ, ℓ)
return Π(K, γ, ℓ)

b← AE

return b

Game gexp-ideal

//K ←$ {0, 1}k

Oracle E(γ, ℓ)
return RFK,γ [1 . . . ℓ]

b← AE

return b

Figure 4: Games gexp-real and gexp-ideal defining the secu-
rity of an Exp scheme Π. Here RF𝐾,𝛾 is a function (indepen-
dently sampled for every (𝐾,𝛾)) that outputs arbitrary many
uniform random bits.

Proof of Theorem 6.1. We first replace PRF𝑠 (𝐾, ·) with a uni-

formly sampled random function 𝑓 (·) ←$
Func(2𝑛, 𝑠𝑛)) and let

FExp[𝑓 ] denote the FExp mode that uses 𝑓 instead of PRF𝑠 , which
yields

AdvgexpFExp[PRF𝑠 ] (A) ≤ AdvprfPRF𝑠
(B) + AdvgexpFExp[ 𝑓 ] (A) .

Let us consider that A makes at most 𝑞 FExp queries with

𝑖𝑡ℎ query containing ℓ𝑖 𝑓 calls and hence calling 𝑓 for total 𝜎 =∑𝑞
𝑖=1

ℓ𝑖 many times. Clearly, by definition of 𝑓 , we know that all

the output bits are random and uniformly distributed as long all

the queried 𝜎 many inputs to 𝑓 are unique. In other words, if all

the queried 𝑓 inputs in query 𝑖 are denoted by the ordered multiset

𝑄𝑖 = {𝑥𝑖𝑗 }
ℓ𝑖
𝑗=1

= {𝛾𝑖 , 𝐾𝑖
1
∥𝐾𝑖

2
, 𝐾𝑖

1
∥(𝐾𝑖

2
⊕ ⟨1⟩), . . . , 𝐾𝑖

1
∥(𝐾𝑖

2
⊕ ⟨ℓ𝑖 − 2⟩)}

then we have

AdvgexpFExp[𝑓 ] (A) ≤ Pr[∃ (𝑖, 𝑗 ) < (𝑖′, 𝑗 ′ ) such that 𝑥𝑖𝑗 = 𝑥
𝑖′
𝑗 ′ ] . (3)

Case Analysis.
Case 1 [When 𝑗 = 𝑗 ′ = 1]. Under this case, all (𝑥𝑖

𝑗
, 𝑥𝑖
′
𝑗 ′ ) pairs are

defined as (𝛾𝑖 , 𝛾𝑖′ ) with 𝛾𝑖 ≠ 𝛾𝑖′ ∀𝑖 ≠ 𝑖′ and hence Pr[𝑥𝑖
𝑗
= 𝑥𝑖

′
𝑗 ′ ] = 0.

Case 2 [When 𝑗 = 1∨ 𝑗 ′ = 1 but 𝑗 ≠ 𝑗 ′]. Under this case, we always
have either 𝑥𝑖

𝑗
= 𝐾𝑖

1
∥(𝐾𝑖

2
⊕ ⟨ 𝑗⟩) or 𝑥𝑖′

𝑗 ′ = 𝐾
𝑖′
1
∥(𝐾𝑖′

2
⊕ ⟨ 𝑗 ′⟩) and since

each one of 𝐾𝑖
1
, 𝐾𝑖

2
, 𝐾𝑖

′
1
and 𝐾𝑖

′
2
are outputs of a uniform random

function (𝑓 ), they are uniformly distributed over {0, 1}𝑛 . Therefore,
Pr[𝑥𝑖

𝑗
= 𝑥𝑖

′
𝑗 ′ ] = 1/22𝑛 . W.l.o.g., let us assume that 𝑗 = 1 and then

there are total 𝑞 and at most 𝜎 − 𝑞 many choices to pick (𝑖, 𝑗) and
(𝑖′ 𝑗 ′), respectively.
Case 3 [When 𝑖 = 𝑖′ and 𝑗 ≠ 1 ∧ 𝑗 ′ ≠ 1]. Under this case, all

(𝑥𝑖
𝑗
, 𝑥𝑖
′
𝑗 ′ ) pairs are defined as (𝐾𝑖

1
∥(𝐾𝑖

2
⊕ ⟨ 𝑗⟩, 𝐾𝑖

1
∥(𝐾𝑖

2
⊕ ⟨ 𝑗 ′⟩) with

𝑗 ≠ 𝑗 ′ hence Pr[𝑥𝑖
𝑗
= 𝑥𝑖

′
𝑗 ′ ] = 0.
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Case 4 [When 𝑖 ≠ 𝑖′ and 𝑗 ≠ 1∧ 𝑗 ′ ≠ 1]. Under this case, we always

have 𝑥𝑖
𝑗
= 𝐾𝑖

1
∥(𝐾𝑖

2
⊕ ⟨ 𝑗⟩) and 𝑥𝑖′

𝑗 ′ = 𝐾
𝑖′
1
∥(𝐾𝑖′

2
⊕ ⟨ 𝑗 ′⟩). Hence, we can

write

Pr[𝑥𝑖𝑗 = 𝑥𝑖
′
𝑗 ′ ] = Pr[ (𝐾𝑖

1
⊕ 𝐾𝑖′

1
) ∥ (𝐾𝑖

2
⊕ 𝐾𝑖′

2
) = 0

𝑛 ∥ (⟨ 𝑗 ⟩ ⊕ ⟨ 𝑗 ′ ⟩) ] . (4)

Now, since each one of 𝐾𝑖
1
, 𝐾𝑖

2
, 𝐾𝑖

′
1
and 𝐾𝑖

′
2
are outputs of a uniform

random function (𝑓 ), they are uniformly distributed over {0, 1}𝑛
and hence Pr[𝑥𝑖

𝑗
= 𝑥𝑖

′
𝑗 ′ ] = 1/22𝑛 . Additionally, we observe from

Eqn. 4 with ⟨𝑐⟩ = ⟨ 𝑗⟩ ⊕ ⟨ 𝑗 ′⟩ that there are total 𝜎 − 𝑞 and at most 𝑞

many choices for (𝑖, 𝑐) and 𝑖′, respectively.
Combining all these results into Eqn. 3 gives us

AdvgexpFExp[𝑓 ] (A) ≤
2𝑞 (𝜎 − 𝑞)

2
2𝑛

and hence the result of Theorem 6.1. □

7 SECURITY ANALYSIS OF Skye
The security of a KDF scheme depends on the properties of the

source of initial key material (IKM, Def. 3.1) from which𝑍 is chosen.

We refer the reader to [27] for various examples. Although the

definition there does not specify the inputs to the Σ algorithm, it

provides a pair (𝑍, C𝑍 ) where 𝑍 (the sample set) represents the

secret IKM, and C𝑍 is a set of some auxiliary knowledge about 𝑍

(or its distribution). This auxiliary information is available to the

attacker and can be used in the KDF security analysis. In other

words, a KDF is “secure” on inputs 𝑍 even when the value C𝑍 is

available to the attacker. A Diffie-Hellman value 𝑍 will consist of

the value 𝑔𝑥𝑦 while C𝑍 could represent the set {𝑝, 𝑞, 𝑔, 𝑔𝑥 , 𝑔𝑦}. In a

different application, say a random number generator that works

by hashing samples of system events in a computer, the value C𝑍
may include some of the sampled events used to generate 𝑍 .

Towards defining the security of Skye, we recall the min-entropy

and𝑚-entropy source definitions from [27].

Definition 7.1 (min-entropy [27]). A probability distribution

X has min-entropy (at least)𝑚 if for all 𝑎 in the support of X and for

a random variable 𝑋 drawn according to X, Pr(𝑋 = 𝑎) ≤ 2
−𝑚

.

Definition 7.2 (𝑚-entropy source [27]). We say that Σ is a

statistical 𝑚-entropy source if for all 𝑠 and 𝑎 in the support of the

distribution Σ, the conditional probability Pr(𝑍 = 𝑠 |C𝑍 = 𝑎) induced
by Σ is at most 2

−𝑚
. We say that Σ is a computational𝑚-entropy

source (or simply an 𝑚-entropy source) if there is a statistical 𝑚-

entropy source Σ′ that is computationally indistinguishable from Σ.

CCS Security.We follow the originalCCS definition from [15, 27]

for a secure KDF with an 𝑚-entropy source Σ in the adaptive

chosen context information (𝛾 ) model with a single salt. The

CCS formalization for an 𝑚-entropy source makes use of the

ccs-real and ccs-ideal security games (a simplified version is

provided in Fig. 8, App. A). The CCS-security is then defined

as the indistinguishability of the KDF generated outputs 𝐾𝑘𝑑 𝑓
from truly random strings under a chosen input attack. More pre-

cisely, given a KDF scheme Π and an adaptive adversary A, who

interacts with either ccs-real or ccs-ideal, the A’s advantage

at breaking the CCS security of Π is defined as AdvCCSΠ (A) =���Pr[Accs-real ⇒ 1] − Pr[Accs-ideal ⇒ 1]
��� .

We now give the Skye[lsb, PRF𝑠 ] security statement in Theo-

rem 7.1.

Theorem 7.1 (Security of Skye). Let PRF𝑠 : K × {0, 1}2𝑛 →
{0, 1}𝑠𝑛 be an expanding pseudorandom function with 𝑠 ≥ 2 and

key size 𝑘 ≤ 212 bits. Let Σ = (𝑍, C𝑍 ) be an input source. Let 𝑍 is

sampled from a set containing secret, random, independent and fresh

X3DH handshake outputs computed over the group 𝐺 , where 𝐺 is

defined as the cyclic subgroup of Curve25519 using the base point

𝑥 = 9 [10]. Then, for all adversaries A who make 𝑞 Skye queries in
at most 𝜎 =

∑𝑞
𝑖=1

ℓ𝑖 PRF𝑠 calls with ℓ𝑖 being the output length (in

𝑠𝑛-bit blocks) of 𝑖𝑡ℎ query, we have

AdvCCSSkye[PRF𝑠 ] (A) ≤ AdvprfPRF𝑠
(B) + Advecddh𝐺 (C) + 𝑞

2
128
+ 2𝑞 (𝜎 − 𝑞)

2
2𝑛

for adversaries B and C making at most 𝜎 and 4𝑞 PRF𝑠 and ECDDH
(over G) queries, respectively and running in time given by the running

time of A plus 𝛾0 · 𝜎 for some constant 𝛾0.

Proof of Theorem 7.1. Let us first define an event 𝐸 which

says that the key fed to the underlying FExp component of the

Skye construction over a total of 𝑞 queries is secret and indistin-

guishable from a uniform random binary string. Let us now recall

from Sec. 6.1 that if the key to the FExp construction is secret and

indistinguishable from a uniform random binary string then the out-

puts of FExp are independent and indistinguishable from uniform

random binary strings (of same length) with adversarial advantage

as defined in Theorem 6.1. Further, one can also note from the

security definition of CCS that the only difference between the real

and ideal CCS games w.r.t. Skye is the corresponding outputs being
uniform random or not. This as described above under the event

𝐸 is upper bounded by AdvgexpFExp[PRF𝑠 ] (A
′) for some adversary A′

against FExp that usesA (restricted under the event 𝐸) as a subrou-

tine. Now, for Skyewith a source group𝐺 defined as in Theorem 7.1

(over Curve25519) we have that under the ECDDH assumption on

𝐺 , Pr(¬𝐸) is upper bounded by 𝑞 · SD(DExtlsb (𝑈𝑍 ),𝑈𝑘 ) and thus

AdvCCSSkye[PRF𝑠 ] (A) ≤ Advecddh𝐺 (C) + 𝑞 · SD(DExtlsb (𝑈𝑍 ),𝑈𝑘 )

+ AdvgexpFExp[PRF𝑠 ] (A
′)

≤ AdvprfPRF𝑠
(B) + Advecddh𝐺 (C) + 𝑞

2
128
+

+ 2𝑞(𝜎 − 𝑞)
2
2𝑛

.

The second inequality above is derived from Theorem 6.1 and

Corollary 5.2.1 which states that for 𝑘 ≤ 212, DExtlsb is a

(𝑈𝑍 , 2
−128

)-deterministic extractor. This completes the proof of

Theorem 7.1. □

8 REAL-WORLD APPLICATIONS OF Skye
From the design description of Skye[𝑓 , PRF𝑠 ], we know that it can

be used (with any expanding PRF PRF𝑠 ) as a general KDF for any
input source as long as a weak extractor 𝑓 is known for that input

source.

We use the ButterKnife [7] as the PRF𝑠 in Skyewith 𝑛 = 128 bits

and 𝑠 = 8 due to its (1) large expansion (𝑠 = 8); (2) well-studied AES

internal structure; (3) the support of AES native instructions (NI)

9
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on all supporting processors and (4) efficient key-scheduling [7] for

performance gains.

We stress thatButterKnife is not only fast but also securewih 128-
bit PRF-security. It comes with dedicated cryptanalysis, a generic

proof of security [7], and is backed by further cryptanalytic results

for AES-PRF [20, 37] and Deoxys-BC [16, 25, 29, 43].

We also note that the choice of PRF𝑠 is independent of the KDF
input source or its application. Any other secure PRF can also be

used instead of ButterKnife. Like for e.g., HMAC or AES-PRF. How-

ever, if the used PRF is expanding and parallelizable like ButterKnife,
we get additional performance advantages (as shown in Sec. 9).

A significant number of KDF applications such as the popular

instant messaging apps Signal [34], Signal protocol-based What-

sApp [33], FacebookMessenger [2], Skype [30], Allo [32], Status [5],

Secure Chat, Viber and Forsta as well as the Blockchain-based-

X3DH [40] for IoTs are based on X3DH or use some multi-DH input

sources for key derivation. To illustrate the performance gains of

Skye in these multi-DH source applications, in this section we con-

sider Signal as a target application and provide a full performance

analysis of Skye as a standalone KDF and when used inside Signal.

We instantiate 𝑓 with the least significant bits function lsb, as
we established its optimality and security for multi-DH sources in

Sec. 5.2.

8.1 KDF calls in the Signal Protocol
The security in the Signal Protocol is due to the use of the

Double Ratchet algorithm [34], the X3DH (triple Elliptic-curve

Diffie–Hellman) handshake [35], the key derivation function

HKDF [27], and an AEAD mode. Signal Protocol is typically imple-

mented with Curve25519 [10], AES-256, and HMAC-SHA256 as its

underlying cryptographic primitives.

Signal as defined in [34]. It makes KDF calls for three different

purposes (see Fig. 5a): 1. to generate a root key from the X3DH

outputs and the info value 𝛾 ; 2. to generate a chain key, a header
encryption key and a new root key from the present root key

and an ephemeral DH shared secret key; and 3. to generate a

message key and a new chain key from the old chain key and

a predefined constant. The three processes are realized by KDF1,

KDF2 and KDF3, respectively, which differ in the types and sizes of

inputs and outputs. KDF1 is used first and only once in a session

(between two users) to generate the initial root key. When a user

sends 𝑠 > 0many concurrent messages to another user, the root key

is used along with a fresh DH shared secret as an input to KDF2 to

produce a chain key and update the root key. Then, 𝑠 many iterative

KDF3 calls are made with the 𝑖𝑡ℎ chain key as input to generate

the 𝑖𝑡ℎ message keys and the 𝑖 + 1𝑡ℎ chain key for 1 ≤ 𝑖 ≤ 𝑠 . Fig. 5a
illustrates the sequence of calls with its input and output values.

Current implementation libraries [1] of Signal use HKDF [27]

for each of these KDF calls. When instantiated with HKDF, the type

and size of each input of Signal’s KDF calls in terms of HKDF’s

arguments is provided in Table 5b (for 128-bit secure version).

Skye as a more efficient alternative to HKDF for Sig-
nal.

I. For all KDF1 calls in Signal, the salts for HKDF are set to a con-

stant and the underlying SHA-256 is modeled as a random oracle

(a)
KDF type Input type Corr. argument Size (in bits)in HKDF

KDF1

Info value 𝛾 context variable 256

X3DH output IKM 256 × (3 or 4)

Null string salt 256

KDF2

Null string context variable 256

Ephemeral DH key IKM 256

root key salt 256

KDF3

Null string context variable 256

constant IKM 256

chain key salt 256

(b)

Figure 5: (a) The three types of KDF calls in the Signal Pro-
tocol. Here IKM represents the initial key material which is
defined as the concatenation of (3 or) 4 (depending upon the
availability of the corresponding one-time prekeys for 𝐷𝐻4,
see [34]) DH shared secrets from the X3DH handshake. (b)
Types and sizes of Signal’s KDF’s inputs in terms of HKDF-
HMAC-SHA-256’s arguments.

(RO) to achieve the claimed security level (see Lemma 10 and its

following paragraphs in [27]). While this is a requirement for gen-

eral HKDF input sources, it is possible to relax the RO requirement.

Further, the reliance on specific randomness sources aids towards

a simplified and efficient extraction KDF phase in Signal. In the ex-

pansion phase on the other hand, one can benefit both security- and

efficiency-wise from an in-built expanding cryptographic primitive

with pseudorandom properties, such as the ones captured by the

forkcipher [8] (e.g., ForkSkinny [8]; based on the lightweight ISO

standard SKINNY [9]), multiforkcipher [6] and expanding PRF [7]

(e.g., Butterknife [7]; based on AES and Deoxys-BC [25]) notions.

Note that HKDF currently uses a “compressing” primitive instead

(HMAC-SHA-256) in a key feedback mode for the expansion phase.

II. Fig. 5a shows that only KDF1 requires the use of both the random-

ness extraction and expansion. KDF2 and KDF3 are made over pseu-

dorandom keys that are generated by the prior KDF calls. Specifi-

cally, the root keys that are fed to KDF2 calls are pseudorandom

keys as they are generated by the KDF1 calls and the chain keys
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that are fed to KDF3 calls are pseudorandom keys as they are gener-

ated by the KDF2 calls. In such cases, the extraction phase becomes

redundant and the HKDF for KDF2 and KDF3 can be replaced by

calling a fast and secure PRF (using the pseudorandom keys) that

gives the required expansion.

Addressing these points, we propose Skye[ButterKnife]. We re-

place HKDF with Skye[ButterKnife] as a KDF for KDF1 and as its

expanding component FExp[ButterKnife] for the KDF2 and KDF3

calls. As a consequence, we improve the performance of Signal at

full 128-bit security level. For simplicity, we limit our discussion to

the 128-bit secure variant. Our results can be analogously lifted to

224-bit security level under suitable instantiation.

For the sake of completeness, we hereby provide the simpli-

fied description of Skye in the context of Signal and Signal-like

applications (for general description, see Sec. 4).

Skye in Signal. The inputs to Skye in Signal are:

• the set 𝑍 of 𝑣 = 3 or 4 (depending on the available one time

prekeys, see [34]) independent samples𝐷𝐻𝑖 (𝑖 = 1, . . . , 𝑣) of

Diffie-Hellman (DH) shared secrets from the source group

𝐺 defined over Curve25519 where each sample is of length

2𝑛;

• the auxiliary info 𝛾 ∈ {0, 1}2𝑛 ;
• ℓ ∈ N denoting the desired output length;

Skye outputs 𝐾𝑒𝑥𝑝 ∈ {0, 1}ℓ as shown in Fig. 6. DExtlsb takes the
inputs 𝑍 and a pre-fixed integer 𝑘 denoting the output size of

DExtlsb and produces a 𝑘-bit output 𝐾𝑒𝑥𝑡 . Then, 𝐾𝑒𝑥𝑡 together with
𝛾 and ℓ are input to the FExp. FExp uses a fixed PRF𝑠 (in our case

ButterKnife) to produce the ℓ-bit 𝐾𝑒𝑥𝑝 . DExtlsb and FExp are given

in Fig. 2 and 3a, respectively with pseudocode of FExp provided in

Fig. 3b.

Although in Fig. 6 𝑘 appears as an external input to DExtlsb, for
a fixed PRF𝑠 it is tied to its keysize (in our case 𝑘 = 128). Hence, 𝑘

is not a part of the global inputs to Skye[𝑓 , PRF𝑠 ]. The parameter

sizes of DExtlsb and FExp[ButterKnife] are described in Table 1.

Skye[PRFs]

Figure 6: Skye KDF in the context of Signal. See Fig. 2 and 3a
for the internals of functions DExtlsb and FExp.

Parameters Argument types Sizes
set 𝑍 DExtlsb input 256 × (3 or 4) bits

𝐾𝑒𝑥𝑡 DExtlsb output 𝑘 = 128 bits

info value 𝛾 FExp input 256 bits

𝐾𝑒𝑥𝑝 FExp output ℓ bits

Table 1: Parameter sizes of input-output arguments inDExtlsb
and FExp components of Skye[lsb,ButterKnife].

9 SOFTWARE PERFORMANCE OF Skye
In this section, we present the performance evaluation of our im-

plementation of Skye in comparison to HKDF both in an isolated

setting and within the current Signal Protocol [1]. We use the Rust

implementation of HKDF from the current Signal implementation.

Skye’s implementation is also done in Rust, and it is instantiated

with ButterKnife. Our measurements are on the x86_64 platform

andwe consider performances bothwith andwithout using relevant

instruction set extensions (AES-NI and SHA-NI). All measurements

were performed with AMD Ryzen 7 5800X CPU.

9.1 Isolated Performance
To provide a direct comparison, we measured the execution time

1
of

sending up to 𝑛 messages in a sequence in Signal. This benchmark

includes the computation of KDF1, KDF2, and then 𝑛 executions

of KDF3, but not the time to compute the inputs to the KDF (i.e.,

they are constants), nor the time to perform any follow-up oper-

ations like message encryption with the derived key. On average,

our implementation with enabled AES-NI and SHA-NI extensions

achieves at least 91% (or ≥11x) speedup, while without the exten-
sions at least 76% (or ≥4x) speedup. On platforms that support

AES-NI but not SHA-NI
2
, the speedup is at least 98% (or ≥47x) on

average, as HKDF cannot utilize AES-NI, while Skye instantiated
with ButterKnife , it can. Full results are shown in Table 2.

𝑛 Skye HKDF Skye HKDF

with NI with NI without NI without NI

1 157 1739 1794 7404

2 218 2595 2666 11014

3 273 3459 3542 14640

4 336 4318 4414 18275

5 389 5179 5289 21901

6 453 6035 6164 25535

7 505 6894 7037 29160

8 570 7753 7919 32785

9 622 8617 8787 36406

10 688 9470 9667 40036

Table 2: Themean time (in ns) required to generate 𝑛message
keys using Skye andHKDFwith andwithout support for AES-
NI and SHA-NI extensions. The measurements were repeated
10

4 times.

9.2 Performance within Signal
We integrated Skye within the current Signal implementation [1].

First, we present the results from the extended benchmarks of

the original Signal code. In these settings, we assume that session

initialization has already been performed (this includes the one

time cost of X3DH computation and KDF1 call), and we measure

the subsequent communication.

The Signal library also supports group messaging however, each

group message is handled as a direct message to each receiver in

1
We measure wall-clock time with ns precision to be consistent with benchmarks

present in the Signal implementation.

2
SHA-NI support was released for public markets in 2017-18 with Intel’s Goldmont

microarchitecture. All processors and devices before that and many after that do not

have the support for SHA-NI.
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Figure 7: (a) The mean time (in µs) required to encrypt 𝑛
messages in the Signal Protocol implementation using Skye
and HKDF. (b) The mean time (in µs) required to encrypt (on
sender side) then decrypt (on receiver side) 𝑛 messages, and
then encrypt (on receiver side) and decrypt (on sender side)
another 𝑛 messages in the Signal Protocol implementation
using Skye and HKDF. In both cases, the measurements were
performed for variants with and without AES-NI and SHA-
NI support. The encrypted messages were of less than 16
characters. All measurements were repeated 10

3 times.

the group, i.e., if there are 𝑁 members in the group, Signal client

sends 𝑁 messages individually encrypted with the derived ratchet

key of each participant. Hence, we focus on two-party messaging

for analyzing performance in both direct and group messaging.

Unidirectional messaging: Here one party sends messages

to another in a sequence without any reply in between. Fig. 7a

presents the time it takes for the party to encrypt 𝑛 messages.
3

The relative speedup is independent of 𝑛 and on average equal to

38% with NI instructions, 47% without NI instructions, and 64%

with AES-NI but not SHA-NI
4
. For extended experiment results,

see Table 4 in App. E.

Bidirectional messaging: The previous setting does not in-

clude the cost of DH-ratchet, hence we consider: a party sends 𝑛

messages (in sequence) to another party, which then replies with

3
We use one block test messages of size 128 bits (i.e. 16 characters).

4
Note that in this case AES-NI and SHA-NI were also used for message encryption

and authentication so this number (64%) cannot be computed from the figure and is

based on the full measurement.

𝑛 messages. In Fig. 7b, we present the time required to encrypt

and decrypt the sent and received messages, respectively. Since

the DH computation cost diminishes the impact of the rest of the

computation (especially when the KDF calls are a few), we gain

only around 3% with single message i.e. 𝑛 = 1 with NI instructions,

but (as expected) with more messages, the speedup improves and

comes closer to the unidirectional case. For example, the speedup

quickly improves here to 12% for 𝑛 = 10. Similarly, without NI, we

gain a speedup of around 9% with 𝑛 = 1, and with 𝑛 = 10, up to

27%. Lastly, with the partial extension support (with AES-NI but

not SHA-NI) we get 11% with 𝑛 = 1 that goes to 36% with 𝑛 = 10.

For extended experiment results, see Table 5 in App. E.

Speedup due to the expanding PRF. In the unidirectional

experiment, 81%-93% of the total performance gain is due to the

use of an expanding PRF (ButterKnife) in place of a compression

function and the rest 19%-7% is due to the replacement of KDF2 and

KDF3 calls by FExp. In the bidirectional experiment, with 10 mes-

sages, 78%-86% of the total performance gain is due to the use of an

expanding PRF and the rest 22%-14% is due to the KDF2 and KDF3

replacements. These results illustrate the explicit performance ad-

vantage of adding an expanding PRF.

10 DISCUSSION AND FUTURE RESEARCH

Curve448 and 224-bit security. Signal with Skye targets 128-
bit security with Curve25519. The 224-bit secure version of Signal

is based on Curve448. This puts forward the question of whether

the Skye syntax and similar security proof arguments apply for

the 224-bit version. The general study of the underlying compo-

nents of Skye is directly applicable for constructing 224-bit secure

Skye. A 224-bit secure Skye can be defined with the same syntax,

and similar security arguments when Curve25519 is replaced by

Curve448. However, we avoid a separate security treatment of Skye
withCurve448 given that no PRF with key security > 128 bits, input

size > 256 bits and no idealized assumptions exists. We leave the

research of finding efficient expanding PRFs with at least 224 bits

security in the standard model as an open problem.

Network latency and IoT devices. The changes we pro-

pose in this work improve performance of the Signal cryptographic

component, but the impact on the overall performance of modern

smartphones and laptops might reduce when network latency is

included. Nonetheless, this tradeoff differs for all various of de-

vices and network setups. Low-performance hardware, e.g., IoT

devices or wireless sensor networks, could greatly benefit from our

improvements, enabling a wider deployment of the Signal Protocol.

Energy efficiency. Although we present improved time ef-

ficiency, an associated benefit is the lower energy consumption.

Energy savings are relevant even in settings where the network

latency overshadows the performance.

Security under compromised X3DH samples. To avoid the

RO-model, our present Skye analysis in Signal assumes at least

3 uncompromised X3DH keys. That results in stronger standard

model security when compared to HKDF. In the case when there

are at most 2 uncompromised X3DH keys (and assuming the user

doesn’t update the compromised ones), security can be maintained
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albeit by modeling the PRF𝑠 as a RO (similarly to the treatment

in [19]), a subject to separate analysis.

Skye applications beyond Signal and DH sources. Skye
is based on the generic DExt𝑓 , hence its security is not limited to

Curve25519 points or DH sources. Realizing the potential of Skye
beyond DH sources, and finding corresponding weak extractors

𝑓 s, is also an important direction for future works. This entails

exploring applications, such as the present Message Layer Security

(MLS) [3] and Post-Quantum Signal projects such as [12] where

KDF calls are made to extract uniformly random keys from shared

secrets. Further performance evaluation of Skye for applications
beyond Signal is also an interesting future work.

On instantiation of PRF𝑠 . In this work we use the concrete

instantiation of ButterKnife. Yet, our design can accommodate any

PRF𝑠 . For example, ForkSkinny is also a suitable candidate but then
the gains, when compared withButterKnife, would be lessened. The
PRF security reduces to half, 64-bits, and the performance as well,

due to the fact that ForkSkinny performs slower than ButterKnife
and does not have NI support on regular platforms.

DExt beyond linear systems. The number of extracted bits

from DExt and the security might be improved for the same inputs

when non-linear multivariate equations (with the extra cost of field

multiplications) are used. Studying such systems is out of the scope

and motivation of this paper and we leave the design and analysis

of further generalized and efficient DExt-like extensions as an open

problem.
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A CCS SECURITY GAMES

Game ccs-real

//Iγ = {}
//γc = ⊥ until provided by A
(Z, CZ)← Σ //m-entropy source

Oracle Derive(γ, ℓ)

define Iγ = Iγ ∪ {γ}
if γ ̸= γc

return (Π(Z, γ, ℓ), salt)

else //challenge query

return (Π(Z, γ, ℓ), salt)

(γc, ℓc), b← ADerive

//challenge query and the

//final output bit of A
if γc ∈ Iγ

return ⊥
else

return b

Game ccs-ideal

//Iγ = {}
//γc = ⊥ until provided by A
(Z, CZ)← Σ //m-entropy source

Oracle Derive(γ, ℓ)

define Iγ = Iγ ∪ {γ}
if γ ̸= γc

return (Π(Z, γ, ℓ), salt)

else //challenge query

return (RFZ,γ [1 . . . ℓ], salt)

(γc, ℓc), b← ADerive

//challenge query and the

//final output bit of A
if γc ∈ Iγ

return ⊥
else

return b

Figure 8: Games ccs-real and ccs-ideal defining the CCS-
security of a KDF scheme. Here RF𝑍,𝛾 is a function (inde-
pendently sampled for every (𝑍,𝛾)) that outputs arbitrary
many uniform random bits and salt denotes the internally
sampled salt value which is used in the queries Derive(·, ·)
(Note that this salt here can be a uniform random string or
fixed to some constant or null string. However, we let its
sampling remain general in the security definition).

B (SUB-)OPTIMALITY ANALYSIS OF DExt𝑓
In this section we provide the security analysis of our proposed

extractor and its instantiation. We start with the basic definitions

that are required for the analyses presented in this section.

Definition B.1 (Consistent system). A system of linear equa-

tions over a field F is called consistent if it has at least one solution in

F.

Definition B.2 (Coefficient matrix). For a given set 𝑆 of linear

equations, the coefficient matrix 𝐶𝑆 of 𝑆 is defined by a matrix with

𝑖𝑡ℎ row as the coefficients of the variables in the 𝑖𝑡ℎ linear equation

of the set 𝑆 .

Definition B.3 (Binary linear code). A binary linear code of

length 𝑛 and rank 𝑘 is a linear subspace 𝐶 with dimension 𝑘 of the

vector space F𝑘
2
where F2 is the binary field. The vectors in 𝐶 are

called codewords.

Definition B.4 (Hamming distance). For any binary linear code

𝐶 , the Hamming distance between any two codewords in 𝐶 is defined

as the number of elements in which the codewords differ.

Any binary linear code 𝐶 can be represented by [𝑛, 𝑘, 𝑑]2 where
𝑛 is the length of a codeword in 𝐶 , 𝑑 is the minimum of Hamming

distances of all pairs of codewords in 𝐶 and 𝑘 is the rank of 𝐶 . The

maximum number of codewords in any [𝑛, 𝑘, 𝑑]2 code is denoted
by 𝐴2 (𝑛,𝑑). This implies that 𝑘 ≤ log

2
(𝐴2 (𝑛,𝑑)).

We now introduce two new definitions called degree of involve-

ment and min-degree of involvement for the upcoming analysis.

Definition B.5 (Degree of involvement). Let 𝑆 = {𝐸𝑖 |1 ≤ 𝑖 ≤
𝑎} be a consistent system of equations of 𝑣 variables over a field F
and let 𝑥0 be one of these 𝑣 variables then the degree of involvement

di𝑆 of 𝑥0 is defined as the minimum number of other variables on

which the value of 𝑥0 depends in 𝑆 .

To exemplify, consider the following system of one equation with

3 variables over R, 𝑆1 = {𝑥 +𝑦 + 𝑧 = 3} where𝑉 = {𝑥,𝑦, 𝑧}. Clearly,
any variable in𝑉 has 2 degrees of involvement as its value depends

on the other two variables. Now, as another example, consider the

following system of three equations overR, 𝑆2 = {𝑥+𝑦+𝑧 = 3, 𝑥+𝑦 =

2, 𝑧 = 1}. Unlike to the previous example, in 𝑆2 where 𝑧 is now fixed

by another equation, we have zero degree of involvement left in

the system for 𝑧. Similarly, for 𝑥 and 𝑦, the degree of involvement

is 1 as they depend on each other.

Definition B.6 (Min-degree of involvement). Let 𝑆 = {𝐸𝑖 |1 ≤
𝑖 ≤ 𝑎} be a consistent system of equations of 𝑣 variables defined by

the set 𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝑣} over a field F then the min-degree of

involvement (MDI)mdi of 𝑆 is defined as the minimum of di𝑆 (𝑉𝑖 ) for
1 ≤ 𝑖 ≤ 𝑎.

We note that the MDI of a system is not equal to its degree of

freedom. In fact, one can show that the degree of freedom for a

system 𝑆 is equal to the “maximum” of di𝑆 (𝑥) over all variables
𝑥 in 𝑆 . However, for this work the important extremum on these

degrees is the minimum defined above as the MDI of a system. The

definition of degree of freedom is provided below for completeness.

Definition B.7 (Degree of freedom). Let 𝑆 = {𝐸𝑖 |1 ≤ 𝑖 ≤ 𝑎}
be a system of linear equations of 𝑣 variables defined by the set
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𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝑣} over a field F and let 𝑉𝑓 ⊂ 𝑉 be the largest

subset of 𝑉 such that for all possible values of the variables of 𝑉𝑓
in F, all equations of 𝑆 holds. We use the term “free variable” to

denote a variable in 𝑉𝑓 and the degree of freedom df of 𝑆 is defined
as df (𝑆) = |𝑉𝑓 |.

Next, we state necessary theorems towards the construction of

DExt𝑓 . We emphasize that to extract optimal randomness from

a given input 𝑎 = {𝑎𝑖 }𝑣𝑖=1 and 𝑐 , one would need to find one of

the largest system 𝑆 of linear equations containing 𝑣 variables

(each variable corresponding to an element in the set 𝑎) with binary

coefficients and withmdi(𝑆) = 𝑐−1. Below in Theorem B.1 we show

that this problem is equivalent to finding a [𝑣, log
2
(𝐴2 (𝑣, 𝑐)), 𝑐]2

optimal binary linear code which has been considered hard for

general values of 𝑣, 𝑐 and that there is no polynomial-time algorithm

that can find a [𝑣, log
2
(𝐴2 (𝑣, 𝑐)), 𝑐]2 code for arbitrary values of

𝑣, 𝑐 .

Theorem B.1. Let S𝑐 be the collection of all consistent systems

𝑆 𝑗 = {𝐸 𝑗
𝑖
|1 ≤ 𝑖 ≤ 𝑎 𝑗 } of linear equations in 𝑣 variables defined

by the set 𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝑣} over the binary field F2𝑤 (for some

integer𝑤 ≥ 0) with binary coefficients and for each 𝑆 ∈ S𝑐 we have
mdi(𝑆) = 𝑐 − 1 for some positive integer 𝑐 ≤ 𝑣 then for a system

𝑆∗ ∈ S𝑐 such that |𝑆∗ | = max𝑗 {𝑎 𝑗 |𝑆 𝑗 ∈ S𝑐 } we have
|𝑆∗ | = log

2
(𝐴2 (𝑣, 𝑐)) .

Proof of Theorem B.1 is straightforward from the fact that the

coefficient matrix 𝐶𝑆 for any system 𝑆 ∈ S𝑐 can be equivalently

seen as a basis set of codewords a.k.a. the generator matrix for a

[𝑣, |𝑆 |, 𝑐]2 code. Hence, for 𝑆∗ as defined, we have 2 |𝑆
∗ | = 𝐴2 (𝑣, 𝑐)

and thus the result of the theorem.

We further note that there exists a good lower bound on𝐴2 (𝑣, 𝑐)
called the Gilbert–Varshamov bound [23, 42] (which states that

log
2
(𝐴2 (𝑣, 𝑐)) ≥ ⌊𝑣 − log

2

∑𝑐−2
𝑖=0

(𝑣
𝑖

)
⌋ and proves the existence of

a [𝑣, |𝑆 |, 𝑐]2 code with |𝑆 | ≥ ⌊𝑣 − log
2

∑𝑐−2
𝑖=0

(𝑣
𝑖

)
⌋), however, there

does not exist any deterministic method that can construct a linear

code satisfying the Gilbert–Varshamov (GV) bound.

For our work, we settle with a comparatively loose lower bound

of |𝑆 | = 𝑏 = ⌊(𝑣 − 𝑐)/⌈𝑐/2⌉⌋ + 1 (which is very close to GV or

even optimal for settings where 𝑣 is very small and quite loose,

otherwise) but with a deterministic algorithm E that can construct

linear codes satisfying this bound (as shown below in Def. B.8 and

Theorem B.2).

Definition B.8. E is a deterministic algorithm that, when pro-

vided with two integers 𝑣 and 𝑐 ≤ 𝑣 , first computes a coefficient matrix

𝐶𝑆 with its 𝑖 𝑗𝑡ℎ entry 𝐶𝑆 [𝑖 𝑗] defined as

𝐶𝑆 [𝑖 𝑗] =
{
1 if ⌈𝑐/2⌉ (𝑖 − 1) + 1 ≤ 𝑗 ≤ ⌈𝑐/2⌉ (𝑖 − 1) + 𝑐
0 o/w

and then for a variable set {𝑉1,𝑉2, . . . ,𝑉𝑣} with independent variables
over the binary field F2𝑤 (for some integer 𝑤 ≥ 0), it returns the

corresponding consistent system 𝑆 of 𝐶𝑆 .

Theorem B.2. Every system 𝑆 returned by the algorithm E as

defined above in Def . B.8 has mdi(𝑆) = 𝑐 − 1.

We defer the proof of Theorem B.2 to App. B.1 and provide

Table 3 in App. C showing the differences between log
2
(𝐴2 (𝑣, 𝑐))

and𝑏 = ⌊(𝑣−𝑐)/⌈𝑐/2⌉⌋+1 for various values of 𝑣 and 𝑐 up to sample

sizes 𝑣 ≤ 10. From the table, one can infer that our definition of 𝑏

can be considered very good for small values of 𝑣 and even optimal

for 𝑣 ≤ 5 (which is pretty sufficient in practice).

Further, we note that the construction of DExt𝑓 allows variable

sample sizes, security parameters and output sizes, therefore, for a

deterministic and faster execution of this algorithm, we fix𝑏 to ⌊(𝑣−
𝑐)/⌈𝑐/2⌉⌋ + 1. However, we recommend that for applications where

sample size, security parameter and output size is defined only

once, one may use a better or even optimal code (i.e. log
2
(𝐴2 (𝑣, 𝑐))

instead of 𝑏), if exists to extract more randomness with almost the

same security. We refer the reader to codetables.de[24] for existing

tables of optimal [𝑣, log
2
(𝐴2 (𝑣, 𝑐)), 𝑐]2 codes for certain 𝑣, 𝑐 settings.

In this paper, 𝑏 is treated as a positive integer, defined as

⌊(𝑣 − 𝑐)/⌈𝑐/2⌉⌋ + 1 for another positive integers 𝑣, 𝑐 . Therefore,

all results that are defined in terms of 𝑏 and 𝑐 in this paper are di-

rectly applicable to any application for which a different and larger

value for 𝑏 exists.

For simplicity, we have provided (and used in the rest of this

paper) an equivalent definition of the algorithm E as a function

called invXOR (see Def. 5.3).

Equivalence between the two definitions can be easily under-

stood from the fact that for a given variable set {𝑉1,𝑉2, . . . ,𝑉𝑣} and
their corresponding values as a set {𝑎1, 𝑎2, . . . 𝑎𝑣}, each concatena-

tion in the output of invXOR function corresponds to an equation

in the generated system 𝑆 of E and vice versa.

B.1 Proof of Theorem B.2
Proof. Let 𝑆 denote a system returned by the algorithm E as

defined in Def . B.8 and let 𝐶𝑆 denote the corresponding coefficient

matrix of 𝑆 then we have that the 𝑖 𝑗𝑡ℎ entry of𝐶𝑆 can be defined as

𝐶𝑆 [𝑖 𝑗] =
{
1 if ⌈𝑐/2⌉ (𝑖 − 1) + 1 ≤ 𝑗 ≤ ⌈𝑐/2⌉ (𝑖 − 1) + 𝑐
0 o/w

.

Let𝑈 = {𝐸𝑖1 , 𝐸𝑖2 , . . . 𝐸𝑖𝑥 } denote an arbitrary subset of the system

𝑆 with size 𝑥 > 1. Clearly, if we show that the combined XOR of

all equations in𝑈 always contains at least 𝑐 many 1s then we can

say that no linear combination of equations in 𝑆 can have degree

of involvement < 𝑐 − 1 and hence the claim of the Theorem.

Now, to prove the above statement, we use the following sim-

ple approach. Let us first define an indexed set 𝑈 ′ as the sorted
version of 𝑈 where the equations are sorted by the value of their

corresponding first column indices 𝑗s in 𝐶𝑆 with 𝐶 [𝑖 𝑗] entry as 1.

In other words, the sorted set𝑈 ′ will have the entries in the same

order as they are defined in 𝑆 . Clearly, the combined XOR of 𝑈

will be same as of 𝑈 ′. Now, one can note that in this definition

of 𝐶𝑆 , every row contains at least ⌈𝑐/2⌉ many unique 1s entries

than others. Hence, the combined XOR of𝑈 ′ will always have the
unique 1s entries of the first and the last equation of𝑈 ′ which in

total will be 2⌈𝑐/2⌉ ≥ 𝑐 many 1s. □
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C A CODE DIFFERENCE TABLE

𝑣

𝑐
1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 1 1 1 1 2

4 0 0 0 1 1 1 1

5 0 0 0 0 0 1

6 0 0 0 0 0

7 0 0 0 0

8 0 0 0

9 0 0

10 0

Table 3: A table showing the differences between the actual
value of log

2
(𝐴2 (𝑣, 𝑐)) and 𝑏 for various values of 𝑣 and 𝑐 upto

sample sizes 𝑣 ≤ 10. The optimal values of log
2
(𝐴2 (𝑣, 𝑐)) are

taken from codetables.de[24].

D PRF-PRNG VS CCS SECURITY
Alwen et al. [4] proposed a syntax called PRF-PRNG for KDFs in

Signal. In simpler words, a PRF-PRNG takes three inputs - the

current state/key 𝜎 , an input 𝐼 (which in Signal’s context will be

𝑍 ∥𝛾 ) and the output length ℓ (left implicit in the original description

of [4]) and returns a string 𝑅 of length ℓ bits and a new state/key

to be updated 𝜎′. Any PRF-PRNG = (P-init, P-up) is consist of

two algorithms - P-init which is used to initiate the PRF-PRNG by

generating the first state/key 𝜎 (for this it may use some preshared

secret key) and P-up which is used over the PRF-PRNG inputs as

defined above to generate the outputs.

The paper also defines a security notion P for PRF-PRNG schemes

which we will refer here as prf-prng for ease of understanding. For

Signal’s application, the same paper mentions two KDF examples

with prf-prng security, namely, HKDF and PRP-then-PRG [4]. We

note here that HKDF is prf-prng-secure when its underlying com-

pression function is assumed as ROwhereas the proposed PRP-then-

PRG is prf-prng-secure when the PRP is initialized with a preshared
“uniform” random secret key. This assumption of preshared sym-

metric key can not be met in practice for two arbitrary parties that

are communicating for the first time which makes PRP-then-PRG

inapplicable to Signal. We also note that this incompatibility can

be countered by assuming the PRP to be an ideal cipher (which is

analogous to the RO assumption) and hence initializing the key

with some public constant.

How to define a PRF-PRNG using KDFs with standard
syntax.We first formally define a simple way of converting a KDF

with the standard syntax (as defined in [27]) into a PRF-PRNG and

then state the formal claim on relation among the two mentioned

KDF security notions in Theorem D.1.

LetΠ(𝑍,𝛾, ℓ) andΠ′ (𝑍 ′, 𝛾 ′, ℓ′) be two standard syntax KDF func-
tions then we can define a PRF-PRNG as ΠPP = (P-init, P-up) where

P-init is just a constant function that returns 𝜎0 = 0
𝑠
for 𝑠 being

the state size of the PRF-PRNG and for the 𝑖 (≥ 1)𝑡ℎ query to the

PRF-PRNG, we have

P-up(𝜎𝑖−1,𝐼𝑖 = 𝑍𝑖 ∥𝛾𝑖 , ℓ𝑖 )

=

{
𝜎1∥𝑅1 = Π(𝑍1, 𝛾1, ℓ1 + 𝑠) when 𝑖 = 1

𝜎𝑖 ∥𝑅𝑖 = Π′ (𝜎𝑖−1, 𝑍𝑖 ∥𝛾𝑖 , ℓ𝑖 + 𝑠) when 𝑖 > 1 .
(5)

Note that Π and Π′ can be same but we don’t fix them here for

generality.

Theorem D.1 (CCS implies prf-prng). Let Π and Π′ be two

CCS-secure schemes w.r.t. distributions Σ = (𝑍, C𝑍 ) and Σ =

(Π(𝑍,𝛾, ℓ), C𝑍 ∥𝛾 ∥ℓ), respectively then the PRF-PRNG ΠPP defined

using Π and Π′ as shown above will be prf-prng-secure under same

input sources. More concretely, for all adversaries A who make total

𝑞 ΠPP queries, we have

Advprf-prng
ΠPP [Π,Π′ ] (A) ≤ AdvCCSΠ (B) + AdvCCSΠ′ (C)

for some adversaries B and C making at most 𝑞1 and 𝑞2 queries to Π
and Π′, respectively such that 𝑞1 + 𝑞2 = 𝑞 and running in time given

by the running time of A plus 𝛼0 · 𝑞 for some constant 𝛼0.

Proof of Theorem D.1. Let us recall from Sec. 7 and Fig. 8 that

the CCS security of a KDF(𝑍,𝛾, ℓ) w.r.t. the input source (𝑍, C𝑍 )
implies that the output of a KDF query where the input has either

unique 𝛾 value or independently sampled 𝑍 value is indistinguish-

able from RF𝑍,𝛾 [1 . . . ℓ] i.e. uniform random binary string of length

ℓ bits. Let us now slightly abuse the notation for simplicity and

denote by 𝑓 and 𝑓 ′ two functions that take inputs of the form

(𝑍,𝛾, ℓ) and return RF𝑍,𝛾 ∥Π [1 . . . ℓ] and RF𝑍,𝛾 ∥Π′ [1 . . . ℓ] as out-
puts, respectively. This gives us

Advprf-prng
ΠPP [Π,Π′ ] (A) ≤ AdvCCSΠ (B)+AdvCCSΠ′ (C)+Adv

prf-prng
ΠPP [ 𝑓 ,𝑓 ′ ] (A) .

Note that for any input (𝜎, 𝐼 = 𝑍 ∥𝛾, ℓ), ΠPP [𝑓 , 𝑓 ′] as per

Eqn. 5 will always return independently sampled uniform random

strings (𝜎′∥𝑅) when 𝐼 is unique (which implies that all returned

chall-prf outputs in prf-prng games [4, Fig. 7] are indistinguish-

able from random strings). Similarly, for any input (𝜎, 𝐼 = 𝑍 ∥𝛾, ℓ),
ΠPP [𝑓 , 𝑓 ′] will always return independently sampled uniform ran-

dom strings 𝑅 when 𝜎 is the uncompromised current state (which

implies that all returned chall-prng outputs in prf-prng games [4,

Fig. 7] are indistinguishable from random strings). This implies

Advprf-prng
ΠPP [ 𝑓 ,𝑓 ′ ] (A) = 0 and hence the result. □

Clearly for Signal, setting Π = Skye (referring to KDF1 calls)

and Π′ = FExp (referring to KDF2 and KDF3 calls; which is CCS-
secure as the input samples contain the current state value which

is uniformly random and secret and thus can be used as the key to

the PRF) gives us a ΠPP that covers all three types of KDF calls in

Signal. The security here can be deduced from Theorem D.1 that

says for all adversaries A making a total of 𝑞 queries to ΠPP, there

exists some adversary B making at most 𝑞 queries and running in

time given by the running time of A plus some constant 𝛼 · 𝑞 such

that

Advprf-prng
ΠPP [Skye,FExp] (A) ≤ AdvCCSSkye (B) .

We emphasize that as motivated in Sec. 9, this idea of using

FExp in place of full Skye for KDF2 and KDF3 calls in Signal gives

significant performance benefits.
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E PERFORMANCE DETAILS
In this section, we provide the benchmark tables Table 4 and 5 that

correspond to the performance plots of Fig. 7a and 7b, respectively.

𝑛 HKDF Skye HKDF Skye HKDF Skye
with AES-NI without AES-NI with AES-NI

with SHA-NI without SHA-NI without SHA-NI

1 2.22 ± 0.02 1.38 ± 0.01 6.51 ± 0.32 3.44 ± 0.03 6.47 ± 0.05 2.32 ± 0.03

2 4.48 ± 0.03 2.79 ± 0.02 12.97 ± 0.09 6.88 ± 0.04 12.95 ± 0.1 4.65 ± 0.03

3 6.7 ± 0.04 4.13 ± 0.03 19.43 ± 0.09 10.33 ± 0.22 19.4 ± 0.1 6.97 ± 0.04

4 8.92 ± 0.04 5.5 ± 0.08 25.93 ± 0.08 13.81 ± 0.49 25.88 ± 0.21 9.31 ± 0.06

5 11.14 ± 0.07 6.94 ± 0.05 32.48 ± 0.23 17.22 ± 0.21 32.36 ± 0.24 11.63 ± 0.09

6 13.34 ± 0.12 8.25 ± 0.05 38.82 ± 0.1 20.68 ± 0.05 38.86 ± 0.26 13.92 ± 0.27

7 15.68 ± 0.09 9.6 ± 0.08 45.42 ± 0.13 24.12 ± 0.46 45.33 ± 0.32 16.25 ± 0.12

8 17.98 ± 0.13 10.98 ± 0.1 51.82 ± 0.19 27.49 ± 0.07 51.86 ± 0.18 18.59 ± 0.14

9 20.07 ± 0.12 12.36 ± 0.12 58.38 ± 0.22 30.9 ± 0.27 58.35 ± 0.34 20.89 ± 0.07

10 22.33 ± 0.07 13.76 ± 0.31 64.89 ± 0.22 34.33 ± 0.29 64.81 ± 0.23 23.17 ± 0.12

20 44.44 ± 0.15 27.66 ± 1.38 129.82 ± 0.43 68.73 ± 0.18 129.48 ± 0.97 46.33 ± 0.18

30 66.68 ± 0.19 41.24 ± 0.28 194.63 ± 0.48 103.02 ± 0.58 194.16 ± 0.78 69.37 ± 0.43

40 88.66 ± 0.75 55.99 ± 0.25 260.27 ± 0.79 137.27 ± 0.68 258.92 ± 0.82 92.74 ± 0.31

50 111.6 ± 0.38 68.66 ± 0.53 324.22 ± 1.16 171.74 ± 1.59 323.76 ± 3.69 115.77 ± 0.71

60 133.79 ± 0.47 83.87 ± 0.51 389.55 ± 0.65 206.8 ± 0.52 388.39 ± 3.2 138.9 ± 1.01

70 155.49 ± 1.12 96.82 ± 0.58 453.72 ± 0.89 240.95 ± 0.64 453.18 ± 1.42 162.21 ± 1.07

80 178.02 ± 1.46 110.22 ± 0.81 518.02 ± 1.93 275.16 ± 1.84 517.8 ± 3.09 185.4 ± 0.66

90 201.36 ± 0.84 124.52 ± 0.47 582.89 ± 1.93 309.23 ± 1.77 582.69 ± 1.21 208.51 ± 1.31

100 222.8 ± 1.59 137.57 ± 1.05 649.14 ± 2.18 343.14 ± 1.99 646.73 ± 7.1 232.95 ± 10.46

Table 4: The mean time ± standard deviation (in µs) required
to encrypt 𝑛 messages sent by one party to the other.

𝑛 HKDF Skye HKDF Skye HKDF Skye
with AES-NI without AES-NI with AES-NI

with SHA-NI without SHA-NI without SHA-NI

1 200.65 ± 1.12 194.51 ± 1.01 225.74 ± 1.86 204.82 ± 1.57 226.35 ± 1.37 201.42 ± 0.51

2 212.71 ± 1.81 203.19 ± 0.74 254.0 ± 0.8 221.24 ± 0.49 254.8 ± 2.01 214.08 ± 1.63

3 224.6 ± 1.79 211.19 ± 1.71 283.92 ± 7.51 238.06 ± 0.62 283.95 ± 1.05 226.12 ± 2.16

4 236.46 ± 0.69 219.88 ± 1.68 312.14 ± 0.9 254.73 ± 1.19 313.06 ± 1.02 238.73 ± 1.81

5 249.48 ± 1.52 229.85 ± 1.61 342.48 ± 2.38 272.02 ± 0.69 342.95 ± 1.1 251.37 ± 0.6

6 261.41 ± 1.79 237.91 ± 0.77 371.38 ± 1.48 288.83 ± 0.96 372.77 ± 8.9 264.32 ± 1.9

7 273.36 ± 1.4 246.89 ± 2.11 400.75 ± 1.27 305.93 ± 2.02 401.4 ± 1.54 276.52 ± 1.01

8 285.22 ± 1.13 255.93 ± 2.28 429.51 ± 1.06 322.96 ± 0.68 430.53 ± 1.11 288.91 ± 7.07

9 296.93 ± 1.6 264.1 ± 3.08 459.52 ± 1.13 337.91 ± 1.05 460.04 ± 3.28 300.99 ± 0.77

10 308.73 ± 0.64 272.63 ± 1.63 488.46 ± 1.15 355.45 ± 1.33 488.52 ± 1.71 313.48 ± 0.73

20 428.98 ± 0.89 361.04 ± 2.63 781.15 ± 6.48 522.62 ± 1.46 780.11 ± 2.08 437.46 ± 1.35

30 545.92 ± 1.08 446.9 ± 2.44 1071.67 ± 3.4 688.91 ± 3.74 1071.74 ± 9.22 559.56 ± 1.3

40 667.88 ± 8.06 535.84 ± 3.14 1364.68 ± 2.87 856.07 ± 2.04 1363.87 ± 8.33 684.44 ± 2.26

50 786.88 ± 1.78 621.98 ± 3.3 1652.43 ± 2.88 1021.6 ± 2.34 1655.0 ± 10.11 807.02 ± 2.37

60 905.83 ± 4.57 710.14 ± 10.74 1948.63 ± 12.21 1190.16 ± 4.19 1946.28 ± 3.94 935.55 ± 6.16

70 1025.61 ± 3.97 796.48 ± 5.8 2237.93 ± 4.99 1357.24 ± 2.92 2235.78 ± 4.38 1056.3 ± 2.32

80 1146.73 ± 2.48 888.52 ± 3.11 2528.96 ± 6.65 1523.47 ± 10.06 2530.07 ± 15.57 1184.09 ± 3.27

90 1263.38 ± 6.85 975.91 ± 6.12 2820.42 ± 9.19 1690.03 ± 6.13 2818.72 ± 9.55 1308.08 ± 3.49

100 1382.64 ± 2.92 1063.36 ± 8.75 3115.64 ± 18.99 1855.34 ± 3.72 3109.68 ± 17.06 1433.14 ± 7.3

Table 5: The mean time ± standard deviation (in µs) required
to encrypt (and decrypt) 𝑛 messages that are sent (and re-
ceived) by one party to (and from, respectively) the other.
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