
TGh: A TEE/GC Hybrid Enabling Confidential FaaS
Platforms

James Choncholas
Georgia Institute of Technology

jgc@gatech.edu

Ketan Bhardwaj
Georgia Institute of Technology

ketanbj@gatech.edu

Ada Gavrilovska
Georgia Institute of Technology

ada@cc.gatech.edu

Abstract
Trusted Execution Environments (TEEs) suffer from per-
formance issues when executing certain management in-
structions, such as creating an enclave, context switching
in and out of protected mode, and swapping cached pages.
This is especially problematic for short-running, interactive
functions in Function-as-a-Service (FaaS) platforms, where
existing techniques to address enclave overheads are insuffi-
cient. We find FaaS functions can spend more time managing
the enclave than executing application instructions. In this
work, we propose a TEE/GC hybrid (TGh) protocol to en-
able confidential FaaS platforms. TGh moves computation
out of the enclave onto the untrusted host using garbled cir-
cuits (GC), a cryptographic construction for secure function
evaluation. Our approach retains the security guarantees of
enclaves while avoiding the performance issues associated
with enclave management instructions.

1 Introduction
Software and data protected within a Trusted Execution En-
vironment are isolated from a compromised OS, malicious
userspace processes, and other malicious TEEs when op-
erating as intended, a promise of confidential computing.
To fully capture the benefits of TEEs, recent work in indus-
try [2, 4] and academia [6, 25, 27] has incorporated these
hardware-based security features into systems which make
them efficient, easy to consume, and easy to manage.

A common challenge for these systems is to amortize the
overheads of TEE-based execution. These overheads stem
from managing hardware structures when creating the en-
clave, switching context, and accessing memory which does
not fit within the enclave page cache [33]. Such overheads
are reasonable over the lifespan of long-running tasks using
tricks to batch and reorder I/O, Intel’s Switchless calls, and
reducing enclave memory usage [32, 33].

However, in the context of short running and interactive
tasks such as in Function-as-a-Service (FaaS), the overhead
of trusted execution is quite high [19]. We observe that the
BeFaaS benchmark [14] contains only a small handful of
operations per function, a much smaller cost than the 17,000
cycles required just to perform the ecall to pass data into
the enclave [33]. Existing approaches to address TEE over-
head, like HotCalls and Intel’s Switchless Calls, do not fix
the fundamental issue for short interactive tasks which, by
definition, require frequent context switches for I/O and fast
starts.

proxy functionclient

FaaS Node

Untrusted
Userspace

Trusted
TEE

Setup

Online
functionclient

FaaS Node

Untrusted
Userspace

Trusted
TEE

garble
circuit

Standalone TEE This Paper

create function enclave create function enclave

function

Figure 1. Comparison of confidential computing techniques.

In this work, we propose a rather unorthodox approach
for trusted execution which we call TEE/GC Hybrid. The
idea is to bypass TEE hardware inefficiencies by repurpos-
ing techniques from Secure Multiparty Computation (MPC).
MPC is a field of cryptography used to securely evaluate
functions between two mutually distrusting parties (often
on physical separate machines), each wanting to compute on
the aggregate of their secret data without sharing the data
with each other. We re-purpose a specific MPC construction,
garbled circuits (GC) to run between enclave and host (on
same physical machine), while retaining the same security
guarantees as native execution on the TEE. The key idea is
the trusted enclave sets up a function for the untrusted host
to evaluate. The host then evaluates the function in userspace
without the performance penalties of context switching or
the overhead of enclave page cache management, as depicted
in Figure 1.
MPC protocols have seen dramatic theoretical improve-

ments in efficiency over the last decade, however security is
not without cost. Secure function evaluation under MPC is
orders of magnitude slower than evaluating the same func-
tion natively. Intuitively, this would preclude MPC protocols
from being useful compared to hardware enclaves, however,
we notice that when MPC is used to offload computation in
this setting, many simplifications can be made to the pro-
tocols. In general, MPC enables collaborative computation
between many parties each of which may have secret data.
Computation offload on the other hand is a subset of this
scenario where only one party (the enclave in this case)
has secret data. We apply garbled circuits to this problem
such that expensive cryptographic operations like Oblivious
Transfer (OT) [23] are unnecessary as only one party owns
all the secret data. As such, GC is simpler and less expensive

1



, , James Choncholas, Ketan Bhardwaj, and Ada Gavrilovska

in the configuration we propose for two reasons: the lack of
OT, and colocation of the enclave and host who evaluate the
protocol among each other. Using the EMP toolkit library,
we measure GC evaluation speed over a LAN to be 5 million
AND gates per second, and increases from 22 million to 35
million simply from transferring the garbled truth tables
over shared memory vs. local loopback. For short running
functions this makes it possible to evaluate their GC faster
than the ecall into the TEE, making a TEE/GC hybrid (TGh)
approach an enabler for confidential FaaS. An important
limitation of TGh is the constant cryptographic overhead of
evaluating garbled circuits. Since every operation under GC
is slower except for enclave management related operations
like ecalls and EPC evictions, only short running functions
benefit from this approach. Furthermore, functions running
under TGh need to be reimplemented as boolean circuits
such that control flow does not depend on secret data. Not
all functions are ammenable to this transformation.
The remainder of this paper describes our research con-

tribution. We detail a TEE/MPC hybrid approach to trusted
execution, supplemented with experiments motivating the
envisioned performance properties.

2 Background
TEE/GC Hybrid consists of two fundamental technologies,
Trusted Execution Environments and garbled circuits.
TEE. The two major processor designers each have their
own implementation of a TEE, Intel with Software Guard
Extensions (SGX) and ARM with TrustZone. The set of hard-
ware features collectively called the TEE provide an elevated
degree of security for applications. SGX specifically extends
the x86-64 ISA to allow application to instantiate a protected
execution environment called an enclave while only trust-
ing the hardware and not system software (hypervisor, OS,
frameworks, etc.) with explicit instructions to perform host
to enclave switch (ecall) and vice versa (ocall). It also in-
corporates memory protection. When executing in enclave
mode the processor enforces additional checks on memory
accesses ensuring that only code inside the enclave can ac-
cess its own enclave region. For other features and details
readers are directed to the SGX and TrustZone specifica-
tions [1, 3].
GC. Garbled circuits were invented by Andrew Yao in
1986 [34]. They are a cryptographic construction to enable
secure function evaluation, allowing multiple parties to com-
pute on the aggregate of their secret data without revealing
it to one another. Most basically, garbled circuits is a two
party protocol with one party playing the role of the gen-
erator and one of the evaluator. A garbled truth table is the
foundational component of a garbled circuit, generated by
the generator and passed to the evaluator. A garbled truth
table is a set of random strings designated as outputs en-
crypted by sets of random strings designated as inputs. The
encrypted outputs can then be used as subsequent inputs to
other garbled truth tables allowing generic secure function

evaluation. This allows multiple parties to securely compute
a function over their inputs without revealing anything but
the output.

3 Feasibility and Challenges
A high level overview of TEE/GC Hybrid enabled confi-
dential computing is depicted in Figure 1. The key to our
approach is to offload computation from the enclave to an un-
trusted process running on the host in such away that retains
enclave security guarantees. The process running outside
the enclave is evaluating a garbled circuit and is not subject
to ecall/ocall overheads, memory access overheads, and can-
not see plaintext data on which it is computing. Given the
high overheads of cryptography-based secure function eval-
uation, it is important to ensure a performance is a closely
monitored for this new setting where MPC is used to offload
computation.
TEE/GC Hybrid Protocol: We first give a high level in-
tuition of the TEE/GC hybrid protocol, then discuss how it
differs from standard garbled circuits. To offload computa-
tion, the enclave first generates a garbled circuit, a process
which in practice mostly consists of repeatedly evaluating
a block cipher e.g. AES. The garbled circuit can be precom-
puted and shared before the input is known. The circuit is
then sent to an untrusted process on the host through pages
mapped into the address spaces of both enclave and host
process. Note this memory is not encrypted, it is only used
to transfer the garbled circuit. When the enclave or a remote
client wishes to evaluate a function, it sends wire labels as-
sociated with their input to the host. The untrusted host
evaluates the garbled circuit gate by gate, a process which
again mostly involves evaluating AES in practice. The host
then responds with the labels associated with output wires.
This process is formally stated in Protocol 1.

While we haven’t changed the core of how garbled circuits
work, there are a few key differences from how garbled cir-
cuits typically are used. Most obviously, all secret inputs are
owned by the TEE in the scenario we consider. This means
that the TEE can directly send wire labels to the untrusted
host. In garbled circuits, typically both parties have inputs
and wire labels corresponding to the circuit evaluator’s in-
puts need to be transferred using an expensive cryptographic
primitive, Oblivious Transfer. While this is hardly a surprise
to those familiar with garbled circuits, it is important to no-
tice how the parties are configured. Oblivious Transfer is an
expensive primitive used in MPC to send secret inputs to a
function. The more interesting difference between Protocol
1 and standard garbled circuits is Protocol 1 explicitly states
the enclave uses a seeded pseudorandom function PRF to
generate wire masks and labels for the garbled circuit. While
this is common in practice ([30]), in this context it allows the
enclave and remote client to share the PRF seed in the setup
phase. Then, in the online phase, the client may generate
the same garbled labels that the enclave used to create the
circuit and directly send the wire labels to the untrusted host

2



TGh: A TEE/GC Hybrid Enabling Confidential FaaS Platforms , ,

Protocol 1 TEE/GC Hybrid Scheme

Inputs. TEE𝑇 holds input 𝑥 and would like to offload compu-
tation of the function 𝑓 (𝑥), represented as a boolean circuit,
to the untrusted host 𝐻 .

Goal. Host 𝐻 computes 𝑦 = 𝑓 (𝑥) without learning anything
about 𝑥 or 𝑦.

Protocol:
1. Setup phase. Before the input to the function is

known, 𝑇 may begin by generating a standard gar-
bled circuit. We present this in the notation of [31].
a. 𝑇 associates a random mask bit 𝜆𝛼 ∈ {0, 1} with

every wire of the circuit, enabling the point-and-
permute technique of [7]. 𝑇 also associates random
labels 𝜆𝛼,0 and 𝜆𝛼,1 = 𝜆𝛼,0 ⊕ Δ with every wire, en-
abling the free-XOR technique of [17].

b. 𝑇 generates a garbled truth table of the form:
𝑥 𝑦 garbled rows
0 0 𝐻 (𝐿𝛼,0, 𝐿𝛽,0, 𝛾, 00) ⊕ (𝑧0,0, 𝐿𝛾,𝑧0,0 )
0 1 𝐻 (𝐿𝛼,0, 𝐿𝛽,1, 𝛾, 01) ⊕ (𝑧0,0, 𝐿𝛾,𝑧0,1 )
1 0 𝐻 (𝐿𝛼,1, 𝐿𝛽,0, 𝛾, 10) ⊕ (𝑧0,0, 𝐿𝛾,𝑧1,0 )
1 1 𝐻 (𝐿𝛼,1, 𝐿𝛽,1, 𝛾, 11) ⊕ (𝑧0,0, 𝐿𝛾,𝑧1,1 )

where

𝐻 () is a hash function modeled as a random oracle.
AES is commonly used in practice. The labels may
be chosen pseudorandomly using the output of a
PRF.

c. 𝑇 sends all garbled truth tables to 𝐻 through shared
unencrypted memory pages. Thus, 𝐻 learns the
masked bits 𝑥 = 𝑥 ⊕ 𝜆𝛼 and 𝑦, as well as the garbled
truth table.

2. Online phase.
a. For every input wire of the circuit,𝑇 sends 𝐻 one of

the two possible wire labels per gate. Alternatively,
a remote client who has deployed enclave 𝑇 may
send the wire labels to 𝐻 directly. This is easy as
the remote client would know seed 𝑆 and be able
to generate the wire labels without requiring any
interaction with 𝑇 .

b. 𝐻 evaluates the garbled circuit as usual. For AND
gates, the row indexed by 𝑥 , 𝑦 is decrypted yielding
𝑧 and 𝐿𝛾,𝑧0,0 . XOR gate labels may simply be XOR’ed
together as described by [17]

c. Upon reaching output gates in the circuit, 𝐻 sends
the output labels to whomever must learn the out-
put, either𝑇 or a remote client. If the receiver recog-
nizes the labels received from 𝐻 as labels assigned
to output wires, it learns the plaintext result of the
computation. If the receiver does not recognize the
labels received, the circuit was not correctly evalu-
ated and is aborted.

without interacting with the enclave, thereby moving the
enclave out of the critical path.

In TGh, the only purpose of the enclave is to generate the
correlated randomness later used by the host to evaluate the
garbled circuit. As such, only a single enclave per machine is
required as it may be shared by all clients. As long as clients
are convinced of the integrity of the code running inside the
enclave via attestation, a single enclave may generate the
correlated randomness using a unique seed per client.

4 Preliminary Evaluation
Security. The security of our TEE/GC hybrid falls to the
lowest common denominator of TEEs and GC. Specifically,
the hybrid scheme is broken if either the garbled circuit is
broken or the TEE is compromised. This is good, as it means
the hybrid scheme is just as secure as a TEE.
We prove this by contractiction, namely if an attacker

can break the TEE/GC hybrid, they have broken either the
garbled circuit or the TEE. Say the untrusted host attack-
ing Protocol 1 learns the plaintext value of an intermediate
wire label in the computation beyond a negligible advan-
tage (better than flipping a coin.) Considering the view of
the host contains only garbled truth tables, this implies that
the host has either broken the garbled circuit and can re-
verse the block cipher used to generate the garbled circuit
with non-negligible probability, or the host has learned this
information out-of-band from the TEE. TEE security assump-
tions, however, are a superset of garbled circuits. Both as-
sume block ciphers act as random oracles; TEEs encrypt
RAM with AES and garbled circuits build truth tables with
it. However, TEEs have a litany of other cryptographic as-
sumptions [3]. Since TEEs are strictly weaker than garbled
circuits, TEE/GC hybrid has similar security properties as
TEEs alone and security guarantees have not been weakened
by introducing garbled circuits.
Performance. Evaluating a garbled circuit outside an en-
clave is slower than plaintext execution inside an enclave,
however the GC does not need to start an enclave, ecall,
ocall, or page. Thus, the crux of the performance question
we explore is the following: out of a set of instructions, how
many must be related to enclave management operations to
warrant offloading via TGh? The more management oper-
ations which exists in a set of instructions, the higher the
overhead of the TEE, overhead that can be eliminated by
executing those instructions as a GC outside the enclave.

Enclave management operations consist of the following:
• ecalls and ocalls which may transfer buffers.
• Writing to encrypted and unencrypted memory.
• Initializing and destroying the enclave.
This work focuses on operations in the critical path of

FaaS-based systems and operations which are known a pri-
ori to be cause for concern. Specifically we consider ecalls
(ocall performance is similar enough for this analysis), EPC
page evictions, and enclave initialization. In the remainder

3



, , James Choncholas, Ketan Bhardwaj, and Ada Gavrilovska

Figure 2. TEE/GC Hybrid can evaluate one AND gate in
the same time as a set of instructions made up of 1% ecalls
(assuming non-ecall instructions execute in 1 cycle).

of this section we compare enclave operations to the number
of AND gates which can be evaluated per second. These
numbers were measured from the EMP [30] library running
on a Intel Core i9 11th generation CPU, measuring the rate
at which EMP can evaluate garbled truth tables. Our results
focus on AND gates as XOR gates can be evaluated without
AES and thus are much faster.
Bypassing ecalls overhead: According to recent work [33],
ecalls on Intel SGX can consume up to 17,000 extra cycles.
This includes the direct effects of context switching like
flushing caches and TLBs, but it also includes indirect costs
of subsequent compulsory cache and TLB misses. They also
measure a minimum costs of 8,600 cycles while other work
claims ecalls cost a similar 10,000 cycles [11]. The upper
and lower bounds are shown in Figure 2 compared to the
constant amount of time it takes to evaluate one AND gate
using TGh, outside the enclave.

The important inflection point in Figure 2 is for every 0.7%
of ecalls that a series of instructions contains, one garbled
AND gate can be evaluated in the same amount of time,
outside the enclave. Thus, simple functions which can be
represented in a small number of AND gates can theoretically
run faster as a garbled circuit with increasing benefit as the
program requires more ecalls. In practice, however, functions
rarely consist of such a small number of AND gates, thus,
ecall overhead is alone is not enough to justify the high
overhead of garbled circuits.

Bypassing EPC eviction overhead: Intel SGX has an enclave
page cache (EPC) to store metadata about encrypted pages.
When the number of pages grows beyond what this data
structure can track, pages must be evicted through an ex-
pensive process that involves multiple memory accesses to
encrypted data. In Intel’s SGXv1 the EPC is either 128MB or
256MB while in SGXv2, it can be up to 512GiB per socket.
SGXv2 is a huge step towards enabling enclaves for appli-
cations with a large working set of memory, however in
multitenant situations such as in FaaS, even the large EPC
size may pale in comparison to the maximum amount of
DRAM such a machine could be configured with (and legiti-
mately need). The EPC is shared across all enclaves raising
questions of performance isolation between tenants. Thus,
evenwith themassive increase in EPCmemory size in SGXv2,

Figure 3. TEE/GC Hybrid can evaluate one AND gate in
the same time as a set of instructions with 0.8% causing EPC
page evictions (assuming non-evicting instructions execute
in 1 cycle).

we still consider the performance implications of EPC page
evictions due to the concerns with multitenancy and the
fact that SGXv2 is now only available on Xeon server-grade
SKUs and support has been dropped for Core series con-
sumer grade processors. According to Ngoc et al. [11], one
EPC page eviction consumes 12,000 cycles.
In Figure 3 we can see the inflection point of when EPC

page eviction cost outweighs the cost of garble circuits. For
every 0.8% of instructions which cause an EPC page eviction,
one garbled AND gate can be evaluated in the same amount
of time. Thus, a set of instructions causing frequent EPC
page evictions runs faster using TGh if the function can be
represented in a small number of AND gates. However, given
recent increase in EPC size from 128MB in SGXv1 to 256GB
in SGXv2, it is unlikely that the cost of evictions alone will
outweigh the overhead of executing a function as a garbled
circuit. As such, EPC page evictions are complimentary to
more dramatic performance reasons forTGh, such as enclave
creation.
Bypassing enclave creation overhead: According to Gjer-

drum et al. [13], it takes 300ms to create a batch of 100 SGX
enclaves. The relationship between creation time and batch
size is linear thus we can expect creation of a single enclave
to take 3 milliseconds. In the same amount of time 111000
AND gates can be evaluated, or AES can be evaluated under
MPC 17 times. Furthermore, LibOS-based approaches to TEE
programming further exaserbate startup costs with simple
no-op (return 0;) TEE calls requiring 300 ecalls, 1000 ocalls,
and 1000 AEX exits measured on SGXv1 [18], and taking
370𝑚𝑠 measured on SGXv2 [18, 26]. Thus, removing enclave
creation from the critical path leaves room to run simple
functions at the higher cost of garbled circuit evaluation.
End to End Performance in FaaS benchmark: Thus far
we have presented the cost of enclave overheads individually
compared to garbled circuits, but how do these overheads
stack up in a real application? To give real-world context we
consider the BeFaaS e-commerce application which is based
on Google’s microservice demo [14]. BeFaaS is a collection
of functions which implement an online shopping app, one
such function allowing a user to check out. To synthetically
compare this to TGh, we represent the checkout function as
a Boolean circuit, then count the number of AND gates to

4



TGh: A TEE/GC Hybrid Enabling Confidential FaaS Platforms , ,

project how long it would take to execute as a GC. With 2488
AND gates, computing the checkout function is projected to
take 70us under GC. This number is significant because it is
lower than enclave startup time, faster than doing 20 ecalls,
and faster than 25 EPC page evictions.
Looking beyond applications, we note the comparisons

we’ve drawn to garbled circuits come from numbers gathered
using the EMP library. Semi-honest garbled circuit evaluation
in EMP (the specific implementation we’re using) is single
threaded. In the GC literature, the dominant cost is network
bandwidth not CPU computation, thus there is no benefit to
parallelizing circuit evaluation. In the context of TEE/GC
Hybrid, however, the network between the parties is instead
a much higher bandwidth using shared memory pages. As
such, parallelizing circuit evaluation can significant improve
on GC evaluation speed, which is why we refer to TEE/GC
Hybrid as being accelerator friendly.

5 Discussion
Benefits: One benefit of TGh is the simplicity of the soft-
ware which runs in the enclave. Since all the enclave does
is generate garbled circuits, the interface between the un-
trusted host and enclave is thinminimizing the attack surface
of the enclave code. In TGh, the enclave is basically acting
as an oblivious PRF which can be evaluated inexpensively
but is subject to side-channel leakages compared to pure
cryptographic approaches.
Another benefit is that multiple mutually distrusting re-

mote clients may use the same enclave, removing enclave
creation time from the critical path. Since all the enclave does
is generate garbled circuits, the enclave source code may be
available for all to inspect, and clients who trust the attes-
tation of enclave authenticity can be confident that sharing
an enclave to generate garbled circuits will not reveal their
private data. As such, the enclave may act as an orchestrator
for many remote clients, evaluating their tasks on the host
machine. Each client does not need to pay the cost of enclave
creation, nor deal with issues of performance isolation as all
enclaves running on the same host must share the protected
enclave page cache (EPC). Low complexity software running
inside the enclave makes it easier for multiple clients to audit
and trust there are no bugs in the enclave circuit generation
code.
TEE/GC Hybrid also achieves active security without

supplemental cryptographic techniques like message authen-
tication codes commonly used to improve security guaran-
tees of other protocols [8, 10, 31]. What this means is the
enclave (or the remote client) can tell by looking at the out-
put from the host if the host tried to cheat in the protocol.
The only messages the host sends (and thus can cheat on)
are the output wire labels. The host will obtain at most one
out of two output labels, by the nature of garbled circuits,
and the only way for the host to obtain the one label is to
correctly evaluate all gates up until the output. Thus, if the
host does not correctly evaluate the garbled circuit they will

not receive a legitimate label on the output wires. If the re-
ceiver (enclave or remote client) receives an invalid label
from the host, they know the host has not correctly evalu-
ated the circuit. This shows the only opportunity the host
has to cheat is to guess the output wire label it did not learn
with probability of success 1/2𝜎 , with the random oracle
assumption and 𝜎 being a statistical security parameter.
Lastly, we would like to note that garbled circuits are

friendly to hardware acceleration. Recent work have accel-
erated garbled circuits using everything from GPUs [12] to
ASICs [21]. Garbled circuits parallelize to the same degree
as the underlying function and mostly consist of repeatedly
evaluating AES.
Limitations: TEEs are subject to side channel attacks unlike
MPC protocols [24, 28, 29]. One might assume combining
the TEEs and MPC may improve security beyond what each
offers alone, however this is not the case. Instead, security
guarantees fall to the lowest common denominator, however
as we show, our TEE/MPC hybrid is no weaker than TEEs
alone. As proposed, MPC is leveraged to improve the perfor-
mance of TEE execution, not TEE security guarantees but
future TEE/MPC hybrids may extend beyond performance
to security.
Furthermore, TGh does not hide data access patterns, a

goal of recent work using TEEs to build Oblivious RAM
(ORAM) schemes [9]. Additionally, certain MPC protocols
like those based on garbled circuits are expensive for tasks
with branch-y control flow. While recent efforts address the
cost of branches under MPC [16], it has historically required
data oblivious algorithms and predicated execution.

Secondly, executing a function as a garbled circuit cannot
easily be done with an unmodified binary, as with LibOS
based approaches discussed later. Thus TGh requires ad-
ditional engineering effort to build functions as circuits to
be executed outside the enclave. Furthermore, GC require
data oblivious algorithms and predicated execution to pre-
vent leaking private data through conditionals. This leads to
more engineering, and potentially performance degradation
in building functions as circuits.
Related work. A popular approach to using enclaves is via
library OS which supports running an unmodified applica-
tion binary within an enclave and using the dynamic linker
to capture system calls, which are redirected to the host
OS. Prior work reports running an empty enclave (return
0;) on one such system, Graphene, to perform 300 ecalls,
1000 ocalls, 1000 AEX exits, and 1M EPC evictions [18]. This
was measured on SGXv1 which does not support dynamic
memory allocation, thus the entire default sized 4GiB heap
must be preallocated and paged out which explains the high
number of EPC evictions. While SGXv2 does support dy-
manic allocation and thus does not have this high EPC cost,
SGXv2-based platforms still see slow enclave creation time
e.g. 370ms [26]. In the same amount of time, over 13 million
AND gates can be evaluated corresponding to evaluating

5



, , James Choncholas, Ketan Bhardwaj, and Ada Gavrilovska

AES under MPC 2140 times. Being able to run unmodified
binaries within TEEs greatly reduces development overhead
but comes at the cost of performance, an especially high cost
for short running tasks. Frequently paying such cost, for
example on function cold starts, highlights the usefullness
of our approach.
Open Questions. TGh is a novel approach to confidential
computing and as such it opensmany new research questions
at the intersection of cryptography and systems. The most
important theme among these questions is scalability and
a problem we refer to as the label management problem. It
is advantageous to refer to secret data in wire label form
to avoid evaluating a decryption algorithm under MPC for
performance reasons, but the wire labels cannot be reused
in multiple circuits as that jeopardizes the security of the
garbled circuits. When inputs to functions are sent as garbled
circuit wire labels, how are the labels generated using a
secret shared across many remote clients andmany enclaves?
This not only extends to garbling generation but storage:
how should labels be stored across many untrusted hosts
to keep the secret values consistent and without reusing
labels in multiple circuits? Furthermore, how can functions
be chained across machines when each are fed by enclaves
with different PRF seeds? Can wire soldering protocols be
used between circuits generated by different enclaves [5, 15,
20, 22]?
6 Summary
In this work we propose a method to evaluate short running,
interactive functions associated with FaaS platforms using
confidential computing. Our method moves function evalua-
tion out of the enclave and onto the untrusted host using our
TGh protocol. We motivated the need to pull the enclave out-
of-band by showing that enclave overhead for short running
tasks is often greater than the task itself. We then argued the
security guarantees of doing so are the same as TEEs alone,
and lastly considered the performance implications.

References
[1] Arm tee architectural reference manuals. https://www.arm.com/

technologies/trustzone-for-cortex-a/tee-reference-documentation.
[2] Asylo: An open and flexible framework for enclave applications. https:

//asylo.dev/.
[3] Intel® software guard extensions programming reference.

https://www.intel.com/content/dam/develop/external/us/en/
documents/329298-002-629101.pdf.

[4] Open enclave. https://openenclave.io.
[5] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek.

How to efficiently evaluate ram programs with malicious security. In
Elisabeth Oswald andMarc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, pages 702–729, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. Scone: Secure linux con-
tainers with intel sgx. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’16, page

689–703, USA, 2016. USENIX Association.
[7] D. Beaver, S. Micali, and P. Rogaway. The round complexity of se-

cure protocols. In Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing, STOC ’90, page 503–513, New
York, NY, USA, 1990. Association for Computing Machinery.

[8] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Za-
karias. Semi-homomorphic encryption and multiparty compu-
tation. In Advances in Cryptology–EUROCRYPT 2011: 30th
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings 30, pages 169–188. Springer, 2011.

[9] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit
Agarwal, and Lorenzo Alvisi. Obladi: Oblivious serializable transac-
tions in the cloud. In Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation, OSDI’18, page
727–743, USA, 2018. USENIX Association.

[10] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryp-
tion. In Advances in Cryptology–CRYPTO 2012: 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, pages 643–662. Springer, 2012.

[11] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio Schi-
avoni, Pascal Felber, and Daniel Hagimont. Everything you should
know about intel sgx performance on virtualized systems. Proc. ACM
Meas. Anal. Comput. Syst., 3(1), mar 2019.

[12] Tore Kasper Frederiksen, Thomas P Jakobsen, and Jesper Buus
Nielsen. Faster maliciously secure two-party computation us-
ing the gpu. In Security and Cryptography for Networks: 9th
International Conference, SCN 2014, Amalfi, Italy, September 3-5,
2014. Proceedings 9, pages 358–379. Springer, 2014.

[13] Anders T Gjerdrum, Robert Pettersen, Håvard D Johansen, and Dag
Johansen. Performance principles for trusted computing with in-
tel sgx. In Cloud Computing and Service Science: 7th International
Conference, CLOSER 2017, Porto, Portugal, April 24–26, 2017, Revised
Selected Papers 7, pages 1–18. Springer, 2018.

[14] Martin Grambow, Tobias Pfandzelter, Luk Burchard, Carsten Schubert,
Max Zhao, and David Bermbach. Befaas: An application-centric bench-
marking framework for faas platforms. In 2021 IEEE International
Conference on Cloud Engineering (IC2E), pages 1–8, 2021.

[15] Carmit Hazay and Avishay Yanai. Constant-round maliciously secure
two-party computation in the rammodel. In Proceedings, Part I, of the
14th International Conference on Theory of Cryptography - Volume
9985, page 521–553, Berlin, Heidelberg, 2016. Springer-Verlag.

[16] David Heath and Vladimir Kolesnikov. Stacked garbling: Garbled
circuit proportional to longest execution path. In Advances in
Cryptology–CRYPTO 2020: 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21,
2020, Proceedings, Part II, pages 763–792. Springer, 2020.

[17] Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free xor gates and applications. In Automata, Languages and
Programming: 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part II 35, pages 486–498.
Springer, 2008.

[18] Sandeep Kumar, Abhisek Panda, and Smruti R. Sarangi. Sgxgauge:
A comprehensive benchmark suite for intel sgx. In 2022 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 135–137, 2022.

[19] Mingyu Li, Yubin Xia, and Haibo Chen. Confidential serverless
made efficient with plug-in enclaves. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pages
306–318, 2021.

[20] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled ram. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, pages 66–92, Cham, 2017. Springer International
Publishing.

6

https://www.arm.com/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://www.arm.com/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://asylo.dev/
https://asylo.dev/
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://openenclave.io


TGh: A TEE/GC Hybrid Enabling Confidential FaaS Platforms , ,

[21] Jianqiao Mo, Jayanth Gopinath, and Brandon Reagen. A garbled circuit
accelerator for arbitrary, fast privacy-preserving computation. arXiv
preprint arXiv:2211.13324, 2022.

[22] Jesper Buus Nielsen and Claudio Orlandi. Lego for two-party secure
computation. In Omer Reingold, editor, Theory of Cryptography,
pages 368–386, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[23] Michael O Rabin. How to exchange secrets with oblivious transfer.
Cryptology ePrint Archive, 2005.

[24] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using sgx to conceal
cache attacks. In Michalis Polychronakis and Michael Meier, editors,
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 3–24, Cham, 2017. Springer International Publishing.

[25] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, RunjiWang, Yi Xu,
Yubin Xia, and Shoumeng Yan. Occlum: Secure and efficient multi-
tasking inside a single enclave of intel sgx. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, page
955–970, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[26] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia,
and Christof Fetzer. Clemmys: Towards secure remote execution in
faas. In Proceedings of the 12th ACM International Conference on
Systems and Storage, SYSTOR ’19, page 44–54, New York, NY, USA,
2019. Association for Computing Machinery.

[27] Chia-Che Tsai, Donald E. Porter, andMona Vij. Graphene-sgx: A practi-
cal library os for unmodified applications on sgx. In Proceedings of the

2017 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’17, page 645–658, USA, 2017. USENIX Association.

[28] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In Proceedings of
the 27th USENIX Security Symposium. USENIX Association, August
2018.

[29] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom.
SGAxe: How SGX fails in practice. https://sgaxeattack.com/, 2020.

[30] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://github.com/emp-
toolkit, 2016.

[31] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated
garbling and efficient maliciously secure two-party computation. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, page 21–37, New York, NY, USA,
2017. Association for Computing Machinery.

[32] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. sgx-perf:
A performance analysis tool for intel sgx enclaves. In Proceedings of
the 19th International Middleware Conference, pages 201–213, 2018.

[33] Ofir Weisse, Valeria Bertacco, and Todd Austin. Regaining lost cycles
with hotcalls: A fast interface for sgx secure enclaves. SIGARCH
Comput. Archit. News, 45(2):81–93, jun 2017.

[34] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th
annual symposium on foundations of computer science (Sfcs 1986),
pages 162–167. IEEE, 1986.

7

https://sgaxeattack.com/
https://github.com/emp-toolkit
https://github.com/emp-toolkit

	1 Introduction
	2 Background
	3 Feasibility and Challenges
	4 Preliminary Evaluation
	5 Discussion
	6 Summary
	References

