
Secure Logging in between Theory and Practice:
Security Analysis of the Implementation

of Forward Secure Log Sealing in Journald
Felix Dörre

∗

Astrid Ottenhues
∗

felix.doerre@kit.edu

astrid.ottenhues@kit.edu

ABSTRACT
This paper presents a security analysis of forward secure log seal-

ing in the journald logging system, which is part of systemd and

used in modern Linux distributions. Forward secure log sealing is

a cryptographic technique used to ensure the integrity of past log

entries even in the event of a full system compromise. We analyze

the implementation of this technique in journald, identifying multi-

ple security vulnerabilities resulting from a gap between the model

of the cryptographic primitives and their usage in a larger context.

In particular one vulnerability allows to forge arbitrary logs for

past entries without the validation tool noticing any problem. We

demonstrate the found attacks on the journald implementation by

providing a concrete security definition for the larger system, an

implementation close to the security experiment and a correspond-

ing attacker defeating it when used with a vulnerable version of

journald. For the more serious vulnerabilities, we provide patch

recommendations, which prevent the implemented attack. Our

findings break the security guarantee from log sealing completely,

without the error resulting from an inconsistency in the theoretical

model nor being a simple implementation mistake. This provides a

practical example of the problems that can occur when applying

cryptographic primitives to a complex system in reality and that

fall in between theory and practice.

KEYWORDS
Secure Logging, Systemd, Journald, Forward Security, Key-Evolving,

Implementation Issues, Symmetric Cryptography

1 INTRODUCTION
System logs are an important tool for determining the impact and

cause of a security breach. This is also known to attackers who

routinely cleanse logs to hide traces of their attacks. Therefore it

is important to protect system logs even on a fully compromised

system. The two main types of protection are using additional hard-

ware (such as specialized storage or an external logging server) and

log sealing to make tampering with logs evident without requir-

ing additional hardware of which the trustworthiness needs to be

assumed.

The two main publicly available and practically usable imple-

mentations of log sealing are those included in syslog-ng and the

mechanism implemented in journald. As journald is installed by

default on many Linux distributions, enabling sealing here, only

requires setup of the sealing keys. For many cryptographic systems,

∗
Both authors contributed equally to this research.

designing the system and implementing it are two completely differ-

ent challenges. While for a theoretic specification there are typically

very precise and formally sound security definitions, those often

lack when such a system is implemented in a real environment. For

journald the whole security definition in the documentation is, that

logs sealing "may be used to protect journal files from unnoticed

alteration"
1
.

To give an idea of the security guarantee a user might expect and

as an overview of the more formal definition we will give later, we

now show the scenario where log sealing aims to make a difference:

(1) Sealing is enabled on a host system 𝐻 and the admin saves

the verification key confidentially on a verification system

𝑉 .

(2) The system 𝐻 logs application defined messages and seals

every fixed time interval.

(3) An attacker breaks into system 𝐻 and has full access to the

system including reading the current sealing key and can

modify all journal files.

(4) When an administrator (auditor) suspects an attack, or also

in regular intervals, the log is copied from𝐻 to𝑉 and verified

there. Verification outputs if the log is consistent and the

time span for which verification succeeded.

(5) On system𝑉 the administrator displays the log with various

journalctl options to draw conclusions about the attack.

The intuitive security expectation would be, that an attacker can

not modify (or delete/truncate) the journal on system 𝐻 for all

messages that were in a finished epoch before the break-in, without

the verification raising an alarm.

1.1 Contribution
This work narrows the gap between the theoretical specification

of log sealing and the concrete implementation by journald. We

provide a concrete security definition for the sealing system imple-

mented by journald, we deem plausible for what a person relying

on such a logging system might expect.

As a main contribution, we uncover three practical security

vulnerabilities, which all allow an attacker to break the security

definition. One vulnerability allows an attacker to produce arbitrary

logs for an arbitrary point of time in the past, breaking all security

guarantees that log sealing is trying to make. The other two vul-

nerabilities concern unnoticed truncation of the log and filtering

the log while displaying and both affect the completeness of the

1
See man journald.conf(5)

, ,
Felix Dörre and Astrid Ottenhues

displayed log. We provide easy and compatible patch suggestions

for the most relevant vulnerabilities.

To round this up, we provide a toolkit for inspecting and modi-

fying journal files to have an environment where we can verify the

described attacks to demonstrate their practical impact.

1.2 Related Work
Log sealing is a long standing subject of cryptography research

as one instance of forward security [1], yet it is still not preva-

lent in general purpose computer systems. Recent research focuses

on the danger of storing, sending and sealing log messages asyn-

chronously, as is common for most logging systems to not impact

the applications performance. Paccagnella et al.[9] (with improve-

ments in [6]) make synchronous sealing feasible by splitting sealing

from further processing, and optimizing the required synchronous

computation. In contrast, preventing log tampering with events

just before the compromise is definitely out of journald’s scope, as

journald does not seal messages one at a time, but using time-based

epochs. Journald trades this benefit for allowing to verify log ex-

cerpts with epoch granularity. As [9] does not bind the MAC keys

to realtime, the whole log from the beginning needs to be verified,

otherwise an attacker could forge seemingly old entries and seal

them with a new key.

Another research of verifying excerpts in logging scheme was

presented in [4], where the authors also formally model log schemes

and provide security notions. One security aspect of this work—

in addition to forward security—is completeness and truncation

resistance of the log. These properties are of high importance to

asynchronous logging schemes to get the insurance that an intruder

did not modify the log prior to the time span until the break-in. A

solution for truncation security is also presented in [5]. Both works

are in the line of constructing forward secure logging schemes

via forward secure digital signature schemes [1]. The other line

of research which constructs forward secure logging schemes via

symmetric cryptography started with [2], and our work builds upon

this line.

2 PRELIMINARIES
The cryptographic foundation of log sealing in journald is the

work on seekable sequential key generators by Marson and Poet-

tering [8], which also details their application and implementation

into journald for log sealing. The construction describes a way

to generate a forward secure sequence of keys, that additionally

allows efficient seeking without having to calculate all intermedi-

ate states. Those keys are then used for a message authentication

scheme based on HMAC [7] to seal sections of a log file.

Therefore, we start by introducing the notations and (security)

definitions for a seekable sequential key generator SSKG and a

forward secure message authentication scheme FSMAS.

2.1 Seekable Sequential Key Generator SSKG
Seekable sequential key generators, introduced by Marson and

Poettering [8], are based on the primitive of sequential key gener-

ators, introduced in the same work, which is a similar primitive

as stateful generators, introduced by Bellare and Yee [2]. We focus

on the definitions by [8] as they constructed a SSKG version from

factorization-based shortcut permutations which yields in combina-

tion with a cryptographic MAC the implementation of journald.

Definition 2.1 (Seekable Sequential Key Generator SSKG [8]). The

interface of a SSKG is given by a set of five PPT algorithms :

KeyGen : (1𝜆) ↦→ (pubpar, sek)
StateGen : (pubpar) ↦→ st0

Update : (st𝑖) ↦→ st𝑖+1
Seek : (sek, st0, 𝑖) ↦→ st𝑖

GetKey : (st𝑖) ↦→ k𝑖 .

We assume that Update securely erases the old state st𝑖 at the

end of its call. We expect a SSKG to fulfill its notion of cor-

rectness, i.e. that whenever (pubpar, sek) ← KeyGen(1𝜆), and

st0 ← StateGen(pubpar), then ∀𝑖 ∈ N : Seek(sek, st0, 𝑖) =

Update𝑖 (st0).

ExpRoR-IND-FS,𝑏
SSKG,A

(1) KList ← ∅
(2) (pubpar, sek) ← KeyGen(1𝜆)
(3) st0 ← StateGen(pubpar)
(4) (state, 𝑛,𝑚) ← AOKEY (pubpar)
A : k𝑖 ← OKEY (𝑖):
• KList ← KList ∪ {𝑖}
• k𝑖 ← GetKey(Update𝑖 (st0))

(5) k0𝑛
$←− {0, 1}∗

(6) k1𝑛 ← GetKey(Update𝑛 (st0))
(7) st𝑚 ← Update𝑚 (st0)
(8) 𝑏′ ← AOKEY (state, st𝑚, k𝑏𝑛)
(9) Return 0 if 𝑛 ∈ KList or𝑚 ≤ 𝑛, else 𝑏′

Figure 1: The RoR-IND-FS security experiment for SSKG.

Definition 2.2 (RoR-IND-FS of SSKG, adapted from [8]). A seekable

sequential key generator SSKG is real-or-random indistinguishable

with forward security against adaptive adversaries (RoR-IND-FS) if

for all PPT adversariesA that interact in experiment ExpRoR-IND-FS,𝑏
SSKG

from Fig. 1, with 𝑏 = 0 being the random and 𝑏 = 1 the real game,

the following advantage function is negligible:

AdvRoR-IND-FS
SSKG,A (𝜆)

=

���Pr [ExpRoR-IND-FS,1
SSKG,A = 1

]
− Pr

[
ExpRoR-IND-FS,0

SSKG,A = 1

] ��� .
2.2 Forward Secure Message Authentication

Scheme FSMAS
Message authentication schemes with symmetric cryptography are

used to provide integrity protection and authenticity to messages.

These schemes use a private key, which is kept secret, to gener-

ate a message authentication code (MAC) tag that can be used to

verify the integrity of the message and authenticate the sender.

Secure Logging in between Theory and Practice:
Security Analysis of the Implementation
of Forward Secure Log Sealing in Journald

, ,

Definitions for message authentication schemes MAS are provided

in Appendix A.

Forward security in message authentication schemes refers to

the property that a compromised key in the future cannot be used

to retroactively forge MACs for messages that were logged in the

past. In other words, even if an attacker gains access to the secret

key used to generate MACs in the future, they cannot use that

knowledge to create new MACs for modified past messages.

Definition 2.3 (Forward Secure Message Authentication Scheme
FSMAS based on [2]). The interface of a FSMAS is given by a set of

four PPT algorithms :

KeyGen : (1𝜆) ↦→ (k0)
Update : (k𝑖) ↦→ (k𝑖+1)

Sign : (k𝑖 ,msg) ↦→ (tag 𝑗)
Vfy : (k𝑖 ,msg, tag 𝑗) ↦→ {0, 1}.

We expect a FSMAS to fulfill the notion of correctness, i.e. that

whenever (k0) ← KeyGen(1𝜆) and ∀𝑖 > 0 : (k𝑖+1) ← Update(k𝑖),
then ∀𝑖, 𝑗 : (tag 𝑗) ← Sign(k𝑖 ,msg) holds Vfy(k𝑖 ,msg, tag 𝑗) = 1.

CFS-EUF-CMA & O AFS-EUF-CMA

(k0) ← KeyGen(1𝜆)
keyGenerated

. Start of Oracle Phase I .

. Signing Oracle .

msg

(tag 𝑗) ← Sign(k𝑖 ,msg)
List ← List ∪ (k𝑖 ,msg) tag 𝑗

. Epoch Switching Oracle .

nextEpoch

k𝑖+1 ← Update(k𝑖) ok

. End of Oracle Phase I / Start of Oracle Phase II

. Break In Oracle .

break-in

kbreak-in B k𝑖 kbreak-in

. End of Oracle Phase II .

msg∗, tag∗, 𝑖∗

Output (𝑖∗ < break-in
∧ 1 = Vfy(k𝑖∗ ,msg∗, tag∗)
∧ (k𝑖∗ ,msg∗) ∉ List)

Figure 2: The FS-EUF-CMA Game for FSMAS

Definition 2.4 (FS-EUF-CMA of FSMAS). A FSMAS is forward secure

existentially unforgeable under chosen message attacks (FS-EUF-

CMA) if for any PPT adversaries AFS-EUF-CMA the advantage to win

the FS-EUF-CMA game shown in Fig. 2 is negligible in 𝜆.

The number of epochs, stated by counter 𝑖 , increases with every

key update. The counter 𝑗 states the number of tags, i.e. the sig-

natures of the MAS. Both counters are independent variables, e.g.,

the amount of tags per epoch can be greater than one. An FSMAS
can be constructed from a message authentication scheme (Defi-

nition A.1) by using keys generated from an SSKG. In journald the

SSKG is the one presented in [8] based on factoring and the MAS is

HMAC (Hash-based Message Authentication Code) [7].

3 SECURITY ANALYSIS OF A FORWARD
SECURE SYMMETRIC LOG SCHEME

To begin with, we define in Section 3.1 a forward secure seekable

message authentication scheme FSSMAS combining the security

properties of a forward secure message authentication scheme

FSMAS given in Section 2.2 with the seeking feature of a seekable

sequential key generator SSKG given in Section 2.1. We construct

the FSSMAS from a message authentication scheme MAS given in Ap-

pendix A, i.e. HMAC, with keys provided by a SSKG of Section 2.1.

With this FSSMAS, we build in Section 3.2 a forward secure log

scheme LS, which is very close to the implementation of the Forward
Secure Log Sealing in journald. The LS is a formal model of the

implementation to provide a direct security analysis and thereby

reducing the gap between theory and practice.

3.1 Forward Secure Seekable Message
Authentication

In the following definition of a forward secure seekable message

authentication scheme, we highlight in orange the adaptions to

include the function of seeking in the definition of forward secure

message authentication of Definition 2.3. Seeking allows to calcu-

late in a fast-forward manner an actual state/key solely with the

knowledge of the first state/key and a seeking information/key sek.

It is easy to see, that seeking is a function to improve the efficiency

of a scheme and does not effect its security. We include this feature

to be closer to the real-world, i.e. the implementation of journald.

Definition 3.1 (Forward Secure Seekable Message Authentication
Scheme FSSMAS). The interface of a FSSMAS is given by a set of five

PPT algorithms:

KeyGen : (1𝜆) ↦→ (sek, st0)
Update : (st𝑖) ↦→ (st𝑖+1)

Sign : (st𝑖 ,msg) ↦→ (tag 𝑗)
Seek : (sek, st0, 𝑖) ↦→ (st𝑖)
Vfy : (st𝑖 ,msg, tag 𝑗) ↦→ {0, 1}.

We expect a FSSMAS to fulfill the notion of correctness, i.e. that

whenever (sek, st0) ← KeyGen(1𝜆) and ∀𝑖 > 0 : (st𝑖+1) ←
Update(st𝑖), then ∀𝑖 : st𝑖 = Seek(st0, sek, 𝑖) and ∀𝑖, 𝑗 : (tag 𝑗) ←
Sign(st𝑖 ,msg) holds Vfy(st𝑖 ,msg, tag 𝑗) = 1.

Construction 1 (Forward Secure Seekable Message Au-

thentication Scheme FSSMAS). Given a seekable sequential key
generator SSKG as defined in Definition 2.1 and a message authentica-
tion scheme MAS as defined in Definition A.1, we construct a forward
secure seekable message authentication scheme FSSMAS in Fig. 3.

Construction 1 gives a concrete construction of a FSSMAS. In

order to derive the MAC keys using SSKG we use the generated

, ,
Felix Dörre and Astrid Ottenhues

KeyGen(1𝜆):
• (pubpar, sek) ← SSKG.KeyGen(1𝜆)
• (st0) ← SSKG.StateGen(pubpar)
↩→ Output (sek, st0).

Update(st𝑖):
• (st𝑖+1) ← SSKG.Update(st𝑖)
↩→ Output (st𝑖+1).

Sign(st𝑖 ,msg):
• k𝑖 ← MAS.KeyGen(1𝜆 ; SSKG.GetKey(st𝑖))
• tag 𝑗 ← MAS.Sign(k𝑖 ,msg)
↩→ Output (tag 𝑗)

Seek(sek, st0, 𝑖):
• st𝑖 ← SSKG.Seek(sek, st0, 𝑖)
↩→ Output (st𝑖)

Vfy(st𝑖 ,msg, tag𝑖):
• k𝑖 ← MAS.KeyGen(1𝜆 ; SSKG.GetKey(st𝑖))
↩→ Output MAS.Vfy(k𝑖 ,msg, tag𝑖).

Figure 3: The Construction of Forward Secure Seekable Mes-
sage Authentication Scheme FSSMAS

keys as randomness for MAS.KeyGen. The security notion FS-EUF-

CMA FSMAS (Definition 2.4) can directly be adapted as notion for

FSSMAS as the AFS-EUF-CMA does not get the output of SSKG.GetKey.

The security of Construction 1 is similar to the security of the

same scheme without Seek algorithm, as the additional key from

KeyGen is not used by the challenger and the existence of another

algorithm as such does not give the adversary any advantage.

A security argument can be given via a hybrid game, where the

intermediate keys are not generated by the SSKG, but are drawn

by the challenger at random. The attacker cannot distinguish this

game from the actual security game, because of the RoR-IND-FS
security of SSKG. The remaining security game is exactly the EUF-

CMA security of MAS.

3.2 Construction of a Forward Secure Seekable
Log Scheme

A log scheme is a protocol that runs between a log host, audi-

tor and an application which sends messages to be logged. Bases

for our model are taken from the secure logging models of [4, 5].

However these definition do not fit the logging scheme created by

journald as they are using asymmetric signing keys and do not have

a mechanism to incorporate seeking, which is the primary feature

of journald’s implementation.

We construct a logging scheme LS which is based on a forward

secure seekable message authentication scheme as presented in Sec-

tion 3.1. One main goal of the description of LS is to provide a

connection between the real-world implementation of the Forward
Secure Sealing in journald and its idealized theoretical model. There-

fore, we highlighted some parts of the construction, i. e. additions

and removals, which describe the improvements upon the imple-

mentation in systemd version 252, which has security issues as

pointed out in Section 5.

Definition 3.2 (Logging scheme LS). The interface of a log

scheme LS is given by a set of four PPT algorithms (KeyGen, Sign,
AppendAndSeal, Vfy):

KeyGen : (1𝜆) ↦→ (sek, state)
Sign : (state) ↦→ (state, journal)

AppendAndSeal : (state,msg, time) ↦→ (state, journal)
Vfy : (sek, journal, target) ↦→ {0, 1}

Query : (journal, target) ↦→ (msg)𝑖

We expect a LS scheme to fulfill the notion of correctness:

After an arbitrary sequence of Sign and AppendAndSeal in-

vocations, with the last message having time∗. For all target
with EpochStart(target + 1) ≤ time∗: Vfy(sek, journal, target)
is true, and Query(journal) returns all messages with time <

EpochStart(target), logged with AppendAndSeal.

Semantically, the difference between signing and sealing is that

we require a sealing algorithm to evolve the key and to securely

erase the old key. The assumption of secure erasure is an important

fact and a research topic on its own as it is not easy to fulfill [3].

A journal as output of the Sign and AppendAndSeal algorithm is

the representation of the whole log including all log messages, tags,

and counters. The Sign algorithm serves no functional purpose but

is used to model the behavior of the real journald application.

Construction 2 (Forward Secure Log Scheme). Given a for-
ward secure seekable message authentication scheme FSSMAS as de-
fined in Definition 3.1, we construct a forward secure log scheme LS
in Fig. 4. We describe the behaviour of a executing log host host, an
auditor auditor, and an application app which provides messages.
The algorithm EpochStart(𝑖) returns the actual fixed time when the
epoch 𝑖 started. In practice the mapping between realtime and epoch
is chosen when the key is generated. For example, the epoch starts
with value zero at the time of key generation and increments every
15 minutes. The parameter isfinal is set when an epoch is sealed, e.g.
when AppendAndSeal is called.

3.3 Security Notion for a Log Scheme
We show that the previously constructed log scheme LS of Sec-

tion 3.2 provides the security notion of FS-EUF-CLMA for symmetric

log schemes by reducing this security to the notion of the FS-EUF-

CMA security of the underlying FSSMAS scheme.

In the security experiment we will let a challenger play the role

of the log host and auditor, while the adversary can send messages

with the goal to forge log messages in the end. When an application

sends init to the host—triggered in practice e.g. by the suspension

of a system—then the actual log will only be signed but not sealed.

The sealing takes place, when a log message is processed: The

message will be appended to the actual log and the log is sealed.

Definition 3.3 (FS-EUF-CLMA of LS). A log scheme LS is forward

secure existentially unforgeable under chosen log message attacks

Secure Logging in between Theory and Practice:
Security Analysis of the Implementation
of Forward Secure Log Sealing in Journald

, ,

state = (log, journal, 𝑖, 𝑗, st𝑖)
KeyGen(1𝜆):
• (sek′, st0) ← FSSMAS.KeyGen(1𝜆)
• Initialize log, journal B ∅.
• Initialize epoch counter 𝑖 and tag counter 𝑗 : 𝑖, 𝑗 B 0.

↩→ Send (sek′, state) to auditor and erase sek.

Sign′ (state, isfinal):
• (tag 𝑗) ← FSSMAS.Sign(st𝑖 , (log, 𝑖, 𝑗, isfinal)))
• log 𝑗 B log
• journal ← journal∥(log 𝑗 , tag 𝑗 , 𝑖, 𝑗, isfinal)
• Empty log B ∅
• Increase tag counter 𝑗

↩→ Output (state, journal).
Sign(state):
↩→ Output Sign′ (state, 0).
AppendAndSeal(state,msg, time):
• While If (time ≥ EpochStart(𝑖 + 1)):
– Sign′ (st𝑖 , 1)
– While (time ≥ EpochStart(𝑖 + 1))
∗ st𝑖+1 ← FSSMAS.Update(st𝑖)
∗ Erase securely old state st𝑖
∗ Increase epoch counter 𝑖

• log ← log∥(msg, time)
↩→ Output (state, journal).

Vfy(sek, journal, target):
• Parse sek : (sek′, st0)
• Parse journal : (log 𝑗 , tag 𝑗 , 𝑖, 𝑗, isfinal 𝑗)
• st𝑖 ← FSSMAS.Seek(sek′, st0, 𝑖)
• If not ∀(log 𝑗 , tag 𝑗 , 𝑖, 𝑗, ·) ∈ journal :
FSSMAS.Vfy(st𝑖 , (log 𝑗 , 𝑖, 𝑗, isfinal), tag 𝑗), output 0

• If the sequence of all tag counters 𝑗 in journal is not

continuous and strictly monotonic, output 0

• If the sequence of all epoch counters 𝑖 in journal is not

monotonic, output 0

• If not ∀𝑖 ∈ [0, target] : (·, ·, 𝑖, ·, 1) ∈ journal, output 0

• If not ∀(log 𝑗 , ·, 𝑖, 𝑗, ·) ∈ journal ∀time ∈ log𝑘> 𝑗 :

time ≥ EpochStart(𝑖), output 0

• If not ∀(log 𝑗 , ·, 𝑖, 𝑗, ·) ∈ journal :
time���log 𝑗−1��� ∈ log 𝑗−1 < EpochStart(𝑖 + 1), output 0

• If not ∀(log 𝑗 , ·, 𝑖, 𝑗, ·) ∈ journal ∀time ∈ log 𝑗 :
EpochStart(𝑖) ≤ time < EpochStart(𝑖 + 1), output 0

↩→ Output 1.

Query(journal, target):
• Parse journal : (log 𝑗 , tag 𝑗 , 𝑖, 𝑗, isfinal 𝑗)

↩→ Output {msg𝑘 |𝑖 ∈ [0, target],
(log 𝑗 , ·, 𝑖, 𝑗, ·) ∈ journal, (msg𝑘 , time𝑘) ∈ log 𝑗 }

Figure 4: The Construction of Forward Secure Seekable Log
Scheme LS.

(FS-EUF-CLMA) if for any PPT adversaries AFS-EUF-CLMA the advan-

tage to win the FS-EUF-CLMA game shown in Fig. 5 is negligible in

the security parameter 𝜆.

It is trivial for an adversary to forge a log message after and retro-

spectively during the epoch of the break-in as it gets the SSKG-state

of that epoch and can derive the signing key. Also the truncation

during the last epoch is trivial for an attacker. Therefore, the secu-

rity notion provides forward secure existential unforgeability until

the last epoch before the break-in.

Lemma 3.4. The log scheme LS fulfills the security of FS-EUF-CLMA,
e.g. it is forward secure existentially unforgeable under chosen log mes-
sage attacks, if the underlying forward secure message authentication
scheme FSSMAS is FS-EUF-CMA-secure.

Proofsketch. Assuming that (FSSMAS.KeyGen, FSSMAS.Update,
FSSMAS.Sign, FSSMAS.Seek, FSSMAS.Vfy) is a correct forward secure
message authentication scheme FSSMAS fulfilling FS-EUF-CMA security
and assuming we have an adversary AFS-EUF-CLMA-LS who has non-
negligible success probability in winning the FS-EUF-CLMA game given
in Fig. 5 with respect to LS = (KeyGen, Sign, AppendAndSeal, Vfy),
we can directly derive an adversary AFS-EUF-CMA-FSSMAS with non-
negligible success probability in winning the FS-EUF-CMA game given
in Fig. 2 with respect to FSSMAS by reformulating the query messages
to log scheme queries and vice-versa. If AFS-EUF-CLMA-LS wins the FS-
EUF-CLMA game, then it modified journal∗ in one of the following
ways:
• If journal∗ and journal have the same amount of sealed mes-
sages, AFS-EUF-CLMA-LS provides a journal∗ including (msg∗,
tag∗, 𝑖∗) which is not in journal, e.g. AFS-EUF-CLMA-LS changed
a msg.
• If journal∗ is shorter than journal, AFS-EUF-CLMA-LS provides
a last message in last epoch of journal∗ that can be used as
forgery message msg∗, and vice-versa (if journal is shorter).
The corresponding message that is included in journal is differ-
ent as either "isfinal" was not set or the message did not exist.
That means that msg∗ was never requested from OSign.

CFS-EUF-CLMA & O AFS-EUF-CLMA

(sek, state) ← KeyGen(1𝜆)
state, 𝑗𝑜𝑢𝑟𝑛𝑎𝑙) ← Sign(state)

journal

. Begin of Oracle Phase I .

. Initial Signing Oracle .

465
init

(state, journal) ← Sign(state)
journal

. Sealing Oracle – incl. Epoch Switching .

msg, time

(state, journal) ← AppendAndSeal(state,msg, time)
journal

. End of Oracle Phase I – Begin of Oracle Phase II .

. Break-In Oracle .

break-in

ibreak-in B i
state

. End of Oracle Phase II .

journal∗

Output (1 = Vfy(sek, journal∗, ibreak-in − 1)
∧ Query(journal, ibreak-in − 1)
≠ Query(journal∗, ibreak-in − 1)

Figure 5: The FS-EUF-CLMA security game for LS

, ,
Felix Dörre and Astrid Ottenhues

The found message msg∗ can be used by AFS-EUF-CMA-FSSMAS to win
the FS-EUF-CMA game. It is a successful forgery pair as FSSMAS.Vfy
outputs 1 and the OSign did not sign the message msg∗ in epoch 𝑖 .

We can conclude the following theoretical results: Let SSKG be a

RoR-IND-FS secure seekable sequential key generator. Let MAS be

a EUF-CMA secure message authentication scheme. Then, we get

a seekable FS-EUF-CMA secure forward secure seekable message

authentication scheme FSSMAS. This yields a FS-EUF-CLMA secure

forward secure seekable log scheme LS.

Additionally and simultaneously, the protocol for the log scheme

LS is a model close to the implementation of Forward Secure Sealing
in journald.

4 THE JOURNAL FILE FORMAT
While the formal model describes the journal file as a sequence

of tuples, the reality looks much more complex and involved. Log

messages are not plain strings but key-value pairs, that store meta

information in addition to the regular log messages. To allow quick

access to sub-sequences of the journal (also based on the meta fields)

and to not store multiple occurrences of the same value multiple

times, journals are stored as a structure of linked objects indexed

by hash tables. In order to understand more concretely how the

attacks can be carried out in practice we start with a brief overview

of the relevant details of the on-disk format before describing the

actual attacks.

4.1 Structure
For journald each log entry is, apart from time and sequence in-

formation, a set of key-value pairs encoding the log message, and

other structured information like log-level, executable name, sys-

temd unit name of the logging program. Journald stores logs in a

binary file format on-disk. The individual structures are defined

in journal-def.h 2
, with a high-level description of the structure

given in an accompanying documentation.
3

On a high level a journal file consists, after a header, of a sequence

of objects each identified with type and length. These objects con-

tain data and references to each other as addresses (offsets from

the start of the journal file), visualized in Figure 6. Each log entry

is stored as an EntryObject 𝑒 referencing multiple DataObjects

𝐷 (𝑒), one for each key-value pair, reusing DataObjects that con-

tain the same data. FieldObjects are used to link all DataObjects

with the same key together. See Appendix B for a simplified example

of a textual representation of a journal file.

For writing the journal file the main design goal was to allow

appending new log entries with only changing little of the existing

journal file. Also highly repetitive messages (as well as repetitive

values for other fields) should only be stored once. For reading, the

file format allows to quickly seek to specific time ranges, display

log messages with a specific value for a field, and listing all fields

used and possible values for all those fields. These different access

modes are supported by a collection of quick-access structures that

are maintained in the file:

• A hash table allowing to access FieldObject by value (𝐻𝑓).

2
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-

def.h

3
https://systemd.io/JOURNAL_FILE_FORMAT/

Header

FieldHashTable 𝐻𝑓 DataHashTable 𝐻𝑑

global EntryArray 𝐴𝑒

EntryArray

Field 𝑓 Data 𝑑

Entry 𝑒

𝐷 (𝑒)

𝐷 (𝑓)

𝐴𝑒 (𝑑)

Figure 6: Journal File Format, the Object suffix of each of the
entity names is omitted. Only the solid link between Entry
and Data is authenticated by MACs

• A hash table allowing to access DataObject by value (𝐻𝑑).

• The data objects chained in a linked list 𝐷 (𝑓), allowing to

list all individual values for field 𝑓 .

• A global EntryArray 𝐴𝑒 to list all entries in the log file.

• A chain of EntryArrays 𝐴𝑒 (𝑑) per data object 𝑑 , listing all

usages of the data object.

Accessing the log file can happen in various ways. When a user

queries for all log entries in a given range using the journalctl
tool, that program will use the the global EntryArray to iterate

through the log entries and print the messages. When a user queries

log entries for a given unit, journalctl -u will locate the corre-

sponding DataObject and use the corresponding EntryArrays to

print only the matching entries. When specifying the unit with a

glob expression, instead of a concrete string, journalctl will use

the unique values of that field to evaluate the glob expression on

and then query log entries for all matching unique values. Special

options of journalctl can be used to list all fields and all unique

values of a field.

Time. For each EntryObject there are multiple timestamps

stored. As time keeping is a complex topic, journald obtains

and stores real time and monotonic time for each entry the mo-

ment the entry is processed by journald. Optionally entries may

also carry a timestamp attached by the logging process. They

are stored additionally in the _SOURCE_REALTIME_TIMESTAMP and

_SOURCE_MONOTONIC_TIMESTAMP fields.

When displaying a log, per default the _SOURCE_REALTIME-
_TIMESTAMP is displayed, falling back to the internal real time times-

tamp if the source timestamp is not available. When choosing an

output format displaying monotonic time, the same logic is applied,

displaying _SOURCE_MONOTONIC_TIMESTAMP and falling back to the

internal monotonic time.

The semantics of real and monotonic time are inherited from

their semantics in the linux kernel, described in man clock_get-
time(2):

real time A settable system-wide clock that measures real (i.e.,

wall-clock) time. [...] This clock is affected by discontinu-

ous jumps in the system time [...], and by the incremental

adjustments performed by adjtime(3) and NTP.

Secure Logging in between Theory and Practice:
Security Analysis of the Implementation
of Forward Secure Log Sealing in Journald

, ,

monotonic time A nonsettable system-wide clock that repre-

sents monotonic time[...]. [...] The CLOCK_MONOTONIC

clock is not affected by discontinuous jumps in the system

time [...], but is affected by the incremental adjustments

performed by adjtime(3) and NTP.

4.2 Sealing with the Journal File Format
In order to seal the journal, TagObjects are regularly appended to

the log file. They are numbered with an epoch and seqnum, corre-

sponding to 𝑖 and 𝑗 from the theoretical model, respectively. They

contain a MAC across parts of all objects until that point, start-

ing from the last TagObject or the beginning of the file, for the

first tag. The MAC covers the type and length for each object and

all parts that are considered immutable (i. e. will not be modified

when appending), in particular the actual data. This ensures that

for all immutable parts the MAC secures the object’s location in

the journal file. To put it another way, without having a MAC key,

the only messages an attacker can get accepted by the MAC-check

are prefixes of the original log file where "mac-covered" regions

are unchanged, and all other regions can contain arbitrary data.

In particular, FieldObject and DataObject have their payload se-

cured and EntryObjects have all pointers to DataObject secured.

All structures and fields that are modified after writing the object

initially are not covered by the MAC and their integrity relies on

additional checks while verifying the journal.

Time for Sealing. The keys for sealing are bound to fixed-length

real time epochs. Whenever a real time epoch expires (and definitely

before any entry of the next epoch is written down), journald ap-

pends a tag and evolves the sealing key. Additionally, when stopping

(for example in case of a clean system shutdown), journald ap-

pends a tag without evolving the key. As the epoch does not have

ended yet, the key cannot be evolved as it might be needed again to

seal further messages in that epoch, that might occur if journald
is started again before the epoch ends.

Verification of a journal file imposes three restrictions on the

timestamps:

• An entry following a tag must not have an older realtime

than the beginning of the epoch for that tag

• The last entry before a tag must not have a newer realtime

than the end of the epoch of that tag

• If two entries share the same bootid, the monotonic time

between them must not decrease.

Note, that both _SOURCE_* timestamps are not verified in any

way. This is especially problematic as they are overriding the inter-

nal timestamps when being displayed in all output formats except

verbose, export and json, including the default.

The epochs for the sealing keys are interpreted as real time,

which means that monotonic time is not bound to the epochs of

the sealing keys, and just checked for internal consistency.

Also note that the constraints on an entry’s real time are very

lax. As regular operation of journald may produce two tags for

the same epoch (which we suggest to omit, see Problem 2), the first

constraint cannot be simply tightened. But as-is those constraints

do not prevent an attacker from sealing back-dated entries with a

tag from a newer epoch (see Problem 1).

We propose to extend (or replace) those checks with a different

check: For each sealed section we propose to obtain the minimal

and maximal real time timestamp over all entries and verify that

this interval is completely contained in the epoch interval of the

following seal. This directly subsumes the second check, and in

combination with a check that crypto epochs only increase, it also

contains the first check. These adjustments are already included in

Construction 2.

5 SPECIFIC PROBLEMS
We now describe the three individual issues that each allow different

kind of forgeries and thereby break the security definition.

5.1 Sealing older entries with newer keys
(CVE-2023-31439)

While the verification checks that the tags for a given crypto-epoch

are not used to seal newer entries, the check in the other direction

is missing allowing a key to seal arbitrary journal entries. This is

a problem, as the current sealing key needs to be stored on the

system, allowing an attacker to use it to seal (or re-seal) existing

journals. In particular an attacker having broken into a system,

can use the current (newer) sealing key to generate new MACs

for any previous TagObjects after tampering with the log entries.

Verification would report that the sealing happened correctly and

the modifications go unnoticed. If messages prior to the currently

last tag should be added, that tag needs to be removed first.

Remediation Recommendation. We recommend to extend the

check for log entries against crypto epochs to also report too old

entries sealed with a given crypto key and not only too new entries.

The journal writer as-is will not seal too old entries with a newer

key, so this change should not report any false-positive violations.

We deem the patch for this issue rather simple and provide a

suggestion in CVE-2023-31439.patch in the supplementary mate-

rial. This patch is compatible in both directions. As it only modifies

the verification, the produced journals are identical with the patch

compared to without it. That means that applying this patch does

not create any incompatibility between systemd versions.

5.2 Attack on Completeness (CVE-2023-31438)
While log sealing can confirm the existence of log entries, it can

also confirm the completeness of a given log section. In particular,

if verification of a journal file succeeds for a given time frame the

attacker should not be able to add, modify or remove any log entry

in that time frame.

Journald’s handling of epochs without log entries does not allow

to verify the absence of log entries. Specifically an attacker breaking

into a system can truncate previous sealed epochs of the system log

without being revealed when checking the log seals, as the journal

is not updated when an epoch passes without new log entries; only

the sealing key is evolved forward.

Luckily for most practical applications epochs without log entries

are very rare—except the system is suspended. So an epoch without

sealed log entries is suspicious by itself.

Additionally due to the mechanism of sealing multiple times, an

attacker might delete tagged blocks of the last epoch. As there are

, ,
Felix Dörre and Astrid Ottenhues

multiple tags from the same key in such a case, an attacker can

just delete blocks from the end, except the first one, and adjust the

tag-counter to resume logging without being detected.

Additionally, this motivates further investigation whether the

current verification implementation notices gaps in a journal span-

ning multiple files.

Remediation Recommendation. We recommend to create new

TagObjects regardless of whether there are new log entries in

the corresponding epoch, when moving to the next epoch. The

TagObjects are relatively small in comparison to regular log entries

and there are rarely epochs without log entries in practice. In the

special case, when a system has been suspended for more than

one epoch, Journald would have to create TagObjects for every

epoch that was missed. This can be made more efficient, by adding

another field to the TagObject, indicating how many epochs are

about to be skipped (and then be sealed with the old key). That

way the journal only grows by a constant amount, and the missing

empty epochs are still sealed. The verification process needs to be

adjusted to recognize this new field (ensuring that each epoch is

accounted for).

Additionally each TagObject needs to be marked if it is the last

tag for a given crypto epoch to prevent truncation in the last fin-

ished epoch. We are not aware of a simple implementation that

can keep this compatible with the current implementation. Alterna-

tively signing parts before an epoch ended could be skipped. This

operation does not seal entries, as it does not evolve the key and

thereby does not prevent an attacker from re-creating the tag. As

multiple tags with the same key do not increase (in this case even

decrease) security, un-sealed entries could be left as-is when jour-

nald is stopped. When logging resumes, the entries can be sealed if

the epoch has ended, or get new entries appended, when it has not.

This change would be compatible.

We provide an incomplete suggestion for the simple remediation

variant, in CVE-2023-31438-incomplete.patch in the supplemen-

tary material. Together with removing the intermediate tagging

the patch resolves this vulnerability. This patch is compatible in

the way that new journals can still be verified (incompletely) with

the old version, but journals produced without this patch might fail

verification with the new version if an epoch is missing. The more

efficient variant would probably require more considerations if ex-

tra care should be taken that the new journals still pass verification

with older version, if that is desired.

5.3 Missing verifications of fast access
structures (CVE-2023-31437)

Currently the verification process builds three lists of locations

while scanning through the journal initially. Let 𝐿𝑒 be the list of all

EntryObjects. Let 𝐿𝑎 be the list of all EntryArrayObjects. Let 𝐿𝑑
be the list of all DataObjects. These are used later to verify some of

the additional access structures. Note that FieldObjects are suspi-

ciously absent here. For the FieldHashTable and DataHashTable
additional lists are not required as these objects are guaranteed to

appear at most once in a journal file which can be checked without

creating a list.

We list the additional checks along with references into the

source code of journal-verify.c 4
of version 252:

• |𝐴𝑒 | = |𝐿𝑒 | [line 1235, line 711]

• The addresses in 𝐴𝑒 are strictly increasing [line 745]

• 𝐴𝑒 ⊆ 𝐿𝑒 [line 751]

• All used EntryArrays are in 𝐿𝑎 [line 725]

• ∀𝑒 ∈ 𝐴𝑒 : 𝐷 (𝑒) ⊆ 𝐿𝑑 [line 656]

• ∀𝑒 ∈ 𝐴𝑒 : 𝐷 (𝑒) ⊆ 𝐻𝑑 [line 665]

• ∀𝑒 ∈ 𝐴𝑒 : ∀𝑑 ∈ 𝐷 (𝑒) : 𝑒 ∈ 𝐴𝑒 (𝑑) [line 685]

• 𝐻𝑑 ⊆ 𝐿𝑑 [line 564]

• 𝐻𝑑 contains only unique elements [line 574, line 579]

• ∀𝑑 ∈ 𝐻𝑑 : 𝐴𝑒 (𝑑) ⊆ 𝐿𝑒 [line 456, line 503]

• All EntryArrays used in 𝐴𝑒 (𝑑) are in 𝐿𝑎 [line 478]

• ∀𝑑 ∈ 𝐻𝑑 : 𝐴𝑒 (𝑑) ⊆ 𝐴𝑒 [line 561, line 508] (not needed)

Missing checks:

(1) Missing check for fields: Build a complete list of authenti-

cated fields 𝐿𝑓 (like for Data/Entry/EntryArray) and ver-

ify the FieldHashTable against it (similar as done for

DataHashTable, with additionally checking the count): 𝐿𝑓 =

𝐻𝑓 .

(2) Missing check for the linked DataObjects: For each Field-
Object check that the payload does not contain "=". Go

through the list of linked DataObjects, check that their pay-

load starts with the field name followed by "=". Count the

number of visited DataObjects and check that it matches

the number of valid data objects.

This (Missing checks 1, 2) allows an attacker to change the set

of "visible" fields (journalctl -N) and the available values

for each field (journalctl -F <field>). As a consequence,

when the journal is queried with a glob expression for a

field like a unit (e.g. journalctl -u myservice*), the glob

expression is evaluated on the adjusted set of values.

Luckily those data objects are not used directly but looked

up in the DataHashTable instead for retrieving matching

entries, so an attacker can only hide log entries.

(3) Missing check if DataObjects only reference back to correct

EntryObjects: In verify_data check that all referenced en-

tries link back to the corresponding DataObject, similar to

the check in verify_entry: ∀𝑑 ∈ 𝐻𝑑 : ∀𝑒 ∈ 𝐴𝑒 (𝑑) : 𝑑 ∈ 𝐷 (𝑒).
The missing check allows an attacker to add additional en-

tries to the EntryArrayObject of a DataObject, leading to

additional log entries being displayed when filtering for a

specific DataObject.

Remediation Recommendation. We recommend to add the miss-

ing checks. Additionally the verification process could also check

that there is exactly one DataHashTable and one FieldHashTable
to avoid an internal error later. Currently, the code only checks if

there is "at least one".

6 IMPLEMENTATION
For this work we created a small toolkit allowing the close inspec-

tion and modification of existing journal files to demonstrate the

4
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-

verify.c

https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L1235
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L711
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L745
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L751
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L725
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L656
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L665
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L685
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L564
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L574
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L579
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L456
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L503
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L478
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L561
https://github.com/systemd/systemd/blob/v252/src/libsystemd/sd-journal/journal-verify.c#L508

Secure Logging in between Theory and Practice:
Security Analysis of the Implementation
of Forward Secure Log Sealing in Journald

, ,

described security flaws. In contrast, the implementation from sys-

temd focuses on generating valid journal files and is optimized

for appending to an existing journal file. Rewriting a journal file

and adjusting pointers is not that easy with the library provided

by systemd. However, the journal file that journalctl –verify
consumes comes from a potentially compromised system, mak-

ing it adversary-controlled input. In particular this means, that

journalctl –verify needs to cope with any possible journal file

contents. Our implementation allows the creation of unexpected

journal files to simulate attacker behavior.

We provide an implementation of the SSKG construction by [8]

in FSPRNGKey to be able to derive future sealing keys from the

fss-file on disk. Additionally, we implement logic to parse the

different journal objects in JournalObject to allow inspection and

modification. That foundation is then used in Attacker to provide

a concrete attacker against the security definition. To show that

this attacker wins against the security definition we implement a

specialization of the security experiment (Figure 7) to show that

the behavior of this attacker wins in the security experiment. We

omit to allow the attacker to specify the log displaying query as

filtering the query for allowed journalctl options is complex and

does not help this demonstration.

In addition we implement a test harness to allow the isolated

invocation of a specific journald binary. The harness facilitates

interaction between the security experiment and the journal pro-

cess: One interaction is feeding specific log messages from the

security experiment or simulated adversary, while regular log mes-

sages of the hosting system are not affected. Another interaction

is to advance the epoch to force sealing of the log without having

to wait for the epoch to expire normally. To advance epochs the

harness uses libfaketime
5

and adjusts the perceived system time

for the journald process accordingly. Lastly, the test harness in-

vokes journald using Bubblewrap (bwrap6
) to bind mount test

directories. This is required, because journald searches for config-

uration, journal and the key files in predefined hard coded paths.

Bubblewrap allows to set up a mount namespace for the process

under test, and adjust the directories visible under those paths. This

is even allowed for non-privileged users, which is comfortable for

running test cases and attacker simulations without requiring root

privileges.

Figure 7 shows our implementation of the security experiment

(from Challenger). In line 2 the attacker is given the opportunity

to interact with the log system through the interface shown in

Figure 8. When that interaction is done, the oracle is deactivated

(line 3), and the experiment advances to the break-in phase. The

attacker is given a copy of the journal file to modify in line 10. After

modification journalctl –verify is invoked to check that the

modified journal still passes verification and note is taken of the

reported "sealing"-times in line 12. The same is done for the journal

before modification (line 13). If the attacker-modified journal is

reported as being sealed less (line 14), the attack has failed. In the

security definition this is covered inside Vfy. The timestamp from

journalctl –verify is rounded towards the past, so we need to

increment it by one second for the -U option of journalctl to ensure

5
https://github.com/wolfcw/libfaketime

6
https://github.com/containers/bubblewrap

1 AtomicBoolean i n P h a s e 1 = new AtomicBoolean (t r u e) ;

2 a . i n t e r a c t W i t h L o g (ge tLogAdapte r (i n P h a s e 1)) ;

3 i n P h a s e 1 . s e t (f a l s e) ;

4

5 / / Break − i n Phase

6 F i l e s . copy (j o u r n a l , j o u r n a l P a t c h e d , S tandardCopyOpt ion .

REPLACE_EXISTING) ;

7 J o u r n a l F i l e B u f f e r f i l e T o M o d i f y = J o u r n a l F i l e B u f f e r . open (

j o u r n a l P a t c h e d , t r u e) ;

8 FSPRNGKey key = new FSPRNGKey (J o u r n a l F i l e B u f f e r . open (

k e y F i l e , f a l s e)) ;

9

10 a . t a m p e r W i t h L o g f i l e (f i l e T o M o d i f y , key) ;

11

12 Date u n t i l A t t a c k e r = v e r i f y J o u r n a l (j o u r n a l P a t c h e d) ;

13 Date u n t i l O r i g i n a l = v e r i f y J o u r n a l (j o u r n a l) ;

14 i f (u n t i l A t t a c k e r . getTime () < u n t i l O r i g i n a l . getTime ()) {

15 throw new A t t a c k F a i l e d E x c e p t i o n (" A t t a c k e r ␣ pa t ched ␣

j o u r n a l ␣ i s ␣ s e a l e d ␣ l e s s ") ;

16 }

17 S t r i n g un t i lO f fB y O ne = da teFormat

18 . f o rmat (new Date (u n t i l O r i g i n a l . getTime () + 1 0 0 0))

;

19

20 b y te [] r e p l y = r u n P r o c e s s (JOURNALCTL , " −− f i l e = " + j o u r n a l

, " −U" , u n t i l O f f B y On e) ;

21 b y te [] r e p l y P a t c h e d = r u n P r o c e s s (JOURNALCTL , " −− f i l e = " +

j o u r n a l P a t c h e d , " −U" , u n t i l O f f B yO n e) ;

22 i f (Arrays . e q u a l s (r e p l y , r e p l y P a t c h e d)) {

23 throw new A t t a c k F a i l e d E x c e p t i o n (" Output ␣ does ␣ not ␣

d i f f e r ") ;

24 } e l s e {

25 System . out . p r i n t l n (" A t t ack ␣ Succeeded ") ;

26 }

Figure 7: The specialization of the security experimented for
demonstration

1 p u b l i c i n t e r f a c e LogAdapter {

2 p u b l i c vo id l o g (S t r i n g message) ;

3

4 p u b l i c vo id advanceEpoch () ;

5

6 p u b l i c J o u r n a l F i l e B u f f e r o b t a i n J o u r n a l () ;

7

8 }

Figure 8: The interface for the adversary before the break-in
phase

that the latest sealed message is included as well (line 17). Finally,

we display the journal (line 20 and 21). This attack requires no

special query parameters, so we left out asking the adversary for

query parameters, but just display the journal contents regularly.

The experiment ends successfully if the displayed contents differ

(line 22).

7 DISCLOSURE
On January 18, 2023 we reached out to the security contact for

systemd with a preliminary version of this article detailing the

findings together with a high-level overview. On February 7 we

got an acknowledgement, that the findings are being investigated.

https://github.com/wolfcw/libfaketime
https://github.com/containers/bubblewrap

, ,
Felix Dörre and Astrid Ottenhues

After checking in again on how that investigation was going on

March 17, we received a reply denying that any of the finding was

a security vulnerability, including the first one allowing us to forge

arbitrary log outputs. After some additional rounds of discussion,

they stopped responding on March 20, without anything being

acknowledged as vulnerability and no further action taken. At the

same time as submitting this article for review we provide the same

version including artifacts to the systemd security mailing list.

8 CONCLUSION
We think the security model presented by us in this paper is what a

user relying on log sealing will reasonably expect. We still defend

the standpoint that the presented security vulnerabilities are valid

and should be addressed. Truncation resistance might be an often

overlooked aspect of integrity but we believe it should be part

of the security guarantee and it is included in our definition. Log

sealing should detect truncation, also because it is not too difficult to

achieve compared to the security benefit it brings. From a practical

point of view log completeness should be further investigated for

logs spanning multiple journal files.

In summary this work shows how large the gap between a secu-

rity model and its implementation is sometimes, resulting in serious

vulnerabilities. We improve this, by bringing more real-world com-

plexity into the theoretical model. Further improvement could be to

incorporate even more real-world artifacts in the model, or adjust

the implementation to have less quirks that deviate from the model.

Acknowledgements. We thank the CCS 2023 anonymous reviewers

for their constructive feedback. The work presented in this paper

has been funded by the German Federal Ministry of Education and

Research (BMBF) under the project “Sec4IoMT” (ID 16KIS1692) and

the project “ASCOT”, and by KASTEL Security Research Labs.

REFERENCES
[1] Mihir Bellare and Bennet Yee. 1997. Forward integrity for secure audit logs. Techni-

cal Report. Citeseer.

[2] Mihir Bellare and Bennet Yee. 2003. Forward-Security in Private-Key Cryptography.

In Topics in Cryptology — CT-RSA 2003, Marc Joye (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 1–18.

[3] Peter Gutmann. 1996. Secure deletion of data from magnetic and solid-state

memory. In Proceedings of the Sixth USENIX Security Symposium, San Jose, CA,

Vol. 14. 77–89.

[4] Gunnar Hartung. 2016. Secure Audit Logs with Verifiable Excerpts. In Topics in
Cryptology - CT-RSA 2016, Kazue Sako (Ed.). Springer International Publishing,

Cham, 183–199.

[5] Gunnar Hartung, Björn Kaidel, Alexander Koch, Jessica Koch, and Dominik Hart-

mann. 2017. Practical and Robust Secure Logging from Fault-Tolerant Sequential

Aggregate Signatures. In Provable Security, Tatsuaki Okamoto, Yong Yu, Man Ho

Au, and Yannan Li (Eds.). Springer International Publishing, Cham, 87–106.

[6] Viet Tung Hoang, Cong Wu, and Xin Yuan. 2022. Faster Yet Safer: Logging System

Via {Fixed-Key} Blockcipher. In 31st USENIX Security Symposium (USENIX Security
22). 2389–2406.

[7] Dr. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. 1997. HMAC: Keyed-Hashing

for Message Authentication. RFC 2104. https://doi.org/10.17487/RFC2104

[8] Giorgia Azzurra Marson and Bertram Poettering. 2013. Practical secure logging:

Seekable sequential key generators. In Computer Security–ESORICS 2013: 18th
European Symposium on Research in Computer Security, Egham, UK, September
9-13, 2013. Proceedings 18. Springer, 111–128.

[9] Riccardo Paccagnella, Kevin Liao, Dave Tian, and Adam Bates. 2020. Logging to the

danger zone: Race condition attacks and defenses on system audit frameworks. In

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1551–1574.

A MESSAGE AUTHENTICATION SCHEME
Definition A.1 (Message Authentication Scheme MAS [2]). The in-

terface of a MAS is given by a set of three PPT algorithms (KeyGen,
Sign, Vfy):

KeyGen : (1𝜆) ↦→ (k)
Sign : (k,msg) ↦→ (tag)
Vfy : (k,msg, tag) ↦→ {0, 1}.

We expect a MAS to fulfill the notion of correctness, i.e. that

whenever (k) ← KeyGen(1𝜆), then Vfy(k,msg, Sign(k,msg)) = 1.

ExpEUF-CMA
MAS,A

(1) (k) ← KeyGen(1𝜆)
(2) (msg∗, tag∗) ← AOSign (k,·) (1𝜆)
• List ← List ∪msg
• A : (tag) ← OSign (k,msg) :

(3) Return 1 iff msg∗ ∉ List and Vfy(k,msg∗, tag∗) = 1,

else 0.

Figure 9: The EUF-CMA security experiment for MAS.

Definition A.2 (EUF-CMA of MAS). A MAS is existentially unforge-

able under chosen message attacks (EUF-CMA) if for any PPT adver-

saries AEUF-CMA the advantage to win the EUF-CMA game shown in

Fig. 9 is negligible in 𝜆.

B AN EXEMPLARY JOURNAL FILE
1 Header :

2 A l l E n t r i e s Array : Ent ryArray 1

3

4 F i e l d H a s h T a b l e :

5 MESSAGE : F i e l d 2

6 _SOURCE_REALTIME_TIMESTAMP : F i e l d 1

7 DataHashTable :

8 MESSAGE= J o u r n a l s t a r t e d : Data 2

9 PRIORITY = 6 : Data 3

10

11

12 Tag 1 (seqnum : 1 , epoch : 0)

13

14 Data 1 (_SOURCE_REALTIME_TIMESTAMP = 1 6 8 6 1 3 0 9 8 1 2 4 6 1 7 5 , F i r s t

Entry : Entry 1 , N e x t F i e l d : Data 4)

15 F i e l d 1 (_SOURCE_REALTIME_TIMESTAMP , HeadData : Data 1 ,

NextHash= F i e l d 3)

16 Data 2 (MESSAGE= J o u r n a l s t a r t e d , F i r s t Entry : Entry 1 ,

N e x t F i e l d : Data 5)

17 F i e l d 2 (MESSAGE , HeadData : Data 2)

18 Data 3 (PRIORITY =6 , F i r s t Ent ry : Entry 1 , More E n t r i e s :

Ent ryArray 2 , NextHash=Data 5)

19 F i e l d 3 (PRIORITY , HeadData : Data 3)

20

21 Entry 1 (Data 1 , Data 2 , Data 3)

22 EntryArray 1 (Entry 1 , Ent ry 2 , Ent ry 3)

23 EntryArray 2 (Entry 2 , Ent ry 3)

24

25 Data 4 (_SOURCE_REALTIME_TIMESTAMP = 1 6 8 6 1 3 0 9 8 1 2 6 8 3 7 4 ,

N e x t F i e l d : Data 6)

https://doi.org/10.17487/RFC2104

Secure Logging in between Theory and Practice:
Security Analysis of the Implementation
of Forward Secure Log Sealing in Journald

, ,

26 Data 5 (MESSAGE= H e l l o World , N e x t F i e l d : Data 7)

27

28 Entry 2 (Data 4 , Data 5 , Data 3)

29 Tag 2 (seqnum : 2 , epoch : 0)

30

31 Data 6 (_SOURCE_REALTIME_TIMESTAMP = 1 6 8 6 1 3 0 9 8 1 3 0 2 8 3 8)

32 Data 7 (MESSAGE= H e l l o World a f t e r Epoch)

33 Entry 3 (Data 6 , Data 7 , Data 3)

This textual representation of a simplified journal file

shows the different data structures contained. First note the 3

EntryObjects. They encode 3 log messages with different MESSAGE,

_SOURCE_REALTIME_TIMESTAMP and the same PRIORITY. Note that

all 3 entries therefore link to the same DataObject (Data 3), and this

priority is only stored once. There is a FieldObject for each of the

different names. The FieldObjects link to the start of a linked list

(using the NextField property) of all their DataObjects with their

HeadData property. We have two EntryArrays. The first one is a

list of all EntryObjects contained in the journal. The second one

is a list of all referencing Data 3. Note that the first entry is stored

inside the DataObject and DataObjects with only one entry do

not have an EntryArray.

The two HashTables at the beginning provide quick access by

data to all existing FieldObjects and DataObjects. Hash colli-

sions between FieldObjects (like between Field 1 and Field 3)

are resolved as linked lists with the NextHash property. Similarly

hash collisions between DataObjects (like Data 3 and Data 5) are

resolved with a NextHash field there.

The first TabObject is inserted directly under the header. An-

other one is inserted after the corresponding Entry. They share the

same epoch and thereby the same key, as they have been created

in the same sealing interval.

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Seekable Sequential Key Generator SSKG
	2.2 Forward Secure Message Authentication Scheme FSMAS

	3 Security Analysis of a Forward Secure Symmetric Log Scheme
	3.1 Forward Secure Seekable Message Authentication
	3.2 Construction of a Forward Secure Seekable Log Scheme
	3.3 Security Notion for a Log Scheme

	4 The Journal File Format
	4.1 Structure
	4.2 Sealing with the Journal File Format

	5 Specific problems
	5.1 Sealing older entries with newer keys (CVE-2023-31439)
	5.2 Attack on Completeness (CVE-2023-31438)
	5.3 Missing verifications of fast access structures (CVE-2023-31437)

	6 Implementation
	7 Disclosure
	8 conclusion
	References
	A Message Authentication Scheme
	B An exemplary journal file

