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ABSTRACT This paper questions the side-channel security of central reduction technique, which is
widely adapted in efficient implementations of Lattice-Based Cryptography (LBC). We show that the central
reduction leads to a vulnerability by creating a strong dependency between the power consumption and the
sign of sensitive intermediate values. We exploit this dependency by introducing the novel absolute value
prediction function, which can be employed in higher-order non-profiledmulti-query Side-Channel Analysis
(SCA) attacks. Our results reveal that – compared to classical reduction algorithms – employing the central
reduction scheme leads to a two-orders-of-magnitude decrease in the number of required SCAmeasurements
to exploit secrets of masked implementations. We particularly show that our approach is valid for the prime
moduli employed by Kyber and Dilithium, the lattice-based post-quantum algorithms selected by NIST. We
practically evaluate our introduced approach by performing second-order non-profiled attacks against an
open-source masked implementation of Kyber on an ARM Cortex-M4 micro-processor. In our experiments,
we revealed the full secret key of the aforementioned masked implementation with only 250 power traces
without any forms of profiling or choosing the ciphertexts.

INDEX TERMS Side-Channel Analysis, Correlation Power Analysis, Post-Quantum Cryptography, Kyber,
Dilithium, Plantard, Montgomery, Arithmetic Masking, Centered Reduction

I. INTRODUCTION

Shor’s algorithm [1] violates the security of traditional public-
key cryptography including RSA and ECC through quantum
computing. As the development of a larger quantum computer
in the number of qubits is being reported each year, the quan-
tum threat gradually becomes a reality. On the other hand,
NIST’s post-quantum cryptography contest is in the fourth
round, with already selected algorithms. Among the winners,
the lattice-based algorithms form the majority: Kyber [2],
Dilithium [3] and Falcon [4]. Although the post-quantum
algorithms can resist quantum computing attacks, special
attention should be paid to SCA attacks [5], [6] when these
algorithms are implemented in both hardware and software.

The core operation in LBC is the polynomial multiplica-
tion. For an efficient implementation, the Number Theoretic
Transform (NTT) stands out as an excellent approach. NTT is
indeed a special form of the Fast Fourier Transform (FFT) that
operates on a discrete space. An important building block that
significantly impacts the efficiency of the NTT algorithm is
the modular reduction of integers, concerning the arithmetic
for coefficients of polynomials. Classical techniques such as
the Montgomery reduction [7] and Barrett reduction [8] are
already applied to LBC by the existing literature [9]–[13].

The same holds for the relatively new Plantard reduction
scheme [14], [15]. One important distinction regarding the
integer reduction in LBC compared to the RSA and ECC is
the bit-length of the number to be reduced. LBC requires a
reduction of relatively smaller numbers, that usually fit into a
single computer word. For instance, Kyber employs a 12-bit
coefficient modulus and Dilithium a 23-bit one. Moreover,
the signed representation of integers over a modulus instead
of the classical unsigned representation is more desired in
LBC [9]–[12], [15]. That is to make a central reduction (a.k.a
centered reduction) to the range [−q/2, q/2] instead of [0, q)
for an odd modulus q. The Plantard and Montomgery algo-
rithms enable 2-cycle implementation of central reduction
on the ARM Cortex-M4 [10], [11], [15] while Plantard is
superior since the output of Montgomery reduction requires
an additional subtraction or addition to be correct.

A. MAIN MOTIVATION.

Overall, the central reduction improves the efficiency of LBC
implementations; however, it also creates new possibilities
for SCA attacks. A well-known fact regarding the processors
realized by CMOS technology is that the power consumption
has a relatively strong dependency on the Hamming weight
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(HW) of the processed data. Respectively, the sign of a num-
ber in [−q/2, q/2] becomes the dominant factor influenc-
ing its power consumption considering 2’s complement to
represent negative numbers. Motivated by this, we explore
the characteristics of the central reduction in terms of SCA
leakage and exploit them, particularly in the presence of a
masking countermeasure.

B. RELATED WORK ON MASKING LBC.
It is well known that masking countermeasures provide a
promising way of mitigating EM-/power-based SCA attacks.
Accordingly, the existing literature on masking LBC is al-
ready quite rich. Some examples applied on Kyber [16]–[19],
Dilithium [20]–[22], Saber (another promising post-quantum
lattice-based Key Encapsulation Mechanism (KEM)) [23],
[24] and generic lattice-based encryption [25]–[27]. Indeed,
masking the polynomial arithmetic is considered trivial and is
achieved by simply repeating the operations. For instance, a
polynomial multiplication a · b can be performed through the
random shares a0 and a1 individually while satisfy a = a0 +
a1, instead of accessing a in plain. On the other hand, masking
the non-linear components of algorithms involves specialized
techniques. One simple example is the compression operation
in Kyber, which aims to identify the interval each coefficient
of a given polynomial a resides. It is easy to see that such
an operation cannot be performed independently on the arith-
metic shares, as it is the case with polynomial multiplication.
A masked implementation of such non-linear operations typ-
ically utilizes arithmetic-to-Boolean mask conversion [16]–
[18], [23]–[26] while a Boolean masking scheme ensures
a = a0 ⊕ a1. Overall, the existing work regarding masking
LBC aims to achieve provable first- or higher-order security
by introducing more efficient solutions for masking the non-
trivial parts of the algorithms. Particularly, current masked
implementations on the ARM Cortex-M4 [16], [17], [21],
[23], [28] inherit the polynomial arithmetic from the well-
known pqm4 library [29], known for providing state-of-the-
art yet unprotected implementations of post-quantum algo-
rithms. To the best of our knowledge, there has been no work
questioning the difficulty of possible SCA attacks on the
linear parts as long as the implementations are proven to be
secure in the desired security order.

C. RELATED WORK ON SCA ATTACKS AGAINST LBC.
On the other hand, there exist many SCA attacks in the litera-
ture that target implementations of LBC. They can be seen in
two distinct classes: profiled SCA attacks such as [30]–[38]
and non-profiled SCA attacks such as [39]–[42]. The non-
profiled attacks commonly target polynomial multiplication
for which a secret polynomial is multiplied with a publicly
known polynomial that changes based on the input given to
the victim implementation. In [39], the authors show that
the performance of non-profiled attacks against the polyno-
mial multiplication directly depends on the employed mul-
tiplication algorithm as well as on the parameters such as
the coefficient modulus. While for some instances of LBC,

the non-profiled attacks can take a relatively long time to
retrieve secret polynomials, acceleration is possible in certain
scenarios by collecting more measurements, e.g. as shown
in [40], [41] for distinct implementations. The authors of [41]
particularly focused on so-called incomplete NTT, a special
case of NTT that is employed in efficient implementations
of both Kyber and Dilithium on the ARM Cortex-M4 [29].
Besides, it is shown in [42] that the polynomial multiplication
can be also effectively targeted in the case of hardware im-
plementations. Except [41], the aforementioned non-profiled
attacks target unprotected implementations, i.e. not masked.
On the other hand, profiled attacks demand for a stronger
adversary model. Particularly, a freely accessible device for
profiling that is identical to the victim must be available.
Nevertheless, the majority of published SCA attacks on LBC
benefit from a profiling phase. To this end, several operations
of LBC have been selected as the target of these attacks.
Among them, [30]–[32] focus on the NTT transformation.
The attack presented in [30] is distinctive by revealing single-
trace vulnerabilities of LBC. It should be emphasized that if
the masks during the profiling phase are known (i.e. they are
also considered in the profiles), single-trace profiling attacks
cannot be avoided by masking, since SCA leakage of a single
execution is measured, whehre the masks can also be revealed
via the profiles. The authors of [33] specifically focus on the
multiplication of polynomials with small coefficients. The
works [34]–[36] present attacks on encoding/decoding func-
tions that transform binary input into a polynomial or vice
versa. We should highlight that [35] presents only a message
recovery attack that aims to retrieve the decapsulatedmessage
rather than the secret key. The target of [37] is the sampling of
challenge polynomials, which have a limited number of non-
zero coefficients that are also small in magnitude. Table 1 for-
malizes the above discussion and positions our study among
the attacks existing in the literature.

D. OUR CONTRIBUTIONS.
Below is a list of the contributions we have made in this work.
• To the best of our knowledge, we present the first study
in the literature that is particularly developed to effectively
exploit the leakage of SCA-protected implementations of
LBC without the need for profiling.

• We show that the central reduction techniques that are
widely adapted in LBC lead to a source of effectively
exploitable SCA leakage. Particularly, information about
the sign of arithmetic shares would ease exploiting the
leakage and conducting successful key-recovery attacks.

• We show that the employed coefficient modulus as well
as the reduction algorithm and the machine word size af-
fect the SCA leakage of masked implementations of LBC,
particularly making non-profiled attacks easier to be con-
ducted. For the aforementioned scenarios, we particularly
present the so-called optimal correlation and the number of
traces required for different noise levels. Our study reveals
that SCA attacks on masked implementations with central
reduction are significantly more noise-tolerant.
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TABLE 1: Qualitative summary of state-of-the-art SCA attacks on implementations of LBC.

Work Class Algorithm Implementation Masked Target Function

this work Non-Profiled Dilithium✰, Kyber Cortex-M4♣ ✓✓ poly. mult.

[39] Non-Profiled
Kyber, Saber,

NTRU1 Cortex-M4✭ ✗ poly. mult.

[40] Non-Profiled Dilithium Ref. C ✗ poly. mult.
[41] Non-Profiled Dilithium, Kyber Cortex-M4✭ ✓ poly. mult.
[42] Non-Profiled Dilithium Hardware ✗ poly. mult.
[30] Profiled ✈ Cortex-M4✧ ✓ NTT
[31] Profiled Dilithium Ref. C ✗ NTT

[31] Profiled Dilithium Ref. C✴ ✓
sparse

poly. mult.
[32] Profiled Kyber Ref. C ✗ NTT
[32]✉ Profiled Kyber Cortex-M4✭ ✗ bin. to poly.

[33] Profiled Dilithium ✤ ✗
small

poly.mult
[34] Profiled Kyber, Saber Cortex-M4❧ ✓ poly. to bin.
[35]✉ Profiled Kyber Cortex-M4❧ ✓ bin. to poly.
[36] Profiled Dilithium Ref. C ✗ bin. to poly.

[37]✉ Profiled
Dilithium, NTRU1

NTRU Prime2
Ref. C

Cortex-M4✭ ✓
small poly.
sampling

✓✓ presents a novel technique to tackle masking without the need for profiling
✰ attacks in the simulation
✭ from [43], ✧ from [25]
❧ from [16], ♣ from [26]
✈ generic to NTT applications in LBC
✴ attacks through an implementation submitted for another project [44]
✤ not reported
✉ challenge polynomial/message-recovery attack
1 a post-quantum lattice-based KEM [45]
2 a post-quantum lattice-based KEM [46]

• We introduce a novel prediction function for non-profiled
SCA attacks, namely the absolute value prediction function
that well predicts the leakage caused by the adaption of
central reduction in masked implementations of LBC. We
show that our introduced prediction function is optimal.

• We practice our approach against a first-order masked
implementation of the lattice-based post-quantum KEM
Kyber. We experimentally show that only a few hundred
traces are required to successfully mount a key-recovery
attack.

II. BACKGROUND
A. NOTATIONS
The notations we followed in the paper are as follows.

• Vectors are represented by bold lowercase letters such
as x, while matrices are represented by bold uppercase
letters such as X. Polynomials are represented by low-
ercase regular letters such as x. Vector-to-vector, matrix-
to-vector, and scalar-vector multiplications are denoted
by · while element-wise multiplication of vectors or
matrices is denoted by ⋆. The i-th element (coefficient)
of a vector (polynomial) is denoted by the subscripts,
such as xi (xi).

• The central reduction to the range [−q/2, q/2] is explic-
itly denoted by mod±q, while mod q denotes the regular
modular reduction to the range [0, q). We also use mod q
when the output range is not important such as in high-
level representation of algorithms, i.e. pseudocodes. The
set of unsigned integers in [0, q) is denoted by Zq.

Accordingly, ±Zq represents the signed representation
of integers modulo q, namely the integers in the range
[−q/2, q/2]. We assume an odd q unless the opposite is
explicitly stated.

• Random variables are denoted by uppercase letters such
as X . P(·) denotes the probability function, E [·] the
expected value function, and N (µ, σ) the noise follow-
ing a Gaussian distribution with mean µ and standard
deviation σ.

• Unless otherwise stated, the logarithm is base 2, and ⊕
denotes the exclusive OR.

• Shares of variables are represented by superscripts, such
as X = X0 + X1.

• B(X) denotes the number of bits needed to represent the
unsigned integer X . β denotes the machine word size. In
this paper, either β = 16 or β = 32.

• Wβ(X) represents the Hamming weight (HW) of a
signed integer X in β-bit 2’s complement representation.

• S(X) : Z → {0, 1} returns the non-negativeness (sign)
of the integer X :

S(X) =

{
1, if X ≥ 0

0, otherwise
. (1)

B. Lattice-Based Cryptography (LBC)
Here, we briefly review lattice-based post-quantum algo-
rithms from an SCA attack perspective. We focus on Ky-
ber [2] and Dilithum [3], which are among the algorithms
selected by NIST at the end of the third round of the post-
quantum cryptography standardization process. Afterwards,
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we discuss the details of the NTT, which is a crucial primitive
for efficiently implementing polynomial arithmetic in LBC.

Most of the lattice-based cryptosystems, including Kyber
and Dilithium, operate over the ring of polynomials Rq =
Zq[x]/(X n + 1) that contains polynomials up to degree n− 1
while the coefficients are in Zq. Arithmetic operations in Rq

are the main building block for implementing LBC, and it is
the main target of SCA attacks as well.

1) Kyber
Kyber [2] is a lattice-based post-quantum KEM, a variant
of the LPR encryption scheme [47]. For all security levels,
Kyber employs q = 3329 and n = 256 to instantiate
Rq. The key pair is generated by the MLWE [48] equation
t = A · s + e. The vector of polynomials e ∈ Rk

q is
considered as noise and thrown away after the key generation
while s ∈ Rk

q forms the secret key. On the other hand,
A ∈ Rk×k

q and t ∈ Rk
q are public. The polynomials in both

s and e are short, whose coefficients are sampled from the
central binomial distribution Bη with error distribution η. The
sensitive operation in a KEM in terms of non-profiled SCA
attacks is the decapsulation function where the secret key is
involved [39], [41]. The decapsulation in an LPR scheme such
as Kyber is quite simple: v−sT ·u, where u ∈ Rk

q and v ∈ R
together form the ciphertext. Related parameters k and η are
chosen depending on the NIST security level as {2, 3, 4} and
{2, 4, 2}, respectively.

2) Dilithium
Dilithium is a lattice-based post-quantum signature following
the Fiat-Shamir schemewith aborts approach [49]. It employs
q = 223 − 213 + 1 = 8380417 and n = 256. The secret-
public key pair for Dilithium is generated through the MLWE
equation similar to Kyber, i.e. t = A · s1 + s2. Distinctively,
both s1 and s2 are saved as the secret key while the pseudo-
randomly generated matrix A ∈ Rk×l

q and vector t ∈ Rl
q

are public as in Kyber. The coefficients of the secret polyno-
mials in s1 and s2 are short as well. Specifically, the secret
coefficients are sampled uniformly at random in [−η, η]. A
natural target for a non-profiled SCA attack on Dilithium is
the signature function as it involves the secret key [40], [41],
[50]. More precisely, the multiplications c · s1 and c · s2
are targeted, where – among the outputs of the signature –
the challenge polynomial c ∈ Rq is public and depends
on the input message. The parameters (k, l) are chosen as
{(4, 4), (6, 5), (8, 7)} with respect to the security level. η is
chosen the same as in Kyber.

C. Number Theoretic Transform (NTT)
NTT allows efficient multiplication of polynomials in Rq.
Given two polynomials a ∈ Rq and b ∈ Rq, the NTT
multiplication is performed as follows.

NTT−1
(
NTT(a) ⋆ NTT(b)

)
(2)

To simplify the notation, we denote the NTT transformation
for polynomials using ‘hat’ for the rest of the paper, i.e.

â = NTT(a). The element-wise multiplication in the NTT
domain, â ⋆ b̂, is known as the base multiplication.
NTT is considered as an application of the Chinese Re-

mainder Theorem (CRT) to Rq. In case q ≡ 1 mod 2n,
a primitive 2n-th root of unity ζ2n ∈ Zq exists for which
ζn2n ≡ −1 mod q. This setting allows a complete NTT over
Rq, where xn+1 can be factored down to the linear factors as∏n−1

i=0 (x − ζ2i+1
2n ). The NTT transformation indeed computes

the remainder from the division of its input polynomial by
(x − ζ2i+1

2n ) for each i, resulting in a vector of n elements,
i.e. in Zn

q. Consequently, the base multiplication is performed
coefficient wise, i.e. a modular multiplication for each i.
The forward and backward NTT transformations can be

efficiently implemented in log(n) steps. Each step is called an
NTT layer. Indeed, the polynomial is recursively split using
so-called butterfly units until a linear degree is reached. The
forward transformation is usually implemented with Cooley-
Tuckey (CT) butterflies [51] while the backward transfor-
mation is commonly realized using Gentleman-Sande (GS)
butterflies [52] although it is not a must. For an input pair of
coefficients a0 and a1, the CT butterfly computes the output
pair by

â0 = a0 − a1 · δ, â1 = a0 + a1 · δ, (3)

where δ is called the twiddle factor, a power of ζ2n.

1) Incomplete NTT
Sometimes, due to performance optimizations or restrictions
of the operated ring of polynomials, NTT is not computed
for all log(n) layers [9], [11], [53]–[55]. This is referred to as
incompleteNTT. In case the NTT is computed form < log(n)
layers, â for a ∈ Rq is a vector with 2m elements and
each element is a polynomial with a degree of log(n) − m.
Then, the base multiplication refers to the multiplication of
degree-(log(n) − m) polynomials. For instance, Kyber em-
ploys q = 3329 and n = 256 allowing a 7-layer NTT while
log(n) = 8. Therefore, the base multiplication in this setting
is achieved by performing 128 individual multiplications of
degree-1 polynomials, as demonstrated in Algorithm 1.

Algorithm 1 Base Multiplication for (log(n) − 1)-layer in-
complete NTT

Input: ŝ, ĉ; the resulting vectors from (log(n)− 1)-layer
forward NTT transformation on s, c ∈ Rq

Output: ẑ = ŝ ⋆ ĉ
1: for ∀i ∈ {0, . . . , n/2− 1} do ▷ Compute ẑi = ŝi · ĉi
2: ẑi,0 ← ŝi,0 · ĉi,0 + ŝi,1 · ĉi,1 · δi mod q ▷ δi is a

power of ζ2n
3: ẑi,1 ← ŝi,1 · ĉi,0 + ŝi,0 · ĉi,1 mod q
4: end for

D. MODULAR ARITHMETIC
As follows, we briefly review the modular reduction tech-
niques that are adapted in LBC. Compared to ECC or RSA,
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the modular arithmetic in LBC deals with relatively shorter
integers. Additionally, operating with signed integers in mod-
ular arithmetic proves to be more efficient in LBC [9]–[12],
[15]. The main reason for this is due to the fact that it sim-
ply eliminates the need for an extra addition for preventing
negativeness in the butterfly units (see Equation (3)). Table 2
summarizes state-of-the-art reduction schemes implemented
on the ARM Cortex-M4. It can be seen that the smallest
latency in terms of the number of clock cycles is achieved
by central reduction techniques [9], [11], [15], whose output
range is centered around 0. As a result, in addition to the NTT
transformation, central reduction is also preferred to speed up
the base multiplication.

1) Barrett Reduction
The Barrett reduction was originally proposed in [8]. Its main
idea is to subtract a factor of the modulus q from the number
to reduce by approximating the division of the number by q
through a pre-computed factor and shifting. A signed version
of Barrett reduction adapted for LBC is proposed in [13]. The
input range of the signed Barrett reduction is [−β/2, β/2),
and the output range is [0, q]. A 9-cycle implementation of
the signed Barrett reduction for packed integers dedicated to
ARM Cortex-M4 is presented in [11]. Packing of integers
refers to storing two β = 16-bit integers in a 2β = 32-
bit register, which is then passed to the packed reduction
function. Later, a 6-cycle implementation of Barrett reduction
for packed integers was reported in [9], which performs a
central reduction with an output range [−q/2, q/2].

2) Montgomery Reduction
The Montgomery reduction is first proposed in [7]. Similar
to the Barrett reduction, it enables a constant time reduction
by eliminating the need for division. A signed version of
Montgomery reduction is presented by [13], with an input
range [−q · β/2, q · β/2) and output range (−q, q). While
a 3-cycle implementation on ARM Cortex-M4 was initially
given by [12] for β = 16, the state-of-the-art implementation
of Montgomery reduction [10], [11] takes 2 cycles for both
β = 16 and β = 32. Also, an 8-cycle implementation
of Montgomery reduction for packed integers was presented
in [11]. We would like to note that a final correction may
be required after the signed Montgomery reduction to find
the residue in the signed range [−q/2, q/2] which is the
ultimate goal. However, we computationally found out that
the correction step is not neededmost of the time. In particular
for q = 3329 and β = 16, only %0.1 of the corresponding
input range requires a correction while the output is already in
[−q/2, q/2] for the rest. Therefore, we study the output range
[−q/2, q/2] for the sake of simplicity for the rest of this paper.

3) Plantard Reduction
The Plantard reduction [14] is a more recent algorithm com-
pared to its counterparts, Montgomery and Barrett. While the
original Plantard reduction operates on unsigned integers, the
authors of [15] proposed an improved version, which operates

on signed integers to be employed in LBC. The output range
of the signed version is [−q/2, q/2], the same as the state-of-
art Barrett reduction. One advantage of the Plantard reduction
is that it enables 2-cycle modular multiplication by a constant,
outperforming the 3-cycle Montgomery multiplication. The
multiplication by a constant is beneficial for implementing
the butterfly units during the NTT transformations (see Equa-
tion (3)). On the other hand, the improved Plantard reduc-
tion also takes 2 cycles on ARM Cortex-M4, the same as
Montgomery. However, Plantard’s 2-cycle implementation
enables a larger input range and a smaller output range that
is desirable. Specifically, the Plantard reduction generates
the output in the exact range [−q/2, q/2]. In other words,
it does not require any final correction. This is a significant
improvement over the 2-cycle Montgomery reduction whose
output range is (−q, q). As a side note, packed reduction takes
5 cycles.

III. NON-PROFILED SCA ATTACK ON NTT
MULTIPLICATION
In this section, we present the general outline of a non-
profiled power SCA attack on an implementation of a poly-
nomial multiplication in the NTT domain.

A. ATTACK OUTLINE
1) Leakage Model
Let us first define the assumed leakage function of the target
device based on the random variableX defined in the spaceX ,
constant scaling factor α, and noise sampled from a Gaussian
distribution with mean µ and standard deviation σ, which is
independent of X as

L(X) = α · Wβ(X) +N (µ, σ). (4)

L(X) is commonly used to simulate SCA leakage of micro-
processors in the presence of noise when X is processed.

2) Adversary Model
Consider the base multiplication ŝ ⋆ ĉ where s ∈ Rq is a
secret polynomial, and c ∈ Rq is a public polynomial. The
goal of an adversary is to reveal ŝ through a non-profiled SCA
attackwhere the attacker has access to the power consumption
pattern of the underlying device during the computation of
ŝ⋆ ĉ. In a non-profiled attack, the attacker samples the leakage
of ŝ ⋆ ĉ for ν distinct computations where ĉ changes for
each measurement. The set of samples recorded for each
measurement is referred to as a trace.

3) Attack on Complete NTT
As previously mentioned, the base multiplication in the NTT
domain is performed element wise. Therefore, each ŝi can be
attacked independently using the knowledge of ĉi. To retrieve
ŝi, a set of hypotheses is made. Each hypothesis is tested by
evaluating the target function, g(ŝi, ĉi), thereby statistically
comparing the observed leakages (traces). We use the above-
defined random variable X as the sensitive output of the
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TABLE 2: Summary of state-of-the-art reduction implementations on ARM Cortex-M4.

Scheme β Input
Range

Output
Range

Packed Cycles

Montgomery [11] 16 [−q · β/2, q · β/2) (−q, q) ✗ 2
Montgomery [10] 32 [−q · β/2, q · β/2) (−q, q) ✗ 2
Montgomery [11] 16 [−q · β/2, q · β/2) (−q, q) ✓ 8
Barrett [13]✴ 16 [−β/2, β/2) [0, q] ✗ 3
Barrett [9] 16 [−β/2, β/2) [−q/2, q/2] ✓ 6

Plantard [15] 16 [−q222α′
, q222α

′
]✰ [−q/2, q/2] ✗ 2

Plantard [15] 16 [−q222α′
, q222α

′
]✰ [−q/2, q/2] ✓ 5

✴ gives the definition of the algorithm but does not present an implementation on ARM Cortex-M4.
✰ α′ is a parameter of Plantard reduction that satisfies q < 2β−α′−1.

target function, X = g(ŝi, ĉi), as we consider ĉi as a random
variable changing over measurements. In this study, the target
function to reveal ŝi, is the multiplication g(ŝi, ĉi) = ŝi · ĉi
mod q (or mod±q if the reduction is central). Therefore,
X = Zq (or X = ±Zq), and there are q hypotheses to
test. Accordingly, we use X ′ = g(ŝ′i , ĉi) to denote the eval-
uation of the chosen target function for the hypothesis ŝ′i . In
a Correlation Power Analysis (CPA) attack [6], the output of
the target function is transformed into hypothetical leakages
using a prediction functionwith HW function,Wβ(X ′), being
the most frequently used prediction function. CPA is based
on estimating the correlation, e.g. by Pearson correlation
coefficient, between measured and hypothetical leakages,
ρ̂(Wβ(X ′),L(X)). With a sufficient number of traces, the at-
tacker expects to obtain ŝi = argmaxŝ′i (ρ̂ (Wβ (X ′) ,L(X))).
Since the attacker may not know which point in time corre-
sponds toL(X) in the traces, the procedure is usually repeated
for a subset of all samples points.

4) Attack on Incomplete NTT
For (log(n) − 1)-level incomplete NTT such as in Kyber, q2

hypotheses should be examined since ŝi · ĉi is a multiplication
between degree-1 polynomials (see Algorithm 1) [39], [41].
In this case, the attacker can use the lower-degree coefficient
g(ŝi, ĉi) = ẑi,0 for ẑi = ŝi · ĉi, the higher-degree coefficient
g(ŝi, ĉi) = ẑi,1, or both coefficients g(ŝi, ĉi) = {ẑi,0, ẑi,1}
as the target. If lower- or higher-degree coefficients are used
alone, X = Zq, similar to when NTT is complete. On the
other hand, X = Z2

q if both coefficients are involved in the
target function. Since a number and its additive inverse in 2’s
complement form1 are correlated, the number of hypotheses
can be reduced to q/2 and q2/2 for complete and incomplete
NTT, respectively. In this manner, the attacker learns either
the actual secret or its additive inverse.

5) Application to Kyber and Dilithium
It is important to emphasize that the adversary model as well
as the target function explained above can directly be applied
to both Kyber and Dilithium. More precisely, performing an

1Negative integers in 2’s complement form are represented by inverting all
bits of the corresponding positive integer and adding 1 to the result.

attack on the leakage of ŝ ⋆ ĉ to reveal ŝ corresponds to
targeting sT · u in the case of Kyber and targeting c · s1 or
c · s2 for Dilithium (see Section II-B).

B. SECOND-ORDER ATTACK
1) Masking
The most promising way to defeat the above-explained SCA
attack is masking [16]–[27]. Indeed, masking of the poly-
nomial multiplication is straightforward from an algorithmic
perspective, as it can be seen as a linear operation. For a
uniformly and randomly generated share s0, one computes
the other share as s1 = s − s0. Then, the computation ŝ ⋆ ĉ
is performed on the shares as ŝ0 ⋆ ĉ and ŝ1 ⋆ ĉ. Notice that,
ŝ⋆ ĉ = ŝ0⋆ ĉ+ ŝ1⋆ ĉ. Accordingly, ŝi · ĉi = ŝ0i · ĉi+ ŝ1i · ĉi for all
i. This is referred to as arithmetic masking. In particular, the
order ofmasking is defined by the number shares representing
the secrets. Here in the given example, first-order masking is
applied as two shares are used. Since ŝi · ĉi is not computed
in plain, the leakage of every single point in SCA traces is
expected to be independent of ŝi and hence independent of the
estimated hypothetical leakage, e.g.Wβ(X ′). It is noteworthy
to mention that an assumed condition for such a claim is that
each share s0 and s1 should individually follow a uniform
distribution.

2) Combination Function
In order to conduct successful CPA attacks on a first-order
masked implementation, the leakage associated to two shares
should be combined using a pre-processing function. Since
the shares are processed individually (not simultaneously),
their associated leakages appear in different time samples.
Intuitively for the application studied in this work, the attacker
combines the observed leakages associated to X0 = g(ŝ0i , ĉi)
and X1 = g(ŝ1i , ĉi) while mean-free product is known as the
most efficient pre-processing (combination) function [56],
[57]. For leakages of the random shares, L(X0) and L(X1),
the mean-free product is defined as

C(L(X0),L(X1)) = (L(X0)−E [L(X0)])·(L(X1)−E [L(X1)])
(5)

The mean-free product is the most preferred combination
function because it effectively reduces noise by removing

6
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constant offsets, thereby enhancing the signal-to-noise ra-
tio and emphasizing relevant variations. Needless to say,
E [L(X0)] and E [L(X1)] are approximated by the sample
means over the trace set. For sake of completeness, we in-
clude the absolute difference combination function [58] in
Appendix , which is also an efficient and frequently used
combination function.

3) Optimal Prediction Function (OPF)
[56] shows that an optimal prediction function must be
computed in order to efficiently perform a second-order CPA
attack by means of a combination function

fopt(x) = E
[
C
(
L
(
X0

)
,L

(
X1

)) ∣∣X = x
]
. (6)

Recall that X = X0 + X1 mod q (or mod ±q). In simple
words, the expected value of the combination function is
calculated for the given unmasked value which can be hy-
pothetically computed. A CPA attack performed on a masked
implementation by means of such a pre-processing function
is referred to as Higher-Order CPA (HOCPA). Similar to
the first-order attack, the attacker estimates the correlation
ρ̂(fopt(X ′), C(L(X0),L(X1))) to rank the hypotheses. The
correlation achieved by fopt and the correct hypothesis is
referred to as the optimal correlation, denoted by ρ̂opt =
ρ̂(fopt(X), C(L(X0),L(X1))). In this study, we use HOCPA
with the mean-free product as the distinguisher and discuss
the optimal prediction function and its efficiency for the
presented adversary model in different reduction scenarios.
However, we replicate some of the experiments discussed in
the subsequent sections for the absolute difference combina-
tion function.

4) Conditioning on Zero-Values
As the chosen target function is a multiplication for this study,
one can fine-tune the optimal prediction function by consid-
ering zero-value public data, i.e. ĉi = 0. Notice that for the
complete NTT, X = 0 if and only if ĉi = 0 (assuming ŝi ̸= 0),
because of the speciality of 0 in multiplication. Then, X0 and
X1 become 0 as X j = ŝji · 0 and fopt(0) = E [C(Y0,Y1)|X0 =
0,X1 = 0] = α2 · (E [Wβ(X)+N (µ, σ)])2, see Equation (4).
When the NTT is incomplete, X can be 0 even though ĉi is
non-zero, because the target X is the addition of two multipli-
cations which can sum up to 0. Recall that X is a function of
ẑi,j in this case, which is formulated in Algorithm 1. However,
since having ĉi = 0 is less likely for the incomplete NTT
(1/q2 for ĉi,0 = ĉi,1 = 0, assuming uniformly random ĉi) we
do not concentrate on this case.

IV. LEAKAGE OF SIGNED INTEGERS MODULO q
In this section, we study the distribution of HW of the signed
representation of integers modulo q, i.e. the effect of cen-
tral reduction on HW. Accordingly, we compare signed and
unsigned arithmetic in terms of SCA leakage. We evaluate
the primes that are employed in Kyber and Dilithium with
q = 3329 and q = 8380417, respectively, and study the car-
rier primes that are employed for Dilithium to perform short

polynomial arithmetic [9], namely q = 257 for Dilithium2
and Dilithium5, and q = 769 for Dilithium3. We should
note that masking the short polynomials in their range is
possible [59]. One important factor for computing the HW of
negative integers is the machine word size β which does not
have any effect on the HW of positive integers. The machine
word size is usually β = 16 for q = 257, q = 769, and
q = 3329 while β = 32 for q = 8380417 in software imple-
mentations. Unless otherwise stated, we take these values for
β in the studied adversary model. However, we discuss the
role of distinct values of β in the SCA leakages.

A. HW AS A SIGN INDICATOR
The main observation that led to this study is the clear separa-
tion of HW of the non-negative side of ±Zq, namely [0, q/2]
and the negative side [−q/2, 0). As an intuition, consider
q = 257; the positive interval of ±Z257 corresponds to
[0, 128], for which the maximum HW is Wβ(127) = 7. In
other words, the HW of integers [0, 128] lies in [0, 7]. On
the other hand, the negative side of ±Z257 corresponds to
[−128, 0), where the HWs are in the range of [9, 16] assuming
2’s complement representation with machine word size β =
16. Consequently, the HW of a number in ±Z257, reveals its
sign immediately. Figure 1 visualizes our observation for all
the primes analyzed in this study. Note that there is an overlap
between the HW ranges [−q/2, 0) and [0, q/2], for q = 769,
q = 3329, and q = 8380417. For instance, the HW of non-
negative integers in±Z3329 are distributed in [0, 10]while that
of negative integers are in the range [6, 16]. Therefore, there
is an overlap for five possible HWs in the interval [6, 10] out
of a total of 17 possible values assuming the machine word
size β = 16.
Based on our observation in Figure 1, we write the follow-

ing equality forWβ(X) where X ∈ ±Zq.

Wβ(X) = S(X) · γ + (1− S(X)) · (β − γ) + e, (7)

for some inner-cluster error term e ∈ E where E [e] = 0 and
0 < γ < β/2. Note that γ stands for the mean of HWs
given X is non-negative, i.e. γ = E [Wβ(X) | S(X) = 1].
Similarly, let γ− denote the mean HW given X is negative,
γ− = E [Wβ(X) | S(X) = 0]. Table 3 demonstrates the val-
ues of γ and γ− depending on q. Note that γ− ≈ β−γ, which
allows us to simplify Equation (7). Naturally, γ− approaches
γ as the so-called gapM(q, β) = β − log(q) decreases. On
the other hand, the expected value E [|e|] is not affected by
β while it slightly increases as q gets larger. Additionally,
whether the integers modulo q are represented in signed or
unsigned form has no impact on this expected value.

We would like to note that the argument made in this sec-
tion does not apply to the unsigned representation of integers
modulo q, namely Zq. It can be seen in Figure 2 that no clear
ranges can be identified for unsigned integers when observing
their HW. In LBC, the upper half of Zq is considered as
negative, namely [−q/2+ q, q− 1]. However, Table 3 shows
that the mean of HW of negative side, denoted by γ∗, is
approximately γ + 1, independent of β and q.

7
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FIGURE 1: Distribution of HW of integers in [−q/2, q/2] in 2’s complement representation.

X

W
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)

FIGURE 2: Distribution of HW of integers in [0, q) for q =
257.

q 257 769 3329 8380417

γ 3.48 4.16 5.19 10.99

γ− β − 3.5 β − 4.17 β − 5.2 β − 11

γ∗ 4.5 5.16 6.19 11.99

E[|e|] 1.33 1.4 1.55 2.34

TABLE 3: The mean and standard deviation of HW for posi-
tive and negative integers with distinct q. γ denotes the mean
of HWs for positive integers in ±Zq, namely [0, q/2]. γ− de-
notes the mean of HWs for negative integers in ±Zq, namely
[−q/2,−1]. γ∗ denotes the mean of HWs for [q/2+1, q−1],
the set of integers in Zq which are considered to be negative
in LBC, and e is the error term defined in Equation (7).

B. IMPACT OF SIGNED ARITHMETIC ON OPTIMAL
CORRELATION
To formally assess the impact of signed arithmetic on SCA
leakages, we compare the optimal correlation achieved by
the state-of-the-art combination function, mean-free product,
between the cases when the modular reduction is central
and when it is non-central. For consistency and comparison
purposes, we also provide correlation results for the unpro-
tected scenario. Figure 3 presents the estimated (optimal)
correlation for distinct prime q and machine word size β and
reduction scenarios. It can be seen that ρ̂opt estimated for cen-
tral reduction achieves more than twice of the one estimated
for the non-central reduction, particularly for β = 16 and
β = 32. Indeed, ρ̂opt is an increasing function of β for a
given q when the reduction is central, complying with our

initial observation in Table 3. As β decreases, ρ̂opt for the
central reduction reaches that of the the non-central case as
the limit. More importantly, the correlation shows a strong
resistance to noise for the signed case. For instance, when
σ = 5 and q = 257 and β = 16 (such as a masked software
implementation of Dilithium), ρ̂opt reaches ρ̂ = 0.24 while
we observe ρ̂ = 0.017 for the unsigned case. We should
refer to Table 2 showing that β increases the input range
of the reduction algorithms. However, our analysis shows
that it further increases the associated SCA leakages. It also
makes sense to compare the optimal correlation achieved in
case of Boolean masking with the other results. Similar to
what presented in [56], the correlation for Boolean masking
reaches ρ̂ = 0.35 for an 8-bit implementation in a noiseless
scenario. Similar to the non-central reduction case, this drops
rapidly with the noise, e.g. to ρ̂ = 0.02 for σ = 5.

The same pattern is be observed in the unprotected sce-
nario. Notably, the correlation is significantly greater when
the reduction is central beyond certain values of σ. In partic-
ular for σ = 4 and q = 3329, the correlation reaches ρ̂ = 0.62
with the signed representation whereas it is ρ̂ = 0.37with the
unsigned representation. However, it is important to highlight
that, for the same level of σ and q, the central reduction
increases the optimal correlation by ≈ 64×. More generally,
as illustrated in Figure 3, the impact of signed arithmetic
on SCA leakage is more prominent in the protected case.
An interesting result is that the optimal correlation with the
central reduction is relatively close to the correlation observed
in unprotected case with non-central reduction, depending on
the marginM(q, β). Specifically, for q = 257 and σ ≥ 3,
the difference in correlation between the masked unsigned
and unprotected signed cases is less than 0.05. This leads to
the conclusion that the effect of masking can diminish when
central reduction is applied.

We replicated the same analysis for the absolute differ-
ence combination function [58], as detailed in Figure 12 (in
Appendix ). Although the estimated optimal correlations are
slightly lower across all values of q, β, and σ, the impact of
β and σ follows the same pattern observed for the mean-free
product.

For this evaluation, we computed fopt as a look-up table for
each case. This has a time complexity of O(q2) to create fopt ,
which can be costly for large q, such as q = 8380417. In
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FIGURE 3: Correlation with respect to the noise standard deviation σ for different q and β, reduction strategies and protection
scenarios. For the first-order masked case, estimations are performed with 1 million samples uniformly taken for X0 and X1 and
optimal correlation ρ̂opt is reported in y-axis. Otherwise, estimations are performed with the same number of samples uniformly
taken for X and ρ̂(Wβ(X),L(X)) is reported.
⋆ Masked (solid), unprotected (dashed).
⋆ Reduction to [−q/2, q/2] for q = 257, q = 769 and q = 3329: β = 16 (black), β = 15 (blue), β = 14 (violet), β = 13

(brown), β = 12 (red), β = 11 (gray), β = 10 (purple), β = 9 (cyan).
⋆ Reduction to [−q/2, q/2] for q = 8380417: β = 32 (black), β = 31 (blue), β = 30 (violet), β = 29 (brown), β = 28

(red), β = 27 (gray), β = 26 (purple), β = 25 (cyan), β = 24 (magenta), β = 23 (green).
⋆ Reduction to [0, q) (teal).
⋆ Boolean masking only in (a) for β = 8 and q = 256 (dotted).

Section V, we deal with explicit formulas for fopt dedicated to
central reduction.

C. INFORMATION THEORETIC ANALYSIS

Additionally, we investigate the Mutual Information (MI)
between X and the HW leakage. In particular, we compute
I(X ,Wβ(X)) for the unprotected case, while in the first-
order masked case, we compute the multivariate MI, denoted
by I

(
X ,Wβ(X0),Wβ(X1)

)
. Figure 4 presents numerical re-

sults for the MI, accros different values of q, β and reduction

scenarios2. Aligning with our observations from the previ-
ous section, MI between X and the HW is higher when the
signed representation is employed, which depends on the
gap M(q, β). This result holds true for both masked and
unprotected cases. In the unprotected scenario, the increase in
MI is nearly 1, reflecting the leakage introduced by the sign.
On the other hand, with masking, the increase in MI is up to
≈ 4× with β. Recall that the correlation-based analysis also
indicates that negative impact of central reduction is more
pronounced in the masked case. Note that, MI is a employed

2MI results for q = 8380417 with masking enabled are not provided due
to the computational complexity of the experiments. Nevertheless, they can
be inferred from the results of the other primes studied.
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(a) q = 257, q = 769, q = 3329
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(b) q = 8380417

FIGURE 4: Mutual information for different q, β, reduction
strategies, and protection scenarios. For the unprotected case,
I(X ,Wβ(X)) is reported while for the first-order masked
case I

(
X ,Wβ(X0),Wβ(X1)

)
is reported in y-axis.

⋆ Reduction to [−q/2, q/2]: masked (solid), unprotected
(dashed). Reduction to [0, q): masked (circle), unpro-
tected (star).

⋆ Moduli: q = 257 (cyan), q = 769 (purple), q = 3329
(blue). q = 8380417 (black).

β
q

257 769 3329
β

q
8380417

16 −0.741 −0.732 −0.661 32 −0.706
15 −0.723 −0.706 −0.607 31 −0.684
14 −0.698 −0.671 −0.527 30 −0.655
13 −0.665 −0.621 −0.405 29 −0.618
12 −0.618 −0.545 −0.223 28 −0.570
11 −0.548 −0.427 27 −0.507
10 −0.442 −0.241 26 −0.424
9 −0.273 25 −0.314

24 −0.173
23 −0.003

TABLE 4: Estimations of ρ̂(Wβ(X), fopt(X)) for different
moduli q and β. The estimations are performed with 1 mil-
lion uniformly random samples for X while the reduction is
central.

in side-channel analysis [60], as a generic distinguisher where
the attacker is not required to predict the device’s leakage
model. Given that the leakage model in our case is linear with
HW as defined in Equation (4), and results withMI results are
consistent with our previous findings, we stick with CPA for
the remainder of the study.

V. ABSOLUTE VALUE PREDICTION FUNCTION
When the target operation is protected usingBooleanmasking
and the underlying circuit is a noisy Hamming weight of
intermediates (as in Equation (4)), it is shown by [56] that
Wβ can be effectively used as the optimal prediction function
for HOCPA attacks. However, this is not necessarily the
case when masking is arithmetic. To provide an intuition, we
estimated ρ̂(Wβ(X), fopt(X)), as proposed in [56], to measure
the accuracy of prediction functions for the studied adversary
model, presented in Table 4. The results indicate a signifi-
cant correlation loss in all scenarios. Hence, in this section,

we search for an explicit formula for the optimal prediction
function in case of arithmetic masking. Precisely, we show
that the absolute value function can be used as the optimal
prediction function when targeting arithmetic masking where
central reduction is employed.

A. DISTRIBUTION OF THE SECRET KNOWING THE SIGN
OF SHARES
Consider two uniformly random variables X0,X1 ∈± Zq and
their modular addition X0 + X1 mod±q. Given the signs of
both variables, Figure 5 demonstrates the probability distri-
bution of X0 + X1 mod±q. As depicted in the figure, there
are two cases for the distribution given the sign of both
random variables. If the sign of X0 and X1 are the same,
namely S(X0) = S(X1), then the probability is distributed
around ±q/2. Otherwise, it is centered around 0. Indeed,
the distributions correspond to the convolution of probability
distribution functions. More precisely, one of

P(X0 = x0 | X0 < 0), P(X0 = x0 | X0 ≥ 0)

is convoluted to one of

P(X1 = x1 | X1 < 0), P(X1 = x1 | X1 ≥ 0).

Now suppose that X0 and X1 are arithmetic shares represent-
ing a secret intermediate variable X = (X0,X1). Then, the
above discussion shows that information about the sign of the
individual shares leads to a strong effect on the distribution of
the secret X .

B. A MODEL FOR MEAN-FREE PRODUCT
In the previous section, we showed that the HW of 2’s com-
plement representation of an integer in [−q/2, q/2] is a noisy
indicator of its sign. Also, recall the leakage in CMOS circuits
which is highly relevant to the HW of processed data (see
Equation (4)). Now, let Y1 = L(X1) and Y1 = L(X1) denote
the leakage associated to the random shares X0 and X1. The
mean-free product can be written as follows.

C(Y0,Y1) =(
α0 · Wβ(X0) +N (µ0, σ0)− E

[
α0 · Wβ(X0) +N (µ0, σ0)

])
·(

α1 · Wβ(X1) +N (µ1, σ1)− E
[
α1 · Wβ(X1) +N (µ1, σ1)

])
(8)

For the sake of simplicity, we assume α = α0 = α1, µ =
µ0 = µ1, and σ = σ0 = σ1. As X0 and X1 are uniformly
random signed integers in ±Zq and represented by β bits in
the computer memory, E

[
X0

]
= E

[
X1

]
= β/2. Then, we

can write

C(Y0,Y1) =
(
α · Wβ(X0) +N (µ, σ)− (α · β/2 + µ)

)
·(

α · Wβ(X1) +N (µ, σ)− (α · β/2 + µ)
)
(9)
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−q/2 q/2 x

P(X = x
∣∣ S(X0) = S(X1))

(a) Case 1:
(X0 < 0 and X1 < 0) or (X0 ≥ 0 and X1 ≥ 0)
i.e. S(X0) = S(X1)

−q/2 q/2 x

P(X = x
∣∣ S(X0) ̸= S(X1))

(b) Case 2:
(X0 ≥ 0 and X1 < 0) or (X0 ≥ 0 and X1 < 0)
i.e. S(X0) ̸= S(X1)

FIGURE 5: Probability distributions of X = X0 + X1 mod±q for X0,X1 ∈± Zq

and by distributing the terms and asN (0, σ) = α·N (0, σ/α),

C(Y0,Y1) = α2(Wβ(X0)− β/2 +N (0, σ/α)
)
·

(Wβ(X1)− β/2 +N (0, σ/α)
)

(10)

By plugging Equation (7) into Equation (10) we have

C(Y0,Y1) = α2
(
S(X0) · (γ − β/2) +

(
1− S(X0)

)
·

(β/2− γ) + e0 +N (0, σ/α)
)
·(

S(X1) · (γ − β/2) +
(
1− S(X1)

)
·

(β/2− γ) + e1 +N (0, σ/α)
)

(11)

C. CONDITIONAL PROBABILITY OF SIGN EQUALITY
As explained above and shown by Figure 5, we conclude that

P
(
X = x

∣∣ S(X0) = S(X1)
)
= (2/q) ·

(
|x|/(q/2)

)
= |x| · (4/q2). (12)

Based on the dependency of X on S(X0) and S(X1), we show
that the conditional probability P

(
S(X0) = S(X1)

∣∣ X = x
)

is a multiple of |x|.

P
(
S(X0) = S(X1)

∣∣∣ X = x
)
=

P
(
X = x

∣∣∣ S(X0) = S(X1)
)
· P

(
S(X0) = S(X1)

)
P
(
X = x

)
=
|x| · (4/q2) · 1/2

1/q
= (2/q) · |x| (13)

D. ESTIMATING THE OPTIMAL PREDICTION FUNCTION
We make use of the conditional probability to formally esti-
mate E

[
C (Y0,Y1)

∣∣X = x
]
as

E
[
C (Y0,Y1)

∣∣X = x,S
(
X0

)
= S

(
X1

)]
·

P
(
S
(
X0

)
= S

(
X1

) ∣∣X = x
)
+

E
[
C (Y0,Y1)

∣∣X = x,S
(
X0

)
̸= S

(
X1

)]
P
(
S
(
X0

)
̸= S

(
X1

) ∣∣X = x
)

(14)

Considering the terms including e0 and e1 as error, we can
write E

[
C (Y0,Y1)

∣∣X = x
]
as

(γ − β/2)2 · (2/q) · |x| +
(γ − β/2) · (β/2− γ) · (1− 2/q · |x|) + eC

=(γ − β/2)
2 · (4/q) · |x| − (γ − β/2)

2
+ eC (15)

where

eC = E
[
e0 · e1

∣∣ X = x
]
+ 2E

[
e1 · S

(
X0

)
(γ − β/2) +(

1− S
(
X0

))
(β/2− γ)

∣∣ X = x
]

= E
[
e0 · e1

∣∣ X = x
]
+

4 (γ − β/2) · E
[
e0 · S

(
X1

) ∣∣ X = x
]

(16)

Note that eC can be derived for any valid β when
E
[
e0 · e1

∣∣ X = x
]

and
E
[
e0 · S(X1)

∣∣ X = x
]
are pre-computed. This approach is

beneficial particularly if q is large (e.g. 8380417) and the
attacker does not know β in advance. Intuitively, eC is rel-
atively small and its impact decreases as the marginM(q, β)
increases. With sufficient M(q, β), Equation (15) is accu-
rately approximated by

E
[
C (Y0,Y1)

∣∣ X = x
]
≈ c0 · |x|+ c1, (17)

where c0 = (γ−β/2)2 ·4/q and c1 = −(γ−β/2)2. Figure 6
visualizes these estimations and the corresponding error for
two distinct cases of q and β. Since constants c0 and c1 do
not affect the correlation, fabs(x) = |x| can be used as the
optimal prediction function.

E. ON THE ACCURACY OF FABS

Since Equation (16) does not allow to give an exact explicit
formula for eC , we proposed approximating fopt(X) using the
absolute value function. In order to evaluate the accuracy loss
as a result of using fabs instead of Equation (15), we esti-
mated ρ̂ (fabs (X) , fopt (X)). Table 5 presents the estimations,
indicating ρ̂ > 0.99 for all studied q and β couples men-
tioned in Section IV. Therefore, we conclude that the absolute
value prediction function is highly accurate for the attacks
we consider in this work. However, for any other settings (q
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FIGURE 6: Visualization of optimal prediction function for the central reduction range [−q/2, q/2]. fopt(X) (black), eC (gray),
c0 · |X |+ c1 (pink).

β
q

257 769 3329
β

q
8380417

16 0.999 0.997 0.992 32 0.998
15 0.999 0.996 0.984 31 0.998
14 0.998 0.993 0.961 30 0.997
13 0.997 0.987 0.877 29 0.995
12 0.994 0.970 0.546 28 0.992
11 0.985 0.908 27 0.983
10 0.956 0.635 26 0.961
9 0.825 25 0.892

24 0.659
23 0.214

TABLE 5: Estimations of ρ̂(fabs(X), fopt(X)) for different
moduli q and β. The estimations are performed with 1 mil-
lion uniformly random samples for X while the reduction is
central.

and β couples), where the absolute value prediction function
leads to an undesired accuracy, the fopt(X) function can be
computed for all possible values of X as E

[
C (Y0,Y1)

∣∣X]
(e.g. Equation (15)).

The fabs can also be used with the absolute difference
combination function [58]. The corresponding results for this
configuration are presented in Appendix .

F. ALTERNATIVE PREDICTION FUNCTION
To take the advantage of zero-value public data as explained
in Section III-B, we define the alternative absolute value
prediction function as follows.

f ∗abs(X) =

{(
(β/2)2 − c1

)
/c0, if X = 0

|X | otherwise
(18)

Recall that E
[
C (Y0,Y1)

∣∣X0 = 0,X1 = 0
]
= (β/2)2.

VI. SIMULATION RESULTS
In this section, we present the result of HOCPA attacks ex-
plained in Section III making use of simulated traces. In our
simulations, we consider different noise levels and various
reduction scenarios for each of the studied q. We particularly
compare the required number of traces with and without
central reduction. Needless to say that fabs and f ∗abs are used
as the prediction function when the reduction is central while

fopt is computed as a look-up table otherwise (as done in
Section IV-B).

A. SIMULATED TRACES
Weperform the following routine to generate simulated traces
for base multiplication.

1) Generate a secret key vector s ∈± Zm
q uniformly at

random.
2) Generate a public vector c ∈± Zm

q uniformly at random.
3) If masking is enabled, sample s0 ∈± Zm

q uniformly
at random. Then, apply first-order masking to s such
that s = s0 + s1 mod±q (or mod q depending on
the reduction scheme). Else if masking is disabled, set
s0i = 0 ∀ i ∈ {0, .., .m− 1} and s1 = s.

4) Compute s0 ⋆ c and s1 ⋆ c. For each i ∈ {0, . . . ,m− 1}
and j ∈ {0, 1}, perform a modular multiplication with
(or without) central reduction as zji ≡ sji · ci mod±q (or
mod q) with m being the number of elements in s and
c. Particularly, the modular reduction is performed in
[−q/2, q/2] or [0, q) to simulate the leakage for different
reduction scheme presented in Table 2.

5) Compute the HW of each zji as the simulated leakage
(2m individual results).

6) Apply Gaussian noise to the simulated leakages as in
Equation (4), with α = 1, µ = 0, and the given standard
deviation σ.

7) Go back to Step 2 until ν traces are generated.

For computing the HWs, 16-bit or 32-bit 2’s complement
representations are used depending on q, as explained in Sec-
tion IV. m, ν, σ, q as well as the reduction range (Step 4) are
pre-defined parameters. We set m = 100 for all simulations.
Note that the traces generated by this routine simulate a base
multiplication for a complete NTT transformation, where the
element-wise multiplication is just a modular multiplication.
While q = 8380417 allows a complete NTT with the ring
dimension n = 256, other moduli q = 257, q = 769, and
q = 3329 do not allow complete NTT but allow incomplete
NTT of 7 layers. Recall that the element-wise multiplication
is the multiplication of degree-1 polynomials in that case.
However, the simulations aim to benchmark our introduced
absolute value prediction function and compare leakage of
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different reduction schemes. Therefore, there is no harm in
doing the simulations as if the NTT is complete, which only
affects the number of hypotheses. The comparison between
the hypothetical and observed leakages is not affected by this
behavior. Note also that we use s and c here instead of the
notation ŝ and ĉ given in Section III.

B. EVALUATION
Figure 7 presents the corresponding results, with re-
spect to q, ν, and σ, while the success rate refers to
(# correctly predicted si/m). It should be noted that the number
of traces is displayed on a logarithmic scale. As evident by
the results, the implementations with central reduction are
significantly more vulnerable to these non-profiled HOCPA
attacks in terms of the number of traces. For instance, when
q = 3329 and σ = 0, the attack against non-central reduc-
tion needs 1500 traces to succeed, which is 6× more than
the number of traces needed when the reduction is central.
Moreover, the noise σ has a greater impact on the attacks
on implementations with non-central reduction compared to
the central case. When q = 3329 and σ = 4, the attack on
non-central reduction needs 45 k traces to succeed, which is
31× more than what is required in case of central reduction.
The difference with respect to the number of traces reaches
123× for q = 257 and σ = 4. We conclude that HOCPA
with fabs targeting central reduction remains a major threat
in different noise levels conforming with the observation
shown in Figure 3. Based on the aforementioned decrease
in the number of traces required to attack, employing central
reduction in masked LBC might be not the best choice from
the SCA perspective. Although central reduction is some-
times preferred for efficiency purposes, non-central reduction
can harden higher-order SCA attacks in security-demanding
applications.

In general, the attack on central reduction needs relatively
small number of traces to succeed. However, the number of
traces for a successful attack depends on the marginM(q, β),
which is slightly worse for q = 3329 compared to the other
primes considered here. For q = 3329 and σ = 4, HOCPA
with f ∗abs requires only 1400 traces to succeed. In a noiseless
scenario, where q = 257 and σ = 0, the attack only needs
around 110 traces. As previously stated, we consider only
two cases β = 16 and β = 32. However, we anticipate
from Figure 3 that, as β decreases, the number of required
traces to attack the central reduction schemes gets closer
to that when a non-central reduction scheme is employed.
As anticipated, the advantage of using f ∗abs over fabs highly
depends on the number of times when ci = 0. For instance
when q = 257 and σ = 4, f ∗abs leads to %13 reduction
in the number of required traces in our experiments. As the
chance of observing zero-values decreases when q increases,
the advantage of f ∗abs decreases as well. For example, when
q = 3329 and σ = 4, f ∗abs reduces ν by%9 compared to fabs.
The disadvantage of signed arithmetic is also evident in

the unprotected but noisy scenario, where the number of
required traces increases by up to two orders of magnitude.

For example, when q = 257 and σ = 4, the number of traces
required with the central reduction is 9.5× higher than the
non-central reduction case. Notice that the increase in ν when
using signed arithmetic is smaller compared to the protected
case, by a factor of 13× for q = 257. Consequently, the
simulation results align with our observation in Section IV,
indicating that the negative impact of signed arithmetic is
more significant in masked schemes. Also observe the statis-
tical results for first-order attacks on unsigned arithmetic and
second-order attacks on signed arithmetic are closely aligned.
In the extreme case of q = 257, the number of required
traces for these two attacks, despite their different orders, is
nearly identical. For q = 8380417, the difference in ν for a
successful attack between these two scenarios is only 2.8×.

VII. PRACTICAL RESULTS: APPLICATION TO KYBER
In this section, we present the result of applying our proposed
approach to perform successful HOCPA attacks on a pro-
tected implementation of Kyber. It is important to note that we
have previously compared the SCA leakage between central
and non-central reduction. Therefore, the motivation of this
section is to evaluate the difficulty of conducting successful
HOCPA attacks targeting central reduction using real data.
Source code of the implementations and the attack scripts as
well as the simulations presented in the previous section are
publicly available.3

A. TARGET IMPLEMENTATION
We focus on the ARM Cortex-M4 specific open-source and
first-order masked implementation of Kyber from [26]4. The
polynomial arithmetic of the implementation is mostly in
assembly, ported from the pqm4 project [43] and employs the
Montgomery reduction that we illustrated in Section II-D.We
also created a second version of the victim implementation by
integrating the latest iteration of polynomial arithmetic from
pqm4 which employs the Plantard reduction based on [15]5.
Hereafter, we denote the untouched target implementation
with Montgomery reduction by ΨM and the in-house ver-
sion with Plantard reduction by ΨP. In particular, we focus
on the function basemul_asm which implements the base
multiplication ŝ ⋆ ĉ in the incomplete NTT domain for both
Montgomery and Plantard versions. We should note that – to
the best of our knowledge – all masked implementations of
post-quantum algorithms on the ARM Cortex-M4 that have
been reported in the literature are built on top of pqm4 by
directly porting the linear operations including polynomial
arithmetic [16], [17], [21], [23], [28]. Therefore, we believe
that assessing the most recent iteration of pqm4, featuring
state-of-the-art polynomial arithmetic, would be beneficial.
The open-source Kyber implementation [26] employs the
Montgomery reduction since the more efficient Plantard re-
duction did not exist when the polynomial implementation

3https://github.com/toluntosun21/ExploitingCentralReduction
4https://github.com/uclcrypto/pqm4_masked/ commit hash: 5fe90ba
5https://github.com/mupq/pqm4 commit hash: 3743a66
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FIGURE 7: Success rates (in y-axis) of first-order and second-order CPA attacks on simulated traces. x-axis denotes log10 ν.
For each point in the curves, 100 experiments have been performed with random data.
⋆ SCA Protection: first-order masked (solid), unprotected (dashed).
⋆ Reduction ranges: [−q/2, q/2] (black, gray), [0, q) (teal).
⋆ Prediction functions for HOCPA: fabs (black), f ∗abs (gray), fopt (teal).

was imported from pqm4. Our experiments are centered
around the medium security level, i.e. Kyber768, though it
does not affect our approach and results.

B. SETUP
We used NewAE ChipWhisperer CW308 UFO board to col-
lect power traces. The victim program was running on a
STM32F303, which is equipped with an ARM Cortex-M4.
The frequency of the core is set to 7.3MHz by an external
reference clock which is also given to the power-collecting
facility (analog-to-digital converter) while 4 power samples
are recorded at each clock cycle. We provided a trigger signal
for the power-collecting module to indicate the beginning of
the function basemul_asm for the first share. Hence, only
the samples related to the base multiplication were recorded.
The attacks have been performed using the scared library6,
with an in-house developed Python model that mimics the
intended Kyber implementation. A laptop equipped with an
AMD Ryzen™ 7 7840HS7 8-core processor and 64GB RAM
was used for running the attack.

C. ATTACK DETAILS
A mean trace over 1000 traces is presented in Figure 8.
It should be noted that the iterations of the function

6https://pypi.org/project/scared/
7https://www.amd.com/en/products/processors/laptop/ryzen/7000-

series/amd-ryzen-7-7840hs.html

basemul_asm are visible through the mean trace for both
shares. In order to reveal each ŝi, in the corresponding attacks
we have only taken into account the relevant part of the power
traces based on the iterations. We used a constant offset to
combine the leakages associated to two shares (by mean-free
product as explained in Section III-B) based on the pattern
observed in Figure 8. It is noteworthy tomention that the same
strategy can be easily adapted via educated guesses without
prior knowledge of the specific implementation. Recall that
ŝi is a degree-1 polynomial in Kyber, and two coefficients
must be predicted together based on the outline presented
in Section III. We tested q · q/2 hypotheses (≈ 222.4 as
q = 3329) with fabs as the prediction function, so that either
the actual secret or its additive inverse is found (for both
ΨM and ΨP). The target of the attack is the higher-degree
coefficient of each ŝi · ĉi, precisely g(ŝi · ĉi) = ẑi,1 computed
in Line 2 of Algorithm 1. When fabs is used as the prediction
function, an hypothesis and its additive inverse, ±ŝi, gets the
same correlation score due to the nature of absolute value
function.8

8One option to distinguish the correct hypothesis from its additive inverse
is to re-run the same HOCPA attack on two hypotheses ±ŝi using the sign
function S, see Equation (1). This intuition is based on the fact that not every
bit of the intermediate values equally contributes in the amount of power
consumption, i.e. not an ideal HW model. This leads fopt to be not fully
symmetric with respect to the y axis, see Figure 6.
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FIGURE 8: The mean power trace associated with the execution of the base multiplication function basemul_asm in ΨM

for both shares, ŝ0 ⋆ ĉ and ŝ1 ⋆ ĉ. The iterations of the function are marked by interleaving black and gray colors. Due to loop
unrolling, 64 iterations are observed for each share instead of n/2 = 128. Recall that the ring dimension n = 256 for Kyber and
7-layer NTT is performed. The first iterations of basemul_asm for both shares are marked and zoomed in (a) and (b). The
same observation applies to ΨP.
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FIGURE 9: HOCPA with ν = 1000 and fabs targeting ŝ0
for both ΨM and ΨP. The correlation scores of incorrect
hypotheses are in gray, and for the correct hypothesis in black.

D. EVALUATIONS
Let us start the evaluations by exemplary presenting the result
of the individual attacks on ŝ0 for bothΨM andΨP in Figure 9.
The correlation peaks for the correct hypotheses are observed
in the corresponding time samples for the secret coefficient.
Observe that the correlation for the correct hypotheses are
around 0.3, which can be considered a major correlation
for a higher-order attack. Needless to say, the correlation
coefficient changes for different values of i. From a better
perspective, Figure 10a and Figure 10b present the efficiency
of our introduced prediction function fabs in terms of the
number of traces needed to succeed. Consistent with the simu-
lation results, fabs is very effective against arithmetic masking
with central reduction. In particular, the attacks require 850
and 550 traces to fully recover the secret of the evaluated
implementations. The reason why the attack on ΨM requires
more traces to succeed is that the secret coefficients ŝi for
even values of i lead to lower correlation scores in general
compared to the rest of the attack. While this observation
can be micro-architecture and implementation specific, we
did not concentrate on improving it as the overall attack still
leads to a reasonably low number of traces. We should also
remark that the aim of this study is not to compareΨM andΨP

since both implementations employ central reduction; rather
the goal is to show that the approach generalizes to central
reduction techniques.

As a reference, we also included the success rate of a classi-
cal first-order CPA by theWβ prediction function performed
on the same but unprotected implementations in Figure 10c
and Figure 10d. In order to keep the consistency, we used
the same part of the power traces as those considered in
HOCPAs. Distinctively, we used both lower- and higher-
degree coefficients from the output of each ŝi · ĉi as the target
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FIGURE 10: Success rates (in y-axis) of the SCA attacks against Kyber. x-axis denotes ν. The success rate refers to
(# correctly predicted ŝi/128). Retrieving ±ŝi is considered as success.
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FIGURE 11: Time required for the lattice attacks to suc-
cessfully retrieve the whole secret polynomial s using the
predictions for ŝi which are obtained by HOCPAs.

function, namely g(ŝi, ĉi) = {ẑi,0, ẑi,1} (see Algorithm 1). We
should also note that fabs is designed to work with a single
coefficient and we leave construction of a prediction function
which takes multiple coefficients as the future work.

E. BONUS: COMBINING WITH LATTICE ATTACK
As given in [61], the attacker can take the advantage of the
fact that SCA attacks are performed in the NTT domain.
Intuitively, there exists 3329256 possibilities for the NTT
domain secret ŝ while this number is 5256 for the normal
domain secret s, indicating an over-determined system. The
authors of [61] created an LWE instance from the inverse
NTT transformation and showed that by retrieving only 38
out of 128 pairs of NTT domain coefficients, the rest of the
coefficients can be revealed by solving the LWE, which is
practically solvable. The challenge is to assess which NTT
domain coefficients was predicted correctly. We applied a se-
ries of lattice attacks until an instance is successfully solved,
starting from the subset of predictions to the NTT domain
coefficients with highest correlation scores. Each execution of
the lattice attack takes 20 seconds, returning success in case of
the included subset of coefficients were correctly retrieved by
the preceding SCA attack. Figure 11 depicts the relationship
between the number of traces and the time needed by the

lattice attack to succeed in our experiments. In particular for
ΨM , the attack succeeds after 643 trials (≈ 3.5 hours) with
400 traces while it succeeds with 250 traces for ΨP after 27
trials (≈ 10 minutes)9. Indeed, ν = 250 is considered as
a very small number to conduct a successful non-profiling
higher-order SCA attack on a masked implementation. The
lattice attack is implemented using fpylll library10.

VIII. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the impact of various reduction
schemes on SCA leakage of the implementation of modular
arithmetics, with a specific focus on the central reduction.
State-of-the-art masking LBC, e.g. [16]–[18], [20], [21], [23],
[25]–[28], concentrated on developing gadgets to handle non-
linear operations and considered the linear part of the algo-
rithms such as the polynomial arithmetic as relatively trivial
to mask due to its transparency to arithmetic masking (i.e.
repeating the operation on each share individually). However,
our study reveals that the design decisions such as the reduc-
tion technique for the linear parts have a significant impact on
the exploitability of the associated SCA leakages and hence
on the number of traces required for a successful attack. Our
study exposes this fact by showing that a HOCPA attack
becomes significantly easier when the masked polynomial
multiplication ŝ ⋆ ĉ is targeted and the modular reduction
in the victim’s implementation is central. Specifically, the
use of signed arithmetic notably increases SCA leakage. We
quantify this leakage by studying the optimal correlation and
the number of traces required for a successful HOCPA attack.
Our findings reveal that the signed representation of inte-

gers modulo q leads to a strong dependency between the sign
of an integer and its HW in 2’s complement form.We assessed
this dependency through simulations involving the parameter
sets employed by the post-quantum cryptography winners
Kyber and Dilithium.We also efficiently exploited this source
of leakage, by introducing the absolute value prediction func-
tion. We believe that our work is unique in the literature as
it is the only non-profiled SCA attack particularly designed

9Except for ν = 250 for ΨP and ν = 400 for ΨM , the timing of lattice
attacks are approximations.

10https://pypi.org/project/fpylll/

16

https://pypi.org/project/fpylll/


Tosun et al.: Exploiting the Central Reduction in Lattice-Based Cryptography

to efficiently exploit higher-order leakages. We further have
showcased our approach targeting a first-order masked imple-
mentation of Kyber. As our attack does not require profiling
and is successful with only 250 traces (in our experiments
and using our measurement setup, we claim that utilization of
the central reduction in masked implementations indeed may
ease SCA attacks. To the best of our knowledge, we report the
lowest number of traces for a successful non-profiled second-
order SCA attack against masked implementations of LBC.
We leave the generalization of our introduced absolute value
prediction function to higher orders as a work for the future.

As another outcome of our study, it can also be concluded
that finding the sample points in power traces associated with
the random arithmetic shares is trivial in masked implemen-
tations of LBC. Consequently, it is highly recommended to
apply shuffling on top of arithmetic masking. Indeed, it is
relatively easy to shuffle the base multiplication since ŝi · ĉi
are performed independently for each i leading to n

2 ! possible
permutations.
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APPENDIX. ABSOLUTE DIFFERENCE COMBINATION
FUNCTION
Absolute value combination function [58] is defined as fol-
lows.

Cabs
(
L(X0),L(X1)

)
=

∣∣L(X0)− L(X1)
∣∣ (19)

In the following analysis including Figure 12, Figure 13,
Table 6, Table 7, and Table 8, for the sake of simplicity we
took µ0 = µ1 = 0 regarding the noise terms in L(X0)
and L(X1) (see Equation (4)). Note that, our results hold as
long as µ0 = µ1. Estimation of the corresponding optimal
prefiction function – so-called f̂opt(i) – is performed with
100 k samples uniformly taken forX0,X1, and the noise taken
from N (0, σ) for each i. Results that depend on the f̂opt for
q = 8380417 are not presented due to the computational
complexity of experiments. However, they can be anticipated
from the results for the other studied primes presented in this
section and the ones corresponding to the mean-free product
(Figure 3 and Table 5).

A. OPTIMAL CORRELATION FOR CABS

Demonstrated in Figure 12.

B. ACCURACY OF ABSOLUTE VALUE PREDICTION
FUNCTION FOR CABS

It can be seen in Figure 13 that f̂opt for Cabs, is an affine
function of fabs with some noise. Table 6, Table 7, and Table 8
present the estimations for ρ̂ (fabs (X) , fopt (X)) in this con-
figuration. Observe that |ρ̂| > 0.99 for the evaluated q and
β couples mentioned in Section IV, allowing us to conclude
that fabs can be effectively used with Cabs.
Additionally, we provide the correlation results for q =

8380417 in Figure 14.
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FIGURE 12: Optimal correlation for Cabs with respect to the noise standard deviation σ for different q and β and reduction
algorithms. Estimations are performed with 1 million samples uniformly taken for X0 and X1.
⋆ Reduction to [−q/2, q/2] for q = 257, q = 769 and q = 3329: β = 16 (black), β = 15 (blue), β = 14 (violet), β = 13

(brown), β = 12 (red), β = 11 (gray), β = 10 (purple), β = 9 (cyan)
⋆ Reduction to [0, q) (teal)
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FIGURE 13: Visualization of optimal prediction function f̂opt for the central reduction range [−q/2, q/2]with respect to absolute
difference combination function. f̂opt(X) (black), c′0 · |X |+ c′1 (pink) for some c′0 and c

′
1.
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β
σ

0 2 4 6 8 10

16 −0.999 −0.999 −0.999 −0.999 −0.999 −0.999
15 −0.999 −0.999 −0.999 −0.999 −0.999 −0.998
14 −0.998 −0.998 −0.998 −0.998 −0.998 −0.998
13 −0.998 −0.998 −0.997 −0.997 −0.996 −0.996
12 −0.996 −0.996 −0.994 −0.993 −0.993 −0.992
11 −0.992 −0.990 −0.986 −0.984 −0.983 −0.982
10 −0.975 −0.964 −0.957 −0.952 −0.949 −0.947
9 −0.864 −0.834 −0.818 −0.809 −0.801 −0.793

TABLE 6: Estimations of ρ̂(fabs(X), f̂opt(X)) for Cabs, q = 257 and different β and σ. The estimations are performed with 1
million uniformly random samples for X while the reduction is central.

β
σ

0 2 4 6 8 10

16 −0.998 −0.998 −0.998 −0.998 −0.998 −0.998
15 −0.997 −0.998 −0.997 −0.997 −0.996 −0.996
14 −0.996 −0.996 −0.995 −0.994 −0.994 −0.994
13 −0.993 −0.992 −0.990 −0.989 −0.988 −0.988
12 −0.985 −0.979 −0.974 −0.972 −0.971 −0.970
11 −0.941 −0.923 −0.912 −0.908 −0.905 −0.902
10 −0.673 −0.645 −0.632 −0.626 −0.620 −0.614

TABLE 7: Estimations of ρ̂(fabs(X), f̂opt(X)) for Cabs, q = 769 and different β and σ. The estimations are performed with 1
million uniformly random samples for X while the reduction is central.

β
σ

0 2 4 6 8 10

16 −0.996 −0.995 −0.993 −0.993 −0.992 −0.992
15 −0.992 −0.989 −0.986 −0.985 −0.984 −0.983
14 −0.978 −0.971 −0.965 −0.962 −0.961 −0.959
13 −0.913 −0.893 −0.882 −0.877 −0.872 −0.869
12 −0.562 −0.551 −0.544 −0.539 −0.534 −0.529

TABLE 8: Estimations of ρ̂(fabs(X), f̂opt(X)) for Cabs, q = 3329 and different β and σ. The estimations are performed with 1
million uniformly random samples for X while the reduction is central.
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FIGURE 14: Estimations of ρ̂(fabs(X), Cabs(X0,X1)) with respect to the noise standard deviation σ for q = 8380417 and
different β. The estimations are performed with 1 million samples uniformly taken for X0 and X1.

• Reduction to [−q/2, q/2] for q = 8380417: β = 32 (black), β = 31 (blue), β = 30 (violet), β = 29 (brown), β = 28
(red), β = 27 (gray), β = 26 (purple), β = 25 (cyan), β = 24 (magenta).
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