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ABSTRACT
We introduce ChalametPIR: a single-server Private Information

Retrieval (PIR) scheme supporting fast, low-bandwidth keyword
queries, with a conceptually very simple design. In particular, we

develop a generic framework for converting PIR schemes for index

queries over flat arrays (based on Learning With Errors) into key-

word PIR. This involves representing a key-value map using any

probabilistic filter that permits reconstruction of elements from

inclusion queries (e.g. Cuckoo filters). In particular, we make use

of recently developed Binary Fuse filters to construct ChalametPIR,
with minimal efficiency blow-up compared with state-of-the-art

index-based schemes (all costs bounded by a factor of ≤ 1.08).

Furthermore, we show that ChalametPIR achieves runtimes and

financial costs that are factors of between 6×-11× and 3.75×-11.4×
more efficient, respectively, than state-of-the-art keyword PIR ap-

proaches, for varying database configurations. Bandwidth costs are

reduced or remain competitive, depending on the configuration.

Finally, we believe that our application of Binary Fuse filters can

have independent value towards developing efficient variants of

related cryptographic primitives (e.g. private set intersection), that

already benefit from using less efficient filter constructions.

CCS CONCEPTS
• Security and privacy→ Cryptography; Privacy-preserving
protocols.
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1 INTRODUCTION
Private Information Retrieval (PIR) schemes provide the ability

to make private queries on public databases that are hosted by

an untrusted (semi-honest) server(s). In the more plausible single-

server setting (where there are no trust assumptions over multiple

non-colluding servers [46]), the majority of approaches with tol-

erable costs (e.g. [26, 29, 42, 48, 52, 55, 76]) are limited to querying

indices over flat arrays. However, this abstraction differs greatly

from real-world instantiations of both structured and unstructured

databases, which are often indexed by keys.
For a key-value map KV, Chor, Gilboa, and Naor observed that,

via a generic transformation, index-based PIR could be used to

obtain PIR-by-keywords (henceforth KWPIR) [22]. In KWPIR, the

client privately queries for a keyword k, and learns x = KV[k].
While this abstraction remains much simpler than what is expected

of today’s database systems, it still requires a logarithmic number of

index-based PIR protocols to be run in the size of the database. As a

result, significant running costs would be incurred, evenwhen using

the most practical PIR schemes, which typically require hundreds

of kB of traffic and close to a second of server runtime. In response

to these limitations, the last few years have seen the design of

promising single-round constructions from heavily optimised fully-

homomorphic encryption [6, 47, 51, 62], as well as approaches that

use local client storage to map keyword queries to indices [44]. Even

so, considering the most efficient keyword-based SparsePIR scheme

of Patel, Seo, and Yeo [62], there is an order of magnitude in the

performance deprecation between index- and keyword-based PIR

schemes. In particular, where recent work demonstrates very simple
constructions of PIR guaranteeing state-of-the-art performance,

based directly on Learningwith Errors (LWE) [29, 42, 48, 76], similar

constructions do not exist in the KWPIR setting.

Our work. We construct KWPIR via a generic transformation

that merges LWE-based PIR schemes and key-value filters into
highly efficient keyword PIR schemes. Key-value filters can be built

from well-known Cuckoo filters [35], for example, which map a

set into a data structure that allows querying keys and reconstruct-

ing corresponding values, with configurable false-positive rates 𝜖

(see Section 3 for our full abstraction). However, while such tech-

niques have been used in FHE-based PIR design [6, 47] previously,

their efficiency appeared to be outperformed by alternative tech-

niques [62]. In contrast, we show that coupling LWE-based PIR

schemes with recent innovations in filter design, namely Binary

Fuse filters [40], produces a keyword PIR scheme with record per-

formance across almost all performance metrics and a variety of

database settings. Our concrete scheme ChalametPIR is built explic-

itly using this framework, using schemes such as SimplePIR [42]

and FrodoPIR [29], while also compatible with more recent LWE-

based PIR schemes [48].

Regarding concrete performance, for maps containing 1 mil-

lion keys with associated 256 B values (1GB in total), Chalamet-
PIR based on FrodoPIR achieves online server runtimes of around

100ms (on a 2021 Macbook) and response sizes of 4 kB. This rep-

resents a minimal performance blow-up (1.08×) compared to the

original index-based FrodoPIR scheme, and is an order of magni-

tude more efficient than SparsePIR. By comparing financial costs

for standard AWS EC2 infrastructure [7] for various DB settings,

we show that the costs of ChalametPIR are between 3.75 − 11.4×
cheaper than SparsePIR.

Formal contributions. In this work, we achieve the following.

• A formalisation of probabilistic key-value filters for the PIR
setting (Section 3). We further provide a concrete definition

and parameterisation for using Binary Fuse filters [40] in

generic cryptographic applications, to store large key-value

maps with a configurable false-positive rate (Section 4).

https://orcid.org/0000-0002-3333-7764
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{

"k1": "v1",

"k2": "v2",

"k3": "v3",

...,

"kn": "vn",

}
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Figure 1: Overview of the generic framework used in ChalametPIR to construct KWPIR protocols over raw key-value maps.
The framework uses key-value filters (Section 3.1) and a generic abstraction of LWE-based PIR schemes (Appendix C).

• A generic transformation taking abstract LWEPIR schemes

(Appendix C) and key-value filters, and producing concep-

tually very simple keyword PIR schemes (Section 5).

• An efficient parametrisation and open-source Rust imple-

mentation of the ChalametPIR scheme, based on FrodoPIR
(but compatible with general LWEPIR schemes) and Bi-

nary Fuse filters.
1
Our experimental analysis shows that

ChalametPIR achieves state-of-the-art performance costs

(Section 6).

1.1 Technical Overview
Our approach is very simple, and forms of it have been used pre-

viously in PIR schemes (for example, see [6, 47, 62]). A high-level

visualisation of the methodology is given in Figure 1. In principle,

we make use of a key-value map KV of size𝑚, that is indexed by

keys k ∈ K with corresponding values x ∈ X. We convert this

map into a filter structure that permits reconstructing elements

over X using a set of hash functions H = {h𝑖 }𝑖∈[𝑘 ] , with a config-

urable false-positive probability, 𝜖 . In other words, the filter F has

a function of the form fpt𝜖 (x) ← F.check(k), for some fingerprint

function fpt𝜖 that allows deriving x. To avoid storing huge data ele-
ments in each entry of the filter, we break the filter into 𝑑 “columns”,

each holding log(𝑝) bits of a given row of data, and indexed by the

same set of hash functions. We interpret these filter columns as

a matrix containing 𝑁 rows, where 𝑁 = ç𝑚 and ç is the natural

blow-up introduced by the filter. We can then query for an element

simply using linearly homomorphic encryption (Section 2.2). In

principle, this query consists of sending an encrypted vector of all

zeroes, except for entries corresponding to h𝑖 (k) which are set to 1.

Previous work combined this general approach with FHE and

Cuckoo hashing [56]. The results, however, have not been shown

to be so efficient (notably performing worse than non-filter-based

approaches [62]), or leveraged the use of multiple rounds in order to

lower communication times via primitives as oblivious transfer [47].

The novelty in our work relies on the merging of non-FHE-based

1
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PIR (i.e. LWEPIR), and coupling it with concrete and very practical

instantiations of filters, such as the novel Binary Fuse filters [40].

Binary Fuse filters set 1.08 ≤ ç ≤ 1.13, dependent on the choice

of 𝑘 ∈ {3, 4}, which appears to be notably smaller than any other

filter design. To the best of our knowledge, our work is the first

to explore the usage of Binary Fuse filters in cryptography, as a

practical basis for other cryptographic primitives that rely upon

filter-based approaches.

Handling false-positives. PIR seems like a natural candidate

for using filter-based approaches in general, as the database is

assumed to be public, and the adversary is assumed to be semi-
honest. This means that the occurrence of false-positives does not

necessarily lead to security flaws, but they may indeed have real-

world impacts. To mitigate false-positives, we use the fact that

the false-positive rate (𝜖) of Binary Fuse filters is defined by the

length of the key fingerprint in the output. In our case, we therefore

explicitly structure outputs as 𝐻 (k)∥x, where 𝐻 : k ↦→ {0, 1}𝜇 ,
where 𝜇 ≥ 2𝜖 is a universal hash function. This means that a query

for k′ can identify a false-positive by simply checking that the

first 𝜇 bits are equal to 𝐻 (k′), and otherwise aborting. This allows

complete configuration of 𝜖 = 𝜇/2, depending on the hash length.

Security and performance. The security of our approach follows

naturally from the LWE assumption, as parameterised by the un-

derlying PIR scheme. Performance magnification compared with

the corresponding index-based scheme is determined by the factor

ç, and thus can be as small as 1.08. Furthermore, using LWEPIR
schemes that use square-root matrix encodings (such as SimplePIR,
see Section 5.1) reduces this magnification further still. In com-

parison with existing keyword PIR schemes, ChalametPIR (based

on either FrodoPIR or SimplePIR) is significantly more efficient

across all performance metrics, for almost all database settings (see

Section 6). We provide an open-source Rust implementation of

ChalametPIR, based on the FrodoPIR scheme.

https://github.com/claucece/chalamet
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1.2 Related Work
Here, we focus on related work on Keyword PIR and filters. Prior

work related to Index-based PIR is covered in Appendix A.

Keyword PIR. For decades, PIR schemes that could allow querying

keywords (and thus maintaining much more realistic functionality,

with respect to modern data structures) reduced the problem to run-

ning many rounds of index-based PIR. In particular, Chor et al. [22]

showed keyword PIR could be achieved by running logarithmically

number of rounds of index-based PIR over binary tree structures.

Similar constructions based on oblivious PRFs have been given [36],

with the advantage of achieving notions of privacy for the database.

More recent lines of work allows for single-round keyword-

query functionality via FHE-based PIR. In particular, the work of [3]

introduces a solution that leverages a form of cuckoo hashing to

probabilistically map keywords into a small table — similar to our

proposed approach. Alternatively, one can build keyword-based

PIR via equality operators [6]. In this approach, the client’s query is

encoded into a domain, encrypted and sent to a server. The server

computes each bit of the vector using an equality operator — repre-

sented as an indicator function that is set to 1 when it returns true,

and 0 otherwise — between the client’s encrypted query and each

database identifier (which can be an index or keyword). Then, the

server derives the inner product between the database and the vec-

tor, and sends the result to be decrypted by the client. Via a folklore

equality operator, they construct a PIR scheme that has the smallest

upload cost amongst all non-trivial approaches, but has high com-

putational times due to the high multiplicative depth of equality

circuits, as database elements grow. The work of [51] instead uses

equality operators for constant-weight codewords, that have mul-

tiplicative depth that depend only on the Hamming weight of the

code, and not on the bit-length of the element. This construction

is 10× faster than “regular” equality operators and still facilitates

keyword queries. However, computational and communicational

times remain very high, when compared with state-of-the-art index-

based PIR schemes. The “Checklist” scheme of [44] developed a

keyword-based PIR approach based on multi index-based PIR, by

having the client locally store a probabilistic mapping between

keyword queries and their respective indices using hash prefixes.

Unfortunately, their approach requires the client to store 2𝜖 |KV|
bits of data to achieve false-positives rates 𝜖 .

Finally, the work of [62] present a different direction by pro-

viding a framework that transforms the database as an encoding

of linear combinations, directly utilising the capabilities of an un-

derlying FHE-based PIR scheme. In particular, their approach can

be applied to existing schemes such as [52, 55]. This approach re-

sults in performance that is an order of magnitude more efficient

than [51], and is compatible with recursion [46] and batching [6]

techniques.

Filters in cryptography. Bloom [13] and Cuckoo [56] filters have

a long history of applications in cryptography. Such filter descrip-

tions allow efficiently representing and querying sets via 𝑘 hash

function evaluations, with a configurable false-positive probability

𝜖 . Their application has resulted in various significant advances in

achieving efficient designs of protocols for performing private set

intersection [28, 33, 64, 65], PIR [3, 6, 47], encrypted search [61],

and many others.

Filters in general have seen many advances since the pioneering

work of Bloom. Since then, various forms of Bloom filters have been

developed that optimise for space and query times [14, 16, 30, 53, 67].

While Bloom filters requires that 𝑘 = 1/𝜖 in the optimal setting,

Cuckoo filters [35] set 𝑘 = 2 while still maintaining configurable

𝜖 . This approach stores larger number of bits (dependent on 𝜖) per

entry, which further permits entire reconstruction of elements (or

fingerprints) from queries, on top of indicating whether elements

belong to their set. Further optimisations in filter designs have been

introduced since, including XOR filters [39], Ribbon filters [31], and

Binary Fuse filters [40]. Binary Fuse filters in particular, provide

a constant number of hash functions (𝑘 ∈ {3, 4}), and represent

the state-of-the-art in terms of filter size. We describe Binary Fuse

filters in Section 4.

2 PRELIMINARIES
2.1 Notation
We denote by [𝑛] the set {1, . . . , 𝑛}. For all intents and purposes, we
consider sets to be ordered (i.e. as arrays, indexed from 1 onwards)

unless stated otherwise. We use Q = ∅ to denote the initialisation of
an empty array. Let 𝑙 = |Q|, we use a function Q .push(𝑥) to denote
the appending of 𝑥 to the array Q, we use a function 𝑥 ← Q .pop()
to denote returning 𝑥 = Q[1], setting Q[𝑖 − 1] = Q[𝑖] for 𝑖 ∈ [𝑙],
and eliminating Q[𝑙], so that |Q| = 𝑙 − 1. Finally, we use a function
Q .rem(𝑥) to denote finding the element 𝑥 inQ, removing it if found,

and then left-shifting all array elements to the right of this element,

in the same manner as the pop() function.
We denote vectors 𝒗 = (𝑣1, . . . , 𝑣𝑚) ∈ R𝑚 using bold-face, and

similarly (but capitalised) for matrices𝑴 = (𝒗1 |𝒗2 | . . . |𝒗𝑛) ∈ R𝑚×𝑛 ,
where (𝒗1 |𝒗2 | . . . |𝒗𝑛) denotes the concatenation of 𝑛 column vec-

tors into a single matrix. Similarly, we write 𝒗 = [𝒗1∥ . . . ∥𝒗𝑛] to
denote concatenation of 𝑛 vectors 𝒗𝑖 ∈ R𝑚𝑖

into a single vector

𝒗 ∈ R
∑

𝑖 𝑚𝑖
.

For 𝑝 ∈ N, we let +𝑝 denote the addition operator of elements

in Z𝑝 , replacing with + when the modular reduction is obvious.

For 𝑥 ∈ Z𝑞 and 𝑞 > 𝑧 > 0, let ⌊𝑥⌉𝑞,𝑧 denote the computation of

the rounding function ⌊(𝑧/𝑞) · 𝑥⌉ mod 𝑧. For a distribution 𝜒 , we

write 𝒙 ←$ 𝜒𝑚 to denote sampling the vector 𝒙 , where each entry

𝑥𝑖 is sampled independently from 𝜒 . We let 𝜆 denote the concrete

security parameter throughout.

2.2 Homomorphic Encryption for Public
Inner-Products

A symmetric-key homomorphic encryption scheme for public inner-

products (HEIP) allows encrypting vectors 𝒗 ∈ Z𝑚𝑝 for some 𝑝 > 0

into ciphertext vectors 𝒄 ∈ Z𝑚𝑞 for𝑞 > 𝑝 .With knowledge of 𝒄 alone,
the homomorphic capability of the scheme allows computation of

an encryption, 𝑐 ′, of the inner product ⟨𝒗,𝒘⟩ ∈ Z𝑝 , for any public

vector𝒘 ∈ Z𝑚𝑝 . We formally define such an encryption scheme, Σ,
in the following way.

• (pp, sk) ← Σ.kgen(1𝜆): Outputs a key sk and public pa-

rameters pp.
• 𝑐 ← Σ.enc(pp, sk, 𝑣 ∈ Z𝑝 ): Outputs an encryption 𝑐 of a

value 𝑣 ∈ Z𝑝 corresponding to the secret key sk.
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• 𝑐 ′ ← Σ.eval(pp, 𝒄 ∈ Z𝑚𝑞 ,𝒘 ∈ Z𝑚𝑝 ): Let 𝒄 = (𝑐1, . . . , 𝑐𝑚) be a
vector of ciphertexts corresponding to sk, and𝒘 a plaintext

vector. Outputs a ciphertext 𝑐 ′.
• 𝑣 ← Σ.dec(pp, sk, 𝑐): Outputs a value 𝑣 ∈ Z𝑝 .

In the following, we may also abuse notation and write 𝒄 ←
Σ.enc(pp, sk, 𝒗 ∈ Z𝑚𝑝 ) to denote producing a vector of 𝑚 cipher-

texts, where the 𝑖th ciphertext 𝑐𝑖 encrypts the 𝑖th value 𝑣𝑖 of 𝒗.
Subsequently, Σ must satisfy the following correctness guarantee,

and the standard IND-CPA security guarantee for public-key en-

cryption schemes.

Definition 2.1 (Correctness of evaluation). Let 𝒗,𝒘 ∈ Z𝑚𝑝 , let

(pp, sk) ← Σ.kgen(1𝜆), and let 𝑐𝒗 ← Σ.enc(pp, sk, 𝒗). Then Σ
is correct if the following guarantees hold.

(1) Pr[𝒗 ← Σ.dec(pp, sk, 𝑐𝒗)] > 1 − negl(𝜆)
(2) Pr[⟨𝒗,𝒘⟩ ← Σ.dec(pp, sk, Σ.eval(pp, 𝑐𝒗 ,𝒘))] > 1−negl(𝜆)

Encryption scheme from LWE. As described in [29, 42], it is

possible to build homomorphic encryption for general linear func-

tions from LWE-based Regev encryption [66]. Let 𝑞, 𝑝 , and 𝑛 be

poly(𝜆), and let 𝜒𝜎 be a specific error distribution with parameter

𝜎 = poly(𝜆). For simplicity, we are going to assume throughout

that 𝑞 > 𝑝 and 𝑝 |𝑞, and we let Δ𝑞,𝑝 = 𝑞/𝑝 . A description of the

Regev-based scheme, Σlwe, that permits evaluation of public inner-

products is as follows.

• (pp, sk) ← Σlwe .kgen(1𝜆, 𝑞, 𝑝, 𝑛, 𝜎): Samples 𝒔 ←$ 𝜒𝑛𝜎 , and

returns (pp, sk) = ((𝑞, 𝑛, 𝑝, 𝜒𝜎 ), 𝒔).
• 𝑐 ← Σlwe .enc(pp, sk, 𝑣 ∈ Z𝑝 ): Samples 𝒂←$Z𝑛𝑞 and 𝑒 ←$ 𝜒𝜎 ,

and computes 𝑐 = sk · 𝒂 + 𝑒 + Δ𝑞,𝑝 · 𝑣 . Returns 𝑐 = (𝒂, 𝑐).
• 𝑐 ′ ← Σlwe .eval(pp, 𝒄 ∈ Z𝑚𝑞 ,𝒘 ∈ Z𝑚𝑝 ): Parses 𝒄 as (𝑨, 𝒄),
where 𝑨 = (𝒂1 | . . . |𝒂𝑚) ∈ Z𝑛×𝑚𝑞 and 𝒄 = (𝑐1, . . . , 𝑐𝑚) ∈
Z𝑚𝑞 , and returns 𝑐 ′ = (𝒂′, 𝑐 ′) = (𝑨 ·𝒘, 𝒄 ·𝒘).

• 𝑣 ← Σlwe .dec(pp, sk, 𝑐): It returns 𝑣 = ⌊𝑐 − (sk · 𝒂)⌉𝑞/𝑝 .
Security. It is known from [66] that such an encryption scheme

can be proven secure based on the worst-case hardness of known

problems over lattices when 𝜒𝜎 is a discrete Gaussian distribution

centred at zero, with standard deviation 𝜎 . In [29], an alternative

hardness guarantee is given based on the Ternary LWE problem, in

the case that 𝜒 = 𝜒𝜎 is chosen to be the uniform ternary distribution

that samples elements from {0,±1}.
Correctness. Regev’s encryption is widely known to be additively

homomorphic: given two ciphertexts 𝑐1 = (𝑎1, 𝑐1) and 𝑐2 = (𝑎2, 𝑐2),
their sum 𝑐+ = (𝑎1+𝑎2, 𝑐1+𝑐2) decrypts to the sum of the plaintexts,

as long as the noise does not grow too large. We now highlight

parameter settings that have been shown to satisfy correctness

with respect to public inner products with vectors in Z𝑚𝑝 , when

considering Gaussian and uniform ternary error distributions, using

the following lemma.

Lemma 2.2 (Correctness [29, 42]). Σlwe produces correct decryp-
tions with probability 1 − 𝛿 (for 𝛿 > 0) for public inner products with
vectors𝒘 ∈ Z𝑚𝑝 , if at least one of the following conditions holds.

• 𝜒 = 𝜒𝜎 is a Gaussian error distribution with standard devi-
ation parameter 𝜎 = 𝑠2/2𝜋 for 𝑠 > 0, and 𝑞 ≥

√︁
2 ln(2/𝛿) ·

𝑠𝑖𝑔𝑚𝑎 · 𝑝2 ·𝑚1/2.
• 𝜒 is a uniform distribution over {0,±1}, and 𝑞 ≥ 8 · 𝑝2 ·

√
𝑚.

In the second case, 𝛿 = negl(𝜆) via naive application of the Central
Limit Theorem [29].

Clearly, the correctness property can be extended beyond the

statistical error distributions considered in this work.

Preprocessing inner-products. In both [29, 42], it is shown that

encryptions in Σlwe can be preprocessed for a global matrix 𝑨.
Note that 𝑨←$PRG(𝛽) given a uniformly sampled pseudorandom

generator seed 𝛽 ←$ {0, 1}𝜆 , and 𝑨 is used globally for encrypting

vectors of size 𝑚.
2
Regev’s encryption remains secure with this

pseudo-random “global” matrix 𝑨 when used to encrypt polyno-

mially many messages provided that each ciphertext uses both an

independent secret vector 𝑠 and an error vector 𝑒 [63]. To denote us-

ing such an encryption mechanism, we will write Σlwe .enc𝑨(sk, 𝒗)
for some vector 𝒗 ∈ Z𝑚𝑝 . This modification allows pre-processing

inner-products by computing 𝒅 = 𝑨 · 𝒙 ∈ Z𝑛𝑞 , for some 𝒙 . Then,
when performing evaluations and decryptions, it is enough to only

operate on the right-hand side of the ciphertext. Finally, decryption

is performed in the normal way, using the secret key sk = 𝒔 that is
used in the original encryption.

2.3 Private Information Retrieval
Let DB ∈ X𝑚 represent a database containing𝑚 elements sampled

from some element space X. A (single-server) Private Informa-

tion Retrieval (PIR) scheme [23], denoted by PIR, consists of the
following algorithms.

3

• ppDB ← PIR.setup(1𝜆,DB): An algorithm that outputs a

set of public parameters.

• (q, st) ← PIR.query(ppDB, 𝑖): An algorithm that takes some

public parameters, and an index 𝑖 ∈ [𝑚] as input and out-

puts a query q ∈ {0, 1}∗ and some corresponding state

st ∈ {0, 1}∗.
• r ← PIR.respond(ppDB,DB, q): An algorithm that takes

some public parameters, the database, and a query as input.

The algorithm outputs a response r ∈ {0, 1}∗.
• x← PIR.process(ppDB, st, r): An algorithm that takes pub-

lic parameters, the state, and a response as input. The algo-

rithm outputs an element x ∈ X.
A generic PIR protocol (using the algorithms defined above) is

described in Construction 2.1. All such protocols must satisfy three

properties: correctness, security, and efficiency. Broadly speaking,

correctness guarantees that a query returns the intended result in

the database, security guarantees that the client query hides the

index being retrieved, and efficiency guarantees that the solution

is more efficient than the trivial solution of downloading the entire

database. We provide formal realisations of each property below.

Definition 2.3 (Correctness). Let 𝑃x be the probability that the

protocol in Construction 2.1 outputs x, where DB[𝑖] = x. We say

that PIR is correct if and only if 𝑃x > 1 − negl(𝜆).

For completeness, we may alternatively allow the query func-

tionality to take an indicator vector as input corresponding to

the index 𝑖 that should be queried. In other words, we may write,

2
Security of the scheme then follows from LWE with polynomial security loss (i.e.

Matrix LWE [29]), from a standard hybrid argument.

3
We only consider single-server (computationally-secure) PIR schemes in this work.

Section 1.2 discusses multi-server approaches.
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Construction 2.1: Generic PIR scheme

A PIR protocol between a server holding DB ⊆ X𝑚 , and a
client that wishes to learn DB[𝑖].

(1) The server runs ppDB ← PIR.setup(1𝜆), andmakes

ppDB publicly available.

(2) The client runs (q, st) ← PIR.query(ppDB, 𝑖),
sends q to the server, and stores (q, st).

(3) The server runs r ← PIR.respond(ppDB,DB, q),
and returns r to the client.

(4) The client runs x ← PIR.process(ppDB, st, r), and
outputs x.

PIR.query(ppDB,𝒇 ), where 𝒇 ∈ {0, 1}𝑚 . Typically, for correctness

to hold, we require that 𝑓𝑖 = 1, if and only if 𝑖 is the index that

should be queried, and 0 elsewhere.

Definition 2.4 (Security). For a PPT algorithm A, let 𝑃A
𝑏,𝑏′

be the

probability that A outputs 𝑏 ′ = 𝑏 in ℓ-QINDAPIR (Figure 2). We

say that PIR is secure (and satisfies ℓ-query indistinguishability) if
|𝑃A
𝑏
− 1/2| < negl(𝜆) for all such algorithms A.

Definition 2.5 (Efficiency). For a single client launching 𝑂 (1)
queries, PIR is efficient if the total communication overhead is

smaller than the total bit-length of DB.

PIR for keyword queries. Keyword PIR schemes were first in-

troduced in [22], and consider key-value map databases DB, where
elements x ∈ X contained in DB are associated with keys k ∈ K ,
for a key space K . To allow keyword queries to be made against a

PIR database, it is necessary to modify the PIR.query functionality,

as seen below.

• (q, st) ← PIR.query(ppDB, k): An algorithm that takes pub-

lic parameters and a key k ∈ K as input, and returns the

query q and the state st.
The generic construction in 2.1 can then be modified to have

a client that wishes to learn the value associated with k in DB.
Correctness, then, is defined as follows.

Definition 2.6 (Correctness for keyword queries). Let 𝑃k,x be the
probability that the scheme in Construction 2.1 outputs x, where
DB.read(k) = x. We say that PIR is correct if and only if 𝑃k,x >

1 − negl(𝜆).

Security is defined in the same way as in Definition 2.4, but using

the ℓ-kwQINDAPIR security game defined in Figure 2 (i.e. considering

the highlighted lines).

2.4 Key-Value Maps
A key-value (KV) map consists of two algorithms, set and read. The
set(k, x) operation writes the value x ∈ X to the key k ∈ K . The
read(k) operation, returns x if (k, x) has been written previously,

and ⊥ otherwise.

Real-or-random key-value (RoRKV) maps are similar except that

read(k) returns some random value 𝑟 ∈ X when (k, x) has not
been previously written. It is possible to construct standard KV

Experiment ℓ-QINDAPIR (ℓ-kwQIND
A
PIR)

1 : 𝑏 ←$ {0, 1}
2 : ppDB ← PIR.setup(1𝜆)
3 : (𝑖1, . . . , 𝑖ℓ ), ( 𝑗1, . . . , 𝑗ℓ ) ← A(ppDB,DB)

(k1, . . . , kℓ ), (k′
1
, . . . , k′ℓ ) ← A(ppDB,DB)

4 : T = [ (𝑖𝜄 + 𝑏 · ( 𝑗𝜄 − 𝑖𝜄 )) for 𝜄 ∈ [ℓ ] ]

T = [ (k𝜄 + 𝑏 · (k′𝜄 − k𝜄 )) for 𝜄 ∈ [ℓ ] ]

5 : Q = ∅
6 : for 𝑡 ∈ T :
7 : (q, st) ← PIR.query(ppDB, 𝑡 )
8 : Q.push(q)
9 : 𝑏′ ← A(ppDB,DB, Q)

Figure 2: ℓ-query indistinguishability for (keyword) PIR.

maps from any RoRKV map, at the cost of increasing the storage of

each element by the map key length. The construction is defined

as follows.

• KV.set(k, x) : run RoRKV.set(k, k∥x).
• KV.read(k) : run 𝑦 ← RoRKV.set(k), parse k′∥x′ ← 𝑦,

output x′ if k′ = k, and ⊥ otherwise.

To reduce the impact of the length of the key on storage, we can

instead store values as hash(𝑘)∥x, where hash is a random oracle

hash function.

3 PROBABILISTIC KEY-VALUE FILTERS
We now formalise the concept of probabilistic key-value filters,

that allow efficiently storing and querying key-value maps with

some false-positive probability 𝜖 > 0. Such structures will form the

basis of our eventual PIR scheme in Section 5. In Appendix B, for

additional context, we provide additional formalisations for filter

designs that focus only on encoding sets, rather than maps.

3.1 Key-Value Filters
Key-Value filters are a form of storage that allows encoding key-

value maps M of pairs (k, x) ∈ K × X, for key and value do-

mains K,X ⊆ {0, 1}∗, respectively. Key-value filters consist of

four algorithms setupFilter, write, check, and reconstruct, and are

parametrised by a fingerprint function, fpt𝜖 : K × X ↦→ {0, 1}𝜇 .
The function fpt𝜖 is, in turn, parametrised by the false-positive

probability via the polynomial 𝜇 = 𝜇 (𝜖). In essence, for every check

on a value x to the filter, a fingerprint 𝑦 is returned, and we say that

x is in KV if 𝑦 = fpt𝜖 (k, x). The algorithmic structure of key-value

filter is provided below.

• (F,H) ← KeyValue.setupFilter(1𝑚, 𝜖, ◦): A static initialisa-

tion function that generates a filter F of size𝑁 = 𝑂 (log(1/𝜖)𝑚),
and a set of hash functions H = {h𝑖 }𝑖∈[𝑘 ] for some 𝑘 ∈ N,
and where h𝑖 : {0, 1}∗ ↦→ [𝑁 ]. The input ◦ defines a mathe-

matical operation that is used for reconstructing data items.

• 𝑏 ← F.write(M,H, fpt𝜖 ): Writes a mapM to F using the

set of hash functions in H, and returns 𝑏 = 1 if successful,
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and 𝑏 = 0 otherwise. If 𝑏 = 0, it may be necessary to

regenerate the filter.

• F[H(k)] ← F.check(k,H): Simply evaluates H(k) for k,
and returns F[H(k)].

• fpt𝜖 (k, x) ← F.reconstruct(k,H, fpt𝜖 ): Runs F[H(k)] ←
F.check(k,H), and then returns⃝𝑘

𝑖=1
F[h𝑖 (k)] = F[h1 (k)] ◦

. . . ◦ F[h𝑘 (k)].

Correctness guarantees. We can express the correctness of a Key-

Value filter with respect to the following two definitions, providing

absolute correctness for included elements (no false-negatives),

and correctness with probability (1 − 𝜖) for testing non-included
elements (false-positives with probability 𝜖).

Definition 3.1 (Correctness of inclusion). Consider that (F,H) ←
KeyValue.setupFilter(1𝑚, 𝜖), and letM be any mapM ⊆ K × X
such that (k, x) ∈ K × X is contained withinM. We say that F
correctly indicates inclusion if the following equality holds:

Pr

[
𝑦 = fpt𝜖 (k, x)

��� 1←F.write(M,H,fpt𝜖 )
𝑦←F.reconstruct(k,H,fpt𝜖 )

]
= 1.

Definition 3.2 (Correctness of non-inclusion). Consider that (F,H) ←
KeyValue.setupFilter(1𝑚, 𝜖), and let M be any set M ⊆ {0, 1}∗
such that x ∈ {0, 1}∗ is not contained withinM. We say that F
correctly indicates non-inclusion (with false-positive probability 𝜖),

if the following inequality holds:

Pr

[
𝑦 = fpt𝜖 (k, x)

��� F.write(M,H,fpt𝜖 )
𝑦←F.reconstruct(k,H,fpt𝜖 )

]
≤ 𝜖.

Constructions. Key-value filters can be built directly from any

fingerprint-based (FB) filters (Appendix [? ]) that operate only over

sets (e.g. Cuckoo, XOR, or Binary Fuse filters). Let F be a FB filter,

with fingerprint function fpt𝜖 : X ↦→ {0, 1}𝜇 . In principle, all hash

function queries are modified to be performed over keys k ∈ K .
Then, when running the F.write and F.reconstruct algorithms, we

use the fingerprint function fpt𝜖 : K × X ↦→ {0, 1}𝜇 defined as

fpt𝜖 (k, x) = fpt𝜖 (k)∥x for x ∈ X, if (k, x) is encoded in the filter.

This provides value extraction with false-positive rate 𝜖 equal to

that of fpt𝜖 . More concretely, we can adapt fingerprint-based filters

to support key-value functionality by simply modifying the storage

procedure to perform F[H(k)] ← F.check(k,H), and then setting

F[h1 (k)] = fpt𝜖 (k, x) ◦ (−F[h2 (k)]) ◦ . . . ◦ (−F[h𝑘 (k)]).
Probabilistic Key-Value Maps. To build probabilistic key-value

maps (Section 2.4) from key-value filters, we instantiate theKV.read
function using the F.reconstruct function, as defined above. To

achieve some desired false-positive rate of 𝜖 = 2
−𝜇/2

, we can sim-

ply use the fingerprint function fpt𝜖 (k, x) = hash(k)∥x, where
hash : {0, 1}∗ ↦→ {0, 1}𝜇 is a random oracle hash function, and the

false-positive rate follows from simple application of the Birthday

paradox. Note that we work with filters that are selective by de-

sign — in other words, requiring that the entire set/map of elements

is written in one go — we must also impose the same restriction on

the key-value map.

Matrix representation and filter concatenation. For a key-

value filter, F, we write 𝑭 ← Matrix(F) ∈ X𝑁×1
to denote the

matrix representation of F. In other words, the 𝑖th entry of 𝑭 corre-

sponds to the 𝑖th concrete element in F. Clearly, 𝑭 is a vector, but

later we make use of the fact that the concatenation of 𝑑 filters

(each using the same set of hash functions, H) can be expressed

generically as a matrix 𝑭 ∈ X𝑁×𝑑
, where the (𝑖, 𝑗)th position 𝐹𝑖, 𝑗

corresponds to the 𝑖th entry of the 𝑗 th concatenated filter.

To express a concatenated filter, F, we abuse notation and write

F = (F1, . . . , F𝑑 ), where each F𝑖 is an individual filter. This repre-

sentation allows expressing 𝑑 · log 𝑝 bits of information per filter-

entry. We further abuse notation and write F.write(M,H, fpt𝜖 ) and
𝑦 ← F.reconstruct(k,H, fpt𝜖 ), which allows us to express running

F𝑖 .write(M,H, fpt𝜖 ) and 𝑦𝑖 ← F𝑖 .reconstruct(k,H, fpt𝜖 ) individu-
ally, for each 𝑖 ∈ [𝑑]. In the case of reconstruction, the response 𝑦

is equal to the bit-concatenation expressed by 𝑦1∥ . . . ∥𝑦𝑑 .

4 BINARY FUSE FILTERS FOR Z𝑝
Binary Fuse filters (BFFs) (as well as their predecessors, XOR fil-

ters [39]) were first introduced by Graf and Lemire [40] as an alter-

native filter-design, focused specifically on minimizing the space

and query overheads of key-value filters, while maintaining quick

access times. Compared with XOR filters, the constant space over-

head can be reduced to ç ∈ {≈ 1.08,≈ 1.13}, for the number of hash

functions 𝑘 ∈ {3, 4}, respectively. In principle, these savings are

achieved by breaking the filter into many, much smaller segments

F = (F1∥ . . . ∥F𝑃 ), where 𝑃 is chosen to be some value that ensures

that each segment F𝑖 contains 2𝑔 entries, for some 𝑔 ∈ N. Hash
function evaluations map uniformly to 𝑘 contiguous segments (i.e.

mapping uniformly to {0, 1}𝑔), and then reconstruction of fpt𝜖 (x)
is performed using the XOR operation in {0, 1}𝜇 .

Note that Cuckoo and XOR filters can be seen as sub-classes

of BFFs (we discuss in more detail the Cuckoo filter case towards

the end of this section), where 𝑘 = 2 and 𝑘 = 3, respectively, and

segments are chosen to be much larger. However, as well as the

reduction in space requirements, hash function evaluations for

BFFs can be chosen to map natively to 𝑔-bit domains, making such

function accesses cheaper. Concretely, it is shown in [40] that such

filters maintain higher performance than Cuckoo filters, even for

plausibly negligible 𝜖 (e.g. 2
−40

). Even so, while cuckoo filters have

been widely used in cryptographic schemes, BFFs are yet to see

any significant usage.

Formal description. First, let K = {0, 1}∗, let X = {0, 1}𝑙 for
some 𝑙 ∈ N, and let hash : {0, 1}∗ ↦→ {0, 1}𝜇 be a random oracle

hash function, where 𝜇 ≥ 2𝜖 (for some desired 𝜖). We consider

key-value maps of the formM ⊆ K × X. Then, we consider the
function fpt𝜖 : K × X ↦→ {0, 1}𝜇+𝑙 as defined in Section 3.1 (see

also Algorithm 1), for instantiating probabilistic key-value maps. In

other words, fpt𝜖 (k, x) = hash(k)∥x. To consider elements in Z𝑝 ,

we set 𝑝 = 2
𝜇+𝑙

and let ◦ be mod-𝑝 addition. All changes so far can

be made without altering any of the internal characteristics of the

filter itself. We write BFFp when referring to such BFFs from this

point forth. The formal description of each of the functions is given

below.

Formally speaking, BFFs for Z𝑝 instantiate the algorithms for

key-value filters (Section 3.1) in the following way.

• (F,H, fpt𝜖 ) ← KeyValue.setupFilter(1𝑚, 𝜖, ◦): Runs Algo-
rithm 1.
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Algorithm 1 BFFp setupFilter(1𝑚, 𝜖, +𝑝 ) Algorithm
Require: A parameter 𝑘 ∈ {3, 4}. A parameter 𝑚 ∈ N denoting the

number of keys in the maps written to BFFp.
1: Sample hash : {0, 1}∗ ↦→ {0, 1}𝜇 as a random oracle hash function for

𝜇 = 𝜇 (𝜖) .
2: Set 𝑠 ∈ {2 ⌊log3.33 (𝑚)+2.25⌋ , 2 ⌊log2.91 (𝑚)−0.5⌋ } for 𝑘 ∈ {3, 4}, respec-

tively.

3: Let 𝑁 = ç𝑚, where

ç =


max

( ⌊(
0.875 + 0.25 ·max(1, log(10

6 )
log(𝑚) )

)
·𝑚

⌋
, ⌊1.125𝑚⌋

)
max

( ⌊(
0.77 + 0.305 ·max(1, log(6·10

5 )
log(𝑚) )

)
·𝑚

⌋
, ⌊1.075𝑚⌋

)
for 𝑘 ∈ {3, 4}, respectively.

4: Sample universal hash functions h′ : {0, 1}∗ ↦→ [𝑁 /𝑠 ]. and h′′ :
{0, 1}∗ ↦→ [𝑠 ]

5: F = ∅
6: for 𝑖 ∈ [𝑁 ] do F[𝑖 ] ←$Z𝑝 end for
7: H = ∅
8: for 𝑖 ∈ [𝑘 ] do
9: Let h𝑖 be the function that is evaluated as h𝑖 ( ·) = (𝑁 /𝑠 · (h′′ ( ·) −

1)) + h′ ( · ∥𝑖)
10: H[𝑖 ] = h𝑖
11: end for
12: Let fpt𝜖 be the function that is evaluated as fpt𝜖 (k, x) = hash(k) ∥x
13: return (F,H, fpt𝜖 )

• 𝑏 ← F.write(M,H): Runs Algorithm 2.

• F[H(k)] ← F.check(k,H): Simply evaluates H(k) for k,
and returns F[H(k)].

• fpt𝜖 (k, x) ← F.reconstruct(k,H): First runs F[H(k)] ←
F.check(k,H), and returns⃝𝑘

𝑖=1
F[h𝑖 (k)] = F[h1 (k)] ◦ . . . ◦

F[h𝑘 (k)].

Core algorithms. We define two algorithms that allow us to

instantiate the setupFilter (Algorithm 1) and write (Algorithm 2)

functionality for a Binary Fuse Filter BFFp. Intuitively speaking,

these definitions differ from their original specification in that they

allow us to encode key-value maps in the structure, whereas the

work of [40] only allows encoding a set.

First, the setupFilter algorithm returns the filter structure BFFp,
based on specific parameters, and initialises the hash functions for

querying. The parameter𝑚 defines the maximum number of key-

value pairs in the map KV that will be encoded in the filter, defining

its eventual size 𝑁 , in tandem with the false-positive probability

𝜖 . The operation +𝑝 corresponds to the operation (addition mod𝑝)

used in reconstruct, and thus each entry of BFFp is an element of

Z𝑝 .
Second, the write algorithm (Algorithm 2) defines a mechanism

for encoding each key-value pair of a given KV in BFFp. This algo-
rithm can fail and abort with non-negligible probability (see line

21), which necessitates running an entirely new setupFilter process
to generate a new set of hash functions.

Correctness. Since we are building a key-value filter, we must

show that BFFp satisfies correctness, as dictated by Definition 3.1

and Definition 3.2. It is shown in [40] that the write algorithm

Algorithm 2 BFFp F.write(M,H, fpt𝜖 ) Algorithm
Require: M is a map containing𝑚 distinct keys sampled from K , each

associated with a data element sampled from X.
1: Let 𝑆 be a vector containing the keys {k𝑖 }𝑖∈[𝑚] fromM, ordered by

h1 (k) .
2: Let𝐶 = ∅
3: for 𝑗 ∈ [𝑁 ] do𝐶 [ 𝑗 ] = ∅ end for
4: for 𝑖 ∈ [𝑁 ] do
5: k𝑖 = 𝑆 [𝑖 ]
6: for 𝜄 ∈ [𝑘 ] do𝐶 [h𝜄 (k𝑖 ) ] .push(k𝑖 ) end for
7: end for
8: 𝑄 = ∅
9: for 𝑗 ∈ [𝑁 ] do
10: if |𝐶 [ 𝑗 ] | = 1 then𝑄.push( 𝑗) end if
11: end for
12: 𝑃 = ∅
13: while |𝑄 | > 0 do
14: 𝑗 ← 𝑄.pop()
15: if |𝐶 [ 𝑗 ] | = 1 then
16: k′ = 𝐶 [ 𝑗 ]
17: 𝑃.push( (k′, 𝑗))
18: for 𝜄 ∈ [𝑘 ] do𝐶 [h𝜄 (k′) ] .rem(k′) end for
19: end if
20: end while
21: if |𝑃 | ≠𝑚 then abort end if
22: while |𝑃 | > 0 do
23: (k′, 𝑗) ← 𝑃.pop()
24: F[ 𝑗 ] = 0 ∈ Z𝑝
25: for 𝑧 ∈ H(k′) do
26: if 𝑧 ≠ 𝑗 then F[ 𝑗 ] = F[ 𝑗 ] +𝑝 (−F[𝑧 ]) else F[ 𝑗 ] = F[ 𝑗 ] +𝑝

fpt𝜖 (k′,M[k′]) end if
27: end for
28: end while

encodes a set with absolute correctness for reading included ele-

ments. The only change in Algorithm 2 is that the fpt𝜖 is computed

differently, and so correctness of inclusion follows immediately.

For correctness of non-inclusion, [40] shows, experimentally, that

the choice of the parameter ç defined in Algorithm 1 ensures cor-

rectness of non-inclusion with false-positive probability 𝜖 , where 2𝜖

bits are stored filter per-entry. However, our analysis differs, in that

a false-positive occurs based on the first 𝜇 bits of the output of fpt𝜖 .
We show in Lemma 4.1 below that the probability of a false-positive

occurring is indeed bounded above by 2
−𝜇/2

for 𝜇 = 𝜇 (𝜖), based on

the random oracle hash function hash : {0, 1}∗ ↦→ {0, 1}𝜇 .
We show that the construction of BFFp from Section 4 is correct,

with regards to the above definitions.

Lemma 4.1 (Correctness of non-inclusion). BFFp satisfies
correctness of non-inclusion (Definition 3.2), with false-positive prob-
ability 2

−𝜇/2 ≤ 2
−𝜖 = negl(𝜖).

Proof. Consider a key k ∉ M, and a filter description which

is sampled as (F,H, fpt𝜖 ) ← KeyValue.setupFilter(1𝑚, 𝜖), and af-

ter writing F.write(M,H, fpt𝜖 ). A collision in the algorithm 𝑦 ←
F.reconstruct(k∗,M, fpt𝜖 ) occurs when 𝑦 = hash(k∗)∥x′, for any
value x′. To quantify the chance of this event occurring, we consider
two possible types of events.
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The first type corresponds to when the result of H(k∗) = H(k)
for some k ∈ M. Then the result𝑦 = hash(k)∥M[k], in which case

a collision occurs if hash(k) = hash(k∗). By the choice of hash as

a random oracle hash function mapping to {0, 1}𝜇 , we know that

the chance of a collision occurring is 2
−𝜇/2

.

The second type corresponds to when the result ofH(k∗) ≠ H(k)
for any k ∈ M. In this case, the result of running F.check(k∗,H(k∗))
returns 𝑘 entries in F, which are independently distributed. There-

fore, when summing these entries in F.reconstruct, we retrieve a
sum of independently and uniformly distributed elements in Z𝑝 .
As a result, the chance of the first 𝜇 bits being equal to hash(k∗) is
also equal to 2

−𝜇/2
, by the fact that hashmaps uniformly to {0, 1}𝜇 .

By the choice of 𝜇 ≥ 𝜖 , the rest of the statement follows. □

Supporting Larger Values. Note that the modifications proposed

previously require that the entire value of a RoRKV fit within Z𝑝 ,
which is likely to incur large costs when it comes to implementing

modular arithmetic. Alternatively, as discussed in previously in Sec-

tion 3.1, filter representations that hold elements in Z𝑝 can be con-

catenated, into a vector F̂ = (F1, . . . , F𝑑 ), where each F𝑗 corresponds
to a filter that holds log(𝑝) bits of data in every element, for 𝑗 ∈ [𝑑],
leading to concatenated filter that holds 𝑑 log(𝑝) bits per-entry. The
same set of hash functions H is used to query each filter, meaning

that the same locations in each filter are returned when querying

a single key. Therefore, to query F̂, we can abuse notation and

write F̂.check(k,H) = F1 .check(k,H)∥ . . . ∥F𝑑 .check(k,H) ∈ Z𝑑𝑝 .
Likewise, we write 𝑭 = Matrix(F̂) ∈ Z𝑁×𝑑𝑝 as the matrix repre-

sentation of this filter. Note that this construction has an identical

false-positive rate to a single filter design, as long as we maintain

the same fpt𝜖 function used in BFFp.

Comparison with Cuckoo Filters. As discussed in [40], Cuckoo

hashing [56] and their filter-variants [35] represent an instantiation

of the paradigm introduced by Binary Fuse filters, where 𝑘 = 2 and

there are no segments. Cuckoo filters have seen many applications

in cryptographic literature, e.g. in private set intersection [64, 65],

encrypted search [61], PIR [74], and beyond. For comparing Cuckoo

filters with Binary Fuse filters, we focus on the size of ç, i.e. the

blow-up of the size of the filter compared with the original database,

since the number of hash function evaluations is unlikely to make

a difference. As is noted in [40], each entry of the cuckoo filter

requires an extra 3 bits of representation, and there is a factor of

ç = 1.047 to magnify the size by. While ç is concretely smaller in

the case of Cuckoo filters, the requirement for holding 3 extra bits

per filter entry complicates matters for our PIR scheme, resulting in

adding 3𝑑 bits to the width of the eventual filter matrix. As is shown

in [40], in the end Cuckoo filters concretely require more space

to represent datasets than Binary Fuse filters. As a result, Binary

Fuse filters would appear to represent a non-trivial improvement

that could find use-cases in other cryptographic primitives and

protocols.

5 KEYWORD PIR CONSTRUCTION
We now describe our Keyword PIR construction, KWPIR, for a
generic key-value filter for elements in Z𝑝 . We assume that the

server holds a key-value map, KV, containing𝑚 keys, that clients

would like to query. Furthermore, we consider the value space to

be X = {0, 1}𝑤 and set 𝑑 = (𝜇 +𝑤)/log𝑝 , where hash : {0, 1}∗ ↦→
{0, 1}𝜇 is a random oracle hash function, for 𝜇 = 2𝜖 . Finally, we use

a concatenated filter design F = (F1, . . . , F𝑑 ), with a setupFilter()
algorithm that returns (F,H), that allows us to encode (𝜇 +𝑤)-bit
elements in total. To build KWPIR, we use a generic framework that

abstractly generalises LWE-based PIR scheme (denoted by LWEPIR,
and described in Appendix C). Internally, we will also make use of

an LWE-based HEIP scheme (denoted by Σlwe, see Section 2.2). An

algorithmic description of KWPIR is defined in the following.

• ppKV ← KWPIR.setup(1𝜆,KV) : Attempts at writing KV
a finite number of times, using 𝑏 ← F.write(KV,H), and
otherwise aborts if 𝑏 is never set to 1. Finally, runs the setup

algorithm ppLWE ← LWEPIR.setup(1𝜆, F)4, and returns

ppKV = (ppLWE,H).
• (q, st) ← KWPIR.query(ppKV, k): Runs (h1, . . . , h𝑘 ) ←

H(k), and then lets𝒇H(k) = (𝑓1, . . . , 𝑓𝑚) be the vector where
𝑓𝑖 = 1 if and only if 𝑖 ∈ H(k), and is 0 otherwise. Finally,

returns (q, st) ← LWEPIR.query(ppLWE,𝒇H(k) ).
• r ← KWPIR.respond(ppKV,KV, q): Let 𝑭 ← Matrix(F) ∈
Z𝑁×𝑑𝑝 , and returns r← LWEPIR.respond(ppLWE, 𝑭 , q).

• x ← KWPIR.process(ppKV, st, r): Runs the function x ←
LWEPIR.process(ppLWE, st, r), and returns x.

Correctness of KWPIR. The correctness argument is given below

in Theorem 5.1 for KWPIR follows as a consequence of choosing F
as BFFp, and where LWEPIR is parametrised using the parameters

𝑞, 𝑝 , 𝑛, 𝜎 , and 𝑁 .

Theorem 5.1 (Correctness of KWPIR). Let F be a Binary Fuse Filter
for Z𝑝 , and let LWEPIR be a correct PIR for index-based queries for
generic databases DB ∈ Z𝑁×𝑤𝑝 , with LWE parameters 𝑞, 𝑝 , 𝑛, 𝜎 , and
𝑁 . Then KWPIR is a correct PIR scheme for making keyword queries
against KV.

Proof. The proof of correctness almost follows immediately

from the LWEPIR scheme — based on the choice of 𝑞, 𝑝 , and 𝜎 with

respect to 𝑁 — and the false-positive rate 𝜖 . The difference is that

𝒇H(k) is an indicator vector, where 𝑘 values are set to 1, rather than

a single element. As desired, the eventual decryption x is equal to a
sum of the form:

𝑭 [h1 (k)] + . . . + 𝑭 [h𝑘 (k)] mod 𝑝

= F[h1 (k)] + . . . + F[h𝑘 (k)] mod 𝑝

= F.reconstruct(k,H)
= fpt𝜖 (k, x),

□

False-positives and larger data elements. Note explicitly that

PIR correctness only considers the case where a query is made for

an element that belongs to F. By definition, the filter responds to

such queries with 100% accuracy, in other words false-negatives

cannot occur. We do not prove any property for false-positives

occurring in the PIR scheme, and so we do not have to consider

the impact of false-positives occurring in the formal definition.

However, speaking concretely on the possibility of a false-positive

occurring, let us consider the encoding of values as hk∥x, where
4F is interpreted as a standard DB containing 𝑁 elements in Z𝑝 .
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h : K ↦→ {0, 1}𝑚𝑢
is a randomoracle hash function. In this regime, it

would be necessary to find a key k0, such that F.reconstruct(k0,H)
returns 𝑦∥x0, for some value x0, where 𝑦 = hk0 and k0 ∉ KV. By
the definition of h, this occurs with probability 2

−𝜇/2
.

This concrete estimation relies on encoding the entire data value

in a single entry of the filter, which may harm performance. As

mentioned in Section 4, it is trivial to adapt KWPIR to consider

longer data elements without increasing the size of 𝑝 , by using a

concatenated filter regime.

Security of KWPIR. The formal security argument of KWPIR
follows in Theorem 5.2. Ultimately, this is as a consequence of

LWEPIR being a secure index-based PIR scheme.

Theorem 5.2 (Security of KWPIR). Let LWEPIR be a secure PIR
scheme satisfying ℓ-query indistinguishability (ℓ-QINDAPIR) for index-
based queries, for generic databases DB ∈ Z𝑁×𝑑𝑝 , with LWE pa-
rameters 𝑞, 𝑝 , 𝑛, 𝜎 , and 𝑁 . Let KV be a key-value map, containing
𝑚 = 𝑁 /𝑘 elements, represented using a filter, F, and a set of 𝑘 hashes
H. Then KWPIR is (ℓ/𝑘)-kwQINDBPIR secure for making keyword
queries against F, based on the hardness of LWE𝑞,𝑛,𝑝,𝜎 .

Proof. LetA be a PPT adversary in the ℓ-QINDAPIR experiment,

where PIR = LWEPIR, and likewise let B be a PPT adversary in

the (ℓ/𝑘)-kwQINDBPIR security game that A runs as a subroutine.

After initialisation, B produces their lists of keys (k1, . . . , kℓ/𝑘 ) and
k′
1
, . . . , k′

ℓ/𝑘 to be queried, and sends these to A. Then, A runs:

(𝑖𝜄,1, . . . , 𝑖𝜄,𝑘 ) ← F.check(𝜄,H), ( 𝑗𝜄,1, . . . , 𝑗𝜄,𝑘 ) ← F.check(𝜄,H),
for each 𝜄 ∈ [ℓ/𝑘], and concatenates these lists into two lists of

length ℓ , of the form:

(𝑖1,1, . . . , 𝑖1,𝑘 , 𝑖2,1, . . . , 𝑖ℓ/𝑘,𝑘 ), ( 𝑗1,1, . . . , 𝑗1,𝑘 , 𝑗2,1, . . . , 𝑗ℓ/𝑘,𝑘 ) .

Then,A submits both of these lists to the challenger in the ℓ-QINDAPIR
experiment, and learns a list of ℓ queries Q = (q1, . . . , qℓ ). By the

nature of LWEPIR, each q𝑙 (for 𝑙 ∈ [ℓ]) is an LWE-based cipher-

text of the form described in Section 2.2. Therefore, A breaks Q
into ℓ/𝑘 contiguous segments of length 𝑘 , where we write Q𝜄 =
(q𝜄,1, . . . , q𝜄,𝑘 ) to denote the segment containing the vector of val-

ues (q(𝜄−1) ·(ℓ/𝑘)+1, . . . , q(𝜄−1) ·(ℓ/𝑘)+𝑘 ), for 𝜄 ∈ [𝑘]. Then, A runs

q̃𝜄 ← Σlwe .eval(Q𝜄 , 1𝑘 ), for each 𝜄 ∈ [ℓ/𝑘], where 1𝑘 is the 𝑘-

dimensional all-one vector — in other words, performing a ho-

momorphic sum of each of the ciphertexts. Finally, A returns

Q̃ = (q̃1, . . . , q̃ℓ/𝑘 ) to B. When B returns 𝑏 ′ to A, A simply for-

wards 𝑏 ′ to their challenger.

We now show that A simulates the (ℓ/𝑘)-kwQINDBPIR game

perfectly for B. This amounts to showing that Q̃ is a list of queries

for the keywords submitted by B, corresponding to (k1, . . . , kℓ/𝑘 )
when 𝑏 = 0, and (k′

1
, . . . , k′

ℓ/𝑘 ) when 𝑏 = 1.

Without loss of generality, let us consider the case of 𝑏 = 0.

Notice that q̃𝑙 is an encryption of the vector 𝒇H(k) . This is be-

cause q̃𝑙 results from the homomorphic evaluation of the sum of

(q(𝑙−1) ·(ℓ/𝑘)+1, . . . , q(𝑙−1) ·(ℓ/𝑘)+𝑘 ), where q(𝑙−1) ·(ℓ/𝑘)+𝑡 is a query
that encrypts 𝒇h𝑡 (k) — in other words, the all-zero vector with a 1 in

position h𝑡 (k) — for 𝑡 ∈ [𝑘]. Furthermore, we know that this homo-

morphic evaluation is correct because Σlwe is parameterised to be

correct for DB of size𝑚, while the map KV only contains 𝑁 /𝑘 ele-

ments (and thus requires 𝑁 /𝑘 homomorphic operations). Therefore,

the extra homomorphic computations performed by A will not

violate correctness when each query is applied to theDB associated

with KV. Note that, by the definition of KWPIR, q̃𝑙 is a cipher-

text encrypting LWEPIR.query(ppLWE,𝒇H(k) ), which is equivalent

to KWPIR.query(ppKV, k). The argument above holds identically

in the case that 𝑏 = 1. Therefore, the simulation produced by A
corresponds exactly to the real game in (ℓ/𝑘)-kwQINDBPIR.

Now, consider that the possibility that B has non-negligible

advantage: this translates directly into a non-negligible advantage

for A in ℓ-QINDAPIR, since each of the queries submitted by A are

valid against a DB of size 𝑁 . Given that LWEPIR is a secure PIR

scheme based on the LWE𝑞,𝑛,𝑝,𝜎 assumption, we conclude that B
has negligible advantage similarly. □

5.1 Square-Root Matrix Encoding
By fixing thematrix description 𝑭 ∈ Z𝑁×𝑑𝑝 of the concatenated filter,

we immediately align KWPIR with FrodoPIR [29]. This is because,

we effectively treat each row in the filter “database” as a single

element, as is done in FrodoPIR. However, we can easily express

KWPIR in terms of an LWEPIR scheme that allows “square-root”

database encoding as well. To achieve this, we simply modify the

filter matrix representation 𝑭 to encodemultiple rows of the filter on

a single row. This way we can achieve 𝑭 ∈ Z
√
(𝑁 ·𝑑)×

√
(𝑁 ·𝑑)

𝑝 which

results in asymptotically smaller communication overheads (which

we discuss shortly). Then, when querying against 𝑭 , the task is

simply to decode only the elements of the response that correspond

to the desired columns of 𝑭 . Thus, the actual filter representation
does not have to change at all.

6 PERFORMANCE EVALUATION
In this section, we discuss parameter settings, implementation de-

tails and experimental evaluation of the KWPIR protocol.

6.1 Implementation
PIR scheme. As previously discussed, we can use any underlying

LWEPIR scheme to implement KWPIR. While the choice of scheme

impacts bandwidth costs (due to differences in database encoding),

the actual online runtimes are largely equivalent. This is due to

the fact that the online phase always needs to run 𝑂 (𝑁 · 𝑑) opera-
tions regardless of the database format. We emphasise here that we

focus on detailing the costs of a simple implementation that will

more readily usable by non-expert developers, and we ignore the

possibility of using optimised matrix multiplication algorithms.

Due to these reasons, for our implementation and instantiation,

we decide to use the FrodoPIR Rust implementation
5
as a base for

our own implementation.
6
We call this instantiation ChalametPIR.

Our changes to the FrodoPIR codebase include adding API support

for keyword databases, and incorporating an adapted Rust imple-

mentation of Binary Fuse filters.
7
Our adaptations of Binary Fuse

filters include handling of plaintext operations in Z𝑝 , and modifying

the algorithm to work with key-value maps. For bandwidth costs,

we provide cost calculations for ChalametPIR instantiated using

5
https://github.com/brave-experiments/frodo-pir

6
https://github.com/claucece/chalamet

7
Original code: https://github.com/ayazhafiz/xorf

https://github.com/brave-experiments/frodo-pir
https://github.com/claucece/chalamet
https://github.com/ayazhafiz/xorf
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both FrodoPIR [29] and SimplePIR [42] as the underlying LWEPIR
scheme. We further benchmark the offline and online phases of

ChalametPIR, taking into account both underlying approaches. We

highlight explicitly how the modification of the database format

in FrodoPIR and SimplePIR can result in interesting performance

trade-offs. Since the number of offline and online server operations

should be equivalent in both cases (modulo modification of LWE

parameters), we provide runtimes only using our FrodoPIR-based
implementation.

Online runtimes of SimplePIR. Note that FrodoPIR and SimplePIR
compute exactly the same number of online mod 𝑞 operations (even

assuming the different matrix encodings). Given this fact, reim-

plementing SimplePIR in Rust will not lead to interesting results

when comparing the runtimes of both schemes. As a result, and

to avoid making unfair performance comparisons (where the Rust

implementation of FrodoPIR is likely to outperform the Golang im-

plementation
8
of SimplePIR), we only make reference to the online

runtimes of FrodoPIR throughout this experimental analysis.

Experimental parameters. For our FrodoPIR-based implemen-

tation [29] we consider an LWE dimension of 𝑛 = 1774, modulus

𝑞 = 2
32

to provide 𝜆 = 128 bits of security [2]. For SimplePIR, we
use 𝑞 = 2

32
and 𝑛 = 1024. To establish the size of 𝑝 , the plaintext

modulus, in FrodoPIR, we must take into account the database size

𝑚. Primarily, we consider key-value map sizes of 2
16 ≤ 𝑚 ≤ 2

20
,

where 𝑝 = 2
10

for𝑚 ∈ {216, 217, 218}, and 𝑝 = 2
9
for𝑚 ∈ {219, 220}.

For these experiments, we set the size of each value entry (of the

form hash(k)∥x) as simulated to be 1 kB (𝑤 = 2
13

bits) in length.

In this setting, 𝜖 = 𝜇/2, where 𝜇 can be configured based on the

choice of hash function. The choice of 𝑝 when using SimplePIR
is simulated using the open-source code of [42]. To compare with

existing Keyword PIR schemes [51, 62], we additionally experiment

with three databases of the form:

• 𝑚 = 2
20
,𝑤 = 2

11
(256 B), and 𝑝 = 2

9
;

• 𝑚 = 2
17
,𝑤 = 30 · 213 (30 kB), and 𝑝 = 2

9
;

• 𝑚 = 2
14
,𝑤 = 100 · 213 (100 kB), and 𝑝 = 2

9
.

Finally, for the parameters of BFFp, we consider both cases of

𝑘 = 3 and 𝑘 = 4, where 𝑘 is the number of hash functions. When

calculating the number of entries in the filter for these cases, we

set ç = 1.13 and ç = 1.08, respectively. In some cases we provide

only benchmarks for 𝑘 = 3, which provides a lower bound on

the efficiency of the approach in terms of bandwidth and server

computation.

Computational setup and financial costs. For estimating the

runtime of ChalametPIR and maintaining the comparisons as fair

as possible with previous work, we use two AWS EC2 instances

almost identical to the ones used in [62]
9
: (i) Intel(R) Xeon(R) CPU

E5-2686 v4 @ 2.30GHz, 32GiB of memory (referred in AWS EC2

as “t2.2xlarge”), and (ii) Intel(R) Xeon(R) Platinum 8124M CPU @

3.00GHz, 72GiB of memory and 36vCPU (referred in AWS EC2

as “c5.9xlarge”). In particular, we use the “t2.2xlarge” machine to

compare performance with existing index-based LWE PIR schemes,

and we use the “c5.9xlarge” machine to compare with the SparsePIR

keyword PIR scheme [62]. In addition, we provide benchmarks

8
https://github.com/ahenzinger/simplepir

9
Ubuntu PC, 3.7 GHz Intel Xeon W-2135, 12-core CPU, 64 GB RAM.

|KV| # keys × |value| Query (kB) Response (kB)
(𝑚 ×𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = FrodoPIR

𝑚 ↑

2
16 × 1 kB 287 276 3.2 3.2

2
17 × 1 kB 579 553 3.2 3.2

2
18 × 1 kB 1157 1106 3.2 3.2

2
19 × 1 kB 2314 2212 3.56 3.56

2
20 × 1 kB 4628 4424 3.56 3.56

𝑤 ↑
2
20 × 256 B 4628 4424 0.89 0.89

2
17 × 30 kB 579 553 96 96

2
14 × 100 kB 72 69 291 291

LWEPIR = SimplePIR

𝑚 ↑

2
16 × 1 kB 31.89 31.17 31.89 31.17

2
17 × 1 kB 44.65 43.64 44.65 43.64

2
18 × 1 kB 63.78 62.34 63.78 62.34

2
19 × 1 kB 90.36 88.32 90.36 88.32

2
20 × 1 kB 127.56 124.68 127.56 124.68

𝑤 ↑
2
20 × 256 B 63.78 62.34 63.78 62.34

2
17 × 30 kB 256.18 250.4 256.18 250.4

2
14 × 100 kB 180.71 180.71 176.63 176.63

Table 1: Bandwidth costs (kB) for ChalametPIR.

using a Macbook M1 Max, to highlight how efficient operations are

when they run on commodity hardware. All of our experiments

use single-thread execution and results are taken as the average of

100 runs.

In terms of other performance metrics, we use the current AWS

financial cost structure for running a server in the “c5.9xlarge” [7].

Therefore, the CPU per-hour cost is estimated as $1.53/36 = $0.0425

(since this machine has 36 vCPUs, and we run single-threaded),

the download cost is $0.09 per GB, and the upload cost is zero.

Furthermore, following prior works, we define the rate as the ratio
of the retrieved record size to the response size, and the throughput
as the ratio of the database size to the server’s online computation

time.

6.2 Experimental Analysis
Here, we describe the concrete online runtime and bandwidth costs

of ChalametPIR (based on both FrodoPIR and SimplePIR). In Ap-

pendix D, we provide additional benchmarks that highlight the

minimal rise in costs relative to index-based PIR. Furthermore, we

discuss how offline costs scale, relative to preparing the one-time

cost of the state that is sent to the client.

Bandwidth. The bandwidth costs for ChalametPIR are given

in Table 1. Clearly, the query and response are far more balanced

in the case of SimplePIR as opposed to FrodoPIR. As previously
alluded, FrodoPIR optimises for the download as this results in

reduced financial costs when running the server functionality on

standard cloud architectures (since upload costs are typically free).

See Table 3 for more details.
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DB (𝑚 ×𝑤 ) Query Response Parsing

Macbook M1 Max

2
16 × 1024 B 0.010597 6.5508 0.22001

2
17 × 1024 B 0.038866 12.473 0.21894

2
18 × 1024 B 0.051996 24.452 0.21658

2
19 × 1024 B 0.14442 54.053 0.24204

2
20 × 1024 B 0.24049 116.89 0.24384

EC2 “t2.t2xlarge”

2
16 × 1024 B 0.050048 37.830 0.47251

2
17 × 1024 B 0.1787 74.733 0.47046

2
18 × 1024 B 0.19739 143.82 0.46782

2
19 × 1024 B 0.4219 319.82 0.50735

2
20 × 1024 B 0.8471 634.21 0.56381

EC2 “c5.9xlarge”

2
20 × 256 B 1.3699 133.58 0.090116

2
17 × 30 kB 0.055415 1846.6 10.663

2
14 × 100 kB 0.0040465 760.64 35.485

Table 2: Online performance (milliseconds) of ChalametPIR
(LWEPIR = FrodoPIR, 𝑘 = 3). Response is a server operation,
while Query and Parsing are run by the client.

Regardless, the total costs are fairly small, requiring data transfer

in the order of kilobytes to perform a keyword query. In the case

of using FrodoPIR as the underlying PIR scheme, the advantage of

having a smaller download is that the rate is ≈ 0.3. In other words,

the size of the response ciphertext is only ≈ 3× larger than the

original record.

Runtimes. ChalametPIR runtimes are minimal (as seen in Table 2):

client operations (query and parsing) require a small number of

milliseconds, and the server response only requires more than a

second for the 2
17 × 100 kB database size. Otherwise, server costs

amount to only hundreds of milliseconds. Since these times are

achieved using single-threaded processing, and given that the com-

putation is a series of independent vector-column multiplications,

parallelisation would significantly reduce these times. In addition,

these times do not take into account any optimisations that could be

introduced with sub-cubic matrix multiplication formulae [25, 71].

6.3 Keyword PIR Performance Comparison
The schemes of [62] and [51] represent the most efficient single-

server keyword PIR protocols to date. In particular, the SparsePIR

scheme of [62] represents the state-of-the-art in terms of perfor-

mance (both communication and runtimes).

In Table 3, we compareChalametPIR— instantiatedwith LWEPIR ∈
{FrodoPIR, SimplePIR} — against SparsePIR — instantiated with

Onion [55] (“OnionSparsePIR”) and Spiral [52] (“SpiralSparsePir”)

PIR. Since [62] does not provide an open-source implementation

of their work, we report the numbers given in their paper. Note

that the runtimes of [62] are given with specific AVX2 and AVX-

512 instruction sets with SIMD instructions enabled, while we do

not use such optimisations. Finally, we provide server runtimes

of ChalametPIR using our FrodoPIR-based implementation. We

assume equivalent runtimes for a SimplePIR-based implementation,

since the number of operations is the same, modulo difference in

their choice of LWE security parameters. To simplify the rest of

the comparison, we refer to the benchmarked map taking sizes in

ChalametPIR SparsePIR
FrodoPIR SimplePIR Onion Spiral

Online costs: 220 × 256 B

Query (kB) 287 63.78 63 14

Response (kB) 0.89 63.78 127 21

Runtime (s) 0.13358 0.13358† 3.04 1.44

Rate 0.28 0.004 0.002 0.012

Throughput (MB/s) 1916 1916 84 178

Cost (USD) 1.65e−6 7.05e−6 4.68e−5 1.88e−5

Online costs: 217 × 30 kB

Query (kB) 579 256 63 14

Response (kB) 96 256.18 127 86

Runtime (s) 1.8466 1.8466† 41.91 11.57

Rate 0.313 0.117 0.236 0.349

Throughput (MB/s) 2218 2218 98 354

Cost (USD) 3e−5 4.37e−5 5.05e−4 1.43e−4

Online costs: 214 × 100 kB

Query (kB) 72 180.71 63 14

Response (kB) 291 176.63 508 242

Runtime (s) 0.76064 0.76064† 17.32 5.91

Rate 0.344 0.566 0.197 0.413

Throughput (MB/s) 2692 2692 118 347

Cost (USD) 3.4e−5 2.41e−5 0.25e−4 9.05e−5

Table 3: Online cost comparison for ChalametPIR (LWEPIR ∈
{FrodoPIR, SimplePIR}, and 𝑘 = 3) with SparsePIR, based on
Onion [55] and Spiral [52] PIR. Server costs computed on
AWS EC2 ‘c5.9xlarge’. †: Online runtimes for SimplePIR are
estimated as equivalent to FrodoPIR, since the number of
operations is essentially equivalent. Green and light green
indicate the most and second-most optimal cases.

(220×256 B), (217×30 kB), (214×100 kB) as case I, case II, and case
III, respectively.

In terms of runtimes, ChalametPIR is an order of magnitude

quicker in case I, with speed-up factors of 6.25× and 7.78× for cases
II and III, respectively. This leads to a significant improvement in

throughput, processing ∼ 2GB of data per second, while SparsePIR

achieves only hundreds ofMB.

In terms of client download, ChalametPIR with FrodoPIR ex-

cels in the setting where the elements are smallest, since the client

download is dependent only on the parameter𝑤 . For case I, this con-

figuration is > 23× more efficient than SparsePIR, with a download

size of < 1 kB. For case II, we can already see that SpiralSparsePIR

is competitive with ChalametPIR with FrodoPIR, achieving similar

download costs. Finally, for case III, ChalametPIR with SimplePIR
achieves the lowest bandwidth cost across the board, while FrodoPIR
has a comparatively larger cost, due to𝑤 being larger. We can see

that these trends are represented in the rate also, since this is de-

termined by the ratio of the ciphertext download size with respect

to the retrieved element. In terms of client upload, since FrodoPIR
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naturally favours optimising download instead of upload, FrodoPIR-
based ChalametPIR performs poorly across all cases. In contrast,

SparsePIR provides the best trade-off in terms of upload across all

cases.

Finally, in terms of AWS EC2 financial costs, ChalametPIR is

by far the cheapest PIR scheme to use across all database sizes.

Concretely, a server implementation of ChalametPIR with either

LWEPIR scheme results in between 3×—11.4× and cost savings.

This cost metric is important for general application providers, that

do not have native access to hardware to run server-side software,

and must resort to using commercial cloud-computing infrastruc-

ture. In D.2, we show that the offline costs of ChalametPIR have a

largely insignificant impact compared with the per-query online

costs, when considering amortisation over even moderate client

usage, and improving further still for widely-used systems.

Constant-weight PIR. As was shown in [62], the constant-weight
PIR scheme of [51] performs much more slowly and with much

larger bandwidth constraints than the SparsePIR approach, even

for much smaller databases. We attempted to acquire results for

each of the larger cases ourselves, but were unable to get full perfor-

mance figures from the provided implementation in [51], due to the

experiments failing to terminate. Given that [62] shows SparsePIR

is over an order of magnitude more efficient with respect to nearly

all of the performance criteria, it is clear that ChalametPIR would

achieve a similar (if not more stark) set of contrasts.

7 DISCUSSION
Applications. Information retrieval that allows for a false positive

rate has attracted significant interest in recent years, especially

in distributed and database systems, where false positives can be

tolerated to a degree, and minimal space usage is crucial [16]. While

there have been several proposals to efficiently solve this problem [4,

54], privacy has not been deeply considered. Providing efficient

KWPIR is a step forward in solving this lack of consideration. In

other areas, KWPIR are fundamental tools for building credentials-
checking (C3) services, which check if a username, password pair is

exposed in order to prevent credential-stuffing attacks or credential-
tweaking attacks [58], as they are one of the most prevalent forms

of account compromise [72]. Naively, index-based PIR solutions

to this problem allow for only retrieving breached passwords. A

keyword-based solution allows for querying for a specific username,

password pair, which can better alert a user of a breach of their

credentials. Interesting future work can focus on analysing how

important the role of database privacy plays in such problem, and

how such guarantees can be imported to the KWPIR setting.

Keyword PIR is also a natural fit for private pattern matching:
privately identifying occurrences of a given string in text. Specifi-

cally, for the “exact” version of the problem: retrieve occurrences

where the given query exactly matches a substring in the text. The

need for privacy in these cases relies on querying on text that can

be considered sensitive information [45]. Adapting our scheme for

this problem will need to determine how to properly construct the

different structures and parameters, and we leave this extension as

future work.

Batch PIR. Batch PIR performs𝑄 PIR queries in a single batch, but

where processing and communication costs are concretely smaller

than the trivial case of launching 𝑄 independent PIR queries. As is

noted in [42], LWEPIR schemes naturally are amenable to generic

batching techniques introduced in [43], to reduce the total server

time from far below 𝑂 (𝑄𝑁 ), by partitioning the database into 𝑄

chunks, and running independent PIR queries on each of these

smaller chunks. Since batch PIR is not the main focus of this work,

we encourage the reader to see [42] for more details.

Database updates. As noted in previous works [29, 42], LWEPIR
approaches do not provide native support for handling database

updates, beyond re-running the offline state generation proce-

dure. Standard telescopic database update mechanisms can be ap-

plied [44], but devising instantiation-specific approaches represents

an interesting open problem.

Alternative LWE PIR Schemes. The DoublePIR [42] and Hint-

lessPIR [48] schemes provide alternative LWEPIR protocols that

could be considered in the context of ChalametPIR. In both of these

approaches, the central idea is that the square-root matrix encoding

means that the client does not need the full offline state to decode

online queries. In essence, they can use another layer of PIR to re-

trieve only the elements in the offline hint that are required. In this

paradigm, FrodoPIR and SimplePIR simply represent a trivial solu-

tion to download the entire hint database. In DoublePIR, the idea is
to provide another layer of SimplePIR but where the client queries

the hint as the intended database. In HintlessPIR, the idea is that
using RLWE-based PIR schemes can lead to performance improve-

ments compared with the aforementioned approaches. However,

as we discussed in 6.2, since these changes only impact the offline

phase, the results that we represent for the online phase would

largely be equivalent in each of the cases.

Multi-server keyword PIR. The proposed KWPIR framework is

not applicable to multi-server constructions of PIR, which differ in

that they do not tend to use LWE-based instantiations of PIR. Multi-

server constructions of keyword PIR exist (e.g. from distributed

point functions [27, 38, 44]), and are generally more efficient than

single-server counterparts. However, there are many applications

and setups where non-collusion (trust) assumptions are completely

non-viable. In this work, we focus on building efficient single-server

keyword PIR constructions, which are much more versatile in that

implementers do not have to make such trust assumptions.

8 CONCLUSION
In this work, we built a simple framework for constructing Keyword

PIR based on state-of-the-art index-based PIR schemes. We refer to

this framework as KWPIR, and derive ChalametPIR as a concrete

instantiation of it that is compatible with LWEPIR schemes. The

frameworkmakes uses of novel key-value filters (Binary Fuse filters)

and arrives at computational and communicational overheads that

are essentially competitive with their index-based counterparts. We

implemented ChalametPIR in Rust as a proof-of-concept, and with

it illustrate that the scheme is more efficient than state-of-the-art

keyword-based schemes.
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an offline phase, which violates fundamental PIR efficiency criteria

(Definition 2.5).

B ALTERNATIVE FILTER ABSTRACTIONS
We discuss functionality for various filter abstractions, to provide

context for the key-value filters described in Section 3.1.

B.1 Data Storage (DS) Filters
Bloom filters [13] were the first construction of a long and fruitful

series of works that encode datasets of𝑚 elements as a series of

digits, and use hash functions to record fast data writing and access.

In principle, they are a compact data structure for probabilistic set

membership testing. The speed of writing and reading from the

database is achieved at the cost of a configurable probability (𝜖) of

false-positive reads occurring [15] — indicating, erroneously, that

an element belongs to the set — while false negatives are impossi-

ble. The theoretical lower bound for the space requirement of all

such data structures is 𝑂 (log(1/𝜖)𝑚) bits [16]. Their algorithmic

description can be generalised as follows.

• (F,H) ← DS.setupFilter(1𝑚, 𝜖): A static initialisation func-

tion that returns a filter F of size 𝑁 = 𝑂 (log(1/𝜖)𝑚), and a

set of uniform independent hash functions H = {h𝑖 }𝑖∈[𝑘 ]
for some 𝑘 ∈ N, and where h𝑖 : {0, 1}∗ ↦→ [𝑁 ].

• 𝑏 ← F.write(S,H): Writes a set S ⊆ {0, 1}∗ to F using the

set of hash functions in H, and returns 𝑏 = 1 if successful,

and 𝑏 = 0 otherwise. If 𝑏 = 0, it may be necessary to

regenerate the filter.

• 𝑏 ← F.check(x,H): Checks if 𝑥 ∈ {0, 1}∗ has been previ-

ously written to F using H, and returns 𝑏 = 1 if it has and

𝑏 = 0 otherwise. Note that 𝑏 = 1 is returned erroneously

with probability up to 𝜖 .

We write F[ 𝑗] to indicate the 𝑗 th entry of F. Furthermore, we

will write H(x) as shorthand to indicate the set {h𝑖 (x)}𝑖∈[𝑘 ] , and
F[H(x)] as shorthand to indicate the set {F[h𝑖 (x)]}𝑖∈[𝑘 ] .
Correctness. We can express the correctness of a data storage

filter with respect to the following two definitions.

Definition B.1 (Correctness of inclusion). Firstly, let (F,H) ←
DS.setupFilter(1𝑚, 𝜖), and let S be any set S ⊆ {0, 1}∗ such that

x ∈ {0, 1}∗ is contained within S. We say that F correctly indicates

inclusion if the following equality holds:

Pr[1← F.check(x,H) | 1← F.write(S,H)] = 1.

Definition B.2 (Correctness of non-inclusion). Firstly, let (F,H) ←
DS.setupFilter(1𝑚, 𝜖), and let S be any set S ⊆ {0, 1}∗ such that

x ∈ {0, 1}∗ is not contained within S. We say that F correctly

indicates non-inclusion (with false-positive probability 𝜖), if the

following inequality holds:

Pr[1← F.check(x,H) | 1← F.write(S,H)] ≤ 𝜖.

Constructions. For Bloom filters, F is constructed as a bit-string

of length 𝑁 = 1.44𝑘𝑚, where 𝑘 = log(1/𝜖). For each x ∈ S,
F.write(S,H) executes each 𝑗 ← h𝑖 (x) and sets F[ 𝑗] = 1 (ignor-

ing cases where it is already set to 1). If F[ 𝑗] = 1 for each 𝑗 , then

construction of F fails. When F.check(x,H) is executed, it returns∧𝑘
𝑖=1 F[h𝑖 (x)] = 1. Each write/read to the Bloom filter requires

𝑘 hash function operations. The space requirement is a factor of

1.44 larger than the optimal lower bound. Various advances have

produced cheaper variants of Bloom filters, across a variety of

settings [14, 30, 53, 67].

B.2 Fingerprint-Based (FB) Filters
Fingerprint-based filters consider an element spaceX ⊆ {0, 1}∗, and
are parametrised by a fingerprint function, fpt𝜖 : {0, 1}∗ ↦→ {0, 1}𝜇 .
The function fpt𝜖 is, in turn, parametrised by the false-positive

probability via the polynomial 𝜇 = 𝜇 (𝜖). In essence, for every

check on a value x to the filter, a fingerprint 𝑦 is returned. We

say that x is considered as part of the filter if 𝑦 = fpt𝜖 (x). To
explicitly differentiate fingerprint-based filters from data storage

filters, we add an extra algorithm reconstruct, that explicitly returns
the fingerprint values from the filter. The modified algorithmic

structure is as follows.

• (F,H, fpt𝜖 ) ← FB.setupFilter(1𝑚, 𝜖, ◦): A static initialisa-

tion function that generates a filter F of size𝑁 = 𝑂 (log(1/𝜖)𝑚),
and a set of hash functions H = {h𝑖 }𝑖∈[𝑘 ] for some 𝑘 ∈ N,
and where h𝑖 : {0, 1}∗ ↦→ [𝑁 ]. Also returns a function

fpt𝜖 : {0, 1}∗ ↦→ {0, 1}𝜇 (𝜖) , parameterised by 𝜖 . The input

◦ defines a mathematical operation that is used for recon-

structing data items.

• 𝑏 ← F.write(S,H, fpt𝜖 ): Writes a map S to F using the set

of hash functions in H, and returns 𝑏 = 1 if successful, and

𝑏 = 0 otherwise. If 𝑏 = 0, it may be necessary to regenerate

the filter.

• F[H(x)] ← F.check(x,H): EvaluatesH(x) for x, and returns
F[H(x)].

• fpt𝜖 (x) ← F.reconstruct(x,H, fpt𝜖 ): Firstly, runs F[H(x)] ←
F.check(x,H), and then returns⃝𝑘

𝑖=1
F[h𝑖 (x)] = F[h1 (x)] ◦

. . . ◦ F[h𝑘 (x)].

Correctness. In Fingerprint-based filters, the check algorithm is

only used to return the slots that should be read when checking

the fingerprint of data elements. Therefore, the correctness criteria

must take into account the output of the reconstruct algorithm
instead.

Definition B.3 (Correctness of inclusion). Firstly, let (F,H) ←
FB.setupFilter(1𝑚, 𝜖), and let S be any set S ⊆ {0, 1}∗ such that

x ∈ {0, 1}∗ is contained within S. We say that F correctly indicates

inclusion if the following equality holds:

Pr

[
𝑦 = fpt𝜖 (x)

��� 1←F.write(S,H,fpt𝜖 )
𝑦←F.reconstruct(x,H,fpt𝜖 )

]
= 1.

Definition B.4 (Correctness of non-inclusion). Firstly, let (F,H) ←
FB.setupFilter(1𝑚, 𝜖), and let S be any set S ⊆ {0, 1}∗ such that

x ∈ {0, 1}∗ is not contained within S. We say that F correctly

indicates non-inclusion (with false-positive probability 𝜖), if the

following inequality holds:

Pr

[
𝑦 = fpt𝜖 (x)

��� 1←F.write(S,H,fpt𝜖 )
𝑦←F.reconstruct(x,H,fpt𝜖 )

]
≤ 𝜖.
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Constructions. Garbled Bloom filters were first proposed in [33]

as a filter that allows such reconstruction, X = Z𝑝 , 𝜇 (𝜖) = 𝜖 , and ◦
is mod-𝑝 addition, for some 𝑝 ∈ N. The total space usage of such
filters is log(𝑝) · 𝑁 bits, where 𝑁 is the number of entries (which

is equivalent to a standard Bloom filter). Such filters are useful for

establishing efficient private set intersection protocols, and have

also been used in PIR scenarios [33, 47]. Filters are typically first

initialised as a series of random values in X. Writing entries to

such filters involves computing F[H(x)] ← F.check(x,H), and
then setting F[h1 (x)] = fpt𝜖 (x) ◦ (−F[h2 (x)]) ◦ . . . ◦ (−F[h𝑘 (x)]).
When writing subsequent values, previously modified entries of

the filter cannot be modified again; the lexicographically smallest

value of 𝑖 ∈ [𝑘] where F[h𝑖 (x)] can be modified instead. If no such

𝑖 exists, the construction of F fails.

Cuckoo filters [35] represent a fingerprint-based filter, with

smaller space overhead ((log(1/𝜖) + 1 + log𝑏)𝑚/𝛼 , for load fac-

tor 𝛼), with 𝑘 = 2, X = {0, 1}𝑙 for 𝑙 = log(1/𝜖), 𝜇 = 𝜖 , and ◦ is the
𝑙-bit XOR operation.

More recently, XOR filters have been proposed by Graf and

Lemire [39] as fingerprint-based filters, based on Bloomier filters [20].

XOR filters choose 𝑘 = 3, and divide the filter into three continuous

segments, in other words F = [F1∥F2∥F3]. The set H is chosen such

that h𝑖 maps to indices in the range 𝑁 /3, corresponding to segment

F𝑖 . Like cuckoo filters,X = {0, 1}∗, and ◦ is the 𝜇-bit XOR operation.

It has been shown that the overall space overhead of XOR filters

is ç𝜇 ·𝑚, for ç ≈ 1.23, which is significantly closer to the optimal

space overhead than standard Bloom filters. Furthermore, Graf and

Lemire showed that XOR filters perform better than Cuckoo filters

in cases where 𝜖 is large (e.g. 1%), but worse when 𝜖 is chosen to be

small (e.g. 2
−30

) [39].

C GENERAL LWE PIR FRAMEWORK
A recent line of work [24, 29, 42, 48, 75] has focused on creating

practical PIR schemes based directly on LWE. We refer to those

schemes as “LWE-based PIR” (LWEPIR). In this work, we provide

a high-level framework that captures the functionality of each of

these approaches. This framework allows us to discuss and imple-

ment the functionality of each of these existing schemes, without

relying on peculiarities of any individual approach.

C.1 Background
The design of each of LWEPIR schemes is similar to established

Ring LWE-based PIR ones (e.g. [6, 55]). The database (with𝑚 en-

tries) contains entries in Z𝑝 and it is organised as a vector, where

each entry of the vector is a single entry of the database. The client

encrypts a vector of length𝑚 with all-zeroes except for a single

entry that is equal to 1 in the 𝑖th position, using an HEIP scheme for

Z𝑝 . The client, then, sends this ciphertext vector to the server. The

server, in turn, evaluates the inner-product homomorphically be-

tween the received encrypted vector and their database vector, and

sends this evaluated vector back to the client. The client decrypts

it, and learns the 𝑖th element of the database.

Clearly, this functionality could be implemented using classi-

cal additively homomorphic encryption (e.g. Paillier-based [57]).

However, it has been shown that using such schemes in the PIR

setting results in schemes that are prohibitively expensive to run,

in comparison with simply downloading the database in its en-

tirety [69]. The work of [1] showed that such a formulation could

be made efficient enough for real-world use-cases, when using Ring

LWE-based FHE schemes. A long line of follow-up works [3, 6, 26,

32, 52, 55, 59, 60, 76] have exploited various features of such FHE

schemes (for example, by batching ciphertexts and reducing costs

using NTT transformations) to make PIR schemes fairly efficient. In

the case of [26], it was shown that asymptotic costs can be reduced

to 𝑂 (
√
𝑚), when making

√
𝑁 queries.

Nevertheless, even with such changes, many problems remain

for deploying any such PIR scheme at scale. For instance, standard

PIR schemes that require no offline setup are costly to run, requiring

many seconds and large amounts of bandwidth to run queries on

relatively small databases (e.g. 𝑚 < 2
20
) [3, 6, 52, 55]. So-called

stateful schemes typically move expensive computation to an offline

phase that makes the subsequent phase, the online one, cheaper.
This offline phase, however, involves heavy computation as, for

example, streaming the entire database to every client [60, 76]

(which violates the PIR efficiency criterion), or heavy FHE-based

computation that is client-dependent, and therefore unlikely to

scale for large numbers of clients [52, 55].

Recent work has shown that LWE-based HEIP schemes can be

used to develop PIR schemes that are cheap to run in the prepro-

cessing (or “offline”) paradigm [24, 29, 42, 48]. In particular, the

main advantages include an offline state generation phase that is

independent of clients, and with much smaller download footprints

than the actual database. Furthermore, such schemes are very sim-

ple to implement using Regev-based encryption, relying only on

standard unsigned 32-bit integer instructions. Put together, these

advantages translate to much smaller concrete costs: costing only

tens of milliseconds of computation, and hundreds of kB of amor-

tised costs per query. As a result, such schemes would appear to

represent the state-of-the-art for continuing to build more efficient

alternatives.

C.2 High-level LWEPIR framework
Each LWEPIR scheme relies on a variant of the Regev-based HEIP

scheme described in Section 2.2, where a large part of the encryp-

tion functionality can be performed in advance and be reused over

multiple clients. Hence, LWEPIR schemes have two phases: a pre-

processing phase that can be amortised over multiple clients, and

a per-client online phase. We describe both of these phases in the

following.

Pre-processing Phase. Recall that the database (DB) has a size
denoted by𝑚 ∈ N. The purpose of the pre-processing phase is to
generate a global public state, prior to any individual client query

to the server.

Server setup: (ppDB ← LWEPIR.setup(1𝜆,DB)). The server con-
structs theirDB containing𝑚 elements, each of size𝑤 , and samples

a short random seed 𝛽 ∈ {0, 1}𝜆 . Let𝑚 ·𝑤 =𝑚1 ·𝑚2, for𝑚1,𝑚2 ∈ N.
The server derives a matrix 𝑨← PRG(𝛽, 𝑛,𝑚,𝑞) ∈ Z𝑛×𝑚1

𝑞 , and en-

codes the DB in a matrix representation as 𝑫 ∈ Z𝑚1×𝑚2

𝑝 . It then

computes 𝑴 ← 𝑨 · 𝑫 and publishes the pair (𝛽,𝑴). It returns the
public parameters ppDB containing LWE parameters (𝑞, 𝑝, 𝑛, 𝜎), the
seed 𝛽 , PIR parameters (𝑚1,𝑚2), and (optionally) the matrix 𝑴 .
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Online Phase. The online phase allows the client to query for the

desired database element, after downloading the aforementioned

state.

Query. [(q, st) ← LWEPIR.query(ppDB, 𝑖)]: The client down-

loads (𝛽,𝑴) and derives 𝑨← PRG(𝛽, 𝑛,𝑚, 𝑞) ∈ Z𝑛×𝑚1

𝑞 . The client

then generates a unit vector 𝒇𝑖 : an all-zero vector with a single 1 at

the index 𝑖 . The client parses𝑞, 𝑝, 𝑛, 𝜎 from ppDB, calls (ppLWE, sk) ←
Σlwe .kgen(1𝜆, 𝑞, 𝑝, 𝑛, 𝜎), and runs 𝒄 ← Σlwe .enc𝑨(ppLWE, sk,𝒇𝑖 ),
where the 𝑖th element of 𝒄 , 𝑐𝑖 , is an LWE encryption with respect

to the 𝑖th column, 𝒂𝑖 , of 𝑨. The client parses (𝑨, 𝒄) = 𝒄 , lets q = 𝒄 ,
and lets st = sk · 𝑨. The client then sends q to the server.

Response. [r ← LWEPIR.respond(ppDB,𝑫, q)]: The server re-

ceives q, and then parses their database matrix as a concatenation

of column vectors: 𝑫 = (𝒅𝒃1 | . . . |𝒅𝒃𝑚2
). The server responds to the

client with a vector r, where the 𝑖th element 𝑟𝑖 of r is the ciphertext
computed as 𝑟𝑖 ← Σlwe .eval(ppLWE, q, 𝒅𝒃𝑖 ), for each 𝑖 ∈ [𝑚2].

Post-processing. [x← LWEPIR.process(ppLWE, r, st)]: The client
receives r and returns x← Σlwe .dec(st, sk, r).

C.3 PIR Guarantees
Correctness. Correctness of LWEPIR follows naturally from the

correctness of Σlwe. First, q is an encryption of the all-zero vector,

except in the 𝑖th position where it encrypts 1. By the correctness of

Σlwe, the server response is a public inner product of this encrypted
vector, and the sequence of vectors in Z𝑚1

𝑝 that make up the server

database. Since the client simply decrypts the server response, cor-

rectness of the inner product holds, providing that the conditions in

Lemma 2.2 hold for 𝑞, 𝜒,𝑚1. Therefore, the server learns the vector

x = (𝒅𝒃1 [𝑖], . . . , 𝒅𝒃𝑚2
[𝑖]) which is equal to the 𝑖th row, 𝑫 [𝑖], of

the database matrix (which trivially decodes to the 𝑖th row of the

database itself).

Security. The security of the PIR scheme follows from the fact

that the client message is simply a vector of Σlwe encryptions. By
a trivial hybrid argument and the IND-CPA security of Σlwe, the
client message hides element that they are querying.

Efficiency. The concrete efficiency of LWEPIR depends on the

parameter choices. Intuitively, since the (amortisable) offline cost is

𝑴 ∈ Z𝑛×𝑚2

𝑝 (where 𝑛 ≪𝑚1) and the response is a vector r ∈ Z𝑚2

𝑝 ,

then the total bandwidth usage is significantly smaller than the size

of the database.

C.4 Differences between constructions
In the following, we discuss the differences between available

LWEPIR schemes. Without loss of generality, the rest of our work

remains agnostic to the specific choice of scheme. However, we

describe our eventual PIR scheme in Section 5 using the FrodoPIR
matrix formulation [29], as we believe it provides the cleanest inter-

face for building a keyword PIR scheme. We discuss in Section 5.1

the changes that can be made to support alternative formats. More-

over, such modifications primarily relate to the offline phase, while

the online phase is almost identical.

Across each of the schemes, 𝑞 is typically taken to be 2
32
, which

allows performing encrypted operations as high speed native CPU

instructions. This implies choosing a power-of-two 𝑝 , to ensure

that 𝑝 |𝑞, though this is not mandatory.

Matrix encoding. The encoding process ofDB (that renders𝑫) dif-

fers between the SimplePIR approach of [24, 42] and the FrodoPIR
approach of [29]. The former encodes it with the “square-root” ap-

proach [19, 46]: 𝑫 ∈ Z
√
𝑚×
√
𝑚

𝑝 , and the latter in their own parsing

manner: 𝑫 ∈ Z𝑚×𝑑𝑝 where 𝑑 = ⌈𝑤/log(𝑝)⌉10. In all schemes, the

encrypted vector takes the form of (0, . . . , 0, 1, 0, . . . , 0), an all-zero

vector except where 𝒇𝑖 [𝑖] = 1. However, in [24, 42], elements are

assumed to correspond to only subsets of columns of the database

matrix. In FrodoPIR, the entire row is treated as a single database

entry.

The square-root approach results in asymptotic communication

cost of𝑂 (
√
𝑚), whereas the FrodoPIR approach costs𝑂 (𝑚) for the

client query, and𝑂 (𝑤/log(𝑝)) in the download. However, FrodoPIR
appears to make this choice to reduce concrete financial costs in

different architectures. In AWS, for example, upload communication

is free, and download communication is not. See Section 5.1 for

wider discussion.

State download. In SimplePIR [42] and FrodoPIR [29], the matrix

𝑴 is included in ppDB and downloaded. The DoublePIR approach

of [42], as well as the very recent the approach of [48], differ in that

they highlight that the square-root encoding allows for decoding the

response with a smaller portion of the state. The crucial observation

is that only 𝑤/log(𝑝) columns of 𝑴 are needed to decode a PIR

query for any given element in 𝑫 . In both approaches, effectively

the client runs a separate PIR scheme to retrieve these𝑤 columns,

and then uses the result to run PIR on the whole database. It is

shown in both works that applying this change results in concrete

efficiency gains in certain situations.

Query preprocessing. FrodoPIR [29] provides a client pre-processing

step, that allows performing a large part of query generation before

knowledge of the query is required. In effect, this requires generat-

ing 𝒃 ′ = sk · 𝑨 + 𝒆 and 𝒅 ′ = sk · (𝑨 · 𝑫) and storing these values

securely (i.e. not revealing them).
11

Generating the query in the

online phase simply requires adding (𝑞/𝑝) · 𝒇𝑖 to 𝒃 ′ to generate q,
before sending it to the server. On decryption, the client simply sub-

tracts 𝒅 ′ directly from the server response, during post-processing.

D ADDITIONAL BENCHMARKS
D.1 Comparison with Index-based PIR
In Figure 3, we highlight the performance comparison between

ChalametPIR and the underlying index-based LWEPIR schemes

of FrodoPIR and SimplePIR. In effect, we calculate the overhead

of introducing the keyword functionality. For both runtimes and

bandwidth costs, performing PIR over the Binary Fuse Filter de-

scription results in only a very small magnification of both the

query and response sizes, when compared with an indexed array

(with no keyword query functionality). To ensure that the runtime

comparison was accurate, we reran the FrodoPIR experiments and

based our comparison on the runtimes given in Table 4.

10
Thus, the 𝑖th row consists of 𝑑 log(𝑝)-bit chunks of DB[𝑖 ] ∈ Z𝑑𝑝 .

11
Note that this technique is mentioned as “LinPIR” in [48].
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Figure 3: Comparison of online costs (query/response sizes and runtime) for ChalametPIR with index-based LWEPIR ∈
{FrodoPIR, SimplePIR} schemes. We refer to index-based schemes with “Index” and keyword-based ones with “KW”. Note
that some values of Index-based and KW-based PIR schemes are almost equivalent, and differences are not always perceptible.

Online Performance (ms) of Index-based FrodoPIR [29]

DB (𝑚 ×𝑤 ) Query Response Parsing

Macbook M1 Max

2
16 × 1024 B 0.0076956 5.2735 0.18083

2
17 × 1024 B 0.017356 10.545 0.18544

2
18 × 1024 B 0.055522 21.101 0.18061

2
19 × 1024 B 0.1023 47.675 0.20108

2
20 × 1024 B 0.21222 100.63 0.20483

EC2 “t2.t2xlarge”

2
16 × 1024 B 0.11887 29.482 0.34437

2
17 × 1024 B 0.080101 50.585 0.34515

2
18 × 1024 B 0.20374 118.54 0.3466

2
19 × 1024 B 0.48432 263.83 0.3768

2
20 × 1024 B 0.85748 537.28 0.37458

EC2 “c5.9xlarge”

2
20 × 256 B 1.2324 118.46 0.065281

2
17 × 30 kB 0.036396 36.396 8.1519

2
14 × 100 kB 0.0033412 637.81 26.599

Table 4: Online performance (ms) of Index-based FrodoPIR,
based on the implementation provided by [29].

D.2 Offline costs
Table 5 provides example offline costs for instantiating Chalamet-
PIR with both FrodoPIR and SimplePIR, based on running the com-

putation on a Macbook M1 Max device. The main difference is

in the size of the download (the computation and storage only

differ depending on the choice of LWE parameters). As we men-

tioned in Section 7, utilising alternative LWEPIR schemes such as

DoublePIR [42] orHintlessPIR [48] will potentially result in smaller

costs. As such, our benchmarks here provide an upper-bound that

provide a basis for understanding the performance of the offline

phase of ChalametPIR. Note that the computational and storage

costs of the offline phase amortise over all client queries, meaning

that this expensive one-time cost tends to zero for large systems of

clients. Furthermore, the one-time download for clients amortises

over all their queries.

Offline performance

Sizes Runtime Storage
Download (MB)

(sec) (GB) FrodoPIR SimplePIR

2
16 × 1 kB 25866 0.226 5.54 32.07

2
17 × 1 kB 50772 0.452 5.54 45.35

2
18 × 1 kB 101010 0.904 5.54 64.14

2
19 × 1 kB 225710 1.808 6.16 90.71

2
20 × 1 kB 490110 3.616 6.16 128.28

Table 5: Offline server runtimes (sec), storage (GB), and client
download costs (MB) of offline steps for ChalametPIR, using
either FrodoPIR or SimplePIR, where 𝑘 = 3.

Financial costs. To provide a rough estimate of the financial

costs, we use the same costs stated previously for standard AWS

usage ($0.0425 per CPU hour, and $0.09 per GB of download [7]).

Ultimately, even for moderate numbers of clients, the offline costs

become quickly insignificant compared with the per-query online

costs accounted for in Table 3.

For the offline computation (which is amortised across all client

queries globally), the up-front cost ranges between $7.19 and $136.

While this initial cost is fairly expensive, even formoderate numbers

of clients (e.g. 1M) making moderate numbers of queries (e.g. 100),

the costs amortise to lower or of the same order as the per-query

online costs (Table 3). For the communication, the download costs

per-client range from $4.8e−5 to $5.4e−5 for the FrodoPIR configu-

ration, and between $2.8𝑒−3 and $0.01 for SimplePIR. In the case of
FrodoPIR, if each client makes at least 100 queries, the costs again

become quickly insignificant compared with the per-client online

costs. Finally, recent improvements made by the HintlessPIR ap-

proach would likely reduce these costs even further. Consequently,

we consider the offline phase to have little impact on the total costs

of the scheme.
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