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Abstract

Private information retrieval (PIR) is a key building block in many privacy-preserving systems, and recent works
have made significant progress on reducing the concrete computational costs of single-server PIR. However, existing
constructions have high communication overhead, especially for databases with small records. In this work, we
introduce Respire, a lattice-based PIR scheme tailored for databases of small records. To retrieve a single record from
a database with over a million 256-byte records, the Respire protocol requires just 6.1 KB of online communication;
this is a 5.9× reduction compared to the best previous lattice-based scheme. Moreover, Respire naturally extends to
support batch queries. Compared to previous communication-efficient batch PIR schemes, Respire achieves a 3.4-7.1×
reduction in total communicationwhile maintaining comparable throughput (200-400MB/s). The design of Respire re-
lies on new query compression and response packing techniques based on ring switching in homomorphic encryption.

1 Introduction

A private information retrieval (PIR) protocol [CGKS95] enables a client to retrieve a record from a database without
revealing to the database server which record she requested. In recent years, there have been significant advance-
ments in constructing fast and practical PIR protocols and using PIR to realize applications to private certificate
transparency auditing [HHC+23], password breach checking [LPA+19, TPY+19, ALP+21], metadata-hiding commu-
nication [MOT+11, KLDF16, AS16, ACLS18], private web search [HDCZ23], and many more.

The communication overhead of PIR. While recent works [DPC23, HHC+23, MSR23, LMRS24, ZPSZ24, MW24]
have taken great strides in reducing the concrete computational costs of (single-server) PIR, existing constructions
still incur high communication costs. For instance, retrieving a bit from a 1 GB database using the state-of-the-art
SimplePIR protocol [HHC+23] requires 240 KB of online communication. A protocol like Piano [ZPSZ24] requires
32 KB of online communication. These protocols additionally require the client to download a 121 MB hint (SimplePIR)
or stream a 1 GB hint (Piano) in an offline phase.

Number-theoretic schemes such as Gentry-Ramzan [GR05] achieve smaller communication overhead (e.g., 2-18 KB
of communication to retrieve a 288-byte record from a 1 MB database), but with high computational costs [ALP+21].
In this setting, the server processes the database at a throughput of 20-350 KB/s, whereas the best lattice-based
constructions have a server throughput ranging from hundreds of MB per second [MCR21, MW22a, DPC23] to
multiple GB per second [HHC+23, LMRS24, MW24].

In settings where records are large (tens of KB), protocols like OnionPIR [MCR21] and Spiral [MW22a] have
low communication overhead. However, for many applications of PIR (e.g., anonymous messaging, private DNS,
password breach checking, and more), the size of the payload the client is interested in ranges from tens of bytes
(e.g., a hash value) to a few hundred bytes. In this regime, we do not have concretely-efficient PIR protocols with
high server throughput and low communication costs.

The Respire protocol. This work introduces the Respire protocol, a lattice-based single-server PIR protocol for
databases with small records (e.g., 256-byte records). Like recent PIR protocols based on the ring learning with errors
(RLWE) problem [MBFK16, ACLS18, AYA+21, ALP+21, MCR21, MW22a, LMRS24, MW24], Respire works over polyno-
mial rings. A key feature in the design of Respire is working over small subrings of the main polynomial ring. Working
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over a subring enables better query compression and response compression compared to all previous lattice-based
schemes. For instance, retrieving a record from a database of over a million 256-byte records, Respire only needs 6.1 KB
of online communication. Notably, the total communication is smaller than the size of even a single RLWE ciphertext in
previous schemes. On the same configuration, the previous best lattice-based scheme (Spiral [MW22a]) requires 36 KB
of communication (over 5.9× larger). In fact, the required communication in Respire is comparable to those based
on group-based or factoring-based assumptions [ALP+21], but with 1000× higher server throughput. The throughput
of Respire is 200-400 MB/s, which is just 26% slower than Spiral. Compared to high-throughput schemes like Sim-
plePIR [HHC+23], Respire is 27-50× slower, but has 21-42× less communication; SimplePIR also requires the client to
download a (reusable) hint (a few hundred MB) whereas Respire requires the client to upload a (reusable) hint (3.9 MB).

Batch queries. Combined with (probabilistic) batch codes [IKOS04, ACLS18] and a new response packing technique,
Respire also extends to give a batch PIR protocol. Compared to previous lattice-based batch PIR protocols [MR23],
Respire achieves a 3.4-7.1× reduction in total communication, and has higher throughput for small batch sizes (e.g.,
batch size up to 128 for a database with over 4 million 256-byte records). For larger batch sizes, there is a modest
computational overhead (≈ 2.2×) compared to previous protocols. Thus, Respire is well-suited for applications where
the client is making a handful of queries simultaneously (e.g., blocklist lookup or DNS queries).

1.1 Our Techniques

The communication overhead in lattice-based PIR is due to the large lattice parameters needed for security. The
aforementioned PIR schemes based on RLWE work over polynomial rings with dimension 𝑑 ≥ 2048. Typically, each
coefficient of the polynomial is an element of Z𝑞 where 𝑞 ≥ 232. This means that communicating even a single ring
element (i.e., as needed to encode or encrypt a query index or a response) already requires 8 KB of communication.
When the record size is only a few hundred bytes or smaller, sending even a single element introduces non-trivial
communication overhead. For this reason, all previous lattice-based PIR schemes have query and response sizes that
are over 10 KB. While it is tempting to use rings of smaller dimension to mitigate the communication overhead, this
is often infeasible as the modulus 𝑞 has to be chosen large enough to account for the noise accumulation inherent to
lattice-based cryptosystems. In some sense, correctness imposes a minimum modulus 𝑞, which for security, translates
to a minimal ring dimension 𝑑 .

Leveraging subrings. The key technical idea underlying the design of Respire is that we can leverage ring
switching techniques from homomorphic encryption [BV11, BGV12, GHPS12] to reduce query size and response size
with only modest computational overhead. In the context of response compression, the approach we take in Respire
is have the server perform most of its computations over the main ring 𝑅1 (of dimension 𝑑1 = 2048 and 𝑞 ≈ 256).
However, before sending back the response, the server first projects the response into a subring 𝑅2 ⊆ 𝑅1 of much smaller
dimension 𝑑2 = 512 (and also with respect to a smaller modulus). Critically, this approach only works when the records
are small (as the projection operation necessarily loses some information about the value encoded over the big ring).
Since 𝑑1/𝑑2 = 4, this yields a 4× reduction in response size. Note that we are unable to directly work over the small ring
due to the constraints on the dimension 𝑑 and the modulus 𝑞 imposed by correctness and security (see Remark 3.1).

Query compression. Working over subrings also provides us a way to achieve query compression. Many RLWE-
based PIR protocols leverage the query packing techniques from [ACLS18, CCR19] to pack multiple scalars into a
single encoded polynomial. In this work, we show that the projection operations used for response compression can
also be used for query compression. Namely, while a single element of the big ring 𝑅1 can encode 𝑑1 = 2048 scalars,
if the protocol only needs ℎ ≪ 𝑑1 values, then there is again wasted space. In this work, we show that if we embed
the ℎ coefficients in a subring 𝑅2 ⊂ 𝑅1, then it suffices to send ≈ ℎ coefficients to the server. This allows us to reduce
the query size from 14 KB to 4 KB. Notably, the query is now smaller than even a single element in the big ring 𝑅1.
All previous RLWE-based PIR schemes required communicating at least one complete ring element in the query. Our
work shows that this is not essential. We believe this technique will be independently useful in other settings that
apply the query packing technique [ACLS18, CCR19] to a small number of inputs.
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Starting point: the Spiral protocol. The Respire protocol builds on top of the Spiral protocol [MW22a] (the
lattice-based PIR protocol with the best communication). Very briefly, the Spiral protocol arranges the database as
a (1 + 𝜈2)-dimensional hypercube, where the first dimension has size 2𝜈1 and the remaining dimensions have size
2. A record is indexed by a tuple (𝛼, 𝛽1, . . . , 𝛽𝜈2 ) where 𝛼 ∈ [2𝜈1 ] and 𝛽1, . . . , 𝛽𝜈2 ∈ {0, 1}. The query consists of an
RLWE encryption [Reg05, LPR10] of 2𝜈1 (as a one-hot vector) and encryptions of 𝛽1, . . . , 𝛽𝜈2 using the GSW encryption
scheme [GSW13]. The server homomorphically uses the query ciphertexts to select along each dimension and the
final output is an RLWE encryption of the record of interest.

The Respire protocol. The Respire protocol integrates our query compression and response compression tech-
niques within Spiral (see Section 3). On a 256 MB database (with a million 256-byte records), our compression
techniques reduces the query size by 3.9× and the response size by 10×while maintaining the same server throughput.
On larger databases (with the same record size), we reduce the total communication by 4.5× at a cost of an 1.3×
increase in server response time. We provide more details in Section 4. Note that the Respire query compression
and response compression techniques are tailored for the setting of small database elements. When the database
elements are sufficiently large (concretely, on the order of a few KB), then our compression techniques no longer
provide any savings and the Respire protocol is equivalent to Spiral (or the SpiralPack variant of Spiral).

Supporting batch queries. When the client seeks to retrieve a batch of 𝑇 records from the database, we can
achieve better communication by packing multiple responses into a single ring element. In Section 3.2, we show how
the subring embedding and projection machinery we developed can also be used to homomorphically repack multiple
responses into a single ciphertext. We then compose with probabilistic batch codes [IKOS04, ACLS18] (which allow us
to amortize some of the server processing costs). Our scheme is particularly well-suited for small batches of queries
(e.g., 𝑇 = 16), whereas previous lattice-based batch PIR schemes [MR23, LLWR24] are more efficient for large batch
sizes. We refer to Remark 3.5 (and Section 4.3) for a more detailed comparison.

2 Preliminaries

We write 𝜆 to denote the security parameter. For an integer 𝑛 ∈ N, we write [𝑛] B {1, . . . , 𝑛}. For integers 𝑎, 𝑏 ∈ N,
we write [𝑎, 𝑏] B {𝑎, . . . , 𝑏}. For integers 𝑥,𝑦 ∈ N, we write 𝑥 | 𝑦 to denote that 𝑥 divides 𝑦. We use bold lowercase
letters to denote vectors (e.g., u, v) and bold uppercase letters (e.g., A,B) to denote matrices. We write u𝑖 to denote the
𝑖th elementary basis vector. For a dimension 𝑑 ∈ N, we write I𝑑 to denote the 𝑑-by-𝑑 identity matrix. For a distribution
D, we write 𝑥 ← D to denote drawing a sample 𝑥 from D. For a finite set 𝑆 , we write 𝑥 r← 𝑆 to denote a uniform
random sample from 𝑆 .

Private information retrieval. We recall the definition of a single-server two-message private information re-
trieval (PIR) protocol [CGKS95] in the “client hint” model (where the client uploads a reusable query key in an offline
phase prior to making queries). We also allow a (silent) server preprocessing step where the server prepares the
database so as to be able to efficiently answer queries in the online phase.

Definition 2.1 (Private Information Retrieval [CGKS95, adapted]). Let 𝜆 be a security parameter, 𝑁 = 𝑁 (𝜆) be
the number of records in the database, andM = {M𝜆} be the space of possible record values. A two-message
single-server private information retrieval (PIR) protocol in the client-hint model is a tuple of efficient algorithms
(Setup, SetupDB,Query,Answer, Extract) with the following syntax:

• Setup(1𝜆) → (pp, qk): On input a security parameter 𝜆, the setup algorithm outputs parameters pp and a query
key qk.

• SetupDB(1𝜆, {𝑑𝑖 }𝑖∈[𝑁 ]) → db: On input the security parameter 𝜆 and a collection of records 𝑑1, . . . , 𝑑𝑁 ∈ M𝜆 ,
the database setup algorithm outputs a (preprocessed) database db.

• Query(qk, idx) → q: On input the query key qk and an index idx, the query algorithm outputs a query q.
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• Answer(pp, db, q) → a: On input the parameters pp, a preprocessed database db, and the query q, the answer
algorithm outputs an answer a.

• Extract(qk, a) → 𝑑𝑖 : On input the query key qk and the answer a, the extract algorithm outputs a record 𝑑𝑖 .

The algorithms must satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all sets of records 𝑑1, . . . , 𝑑𝑁 ∈ M𝜆 , and all indices idx ∈ [𝑁 ],

Pr

Extract(qk, a) = 𝑑idx :
(pp, qk) ← Setup(1𝜆)

db← SetupDB(1𝜆, 𝑑1, . . . , 𝑑𝑁 )
q←Query(qk, idx)

a← Answer(pp, db, q)

 ≥ 1 − 𝑐.

We refer to 𝑐 as the correctness error.

• Query privacy: For a bit 𝑏 ∈ {0, 1} and an adversary A, we define the query privacy game as follows:

– The challenger starts by sampling (pp, qk) ← Setup(1𝜆) and gives pp to A.
– Algorithm A can now make (arbitrarily many) queries on pairs of indices (idx0, idx1) where idx0, idx1 ∈
[𝑁 ]. On each query, the challenger responds withQuery(qk, idx𝑏).

– When A is done making queries, it outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that the scheme satisfies query privacy if for all efficient adversariesA, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(𝜆).

Remark 2.2 (Batch PIR). Definition 2.1 considers a setting where the client queries for a single record at a time. In
batch PIR [BIM00, IKOS04], the client can make a query for a batch of 𝑘 records, given by indices (idx1, . . . , idx𝑘 ),
and receives a single answer a from which all 𝑘 records can be extracted. While this functionality can be realized by
running 𝑘 (parallel) invocations of the single-query protocol, there are many techniques [BIM00, IKOS04, GKL10, AS16,
LG15, Hen16, ACLS18, MR23, Yeo23, BPSY24] to reduce the communication and computation costs in the batch setting.

2.1 Lattice Preliminaries

Like many previous lattice-based PIR protocols [MBFK16, ACLS18, GH19, MCR21, MW22a, MR23, MW24], we work
over polynomial rings. In this section, we provide a high-level description of the lattice algorithms we use and defer the
formal details to Appendix A. Throughout this work, we write 𝑅𝑑 to denote the polynomial ring 𝑅𝑑 B Z[𝑥]/(𝑥𝑑 + 1).
For an integer 𝑞 ∈ N, we write 𝑅𝑑,𝑞 B Z𝑞 [𝑥]/(𝑥𝑑 + 1). When 𝑞 = 1 mod 2𝑑 , we can use the number-theoretic
transform (NTT) to efficiently implement polynomial multiplication over 𝑅𝑑,𝑞 [LMPR08, LN16].

Rounding. We write ⌊·⌋ : R→ Z to denote the floor function and ⌊·⌉ : R→ Z to denote the function that rounds
the input to the nearest integer. For positive integers 𝑞 > 𝑝 , we write ⌊·⌉𝑞,𝑝 : Z𝑞 → Z𝑝 to denote the function that
takes as input 𝑥 ∈ Z𝑞 , lifts it to an integer 𝑥 ′ ∈ (−𝑞/2, 𝑞/2], and outputs ⌊𝑝/𝑞 · 𝑥 ′⌉. We extend each of these operations
to the ring 𝑅𝑑 by component-wise evaluation on the coefficients of the input 𝑟 ∈ 𝑅𝑑 . We also extend the operation
to vectors and matrices via component-wise evaluation.

Gadget matrices. For a modulus 𝑞 ∈ N and a decomposition base 𝑧 ∈ N, the gadget vector [MP12] is g𝑧 B
[1, 𝑧, 𝑧2, . . . , 𝑧𝑡−1] ∈ Z𝑡𝑞 where 𝑡 = ⌊log𝑧 𝑞⌋ + 1. For a dimension 𝑛 ∈ N, the gadget matrix is G𝑛,𝑧 B I𝑛 ⊗ gT

𝑧 ∈ Z𝑛×𝑛𝑡𝑞 .
We write g−1𝑧 : Z𝑞 → Z𝑡𝑞 and G−1𝑛,𝑧 : Z𝑛𝑞 → Z𝑛𝑡𝑞 to denote the base-𝑧 digit decomposition operator that takes the input
and expands each component into its base-𝑧 representation with each digit in the centered interval (−𝑧/2, 𝑧/2]. We
extend g−1𝑧 and G−1𝑛,𝑧 to operate on vectors and matrices, respectively, by column-wise evaluation. Both g𝑧 and G𝑛,𝑧

are defined identically over the ring 𝑅𝑑,𝑞 .
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𝑓0 𝑓1 𝑓2 𝑓3 𝑓2 𝑓3 −𝑓0 −𝑓1

Multiply by 𝑥−2

Figure 1: Illustration of the rotation operation over the polynomial ring 𝑅4 = Z[𝑥]/(𝑥4 + 1). We model polynomials
𝑓 (𝑥) = ∑

𝑖∈[0,3] 𝑓𝑖𝑥
𝑖 as a vector of coefficients (𝑓0, 𝑓1, 𝑓2, 𝑓3) ∈ Z4.

Ring learning with errors. The security of Respire relies on the ring learning with errors (RLWE) assump-
tion [Reg05, LPR10]:

Definition 2.3 (Ring Learning With Errors [Reg05, LPR10]). Let 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1) where 𝑑 = 𝑑 (𝜆) is a power
of two. Let𝑚 = 𝑚(𝜆) be the number of samples, 𝑞 = 𝑞(𝜆) be the modulus, and 𝜒𝑠 , 𝜒𝑒 = 𝜒 (𝜆) be distributions over
𝑅𝑑,𝑞 . The ring learning with errors (RLWE) assumption RLWE𝑑,𝑚,𝑞,𝜒𝑠 ,𝜒𝑒 states that the following distributions are
computationally indistinguishable:{

(a, 𝑠a + e) : a r← 𝑅𝑚
𝑑,𝑞
, 𝑠 ← 𝜒𝑠 , e← 𝜒𝑚𝑒

}
and

{
(a, u) : a, u r← 𝑅𝑚

𝑑,𝑞

}
.

RLWE encodings. We say that c =
[

𝑎
𝑠𝑎+𝑒+𝜇

]
∈ 𝑅2

𝑑,𝑞
is an RLWE encoding of a scalar 𝜇 ∈ 𝑅𝑑,𝑞 with respect to a

secret key s = [−𝑠 | 1]T ∈ 𝑅2
𝑑,𝑞

and error 𝑒 ∈ 𝑅𝑑,𝑞 if sTc = 𝜇 + 𝑒 mod 𝑞. Under the RLWE assumption, the encoding c is
pseudorandom and hides the encoded value 𝜇. When we write c = [𝑐1, 𝑐2]T, we refer to 𝑐1 as the “random” component
of the encoding and 𝑐2 as the “message-embedding” component of the encoding. RLWE encodings are additively
homomorphic: if c1, c2 are RLWE encodings of 𝜇1, 𝜇2 with respect to the same secret key s and errors 𝑒1, 𝑒2, then c1± c2
is an RLWE encoding of 𝜇1 ± 𝜇2 with respect to the same secret key s and error 𝑒1 ± 𝑒2. In many cases, 𝜇 = ⌊𝑞/𝑝⌋𝑚 for
some value𝑚 ∈ 𝑅𝑑,𝑝 . Given ⌊𝑞/𝑝⌋𝑚 + 𝑒 , it is possible to recover𝑚, provided that |𝑒 | is small. We state the following
theorem adapted from [MW22a]:

Theorem 2.4 (Message Decoding [MW22a, Theorem 2.11]). Let 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1). Suppose 𝑧 = ⌊𝑞/𝑝⌋𝑚 + 𝑒 ∈ 𝑅𝑑,𝑞
where |𝑚 | < 𝑝 and |𝑒 | < 𝑞

2𝑝 − (𝑞 mod 𝑝). Then, ⌊𝑧⌉𝑞,𝑝 =𝑚.

GSW encodings. Like several recent PIR protocols [GH19, MCR21, MW22a] our construction also relies on the en-
cryption scheme of Gentry, Sahai, andWaters (GSW) [GSW13]. Let 𝑧 ∈ N be a decomposition base,𝑚 = 2(⌊log𝑧 𝑞⌋ +1),
and G2,𝑧 ∈ 𝑅2×𝑚𝑑,𝑞

be the gadget matrix. We say that C ∈ 𝑅2×𝑚
𝑑,𝑞

is a GSW encoding of a bit 𝜇 ∈ {0, 1} with respect to
a secret key s ∈ 𝑅2

𝑑,𝑞
, error e ∈ 𝑅𝑚

𝑑,𝑞
, and decomposition base 𝑧 ∈ N if sTC = 𝜇sTG2,𝑧 + eT mod 𝑞.

Homomorphic selection. The external product [CGGI18, CGGI20] operation provides a way to homomorphically
multiply an RLWE encoding with a GSW encoding. The external product implies a lightweight homomorphic selection
operation used in several previous PIR protocols [GH19, MCR21, MW22a]. Specifically, given a GSW encoding of a
selection bit 𝑏 ∈ {0, 1} and RLWE encodings of messages 𝜇0, 𝜇1 ∈ 𝑅𝑑,𝑞 , the homomorphic selection operation outputs
an RLWE encoding of 𝜇𝑏 by homomorphically computing 𝜇𝑏 B 𝜇0 + 𝑏 (𝜇1 − 𝜇0). We model the algorithm as follows
and give the full details in Appendix A:

• Select(CGSW, c0, c1) → c′: On input a GSW encoding CGSW ∈ 𝑅2×𝑚𝑑,𝑞
and RLWE encodings c0, c1 ∈ 𝑅2𝑑,𝑞 , the

selection algorithm outputs an RLWE encoding c′.

Rotations. We associate polynomials 𝑓 (𝑥) = ∑
𝑖∈[0,𝑑−1] 𝑓𝑖𝑥

𝑖 ∈ 𝑅𝑑 with their coefficient vector [𝑓0, 𝑓1, . . . , 𝑓𝑑−1] ∈ Z𝑑 .
Then, multiplication by a monomial 𝑥𝑘 corresponds to a (nega)-cyclic left rotation of the coefficient vector. Namely,
if 𝑔 = 𝑥𝑘 𝑓 , then the coefficient vector of 𝑔 is [𝑓𝑘 , . . . , 𝑓𝑑−1,−𝑓0, . . . ,−𝑓𝑘−1]. We illustrate this procedure in Fig. 1. Thus,
given an RLWE encoding c of a polynomial 𝑓 , the encoding 𝑥𝑘c encodes the polynomial 𝑔 = 𝑥𝑘 𝑓 . Note that this
operation does not affect the norm of the noise in the resulting encoding.
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𝑓0 𝑓1 𝑓0 0 𝑓1 0

(a) The subring embedding 𝜅 : 𝑅2 → 𝑅4 from Eq. (3.1).

𝑓0 𝑓1 𝑓2 𝑓3 𝑓0 𝑓2

(b) The dimension-reduction map 𝜅−1 : 𝑅4 → 𝑅2 from Eq. (3.2).

Figure 2: Illustrations of the ring embedding and dimension reduction between 𝑅4 = Z[𝑥]/(𝑥4 + 1) and
𝑅2 = Z[𝑥]/(𝑥2 + 1) We model polynomials 𝑓 (𝑥) = ∑

𝑖∈[0,𝑑−1] 𝑓𝑖𝑥
𝑖 as a vector of coefficients (𝑓0, . . . , 𝑓𝑑−1) ∈ Z𝑑 .

3 The Design of Respire

In this section we introduce the Respire protocol. We start by providing a high-level overview of the main building
blocks we use in Respire. We then give the full Respire protocol in Section 3.1 and a generalization to batch queries
in Section 3.2. For ease of exposition, throughout this section, we elect to focus on the syntax and functionality of
the main algorithms we use and elide their implementation details. The formal description of these algorithms along
with their analysis are provided in Appendices A to C.

Respire design. Like many RLWE-based PIR protocols [MBFK16, ACLS18, AYA+21, ALP+21, MCR21, MW22a,
LMRS24, MW24], Respire works over a power-of-two cyclotomic ring 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1). This means that plaintext
elements (e.g., a record) and RLWE encodings both have dimension 𝑑 . The combination of correctness and security
constraints limit the choices for the ring dimension, and recent RLWE-based schemes all use rings where 𝑑 ≥ 2048.
Since the focus of Respire is PIR for databases with short records, a single ring element is generally (much) larger
than a single record. For instance, if we use a 4-bit plaintext modulus 𝑝 , then each element of 𝑅𝑑,𝑝 B Z𝑝 [𝑥]/(𝑥𝑑 + 1)
is at least 1 KB. When the database records are much smaller than 1 KB, it is wasteful for both computation and
communication to use a single element of 𝑅𝑑,𝑝 to represent a single database record. In Respire, we use record packing
together with dimension reduction to reduce this overhead.

• Record packing: In Respire, we consider two different rings: a “large” ring 𝑅𝑑1 of dimension 𝑑1 for the
RLWE encodings and a subring 𝑅𝑑2 ⊂ 𝑅𝑑1 for individual database records. We pack multiple database records
(specifically, 𝑘 = 𝑑1/𝑑2 records) into each RLWE encoding.

• Dimension reduction: While encoding multiple records in a single RLWE encoding reduces the number of
RLWE encodings the server needs to operate on when answering a query, it does not help with communication.
The encoded response is still an RLWE encoding, which resides in the large ring 𝑅𝑑1 . To reduce the communi-
cation, we leverage the “ring switching” techniques from [BV11, BGV12, GHPS12] to reduce this overhead.
Specifically, the encoded queries (and the bulk of the server processing) occur over 𝑅𝑑1 , but before sending the
encoded response back to the client, the server switches the response to an RLWE encoding over the subring
𝑅𝑑2 . To distinguish this operation from other transformations that translate encodings between rings, we refer
to this operation as dimension reduction. As we note in Remark 3.1, the constraints on the parameters prevent
us from using RLWE encodings over 𝑅𝑑2 throughout the protocol; thus, dimension reduction is critical for
reducing the communication costs in Respire.

Dimension reduction must lose information about the underlying encoded plaintext (since it projects onto a ring
of smaller dimension). Thus, it is essential that the records are packed in a way that still allows efficient recovery
of any of the packed records. To discuss how, let 𝑘 = 𝑑1/𝑑2; we introduce the following two functions:

• Subring embedding: The subring embedding function 𝜅 : 𝑅𝑑2 → 𝑅𝑑1 is the mapping

𝜅
©«

∑︁
𝑖∈[0,𝑑2−1]

𝑓𝑖𝑥
𝑖ª®¬ B

∑︁
𝑖∈[0,𝑑2−1]

𝑓𝑖𝑥
𝑘 ·𝑖 . (3.1)

The subring embedding of 𝑓 sends the 𝑖th coefficient of the input polynomial onto the (𝑘 · 𝑖)th coefficient of the
output polynomial. We illustrate this in Fig. 2a.
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𝑟0,0 𝑟0,1

𝑟1,0 𝑟1,1

𝑟2,0 𝑟2,1

𝑟3,0 𝑟3,1

𝑟0,0 𝑟1,0 𝑟2,0 𝑟3,0 𝑟0,1 𝑟1,1 𝑟2,1 𝑟3,1

Individual database records

Packed representation
(a) Representation of a single packed database element
Π(𝑟0, 𝑟1, 𝑟2, 𝑟3). Each record 𝑟𝑖 = (𝑟𝑖,0, 𝑟𝑖,1) consists of
two elements of Z𝑝 . The database records are packed
in the clear during database preprocessing.

𝑟0,0 𝑟0,1𝑟1,0 𝑟1,1𝑟2,0 𝑟2,1𝑟3,0 𝑟3,1

𝑟0,0𝑟0,1𝑟1,0 𝑟1,1𝑟2,0 𝑟2,1𝑟3,0 𝑟3,1

𝑟1,0 𝑟1,1

Rotation

Dimension reduction

(b) Extracting the correct record from an RLWE encoding of a
packed database element. This is implemented homomorphically
during Answer. The coefficients in “striped” boxes (i.e. those
not in the initial position of the packed representation) are lost
during dimension reduction (i.e., response compression). In this
example, the client wants record 𝑟1, so the server first applies
a (homomorphic) rotation to the encoded coefficient vector
followed by dimension reduction. For simplicity, we omit the
sign changes from the rotation.

Figure 3: Illustration of how Respire packs small database records in such a way that they can be retrieved
homomorphically. In this example, the main ring dimension is 𝑑1 = 8, and the reduced dimension/record dimension
is 𝑑2 = 2. Elements with a bold blue border are encrypted.

• Dimension reduction: We define the dimension-reduction mapping 𝜅−1 : 𝑅𝑑1 → 𝑅𝑑2 to be the mapping

𝜅−1
©«

∑︁
𝑖∈[0,𝑑1−1]

𝑓𝑖𝑥
𝑖ª®¬ B

∑︁
𝑖∈[0,𝑑2−1]

𝑓𝑘 ·𝑖𝑥
𝑖 . (3.2)

This operation sends the (𝑘 · 𝑖)th coefficient of the input to the 𝑖th coefficient of the output, and drops all other
coefficients. We illustrate the dimension-reduction function in Fig. 2b. Note that 𝜅−1 is only a one-sided inverse
of 𝜅: namely 𝜅−1 (𝜅 (𝑓 )) = 𝑓 for all 𝑓 ∈ 𝑅𝑑2 , the converse does not hold.

Ring packing. The subring embedding gives a natural way to pack multiple records (from the subring 𝑅𝑑2 ) into a
single element of the full ring 𝑅𝑑1 . Specifically, we define the ring packing function Π : 𝑅𝑘

𝑑2
→ 𝑅𝑑1 that takes as input

a set of 𝑘 records 𝑟0, . . . , 𝑟𝑘−1 ∈ 𝑅𝑑2 and outputs a single element over 𝑅𝑑1 as follows:

Π(𝑟0, . . . , 𝑟𝑘−1) B
∑︁

𝑖∈[0,𝑘−1]
𝑥𝑖 · 𝜅 (𝑟𝑖 ). (3.3)

We provide a visual depiction of how we use Π to pack multiple database records into a single record in Fig. 3a.

Manipulating packed ring elements. Given a packed record 𝑟 = Π(𝑟0, . . . , 𝑟𝑘−1) ∈ 𝑅𝑑1 , we refer to 𝑟 𝑗 as the
record at position 𝑗 within 𝑟 . We refer to record 𝑟0 as the record at the initial position. There are two operations we
perform on packed encodings:

• Extracting the record in the initial position: By construction, the dimension-reduction mapping (Eq. (3.2))
can be applied to a packed element to recover the element at the initial position: namely, 𝜅−1 (Π(𝑟0, . . . , 𝑟𝑘−1)) =
𝑟0. This follows by inspection, and we defer to Appendix A.2 for a formal analysis.

• Rotating the elements: As noted in Section 2, multiplying a polynomial 𝑓 by 𝑥−ℓ implements a nega-cyclic
rotation on the coefficients of 𝑓 (see Fig. 1). In particular, for all ℓ ∈ [0, 𝑘 − 1], we have that 𝑥−ℓ · 𝑟 =

Π(𝑟ℓ , . . . , 𝑟𝑘−1,−𝑟0, . . . ,−𝑟ℓ−1).
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We can compose rotation and dimension reduction to extract the record at any position ℓ ∈ [0, 𝑘 − 1] from a packed
record 𝑟 (see Fig. 3b). Moreover, if both operations can be implemented homomorphically on an RLWE encoding
of the packed record 𝑟 , then the server can homomorphically extract the requested record. Namely, given an RLWE
encoding of the packed record 𝑟 as well as an encoding of the index ℓ , the server homomorphically derives an encoding
of 𝜅−1 (𝑥−ℓ · 𝑟 ), which is precisely an encoding of the desired record 𝑟ℓ .

Homomorphic rotation. As shown in Fig. 3b, to extract the client’s record of interest from an RLWE encoding of
a packed record 𝑟 , the server must first homomorphically compute the product 𝑥−ℓ · 𝑟 . Since the index ℓ is private, the
client must provide it in encoded form. One possibility is to have the client send a GSW encoding of 𝑥−ℓ as part of its
query; then the server can use the external product to compute an RLWE encoding of the product 𝑥−ℓ · 𝑟 . However,
GSW encodings are large and our query compression technique only gives us the ability to compress GSW encodings
of bits (and not monomials). Thus, in Respire, we take a different approach. Let ℓ𝑡 · · · ℓ0 be the binary representation
of ℓ . Then we can write 𝑥−ℓ =

∏
𝑖∈[0,𝑡 ] 𝑥

−ℓ𝑖2𝑖 . The client now provides as GSW encodings of the bits ℓ0, . . . , ℓ𝑡 in its
query. These are GSW encodings of bits, so they can be packed into a small number of RLWE encodings (see below
and also Appendix B). During the evaluation phase, the server uses the encodings of each ℓ𝑖 to homomorphically
select between either 𝑟 (if ℓ𝑖 = 0) or 𝑟 · 𝑥−2𝑖 (if ℓ𝑖 = 1). We can implement the homomorphic rotations using 𝑡 + 1 calls
to Select and communicating 𝑡 + 1 (compressed) GSW encodings (see Construction 3.2).

Homomorphic dimension reduction. Next, we use the ring-switching technique from [BV11, BGV12, GHPS12]
to homomorphically apply dimension reduction. Specifically, these works show how to transform an RLWE encoding
of a polynomial 𝑓1 over 𝑅𝑑1,𝑞1 (under a key s1 ∈ 𝑅2𝑑1,𝑞1 ) to an RLWE encoding of the polynomial 𝜅−1 (𝑓2) over 𝑅𝑑2,𝑞2
(under a key s2 ∈ 𝑅2𝑑2,𝑞2 ), where 𝜅

−1 is the dimension-reduction map (Eq. (3.2)). To do so, one essentially publishes
an encryption of the components of the source key s1 under the target key s2; this is the “key-switching matrix” for
translating from 𝑅𝑑1,𝑞1 to 𝑅𝑑2,𝑞2 . It is critical that the target modulus 𝑞2 be much smaller than the source modulus 𝑞1.
This is because the key-switching parameters consist of an RLWE encoding over the smaller ring𝑅𝑑2 , and security relies
on the hardness of RLWE in the smaller ring. Thus, to perform dimension reduction, we apply the following two steps:

1. Modulus switching: We first perform modulus reduction to scale the input RLWE modulus from 𝑞1 to 𝑞2.
This operations transforms an encoding over 𝑅𝑑1,𝑞1 to one over 𝑅𝑑1,𝑞2 .

2. Dimension reduction: Then, we apply dimension reduction to scale the dimension from 𝑑1 to 𝑑2. This
operation transforms an encoding over 𝑅𝑑1,𝑞2 to one over 𝑅𝑑2,𝑞2 .

To achieve better compression, we use the “split” modulus switching approach from [MW22a], where the message-
embedding component of an RLWE encoding is further scaled to a smaller modulus 𝑞3 < 𝑞2. As such, the resulting
message-embedding component is an element of 𝑅𝑑2,𝑞3 . Taken together, we refer to the combined modulus switching
and dimension reduction procedure as response compression. We give the syntax of our response compression
algorithm below, but defer their formal description and analysis to Construction C.3 and Appendix C.2. In the formal
description in Appendix C.2, we extend these algorithms to work over RLWE encodings of vectors (defined formally
in Appendix C.1), as the generalization will be useful when considering batch queries.
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Box 1: Response Compression Algorithms

• CompressSetup(1𝜆, s1, s2) → ppcomp: On input a security parameter 𝜆, a source key s1 ∈ 𝑅2𝑑1,𝑞2 and a
target key s2 ∈ 𝑅2𝑑2,𝑞2 , the setup algorithm outputs a set of compression parameters ppcomp.

• Compress(ppcomp, c): On input the compression parameters ppcomp and an encoding c ∈ 𝑅2
𝑑1,𝑞1

, the
compression algorithm outputs a new encoding (𝑐′1, 𝑐′2) where 𝑐′1 ∈ 𝑅𝑑2,𝑞2 and 𝑐′2 ∈ 𝑅𝑑2,𝑞3 . This algorithm
interleaves split modulus switching with dimension reduction. In particular, the message-embedding
component 𝑐′2 of the output encoding is over the ring 𝑅𝑑2,𝑞3 where 𝑞3 ≤ 𝑞2 ≤ 𝑞1.

• CompressRecover(s2, (𝑐′1, 𝑐′2)) → 𝑧: On input a secret key s2 and a compressed encoding (𝑐′1, 𝑐′2), the
compression algorithm outputs a value 𝑧 ∈ 𝑅𝑑2,𝑞3 . This algorithm recovers the encoded value from the
RLWE encoding.

Remark 3.1 (The Need for Dimension Reduction). An alternative to working over a large ring 𝑅𝑑1 and translating
the output to the smaller ring 𝑅𝑑2 is to just perform all of the operations over the small ring 𝑅𝑑2 . However, working
over a smaller ring 𝑅𝑑2 limits us to a smaller modulus 𝑞2 (since we need to rely on RLWE hardness over the small ring).
This is insufficient for correctness (i.e., the noise accumulated from query processing is too high). Indeed, previous
PIR schemes based on RLWE (e.g., [ACLS18, MCR21, MW22a]) required a ring dimension of at least 𝑑1 ≥ 2048. By
combining (split) modulus reduction with dimension reduction, we are able to use the larger ring for query processing
(e.g., 𝑑1 = 2048), but reduce to a smaller ring when communicating the final response (e.g., 𝑑2 = 512). This allows
us to achieve substantially smaller responses in Respire compared to previous constructions.

Query compression. The queries in Respire consist of RLWE encodings and GSW encodings of the client’s
desired index. To reduce communication, we need a way to “compress” these query encodings. Here, we rely on the
approach of Angel et al. [ACLS18] who showed how to homomorphically expand an RLWE encoding of a polynomial
𝑓 (𝑥) = ∑

𝑖∈[𝑑 ] 𝜇𝑖𝑥
𝑖−1 ∈ 𝑅𝑑,𝑞 into 𝑑 RLWE encodings of the coefficients 𝜇1, . . . , 𝜇𝑑 . The procedure can be further

adapted to “pack” GSW encodings into a small number of RLWE encodings [CCR19, MCR21, MW22a]. This packing
procedure avoids the need to communicate large GSW encodings at the expense of a modest amount of computation
on the server to unpack the queries. In this work, we abstract out these compression algorithms as follows:

Box 2: Query Packing Algorithms

• QueryPackSetup(1𝜆, s) → ppqpk: On input a security parameter 𝜆 and a secret key s ∈ 𝑅2
𝑑,𝑞

, the setup
algorithm outputs a set of packing parameters ppqpk.

• QueryPack(s, v,µ) → enc: On input a secret key s ∈ 𝑅2
𝑑,𝑞

and inputs v ∈ Z𝑘𝑞 , µ ∈ {0, 1}ℓ , the query
packing algorithm outputs a packed encoding enc.

• QueryUnpack(ppqpk, enc) → (c1, . . . , c𝑘 ), (C1, . . . ,Cℓ ): On input the public parameters ppqpk, a packed
encoding enc, the query unpacking algorithm outputs a tuple of RLWE encodings c1, . . . , c𝑘 and a tuple
of GSW encodings C1, . . . ,Cℓ .

If enc ← QueryPack(s, v,µ), then the RLWE encodings c1, . . . , c𝑘 output by QueryUnpack(ppqpk, enc) encode
𝑣1, . . . , 𝑣𝑘 ∈ Z𝑞 while the GSW encodings C1, . . . ,Cℓ output byQueryUnpack encode 𝜇1, . . . , 𝜇ℓ ∈ {0, 1}. Both sets of
encodings are with respect to the secret key s and have a small error. We refer to Construction B.6 in Appendix B
for the details of these algorithms.

Further compression using subrings. The Angel et al. query compression approach can be used to compress
𝑑 RLWE encodings into a single RLWE encoding. This means the query still consists of at least a single ring element
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(i.e., an element of 𝑅𝑑,𝑞).1 When the number of RLWE encodings ℎ we seek to pack is much smaller than 𝑑 , then
communicating even a single ring element incurs high overhead. In this work we show that it is not necessary to
send the full RLWE encoding. When ℎ ≪ 𝑑 , the client can instead embed ℎ into the coefficients of a polynomial
that lives in a subring of 𝑅𝑑,𝑞 . Instead of sending a full RLWE encoding of the polynomial, the client can send an
smaller encoding that only retains information about the polynomial’s coefficients in the subring. Formally, this is
the encoding obtained by applying the dimension-reduction mapping (Eq. (3.2)) to the packed encoding. As such,
to pack ℎ coefficients into an RLWE encoding, the client now only needs to send roughly ℎ coefficients to the server.
For our parameter sets, this yields a substantial concrete reduction in query size: 𝑑/ℎ ≈ 3.5 (e.g., from 14 KB to 4 KB).
We defer the formal details of our approach to Appendix B.

3.1 The Respire Protocol

We now describe the Respire protocol. At a high level, Respire combines the general approach from [GH19, MCR21,
MW22a] with our improved query compression and response compression techniques to reduce communication (with
modest impact to throughput). In particular, Respire uses the approach from [GH19, MCR21, MW22a] to retrieve
a packed record (this is the first-dimension processing and folding steps in Construction 3.2), and then applies the
homomorphic rotation and dimension reduction techniques to return the desired record.

Database structure. In Respire, the RLWE encodings are over the ring 𝑅𝑑1,𝑞1 B Z𝑞1 [𝑥]/(𝑥𝑑1 + 1) and the database
are elements of the ring 𝑅𝑑2,𝑝 B Z𝑝 [𝑥]/(𝑥𝑑2 + 1). We require that 𝑑1 = 2𝛿1 and 𝑑2 = 2𝛿2 and 𝑑1 ≥ 𝑑2. We view the
database as a hypercube with 1 + 𝜈2 + 𝜈3 dimensions where the first dimension has size 2𝜈1 , the remaining 𝜈2 + 𝜈3
dimensions each have size 2, and 𝜈3 = 𝛿1 − 𝛿2. In the protocol, we represent the database as 2𝜈1+𝜈2 elements of
𝑅𝑑1,𝑝 B Z𝑝 [𝑥]/(𝑥𝑑1 + 1), where each element of 𝑅𝑑1,𝑝 is a packed representation of 2𝜈3 = 𝑑1/𝑑2 individual database
records (see Fig. 3a).

Construction 3.2 (Respire). Let 𝜆 be a security parameter. The Respire scheme is parameterized by the following:

• Lattice parameters: Let 𝑑1 = 𝑑1 (𝜆) and 𝑑2 = 𝑑2 (𝜆) denote the full ring dimension and the reduced ring
dimension, respectively. We require that 𝑑1 = 2𝛿1 and 𝑑2 = 2𝛿2 for some 𝛿1, 𝛿2 ∈ N and 𝑑1 ≥ 𝑑2. Let 𝑞1 = 𝑞1 (𝜆),
𝑞2 = 𝑞2 (𝜆), and 𝑞3 = 𝑞3 (𝜆) be moduli where 𝑞1 ≥ 𝑞2 ≥ 𝑞3. Let 𝜒1,𝑒 = 𝜒1,𝑒 (𝜆) and 𝜒1,𝑠 = 𝜒1,𝑠 (𝜆) be distributions
over 𝑅𝑑1,𝑞1 . Let 𝜒2,𝑒 = 𝜒2,𝑒 (𝜆), 𝜒2,𝑠 = 𝜒2,𝑠 (𝜆) be distributions over 𝑅𝑑2,𝑞2 .

• Plaintext modulus: Let 𝑝 be the plaintext modulus. Each database record is an element of 𝑅𝑑2,𝑝 .

• Database configuration: Let 𝑁 = 2𝜈1+𝜈2+𝜈3 where 𝜈1, 𝜈2 ∈ N and 𝜈3 B 𝛿1 − 𝛿2 be (a bound on) the number
of records in the database. The choices of the initial dimension 𝜈1 and the folding dimension 𝜈2 can be arbitrary
(we refer to Section 4 for our parameter-selection methodology). We index the database records by a triple
(𝛼, 𝛽,𝛾) where 𝛼 ∈ [2𝜈1 ], 𝛽 ∈ [2𝜈2 ], and 𝛾 ∈ [2𝜈3 ].

• Query packing: Let (QueryPackSetup,QueryPack,QueryUnpack) be the query packing algorithms from
Box 2 instantiated using Construction B.6 with 𝜒1,𝑒 as the error distribution.

• Response compression: Let (Compress,CompressRecover) be the response compression algorithms from
Box 1 instantiated using Construction C.3 with 𝜒2,𝑒 as the error distribution.

We describe how to instantiate the underlying parameters (e.g., decomposition bases, encoding modulus, etc.) for
the underlying algorithms in Section 4. We now give the Respire construction:

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm proceeds as follows:

– Sample secret keys 𝑠1 ← 𝜒1,𝑠 and 𝑠2 ← 𝜒2,𝑠 . Define s1 = [−𝑠1 | 1]T ∈ 𝑅2𝑑1,𝑞1 and s2 = [−𝑠2 | 1]T ∈ 𝑅2𝑑2,𝑞2 .

– Sample parameters ppqpk ←QueryPackSetup(1𝜆, s1) and ppcomp ← CompressSetup(1𝜆, s1, s2).
1Technically, an RLWE encoding (see Section 2) consists of two elements of 𝑅𝑑,𝑞 , but one of them is random and can be derived by applying
a pseudorandom generator (PRG) to a short seed (and appealing to the random oracle heuristic).
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Output the query key qk = (s1, s2) and the public parameters pp = (ppqpk, ppcomp).

• SetupDB
(
1𝜆, {𝑟𝛼,𝛽,𝛾 }𝛼∈[2𝜈1 ],𝛽∈[2𝜈2 ],𝛾 ∈[2𝜈3 ]

)
: On input the security parameter 𝜆 and a collection of 𝑁 records

𝑟𝛼,𝛽,𝛾 ∈ 𝑅𝑑2,𝑝 , the setup algorithm computes for each 𝛼 ∈ [2𝜈1 ] and 𝛽 ∈ [2𝜈2 ] the packed record

𝑟𝛼,𝛽 = Π
(
𝑟𝛼,𝛽,1, . . . , 𝑟𝛼,𝛽,2𝜈3

)
∈ 𝑅𝑑1,𝑝 , (3.4)

where Π : 𝑅2𝜈3
𝑑2,𝑝
→ 𝑅𝑑1,𝑝 is the packing function from Eq. (3.3) (see also Fig. 3a). Output db =

{
𝑟𝛼,𝛽

}
𝛼∈[2𝜈1 ],𝛽∈[2𝜈2 ] .

• Query(qk, idx): Given the query key qk = (s1, s2) and the index idx = (𝛼, 𝛽,𝛾) ∈ [2𝜈1 ] × [2𝜈2 ] × [2𝜈3 ], let
𝛼𝑖 = 1 if 𝑖 = 𝛼 and 0 otherwise. Let 𝛽1 · · · 𝛽𝜈2 be the binary representation of 𝛽 − 1 and 𝛾1 · · ·𝛾𝜈3 be the binary
representation of 𝛾 − 1. It outputs the query

q←QueryPack
(
s1, (⌊𝑞1/𝑝⌋ · 𝛼1, . . . , ⌊𝑞1/𝑝⌋ · 𝛼2𝜈1 ), (𝛽1, . . . , 𝛽𝜈2 , 𝛾1, . . . , 𝛾𝜈3 )

)
. (3.5)

• Answer(pp, db, q): On input the public parameters pp = (ppqpk, ppcomp), a preprocessed database db ={
𝑟𝑖, 𝑗

}
𝑖∈[2𝜈1 ], 𝑗∈[2𝜈2 ] , and the query q, the answer algorithm proceeds as follows:

1. Query expansion: Compute the expanded query((
c(1)1 , . . . , c(1)2𝜈1 )

)
,

(
C(2)1 , . . . ,C(2)𝜈2 ,C

(3)
1 , . . . ,C(3)𝜈3

))
←QueryUnpack(ppqpk, q).

2. First dimension: For each 𝛽 ∈ [2𝜈2 ], compute ĉ(1)
𝛽

=
∑

𝛼∈[2𝜈1 ] 𝑟𝛼,𝛽 · c
(1)
𝛼 .

3. Folding: Let ĉ(2)0, 𝑗 = ĉ(1)
𝑗

for each 𝑗 ∈ [2𝜈2 ]. Then, for each 𝑟 ∈ [𝜈2] and 𝑗 ∈ [2𝜈2−𝑟 ], compute

ĉ(2)
𝑟, 𝑗

= Select
(
C(2)𝑟 , ĉ(2)

𝑟−1, 𝑗 , ĉ
(2)
𝑟−1, 𝑗+2𝜈2−𝑟

)
,

where Select is the homomorphic selection algorithm defined in Section 2.

4. Rotation: Let ĉ(3)0 = ĉ(2)
𝜈2,1. Then, for each 𝑟 ∈ [𝜈3], compute

ĉ(3)𝑟 = Select
(
C(3)𝑟 , ĉ(3)

𝑟−1, 𝑥
−2𝜈3−𝑟 · ĉ(3)

𝑟−1

)
.

Let c(out) = ĉ(3)𝜈3 .
5. Compression: Output the (compressed) response a← Compress

(
ppcomp, c

(out) ) .
• Extract(qk, a): On input the query key qk = (s1, s2) and the answer a, output ⌊CompressRecover(s2, a)⌉𝑞3,𝑝 .

Correctness. We formally analyze the correctness error in Respire as a function of the scheme parameters in
Appendix D.1. In Section 4.1, we describe how we choose the scheme parameters concretely (to achieve a target error
rate of 2−40).

Security. In the Respire protocol (Construction 3.2), the server’s view consists of the public parameters along with
the client’s query. The public parameters consist of RLWE encodings together with key-switching matrices for the
underlying transformations, and the query consists of additional RLWE encodings. Assuming the RLWE assumption
(Definition 2.3) along with a “circular security” assumption (for the key-switching parameters), we can show that
the public parameters and the client’s queries are pseudorandom. The circular security assumption we use is similar
to those used in many previous PIR protocols [ACLS18, AYA+21, MCR21, MW22a, MR23, LMRS24, MW24]. We give
a precise statement of the assumption and a formal security proof in Appendix D.2.
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3.2 Extending Respire to the Batch Setting

For security, the dimension 𝑑2 of the smaller ring in Respire cannot be arbitrarily small. Essentially, this means that
the client must always download at least 𝑑2 integers, irrespective of the size of a single record. In particular, when
the record can be described by 𝑑3 elements of Z𝑝 where 𝑑3 ≪ 𝑑2, we again incur a high communication penalty. The
problem essentially boils down to the fact that RLWE encodings of short plaintexts have very poor rate. One approach
to achieve better rate is in the batch setting where instead of fetching a single record, the client instead fetches 𝑘
elements (see Remark 2.2). In this section, we describe how to extend Respire (Construction 3.2) to more efficiently
support batch queries with low communication overhead. Our packing approach relies on two key ingredients which
we describe below: (1) homomorphic repacking and (2) vectorization.

Database configuration. In the multi-query version of Respire, we model each database record as an element
of 𝑅𝑑3,𝑝 where 𝑑3 ≤ 𝑑2 is a power-of-two. In the single-query protocol, the record dimension coincides with the small
ring dimension 𝑑2, and moreover, we need to choose 𝑑2 to be sufficiently large that the RLWE assumption holds.
This in turn limits the range of possible values for 𝑑2, and by extension, the dimension of each plaintext record. In
the batched setting, we support any power-of-two 𝑑3 ≤ 𝑑2. As in Respire, each packed database element contains
multiple (i.e., 𝑑1/𝑑3, where 𝑑1 is the large ring dimension) individual records (see Fig. 3a).

Coefficient projections over 𝑅𝑑 . Our homomorphic repacking procedure (described below) relies on way to
project away coefficients of a polynomial 𝑓 ∈ 𝑅𝑑 . Specifically, for an integer 𝑗 ∈ [0, 𝛿] where 𝑑 = 2𝛿 , we define the
coefficient projection map 𝜋 𝑗 : 𝑅𝑑 → 𝑅𝑑 to be the mapping

𝜋 𝑗
©«

∑︁
𝑖∈[0,𝑑−1]

𝑓𝑖𝑥
𝑖ª®¬ B

∑︁
𝑖∈[0,𝑑−1]:2𝑗 |𝑖

𝑓𝑖𝑥
𝑖 . (3.6)

In words, the projection 𝜋 𝑗 zeroes out every coefficient 𝑓𝑖 of the input polynomial associated with a monomial 𝑥𝑖
where 𝑖 is not a multiple of 2𝑗 . For instance, 𝜋1 outputs the polynomial that only contains the even powers of 𝑥 . We
illustrate the coefficient projection operation in Fig. 4a.

If we work over 𝑅𝑑,𝑞 for odd 𝑞, the projection maps 𝜋0, . . . , 𝜋𝛿 can be efficiently implemented using the Frobenius
automorphisms on 𝑅𝑑 (i.e., the mapping 𝑥 ↦→ 𝑥 ℓ with ℓ ∈ Z). Using techniques to homomorphically evaluate
automorphisms on RLWE encodings [BGV12, GHS12a], we obtain an algorithm to homomorphically evaluate the
coefficient projection map on RLWE encodings. We model the coefficient projection procedure as follows:

Box 3: Coefficient Projection Algorithms

• ProjectSetup(1𝜆, s) → pp: On input the security parameter 𝜆 and an RLWE secret key s ∈ 𝑅2
𝑑,𝑞

, the
projection setup algorithm outputs a set of projection public parameters ppproj.

• Project(ppproj, c, 𝑗) → c′: On input the projection parameters ppproj, an RLWE encoding c ∈ 𝑅2
𝑑,𝑞

, and
the projection index 𝑗 ∈ [𝛿], the projection algorithm outputs a new RLWE encoding c′.

The property we require is that if c is an RLWE encoding of a polynomial 𝑓 ∈ 𝑅𝑑 with respect to s, then Project(pp, c)
outputs an RLWE encoding of the projected polynomial 𝜋 𝑗 (𝑓 ). We provide the formal description in Appendix A.1.

Homomorphic repacking. The main ingredient in the batched construction of Respire is a repacking algorithm.
At a high level, the (homomorphic) repacking algorithm takes a batch of 𝑘 = 𝑑3/𝑑2 responses and compresses them
into a single response (i.e., a single RLWE encoding). More formally, suppose the client makes a batch of 𝑘 queries
for records 𝑟1, . . . , 𝑟𝑘 ∈ 𝑅𝑑3,𝑝 . Let 𝑠1, . . . , 𝑠𝑘 ∈ 𝑅𝑑1,𝑝 be the packed database elements that contain the records 𝑟1, . . . , 𝑟𝑘 .
The repacking algorithm takes 𝑠1, . . . , 𝑠𝑘 and outputs 𝑠′ that encodes Π(𝑟1, . . . , 𝑟𝑘 ) where Π : 𝑅𝑘

𝑑3,𝑝
→ 𝑅𝑑2,𝑝 is the ring

packing function from Eq. (3.3). Essentially, the repacking procedure first extracts the desired record 𝑟𝑖 from its
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𝑓0 𝑓1 𝑓2 𝑓3 𝑓0 0 𝑓2 0

Apply projection map 𝜋1

(a) Illustration of the projection operation over the polynomial
ring 𝑅4 = Z[𝑥]/(𝑥4 + 1). The projection map 𝜋1 zeroes out
all coefficients associated with odd powers of 𝑥 . We model
polynomials 𝑓 (𝑥) =

∑
𝑖∈[0,3] 𝑓𝑖𝑥

𝑖 as a vector of coefficients
(𝑓0, 𝑓1, 𝑓2, 𝑓3) ∈ Z4.

𝑟0,0 𝑟0,1𝑟1,0 𝑟1,1𝑟2,0 𝑟2,1𝑟3,0 𝑟3,1

𝑟3,0 𝑟0,1 𝑟1,1 𝑟2,1 𝑟3,1 𝑟0,0 𝑟1,0 𝑟2,0

𝑟3,0 0 0 0 𝑟3,1 0 0 0

Rotation (i.e., multiply by 𝑥−3)

Projection (𝜋2)

(b) The rotation step aligns the desired record (𝑟3) into the initial
position, just as in the single-query case. The subsequent projec-
tion step zeroes out all components other than the desired one.
For simplicity, we ignore the sign changes from the rotation.

𝑟3,0 0 0 0 𝑟3,1 0 0 0

𝑟0,0 0 0 0 𝑟0,1 0 0 0

𝑟3,0 0 0 0 𝑟3,1 0 0 0

0 0 𝑟0,0 0 0 0 𝑟0,1 0

𝑟3,0 0 𝑟0,0 0 𝑟3,1 0 𝑟0,1 0

𝑟3,0 𝑟0,0 𝑟3,1 𝑟0,1

Align encodings (rotations)

Sum encodings

Dimension reduction

(c) After applying the rotation and projection mappings to
each response, the packing algorithm realigns and sums them
together to obtain the final encoding. Finally, we apply the
same dimension reduction algorithm (as in vanilla Respire) to
obtain the final repacked encoding. Components that are lost
after dimension reduction are indicated by the striped pattern.

Figure 4: Illustration of the core operations underlying the Respire (homomorphic) repacking algorithm. In Figs. 4b
and 4c, the main ring dimension is 𝑑1 = 8, the reduced ring dimension is 𝑑2 = 4, and the record dimension is 𝑑3 = 2.
We pack 𝑘 = 2 records in each output encoding. Each record 𝑟𝑖 is a pair (𝑟𝑖,0, 𝑟𝑖,1).

packed representation 𝑠𝑖 and then repacks the extracted records into a single element of 𝑅𝑑1,𝑝 . We describe the main
steps of our approach below and illustrate the key steps in Figs. 4b and 4c.

• Rotation: Let ℓ = 𝑑1/𝑑3 and let 𝑗𝑖 ∈ [0, ℓ − 1] be the position of 𝑟𝑖 within 𝑠𝑖 . The repacking algorithm first
computes 𝑥− 𝑗𝑖 · 𝑠𝑖 . By construction, 𝑟𝑖 is in the initial position within 𝑥− 𝑗𝑖 · 𝑠𝑖 .

• Projection: Next, the repacking algorithm projects away all records other than the initial record using
the projection map 𝜋𝛿1−𝛿3 where 𝑑3 = 2𝛿3 and 𝑑1 = 2𝛿1 . Namely, the repacking algorithm computes 𝑡𝑖 =

𝜋𝛿1−𝛿3 (𝑥− 𝑗𝑖 · 𝑠𝑖 ), where 𝜋𝛿1−𝛿3 is the projection function from Eq. (3.6). This yields a packed encoding with 𝑟𝑖 in
the initial position and 0 in all other positions.

• Repacking: Given 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅𝑑1,𝑝 , the algorithm now aggregates the packed encoding by computing
𝑡 =

∑
𝑖∈[0,𝑘−1] 𝑡𝑖 · 𝑥𝑖 ·𝑑1/𝑑2 . This is shown in Fig. 4c.

Finally, we observe that each of the underlying operations (rotation, projection, and repacking) can be described in
terms of scalar multiplications, additions, and automorphisms; thus, we can implement these homomorphically on
RLWE encodings. This yields the homomorphic repacking approach in the batched version of Respire.

Vectorization. With repacking, a single Respire response can encode 𝑘 = 𝑑2/𝑑3 queries. When the client makes
more than 𝑘 queries, then the response necessarily contains more than a single RLWE encoding. In this setting,
we can leverage the response packing approach from Spiral [MW22a] and pack the individual RLWE encodings
into a single vector encoding. In this way, each of the RLWE encodings in the response share a common “random”
component. Moreover, with split modulus switching, the modulus associated with the “random” component is much
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larger than those of the message-embedding component. Concretely, our use of vectorization reduces the response
size by a factor of ≈ 2.7× when the batch size is 32.

We start by introducing the notion of a vector RLWE encoding. We say that

c =
[

𝑎

s𝑎 + e + µ

]
∈ 𝑅𝑛+1

𝑑,𝑞

is an RLWE encoding of a vector µ ∈ 𝑅𝑛
𝑑,𝑞

with respect to a secret key S = [−s | I𝑛]T ∈ 𝑅 (𝑛+1)×𝑛𝑑,𝑞
and error e ∈ 𝑅𝑛

𝑑,𝑞
if

STc = µ+e. Similar to a (scalar) RLWE encoding, when c =
[
𝑐1
c2

]
, we often refer to 𝑐1 as the “random” component of the

encoding and c2 as the “message-embedding” component of the encoding. Notably, the compression from using vector
RLWE encodings comes from the fact that random component is only a single ring element. In contrast, 𝑛 scalar RLWE
encodings would include 𝑛 random components, one for each encoding. We now recall the syntax from [MW22a]:

Box 4: Vectorization Algorithms

• VecSetup(1𝜆, s1, S2) → ppvec: On input a security parameter 𝜆 and two secret keys s1 ∈ 𝑅2
𝑑,𝑞

and
S2 ∈ 𝑅 (𝑛+1)×𝑛𝑑,𝑞

, the setup algorithm outputs a set of vectorizing parameters ppvec.

• Vectorize(ppvec, (c1, . . . , c𝑛)) → c′: On input the vectorization parameters ppvec and a tuple of encodings
c1, . . . , c𝑛 ∈ 𝑅2𝑑,𝑞 , the vectorization algorithm outputs a ciphertext c′ ∈ 𝑅𝑛+1

𝑑,𝑞
.

If c1, . . . , c𝑛 are RLWE encodings of the scalars 𝜇1, . . . , 𝜇𝑛 ∈ 𝑅𝑑,𝑞 with respect to s1, then Vectorize(ppvec, (c1, . . . , c𝑛))
outputs an encoding µ = (𝜇1, . . . , 𝜇𝑛) with respect to s2 (and slightly larger noise). We refer to Appendix C.1 for the
formal description and correctness analysis.

Batching queries in Respire. We now give the formal description of Respire tailored for the batch setting.

Construction 3.3 (Respire for Batch Queries). Let 𝜆 be a security parameter. The batched version of Respire is param-
eterized by a similar set of components as the base version of Respire (Construction 3.2). We enumerate these below:

• Lattice parameters: As in Respire, let 𝑑1 = 𝑑1 (𝜆) and 𝑑2 = 𝑑2 (𝜆) denote the full ring dimension and the
reduced ring dimension, respectively. We require that 𝑑1 = 2𝛿1 and 𝑑2 = 2𝛿2 where 𝛿1, 𝛿2 are non-negative in-
tegers and 𝑑1 ≥ 𝑑2. Let 𝑞1 = 𝑞1 (𝜆), 𝑞2 = 𝑞2 (𝜆), and 𝑞3 = 𝑞3 (𝜆) be moduli where 𝑞1 ≥ 𝑞2 ≥ 𝑞3. Let 𝜒1,𝑒 = 𝜒1,𝑒 (𝜆),
𝜒1,𝑠 = 𝜒1,𝑠 (𝜆), 𝜒 ′1,𝑒 = 𝜒 ′1,𝑒 (𝜆), and 𝜒 ′1,𝑠 = 𝜒 ′1,𝑠 (𝜆) be distributions over 𝑅𝑑1,𝑞1 . Let 𝜒2,𝑒 = 𝜒2,𝑒 (𝜆), 𝜒2,𝑠 = 𝜒2,𝑠 (𝜆) be
distributions over 𝑅𝑑2,𝑞2 .

• Plaintext dimension modulus: Let 𝑑3 = 𝑑3 (𝜆) be the record dimension and 𝑝 be the plaintext modulus. Each
database record is an element of 𝑅𝑑3,𝑝 B Z𝑝 [𝑥]/(𝑥𝑑3 + 1). We require that 𝑑3 = 2𝛿3 where 𝛿3 is a non-negative
integer and 𝑑2 ≥ 𝑑3.

• Database configuration: Let 𝑁 = 2𝜈1+𝜈2+𝜈3 where 𝜈1, 𝜈2 ∈ N and 𝜈3 B 𝛿1 − 𝛿3 be (a bound on) the number of
records in the database. The choices of the initial dimension 𝜈1 and the folding dimension 𝜈2 can be arbitrary.

• Query packing parameters: Let (QueryPackSetup,QueryPack,QueryUnpack) be the query packing algo-
rithms from Box 2 instantiated using Construction B.6 with 𝜒1,𝑒 as the error distribution.

• Projection parameters: Let (ProjectSetup, Project) be the homomorphic projection algorithms from Box 3
instantiated using Construction A.7 with 𝜒1,𝑒 as the error distribution.

• Vectorization parameters: Let (VecSetup,Vectorize) be the vectorization algorithms from Box 4 instantiated
using Construction C.1) with 𝜒 ′1,𝑒 as the error distribution. Let 𝑛vec = 𝑛vec (𝜆) be the vector length used for
vectorization.

• Response compression parameters: Let (Compress,CompressRecover) be the response compression algo-
rithms from Box 1 instantiated using Construction C.3 with 𝜒2,𝑒 as the error distribution.
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We describe how to instantiate the underlying parameters (e.g., decomposition bases, encoding modulus) for the
underlying algorithms in Section 4. We now describe a scheme that supports a maximum batch size of𝑇 = 𝑛vec (𝑑2/𝑑3).

• Setup(1𝜆): On input the security parameter 𝜆, the setup algorithm proceeds as follows:

– Sample a source key 𝑠1 ← 𝜒1,𝑠 and two target keys s̃′1 ← (𝜒 ′1,𝑠 )𝑛vec and s̃2 ← 𝜒
𝑛vec
2,𝑠 . Define

s1 = [−𝑠1 | 1]T ∈ 𝑅2𝑑1,𝑞1 and S′1 = [−s̃′1 | I𝑛vec ]T ∈ 𝑅
(𝑛vec+1)×𝑛vec
𝑑1,𝑞1

and S2 = [−s̃2 | I𝑛vec ]T ∈ 𝑅
(𝑛vec+1)×𝑛vec
𝑑2,𝑞2

.

– Next, sample parameters for query packing, projection, vectorization, and response packing:
∗ ppqpk ←QueryPackSetup(1𝜆, s1).
∗ ppproj ← ProjectSetup(1𝜆, s1).
∗ ppvec ← VecSetup(1𝜆, s1, S′1).
∗ ppcomp ← CompressSetup(1𝜆, S′1, S2).

The setup algorithm outputs the query key qk = (s1, S2) and the parameters pp = (ppqpk, ppproj, ppvec, ppcomp).

• SetupDB
(
1𝜆, {𝑟𝛼,𝛽,𝛾 }𝛼∈[2𝜈1 ],𝛽∈[2𝜈2 ],𝛾 ∈[2𝜈3 ]

)
: On input the security parameter 𝜆 and a collection of 𝑁 records

𝑟𝛼,𝛽,𝛾 ∈ 𝑅𝑑3,𝑝 , the database preprocessing algorithm constructs the packed records as in Respire (Construc-
tion 3.2). Namely, for all 𝛼 ∈ [2𝜈1 ] and 𝛽 ∈ [2𝜈2 ], it computes 𝑟𝛼,𝛽 according to Eq. (3.4), except the ring packing
function Π now maps 𝑅2𝜈3

𝑑3,𝑝
to 𝑅𝑑1,𝑝 . The algorithm then outputs the packed elements db =

{
𝑟𝛼,𝛽

}
𝛼∈[2𝜈1 ],𝛽∈[2𝜈2 ] .

• Query(qk, (idx1, . . . , idx𝑇 )): On input the query key qk = (s1, S2) and a tuple of 𝑇 queries idx1, . . . , idx𝑇 where
idx𝑡 = (𝛼 (𝑡 ) , 𝛽 (𝑡 ) , 𝛾 (𝑡 ) ) ∈ [2𝜈1 ] × [2𝜈2 ] × [2𝜈3 ], the query algorithm computes q𝑡 according to Eq. (3.5) for each
𝑡 ∈ [𝑇 ]. It outputs the query q = (q1, . . . , q𝑇 ).

• Answer(pp, db, q): On input the parameters pp = (ppqpk, ppproj, ppvec, ppcomp), a preprocessed database db ={
𝑟𝑖, 𝑗

}
𝑖∈[2𝜈1 ], 𝑗∈[2𝜈2 ] , and a query q = (q1, . . . , q𝑇 ), the answer algorithm proceeds as follows:

1. Run Respire for each query: For each 𝑡 ∈ [𝑇 ], run Steps 1 to 4 of the Answer algorithm in Respire
(Construction 3.2) using the query expansion parameters ppqpk, the preprocessed database db, and the
query q𝑡 . Let c(out)𝑡 be the output of Step 4 of the Answer algorithm on the 𝑡 th query.

2. Projection: For each 𝑡 ∈ [𝑇 ], homomorphically project each response:

c(proj)𝑡 ← Project
(
ppproj, c

(out)
𝑡 , 𝛿1 − 𝛿3

)
.

3. Repacking: For each 𝑗 ∈ [𝑛vec], compute the repacked encoding

c(repack)
𝑗

=
∑︁

𝑖∈[𝑑2/𝑑3 ]
𝑥 (𝑖−1) · (𝑑1/𝑑2 ) · c(proj)(𝑑2/𝑑3 ) · ( 𝑗−1)+𝑖 .

4. Vectorizing: Next, the answer algorithm packs the encodings into a single vector RLWE encoding:

c(vec) ← Vectorize
(
ppvec,

(
c(repack)1 , . . . , c(repack)𝑛vec

) )
.

5. Compression: Output the (compressed) response a← Compress
(
ppcomp, c

(vec) ) .
• Extract(qk, a): On input the query key qk = (s1, S2) and the response a, compute the packed responses

𝑟1
...

𝑟𝑛vec

 ← ⌊CompressRecover(S2, a)⌉𝑞3,𝑝 ∈ 𝑅
𝑛vec
𝑑2,𝑝

For each 𝑖 ∈ [𝑑2/𝑑3] and 𝑗 ∈ [𝑛vec], set 𝑟 (𝑑2/𝑑3 ) · ( 𝑗−1)+𝑖 = 𝜅−1𝑑3,𝑑2
(𝑥−(𝑖−1) · 𝑟 𝑗 ) ∈ 𝑅𝑑3,𝑝 , where 𝜅−1𝑑3,𝑑2

: 𝑅𝑑2 → 𝑅𝑑3 is
the dimension reduction mapping from Eq. (3.2). Finally, output the records 𝑟1, . . . , 𝑟𝑇 .
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Remark 3.4 (Packing Responses from Different Databases). The first step of the Answer algorithm in Construction 3.3
runs 𝑇 independent executions of the Respire protocol to obtain 𝑇 responses c(out)1 , . . . , c(out)

𝑇
which are then packed

together. In Construction 3.3, each of these queries were applied to the same preprocessed database db. However,
this does not have to be the case. In particular, each query q𝑖 could be applied over a different preprocessed database
db𝑖 of the same dimension. The rest of the packing algorithm is agnostic to this choice. This allows us to compose
this approach with (probabilistic) batch codes [IKOS04, ACLS18] to reduce the computational costs of answering 𝑇
queries. Instead of needing to make a pass over the full database to answer each query in the batch, the server in
this case applies query q𝑖 to a much smaller sub-database db𝑖 . We use this approach to obtain a batch PIR scheme.
We refer to Section 4.3 for implementation details and benchmarks.

Remark 3.5 (Comparison with Vectorized BatchPIR). The response packing approach described here may seem
similar to other batch PIR schemes such as Vectorized BatchPIR [MR23] and Piranha [LLWR24]. However, there is
a critical difference: both Vectorized BatchPIR and Piranha leverage SIMD support in FHE [GHS12a] to support batch
queries, and specifically, they use the Brakerski-Fan-Vercauteren (BFV) encryption scheme [Bra12, FV12]. In the BFV
scheme, the noise grows exponentially with the multiplicative depth of the computation, leading to larger parameters.
Moreover, SIMD packing is not compatible with the query compression techniques from [ACLS18, CCR19], which
leads to larger queries and responses. The approach taken in Respire is to first build a communication-efficient
single-query PIR scheme (Construction 3.2) that leverages the RLWE-GSW external product [CGGI18, CGGI20] to
implement homomorphic multiplication (following [GH19, MCR21, MW22a]). This allows better noise growth (scaling
linearly with the multiplicative depth) and allows us to leverage techniques for query and response compression. On
the flip side, Respire does not support SIMD operations, so the server cost is higher with Respire for large batch sizes.
For small batch sizes (e.g., issuing 32 queries on a 1 GB database), Respire is 16% faster than Vectorized BatchPIR
and requires 4.9× less communication. We refer to Section 4.3 for the full breakdown.

4 Implementation and Evaluation

The Respire protocol is designed for databases with small records. In our evaluation, we focus on the setting
where each database record is 256 bytes; this is a typical setting used in applications of PIR to metadata-hiding
communication [AS16, ALP+21, AYA+21].

4.1 Parameter Selection

In our evaluation, we use two different sets of parameters. The first set is tailored for the single-query case while the
second has better support for batch queries. For our evaluation, we view the single-query Respire (Construction 3.2)
as a special case of the batch version of Respire (Construction 3.3), where we set the vectorization length to 𝑛vec = 1
and the record dimension 𝑑3 to the reduced ring dimension 𝑑2 (i.e., 𝑑2 = 𝑑3). In this case, the batched version of
Respire essentially corresponds to the single-query version described in Construction 3.2.

Parameter selection methodology. We choose the scheme parameters to tolerate a correctness error of at most
2−40 (based on the formal analysis given in Appendix D.1). Simultaneously, we choose the lattice parameters to ensure
that each of the underlying RLWE assumptions which we require for security (see Appendix D.2) has 128 bits of
classical security. We use the lattice estimator tool [APS15a] for our security estimates.2 Here, we describe how we
select the primary parameters of our scheme and list our parameter choices in Appendix E.

Lattice parameters. In Respire, we rely on three different RLWE assumptions:

• RLWE over the main ring 𝑅𝑑1,𝑞1 (with error distribution 𝜒1,𝑒 and secret key distribution 𝜒1,𝑠 ). The queries (and
many of the key-switching matrices) are encoded over the large ring. We set the ring dimension to be 𝑑1 = 2048
and 𝑞1 to be a 56-bit modulus (where 𝑞1 = 1 mod 2𝑑 to support fast NTT evaluation over 𝑅𝑑1,𝑞1 ). Since the
noise in the initial GSW encodings (output by the query expansion procedure) scales with the norm of the

2We used commit 7ea215a4d55f (April 8, 2024) from [APS15b] for our security estimates.
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secret key (as opposed to its variance), we take 𝜒1,𝑠 to be the uniform distribution on the interval [−7, 7]. The
error distribution 𝜒1,𝑒 is a discrete Gaussian distribution with width parameter 𝜎1,𝑒 = 9.9. We note that using
a norm-bounded secret key distribution is common in lattice-based cryptographic systems, and for instance,
is used both in standardized lattice-based key-agreement protocols [ABD+21] (specifically, the Kyber protocol
uses a binomial distribution on the interval [−3, 3]) or FHE schemes (many schemes use a ternary secret key
distribution [GHS12b, CKKS17, ACC+18]).

• RLWE over the main ring 𝑅𝑑1,𝑞1 (with error distribution 𝜒 ′1,𝑒 and secret key distribution 𝜒 ′1,𝑠 ). We consider a
secondary instantiation of RLWE over the main ring for sampling the vectorization parameters where the
secret key and the error are both sampled from a discrete Gaussian distribution with width 𝜎 ′1 = 9.9. Compared
to the previous instantiation, we substitute a discrete Gaussian distribution in place of the uniform distribution
since the former has a smaller subgaussian width parameter. This allows better control of noise growth in the
vectorization step (see Appendix D.1).

• RLWE over the small ring 𝑅𝑑2,𝑞2 (with error distribution 𝜒2,𝑒 and 𝜒2,𝑠 ). We rely on this assumption to publish the
key-switching matrices needed for dimension reduction. In the single-query setting, we take the reduced ring
dimension to be 𝑑2 = 512 and sample both the secret key and the error from a discrete Gaussian distribution
with width 𝜎2 = 253.6.

Each of these instantiations provides 128 bits of classical security according to the lattice estimator tool [APS15a].

Database configuration. We choose the dimension of the reduced ring to be 𝑑2 = 512. This is the smallest
(power-of-two) ring dimension that we could find which provides 128-bits of security and a correctness error of
2−40 for the database configurations of interest. We set 𝑝 = 16 so each plaintext element (in 𝑅𝑑2,𝑝 ) can encode 256
bytes of data. Since 𝑑1 = 2048, we can pack 𝜈3 = 𝑑1/𝑑2 = 4 records into each ring element. We choose the remaining
database dimensions 𝜈1 and 𝜈2 to be roughly equal; this achieves a good balance between the noise growth and the
computational costs of the protocol.

Gadget decomposition parameters. The different sub-algorithms in Respire (query packing, projection, vec-
torization, and compression) are parameterized by different gadget decomposition bases 𝑧. Smaller decomposition
bases (corresponding to a wider gadget matrix) reduce the noise growth but incurs more computational costs and
larger public parameters. In many settings, the noise growth from a sub-algorithm introduces an additive increase
in the noise rather than a multiplicative factor. As such, we opt to pick the largest gadget decomposition base that
does not significantly increase the noise accumulation. This leads to smaller public parameters (and computational
overhead). We enumerate the decomposition bases we use in Table 5 in Appendix E.

Modulus choice. Similar to Spiral [MW22a], we choose the main encoding modulus 𝑞1 to be a product of two
28-bit primes: 𝑞1 = 𝑞1,1 · 𝑞1,2, where 𝑞1,1, 𝑞1,2 = 1 mod 2𝑑1. This allows us to use the (negacyclic) NTT for fast
ring multiplication [LMPR08, LN16], which we accelerate using the AVX2 SIMD instructions (c.f., [BKS+21]). We
implement arithmetic modulo 𝑞1 using 64-bit native integer arithmetic modulo 𝑞1,1 and 𝑞1,2 (with deferred modular
reductions), and combine the results using the Chinese remainder theorem. Similarly, we choose 𝑞2 = 1 mod 2𝑑2 so
we can also use NTTs for polynomial arithmetic over the ring 𝑅𝑑2,𝑞2 . Finally, we choose 𝑞2 and 𝑞3 to be the smallest
values possible while still ensuring correctness. Concretely, for the single-query scheme, 𝑞2 ≈ 224 and 𝑞3 = 24.

PRG compression. We use a standard optimization [ALP+21, MCR21, HHC+23, MW22a, MR23, LMRS24, MW24] to
reduce the query size, wherein the client sends a PRG seed in place of the random component of the RLWE encodings
in the query. We instantiate the PRG using ChaCha20 [Ber08].

Sharing public parameters. Several of the public parameters in Respire (Constructions 3.2 and 3.3) rely on a
set of automorphism key-switching matrices (Construction A.4). These include the public parameters ppcoeff,RLWE,
ppcoeff,GSW used for query expansion as well as the public parameters ppproj used for projections. When choosing
parameters, we use the same decomposition base for the GSW query expansion and the projection step; this allows
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us to use the same set of key-switching matrices for both steps (see Table 5 in Appendix E for the full breakdown).
This reduces the size of the public parameters. As noted in Remark B.8, we use different decomposition bases in
ppcoeff,RLWE and ppcoeff,GSW to balance the noise in the resulting RLWE and GSW encodings.

4.2 Respire Benchmarks and Evaluation

Our implementation of Respire contains roughly 8,000 lines of Rust.3 We use an AWS EC2 r7i.8xlarge instance
with 32 vCPUs (Intel Xeon Platinum 8488C @ 2.4GHz), 256 GB of memory, and running Ubuntu 22.04.4 for our
experiments. We use rustc 1.77.0 as our Rust compiler and gcc 11.4.0 as our C++ compiler. The processor
supports the AVX2 and AVX-512 instruction sets and we enable SIMD instruction set support for all schemes. Our
implementation of Respire only uses AVX2, and not AVX-512. We use a single-threaded execution environment for
all measurements. All measured running times were averaged over at least 5 trials and have a standard deviation
of at most 1% of the average value. Throughout, we write KB, MB, GB to denote 210, 220, and 230 bytes, respectively.

Comparison schemes. Among the single-query PIR protocols, Respire is most similar to Spiral [MW22a]. Both
protocols operate in the model with client-specific public parameters. The Spiral family of protocols represents the
current state-of-the-art in this setting. In our evaluation, we benchmark against the reference implementation of
Spiral [MW22b], which selects the different Spiral variants (e.g., Spiral, SpiralPack, SpiralStream) depending
on the database configuration. For the database configurations we consider (databases with small records), the
implementation defaults to SpiralPack. For our evaluation, we focus on databases with small records (e.g., 256-byte
records). For databases with larger records, the query compression and response compression techniques in Respire
are no longer applicable, and the performance of Respire essentially converges to that of Spiral (or SpiralPack).

To illustrate the new computation/communication trade-offs achieved by Respire, we also report benchmarks
against the state-of-the art protocols in other models. This includes the SimplePIR protocol, which operates in a
different model where the client first downloads a database-dependent hint in the offline phase. SimplePIR achieves
extremely high throughput at the expense of needing a large hint (and larger query/response sizes).4 Finally, we also
compare against HintlessPIR [LMRS24] and YPIR [MW24]. These schemes achieve silent preprocessing where there is
no client-side or server-side state, but have higher communication costs. We refer to Section 5 for further discussion
of other PIR constructions. Finally, for the batch setting, we compare against Vectorized BatchPIR [MR23]. For each
of these schemes, we measure their performance using their reference implementations on our benchmarking setup.

Macrobenchmarks. Table 1 compares the performance of Respire to other PIR protocols. On a 256 MB database,
a Respire query is just 4.1 KB and the response is 2 KB. This is a 3.9× reduction in query size and 10× reduction in
response size compared to Spiral. Compared to protocols like SimplePIR, HintlessPIR, and YPIR, the Respire scheme
achieves over a 20× reduction in total communication. Over an 8 GB database, the online communication in Respire
is 4.5× smaller than Spiral, and over 40× smaller than SimplePIR. The reduction in query size and response size
in Respire is due to the query compression and response compression techniques described in Section 3 (see also
Appendices B and C for the formal description of our algorithms). Notably, in Respire, we avoid having to communicate
a complete RLWE encoding over the large ring 𝑅𝑑1,𝑞1 , and indeed the total online communication in Respire is smaller
than the size of a single element of 𝑅𝑑1,𝑞1 . Previous RLWE-based PIR schemes (e.g., [MBFK16, ACLS18, AYA+21,
MCR21, MW22a]) all communicated at least one (large) RLWE encoding, which results in larger queries and responses.

In fact, the query and response size of Respire on databases with small records is comparable to those using
traditional number-theoretic assumptions [ALP+21] (e.g., schemes based on ElGamal or Gentry-Ramzan [GR05]). The
advantage of these traditional number-theoretic schemes has been small communication. For example, the Gentry-
Ramzan scheme can have communication as low as 1.8 KB when considering a 1 MB database with 5000 records (288
bytes per record), but at the price of a server throughput of roughly 20 KB/s [ALP+21, Table 5]. By modestly increasing
communication to 5.4 KB, the throughput can be increased to roughly 186 KB/s. In contrast, with Respire, we can
3Our implementation is available here: https://github.com/AMACB/respire/.
4There are faster schemes with sublinear server computation [ZPSZ24, MSR23, GZS24], but they require the client to stream the full database
in an offline phase. For our comparisons, we focus on schemes whose total communication is sublinear in the database size.
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Database Metric Spiral SimplePIR HintlessPIR YPIR Respire

220 × 256B
(256 MB)

Offline Comm. 7.8 MB 102.9 MB — — 3.9 MB
Query Size 16.0 KB 32.0 KB 424 KB 574 KB 4.1 KB
Response Size 20.0 KB 102.0 KB 964 KB 60 KB 2.0 KB
Computation 1.28 s 0.024 s 0.658 s 0.17 s 1.26 s
Throughput 200 MB/s 10.4 GB/s 389 MB/s 1.49 GB/s 204 MB/s

222 × 256B
(1 GB)

Offline Comm. 7.8 MB 211.1 MB — — 3.9 MB
Query Size 16.0 KB 64.0 KB 488 KB 686 KB 7.7 KB
Response Size 20.0 KB 211.2 KB 1.71 MB 120 KB 2.0 KB
Computation 2.94 s 0.093 s 1.242 s 0.40 s 3.48 s
Throughput 348 MB/s 10.8 GB/s 825 MB/s 2.50 GB/s 295 MB/s

225 × 256B
(8 GB)

Offline Comm. 10.0 MB 445.1 MB — — 3.9 MB
Query Size 16.0 KB 256.0 KB 1.35 MB 1.33 MB 14.8 KB
Response Size 60.0 KB 445.0 KB 1.71 MB 228 KB 2.0 KB
Computation 15.44 s 0.772 s 3.698 s 1.71 s 20.84 s
Throughput 530 MB/s 10.4 GB/s 2.16 GB/s 4.69 GB/s 393 MB/s

Table 1: Comparison of Respire to Spiral [MW22a], SimplePIR [HHC+23], HintlessPIR [LMRS24], and YPIR [MW24]
for retrieving a single record from databases of various sizes. For each scheme, we report the offline communication
(i.e., the public parameters in the case of Spiral and Respire and the server hint in the case of SimplePIR). We define
the throughput to be the ratio of the database size to the server’s computation time.

achieve comparable communication (6.1 KB), but with a throughput of several hundredMB/s (over 1000× faster than the
number-theoretic constructions). Thus, Respire provides a new data point in communication-computation trade-offs.

Compared to other lattice-based PIR schemes, Respire trades off server throughput for smaller queries and re-
sponses. Compared to Spiral, Respire is about 26% slower on an 8 GB database (but requires 4.5× less communication
and a 2.5× smaller public parameters). Compared to protocols like SimplePIR, HintlessPIR, and YPIR, the Respire
protocol is up to 27× smaller on the 8 GB database. These protocols have substantially larger queries (over 90× larger
for HintlessPIR) or hints (SimplePIR requires downloading a 445MB hint).

Server throughput. Fig. 5 shows the query-processing in Respire as a function of the database size. We compare
with Spiral, the current state-of-the-art scheme in the model with client-specific parameters. For small databases,
the query processing time of Spiral and Respire are quite comparable, but the gap widens with larger database.
The difference is likely due to parameter choices: our response compression approach in Respire (Construction C.3)
requires using a smaller plaintext modulus compared to Spiral; as such, this increases the cost of the initial linear
scan over the database (i.e., the protocol must process more RLWE encodings). Overall, we observe a 1.3× increase
in processing time on an 8 GB database (but 4.5× less communication).

Microbenchmarks. Fig. 6 provides a fine-grained breakdown of the server computation time in Respire. The first
dimension requires a linear scan over the database and thus, the running time scales linearly with the size of the
database. The rest of the cost is split between the folding and the query expansion steps. The peculiar “zig-zag” behavior
of query unpacking and folding is due to our parameter selection methodology. As described in Section 4.1, we choose
parameters that balance the size of the first dimension 2𝜈1 and the size of the second dimension 2𝜈2 . Incrementing 𝜈1
doubles the number of coefficients that need to be expanded using query expansion while incrementing 𝜈2 double the
amount of work in the folding step. Since we alternate incrementing 𝜈1 and 𝜈2, we obtain the behavior shown in Fig. 6.
Finally, while the final response compression step is critical for reducing the size of the response (by a 14× factor
in the single-query case), it is applied to a fixed number of RLWE encodings (independent of the database size). As
such, it constitutes almost a negligible fraction of the overall server computational cost (less than 0.1% in all settings).
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Figure 5: Total query processing time for Respire and Spiral [MW22a] as a function of the number of records in
the database. Each record is 256 bytes.

Client computation. The client-side costs in Respire are minimal. In our experiments, the setup time takes a
maximum of 80 ms, the query-generation time takes at most 148 ms, and response decoding takes at most 7 ms.

Server preprocessing. In Respire, we allow the server to perform client-independent server preprocessing (i.e.
SetupDB). In Respire, this consists of packing the database records into ring elements and applying the NTT trans-
formation to the packed ring elements. The preprocessing cost scales linearly with the size of the database. This
precomputation takes 16.8 s for a 256 MB database, and 569 s for an 8 GB database.

4.3 Supporting Batch Queries

In this section, we show how to combine the batched version of Respire (Section 3.2) with probabilistic batch
codes [IKOS04, ACLS18] to support small batches of queries. Our goal in this comparison is to show that the base ver-
sion of Respire readily extends to support batch queries, and composition with more recent PIR-to-batch-PIR transfor-
mations [BPSY24] should only offer further improvements. We describe our general methodology and evaluation below.

Cuckoo hashing. To improve server throughput in the batch setting, we use the (probabilistic) batch codes
technique from [IKOS04, ACLS18]. In the approach from [ACLS18], the server starts by creating 𝐵 (empty) buckets
and samples ℎ independent hash functions. The server hashes each element of the database into ℎ buckets using the
ℎ hash functions. The hash functions are public and known to the client. To query for a batch of 𝑇 indices 𝑖1, . . . , 𝑖𝑇 ,
the client uses cuckoo hashing [PR01] (with the ℎ hash functions) to associate a distinct bucket index for each index.
The client then performs a standard PIR query on each bucket to request the record of interest. The observation is
that each of these PIR queries is over an individual bucket, which is significantly smaller than the overall size of the
database. Thus, the server no longer needs to perform a linear scan over the full database to respond to each of the 𝑖𝑇
queries; instead, it needs to perform a linear scan over the entries in each bucket. Concretely, the work of [ACLS18]
shows that when ℎ = 3 and the number of buckets is roughly 𝐵 ≈ 3𝑇 /2, the probability of a cuckoo hashing failure (i.e.,
that the client is unable to associate a unique index with each desired index) is at most 2−40. With 𝐵 ≈ 3𝑇 /2 buckets,
and modeling the hash functions as random (as in [ACLS18]), the expected size of each bucket will be ≈ 2𝑁 /𝑇 . Taken
together, the server can answer a batch of 𝑇 queries by performing 3𝑇 /2 vanilla PIR queries, each over a database
of size 2𝑁 /𝑇 . For simplicity in our implementation, we choose the smallest value of 𝐵 ≥ 3𝑇 /2 such that every bucket
has at most 𝐾 ≤ 2𝑁 /𝑇 , where 𝐾 is a power-of-two. To support batch queries, we now run the batched version of
Respire (Construction 3.3) (with the modification in Remark 3.4) with batch size 𝐵 (i.e. the number of buckets) and
database size 𝐾 (i.e. the maximum size of each bucket). We provide sample parameters in Table 4 of Appendix E.
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Batch Size T = 32 Batch Size T = 256
Database Metric VBPIR Respire VBPIR Respire

220 × 256B
(256 MB)

Offline Comm. 9.3 MB 4.6 MB 9.3 MB 4.6 MB
Query Size 578 KB 67.0 KB 1156 KB 326 KB
Response Size 128 KB 31.8 KB 1028 KB 234 KB
Computation 8.83 s 15.02 s 27.59 s 60.04 s

222 × 256B
(1 GB)

Offline Comm. 9.3 MB 4.6 MB 9.3 MB 4.6 MB
Query Size 578 KB 113 KB 1735 KB 513 KB
Response Size 128 KB 31.8 KB 771 KB 230 KB
Computation 32.54 s 28.12 s 44.53 s 86.90 s

Table 2: Comparison of batched Respire and Vectorized BatchPIR [MR23] (denoted “VBPIR”) for two different database
configurations and batch sizes 𝑇 . Each database record is 256 bytes. The reference implementation of Vectorized
BatchPIR does not report the size of their public parameters, so we report the number from the paper [MR23].

Parameter selection. We follow a similar methodology as described in Section 4.1 to choose parameters for
Respire to support batch queries. To allow a common basis of comparison in the batch setting, we choose parameters
to ensure the per-query correctness error is at most 2−40. We choose the vectorization dimension 𝑛vec to balance the
public parameter size and the response size. Namely, the size of the vectorization parameters ppvec scales linearly
with 𝑛vec, whereas the size of the response scales with ⌈𝑇 /(𝑛vec · (𝑑2/𝑑3)⌉, where 𝑑2 is the reduced ring dimension
and 𝑑3 is the dimension of the record. In the batch setting, we set 𝑑2 = 2048 and 𝑑3 = 512, and adjust 𝑛vec to balance
the response size and public parameter size. We refer to Table 4 in Appendix E for a list of our parameter choices.

Macrobenchmarks. Table 2 provides a breakdown of the batch version of Respire to the Vectorized BatchPIR
scheme [MR23]. Compared to Vectorized BatchPIR (a scheme tailored for batch queries), Respire achieves a 3.4-8.5×
reduction in query size and 3.4-4.4× reduction in response size (and 3.4-7.1× reduction in total communication). For
small batches of queries and larger databases, Respire is also slightly (16%) faster than Vectorized BatchPIR. However,
for larger databases and batch sizes, there is about a 2.2× performance overhead with Respire. As mentioned before,
the improvements in communication is due to the new query and response compression techniques in Respire and
the ability to use smaller parameters due to better control of noise growth (see Remark 3.5).

Fig. 7 compares the computational costs of Respire vs. Vectorized BatchPIR as a function of the database size
and the batch size. For small batch sizes, Respire outperforms Vectorized BatchPIR (batch size up to 16 for a 256 MB
database and up to 128 for a 1 GB database). In applications where the client only makes a handful of queries
at once (e.g., private blocklist checking, private DNS lookups), Respire is preferred in both communication and
computation. For large batch sizes, Respire has smaller communication, but larger computational overheads. Schemes
like Vectorized BatchPIR or Piranha [LLWR24] are better-suited for large batch sizes (hundreds to thousands in the
case of Piranha) because they take advantage of SIMD support in FHE [GHS12a] to process the query. In contrast,
Respire starts from a communication-efficient single-query scheme and composes with batch codes and ring packing
(for better communication). The batch codes approach allows us to amortize the cost of the linear scan over the
database, but not the cost of query expansion (which scales linearly with the batch size). As we show below, the cost of
query expansion becomes the dominating factor in our scheme, which makes it less suitable for very large batch sizes.

Microbenchmarks. Fig. 8 provides a breakdown of the server computation costs of batched Respire as a function of
the batch size𝑇 . The use of batch codes [IKOS04, ACLS18] allows us to amortize the cost of the linear scan (i.e., the first
dimension processing) and essentially keeps it fixed as the batch size grows. However, the preprocessing (e.g., query
expansion) and post-processing (e.g., folding and response compression) must still be applied individually to each query.
As a result, these costs increasewith the batch size. As noted above, for large batch sizes, query expansion dominates the
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Figure 6: Server computation breakdown for Respire as a function of the number of records. Each record is 256 bytes.

overall cost of the computation. As such, Respire is better-suited for applications with small to moderate batch sizes.

5 Related Work

Chor et al. [CGKS95] first introduced private information retrieval in the multi-server setting where the database
is replicated across multiple non-colluding servers. The multi-server model allows lightweight information-theoretic
constructions [BIKR02, BIK05, WY05, Yek07, Efr09, BIKO12] as well as highly-efficient constructions based on com-
putational assumptions [GI14, BGI16, HH19]. While this model yields schemes with excellent concrete efficiency,
the reliance on multiple non-colluding servers raises challenges for deployment. Our focus in this work is on the
single-server setting.

Single-server PIR. Starting from the seminal work of Kushilevitz and Ostrovsky [KO97], many works have con-
structed single-server PIR from different number-theoretic assumptions [CMS99, Cha04, GR05, OI07, DGI+19, BV11,
CGH+21, ALP+21, BCM22]. The most concretely-efficient schemes are those based on lattice assumptions [MBFK16,
AS16, ACLS18, GH19, PT20, ALP+21, AYA+21, MCR21, MW22a, MR23, DPC23, HHC+23, LMRS24, MW24, dCLS24].
The recent lattice-based schemes can be partitioned into three broad categories: (1) schemes with a client-specific
hint [AS16, ACLS18, GH19, PT20, ALP+21, AYA+21, MCR21, MW22a]; (2) schemes with a database-specific hint [DPC23,
HHC+23]; and (3) hintless schemes [LMRS24, MW24, dCLS24]. In the first category, clients first upload a small
public key (typically, a set of key-switching matrices) to the server. The server uses these parameters for both
query expansion and response compression; as such, the communication requirements on these protocols is much
smaller than their counterparts. Conversely, in schemes with a database-specific hint, clients first download a (large)
database-dependent hint in an offline phase. These schemes support extremely high throughput (comparable to the
memory-bandwidth of the system) and are the fastest constructions to date. However, the offline computation in
these schemes are often high and moreover, clients will have to refresh their hints whenever the database changes.
Recently, several works have shown how to eliminate the hint altogether with a modest cost in communication and
throughput. However, these schemes still incur substantial communication overhead (due to the lack of support for
query and response compression); see Section 4.2 and Table 1. Several works have also studied augmenting PIR with
stronger security in the presence of malicious servers [WZ18, BKP22, CNC+23, DT24, dCL24].

Sublinear PIR. Several recent works [MSR23, GZS24, ZPSZ24] have shown how to construct single-server PIR
schemes in the preprocessing model where in an offline phase, the client first streams the entire database (and precom-
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Figure 7: Comparison of batched Respire and Vectorized BatchPIR (VBPIR) end-to-end execution times per query.
We fix the size of each record to 256 bytes and the database size to be either 256 MB or 1 GB (indicated in the legend).

putes an𝑂 (
√
𝑁 )-size hint, where 𝑁 is the size of the database). Then in the online phase, the server can answer queries

in sublinear time. More recently, Lin et al. [LMW23] showed how to construct doubly-efficient PIR [CHR17, BIPW17]
from the RLWE assumption. In this model, the server first encodes the database in a way that allows it to answer
queries in sublinear time; impressively, no communication is needed in the offline phase. Doubly-efficient PIR is a
powerful primitive, but is still far from being concretely efficient [OPPW23].
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A Details on Lattice Algorithms

In this section, we give a formal description and the noise analysis for the different lattice algorithms we use in the
construction of Respire.

Terminology. Throughout, we say an algorithm is efficient if it runs in probabilistic polynomial time in the length
of its input. We say a function is negligible (denoted negl(𝜆)) if it is 𝑜 (𝜆−𝑐 ) for all 𝑐 ∈ N. We say two families of
distributions D1 and D2 are computationally indistinguishable if no efficient algorithm can distinguish them except
with negligible probability.

Discrete Gaussians. The Gaussian function with width parameter 𝜎 > 0 is the function 𝜌𝜎 : R → R+ where
𝜌𝜎 (𝑥) = exp

(
−𝜋𝑥2/𝜎2

)
. The discrete Gaussian distribution 𝐷Z,𝜎 over Z of width 𝜎 is defined by the probability mass

function 𝐷Z,𝜎 (𝑥) = 𝜌𝜎 (𝑥)/
∑

𝑦∈Z 𝜌𝜎 (𝑦). We say that a random variable 𝑋 is subgaussian with parameter 𝜎 if for all
𝑡 ≥ 0, Pr[|𝑋 | ≥ 𝑡] ≤ 2 exp

(
−𝜋𝑡2/𝜎2

)
. We refer to 𝜎2 as the variance of the subgaussian distribution. If 𝑋 is sampled

from a discrete Gaussian distribution with width 𝜎 , then it is subgaussian with parameter 𝜎 (and variance 𝜎2).5
If 𝑋1, 𝑋2 are independent subgaussian random variables with variances 𝜎21 , 𝜎22 , respectively, then for all 𝑐1, 𝑐2 ∈ R,
𝑐1𝑋1 + 𝑐2𝑋2 is subgaussian with variance 𝑐21𝜎21 + 𝑐22𝜎22 .

Polynomial rings. Throughout this section, we write 𝑅𝑑 to denote the polynomial ring 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1), where
𝑑 is a power of two. For a modulus 𝑞, we write 𝑅𝑑,𝑞 = Z𝑞 [𝑥]/(𝑥𝑑 + 1). For an element 𝑓 =

∑
𝑖∈[𝑑 ] 𝛼𝑖𝑥

𝑖−1 ∈ 𝑅𝑑 , we
write ∥ 𝑓 ∥∞ to denote the ℓ∞ norm of the coefficient vector [𝛼1, . . . , 𝛼𝑑 ]. When 𝑓 ∈ 𝑅𝑑,𝑞 , we write ∥ 𝑓 ∥∞ to denote
the ℓ∞ norm of the coefficient vector of 𝑓 where each coefficient is associated with its integer representative in the
interval (−𝑞/2, 𝑞/2]. Similarly, we write ∥ 𝑓 ∥2 to denote the ℓ2 norm of the coefficient vector of 𝑓 . For all polynomials
𝑓 , 𝑔 ∈ 𝑅𝑑 , it holds that ∥ 𝑓 𝑔∥∞ ≤ 𝑑 ∥ 𝑓 ∥∞∥𝑔∥∞. For a vector f = (𝑓1, . . . , 𝑓𝑡 ) ∈ 𝑅𝑡𝑑,𝑞 , we write ∥f ∥∞ to denote the ℓ∞
norm of the vector of the concatenation of the coefficient vectors of (𝑓1, . . . , 𝑓𝑡 ). We define ∥f ∥2 analogously. We
define the discrete Gaussian distribution of width 𝜎 over 𝑅𝑑 to be the distribution that samples each coefficient 𝛼𝑖
independently from 𝐷Z,𝜎 and outputting 𝑓 =

∑
𝑖∈[𝑑 ] 𝛼𝑖𝑥

𝑖−1. We say 𝑓 is sampled from a subgaussian distribution
with parameter 𝜎 if each coefficient of 𝑓 is sampled from a subgaussian distribution with parameter 𝜎 . We say a
distribution D over 𝑅𝑑 is 𝐵-bounded if Pr[∥𝑟 ∥∞ ≤ 𝐵 : 𝑟 ← D] = 1. In our analysis, we use the following bound:

Lemma A.1 (Subgaussian Polynomial Product). Let 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1). Take any vector of polynomials g ∈ 𝑅𝑡
𝑑
. Let

f = (𝑓1, . . . , 𝑓𝑡 ) ∈ 𝑅𝑡𝑑 be a vector where the coefficients of each 𝑓𝑖 is sampled independently from a subgaussian distribution
with variance 𝜎2. Then the distribution of each coefficient of fTg is subgaussian with parameter ∥g∥22 · 𝜎2.
5In this context, 𝜎 is thewidth of the discrete Gaussian, and not its standard deviation. The standard deviation 𝑠 of the Gaussian distribution is related
to the width parameter by the relation 𝑠 = 𝜎/

√
2𝜋 . Correspondingly, the “variance” of the Gaussian distribution (as defined in the usual sense by

the relation E[ (𝑋 −E[𝑋 ] )2 ]) is 𝑠2 = 𝜎2/2𝜋 . In this work, we will always write variance to denote the square of the subgaussian width parameter.
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Proof. We start with the case where 𝑡 = 1. Let 𝑓 =
∑

𝑖∈[0,𝑑−1] 𝑓𝑖𝑥
𝑖 and𝑔 =

∑
𝑖∈[0,𝑑−1] 𝑔𝑖𝑥

𝑖 . Letℎ = 𝑓 𝑔 =
∑

𝑖∈[0,𝑑−1 ℎ𝑖𝑥
𝑖 ∈

𝑅𝑑 . By definition, for all 𝑖 ∈ [0, 𝑑 − 1],

ℎ𝑖 =
∑︁

𝑗∈[0,𝑑−1]
(−1)𝑐 𝑗 𝑓𝑗𝑔𝑖− 𝑗 mod 𝑑 ,

for some choice of 𝑐 𝑗 ∈ {0, 1}. Since each 𝑓𝑗 is independent and subgaussian with variance 𝜎2, the distribution of ℎ𝑖
is subgaussian with variance

∑
𝑗∈[0,𝑑−1] 𝑔

2
𝑗𝜎

2 = ∥𝑔∥22 · 𝜎2. When 𝑡 > 1, fTg =
∑

𝑖∈[𝑡 ] 𝑓𝑖𝑔𝑖 . The coefficients of each 𝑓𝑖𝑔𝑖
is subgaussian with variance ∥𝑔𝑖 ∥22 · 𝜎2. Since each component is independent, the sum is subgaussian with variance∑

𝑖∈[𝑡 ] ∥𝑔𝑖 ∥22𝜎2 = ∥g∥22 · 𝜎2. □

Independence heuristic. Similar to previous lattice-based PIR schemes based on polynomial rings [ACLS18,
GH19, MCR21, MW22a, LMRS24, MW24], we rely on the independence heuristic [GHS12b, CGGI18, CGGI20] when
analyzing the error accumulated during homomorphic computations. Under the independence heuristic, we model
the (subgaussian) error terms arising in the homomorphic operations as being independent. Moreover, instead
of bounding the absolute magnitude (i.e., the worst-case error), we analyze the variance of the subgaussian error
distribution instead. Since the variance is additive for independent subgaussian random variables, bounding the
variance yields a square-root improvement in the error analysis compared to the worst-case bound (when considering
sums of subgaussian random variables). We stress that the use of the independence heuristic only impacts the
correctness error in the protocol (and not the security of the protocol). Empirically, we observe that there is still slack
between the magnitude of the error predicted based on our analysis (assuming the independence heuristic) and the
actual measured noise magnitude. Thus, we believe that our estimates for the correctness error computed under the
independence heuristic is still an overestimate of the actual correctness error.

External product. We now recall the external product from [CGGI18, CGGI20]. We define the algorithm and state
the correctness property below. Our presentation is adapted from that of [MW22a]:

• Multiply(CGSW, cRLWE): On input a GSW encoding CGSW ∈ 𝑅2×𝑚𝑑,𝑞
with decomposition base 𝑧 ∈ N and an RLWE

encoding cRLWE ∈ 𝑅2𝑑,𝑞 , output CGSWG−12,𝑧 (cRLWE) ∈ 𝑅2𝑑,𝑞 .

Theorem A.2 (External Product [CGGI18, CGGI20, adapted]). Let s ∈ 𝑅2
𝑑,𝑞

be a secret key. Suppose CGSW ∈ 𝑅2×𝑚𝑑,𝑞
is a

GSW encoding of amessage 𝜇 ∈ {0, 1}with respect to s, error eGSW ∈ 𝑅𝑚𝑑,𝑞 , and decomposition base 𝑧. Suppose cRLWE ∈ 𝑅2𝑑,𝑞
is an RLWE encoding of a scalar 𝑣 ∈ 𝑅𝑑,𝑞 with respect to the secret key s and error 𝑒 ∈ 𝑅𝑑 . Let c← Multiply(CGSW, cRLWE).
Then, c is an RLWE encoding of 𝜇𝑣 ∈ 𝑅𝑑,𝑞 with respect to the secret key s and error 𝑒 = 𝜇𝑒RLWE + eTGSWG−12,𝑧 (cRLWE) ∈ 𝑅𝑑,𝑞 .

Homomorphic selection. We now define the homomorphic selection algorithm:

• Select(CGSW, c0, c1) → c′: On input a GSW encoding CGSW ∈ 𝑅2×𝑚𝑑,𝑞
and RLWE encodings c0, c1 ∈ 𝑅2𝑑,𝑞 , output

c0 +Multiply(CGSW, c1 − c0).

Theorem A.3 (Homomorphic Selection). Let s ∈ 𝑅2
𝑑,𝑞

be a secret key. Let c0, c1 be RLWE encodings of 𝜇0, 𝜇1 ∈ 𝑅𝑑,𝑞
with respect to the secret key s and errors 𝑒0, 𝑒1 ∈ 𝑅𝑑 , respectively. Let CGSW be a GSW encoding of a bit 𝑏 ∈ {0, 1} with
respect to the secret key s and error e ∈ 𝑅𝑚

𝑑,𝑞
. Suppose 𝑒0, 𝑒1 are subgaussian with variance 𝜎2RLWE and the components

of e are subgaussian with variance 𝜎2GSW. Let c′ ← Select(CGSW, c0, c1). Then c′ ∈ 𝑅2
𝑑,𝑞

is an RLWE encoding of 𝜇𝑏 with
respect to the secret key s and error 𝑒′. Moreover, 𝑒′ is subgaussian with variance 𝜎2 ≤ 𝜎2RLWE +𝑚𝑑𝑧2𝜎2GSW/4.

Proof. Let ĉ′ ← Multiply(CGSW, c1 − c0). By Theorem A.2, ĉ′ is an RLWE encoding of 𝑏 (𝜇1 − 𝜇0) with error

𝑒′ = 𝜇 (𝑒1 − 𝑒0) + eTGSWG−12,𝑧 (c1 − c0).

By the additively homomorphism of RLWE encodings, we conclude that c′ = c0 + ĉ′ is an RLWE encoding of
𝜇0 + 𝑏 (𝜇1 − 𝜇0) = 𝜇𝑏 with error 𝑒′ = 𝑒0 + 𝑒′ = 𝑒𝑏 + eTGSWG−12,𝑧 (c1 − c0). Since ∥G−12,𝑧 (c1 − c0)∥22 ≤ 𝑚𝑑𝑧2/4 and appealing
to the independence heuristic, the variance 𝜎2 of 𝑒′ satisfies the given bound. □
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A.1 Coefficient Projection

In this section, we describe how to homomorphically apply a coefficient projection to an encoded polynomial (i.e.,
instantiate the algorithms in Box 3). This is an adaptation of the procedure used in [ACLS18, CCR19, CDKS21] for
query expansion and packing RLWE encodings. The construction relies on the ability to homomorphically evaluate
automorphisms on RLWE encodings [BGV12, GHS12a].

Automorphisms over 𝑅𝑑 . For a positive integer ℓ ∈ N, we write 𝜏ℓ : 𝑅𝑑 → 𝑅𝑑 to denote the Frobenius automor-
phism that maps 𝑓 (𝑥) ↦→ 𝑓 (𝑥 ℓ ). For a modulus 𝑞 ∈ N, we define the automorphism over 𝑅𝑑,𝑞 in the same manner,
and for ease of notation, write 𝜏ℓ to denote both automorphisms. We extend 𝜏ℓ to operate on vectors and matrices by
component-wise evaluation. Previously, [BGV12, GHS12a] showed how to homomorphically apply automorphisms to
RLWE encodings. We summarize the main algorithms here for the special case of scalar RLWE encodings (following
the presentation from [MW22a, MW24]):

Construction A.4 (Automorphisms on RLWE Encodings [GHS12a, BGV12, adapted]). Let 𝜆 be a security parameter
and 𝑑 = 𝑑 (𝜆), 𝑞 = 𝑞(𝜆) be lattice parameters where 𝑑 = 2ℓ is a power of two. Let 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1) and 𝜒 = 𝜒 (𝜆)
be an error distribution over 𝑅𝑑 . The construction is also parameterized by a decomposition base 𝑧 ∈ N. We now
define the following algorithms:

• AutomorphSetup(1𝜆, 𝑠, 𝜏): On input the security parameter 𝜆, a secret key s = [−𝑠 | 1]T ∈ 𝑅2
𝑑,𝑞

, and an auto-
morphism 𝜏 : 𝑅𝑑,𝑞 → 𝑅𝑑,𝑞 , first define 𝑡 = ⌊log𝑧 𝑞⌋ + 1. Then, the setup algorithm samples a r← 𝑅𝑡

𝑑,𝑞
and 𝑒 ← 𝜒𝑡

and outputs a key-switching matrix

W𝜏 =

[
aT

𝑠aT + eT − 𝜏 (𝑠) · gT
𝑧

]
∈ 𝑅2×𝑡

𝑑,𝑞
. (A.1)

• Automorph(W, c, 𝜏): On input the key-switching matrixW ∈ 𝑅2×𝑡
𝑑,𝑞

, an RLWE encoding c = (𝑐0, 𝑐1) ∈ 𝑅2𝑑,𝑞 , an
automorphism 𝜏 : 𝑅𝑑,𝑞 → 𝑅𝑑,𝑞 , and a decomposition base 𝑧 ∈ N, the automorph algorithm outputs

c′ = W · g−1𝑧 (𝜏 (𝑐0)) +
[

0
𝜏 (𝑐1)

]
∈ 𝑅2

𝑑,𝑞
. (A.2)

Theorem A.5 (Homomorphic Evaluation of Automorphisms [GHS12a, BGV12, adapted]). For a positive integer ℓ ∈ N,
let 𝜏ℓ : 𝑅𝑑,𝑞 → 𝑅𝑑,𝑞 be the automorphism 𝑝 (𝑥) ↦→ 𝑝 (𝑥 ℓ ) and 𝑧 ∈ N be a decomposition base. Let s = [−𝑠 | 1]T ∈ 𝑅2

𝑑,𝑞
be a

secret key and c ∈ 𝑅2
𝑑,𝑞

be any encoding. Let W𝜏 ← AutomorphSetup(1𝜆, 𝑠, 𝜏ℓ ) and c′ ← Automorph(W𝜏 , c, 𝜏ℓ ). Then,
sTc′ = 𝜏 (sTc) + 𝑒′ where 𝑒′ is subgaussian with variance (𝜎 ′)2 ≤ 𝑡𝑑𝑧2𝜎2𝜒/4 and 𝑡 = ⌊log𝑧 𝑞⌋ + 1.

Coefficient projections. Recall from Section 3.2 (Eq. (3.6)) that the coefficient projection map 𝜋 𝑗 : 𝑅𝑑 → 𝑅𝑑 takes
as input a polynomial 𝑓 =

∑
𝑖∈[0,𝑑−1] 𝑓𝑖𝑥

𝑖 ∈ 𝑅𝑑 and outputs
∑

𝑖∈[0,𝑑−1]:2𝑗 |𝑖 𝑓𝑖𝑥
𝑖 . We define the homomorphic projection

map in terms of automorphisms as follows:

Lemma A.6 (Coefficient Projection using Automorphisms). Let 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1) where 𝑑 = 2ℓ for some ℓ ∈ N.
Define 𝜋0 (𝑓 ) = 𝑓 . Then, for all 𝑗 ∈ [ℓ],

• 2 · 𝜋 𝑗 (𝑓 ) = 𝜋 𝑗−1 (𝑓 ) + 𝜏𝑑/2𝑗−1+1 (𝜋 𝑗−1 (𝑓 )).

• 2 · 𝜋 𝑗 (𝑓 · 𝑥−2
𝑗−1 ) = 𝑥−2𝑗−1 ·

(
𝜋 𝑗−1 (𝑓 ) − 𝜏𝑑/2𝑗−1+1 (𝜋 𝑗−1 (𝑓 ))

)
.

Proof. Recall that 𝜏ℓ : 𝑅𝑑 → 𝑅𝑑 is the automorphism that maps 𝑓 (𝑥) ↦→ 𝑓 (𝑥 ℓ ). Over the ring 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1),
observe that for all 𝑗 ∈ [0, ℓ − 1] and all integers 𝑐 ∈ N,

𝜏𝑑/2𝑗+1
(
𝑥𝑐 ·2

𝑗 )
= 𝑥𝑐𝑑+𝑐 ·2

𝑗

= (𝑥𝑑 )𝑐 · 𝑥𝑐 ·2𝑗 = (−1)𝑐 · 𝑥𝑐 ·2𝑗 . (A.3)
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Take any polynomial 𝑓 =
∑

𝑖∈[0,𝑑−1] 𝑓𝑖𝑥
𝑖 . By Eq. (A.3), we have for all 𝑗 ∈ [ℓ],

𝜏𝑑/2𝑗+1
(
𝜋 𝑗 (𝑓 )

)
= 𝜏𝑑/2𝑗+1

©«
∑︁

𝑖∈[0,𝑑−1]:2𝑗 |𝑖
𝑓𝑖𝑥

𝑖ª®¬ = 𝜏𝑑/2𝑗+1
©«

∑︁
𝑐∈[0,𝑑/2𝑗−1]

𝑓𝑐 ·2𝑗𝑥
𝑐 ·2𝑗 ª®¬ =

∑︁
𝑐∈[0,𝑑/2𝑗−1]

(−1)𝑐 · 𝑓𝑐 ·2𝑗𝑥𝑐 ·2
𝑗

.

We now consider each of the properties:

• For the first property, we have

𝜋 𝑗−1 (𝑓 ) + 𝜏𝑑/2𝑗−1+1
(
𝜋 𝑗−1 (𝑓 )

)
=

∑︁
𝑐∈[0,𝑑/2𝑗−1−1]

𝑓𝑐 ·2𝑗−1 · 𝑥𝑐 ·2
𝑗−1 +

∑︁
𝑐∈[0,𝑑/2𝑗−1−1]

(−1)𝑐 · 𝑓𝑐 ·2𝑗−1 · 𝑥𝑐 ·2
𝑗−1

=
∑︁

𝑐∈[0,𝑑/2𝑗−1−1]:2 |𝑐
2𝑓𝑐 ·2𝑗−1 · 𝑥𝑐 ·2

𝑗−1

= 2 · 𝜋 𝑗 (𝑓 ).

• The second property follows by a similar calculation:

𝜋 𝑗−1 (𝑓 ) − 𝜏𝑑/2𝑗−1+1
(
𝜋 𝑗−1 (𝑓 )

)
=

∑︁
𝑐∈[0,𝑑/2𝑗−1−1]

𝑓𝑐 ·2𝑗−1 · 𝑥𝑐 ·2
𝑗−1 −

∑︁
𝑐∈[0,𝑑/2𝑗−1−1]

(−1)𝑐 · 𝑓𝑐 ·2𝑗−1 · 𝑥𝑐 ·2
𝑗−1

=
∑︁

𝑐∈[0,𝑑/2𝑗−1]
2𝑓(2𝑐+1) ·2𝑗−1 · 𝑥 (2𝑐+1) ·2

𝑗−1
.

Thus,
𝑥−2

𝑗−1 ·
(
𝜋 𝑗−1 (𝑓 ) − 𝜏𝑑/2𝑗−1+1 (𝜋 𝑗−1 (𝑓 ))

)
=

∑︁
𝑐∈[0,𝑑/2𝑗−1]

2𝑓(2𝑐+1) ·2𝑗−1 · 𝑥𝑐 ·2
𝑗

.

Finally,

2 · 𝜋 𝑗
(
𝑓 · 𝑥−2𝑗−1

)
=

∑︁
𝑐∈[0,𝑑/2𝑗−1]

2𝑓𝑐 ·2𝑗+2𝑗−1 · 𝑥𝑐 ·2
𝑗

=
∑︁

𝑐∈[0,𝑑/2𝑗−1]
2𝑓(2𝑐+1) ·2𝑗−1 · 𝑥𝑐 ·2

𝑗

= 𝑥−2
𝑗−1 ·

(
𝜋 𝑗−1 (𝑓 ) − 𝜏𝑑/2𝑗−1+1 (𝜋 𝑗−1 (𝑓 ))

)
,

as required. □

Evaluating coefficient projections on RLWE encodings. We now describe the (ProjectSetup, Project) algo-
rithms from Box 3. The construction and analysis are similar to the algorithms from [ACLS18, CCR19, CDKS21].

Construction A.7 (Coefficient Projection on RLWE Encodings). Let 𝜆 be a security parameter and 𝑑 = 𝑑 (𝜆), 𝑞 = 𝑞(𝜆)
be lattice parameters where 𝑑 = 2ℓ is a power of two. Let 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 +1) and 𝜒 = 𝜒 (𝜆) be an error distribution over
𝑅𝑑 . We require that the modulus 𝑞 satisfy 𝑞 = 1 mod 2. The construction is also parameterized by a decomposition base
𝑧 ∈ N. The construction relies on the (AutomorphSetup,Automorph) algorithms from Construction A.4 instantiated
with the same lattice parameters (𝑑, 𝑞, 𝜒) and decomposition base 𝑧. We define the algorithms (ProjectSetup, Project)
as follows:

• ProjectSetup(1𝜆, s): On input the security parameter 𝜆 and the secret key s ∈ 𝑅2
𝑑,𝑞

, the setup algorithm starts
by sampling W𝑗 ← AutomorphSetup(1𝜆, s, 𝜏𝑑/2𝑗+1) for each 𝑗 ∈ [0, ℓ − 1]. It outputs the projection key
ppproj = (W0, . . . ,Wℓ−1).

• Project(ppproj, c, 𝑗): On input a projection key ppproj = (W0, . . . ,Wℓ−1), an RLWE encoding c ∈ 𝑅2
𝑑,𝑞

and an
index 𝑗 ∈ [0, ℓ], the projection algorithm proceeds as follows:

– Compute c0 = 2− 𝑗 · c ∈ 𝑅2
𝑑,𝑞

. Note that 𝑞 = 1 mod 2 so 2 is invertible modulo 𝑞.
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– For each 𝑖 ∈ [ 𝑗], compute c𝑖 = c𝑖−1 + Automorph(W𝑖−1, c𝑖−1, 𝜏𝑑/2𝑖−1+1).

At the end of the process, output c𝑗 .

TheoremA.8 (Coefficient Projection on RLWE Encodings). Let 𝜆 be a security parameter and 𝑑, ℓ, 𝑞, 𝜒, 𝑧 be the parame-
ters in Construction A.7. Suppose 𝜒 is subgaussian with variance 𝜎2𝜒 . Let s = [−𝑠 | 1]T ∈ 𝑅2𝑑,𝑞 be a secret key and c ∈ 𝑅

2
𝑑,𝑞

be

any encoding. Take any 𝑗 ∈ [ℓ]. Let ppproj ← ProjectSetup(1𝜆, s) and c′ ← Project(ppproj, c, 𝑗). Then sTc′ = 𝜋 𝑗 (sTc)+𝑒′
and under the independence heuristic, 𝑒′ is subgaussian with variance (𝜎 ′)2 = (4𝑗 − 1)/12 · 𝑡𝑑𝑧2𝜎2𝜒 and 𝑡 = ⌊log𝑧 𝑞⌋ + 1.

Proof. Let ppproj ← ProjectSetup(1𝜆, s). Then ppproj = (W0, . . . ,Wℓ−1) whereW𝑗 ← AutomorphSetup(1𝜆, s, 𝜏𝑑/2𝑗+1).
Let c0, . . . , c𝑗 be the encodings constructed by Project(ppproj, c, 𝑗). We now show that for all 𝑖 ∈ [0, 𝑗],

sTc𝑖 = 2− 𝑗+𝑖𝜋𝑖 (sTc) + 𝑒𝑖 ,

where 𝑒0 = 0 and 𝑒𝑖 is subgaussian with variance 𝜎2𝑖 =
∑

𝑘∈[𝑖 ] 4𝑘−1𝑡𝑑𝑧2𝜎2𝜒/4. We proceed by induction on 𝑖:

• Suppose 𝑖 = 0. By definition, c0 = 2− 𝑗 · c and the claim holds (since 𝜋0 (𝑟 ) = 𝑟 for all 𝑟 ∈ 𝑅𝑑 ).

• For the inductive step, let c′𝑖 = Automorph(W𝑖 , c𝑖 , 𝜏𝑑/2𝑖+1). By Theorem A.5 and the inductive hypothesis,

sTc′𝑖 = 𝜏𝑑/2𝑖+1 (sTc𝑖 ) + 𝑒𝑖+1 = 𝜏𝑑/2𝑖+1
(
2− 𝑗+𝑖𝜋𝑖 (sTc) + 𝑒𝑖

)
+ 𝑒𝑖+1,

where 𝑒𝑖+1 is subgaussian with variance 𝑡𝑑𝑧2𝜎2𝜒/4. Since c𝑖+1 = c𝑖 + c′𝑖 , and appealing to Lemma A.6, we have

sTc𝑖+1 = 2− 𝑗+𝑖
(
𝜋𝑖 (sTc) + 𝜏𝑑/2𝑖+1 (𝜋𝑖 (sTc))

)
+ 𝑒𝑖 + 𝜏𝑑/2𝑖+1 (𝑒𝑖 ) + 𝑒𝑖+1

= 2− 𝑗+𝑖+1𝜋𝑖+1 (sTc) + 𝑒𝑖 + 𝜏𝑑/2𝑖+1 (𝑒𝑖 ) + 𝑒𝑖+1.

Let 𝑒𝑖+1 B 𝑒𝑖+𝜏𝑑/2𝑖+1 (𝑒𝑖 )+𝑒𝑖+1. Since 𝑒𝑖 is subgaussianwith variance𝜎2𝑖 and appealing to the independence heuris-
tic (to argue that the key-switching error 𝑒𝑖+1 is independent of 𝑒𝑖 ), we have that 𝑒𝑖+1 is subgaussian with variance

𝜎2𝑖+1 = 4𝜎2𝑖 + 𝑡𝑑𝑧2𝜎2𝜒/4 = 4 ·
∑︁

𝑘∈[𝑖−1]
4𝑘−1𝑡𝑑𝑧2𝜎2𝜒/4 + 𝑡𝑑𝑧2𝜎2𝜒/4 =

∑︁
𝑘∈[𝑖 ]

4𝑘−1𝑡𝑑𝑧2𝜎2𝜒/4.

Finally, the claim follows since 𝑒′ = 𝑒 𝑗 which has variance

(𝜎 ′)2 = 𝜎2𝑗 = 𝑡𝑑𝑧2𝜎2𝜒/4 ·
∑︁
𝑘∈[ 𝑗 ]

4𝑘−1 = 4𝑗 − 1
12 𝑡𝑑𝑧2𝜎2𝜒 . □

A.2 Subring Embeddings and Dimension Reduction

In this section, we formally define the subring embedding (Eq. (3.1)) and dimension reduction (Eq. (3.2)) mappings
from Section 3. We then show some basic algebraic properties on these functions that will be useful in the subsequent
analysis.

Definition A.9 (Subring Embedding and Dimension Reduction). Let 𝑅𝑑1 = Z[𝑥]/(𝑥𝑑1 + 1) and 𝑅𝑑2 = Z[𝑥]/(𝑥𝑑2 + 1)
where 𝑑2 divides 𝑑1. Define the embedding function 𝜅𝑑1,𝑑2 : 𝑅𝑑2 → 𝑅𝑑1 to be the mapping∑︁

𝑖∈[0,𝑑2−1]
𝑓𝑖𝑥

𝑖 ∈ 𝑅𝑑2 ↦→
∑︁

𝑖∈[0,𝑑2−1]
𝑓𝑖𝑥

𝑖 ·𝑑1/𝑑2 ∈ 𝑅𝑑1 . (A.4)

We also define the dimension-reduction mapping 𝜅−1
𝑑1,𝑑2

: 𝑅𝑑1 → 𝑅𝑑2 to be the mapping∑︁
𝑖∈[0,𝑑1−1]

𝑓𝑖𝑥
𝑖 ∈ 𝑅𝑑2 ↦→

∑︁
𝑖∈[0,𝑑2−1]

𝑓𝑖 ·𝑑1/𝑑2𝑥
𝑖 ∈ 𝑅𝑑1 . (A.5)

When the dimensions 𝑑1, 𝑑2 are clear from context, we simply write 𝜅 and 𝜅−1 to denote 𝜅𝑑1,𝑑2 and 𝜅−1𝑑1,𝑑2
, respectively.

We extend 𝜅, 𝜅−1 to operate on vectors and matrices in a component-wise manner. For a modulus 𝑞 ∈ N, we define
𝜅 : 𝑅𝑑2,𝑞 → 𝑅𝑑1,𝑞 and 𝜅−1 : 𝑅𝑑1,𝑞 → 𝑅𝑑2,𝑞 in an analogous manner.
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LemmaA.10 (Subring Embedding). Let𝑅𝑑1 = Z[𝑥]/(𝑥𝑑1+1) and𝑅𝑑2 = Z[𝑥]/(𝑥𝑑2+1) where𝑑2 divides𝑑1. Let𝜅 : 𝑅𝑑2 →
𝑅𝑑1 and 𝜅

−1 : 𝑅𝑑1 → 𝑅𝑑2 be the subring embedding and dimension reduction functions from Definition A.9, respectively.
Then 𝜅 is an injective ring homomorphism (i.e., an embedding function). Specifically, the following properties hold:

• One-sided inverse: For all 𝑟 ∈ 𝑅𝑑2 , it holds that 𝜅−1 (𝜅 (𝑟 )) = 𝑟 . In particular, 𝜅 is injective.

• Linearity: For all 𝛼, 𝛽 ∈ Z and 𝑟, 𝑠 ∈ 𝑅𝑑2 , 𝜅 (𝛼𝑟 + 𝛽𝑠) = 𝛼𝜅 (𝑟 ) + 𝛽𝜅 (𝑠).

• Multiplicative homomorphism: For all 𝑟, 𝑠 ∈ 𝑅𝑑2 , 𝜅 (𝑟𝑠) = 𝜅 (𝑟 )𝜅 (𝑠).

• Scaling by rationals: For 𝛼 ∈ Q and 𝑟 ∈ 𝑅𝑑2 , 𝜅 (⌊𝛼𝑟⌉) = ⌊𝛼𝜅 (𝑟 )⌉, where the multiplication and rounding
operations are performed over the rationals.

Proof. The one-sided inverse, linearity, and scaling-by-rationals properties of 𝜅 follow immediately from the definition
of 𝜅 (Eq. (A.4)). It suffices to show the multiplicative property. We first show that this hold for products of monomials.
The claim then follows by linearity. Take any 𝑖, 𝑗 ∈ [0, 𝑑2 − 1]. Let 𝑐 = 0 if 𝑖 + 𝑗 < 𝑑2 and 𝑐 = 1 if 𝑖 + 𝑗 ≥ 𝑑2. Then,

𝜅
(
𝑥𝑖𝑥 𝑗

)
= 𝜅

(
(−1)𝑐𝑥𝑖+𝑗 mod 𝑑2 ) = (−1)𝑐𝑥 (𝑖+𝑗 mod 𝑑2 ) ·𝑑1/𝑑2 ∈ 𝑅𝑑1 .

Similarly,
𝜅 (𝑥𝑖 ) · 𝜅 (𝑥 𝑗 ) = 𝑥𝑖 ·𝑑1/𝑑2𝑥 𝑗 ·𝑑1/𝑑2 = (−1)𝑐𝑥 (𝑖+𝑗 mod 𝑑2 ) ·𝑑1/𝑑2 = 𝜅

(
𝑥𝑖𝑥 𝑗

)
. (A.6)

Next, take any 𝑠 =
∑

𝑗∈[0,𝑑−1] 𝑠 𝑗𝑥
𝑗 where 𝑠 𝑗 ∈ Z. By linearity and Eq. (A.6), we have

𝜅
(
𝑥𝑖𝑠

)
= 𝜅

©«
∑︁

𝑗∈[0,𝑑−1]
𝑠 𝑗𝑥

𝑖𝑥 𝑗ª®¬ =
∑︁

𝑗∈[0,𝑑−1]
𝑠 𝑗𝜅 (𝑥𝑖 )𝜅 (𝑥 𝑗 ) = 𝜅 (𝑥𝑖 )

∑︁
𝑗∈[0,𝑑−1]

𝜅 (𝑠 𝑗𝑥 𝑗 ) = 𝜅 (𝑥𝑖 )𝜅 (𝑠).

Finally, let 𝑟 =
∑

𝑗∈[0,𝑑−1] 𝑟 𝑗𝑥
𝑗 where 𝑟 𝑗 ∈ Z. Again by linearity, we have

𝜅 (𝑟𝑠) =
∑︁

𝑗∈[0,𝑑−1]
𝜅 (𝑟 𝑗𝑥 𝑗𝑠) =

∑︁
𝑗∈[0,𝑑−1]

𝜅 (𝑟 𝑗𝑥 𝑗 )𝜅 (𝑠) = 𝜅 (𝑟 ) · 𝜅 (𝑠). □

Lemma A.11 (Subring Projection). Suppose 𝑑1 = 2𝛿1 and 𝑑2 = 2𝛿2 for non-negative integers 𝑑1 ≥ 𝑑2. Let 𝑅𝑑1 =

Z[𝑥]/(𝑥𝑑1 + 1) and 𝑅𝑑2 = Z[𝑥]/(𝑥𝑑2 + 1) where 𝑑2 divides 𝑑1. Let 𝜈 = 𝛿1 − 𝛿2 and 𝜋𝜈 : 𝑅𝑑1 → 𝑅𝑑1 be the coefficient
projection map from Eq. (3.6). Let 𝜅 : 𝑅𝑑2 → 𝑅𝑑1 and 𝜅

−1 : 𝑅𝑑1 → 𝑅𝑑2 be the subring embedding and dimension reduction
mappings from Definition A.9. Then for all 𝑟 ∈ 𝑅𝑑1 , it follows that

𝜋𝜈 (𝑟 ) = 𝜅 (𝜅−1 (𝑟 ))

Moreover, the projection mapping 𝜋𝜈 satisfies the following properties:

• Linearity: For all 𝑟, 𝑠 ∈ 𝑅𝑑1 , it holds that 𝜋𝜈 (𝑟 + 𝑠) = 𝜋𝜈 (𝑟 ) + 𝜋𝜈 (𝑠).

• Projection: For all 𝑟 ∈ 𝑅𝑑2 , 𝜋𝜈 (𝜅 (𝑟 )) = 𝜅 (𝑟 ). In particular, this means that for all 𝑟 ∈ 𝑅𝑑1 , 𝜋𝜈 (𝜋𝜈 (𝑟 )) = 𝜋𝜈 (𝑟 ).
In addition, for all 𝑟 ∈ 𝑅𝑑2 and 𝑠 ∈ 𝑅𝑑1 , it holds that 𝜋𝜈 (𝜅 (𝑟 )𝑠) = 𝜅 (𝑟 )𝜋𝜈 (𝑠).

• Scaling by rationals: For 𝛼 ∈ Q and 𝑟 ∈ 𝑅𝑑1 , 𝜋𝜈 (⌊𝛼𝑟⌉) = ⌊𝛼𝜋𝜈 (𝑟 )⌉ where the multiplication and rounding are
performed over the rationals.

Proof. We first show that 𝜋𝜈 (𝑟 ) = 𝜅 (𝜅−1 (𝑟 )). Take any 𝑟 =
∑

𝑖∈[0,𝑑1−1] 𝑟𝑖𝑥
𝑖 ∈ 𝑅𝑑1 . Then,

𝜅 (𝜅−1 (𝑟 )) = 𝜅 ©«
∑︁

𝑖∈[0,𝑑2−1]
𝑟𝑖 · (𝑑1/𝑑2 )𝑥

𝑖ª®¬ =
∑︁

𝑖∈[0,𝑑2−1]
𝑟𝑖 · (𝑑1/𝑑2 )𝑥

𝑖 · (𝑑1/𝑑2 ) =
∑︁

𝑖∈[0,𝑑1−1]:2𝜈 |𝑖
𝑟𝑖𝑥

𝑖 = 𝜋𝜈 (𝑖),
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since 2𝜈 = 2𝛿1−𝛿2 = 𝑑1/𝑑2. Linearity of 𝜋𝜈 and the scaling-by-rationals property now follow by the corresponding
properties of 𝜅 (Lemma A.10) and the same properties of 𝜅−1 (immediate from the definition). It suffices to show that
𝜋𝜈 satisfies the projection property. First, take any 𝑟 ∈ 𝑅𝑑2 . Since 𝜅−1 (𝜅 (𝑟 )) = 𝑟 , we have

𝜋𝜈 (𝜅 (𝑟 )) = 𝜅 (𝜅−1 (𝜅 (𝑟 ))) = 𝜅 (𝑟 ).

For the additional property, take 𝑟 ∈ 𝑅𝑑2 and 𝑠 ∈ 𝑅𝑑1 . We start by showing that 𝜅−1 (𝜅 (𝑟 )𝑠) = 𝑟𝜅−1 (𝑠). Since this
equation is linear in both 𝑟 and 𝑠 , it suffices to prove the case where 𝑟 = 𝑥𝑖 and 𝑠 = 𝑥 𝑗 are monomials (and then appeal
to linearity of 𝜅−1). Indeed,

𝜅−1 (𝜅 (𝑟 )𝑠) = 𝜅−1
(
𝑥𝜈𝑖+𝑗

)
=

{
𝑥𝑖+𝑗/𝜈 if 𝜈 | 𝑗
0 otherwise

=

{
𝑟 · 𝑥 𝑗/𝜈 if 𝜈 | 𝑗
0 otherwise

= 𝑟𝜅−1 (𝑠).

Since 𝜅−1 (𝜅 (𝑟 )𝑠) = 𝑟𝜅−1 (𝑠), we have that

𝜅 (𝜅−1 (𝜅 (𝑟 )𝑠)) = 𝜅 (𝑟𝜅−1 (𝑠)).

Using the fact that 𝜋𝜈 (𝑟 ) = 𝜅 (𝜅−1 (𝑟 )) and linearity of 𝜅, we conclude that

𝜋𝜈 (𝜅 (𝑟 )𝑠) = 𝜅 (𝑟𝜅−1 (𝑠)) = 𝜅 (𝑟 )𝜅 (𝜅−1 (𝑠)) = 𝜅 (𝑟 )𝜋𝜈 (𝑠) . □

Ring packing. We now recall the definition of ring packing from Eq. (3.3). Here, we model the inputs as (arbitrary)
ring elements (rather than database records).

Definition A.12 (Ring Packing). Suppose 𝑑1 ≥ 𝑑2 where 𝑑2 divides 𝑑1. Let 𝑅𝑑1 = Z[𝑥]/(𝑥𝑑1 + 1) and 𝑅𝑑2 =

Z[𝑥]/(𝑥𝑑2+1). Let𝑘 = 𝑑1/𝑑2 and suppose 𝑟0, . . . , 𝑟𝑘−1 ∈ 𝑅𝑑2 . Thenwe define the ring packing functionΠ : 𝑅𝑘
𝑑2
→ 𝑅𝑑1 as

Π(𝑟0, . . . , 𝑟𝑘−1) B
∑︁

𝑖∈[0,𝑘−1]
𝑥𝑖 · 𝜅 (𝑟𝑖 ),

where 𝜅 : 𝑅𝑑2 → 𝑅𝑑1 is the subring embedding function from Definition A.9.

Lemma A.13 (Ring Packing Extraction). With the notation of Definition A.12, we have

𝜅−1 (𝑥−𝑡 · Π(𝑟0, . . . , 𝑟𝑘−1)) = 𝑟𝑡

for any 𝑟0, . . . , 𝑟𝑘−1 ∈ 𝑅𝑑2 and 𝑡 ∈ [0, 𝑘 − 1].

Proof. For 𝑖 ∈ [0, 𝑘 − 1], let 𝑟𝑖 =
∑

𝑗∈[0,𝑑2−1] 𝑥
𝑗𝑟𝑖, 𝑗 ∈ 𝑅𝑑2 where each 𝑟𝑖, 𝑗 ∈ Z. Then, we can write

Π(𝑟0, . . . , 𝑟𝑘−1) =
∑︁

𝑖∈[0,𝑘−1]
𝑥𝑖𝜅 (𝑟𝑖 ) =

∑︁
𝑖∈[0,𝑘−1]

∑︁
𝑗∈[0,𝑑2−1]

𝑟𝑖, 𝑗𝑥
𝑖+𝑘 𝑗 =

∑︁
𝑖∈[0,𝑑1−1]

𝑥𝑖𝑟𝑖 mod 𝑘,⌊𝑖/𝑘 ⌋ .

Let 𝑠 = 𝑥−𝑡 · Π(𝑟0, . . . , 𝑟𝑘−1) and write 𝑠 =
∑

𝑖∈[0,𝑑1−1] 𝑠𝑖 . Then we have

𝑥−𝑡 · Π(𝑟0, . . . , 𝑟𝑘−1) =
∑︁

𝑖∈[0,𝑑1−1]
𝑥𝑖−𝑡𝑟𝑖 mod 𝑘,⌊𝑖/𝑘 ⌋ =

∑︁
𝑖∈[0,𝑑1−1]

𝑥𝑖𝑠𝑖 .

In particular, this means 𝑠𝑖 = 𝑟𝑖+𝑡 mod 𝑘,⌊ (𝑖+𝑡 )/𝑘 ⌋ . Since 𝑡 ∈ [0, 𝑘 − 1], we have

𝜅−1 (𝑠) =
∑︁

𝑗∈[0,𝑑2−1]
𝑥 𝑗𝑠𝑘 𝑗 =

∑︁
𝑗∈[0,𝑑2−1]

𝑥 𝑗𝑟𝑡, 𝑗 = 𝑟𝑡 . □
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Repacking. Finally, to analyze the repacking step in the batch version of Respire (Construction 3.3 and Ap-
pendix D.1), we will rely on the following lemma:

Lemma A.14 (Repacking). Suppose 𝑑1 ≥ 𝑑2 ≥ 𝑑3 are powers of two, and let 𝑅𝑑1 = Z[𝑥]/(𝑥𝑑1 + 1), 𝑅𝑑2 = Z[𝑥]/(𝑥𝑑2 + 1),
and 𝑅𝑑3 = Z[𝑥]/(𝑥𝑑3 + 1). Then for any 𝑟0, . . . , 𝑟𝑑2/𝑑3−1 ∈ 𝑅𝑑3 ,∑︁

𝑖∈[0,𝑑2/𝑑3−1]
𝑥𝑖 · (𝑑1/𝑑2 )𝜅𝑑1,𝑑3 (𝑟𝑖 ) = 𝜅𝑑1,𝑑2

(
Π(𝑟0, . . . , 𝑟𝑑2/𝑑3−1)

)
,

where𝜅𝑑1,𝑑3 : 𝑅𝑑3 → 𝑅𝑑1 and𝜅𝑑1,𝑑2 : 𝑅𝑑2 → 𝑅𝑑1 are the subring embedding functions (Definition A.9) and Π : 𝑅𝑑2/𝑑3
𝑑3

→ 𝑅𝑑2
is the ring packing function (Definition A.12).

Proof. Let 𝜅𝑑2,𝑑3 : 𝑅𝑑3 → 𝑅𝑑2 be the subring embedding function from 𝑅𝑑3 to 𝑅𝑑2 . By construction, for all 𝑟 =∑
𝑖∈[0,𝑑3−1] 𝑟𝑖𝑥

𝑖 ∈ 𝑅𝑑3 , it follows that

𝜅𝑑1,𝑑3 (𝑟 ) =
∑︁

𝑖∈[0,𝑑3−1]
𝑟𝑖𝑥

𝑖 · (𝑑1/𝑑3 ) =
∑︁

𝑖∈[0,𝑑3−1]
𝑟𝑖𝑥

𝑖 · (𝑑1/𝑑2 ) (𝑑2/𝑑1 ) = 𝜅𝑑1,𝑑2 (𝜅𝑑2,𝑑3 (𝑟 )) . (A.7)

Now, take any 𝑟0, . . . , 𝑟𝑑2/𝑑3−1 ∈ 𝑅𝑑3 . Then,∑︁
𝑖∈[0,𝑑2/𝑑3−1]

𝑥𝑖 · (𝑑1/𝑑2 )𝜅𝑑1,𝑑3 (𝑟𝑖 ) =
∑︁

𝑖∈[0,𝑑2/𝑑3−1]
𝜅𝑑1,𝑑2 (𝑥𝑖 ) · 𝜅𝑑1,𝑑2 (𝜅𝑑2,𝑑3 (𝑟𝑖 )) by Eq. (A.7)

= 𝜅𝑑1,𝑑2
©«

∑︁
𝑖∈[0,𝑑2/𝑑3−1]

𝑥𝑖 · 𝜅𝑑2,𝑑3 (𝑟𝑖 )
ª®¬ by Lemma A.10

= 𝜅𝑑1,𝑑2
(
Π(𝑟0, . . . , 𝑟𝑑2/𝑑3−1)

)
. by Definition A.12. □

B Query Compression

In this section, we give the formal description of the query packing algorithm used in Respire (i.e., the algorithms
in Box 2). The approach we take is a combination of the corresponding procedures in [ACLS18, CCR19] (for packing
multiple scalar RLWE encodings into a single RLWE encoding) and in [CCR19, MW22a] (for packing GSW encodings
into RLWE encodings).

Coefficient packing. We start by describing the coefficient packing procedure adapted from [ACLS18, CCR19].
As a high level, the coefficient packing procedure from [ACLS18, CCR19] takes an RLWE encoding of a polynomial
𝑓 =

∑
𝑖∈[0,𝑑 ] 𝑓𝑖𝑥

𝑖 ∈ 𝑅𝑑,𝑞 and expands it into 𝑑 RLWE encodings of its coefficients 𝑓0, . . . , 𝑓𝑑−1 ∈ Z𝑞 . Our construction
incorporates the dimension-reduction approach described in Section 3 to further reduce the query size. Specifically,
if we only need to pack ℎ values into a single RLWE encoding, we would embed the ℎ values into the coefficients
of a polynomial that lives in a subring of 𝑅𝑑,𝑞 . The size of the packed encoding then scales with ℎ (rather than the
ring dimension 𝑑). In exchange for the shorter queries, our approach increases the noise by a modest amount (the
variance is higher by a factor of (𝑑/ℎ)2) and a small increase in the size of the public parameters (i.e., we need to
communicate log𝑑 key-switching matrices as opposed to logℎ key-switching matrices). Practically speaking, the
public parameter size difference is not significant (at most 22% for the scenarios considered in Section 4). However,
the additional noise growth does introduce some challenges to ensure correctness. To compensate, we have to choose
a smaller plaintext modulus (e.g. 𝑝 = 16 instead of the 𝑝 = 256 used in the Spiral system [MW22a]), which in turn
decreases throughput (for large databases). We now describe the approach.

Construction B.1 (Coefficient Packing). Let 𝜆 be a security parameter and 𝑑1 = 𝑑1 (𝜆), 𝑞 = 𝑞(𝜆) be lattice parameters
where 𝑑1 = 2𝛿1 is a power of two. We require that 𝑞 = 1 mod 2. Let 𝑅𝑑1 = Z𝑞 [𝑥]/(𝑥𝑑1 + 1). Let 𝜒 = 𝜒 (𝜆) be an error
distribution over 𝑅𝑑1 and 𝑧 ∈ N be a decomposition base. Let (AutomorphSetup,Automorph) be the algorithms from
Construction A.4 with parameters (𝑑1, 𝑞, 𝜒, 𝑧). The coefficient packing procedure consists of a tuple of algorithms
(CoeffPackSetup,CoeffPack,CoeffUnpack) defined as follows:
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• CoeffPackSetup(1𝜆, s): On input the security parameter 𝜆 and the secret key s ∈ 𝑅2
𝑑1
, the setup algorithm samples

W𝑗 ← AutomorphSetup(1𝜆, s, 𝜏𝑑/2𝑗+1)

for each 𝑗 ∈ [0, 𝛿1 − 1]. It outputs the coefficient packing parameters ppcoeff = (W0, . . . ,W𝛿1−1).

• CoeffPack(s, (𝑓0, . . . , 𝑓𝑑2−1)): On input the secret key s = [−𝑠 | 1]T ∈ 𝑅2𝑑1 and a tuple of coefficients 𝑓0, . . . , 𝑓𝑑2−1 ∈
Z𝑞 where 𝑑2 = 2𝛿2 ≤ 𝑑1 for some non-negative integer 𝛿2, the packing algorithm defines the following quan-
tities:6

– Let 𝑅𝑑2 = Z𝑞 [𝑥]/(𝑥𝑑2 + 1) and 𝜈 = 𝛿1 − 𝛿2. Let 𝑓 (𝑥) =
∑

𝑖∈[0,𝑑2−1] 𝑓𝑖𝑥
𝑖 ∈ 𝑅𝑑2 .

– Let 𝜅 : 𝑅𝑑2 → 𝑅𝑑1 be the subring embedding and 𝜅−1 : 𝑅𝑑1 → 𝑅𝑑2 be the dimension-reduction mapping
from Definition A.9.

The packing algorithm now samples 𝑎 r← 𝑅𝑑1 and 𝑒 ← 𝜒 . It computes the encoding

c =
[
𝑐1
𝑐2

]
=

[
𝑎

𝑠𝑎 + 𝑒 + 𝜅 (𝑓 )

]
∈ 𝑅2

𝑑1
.

The packing algorithm computes 𝑐′2 = 𝜅−1 (𝑐2) ∈ 𝑅𝑑2 and outputs (𝑐1, 𝑐′2). Note that the component 𝑐1 is random
and can be compressed by deriving it from a PRG (and appealing to the random oracle heuristic).

• CoeffUnpack(ppcoeff, (𝑐1, 𝑐′2)): On input the public parameters ppcoeff = (W0, . . . ,W𝛿1−1) and a compressed
encoding (𝑐1, 𝑐′2) where 𝑑2 ∈ N, 𝑐1 ∈ 𝑅𝑑1 , and 𝑐′2 ∈ 𝑅𝑑2 , the unpacking algorithm proceeds as follows

– Let 𝜈 = 𝛿1 − 𝛿2, where 𝛿2 = log𝑑2. Initialize c(0)0 = 2−𝛿1 · [𝑐1 | 𝜅 (𝑐′2)]T ∈ 𝑅2𝑑1 , where 𝜅 : 𝑅𝑑2 → 𝑅𝑑1 is the
subring embedding.

– Then, for each 𝑖 ∈ [𝜈], compute c(𝑖 )0 = c(𝑖−1)0 + Automorph
(
W𝑖−1, c

(𝑖−1)
0 , 𝜏𝑑/2𝑖−1+1

)
.

– For each 𝑖 ∈ [𝜈 + 1, 𝛿1] and each 𝑗 ∈ [0, 2𝑖−𝜈 −1], let c′𝑖, 𝑗 = Automorph
(
W𝑖−1, c

(𝑖−1)
𝑗

, 𝜏𝑑/2𝑖−1+1
)
and compute

c(𝑖 )2𝑗 = c(𝑖−1)
𝑗
+ c′𝑖, 𝑗

c(𝑖 )2𝑗+1 = 𝑥
−2𝑖−1 ·

(
c(𝑖−1)
𝑗
− c′𝑖, 𝑗

)
.

For a bit-length 𝑖 and an integer 𝑗 ∈ [0, 2𝑖 − 1] with binary representation 𝑏𝑖𝑏𝑖−1 · · ·𝑏1, let rev𝑖 ( 𝑗) ∈ [0, 2𝑖 − 1]
be the bit-reversal function that outputs the integer whose binary representation is the string 𝑏1𝑏2 · · ·𝑏𝑖 (i.e.,
the bits of 𝑗 in reverse order). For each 𝑖 ∈ [0, 𝑑2 − 1], let ĉ𝑖 = c(𝛿1 )rev𝛿2 (𝑖 )

. The unpacking algorithm outputs the
encodings ĉ0, . . . , ĉ𝑑2−1.

Theorem B.2 (Coefficient Packing). Let 𝜆 be a security parameter and 𝑑1, 𝛿1, 𝑞, 𝜒, 𝑧 be the parameters in Construc-
tion A.7. Suppose 𝜒 is subgaussian with variance 𝜎2𝜒 . Let s = [−𝑠 | 1]T ∈ 𝑅2𝑑1 be a secret key. Take any 𝑑2 ≤ 𝑑1 where
𝑑2 = 2𝛿2 for some non-negative integer 𝛿2 and any collection of coefficients 𝑓0, . . . , 𝑓𝑑2−1 ∈ Z𝑞 . Then, sample the following:

• ppcoeff ← CoeffPackSetup(1𝜆, s);

• (𝑐1, 𝑐′2) ← CoeffPack(s, (𝑓0, . . . , 𝑓𝑑2−1));

• (ĉ0, . . . , ĉ𝑑2−1) ← CoeffUnpack
(
ppcoeff, (𝑐1, 𝑐′2)

)
.

Then, for all 𝑗 ∈ [0, 𝑑2 − 1], sTĉ𝑗 = 𝑓𝑗 + 𝑒 𝑗 , where 𝑒 𝑗 is subgaussian with variance �̂�2𝑗 = 𝜎
2
𝜒

(
1 + 𝑡𝑑31𝑧2/12

)
.

6Note that the assumption that 𝑑2 is a power of two is not necessary (Remark B.3), and it is possible to generically dispense with this restriction
by padding. However, assuming 𝑑2 is a power of two simplifies the description and analysis considerably. We make this simplifying assumption
here to streamline the exposition.

36



Proof. Let ppcoeff ← CoeffPackSetup(1𝜆, s) and (𝑐1, 𝑐′2) ← CoeffPack(s, (𝑓0, . . . , 𝑓𝑑2 − 1)). By definition, ppproj =
(W0, . . . ,Wℓ−1) whereW𝑗 ← AutomorphSetup(1𝜆, s, 𝜏𝑑/2𝑗+1). Moreover, 𝑐′2 = 𝜅−1 (𝑐2) = 𝜅−1 (𝑠𝑎 + 𝑒 +𝜅 (𝑓 )). Consider
the encodings c(𝑖 )0 for 𝑖 ∈ [0, 𝜈] computed by CoeffUnpack. We show inductively that these encodings satisfy

sTc(𝑖 )0 = 2−𝛿1+𝑖𝜋𝑖 (𝑢) + 𝑒𝑖 , (B.1)

where 𝑒0 = 0, 𝑒𝑖 is subgaussian with variance 𝜎2𝑖 =
∑

𝑘∈[𝑖 ] 4𝑘−1𝑡𝑑1𝑧2𝜎2𝜒/4, 𝜋𝑖 is the projection map from Eq. (3.6), and

𝑢 = −𝑠𝑎 + 𝜋𝜈 (𝑠𝑎 + 𝑒 + 𝜅 (𝑓 )) . (B.2)

We proceed by induction on 𝑖:
• Consider 𝑖 = 0. By definition,

sTc(0)0 = 2−𝛿1 (−𝑠𝑐1 + 𝜅 (𝑐′2)) = 2−𝛿1 (−𝑠𝑎 + 𝜅 (𝜅−1 (𝑠𝑎 + 𝑒 + 𝜅 (𝑓 ))))
= 2−𝛿1 (−𝑠𝑎 + 𝜋𝜈 (𝑠𝑎 + 𝑒 + 𝜅 (𝑓 ))) by Lemma A.11
= 2−𝛿1𝜋0 (𝑢) + 𝑒0,

since 𝑒0 = 0, 𝜋0 (𝑟 ) = 𝑟 for all 𝑟 ∈ 𝑅𝑑1 , and the definition of 𝑢 from Eq. (B.2).

• For the inductive step, let c′𝑖 = Automorph(W𝑖 , c
(𝑖 )
0 , 𝜏𝑑/2𝑖+1). By Theorem A.5 and the inductive hypothesis

(Eq. (B.1)),
sTc′𝑖 = 𝜏𝑑/2𝑖+1

(
sTc(𝑖 )0

)
+ 𝑒𝑖+1 = 𝜏𝑑/2𝑖+1

(
2−𝛿1+𝑖𝜋𝑖 (𝑢) + 𝑒𝑖

)
+ 𝑒𝑖+1,

where 𝑒𝑖+1 is subgaussian with variance 𝑡𝑑1𝑧2𝜎2𝜒/4. Since c𝑖+1 = c𝑖 + c′𝑖 , and appealing to Lemma A.6, we have

sTc(𝑖+1)0 = sTc(𝑖 )0 + s
Tc′𝑖

= 2−𝛿1+𝑖
(
𝜋𝑖 (𝑢) + 𝜏𝑑/2𝑖+1 (𝜋𝑖 (𝑢)

)
+ 𝑒𝑖 + 𝜏𝑑/2𝑖+1 (𝑒𝑖 ) + 𝑒𝑖+1

= 2−𝛿1+𝑖+1𝜋𝑖+1 (𝑢) + 𝑒𝑖 + 𝜏𝑑/2𝑖+1 (𝑒𝑖 ) + 𝑒𝑖+1.

Let 𝑒𝑖+1 B 𝑒𝑖+𝜏𝑑/2𝑖+1 (𝑒𝑖 )+𝑒𝑖+1. Since 𝑒𝑖 is subgaussianwith variance𝜎2𝑖 and appealing to the independence heuris-
tic (to argue that the key-switching error 𝑒𝑖+1 is independent of 𝑒𝑖 ), we have that 𝑒𝑖+1 is subgaussian with variance

𝜎2𝑖+1 = 4𝜎2𝑖 + 𝑡𝑑1𝑧2𝜎2𝜒/4 = 4 ·
∑︁

𝑘∈[𝑖−1]
4𝑘−1𝑡𝑑1𝑧2𝜎2𝜒/4 + 𝑡𝑑1𝑧2𝜎2𝜒/4 =

∑︁
𝑘∈[𝑖 ]

4𝑘−1𝑡𝑑1𝑧2𝜎2𝜒/4. (B.3)

Thus, by induction on 𝑖 , we conclude that sTc(𝜈 )0 = 2−𝛿1+𝜈𝜋𝜈 (𝑢) + 𝑒𝜈 . Using the definition of 𝑢 from Eq. (B.2) and
Lemma A.11, we have

𝜋𝜈 (𝑢) = 𝜋𝜈 (−𝑠𝑎) + 𝜋𝜈 (𝜋𝜈 (𝑠𝑎 + 𝑒 + 𝜅 (𝑓 ))) = 𝜋𝜈 (𝜅 (𝑓 ) + 𝑒).
This means that

sTc(𝜈 )0 = 2−𝛿1+𝜈𝜋𝜈
(
𝜅 (𝑓 ) + 𝑒

)
+ 𝑒𝜈 . (B.4)

For each 𝑖 ∈ [𝜈, 𝛿1] and 𝑗 ∈ [0, 2𝑖−𝜈 − 1], define

𝑤𝑖, 𝑗 B 𝑥−2
𝜈 ·rev𝑖−𝜈 ( 𝑗 ) ·

(
𝜅 (𝑓 ) + 𝑒

)
(B.5)

We now show that for each 𝑖 ∈ [𝜈, 𝛿1] and 𝑗 ∈ [0, 2𝑖−𝜈 − 1],

sTc(𝑖 )
𝑗

= 2−𝛿1+𝑖𝜋𝑖 (𝑤𝑖, 𝑗 ) + 𝑒𝑖 , (B.6)

where 𝑒𝑖 is subgaussian with variance 𝜎2𝑖 =
∑

𝑘∈[𝑖 ] 4𝑘−1𝑡𝑑1𝑧2𝜎2𝜒/4. Again, we proceed by induction on 𝑖 . The base
case where 𝑖 = 𝜈 (and 𝑗 = 0) follows from Eq. (B.4). Consider the inductive step. Take any 𝑗 ∈ [0, 2𝑖−𝜈 − 1] and let
c′𝑖, 𝑗 = Automorph

(
W𝑖 , c

(𝑖 )
𝑗
, 𝜏𝑑/2𝑖+1

)
. By Theorem A.5 and the inductive hypothesis (Eq. (B.6)),

sTc′𝑖, 𝑗 = 𝜏𝑑/2𝑖+1
(
sTc(𝑖 )

𝑗

)
+ 𝑒𝑖+1 = 𝜏𝑑/2𝑖+1

(
2−𝛿1+𝑖𝜋𝑖 (𝑤𝑖, 𝑗 ) + 𝑒𝑖

)
+ 𝑒𝑖+1,

where 𝑒𝑖+1 is subgaussian with variance 𝑡𝑑1𝑧2𝜎2𝜒/4. We now consider the encodings c(𝑖+1)2𝑗 and c(𝑖+1)2𝑗+1 :
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• First, consider c(𝑖+1)2𝑗 . By definition of the bit-reversal function, we have that rev𝑖−𝜈 ( 𝑗) = rev𝑖+1−𝜈 (2 𝑗). In
particular, this means that

𝑤𝑖+1,2𝑗 = 𝑥
−2𝜈 ·rev𝑖+1−𝜈 (2𝑗 ) ·

(
𝜅 (𝑓 ) + 𝑒

)
= 𝑥−2

𝜈 ·rev𝑖−𝜈 ( 𝑗 ) ·
(
𝜅 (𝑓 ) + 𝑒

)
= 𝑤𝑖, 𝑗 .

Now we can write

sTc(𝑖+1)2𝑗 = sTc(𝑖 )
𝑗
+ sTc′𝑖, 𝑗

= 2−𝛿1+𝑖
(
𝜋𝑖 (𝑤𝑖, 𝑗 ) + 𝜏𝑑/2𝑖+1 (𝜋𝑖 (𝑤𝑖, 𝑗 ))

)
+ 𝑒𝑖 + 𝜏𝑑/2𝑖+1 (𝑒𝑖 ) + 𝑒𝑖+1

= 2−𝛿1+𝑖+1𝜋𝑖+1 (𝑤𝑖, 𝑗 ) + 𝑒𝑖+1
= 2−𝛿1+𝑖+1𝜋𝑖+1 (𝑤𝑖+1,2𝑗 ) + 𝑒𝑖+1.

where 𝑒𝑖+1 = 𝑒𝑖 + 𝜏𝑑/2𝑖+1 (𝑒𝑖 ) + 𝑒𝑖+1. Under the independence heuristic (applied to 𝑒𝑖 and 𝑒𝑖+1), the variance of
𝑒𝑖+1 satisfies the desired relation via the same calculation as Eq. (B.3).

• Next, consider c(𝑖+1)2𝑗+1 . In this case, by definition of the bit-reversal function, rev𝑖+1−𝜈 (2 𝑗 + 1) = 2𝑖−𝜈 + rev𝑖−𝜈 ( 𝑗).
This means

𝑤𝑖+1,2𝑗+1 = 𝑥
−2𝜈 ·rev𝑖+1−𝜈 (2𝑗+1) ·

(
𝜅 (𝑓 ) + 𝑒

)
= 𝑥−2

𝑖

𝑤𝑖, 𝑗 .

Now we can write

sTc(𝑖+1)2𝑗+1 = 𝑥−2
𝑖 (
sTc(𝑖 )

𝑗
− sTc′𝑖, 𝑗

)
= 𝑥−2

𝑖 (2−𝛿1+𝑖 (𝜋𝑖 (𝑤𝑖, 𝑗 ) − 𝜏𝑑/2𝑖+1 (𝜋𝑖 (𝑤𝑖, 𝑗 ))
)
+ 𝑒𝑖 − 𝜏𝑑/2𝑖+1 (𝑒𝑖 ) + 𝑒𝑖+1

)
= 2−𝛿1+𝑖+1𝜋𝑖+1

(
𝑤𝑖, 𝑗 · 𝑥−2

𝑖 ) + 𝑒𝑖+1
= 2−𝛿1+𝑖+1𝜋𝑖+1 (𝑤𝑖+1,2𝑗+1) + 𝑒𝑖+1,

where 𝑒𝑖+1 = 𝑥−2
𝑖 (
𝑒𝑖 + 𝜏𝑑/2𝑖+1 (𝑒𝑖 ) + 𝑒𝑖+1

)
. Under the independence heuristic (applied to 𝑒𝑖 and 𝑒𝑖+1), the variance

of 𝑒𝑖+1 satisfies the desired relation via the same calculation as Eq. (B.3). Note that multiplying a polynomial by
𝑥−2

𝑖 corresponds to applying a (nega)-cyclic rotation to the coefficients of the polynomial and does not change
the magnitude of any of the coefficients.

By induction on 𝑖 , Eq. (B.6) holds for 𝑖 = 𝛿1 and all 𝑗 ∈ [0, 𝑑2 − 1]. Thus, for all 𝑗 ∈ [0, 𝑑2 − 1], we have that

sTc(𝛿1 )
𝑗

= 𝜋𝛿1 (𝑤𝛿1, 𝑗 ) + 𝑒𝛿1 .

By Eq. (B.5) and the fact that 𝛿1 − 𝜈 = 𝛿2, we have

𝜋𝛿1 (𝑤𝛿1, 𝑗 ) = 𝜋𝛿1
(
𝑥−2

𝜈 ·rev𝛿1−𝜈 ( 𝑗 ) ·
(
𝜅 (𝑓 ) + 𝑒

) )
= 𝑓rev𝛿2 ( 𝑗 ) + 𝜋𝛿1

(
𝑥−2

𝜈 ·rev𝛿2 ( 𝑗 ) · 𝑒
)
.

Since rev𝛿2 (rev𝛿2 ( 𝑗)) = 𝑗 , we have

sTĉ𝑗 = sTc(𝛿1 )rev𝛿2 ( 𝑗 )
= 𝑓𝑗 + 𝜋𝛿1

(
𝑥−2

𝜈 · 𝑗 · 𝑒
)
+ 𝑒𝛿1 = 𝑓𝑗 + 𝑒 𝑗 ,

where 𝑒 𝑗 = 𝜋𝛿1
(
𝑥−2

𝜈 · 𝑗 ·𝑒
)
+𝑒𝛿1 . Since 𝑒 is sampled independently of 𝑒𝛿1 , we conclude that 𝑒 𝑗 is subgaussian with variance

�̂�2𝑗 = 𝜎
2
𝜒 +

∑︁
𝑘∈[𝛿1 ]

4𝑘−1𝑡𝑑1𝑧2𝜎2𝜒/4 = 𝜎2𝜒 + 4𝛿1𝑡𝑑1𝑧2𝜎2𝜒/12 = 𝜎2𝜒
(
1 + 𝑡𝑑31𝑧2/12

)
. □

Remark B.3 (Packing an Arbitrary Number of Coefficients). As defined, Construction B.1 assumes that the packing
algorithm CoeffPack takes 𝑑2 coefficients (𝑓0, . . . , 𝑓𝑑2−1), where 𝑑2 is a power of two. It is straightforward to generalize
CoeffPack to take in an arbitrary number of coefficients. One approach is to simply pad the input to the nearest
power of two, which incurs at most a 2× overhead. In fact, it is possible to avoid padding altogether by having
CoeffPack embed the coefficients (𝑓0, . . . , 𝑓𝑑2−1) into the polynomial 𝑓 in bit-reversed order (rather than deferring the
bit-reversal to the very end). With this optimization, we avoid the need to expand “unused” coefficients. This is the
approach we take in our implementation. In the subsequent description, we will assume that the coefficient-packing
algorithm CoeffPack can take an arbitrary number of inputs (up to the ring dimension 𝑑1).
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Packing GSW encodings. The second ingredient we use is the approach for packing GSW encodings into a small
number of RLWE encodings (which can in turn be further packed using the coefficient packing approach described
above). Here, we recall the approach from [CCR19, MW22a]:

Construction B.4 (RLWE-to-GSW [CCR19, MW22a, adapted]). Let 𝜆 be a security parameter and 𝑑 = 𝑑 (𝜆), 𝑞 = 𝑞(𝜆)
be lattice parameters where 𝑑 is a power of two. Let 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1) and 𝜒 = 𝜒 (𝜆) be an error distribution over
𝑅𝑑 . The GSW packing algorithm is parameterized by two decomposition bases: a conversion base 𝑧conv ∈ N and the
decomposition base 𝑧GSW ∈ N for the resulting GSW encodings. Let 𝑡GSW = ⌊log𝑧GSW 𝑞⌋ + 1 and 𝑡conv = ⌊log𝑧conv 𝑞⌋ + 1.
We define the algorithms (RLWEToGSWSetup,RLWEToGSW) as follows:

• RLWEToGSWSetup(1𝜆, s): On input the security parameter 𝜆 and the secret key s = [−𝑠 | 1]T ∈ 𝑅2
𝑑,𝑞

, the setup
algorithm samples a r← 𝑅

2𝑡conv
𝑑,𝑞

and e← 𝜒2𝑡conv and output the conversion parameters

ppconv = V =

[
aT

𝑠aT + eT − 𝑠 (sT ⊗ gT
𝑧conv
)

]
∈ 𝑅2×2𝑡conv

𝑑,𝑞
.

• RLWEToGSW(ppconv, (c1, . . . , c𝑡GSW )): On input the conversion parameters ppconv = V ∈ 𝑅2×2𝑡conv
𝑑,𝑞

, and RLWE
encodings c1, . . . , c𝑡GSW ∈ 𝑅2𝑑,𝑞 , let ĉ = [c1 | · · · | c𝑡GSW ] ∈ 𝑅

2×𝑡GSW
𝑑,𝑞

and output the GSW encoding

C = [Vg−1𝑧conv
(ĉ) | ĉ] ∈ 𝑅2×2𝑡GSW

𝑑,𝑞
.

Theorem B.5 (RLWE-to-GSW [CCR19, MW22a, adapted]). Let 𝜆 be a security parameter and 𝑑, 𝑞, 𝜒, 𝑧conv, 𝑧GSW be the
parameters from Construction B.4. Suppose 𝜒 is subgaussian with variance 𝜎2𝜒 . Let s = [−𝑠, 1]T be a secret key. For each
𝑖 ∈ [𝑡GSW], let c𝑖 ∈ 𝑅2𝑑,𝑞 be an encoding of 𝜇𝑧𝑖−1GSW with error 𝑒𝑖 (i.e., sTc𝑖 = 𝜇𝑧𝑖−1GSW + 𝑒𝑖 ). Suppose each 𝑒𝑖 is subgaussian
with variance 𝜎2𝑒 . Then, sample ppconv ← RLWEToGSWSetup(1𝜆, s) and C← RLWEToGSW(ppconv, (c1, . . . , c𝑡GSW )).
Then C is a GSW encoding of 𝜇 with respect to s with error e (i.e., sTC = sTG2,𝑧GSW + eT) where the components of e are
subgaussian with variance 𝑑𝜎2𝑒 ∥s∥2∞ + 𝑡conv𝑑𝑧2conv𝜎2𝜒/2.

Query packing. The query packing algorithm in Respire is obtained by composing the coefficient expansion algo-
rithm with the RLWE-to-GSW conversion algorithms. To have finer control over the noise, we allow for two separate
bases for coefficient packing: one for packing/expanding the RLWE ciphertexts, and one for packing/expanding the
GSW ciphertexts. We give the full description of the algorithms from Box 2 below:

Construction B.6 (Query Packing). Let 𝜆 be a security parameter and 𝑑1 = 𝑑1 (𝜆), 𝑞 = 𝑞(𝜆) be lattice parameters
where 𝑑1 = 2𝛿1 is a power of two. We require that 𝑞 = 1 mod 2. Let 𝑅𝑑1 = Z[𝑥]/(𝑥𝑑1 +1). Let 𝜒 be an error distribution
over 𝑅𝑑1 . The main query packing algorithm uses the coefficient packing and RLWE-to-GSW conversion algorithms
from Constructions B.1 and B.4. The scheme is additionally parameterized by four decomposition bases: 𝑧coeff,RLWE for
expanding the RLWE encodings, 𝑧coeff,GSW for expanding the GSW encodings, 𝑧conv for the RLWE-to-GSW conversion,
and 𝑧GSW for the GSW decomposition base.

• Let (CoeffPackSetupRLWE,CoeffPackRLWE,CoeffUnpackRLWE) be the coefficient packing algorithms from Con-
struction B.1 instantiated with parameters (𝑑1, 𝑞, 𝜒, 𝑧coeff,RLWE).

• Let (CoeffPackSetupGSW,CoeffPackGSW,CoeffUnpackGSW) be the coefficient packing algorithms from Con-
struction B.1 instantiated with parameters (𝑑1, 𝑞, 𝜒, 𝑧coeff,GSW).

• Let (RLWEToGSWSetup,RLWEToGSW) be the RLWE-to-GSW conversion algorithms from Construction B.4
instantiated with parameters (𝑑1, 𝑞, 𝜒, 𝑧conv, 𝑧GSW). Let 𝑡GSW = ⌊log𝑧GSW 𝑞⌋ + 1.

We now define the algorithms (QueryPackSetup,QueryPack,QueryUnpack):

• QueryPackSetup(1𝜆, s): On input a security parameter 𝜆 and the secret key s ∈ 𝑅2
𝑑,𝑞

, the setup algorithm samples
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– ppcoeff,RLWE ← CoeffPackSetupRLWE (1𝜆, s);
– ppcoeff,GSW ← CoeffPackSetupGSW (1𝜆, s); and
– ppconv ← RLWEToGSWSetup(1𝜆, s).

It outputs the query packing parameters ppqpk = (ppcoeff,RLWE, ppcoeff,GSW, ppconv).

• QueryPack(s, v,µ): On input the secret key s ∈ 𝑅2
𝑑,𝑞

, a collection of values v = (𝑣1, . . . , 𝑣𝑘 ) ∈ Z𝑘𝑞 where 𝑘 ≤ 𝑑1,
and µ = (𝜇1, . . . , 𝜇ℓ ) ∈ {0, 1}ℓ where ℓ𝑡GSW ≤ 𝑑1, the query packing algorithm computes

encRLWE ← CoeffPackRLWE (s, (𝑣1, . . . , 𝑣𝑘 ))
encGSW ← CoeffPackGSW (s, (𝜇1, 𝜇1𝑧GSW, . . . , 𝜇1𝑧𝑡GSW−1GSW , . . . , 𝜇ℓ , 𝜇ℓ𝑧GSW, . . . , 𝜇ℓ𝑧

𝑡GSW−1
GSW )).

It outputs the packed encoding enc = (encRLWE, encGSW).

• QueryUnpack(ppqpk, enc): On input the packing key ppqpk = (ppcoeff,RLWE, ppcoeff,GSW, ppconv) and the packed
encoding enc = (encRLWE, encGSW), the unpacking algorithm computes

(c1, . . . , c𝑘 ) ← CoeffUnpackRLWE (ppcoeff,RLWE, encRLWE)
(ĉ1, . . . , ĉℓ𝑧GSW ) ← CoeffUnpackGSW (ppcoeff,GSW, encGSW).

Then, for each 𝑖 ∈ [ℓ], it computes C𝑖 ← RLWEToGSW(ppconv, (ĉ(𝑖−1) ·𝑧GSW+1, . . . , ĉ𝑖 ·𝑧GSW )). It outputs the
RLWE encodings (c1, . . . , c𝑘 ) together with the GSW encodings (C1, . . . ,Cℓ ).

Theorem B.7 (Query Packing). Let s ∈ 𝑅2
𝑑,𝑞

be a secret key. Let 𝑧coeff,RLWE, 𝑧coeff,GSW, 𝑧conv, 𝑧GSW ∈ N be the decom-
position bases from Construction B.6. Let

𝑡coeff,RLWE = ⌊log𝑧coeff,RLWE
𝑞⌋+1 , 𝑡coeff,GSW = ⌊log𝑧coeff,GSW 𝑞⌋+1 , 𝑡conv = ⌊log𝑧conv 𝑞⌋+1 , 𝑡GSW = ⌊log𝑧GSW 𝑞⌋+1

be the corresponding lengths. Suppose the error distribution 𝜒 is subgaussian with variance 𝜎2𝜒 . Take any vector v ∈ Z𝑘𝑞
and µ ∈ {0, 1}ℓ . Suppose ppqpk ←QueryPackSetup(𝑠), enc←QueryPack(𝑠, v,µ), and

(
(c1, . . . , c𝑘 ), (C1, . . . ,Cℓ )

)
←

QueryUnpack(ppqpk, enc). Then, the following hold:

• For all 𝑖 ∈ [𝑘], c𝑖 is an RLWE encoding of 𝑣𝑖 with respect to secret key 𝑠 and error 𝑒𝑖 .

• For all 𝑗 ∈ [ℓ], C𝑗 is a GSW encoding of 𝜇 𝑗 with respect to secret key 𝑠 and error e𝑗 .

Under the independence heuristic, the errors 𝑒1, . . . , 𝑒𝑘 are subgaussianwith variance𝜎21 = 𝜎2𝜒 (1+𝑡coeff,RLWE𝑑
3
1𝑧

2
coeff,RLWE/12),

and the components of e1, . . . , eℓ are subgaussian with variance 𝜎22 = 𝜎2𝜒 (𝑑1∥𝑠 ∥2∞ (1 + 𝑡coeff,GSW𝑑31𝑧2coeff,GSW/12) +
𝑡conv𝑑1𝑧

2
conv/2).

Proof. Let (c1, . . . , c𝑘 ) and (ĉ1, . . . , ĉℓ𝑧GSW ) be the results of CoeffUnpack in running QueryUnpack. By Theorem B.2,
the following hold:

• For each 𝑖 ∈ [𝑘], c𝑖 is an RLWE encoding of 𝑣𝑖 with error 𝑒𝑖 where 𝑒𝑖 is subgaussian with variance 𝜎2𝜒
(
1 +

𝑡coeff,RLWE𝑑
3
1𝑧

2
coeff,RLWE/12

)
.

• For each 𝑖 ∈ [ℓ𝑡GSW], the tuple (ĉ(𝑖−1) ·𝑧GSW+1, . . . , ĉ𝑖 ·𝑧GSW ) is an RLWE encoding of
(
𝜇𝑖 · 𝑧0GSW, . . . , 𝜇𝑖 · 𝑧

𝑡GSW−1
GSW

)
,

where the error in each encoding is subgaussian with variance 𝜎2𝜒
(
1 + 𝑡coeff,GSW𝑑31𝑧2coeff,GSW/12

)
.

By Theorem B.5, we know that for each 𝑖 ∈ [ℓ], C𝑖 is a GSW encoding of 𝜇𝑖 with error e𝑖 and the components of
e𝑖 are subgaussian with variance 𝜎2𝜒

(
𝑑1∥s∥2∞ (1 + 𝑡coeff,GSW𝑑31𝑧2coeff,GSW/12) + 𝑡conv𝑑1𝑧

2
conv/2

)
. □

Remark B.8 (Different Decomposition Bases for Query Unpacking). TheQueryUnpack algorithm in Construction B.6
uses two different decomposition bases 𝑧coeff,RLWE and 𝑧coeff,GSW to expand the packed encoding. We use two different
decomposition bases because the RLWE-to-GSW conversion procedure (Construction B.4) introduces additional
noise. It is advantageous to use a smaller decomposition base when expanding the RLWE encodings that will be
assembled into GSW encodings. This way, the noise in the resulting RLWE encodings and the GSW encodings output
by QueryUnpack will be on a comparable footing. We illustrate our parameter choices in Table 5.
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C Response Compression

In this section, we provide the full details of the (homomorphic) dimension reduction algorithm in Respire (i.e., the
algorithms in Box 1). As described in Section 3.2, we compose dimension reduction with vectorization (which is
helpful in the batched setting). We recall vectorization (i.e., the algorithms from Box 4) in Appendix C.1 and then
give our response compression approach (i.e., the algorithms from Box 1) in Appendix C.2.

C.1 Vectorizing RLWE Encodings

In this section, we describe the approach from [MW22a] for packing multiple scalar RLWE encodings into a single
vector RLWE encoding, which we call vectorization. These correspond to the algorithms in Box 4. While [MW22a]
shows how to pack scalar encodings into a matrix RLWE encoding, we only consider the case where the target is
a vector RLWE encoding, since vector encodings yield the best compression. Vectorization yields shorter packed
ciphertexts (i.e., achieves higher rate), but requires larger public parameters (proportional to the vector length).
Concretely, vectorization packs 2𝑛 ring elements into 𝑛 + 1 ring elements, thus achieving a ≈ 2× reduction in encoding
size. Now, we present the (adapted) construction from [MW22a] for vectorizing a collection of scalar RLWE encodings
into a vector RLWE encoding (i.e., the algorithms in Box 4) and then state the associated correctness guarantee:

Construction C.1 (Vectorizing RLWE Encodings [MW22a, adapted]). Let 𝜆 be a security parameter and 𝑑 = 𝑑 (𝜆), 𝑞 =

𝑞(𝜆) be lattice parameters where 𝑑 is a power of two. Let 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1) and 𝜒 = 𝜒 (𝜆) be an error distribution
over 𝑅𝑑 . The construction is also parameterized by a decomposition base 𝑧. Let 𝑡 = ⌊log𝑧 𝑞⌋ + 1. We define the
vectorization algorithms (VecSetup,Vectorize) as follows:

• VecSetup(1𝜆, s1, S2): On input a security parameter 𝜆 and two secret keys s1 = [−𝑠1 | 1]T ∈ 𝑅2
𝑑,𝑞

and
S2 = [−s2 | I𝑛]T ∈ 𝑅 (𝑛+1)×𝑛𝑑,𝑞

, the setup algorithm samples a𝑖 r← 𝑅𝑡
𝑑,𝑞

, E𝑖 ← 𝜒𝑛×𝑡 , and sets

V𝑖 =

[
aT
𝑖

s2aT
𝑖 + E𝑖 − 𝑠1u𝑖gT

𝑧

]
∈ 𝑅 (𝑛+1)×𝑡

𝑑,𝑞

for each 𝑖 ∈ [𝑛] and where u𝑖 ∈ 𝑅𝑛𝑑,𝑞 denotes the 𝑖th canonical basis vector. Finally, the algorithm outputs the
parameters ppvec = (V1, . . . ,V𝑛).

• Vectorize(ppvec, (c1, . . . , c𝑛)): On input the parameters ppvec = (V1, . . .V𝑛) and a collection of RLWE encodings
c1, . . . , c𝑛 where cT𝑖 = [𝑐𝑖,0 | 𝑐𝑖,1], compute and output

c =
∑︁
𝑖∈[𝑛]

(
V𝑖g−1𝑧 (𝑐𝑖,0) +

[
0

𝑐𝑖,1u𝑖

] )
∈ 𝑅𝑛+1

𝑑,𝑞
.

Theorem C.2 (Vectorizing RLWE Encodings [MW22a, adapted]). Let 𝜆 be a parameter and 𝑑, 𝑞, 𝜒, 𝑧 be the param-
eters in Construction C.1. Let s1 = [−𝑠 | 1]T ∈ 𝑅2

𝑑,𝑞
and S2 = [−s | I𝑛]T ∈ 𝑅 (𝑛+1)×𝑛𝑑,𝑞

be secret keys. Suppose 𝜒 is

subgaussian with variance 𝜎2𝜒 . Take any collection of encodings c1, . . . , c𝑛 ∈ 𝑅2𝑑,𝑞 . Let ppvec ← VecSetup(1𝜆, s1, S2) and
c′ ← Vectorize(ppvec, (c1, . . . , c𝑛)). Then

ST
2c
′ =


sT1c1
...

sT1c𝑛

 + e
′,

where the components of e′ are subgaussian with variance (𝜎 ′)2 ≤ 𝑛𝑡𝑑𝑧2𝜎2𝜒/4.

C.2 Response Compression

We now provide the full details of the response compression scheme in Respire (i.e., the algorithms in Box 1).
As outlined in Section 3.2, our approach combines (split) modulus switching [BGV12, MW22a] with ring switch-
ing [BGV12, GHPS12].

41



Construction C.3 (Response Compression). Let 𝑑1 ≥ 𝑑2 be ring dimensions, and let 𝑘 = 𝑑1/𝑑2. Let 𝑅𝑑1 =

Z[𝑥]/(𝑥𝑑1 + 1) and 𝑅𝑑2 = Z[𝑥]/(𝑥𝑑2 + 1). Let Π : 𝑅𝑘
𝑑2
→ 𝑅𝑑1 be the ring packing function (defined in Eq. (3.3)

and Definition A.12). Let 𝜅 : 𝑅𝑑2 → 𝑅𝑑1 be the subring embedding and 𝜅−1 : 𝑅𝑑1 → 𝑅𝑑2 be the dimension-reduction
mappings (defined in Definition A.9). Let 𝜒 be an error distribution over 𝑅𝑑2 , 𝑞1 ≥ 𝑞2 ≥ 𝑞3 be ring moduli, 𝑧 ∈ N be
a decomposition base, 𝑛 be the input dimension, and 𝑡 = ⌊log𝑧 𝑞2⌋ + 1.

• CompressSetup(1𝜆, S1, S2): On input a source key S1 = [−s̃1 | I𝑛] ∈ 𝑅𝑛×(𝑛+1)𝑑1
and a target key S2 = [−s̃2 | I𝑛] ∈

𝑅
𝑛×(𝑛+1)
𝑑2,𝑞2

, sample a1, . . . , a𝑘 r← 𝑅𝑡
𝑑2,𝑞2

and E1, . . . , E𝑘 ← 𝜒𝑛×𝑡 . Note that we do not specify the modulus for S1. Let

a = Π(a1, . . . , a𝑘 ) ∈ 𝑅𝑡𝑑1,𝑞2 and B = Π(s̃2aT
1 + E1, . . . , s̃2aT

𝑘
+ E𝑘 ) ∈ 𝑅𝑛×𝑡𝑑1,𝑞2

.

Output the key-switching matrix

W =

[
aT

B

]
+

[
01×𝑡

−(s̃1 mod 𝑞2) · gT
𝑧

]
∈ 𝑅 (𝑛+1)×𝑡

𝑑1,𝑞2
.

• Compress(W, c): On input the key-switching matrix W =

[
wT

1
W2

]
where w1 ∈ 𝑅𝑡𝑑1,𝑞2 and W2 ∈ 𝑅𝑛×𝑡𝑑1,𝑞2

and an
encoding c =

[
𝑐1
c2

]
∈ 𝑅𝑛+1

𝑑1,𝑞1
, compute

𝑐1 = 𝜅
−1

(
wT

1g
−1
𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))
∈ 𝑅𝑑2,𝑞2

ĉ2 = 𝜅−1
( ⌊

𝑞3
𝑞1
c2 + 𝑞3

𝑞2
W2g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)⌉
mod 𝑞3

)
∈ 𝑅𝑛

𝑑2,𝑞3
.

The computations inside “⌊·⌉ mod 𝑞𝑖” are performed over the rationals.7 Output the encoding (𝑐1, ĉ2).

• CompressRecover(S2, (𝑐1, ĉ2)): On input a secret key S2 = [−s̃2 | I𝑛] ∈ 𝑅𝑛×(𝑛+1)𝑑2,𝑞2
and a compressed encoding

(𝑐1, ĉ2) ∈ 𝑅𝑑2,𝑞2 × 𝑅𝑛𝑑2,𝑞3 , output

z =
⌊
−𝑞3
𝑞2
(s̃2 · 𝑐1)

⌉
mod 𝑞3 + ĉ2 ∈ 𝑅𝑛𝑑2,𝑞3 . (C.1)

The computations inside “⌊·⌉ mod 𝑞𝑖” are performed over the rationals, in the same way as in Compress.

Theorem C.4 (Response Compression Correctness). Let 𝑞1 ≥ 𝑞2 ≥ 𝑞3 ≥ 𝑝 be ring moduli. Let 𝑑1 = 2𝛿1 ≥ 𝑑2 = 2𝛿2
be (power-of-two) ring dimensions. Let 𝑘 = 𝑑1/𝑑2 and let 𝜈 = 𝛿1 − 𝛿2. Let 𝜒 be an error distribution over 𝑅𝑑2 , 𝑧 ∈ N be
a decomposition base, and 𝑛 ∈ N be the vector dimension. Let 𝑡 = ⌊log𝑧 𝑞2⌋ + 1. Define the following:

• Suppose c =
[
𝑐1
c2

]
∈ 𝑅𝑛+1

𝑑1,𝑞1
is an RLWE encoding of ⌊𝑞1/𝑝⌋m for some message m ∈ 𝑅𝑛

𝑑1,𝑝
with respect to S1 (when

viewed as a secret key over 𝑅𝑑1,𝑞1 ) and error e ∈ 𝑅𝑛𝑑1 .

• Suppose S2 = [−s̃2 | I𝑛] ∈ 𝑅𝑛×(𝑛+1)𝑑2,𝑞2
is the target key.

• SupposeW← CompressSetup(S1, S2), (𝑐1, ĉ2) ← Compress(W, c), and z← CompressRecover(S2, (𝑐1, ĉ2)).

Then z = ⌊𝑞3/𝑝⌋ 𝜅−1 (m) + ẽ ∈ 𝑅𝑛𝑑2,𝑞3 , where ẽ = ẽ1 + ẽ2 and

• ∥ẽ1∥∞ ≤ 1
2

(
2 + (𝑞3 mod 𝑝) + 𝑞3

𝑞1
(𝑞1 mod 𝑝)

)
.

7More explicitly, we first lift the quantities inside “⌊ ·⌉ mod 𝑞𝑖 ” to the rationals by associating the coefficients of each ring element (i.e., each
polynomial) with its unique integer representative in the interval [−𝑞𝑖/2, 𝑞𝑖/2]. We then perform all operations over the rationals. After
evaluating the arithmetic operations on the polynomials with rational coefficients, rounding yields a polynomial with integer coefficients and
taking the result mod𝑞𝑖 yields an element of 𝑅𝑑1,𝑞𝑖 .
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• Suppose the components of e are subgaussian with parameter 𝜎𝑒 , the components of s̃1 are subgaussian with
parameter 𝜎𝑠 , and the distribution 𝜒 is subgaussian with parameter 𝜎𝜒 . Then, under the independence heuristic,
the components of ẽ2 are subgaussian with variance

�̃�2 =
𝑞23
𝑞21
𝜎2e +

𝑞23
4𝑞22

𝑑1𝜎
2
𝑠 +

𝑞23
𝑞22
𝜎2𝜒𝐵

2,

where 𝐵 =
g−1𝑧 (⌊𝑞2/𝑞1 · 𝑐1⌉ mod 𝑞2)


2. Note that a trivial bound for 𝐵 is the bound 𝐵 ≤

√
𝑡𝑑1 · 𝑧/2.

Proof. Let 𝜅 : 𝑅𝑑2 → 𝑅𝑑1 be the subring embedding (Definition A.9), and let 𝜋𝜈 : 𝑅𝑑1 → 𝑅𝑑1 be the projection map (i.e.,
the mapping 𝑟 ↦→ 𝜅 (𝜅−1 (𝑟 )) from Lemma A.11). We will show that

𝜅 (z) = ⌊𝑞3/𝑝⌋ 𝜅 (𝜅−1 (m)) + 𝜅 (e′) = ⌊𝑞1/𝑝⌋ 𝜋𝜈 (m) + 𝜅 (e′).

The claim then follows by the fact that 𝜅 is an injective ring homomorphism (Lemma A.10). First, writeW =

[
wT

1
W2

]
where w1 ∈ 𝑅𝑡𝑑1,𝑞2 and W2 ∈ 𝑅𝑛×𝑡𝑑1,𝑞2

and let c =
[
𝑐1
c2

]
where 𝑐1 ∈ 𝑅𝑑1,𝑞1 and c2 ∈ 𝑅𝑛𝑑1,𝑞1 . Let

𝑐′1 = wT
1g
−1
𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)
∈ 𝑅𝑑2,𝑞2

ĉ′2 =
⌊
𝑞3
𝑞1
c2 + 𝑞3

𝑞2
W2g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)⌉
mod 𝑞3 ∈ 𝑅𝑛𝑑2,𝑞3 .

(C.2)

Then, 𝑐1 = 𝜅−1 (𝑐′1) and ĉ2 = 𝜅−1 (ĉ′2). By Lemmas A.10 and A.11 and using the definition of z from Eq. (C.1), we have

𝜅 (z) =
⌊
−𝑞3
𝑞2

(
𝜅 (s̃2) · 𝜅 (𝑐1)

)⌉
mod 𝑞3 + 𝜅 (ĉ2) =

⌊
−𝑞3
𝑞2

(
𝜅 (s̃2) · 𝜋𝜈 (𝑐′1)

)⌉
mod 𝑞3 + 𝜋𝜈 (ĉ′2)

= 𝜋𝜈

( ⌊
−𝑞3
𝑞2

(
𝜅 (s̃2) · 𝑐′1

)⌉
mod 𝑞3 + ĉ′2

)
∈ 𝑅𝑛

𝑑1,𝑞3
.

(C.3)

Substituting in the values of 𝑐′1 and ĉ′2 from Eq. (C.2) and working over the rationals, we have:⌊
−𝑞3
𝑞2

(
𝜅 (s̃2) · 𝑐′1

)⌉
mod 𝑞3 + ĉ′2 =

⌊
−𝑞3
𝑞2

(
𝜅 (s̃2) ·wT

1g
−1
𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))⌉
+

⌊
𝑞3
𝑞1
c2 + 𝑞3

𝑞2
W2g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)⌉
+ ξ1𝑞3

= −𝑞3
𝑞2
𝜅 (s̃2) ·wT

1g
−1
𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)
+ e⌊ ·⌉,1

+ 𝑞3
𝑞1

c2 +
𝑞3
𝑞2

W2g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)
+ e⌊ ·⌉,2 + ξ1𝑞3

=
𝑞3
𝑞2

(
−𝜅 (s̃2)wT

1 +W2
)
g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)
+ 𝑞3
𝑞1

c2 + ξ1𝑞3 + e⌊ ·⌉,1 + e⌊ ·⌉,2,

(C.4)

where e⌊ ·⌉,1 and e⌊ ·⌉,2 are the error terms introduced by the rounding operations, and ξ1 ∈ 𝑅𝑛𝑑1 . By definition, the
norms of e⌊ ·⌉,1 and e⌊ ·⌉,2 are bounded by 1/2. SinceW← CompressSetup(S1, S2), we know that

W =

[
wT

1
W2

]
=

[
aT

B − s̃1 · gT
𝑧

]
∈ 𝑅 (𝑛+1)×𝑡

𝑑1,𝑞2
,

and by definition of Π, we have a =
∑

𝑖∈[𝑘 ] 𝑥
𝑖−1𝜅 (a𝑖 ) and B =

∑
𝑖∈[𝑘 ] 𝑥

𝑖−1𝜅 (s̃2aT
𝑖 + E𝑖 ) where a1, . . . , a𝑘 ∈ 𝑅𝑡𝑑2,𝑞2 and

E1, . . . , E𝑘 ← 𝜒𝑛×𝑡 . Since 𝜅 is a ring homomorphism (Lemma A.10), we can write

−𝜅 (s̃2)wT
1 +W2 = −(s̃1 mod 𝑞2) · gT

𝑧 +
∑︁
𝑖∈[𝑘 ]

𝑥𝑖−1
(
−𝜅 (s̃2)𝜅 (aT

𝑖 ) + 𝜅 (s̃2aT
𝑖 + E𝑖 )

)
= −(s̃1 mod 𝑞2) · gT

𝑧 +
∑︁
𝑖∈[𝑘 ]

𝑥𝑖−1E𝑖 ∈ 𝑅𝑛×𝑡𝑑1,𝑞2

Let E =
∑

𝑖∈[𝑘 ] 𝑥
𝑖−1E𝑖 . Then, over the rationals, we have

−𝜅 (s̃2)wT
1 +W2 = −s̃1 · gT

𝑧 + E + 𝚵𝑞2,
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where 𝚵 ∈ 𝑅𝑛×𝑡
𝑑1

. Substituting back into Eq. (C.4), we have over the rationals,⌊
−𝑞3
𝑞2

(
𝜅 (s̃2) · 𝑐′1

)⌉
mod 𝑞3 + ĉ′2 =

𝑞3
𝑞2

(
−𝜅 (s̃2)wT

1 +W2
)
g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)
+ 𝑞3
𝑞1

c2 + ξ1𝑞3 + e⌊ ·⌉,1 + e⌊ ·⌉,2

=
𝑞3
𝑞2

(
−s̃1gT

𝑧 + E + 𝚵𝑞2
)
g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)
+ 𝑞3
𝑞1

c2 + ξ1𝑞3 + e⌊ ·⌉,1 + e⌊ ·⌉,2

=
𝑞3
𝑞2

(
−s̃1

⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)
+ 𝑞3
𝑞1

c2 +
(
ξ1 + 𝚵g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))
𝑞3

+ 𝑞3
𝑞2

(
Eg−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))
+ e⌊ ·⌉,1 + e⌊ ·⌉,2

=
𝑞3
𝑞2

(
−s̃1

⌊
𝑞2
𝑞1
𝑐1

⌉)
+ 𝑞3
𝑞1

c2 +
(
ξ1 + ξ2 + 𝚵g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))
𝑞3

+ 𝑞3
𝑞2

(
Eg−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))
+ e⌊ ·⌉,1 + e⌊ ·⌉,2,

(C.5)

where ξ2 ∈ 𝑅𝑛𝑑1 . Still working over the rationals, we can write

𝑞3
𝑞2

(
−s̃1

⌊
𝑞2
𝑞1
𝑐1

⌉)
+ 𝑞3
𝑞1

c2 =
𝑞3
𝑞2

(
−s̃1

(
𝑞2
𝑞1
𝑐1 + 𝑒⌊ ·⌉,3

))
+ 𝑞3
𝑞1

c2, (C.6)

where |𝑒⌊ ·⌉,3 | ≤ 1/2 is another rounding error. By assumption, c is a RLWE encoding of ⌊𝑞1/𝑝⌋m with respect to
S1 and error e. This means −s̃1𝑐1 + c2 = ⌊𝑞1/𝑝⌋m + e ∈ 𝑅𝑛𝑑1,𝑞1 . Equivalently, over 𝑅𝑑1 , we can write

−s̃1𝑐1 + c2 = ⌊𝑞1/𝑝⌋m + e + ξ3𝑞1,

where ξ3 ∈ 𝑅𝑛𝑑1 . Thus, we can rewrite Eq. (C.6) (over the rationals) as

𝑞3
𝑞2

(
−s̃1

⌊
𝑞2
𝑞1
𝑐1

⌉)
+ 𝑞3
𝑞1

c2 =
𝑞3
𝑞2

(
−s̃1

(
𝑞2
𝑞1
𝑐1 + 𝑒⌊ ·⌉,3

))
+ 𝑞3
𝑞1

c2

=
𝑞3
𝑞1
(−s̃1𝑐1 + c2) −

𝑞3
𝑞2

s̃1𝑒⌊ ·⌉,3

=
𝑞3
𝑞1
(⌊𝑞1/𝑝⌋m + e + ξ3𝑞1) −

𝑞3
𝑞2

s̃1𝑒⌊ ·⌉,3

=
𝑞3
𝑞1
⌊𝑞1/𝑝⌋m +

𝑞3
𝑞1

e + ξ3𝑞3 −
𝑞3
𝑞2

s̃1𝑒⌊ ·⌉,3

Let ξ̂ =

(
ξ1 + ξ2 + ξ3 + 𝚵g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))
∈ 𝑅𝑛

𝑑1
. Then, Eq. (C.5) becomes (over the rationals)⌊

−𝑞3
𝑞3

(
𝜅 (s̃2) · 𝑐′1

)⌉
mod 𝑞2 + ĉ′2 =

𝑞3
𝑞2

(
−s̃1

⌊
𝑞2
𝑞1
𝑐1

⌉)
+ 𝑞3
𝑞1

c2 +
(
ξ1 + ξ2 + 𝚵g−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))
𝑞3

+ 𝑞3
𝑞2

(
Eg−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))
+ e⌊ ·⌉,1 + e⌊ ·⌉,2

=
𝑞3
𝑞1
⌊𝑞1/𝑝⌋m + ξ̂𝑞3 +

𝑞3
𝑞1

e − 𝑞3
𝑞2

s̃1𝑒⌊ ·⌉,3

+ 𝑞3
𝑞2

(
Eg−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

))
+ e⌊ ·⌉,1 + e⌊ ·⌉,2

=
𝑞3
𝑞1

⌊
𝑞1
𝑝

⌋
m + ξ̂𝑞3 +

𝑞3
𝑞1

e + 𝑞3
𝑞2

(
Eg−1𝑧

( ⌊
𝑞2
𝑞1
𝑐1

⌉
mod 𝑞2

)
− s̃1𝑒⌊ ·⌉,3

)
︸                                                   ︷︷                                                   ︸

e′2

+e⌊ ·⌉,1 + e⌊ ·⌉,2.

(C.7)
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Finally, we can write ⌊𝑞1/𝑝⌋ = 𝑞1/𝑝 − (𝑞1 mod 𝑝)/𝑝 . Then Eq. (C.7) becomes (over the rationals)⌊
−𝑞3
𝑞2

(
𝜅 (s̃2) · 𝑐′1

)⌉
mod 𝑞3 + ĉ′2 =

𝑞3
𝑞1

⌊
𝑞1
𝑝

⌋
m + ξ̂𝑞3 + e′2 + e⌊ ·⌉,1 + e⌊ ·⌉,2

=

(
𝑞3
𝑞1
· 𝑞1
𝑝
− 𝑞3
𝑞1
· 𝑞1 mod 𝑝

𝑝

)
m + ξ̂𝑞3 + e′2 + e⌊ ·⌉,1 + e⌊ ·⌉,2

=

⌊
𝑞3
𝑝

⌋
m + ξ̂𝑞3 +

(
𝑞3 mod 𝑝

𝑝
− 𝑞3 (𝑞1 mod 𝑝)

𝑝𝑞1

)
m + e⌊ ·⌉,1 + e⌊ ·⌉,2︸                                                        ︷︷                                                        ︸

e′1

+e′2.

(C.8)

Furthermore, the terms in Eq. (C.8) are all in 𝑅𝑑1 , so the equation holds over 𝑅𝑑1 , and thus over 𝑅𝑑1,𝑞3 as well. Combining
Eqs. (C.3) and (C.8) and using linearity of 𝜋𝜈 (Lemma A.11), we have (over 𝑅𝑑1,𝑞3 now)

𝜅 (z) = 𝜋𝜈
( ⌊
−𝑞3
𝑞2

(
𝜅 (s̃2) · 𝑐′1

)⌉
mod 𝑞3 + ĉ′2

)
=

⌊
𝑞3
𝑝

⌋
𝜋𝜈 (m) + 𝜋𝜈 (e′1) + 𝜋𝜈 (e′2) ∈ 𝑅𝑛𝑑1,𝑞3 .

Applying the inversion map 𝜅−1 to both sides and appealing to Lemma A.11 (i.e., for all 𝑟 ∈ 𝑅𝑑1 , 𝜅−1 (𝜋𝜈 (𝑟 )) =
𝜅−1 (𝜅 (𝜅−1 (𝑟 ))) = 𝜅−1 (𝑟 )), we have

z =
⌊
𝑞3
𝑝

⌋
𝜅−1 (m) + 𝜅−1 (e′1) + 𝜅−1 (e′2).

The claim now holds by setting ẽ1 = 𝜅−1 (e′1) and ẽ2 = 𝜅−1 (e′2). By construction of 𝜅−1, for all 𝑟 ∈ 𝑅𝑑1 , the coefficients
of the polynomial 𝜅−1 (𝑟 ) are a subset of the coefficients of 𝑟 . Since ∥m∥∞ ≤ 𝑝/2, we can bound ∥ẽ1∥∞ from Eq. (C.8) by

∥ẽ1∥∞ ≤ ∥e′1∥∞ ≤
1
2

(
𝑞3 mod 𝑝 + 𝑞3 (𝑞1 mod 𝑝)

𝑞1
+ 2

)
.

Next, consider the components of e′2 from Eq. (C.7). Since the components of E are subgaussian with parameter 𝜎𝜒 and
moreover, 𝐵 = ∥g−1𝑧 (⌊𝑞2/𝑞1 · 𝑐1⌉ mod 𝑞2)∥2, we conclude by Lemma A.1 that the components of Eg−1𝑧 (⌊𝑞2/𝑞1 · 𝑐1⌉ mod
𝑞2) are subgaussian with variance 𝜎2𝜒𝐵2. Then, under the independence heuristic, the components of e′2 are subgaussian
with variance

�̃�2 =
𝑞23
𝑞21
𝜎2𝑒 +

𝑞23
4𝑞22

𝑑1𝜎
2
𝑠 +

𝑞23
𝑞22
𝜎2𝜒𝐵

2.

Again by construction of 𝜅−1, the same then holds for the coefficients of ẽ2 = 𝜅−1 (e2). □

Remark C.5 (Tighter Gadget Bound). In Theorem C.4, the final error variance is stated in terms of the bound
𝐵 =

g−1𝑧 (⌊𝑞2/𝑞1 · 𝑐1⌉ mod 𝑞2)

2. The trivial bound is 𝐵 ≤

√
𝑡𝑑1 · 𝑧/2. However, in many cases, this bound will be loose

since “many” of the coefficients of g−1𝑧 (·) will be much smaller than 𝑧/2. Concretely, suppose 𝑧 = 2 and consider
the distribution of uT B g−1𝑧 (𝑦) where 𝑦

r← 𝑅𝑑1,𝑞2 . First, consider the case where 𝑞2 is a power-of-two. In this
case, the coefficients in each component 𝑢1, . . . , 𝑢𝑡 ∈ 𝑅𝑑1 is an independent Bernoulli variable with probability 1/2.
Correspondingly, the ℓ2 norm of u is a sum of 𝑑1𝑡 independent Bernoulli random variables (i.e., a binomial random
variable). In this case, it is easy to calculate the exact probability that ∥u∥2 exceeds a certain threshold. Concretely,
when 𝑑1 = 2048, we can show that with probability at least 1 − 2−48.4, ∥u∥2 ≤

√
𝑡 · 2048 · 𝜂 where 𝜂 = 1200/2048.

Next, observe that in the case where 𝑞2 is not a power-of-two, then the coefficients of 𝑦 r← 𝑅𝑑1,𝑞2 can only decrease,
which can only reduce the probability that ∥u∥2 exceeds the bound 𝐵 =

√
𝑡 · 2048 · 𝜂. We use this tighter bound in

the final step of our correctness analysis (Appendix D.1). Note that this analysis assumes that the distribution of 𝑦
(in the scheme, the distribution of ⌊𝑞2/𝑞1 · 𝑐1⌉ mod 𝑞2) is uniform over 𝑅𝑛

𝑑2,𝑞2
. We can ensure this by “re-randomizing”

𝑐1. Namely, we include in the public parameters a fresh encoding 𝑐′ of 0 (which is pseudorandom under RLWE). The
algorithm then applies the compression algorithm to the encoding 𝑐1 + 𝑐′, which encodes the same underlying value,
but whose distribution is computationally indistinguishable from uniform.
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D Correctness and Security of Respire

In this section, we prove the correctness and security of the Respire protocol (Construction 3.3). Since the base
version of Respire (Construction 3.2) is a special case (in fact, a sub-protocol) of the batched version of Respire
(Construction 3.3), we focus exclusively on the batched version in our correctness and security analysis.

D.1 Correctness Analysis for Respire

We use the parameters from Construction 3.3. In the following, for (𝑖, 𝑗) ∈ {(1, 2), (1, 3), (2, 3)}, we write 𝜅𝑑𝑖 ,𝑑 𝑗
: 𝑅𝑑 𝑗

→
𝑅𝑑𝑖 and 𝜅−1𝑑𝑖 ,𝑑 𝑗

: 𝑅𝑑𝑖 → 𝑅𝑑 𝑗
to denote the subring embedding and the dimension-reduction mappings, respectively

(Definition A.9). Let 𝑁 be the number of database records and𝑇 = 𝑛vec · (𝑑2/𝑑3) be the batch size. Assume the plaintext
modulus 𝑝 divides 𝑞3. Suppose the following properties hold for the error distributions appearing in Construction 3.3:

• Suppose 𝜒1,𝑒 , 𝜒 ′1,𝑒 , 𝜒2,𝑒 are subgaussian with variances 𝜎21,𝑒 , (𝜎 ′1,𝑒 )2, and 𝜎22,𝑒 , respectively.

• Suppose 𝜒1,𝑠 is 𝐵1,𝑠 -bounded and 𝜒 ′1,𝑠 is subgaussian with variance (𝜎 ′1,𝑠 )2.

We also define the decomposition bases used in each of the underlying algorithms:

• Let 𝑧GSW be the GSW decomposition base and 𝑡GSW = ⌊log𝑧GSW 𝑞1⌋ + 1.

• Let 𝑧coeff,RLWE, 𝑧coeff,GSW, 𝑧conv be the decomposition bases for query packing (Construction B.6) and 𝑡coeff,RLWE =

⌊log𝑧coeff,RLWE
𝑞1⌋ + 1, 𝑡coeff,GSW = ⌊log𝑧coeff,GSW 𝑞1⌋ + 1, and 𝑡conv = ⌊log𝑧conv 𝑞1⌋ + 1.

• Let 𝑧proj be the decomposition base used for projection (Construction A.7) and 𝑡proj = ⌊log𝑧proj 𝑞1⌋ + 1.

• Let 𝑧vec be the decomposition base used for vectorization (Construction C.1) and 𝑡vec = ⌊log𝑧vec 𝑞1⌋ + 1.

• Let 𝑧comp be the decomposition base used for response compression (Construction C.3) and 𝑡comp = ⌊log𝑧comp
𝑞2⌋+

1.

Take any collection of records 𝑟𝛼,𝛽,𝛾 ∈ 𝑅𝑑3,𝑝 where 𝛼 ∈ [2𝜈1 ], 𝛽 ∈ [2𝜈2 ], and 𝛾 ∈ [2𝜈3 ]. Take any collection of indices
idx1, . . . , idx𝑇 , where idx𝑘 = (𝛼𝑘 , 𝛽𝑘 , 𝛾𝑘 ). Suppose we now sample the following:(

(ppqpk, ppproj, ppvec, ppcomp), (s1, S2)
)
← Setup(1𝜆)

db =
{
𝑟𝛼,𝛽

}
𝛼∈[2𝜈1 ],𝛽∈[2𝜈2 ] ← SetupDB

(
1𝜆, {𝑟𝛼,𝛽,𝛾 }𝛼∈[2𝜈1 ],𝛽∈[2𝜈2 ],𝛾 ∈[2𝜈3 ]

)
q = (q1, . . . , q𝑇 ) ←Query(qk, idx1, . . . , idx𝑏)

a← Answer(pp, q)
(resp1, . . . , resp𝑇 ) ← Extract(qk, a).

We now show that with high probability for a given 𝑘 ∈ [𝑇 ], the decoded response resp𝑘 satisfies resp𝑘 = 𝑟𝛼𝑘 ,𝛽𝑘 ,𝛾𝑘 .
Take any index 𝑘 ∈ [𝑇 ]. Our analysis follows the steps of the Answer algorithm in Construction 3.3. Specifically,
we analyze the variance of the error in the encodings after each step of the computation (under the independence
heuristic). In the following, we will say that an RLWE encoding (resp., a GSW encoding) has error variance 𝜎2 if the
error associated with the encoding is distributed according to a subgaussian with variance at most 𝜎2. Following the
definitions in theQuery algorithm, let 𝛼𝑖 = 1 if 𝑖 = 𝛼𝑘 and 𝛼 = 0 otherwise. Let 𝛽1 · · · 𝛽𝜈2 be the binary representation
of 𝛽𝑘 − 1 and 𝛾1 · · ·𝛾𝜈3 be the binary representation of 𝛾𝑘 − 1. We now consider each step of the Answer algorithm.

1. Query expansion: Let((
c(1)1 , . . . , c(1)2𝜈1

)
,

(
C(2)1 , . . . ,C(2)𝜈2 ,C

(3)
1 , . . . ,C(3)𝜈3

))
←QueryUnpack(ppqpk, q𝑘 ).

be the output of the query expansion algorithm on query q𝑘 . By Theorem B.7, the following holds:
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• For all 𝑖 ∈ [2𝜈1 ], c(1)
𝑖

is an RLWE encoding of ⌊𝑞1/𝑝⌋ · 𝛼𝑖 with error variance

𝜎2RLWE = 𝜎21,𝑒 (1 + 𝑡coeff,RLWE𝑑
3
1𝑧

2
coeff,RLWE/12).

• Each C(2)
𝑖

is a GSW encoding of 𝛽𝑖 with error variance

𝜎2GSW = 𝜎21,𝑒 (𝑑1𝐵21,𝑠 (1 + 𝑡coeff,GSW𝑑31𝑧2coeff,GSW/12) + 𝑡conv𝑑1𝑧
2
conv/2) .

• Each C(3)
𝑖

is a GSW encoding of 𝛾𝑖 with error variance 𝜎2GSW.

All of these encodings are with respect to the secret key s1. Unless otherwise noted, all encodings in the
subsequent description are with respect to s1.

2. First dimension: The Answer algorithm computes ĉ(1)
𝛽

=
∑

𝛼∈[2𝜈1 ] 𝑟𝛼,𝛽 · c
(1)
𝛼 for each 𝛽 ∈ [2𝜈2 ]. Since

∥𝑟𝛼,𝛽 ∥∞ ≤ 𝑝/2, this means that ĉ(1)
𝛽

is an encoding of ⌊𝑞1/𝑝⌋ · 𝑟𝛼𝑘 ,𝛽 with error variance

𝜎2first = 2𝜈1𝑑1 (𝑝/2)2𝜎2RLWE .

3. Folding: Next, the Answer algorithm sets ĉ(2)0, 𝑗 = ĉ(1)
𝑗

for each 𝑗 ∈ [2𝜈2 ]. Then, for each 𝑟 ∈ [𝜈2] and 𝑗 ∈ [2𝜈2−𝑟 ],
it computes

ĉ(2)
𝑟, 𝑗

= Select
(
C(2)𝑟 , ĉ(2)

𝑟−1, 𝑗 , ĉ
(2)
𝑟−1, 𝑗+2𝜈2−𝑟

)
.

Thus, the following properties hold:

• From the previous step, we have that ĉ(2)0, 𝑗 is an RLWE encoding of ⌊𝑞1/𝑝⌋ · 𝑟𝛼𝑘 ,𝛽 with error variance 𝜎2first.

• From Theorem A.3, for each 𝑟 ∈ [𝜈2] and 𝑗 ∈ [2𝜈2−𝑟 ], we have that ĉ(2)𝑟,𝑗
is an RLWE encoding of

⌊𝑞1/𝑝⌋ · 𝑟𝛼𝑘 , 𝑗+∑𝑖∈ [𝑟 ] 𝛽𝑖2𝜈2−𝑖

with error variance 𝜎2first + 𝑟 · 2𝑡GSW𝑑1𝑧
2
GSW𝜎

2
GSW/4 = 𝜎2first + 𝑟𝑡GSW𝑑1𝑧

2
GSW𝜎

2
GSW/2.

Since 𝛽1 · · · 𝛽𝜈2 is the binary representation of 𝛽𝑘 − 1, we have that 1 +
∑

𝑖∈[𝜈2 ] 𝛽𝑖2
𝜈2−𝑖 = 𝛽𝑘 . This means that

ĉ(2)
𝜈2,1 is an encoding of ⌊𝑞1/𝑝⌋ · 𝑟𝛼𝑘 ,𝛽𝑘 with error variance

𝜎2fold = 𝜎
2
first + 𝜈2𝑡GSW𝑑1𝑧

2
GSW𝜎

2
GSW/2.

4. Rotation: Next, the Answer algorithm sets ĉ(3)0 = ĉ(2)
𝜈2,1, and for each 𝑟 ∈ [𝜈3], it computes

ĉ(3)𝑟 = Select
(
C(3)𝑟 , ĉ(3)

𝑟−1, 𝑥
−2𝜈3−𝑟 · ĉ(3)

𝑟−1

)
.

Similar to the previous case, we can appeal to Theorem A.3:

• First, ĉ(3)0 is an RLWE encoding of ⌊𝑞1/𝑝⌋ · 𝑟𝛼𝑘 ,𝛽𝑘 .

• From Theorem A.3, for each 𝑟 ∈ [𝜈2], we have that ĉ(3)𝑟 is an RLWE encoding of

⌊𝑞1/𝑝⌋ · 𝑟𝛼𝑘 ,𝛽𝑘 ·
∏
𝑖∈[𝑟 ]

𝑥−𝛾𝑖2
𝜈3−𝑖

= ⌊𝑞1/𝑝⌋ · 𝑟𝛼𝑘 ,𝛽𝑘 · 𝑥
∑

𝑖∈ [𝑟 ] −𝛾𝑖2𝜈3−𝑖

with error variance 𝜎2fold + 𝑟 · 2𝑡GSW𝑑1𝑧
2
GSW𝜎

2
GSW/4 = 𝜎2fold + 𝑟𝑡GSW𝑑1𝑧

2
GSW𝜎

2
GSW/2.
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Since 𝛾1 · · ·𝛾𝜈3 is the binary representation of 𝛾𝑘 − 1, we have that
∑

𝑖∈[𝜈3 ] 𝛾𝑖2
𝜈3−𝑖 = 𝛾𝑘 − 1. Thus, we conclude

that ĉ(3)𝜈3 is an encoding of 𝑥−(𝛾𝑘−1) · ⌊𝑞1/𝑝⌋ · 𝑟𝛼𝑘 ,𝛽𝑘 with error variance

𝜎2rot = 𝜎
2
fold + 𝜈3𝑡GSW𝑑1𝑧

2
GSW𝜎

2
GSW/2

= 𝜎2first + (𝜈2 + 𝜈3)𝑡GSW𝑑1𝑧
2
GSW𝜎

2
GSW/2.

5. Projection: Thus far, we have established that for all 𝑘 ∈ [𝑇 ], c(out)
𝑘

is an RLWE encoding of 𝑥−(𝛾𝑘−1) · ⌊𝑞1/𝑝⌋ ·
𝑟𝛼𝑘 ,𝛽𝑘 with error 𝑒single,𝑘 , where 𝑒single,𝑘 is subgaussian with variance 𝜎2rot. In other words, it holds that

sT1c
(out)
𝑘

= ⌊𝑞1/𝑝⌋ · 𝜇𝑘 + 𝑒single,𝑘 ,

where 𝜇𝑘 = 𝑥−(𝛾𝑘−1) · 𝑟𝛼𝑘 ,𝛽𝑘 ∈ 𝑅𝑑1,𝑝 . Now, the projection algorithm computes for each 𝑘 ∈ [𝑇 ],

c(proj)
𝑘

← Project
(
ppproj, c

(out)
𝑘

, 𝛿1 − 𝛿3
)
.

By Theorem A.8 and linearity of 𝜋𝛿1−𝛿3 (see Lemma A.11), we conclude that c(proj)
𝑘

is an RLWE encoding of
𝜋𝛿1−𝛿3 (𝜇𝑘 ) with error 𝜋𝛿1−𝛿3 (𝑒single,𝑘 ) + 𝑒proj,𝑘 , and 𝑒proj,𝑘 is subgaussian with variance

𝜎2proj = (4𝛿1−𝛿3 − 1)/12 · 𝑡proj𝑑1𝑧2proj𝜎21,𝑒 .

Define �̃�𝑘 B 𝜅−1
𝑑1,𝑑3
(𝜇𝑘 ) ∈ 𝑅𝑑3,𝑝 . By Lemma A.11, we have

𝜅𝑑1,𝑑3 (�̃�𝑘 ) = 𝜋𝛿1−𝛿3 (𝜇𝑘 ). (D.1)

By definition of SetupDB and Lemma A.13,

�̃�𝑘 = 𝜅−1
𝑑1,𝑑3
(𝜇𝑘 ) = 𝜅−1𝑑1,𝑑3

(
𝑥−(𝛾𝑘−1) · 𝑟𝛼𝑘 ,𝛽𝑘

)
= 𝜅−1

𝑑1,𝑑3

(
𝑥−(𝛾𝑘−1) · Π

(
𝑟𝛼𝑘 ,𝛽𝑘 ,1, . . . , 𝑟𝛼𝑘 ,𝛽𝑘 ,2𝜈3

) )
= 𝑟𝛼𝑘 ,𝛽𝑘 ,𝛾𝑘 . (D.2)

We can similarly define 𝑒single,𝑘 B 𝜅−1
𝑑1,𝑑3
(𝑒single,𝑘 ) so that 𝜅𝑑1,𝑑3 (𝑒single,𝑘 ) = 𝜋𝛿1−𝛿3 (𝑒single,𝑘 ). By construction of

the projection map, 𝑒single,𝑘 is also subgaussian with variance 𝜎2rot.

6. Repacking: Next, for each 𝑗 ∈ [𝑛vec], the Answer algorithm computes

c(repack)
𝑗

=
∑︁

𝑖∈[𝑑2/𝑑3 ]
𝑥 (𝑖−1) · (𝑑1/𝑑2 ) · c(proj)(𝑑2/𝑑3 ) · ( 𝑗−1)+𝑖 .

Define 𝜌 𝑗 ∈ 𝑅𝑑1,𝑝 as follows:

𝜌 𝑗 =
∑︁

𝑖∈[𝑑2/𝑑3 ]
𝑥 (𝑖−1) · (𝑑1/𝑑2 ) · 𝜋𝛿1−𝛿3 (𝜇 (𝑑2/𝑑3 ) ( 𝑗−1)+𝑖 ) ∈ 𝑅𝑑1,𝑝 .

Then, we have the following:

𝜌 𝑗 =
∑︁

𝑖∈[𝑑2/𝑑3 ]
𝑥 (𝑖−1) · (𝑑1/𝑑2 ) · 𝜋𝛿1−𝛿3 (𝜇 (𝑑2/𝑑3 ) ( 𝑗−1)+𝑖 )

=
∑︁

𝑖∈[𝑑2/𝑑3 ]
𝑥 (𝑖−1) · (𝑑1/𝑑2 ) · 𝜅𝑑1,𝑑3 (�̃� (𝑑2/𝑑3 ) ( 𝑗−1)+𝑖 ) by Eq. (D.1)

= 𝜅𝑑1,𝑑2
(
Π(�̃� (𝑑2/𝑑3 ) ( 𝑗−1)+1, . . . , �̃� (𝑑2/𝑑3 ) ( 𝑗−1) )

)
by Lemma A.14.

(D.3)

By the linear homomorphism of RLWE encodings, this means c(repack)
𝑗

is an RLWE encoding of ⌊𝑞1/𝑝⌋ · 𝜌 𝑗
with error

𝑒repack, 𝑗 =
∑︁

𝑖∈[𝑑2/𝑑3 ]
𝑥 (𝑖−1) · (𝑑1/𝑑2 ) · 𝜅𝑑1,𝑑3 (𝑒single,(𝑑2/𝑑3 ) ( 𝑗−1)+1)︸                                                          ︷︷                                                          ︸

𝑒
(1)
repack, 𝑗

+
∑︁

𝑖∈[𝑑2/𝑑3 ]
𝑒proj,(𝑑2/𝑑3 ) ( 𝑗−1)+𝑖︸                          ︷︷                          ︸
𝑒
(2)
repack, 𝑗

.
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Again by Lemma A.14, we know that

𝑒
(1)
repack, 𝑗 = 𝜅𝑑1,𝑑2

(
Π(𝑒single,(𝑑2/𝑑3 ) ( 𝑗−1)+1, . . . , 𝑒single,(𝑑2/𝑑3 ) 𝑗 )

)
,

so it follows that 𝑒 (1)repack, 𝑗 is subgaussian with variance 𝜎2rot. Also, 𝑒 (2)repack, 𝑗 is subgaussian with variance
(𝑑2/𝑑3)𝜎2proj. Under the independence heuristic, we conclude that each c(repack)

𝑗
is an RLWE encoding of

⌊𝑞1/𝑝⌋ · 𝜌 𝑗 with error variance
𝜎2pack = 𝜎

2
rot + (𝑑2/𝑑3)𝜎2proj.

7. Vectorizing: The Answer algorithm now computes

c(vec) ← Vectorize
(
ppvec,

(
c(repack)1 , . . . , c(repack)𝑛vec

) )
.

Let ρ B [𝜌1 | · · · | 𝜌𝑛vec ]T ∈ 𝑅
𝑛vec
𝑑1,𝑝

. By Theorem C.2, c(vec) is an RLWE encoding of ⌊𝑞1/𝑝⌋ ·ρwith error variance

𝜎2vec = 𝜎
2
pack + 𝑛vec𝑡vec𝑑1𝑧

2
vec (𝜎 ′1,𝑒 )2/4.

Finally, the Answer algorithm sets a← Compress(ppcomp, c
(vec) ). Consider now the value of (resp1, . . . , resp𝑇 ) output

by Extract(qk, a). By construction, the Extract algorithm first computes

r̂ =


𝑟1
...

𝑟𝑛vec

 ← CompressRecover(S2, a) ∈ 𝑅𝑛vec
𝑑2,𝑝

.

Suppose first that
r̂ = 𝜅−1

𝑑1,𝑑2
(ρ). (D.4)

Fix some 𝑘 ∈ [𝑇 ]. Since 𝑇 = 𝑛vec (𝑑2/𝑑3), we can write 𝑘 = (𝑑2/𝑑3) (𝑘2 − 1) + 𝑘1 for some 𝑘1 ∈ [𝑑2/𝑑3] and 𝑘2 ∈ [𝑛vec].
Then, we have

resp𝑘 = 𝜅−1
𝑑2,𝑑3

(
𝑥−(𝑘1−1) · 𝑟𝑘2

)
= 𝜅−1

𝑑2,𝑑3

(
𝑥−(𝑘1−1) · 𝜅−1

𝑑1,𝑑2
(𝜌𝑘2 )

)
by Eq. (D.4)

= 𝜅−1
𝑑2,𝑑3

(
𝑥−(𝑘1−1 · 𝜅−1

𝑑1,𝑑2

(
𝜅𝑑1,𝑑2

(
Π

(
�̃� (𝑑2/𝑑3 ) (𝑘2−1)+1, . . . , �̃� (𝑑2/𝑑3 )𝑘2

) ) ) )
by Eq. (D.3)

= 𝜅−1
𝑑2,𝑑3

(
𝑥−(𝑘1−1) · Π

(
�̃� (𝑑2/𝑑3 ) (𝑘2−1)+1, . . . , �̃� (𝑑2/𝑑3 )𝑘2

) )
by Lemma A.10

= �̃� (𝑑2/𝑑3 ) (𝑘2−1)+𝑘1 by Lemma A.13
= �̃�𝑘 = 𝑟𝛼𝑘 ,𝛽𝑘 ,𝛾𝑘 by Eq. (D.2).

Thus, when Eq. (D.4) holds, the recovered response resp𝑘 is the desired record.

Bounding the probability of Eq. (D.4). Now, we determine the probability that Eq. (D.4) holds. Let z ←
CompressRecover(S2, a) ∈ 𝑅𝑛vec

𝑑2,𝑞3
. First, c(vec) is an RLWE encoding of ⌊𝑞1/𝑝⌋ · ρ with error variance 𝜎2vec. Then, by

Theorem C.4, z = ⌊𝑞3/𝑝⌋ · 𝜅−1𝑑1,𝑑2
(ρ) + ẽ1 + ẽ2 where

∥ẽ1∥∞ ≤
1
2
(
2 + (𝑞3 mod 𝑝) + 𝑞3

𝑞1
(𝑞1 mod 𝑝)

)
=
1
2
(
2 + 𝑞3

𝑞1
(𝑞1 mod 𝑝)

)︸                     ︷︷                     ︸
𝐵final

,
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since we assume that 𝑝 divides 𝑞3. In addition, ẽ2 is subgaussian with variance

𝜎2resp =
𝑞23
𝑞21
𝜎2vec +

𝑞23
4𝑞22

𝑑1 (𝜎 ′1,𝑠 )2 +
𝑞23
𝑞22
𝜎22,𝑒𝐵

2
comp,

and 𝐵comp is a bound on
g−1𝑧comp

(⌊𝑞2/𝑞1 · 𝑐 (vec)1 ⌉ mod 𝑞2)

2, where 𝑐

(vec)
1 ∈ 𝑅𝑑1,𝑞1 is the first component of c(vec) .8 Finally,

by Theorem 2.4, Eq. (D.4) holds as long as ∥ẽ1 + ẽ2∥∞ <
𝑞3
2𝑝 − (𝑞3 mod 𝑝) = 𝑞3

2𝑝 . By the triangle inequality, it suffices to
bound the probability that ∥ẽ2∥ < 𝑞3

2𝑝 −𝐵final. Since ẽ2 ∈ 𝑅
𝑛vec
𝑑2

is subgaussian with variance 𝜎2resp, we use a subgaussian
tail bound together with a union bound to conclude that

Pr
[
∀𝑘 ∈ [𝑇 ] : resp𝑘 = 𝑟𝛼𝑘 ,𝛽𝑘 ,𝛾𝑘

]
≤ Pr

[
∥ẽ2∥∞ <

𝑞3
2𝑝 − 𝐵final

]
≤ 1 − 2𝑑2𝑛vec exp

(
−𝜋 (𝑞3/2𝑝 − 𝐵final)2

𝜎2resp

)
. (D.5)

We can also consider the single-query correctness error (i.e., the probability that the record for a specific index 𝑘∗ ∈ [𝑇 ]
is correct). In this case, we only require the 𝑑3 coefficients that determine resp𝑘∗ to be correct. Thus, for any 𝑘∗ ∈ [𝑇 ],
we have

Pr
[
resp𝑘∗ = 𝑟𝛼𝑘∗ ,𝛽𝑘∗ ,𝛾𝑘∗

]
≤ 1 − 2𝑑3 exp

(
−𝜋 (𝑞3/2𝑝 − 𝐵final)2

𝜎2resp

)
. (D.6)

In our evaluation of Respire for batch queries (Section 4.3), we choose our parameters to target a fixed single-query
error rate (specifically, a single-query error rate of at most 2−40). This provides a common baseline to compare the
performance for instantiations with different batch sizes.

D.2 Security of Respire

Similar to previous PIR protocols [ACLS18, AYA+21, MCR21, MW22a, MR23, LMRS24, MW24] based on the RLWE
assumption, the security of Respire relies on a circular security or key-dependent message (KDM) security where
RLWE encodings are pseudorandom even given encodings of functions of the secret key. We state the specific
assumption we use below (adapted from [MW24]):

Definition D.1 (Key-Dependent Pseudorandomness of RLWE Encodings). Let 𝜆 be a security parameter, 𝑑 = 𝑑 (𝜆) be
a power-of-two,𝑚 =𝑚(𝜆) be the number of samples, 𝑞 = 𝑞(𝜆) be an encoding modulus, and 𝜒𝑠 = 𝜒𝑠 (𝜆), 𝜒𝑒 = 𝜒𝑒 (𝜆)
be error distributions over 𝑅𝑑 = Z[𝑥]/(𝑥𝑑 + 1). Let F be an efficiently-computable set of functions from 𝑅𝑑,𝑞 to 𝑅𝑑,𝑞 .
For a bit 𝑏 ∈ {0, 1} and an adversary A, let

𝑊𝑏 B Pr
[
AO(·) (1𝜆, a, t𝑏) :

𝑠 ← 𝜒𝑠 , a
r← 𝑅𝑛

𝑑,𝑞
, e← 𝜒𝑚𝑒

t0 = 𝑠a + e, t1 r← 𝑅𝑚
𝑑,𝑞

]
,

where the oracle O takes as input a function 𝑓 ∈ F and outputs (𝑎, 𝑠𝑎 + 𝑒 + 𝑓 (𝑠)) where 𝑎 r← 𝑅𝑑,𝑞 and 𝑒 ← 𝜒𝑒 . We
say that the key-dependent pseudorandomness of RLWE encodings holds with parameters (𝑑,𝑚,𝑞, 𝜒𝑠 , 𝜒𝑒 ) if for all
efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, |𝑊0 −𝑊1 | = negl(𝜆).

Function families. The security of Respire relies on RLWEwith key-dependent pseudorandomness with respect to
the family of automorphisms (since the public parameters in Respire consists of encodings of automorphisms of the se-
cret key) as well as the family of quadratic functions (since the RLWE-to-GSW conversion parameters consists of an en-
coding of an encoding of a quadratic function of the secret key).9 Wedefine the two function families we consider below:
8A trivial bound for 𝐵comp is

√︁
𝑡comp𝑑1 · 𝑧comp/2. When 𝑐

(vec)
1 is pseudorandom and 𝑧comp = 2, we can get a tighter bound on 𝐵comp. We refer

to Remark C.5 for more details.
9Note that we could also modify the scheme to use different keys for the RLWE and the GSW encodings. In this case, we would only need
key-dependent pseudorandomness against linear functions.

50



Definition D.2 (Scaled Automorphisms). Let 𝑅𝑑,𝑞 = Z𝑞 [𝑥]/(𝑥𝑑 + 1) be a polynomial ring with modulus 𝑞 and
dimension 𝑑 . We define the family of (scaled) automorphisms over 𝑅𝑑,𝑞 to be

Fauto B
{
𝑟 ↦→ 𝑘 · 𝜏ℓ (𝑟 ) : 𝑘 ∈ Z𝑞, ℓ ∈ N

}
,

where 𝜏ℓ : 𝑅𝑑,𝑞 → 𝑅𝑑,𝑞 is the Frobenius automorphism that maps 𝑓 (𝑥) ↦→ 𝑓 (𝑥 ℓ ).

Definition D.3 (Quadratic Functions). Let 𝑅𝑑,𝑞 = Z𝑞 [𝑥]/(𝑥𝑑 + 1) be a polynomial ring with modulus 𝑞 and dimension
𝑑 . We define the family of quadratic functions over 𝑅𝑑,𝑞 to be

Fquad B
{
𝑟 ↦→ 𝛼0 + 𝛼1𝑟 + 𝛼2𝑟 2 : 𝛼0, 𝛼1, 𝛼2 ∈ Z𝑞

}
.

Security of Respire. We now give the formal security proof for the Respire protocol.

Theorem D.4 (Respire Security). Let 𝑑1, 𝑑2, 𝑞1, 𝑞2, 𝑞3, 𝜒1,𝑒 , 𝜒1,𝑠 , 𝜒 ′1,𝑒 , 𝜒 ′1,𝑠 , 𝜒2,𝑒 , 𝜒2,𝑠 be the lattice parameters from Con-
struction 3.3. We also define the decomposition bases used in each of the underlying algorithms:

• Let 𝑧GSW be the GSW decomposition base and 𝑡GSW = ⌊log𝑧GSW 𝑞1⌋ + 1.

• Let 𝑧coeff,RLWE, 𝑧coeff,GSW, 𝑧conv be the decomposition bases for query packing (Construction B.6) and 𝑡coeff,RLWE =

⌊log𝑧coeff,RLWE
𝑞1⌋ + 1, 𝑡coeff,GSW = ⌊log𝑧coeff,GSW 𝑞1⌋ + 1, and 𝑡conv = ⌊log𝑧conv 𝑞1⌋ + 1.

• Let 𝑧proj be the decomposition base used for projection (Construction A.7) and 𝑡proj = ⌊log𝑧proj 𝑞1⌋ + 1.

• Let 𝑧vec be the decomposition base used for vectorization (Construction C.1) and 𝑡vec = ⌊log𝑧vec 𝑞1⌋ + 1.

• Let 𝑧comp be the decomposition base use for compression (Construction C.3) and 𝑡comp = ⌊log𝑧comp
𝑞2⌋ + 1.

Let 𝑛vec be the vector length used for vectorization. Let 𝑄 be a bound on the number of queries the adversary makes in
the query privacy game. Suppose that the following assumptions hold:

• Key-dependent pseudorandomness of RLWE with parameters (𝑑1, 2𝑄,𝑞1, 𝜒1,𝑠 , 𝜒1,𝑒 ) and with respect to the family
of automorphisms Fauto (Definition D.2) and quadratic functions Fquad (Definition D.3).

• RLWE𝑑1,𝑛vec𝑡vec , 𝑞1, 𝜒
′
1,𝑠 , 𝜒

′
1,𝑒 .

• RLWE𝑑2,𝑘𝑡comp,𝑞2,𝜒2,𝑠 ,𝜒2,𝑒 , where 𝑘 = 𝑑1/𝑑2.

Then, Construction 3.3 satisfies query privacy for all adversaries making at most 𝑄 queries.

Proof. We start by defining a sequence of hybrid experiments, each parameterized by a bit 𝑏 ∈ {0, 1}:

• Hyb(𝑏 )0 : This is the normal query privacy experiment with bit 𝑏 ∈ {0, 1}. Namely, the challenger first samples
(pp, qk) ← Setup(1𝜆) and gives pp to A. Specifically, the challenger samples 𝑠1 ← 𝜒1,𝑠 and two target keys
s̃′1 ← (𝜒 ′1,𝑠 )𝑛vec and s̃2 ← 𝜒

𝑛vec
2,𝑠 . Define

s1 = [−𝑠1 | 1]T ∈ 𝑅2𝑑1,𝑞1 and S′1 = [−s̃′1 | I𝑛vec ]T ∈ 𝑅
(𝑛vec+1)×𝑛vec
𝑑1,𝑞1

and S2 = [−s̃2 | I𝑛vec ]T ∈ 𝑅
(𝑛vec+1)×𝑛vec
𝑑2,𝑞2

.

The challenger then samples parameters for query packing, projection, vectorization, and response packing:

– ppqpk ←QueryPackSetup(1𝜆, s1).

– ppproj ← ProjectSetup(1𝜆, s1).

– ppvec ← VecSetup(1𝜆, s1, S′1).
– ppcomp ← CompressSetup(1𝜆, S′1, S2).

Concretely, the challenger samples the following:
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– ppqpk: The query compression parameters ppqpk consists of three additional sets of public parame-
ters ppcoeff,RLWE, ppcoeff,GSW, and ppconv. Specifically, for each 𝑗 ∈ [0, 𝛿1 − 1], the challenger samples
Wcoeff,RLWE, 𝑗 ← AutomorphSetup

(
1𝜆, s1, 𝜏𝑑1/2𝑗+1

)
and Wcoeff,GSW, 𝑗 ← AutomorphSetup

(
1𝜆, s1, 𝜏𝑑1/2𝑗+1

)
.

The coefficient-expansion parameters are then

ppcoeff,RLWE =
(
Wcoeff,RLWE,0, . . . ,Wcoeff,RLWE,𝛿1−1

)
ppcoeff,GSW =

(
Wcoeff,GSW,0, . . . ,Wcoeff,GSW,𝛿1−1

)
.

Finally, the challenger computes

ppconv = Vconv =

[
aT
conv

𝑠1aT
conv + eTconv − 𝑠1 (sT1 ⊗ gT

𝑧conv
)

]
∈ 𝑅2×2𝑡conv

𝑑1,𝑞1
.

– ppproj: For each 𝑗 ∈ [0, 𝛿1 − 1], the challenger samples Wproj, 𝑗 ← AutomorphSetup
(
1𝜆, s1, 𝜏𝑑1/2𝑗+1

)
and

sets ppproj = (Wproj,0, . . . ,Wproj,𝛿1−1).
– ppvec: For each 𝑖 ∈ [𝑛vec], the challenger sets

Vvec,𝑖 =

[
aT
vec,𝑖

s̃′1a
T
vec,𝑖 + Evec,𝑖 − 𝑠1u𝑖gT

𝑧vec

]
∈ 𝑅 (𝑛vec+1)×𝑡vec

𝑑1,𝑞1
.

– ppcomp: The challenger samples a1, . . . , a𝑘 r← 𝑅
𝑡comp

𝑑2,𝑞2
and E1, . . . , E𝑘 ← 𝜒

𝑛vec×𝑡comp

2,𝑒 , where 𝑘 = 𝑑2/𝑑1. It then
sets

Wcomp =

[
Π(aT

1, . . . , a
T
𝑘
)

Π(s̃2aT
1 + E1, . . . , s̃2aT

𝑘
+ E𝑘 ) − (s̃′1 mod 𝑞2) · gT

𝑧comp

]
∈ 𝑅 (𝑛vec+1)×𝑡comp

𝑑1,𝑞2
.

The challenger sets qk = (s1, S2) and pp = (ppqpk, ppproj, ppvec, ppcomp). When algorithm A makes a query on
a pair of indices (idx0, idx1), the challenger replies with q ←Query(qk, idx𝑏).10 Specifically, the challenger
parses idx𝑏 = (𝛼, 𝛽,𝛾) ∈ [2𝜈1 ] × [2𝜈2 ] × [2𝜈3 ], let 𝛼𝑖 = 1 if 𝑖 = 𝛼 and 0 otherwise. Let 𝛽1 · · · 𝛽𝜈2 be the binary
representation of 𝛽 − 1 and 𝛾1 · · ·𝛾𝜈3 be the binary representation of 𝛾 − 1. It sets the query to be

q←QueryPack
(
s1, (⌊𝑞1/𝑝⌋ · 𝛼1, . . . , ⌊𝑞1/𝑝⌋ · 𝛼2𝜈1 ), (𝛽1, . . . , 𝛽𝜈2 , 𝛾1, . . . , 𝛾𝜈3 )

)
.

The query q = (enc1, enc2) where enc1 = c1 ∈ 𝑅2𝑑1,𝑞1 and enc2 = c2 ∈ 𝑅2𝑑1,𝑞1 are RLWE encodings under s1. After
A finishes making queries, it outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb(𝑏 )1 : Same as Hyb(𝑏 )0 , except the challenger samplesWcomp
r← 𝑅

(𝑛vec+1)×𝑡comp

𝑑1,𝑞2
.

• Hyb(𝑏 )2 : Same as Hyb(𝑏 )1 , except the challenger samples Vvec,𝑖
r← 𝑅

(𝑛vec+1)×𝑡vec
𝑑1,𝑞1

for all 𝑖 ∈ [𝑛vec].

• Hyb(𝑏 )3 : Same as Hyb(𝑏 )2 , except the challenger samples

Vconv
r← 𝑅

2×2𝑡conv
𝑑1,𝑞1

, Wcoeff,RLWE,𝑖
r← 𝑅

2×𝑡coeff,RLWE

𝑑1,𝑞1
, Wcoeff,GSW,𝑖

r← 𝑅
2×𝑡coeff,GSW
𝑑1,𝑞1

, Wproj,𝑖
r← 𝑅

2×𝑡proj
𝑑𝑞 ,𝑞1

.

In response to each query, the challenger also samples c1, c2 r← 𝑅2
𝑑1,𝑞1

.

For an adversaryA, we writeHyb(𝑏 )
𝑖
(A) to denote the output distribution of an execution ofHyb(𝑏 )

𝑖
with adversaryA.

Since the challenger’s behavior in Hyb(𝑏 )3 is independent of the bit 𝑏, we have that for all adversariesA, Hyb(0)3 (A) ≡
Hyb(1)3 (A). Thus, it suffices to show that each adjacent pair of distributions are computationally indistinguishable:
10Technically, in the batch setting, the adversary can specify two lists of𝑇 queries. However, since the real scheme generates the batch queries
using 𝑇 independent invocations of the single-query scheme, we can assume without loss of generality that the adversary only queries on
one index at a time. The adversary can always simulate a single query on𝑇 indices using𝑇 individual queries, each on a single index.
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Database Size ν1 ν2 ν3

256 MB 9 9 2
512 MB 9 10 2
1 GB 10 10 2
2 GB 10 11 2
4 GB 11 11 2
8 GB 11 12 2

Table 3: Database dimensions 𝜈1, 𝜈2, and 𝜈3 for Respire (Construction 3.2) as a function of the database size. Each record
is 256 bytes. In all of our instantiations, we set 𝑑1 = 2048, 𝑑2 = 𝑑3 = 512, 𝑝 = 24, 𝑞1 = 268369921 · 249561089 ≈ 256,
𝑞2 = 16760833 ≈ 224, 𝑞3 = 28, and 𝜈3 = log2 (𝑑1/𝑑3) = 2.

• First Hyb(𝑏 )0 (A) and Hyb(𝑏 )1 (A) are computationally indistinguishable under the RLWE𝑑2,𝑘𝑡comp,𝑞2,𝜒2,𝑠 ,𝜒2,𝑒 as-
sumption. The only difference between these experiments is the distribution of Wcomp. Thus, under the
RLWE𝑑2,𝑘𝑡comp,𝑞2,𝜒2,𝑠 ,𝜒2,𝑒 assumption, we have that for 𝑠2,𝑖 ← 𝜒2,𝑠 , the distributions of

𝑠2,𝑖
[
aT
1 | · · · | aT

𝑘

]
+

[
eT1 | · · · | eT𝑘

]
,

where e𝑖 ← 𝜒
𝑡comp

2,𝑒 is pseudorandom. By a hybrid argument over each component of 𝑠2,𝑖 , we conclude that
s̃2aT

𝑖 + E𝑖 is computationally indistinguishable from uniform for all 𝑖 ∈ [𝑘]. By definition of the ring packing
function Π (Eq. (3.3) and Definition A.12), this means that Π(s̃2aT

1 + E1, . . . , s̃2aT
𝑘
+ E𝑘 ) is computationally

indistinguishable from uniform. This is the distribution in Hyb(𝑏 )1 (A).

• Hybrids Hyb(𝑏 )1 (A) and Hyb(𝑏 )2 (A) are computationally indistinguishable under the RLWE𝑑1,𝑛vec𝑡vec,𝑞1,𝜒 ′1,𝑠 ,𝜒
′
1,𝑒

assumption. By a hybrid argument (over the 𝑛vec components of s̃′1), we have that for all 𝑖 ∈ [𝑛vec], s̃′1aT
vec,𝑖 +Evec,𝑖

is computationally indistinguishable from uniform. In this case, the distribution of each Vvec,𝑖 is uniform over
𝑅
(𝑛vec+1)×𝑡vec
𝑑1,𝑞1

. This is the distribution in Hyb(𝑏 )2 (A).

• Hybrids Hyb(𝑏 )2 (A) and Hyb(𝑏 )3 (A) are computationally indistinguishable assuming key-dependent pseudo-
randomness of RLWE with parameters (𝑑1, 2𝑄,𝑞1, 𝜒1,𝑠 , 𝜒1,𝑒 ) and with respect to the family of automorphisms
Fauto (Definition D.2) and quadratic function Fquad (Definition D.3), where 𝑄 is the number of queries the
adversary makes in the query privacy game. First, we observe that the matrices Wcoeff,RLWE,𝑖 , Wcoeff,GSW,𝑖 ,
andWproj,𝑖 are matrices sampled using AutomorphSetup. From Eq. (A.1), each of these matrices is an RLWE
encoding of a scaled automorphism of 𝑠1 under s1. The reduction can simulate these components using the
key-dependent pseudorandomness oracle (by querying on functions in Fauto). Next, the encodings Vconv is an
RLWE encoding of a quadratic function of 𝑠1 under s1. Again, this can be simulated using the key-dependent
pseudorandomness oracle (by querying on functions in Fquad). Finally, the challenger’s response to each of the
adversary’s queries consists of two RLWE encodings (c1, c2) under s1, which can be simulated using the RLWE
challenge itself. We conclude that the output of the two distributions are computationally indistinguishable.

Since each pair of adjacent distributions are computationally indistinguishable, query privacy holds. □

E Respire Parameters

In this section, we give the concrete lattice/batching parameters we use in both the single-query version (Table 3)
and the batched version (Table 4) of the Respire protocol. We also give the (shared) gadget parameters in Table 5.
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Hashing Parameters

Database Size Batch Size # Buckets B Bucket Size K ν1 ν2 ν3 nvec

256 MB

4 7 128 MB 9 8 2 2
8 13 64 MB 8 8 2 4
16 25 32 MB 8 7 2 7
32 49 16 MB 7 7 2 8
64 98 8 MB 7 6 2 8
128 197 4 MB 6 6 2 8
256 398 2 MB 6 5 2 8

1 GB

4 7 512 MB 10 9 2 2
8 13 256 MB 9 9 2 4
16 25 128 MB 9 8 2 7
32 49 64 MB 8 8 2 8
64 97 32 MB 8 7 2 8
128 194 16 MB 7 7 2 8
256 391 8 MB 7 6 2 8

Table 4: Database dimensions 𝜈1, 𝜈2, 𝜈3, and hashing parameter breakdown for the batched version of Respire
(Construction 3.3) as a function of the database size and the batch size. Specifically, for each batch size and
database configuration, we partition the database into 𝐵 buckets, each of size 𝐾 (see Section 4.3 for more details
of the construction). Each of the sub-databases has dimension (𝜈1, 𝜈2, 𝜈3). The size of each record is fixed to be
256 bytes. In all of our instantiations, we set the lattice parameters as follows: 𝑑1 = 𝑑2 = 2048, 𝑑3 = 512, 𝑝 = 24,
𝑞1 = 268369921 · 249561089 ≈ 256, 𝑞2 = 249857 ≈ 218, 𝑞3 = 28, and 𝜈3 = log2 (𝑑1/𝑑3) = 2.

Parameters Description Length (𝑡 ) Base (𝑧)

𝑡GSW, 𝑧GSW GSW encodings (Section 2) 8 127
𝑡coeff,RLWE, 𝑧coeff,RLWE RLWE encoding packing (Constructions B.1 and B.6) 4 16088
𝑡coeff,GSW, 𝑧coeff,GSW GSW encoding packing (Constructions B.1 and B.6) 20 7
𝑡conv, 𝑧conv RLWE to GSW conversion (Constructions B.4 and B.6) 4 16088
𝑡proj, 𝑧proj Projection (Construction A.7) 20 7
𝑡vec, 𝑧vec Vectorization (Construction C.1) 2 258794687
𝑡comp, 𝑧comp Compression (Construction C.3) ⌊log(𝑞2)⌋ + 1 2

Table 5: Respire decomposition bases (𝑧) and decomposition lengths (𝑡 ) for the underlying sub-algorithms.
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