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Abstract. Compared to elliptic curve cryptography, a main drawback
of lattice-based schemes is the larger size of their public keys and ci-
phertexts. A common procedure for compressing these objects consists
essentially of dropping some of their least significant bits. Albeit effec-
tive for compression, there is a limit to the number of bits to be dropped
before we get a noticeable decryption failure rate (DFR), which is a secu-
rity concern. To address this issue, this paper presents a family of error-
correction codes that, by allowing an increased number of dropped bits
while preserving a negligible DFR, can be used for both ciphertext and
public-key compression in modern lattice-based schemes. To showcase
the impact and practicality of our proposal, we use the highly optimized
ML-KEM, a post-quantum lattice-based scheme recently standardized
by NIST. We provide detailed procedures for tailoring our codes to ML-
KEM’s specific noise distributions, and show how to analyze the DFR
without independence assumptions on the noise coefficients. Among our
results, we achieve between 4% and 8% ciphertext compression for ML-
KEM. Alternatively, we obtain 8% shorter public keys compared to the
current standard. We also present isochronous implementations of the
decoding procedure, achieving negligible performance impact in the full
ML-KEM decapsulation even when considering optimized implementa-
tions for AVX2, Cortex-M4, and Cortex-A53.

1 Introduction

In 2022, NIST started its post-quantum standardization process, aiming to se-
lect a set of schemes that are secure even if large-scale quantum computers are
available to an attacker. Unlike traditional solutions like RSA [34] and schemes
based on elliptic curves [24]), which can be broken by Shor’s algorithm [38],
post-quantum schemes are based on problems for which quantum algorithms are
believed to have no significant advantage. After six years, NIST chose Kyber [7], a
lattice-based key encapsulation mechanism (KEM), for standardization as ML-
KEM in FIPS 203 [30]. Nevertheless, NIST still considers other lattice-based
schemes, like Saber [15], NTRU [14], and NewHope [2], as promising options.
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Modern lattice-based schemes are typically very computationally efficient,
and often even faster than traditional cryptographic solutions in use today. Their
main limitation, however, is that the sizes of their public keys and ciphertexts
are orders of magnitude larger than schemes based on elliptic curves. While it is
possible to compress public keys and ciphertexts by dropping a few of their least
significant bits, there is a limit to how much one can compress them before seeing
a noticeable decryption failure rate (DFR), which is a security concern [16,18,22].
This is a reason why designers of lattice-based schemes usually employ different
error-correction strategies aiming to achieve a negligible DFR.

Following Regev’s [33] work, ML-KEM and other efficient lattice-based
schemes use the same encoding scheme during encryption: each bit b of the
message is encoded into Zq as b⌈q/2⌉. However, some schemes take additional
steps to achieve better error correction. For example, some lattice-based
candidates in the first round of NIST’s post-quantum standardization pro-
cess [1] apply distinct error-correction codes to the message before encryption:
LAC [28] uses well-known BCH codes; Round5 [8] uses a custom code named
XEf [35]; and NewHope [2] uses repetition codes. Interestingly, a previous
version of NewHope [3] used more complex, 4-dimensional lattice codes, but
those were superseded in favor of the simpler repetition codes, which are easier
to understand and analyze.

Recent works explore ways to adapt Kyber for the use of higher-dimensional
lattice codes [27, 36, 37]. Unfortunately, these techniques come with significant
limitations. Liu and Sakzad’s [27] approach assumes that the coefficients of the
noise polynomial accumulated during decryption are independent, which does
not hold in practice and may result in an overestimation of the scheme’s se-
curity [16]. Meanwhile, although the work by Saliba et al. [36, 37] does not
require independence assumptions, the resulting Kyber variant has a larger ci-
phertext size. Moreover, all of these approaches [27, 36, 37] require changing at
least one of Kyber’s core parameters: the polynomial degree n and the modu-
lus q. Consequently, the resulting constructions are unable to take advantage of
Kyber’s NTT-based efficient polynomial multiplications, a major feature behind
the scheme’s high performance.

Contributions. We present a new family of higher-dimensional error-correction
codes, called Minal codes, that can, in principle, be applied to most modern
lattice-based KEMs, such as Kyber [7], Saber [15], or NewHope [2]. The most
important property of our Minal codes is that they can be tailored for the specific
distribution of the error to be corrected, which depends on the algorithms and
parameters used by the target scheme. To evaluate our proposal in a concrete
scenario, we chose ML-KEM due to its relevance. When compared to previous
work, our proposal has the following benefits.

1. Concrete improvements to ML-KEM without independence assumptions. Un-
like Liu and Sakzad [27], we do not rely on additional independence assump-
tions to obtain shorter ciphertexts. Also, unlike Saliba et al. [27,36,37], our
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codes are able to provide ciphertext compression with negligible DFR. More-
over, our proposal allows 4% to 8% ciphertext compression while maintaining
ML-KEM’s DFR close to the values targeted by the current standard. Al-
ternatively, our codes can be used for obtaining 8% compression of public
keys in all security levels.

2. Emphasis on crypto-agility. All previous encoding proposals for Kyber re-
quire changes in its core parameters n and q, which define the polynomial
ring Rq = Zq[x]/(x

n + 1), used in most operations. This undermines crypto-
agility, since most optimizations for NTT-based multiplication and modular
operations from existing implementations would not be directly applicable,
making them unlikely to be integrated into ML-KEM. In contrast, our codes
do not require any change to the core parameters n and q.

3. Negligible performance impact, while avoiding timing side-channels. Unlike
previous work, we evaluate our proposal’s performance via an isochronous
implementation – i.e., where the number of operations does not depend on
any secret information. The performance impact of our codes on ML-KEM’s
decapsulation is evaluated considering highly optimized implementations us-
ing AVX2 instructions or running on Cortex M4 and A53 processors. In most
of the platforms considered, the impact on decapsulation is below 1%.

4. Fully reproducible. To enable independent verification, the code and data as-
sociated with this paper are publicly available at (omitted for anonymization,
but these are provided to the referees as companion code).

Paper organization. Section 2 reviews background concepts and notation. Sec-
tion 3 describes ML-KEM and related works on alternative encoding methods.
Section 4 presents our new family of codes. Section 5 introduces the techniques
we use to obtain efficient isochronous implementation of the decoding operation.
Section 6 describes how to compute ML-KEM’s decryption failure rate when
using our codes. Section 7 shows how our codes can be used to obtain shorter
ciphertexts for ML-KEM, and discusses further applications. Section 8 concludes
the discussion with open questions and ideas for future work.

2 Background and notation

For any prime q, we write Zq to denote the field of integers modulo q. When n is a
fixed positive integer, we let Rq denote the polynomial ring Zq[x]/(x

n+1). Then,
Rk

q is the free module1 of rank k whose scalars are polynomials in Rq. Polynomials
a ∈ Rq are denoted using lowercase letters. Vectors a ∈ Rk

q and matrices A ∈
Rk×k

q are denoted in bold using lowercase and uppercase, respectively, where
k ⩾ 1. When u,v ∈ Rk

q , we let ⟨u,v⟩ ∈ Rq denote their dot product.
To get the vector-equivalent of a polynomial, we define the poly_to_vec

function, which, given a polynomial a ∈ Rq, returns its n coefficients as a vector
1 Modules are generalizations of vector spaces that allow scalars to be members of a

ring instead of requiring a field.
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in Zn
q . In other words, given the polynomial a = a0 + a1x+ . . .+ an−1x

n−1, we
have a = poly_to_vec(a) =

[
a0, a1, . . . , an−1

]
. With a slight abuse of notation,

we denote the i-th coefficient of a polynomial a ∈ Rq, associated with the power
xi, by either ai (when discussing the polynomial form of a) or by a[i] (when
discussing its vector equivalent), where 0 ⩽ i < n. Analogously, pairs of coeffi-
cients from polynomial a are denoted by a[i, j] = (a[i], a[j]). We denote by Bη

the centered binomial distribution (CBD) with range [−η, η].
The circulant matrix generated by a vector a ∈ Zn is the n×n matrix whose

first row is a, and each subsequent row is a right circular shift of the row above
it. Let negashifti be the function that returns the i-th column of the negacyclic
matrix generated by the coefficients of a given polynomial. For example, if a =
a0+a1x+. . .+an−1x

n−1, then negashifti(a) =
[
ai, . . . , a0,−an−1, . . . ,−ai+1

]
.

With this notation, we can represent the product of polynomials a and b in the
negacyclic ring Rq using its vector form, whose i-th coefficient is given by

poly_to_vec(ab)[i] = ⟨poly_to_vec(a), negashifti(b)⟩ . (1)

The centered modulo operation, denoted as a′ = amod±q, returns the unique
integer a′ such that a′ ≡ a mod q and −⌊(q − 1)/2⌋ ⩽ a′ ⩽ ⌈(q − 1)/2⌉. The dis-
tance modulo q between two points v1 and v2, is defined as distq(v1,v2) =∥∥(v1 − v2)mod±q

∥∥. We write y ← Compress(x, d) to denote the lossy compres-
sion of x to d bits, where d < ⌈log2 q⌉. The compression function is defined as
Compress(x, d) =

⌊(
2d/q

)
x
⌉
mod 2d, where ⌊·⌉ is the rounding function that

rounds up on ties. The decompression is defined as x′ = Decompress(y, d) =⌊(
q/2d

)
y
⌉
. The error |x′ − x| caused by (de)compression is then almost uni-

form over the set
{
−
⌊
q/2d+1

⌋
, . . . ,

⌈
q/2d+1

⌉}
, with possibly some slight skewness

when q is not a power of 2.

3 ML-KEM

This section briefly reviews ML-KEM’s main procedures and selection of security
parameters. We also discuss previous work on alternative encoding mechanisms
proposed that are related to our construction.

3.1 Parameters and algorithms

ML-KEM is a lattice-based key encapsulation mechanism (KEM) whose security
relies on the intractability of the module learning with errors (MLWE) problem.
Essentially, it enables two parties to establish a shared 256-bit secret. In what
follows, we present a slightly simplified version of ML-KEM that, although lack-
ing some details, is sufficient for our discussion. In particular, we describe only
the underlying algorithms that make the core of ML-KEM secure against chosen-
plaintext attacks (CPA), ignoring the implicit-rejection Fujisaki-Okamoto (FO)
transformation that protects the scheme against adaptive chosen-ciphertext at-
tacks (CCA) [21,23]. Furthermore, we omit the optimizations based on the num-
ber theoretic transform (NTT) that are part of the ML-KEM specification.
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Table 1. ML-KEM parameters for each security level [30].

NIST security Parameter set k η1 η2 du dv
Ciphertext
size (bytes) DFR

Level 1 ML-KEM-512 2 3 2 10 4 768 2−139.1

Level 3 ML-KEM-768 3 2 2 10 4 1088 2−165.2

Level 5 ML-KEM-1024 4 2 2 11 5 1568 2−175.2

Setup. ML-KEM supports three (out of the five) security levels defined by
NIST, namely levels 1, 3, and 5 [30]. For all security levels, it fixes parameters q =
3329 and n = 256, defining the polynomial ring Rq = Zq[x]/(x

n + 1) over which
most operations are performed. This benefits crypto-agility, as any optimization
or hardware acceleration for operations in Rq can be reused for all security levels.

Given a desired security level, the setup takes public parameters k, η1, η2, du,
and dv from Table 1: k defines the sizes of the modules used in the scheme; η1
and η2 define the centered binomial distributions Bη1 and Bη2 , used to generate
coefficients with small norm in Zq; and integers du and dv are the number of
bits into which coefficients from the two parts of the ciphertext are compressed.
Table 1 also shows the upper bounds on the decryption failure rate (DFR) for
each parameter set, as computed using the Kyber security scripts [17].

Key generation. Let A be a k×k matrix of polynomials sampled uniformly at
random from Rq. Sample two vectors s and e from Bη1

(
Rk

q

)
, i.e., the coefficients

of their polynomials are sampled according to the centered binomial distribu-
tion Bη1

. Compute vector t = As+ e ∈ Rk
q . The resulting public key is the pair

(A, t), while the private key is the vector s ∈ Rk
q .

Encryption. Let m be an n-bit message to be encrypted using public-key
(A, t). Sample vectors r and e1 from Bη1

(
Rk

q

)
and Bη2

(
Rk

q

)
, respectively. Sim-

ilarly, sample a polynomial e2 from Bη2
(Rq). Let u = ATr + e1. Compute

polynomial z = ⟨t, r⟩ + e2. Let v = Encode (m) + z, where the encoding func-
tion, when applied to each bit b of m, returns Encode (b) = b⌈q/2⌉. Compress
the coefficients of vector u and polynomial v to du and dv bits, respectively,
obtaining cu = Compress(u, du) and cv = Compress(v, dv). Finally, return the
ciphertext (cu, cv).

Decryption. To decrypt ciphertext (cu, cv) using secret key s, first decom-
press the ciphertext components to obtain u′ = Decompress(cu, du) and v′ =
Decompress(cv, dv). Compute m′ = v′−⟨u′, s⟩. Let ∆u = Decompress(cu, du)−u
and ∆v = Decompress(cv, dv)− v. We can then write m′ = Encode (m) + ∆m,
where the accumulated noise polynomial ∆m is given by

∆m = ⟨e, r⟩ − ⟨s, e1 +∆u⟩+ e2 +∆v.
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ML-KEM’s parameters are carefully chosen to ensure that polynomial ∆m
has only relatively small coefficients. Therefore, the message can be recovered
by computing m̂ = Decode (m′), where the decoding function, applied to each
coefficient m′[i] of the noisy message polynomial m′, returns

Decode (m′[i]) =

{
0, if |m′[i]mod±q| < ⌈q/4⌉, and
1, otherwise.

In the next section, we briefly discuss how ML-KEM’s parameters are chosen
to ensure security and a negligible decryption failure rate.

3.2 Security and decryption failure rate

ML-KEM’s design and security analysis revolve around finding parameters that
ensure the MLWE problems protecting the secret key and the ciphertext are
hard to solve while maintaining a negligible DFR. To facilitate the scheme’s
security analysis, the Kyber team provided public scripts [17] that compute the
complexity of known attacks, which is obtained through the core-SVP hardness
measure [3], and the resulting DFR for a given parameter set.

The parameters having the most impact on the MLWE security are the mod-
ulus q, the degree n, and the module dimension k, together with the parameters
η1 and η2 that control the noise added to the LWE samples. Albeit not as much,
the ciphertext compression parameters du and dv can also affect security. In
particular, under the learning with rounding (LWR) hardness assumption, in-
creasing the deterministic compression noise improves security. This is explored
in the choice of ML-KEM-512 parameters to reduce ciphertext sizes, making it
the only parameter set whose security is based both on the hardness of LWE
and on an LWR-like assumption.

For a given parameter set, the DFR is algorithmically computed as follows.
Since each coefficient ∆m[i] follows the same distribution, we can start by com-
puting the distribution of ∆m[0]. This is done by considering the sums of the
distributions corresponding to the right-hand side of the following equation

∆m[0] = ⟨e, r⟩ [0]− ⟨s, e1 +∆u⟩ [0] + e2[0] + ∆v[0],

which are easy to compute. Then, an upper bound on the DFR is computed
using the union bound as

Pr (Decryption fails) = Pr
(∣∣∆m[i] mod±q

∣∣ ⩾ q/4 for any 0 ⩽ i < n
)

⩽ nPr
(∣∣∆m[0] mod±q

∣∣ ⩾ q/4
)
.

A necessary condition for a KEM to provide CCA security is to resist attacks
exploiting decryption failures [18, 22]. Unfortunately, apart from being negligi-
ble, there is no clear guidance on how the DFR should be selected. Code-base
schemes such as BIKE [4] and HQC [29] target very low DFRs of 2−λ, where λ
is the scheme’s security in bits, while ML-KEM and Saber are more permissive.
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Namely, in Kyber’s round 2 specification, the authors state that the DFR tar-
get was at most 2−160 for all security levels [6, §1.5]. This was later relaxed in
round 3, with DFR targets of 2−128 for level 1, and kept at 2−160 for levels 3 and
5 [7, §1.4 and §4.4]. In its specification, Saber [15] does not state DFR targets,
but only the achieved DFRs of 2−120, 2−136 and 2−165 for NIST security levels
1, 3, and 5.

In an effort to deliver DFR levels close to the state of the art in lattice-
based schemes, we hereby define our DFR targets for each security level as
the maximum between the DFR targets set by Kyber and the concrete DFR
provided by Saber parameter sets. This gives us DFR1 = 2−120, DFR3 = 2−136

and DFR5 = 2−160, for levels 1, 3, and 5, respectively. These targets are used
in Section 6 to select viable parameter sets for each security level using the
alternative encoding mechanisms proposed in this paper.

3.3 Previous work on alternative encoding methods for Kyber

Like our work, some recent studies present strategies to use higher-dimensional
codes in Kyber variants. One example is [27], which relies on lattice codes with
dimensions 16 and 24. The authors claim to improve both the DFR and the
ciphertext size, but they require n to be changed, preventing the NTT-based
multiplication. Moreover, their work, like most proposals for error correction
in lattice-based schemes, requires independence assumptions on the coefficients
of the noise polynomial ∆m, which do not hold in practice and are known to
cause underestimation of the DFR when error-correction codes are used [16]. In
particular, these assumptions would break Kyber’s DFR arguments from Section
3.2, so it would be hard (if at all feasible) to adapt [27] to Kyber’s design.

More closely related to our work is the approach taken by Saliba et al. [37],
which is explained in depth in Saliba’s PhD thesis [36]. They propose a vari-
ant of Kyber based on reconciliation, which, in lattice-based schemes, refers to
a procedure in which the sender and receiver produce the same shared string
from different noisy versions of it. This contrasts with the encoding-decoding
paradigm, where the intended shared message is predefined. Their construction
uses 8-dimensional lattice codes and does not require independence assumptions,
so it can be seen as an extension of the original NewHope’s DFR analysis [3,31]
to Kyber. While [37] delivers between 10 to 15 extra bits of LWE security for
Kyber’s 3 security levels, the proposal has a few practical shortcomings, listed in
Table 2. One of the main issues is that the values of the modulus q are powers of
two, which means they cannot use the NTT for polynomial multiplication. Fur-
thermore, their scheme increases the ciphertext size in all security levels, while
the DFR is increased in levels 1 and 5. For example, compared with Kyber, there
is a noticeable increase in the DFR for level 5, by a factor of 237.

In summary, since the approaches found in the literature [27,36,37] on alter-
native Kyber encoding mechanisms require either changing n or q, they do not
benefit from a core feature in Kyber: the fast NTT-based multiplication. For in-
stance, Saliba et al.’s proposal [37] requires different values of q for each security
level, hindering Kyber’s crypto-agility properties. We note that their proposal’s
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Table 2. The DFR and ciphertext sizes obtained by Saliba et al. [36, 37].

Security q
Ciphertext
size (bytes) DFR Relative

ciphertext size
Relative
DFR

Advantages
(ciphertext
size and DFR)

Level 1 211 832 2−133 108.3% 26 None
Level 3 211 1184 2−174 108.8% 2−10 Better DFR
Level 5 211 1600 2−137 102.0% 237 None

performance impact is not reported, though, and we were unable to find any
publicly available implementation for conducting an independent evaluation.

4 Minal codes: tailorable codes for lattice-based schemes

In this section, we introduce the family of Minal codes.2 We start by providing
motivation for higher-dimensional codes and listing desirable properties for codes
suitable to lattice-based schemes. We then present the formal definition of Minal
codes and their core properties.

4.1 Motivation

Consider ML-KEM’s mechanism for encoding a message into a polynomial. We
can treat it as a two-dimensional code by pretending it encodes a pair (b0, b1) of
message bits into coefficients (b0⌈q/2⌉, b1⌈q/2⌉) ∈ Z2

q. This code is illustrated in
Figure 1a, where dots denote the codewords, and the circles around them show
the radius of minimum distance decoding (i.e., any point falling into the area of
a given circle is corrected to the valid codeword at its center).

This 2D view of ML-KEM’s code in Figure 1a highlights one possible prob-
lem: it leaves too much uncovered space under its minimum distance. To support
denser codes in 2 or more dimensions, one solution is to use lattice codes. For
example, Figure 1b shows a lattice code with minimum distance ≈ 1722. Lattice
codes are well-known to be useful for correcting Gaussian noise, or errors that
have a short Euclidean norm. However, it can be difficult to use them directly
in lattice-based schemes because, in general, they are not periodic in Zn

q . To see
why this is a problem, consider what happens when one adds (q, q) to the (0, 0)
point to the lattice shown in Figure 1b. Ideally, since ML-KEM’s operations are
done in Zq, we would like (q, q) to result in a point encoding (0, 0), however, the
resulting point is not a codeword, and the closest codewords to it are encodings
of (0, 1) and (1, 0). Notice that, since the 2D view of ML-KEM’s code illustrated
in Figure 1a is periodic in Z2

q, this problem is avoided.
Previous proposals [36, 37] handle this issue by changing the parameter q

to powers of 2, so it is easy to employ an 8D lattice that is periodic in Z8
q.

While this allows such proposals to exploit the lattice structure when proving the
2 The name Minal is an acronym for Minal is not a lattice.
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Figure 1. Comparison between the original ML-KEM code seen as a 2D code
and a denser lattice code. The shaded areas represent the Z2

q square.

DFR of the resulting scheme, these values of q significantly impact ML-KEM’s
performance, because fast NTT multiplication would no longer be available.
Furthermore, the resulting scheme has larger ciphertexts than ML-KEM.

In what follows, we introduce a new family of higher-dimensional codes, called
Minal codes, that can be seen as an intermediate between lattice codes and ML-
KEM’s code. On the one hand, we enforce, by construction, that the resulting
n-dimensional code is periodic in Zn

q . On the other hand, our code’s structure
is not as rigid as ML-KEM’s code: it uses a tailoring parameter that allows the
position of the codewords to change, allowing the code to be more efficient for
the particular error distribution observed on the target lattice-based scheme.

4.2 Definitions and properties

We begin with a formal definition of Minal codes.

Definition 1 (Minal code). Given an integer n ⩾ 2, a prime number q, and
a non-negative integer β < q/2, the n-dimensional Minal code with parameter
β over alphabet Fq is the infinite set of points defined as

M = {Gm+ qz : z ∈ Zn and m ∈ Zn
2},

where G ∈ Zn×n, the generator matrix of M, is the circulant matrix generated
by [⌊q/2⌋, β, 0, . . . , 0]. Parameter β is called the tailoring parameter. We say that
c encodes an n-bit message m ∈ Zn

2 when c = Gm+ qz, for some z ∈ Zn. ⊓⊔

A natural consequence of Definition 1 is that, by setting (q, β) = (3329, 0),
we get n-dimensional Minal codes that are equivalent to the code used by ML-
KEM. Furthermore, notice that the simple definition of Minal codes can mislead
one to think that they have a linear structure. However, unlike linear codes or
lattice codes, Minal codes do not even form groups, as these sets are not closed
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under addition. For concreteness, take two codewords c1 = Gm1 + qz1 and
c2 = Gm2 + qz2. Their sum c1 + c2 = G(m1 +m2) + q(z1 + z2) is not always
a codeword because m1 +m2 is not guaranteed to be in Zn

2 .
The structure of Minal codes in Zn

q is repeated over all Zn. Therefore, we
consider that the main representative of each codeword lies in Zn

q . In addition,
to measure the distance between elements of Zn, we use the distance modulo q
metric, defined as distq(v1,v2) =

∥∥(v1 − v2)mod±q
∥∥. We can then define the

minimum distance decoding under the distq metric as follows.

Definition 2 (Minimum distance decoding). Let M be an n-dimensional
Minal code over Fq with generator G, and suppose we are given a vector t ∈
Zn. A minimum distance decoder is an algorithm that finds the point m =
Decode (t) ∈ Zn

2 that minimizes distq(t,Gm), that is, the distance between t
and the codeword corresponding to m. ⊓⊔

Interestingly, Definition 2 implicitly defines a simple algorithm to decode a
vector t ∈ Zn: iterate over all possible m ∈ Zn

2 to find the closest codeword to t.
While this algorithm’s complexity is clearly exponential on the dimension n, it
is efficient in small dimensions. In fact, this is the decoder we use in Section 5.1
for decoding 4D Minal codes that can be applied to ML-KEM. Moreover, in
Section 5.2, we also show a more efficient decoder that is specific for n = 2.

Naturally, minimum distance decoding is more effective when codewords are
farther apart. This motivates us to compare different codes based on the widely
used minimum distance property, which is defined next for Minal codes.

Definition 3 (Minimum distance). The minimum distance of an n-
dimensional Minal code M over Fq, denoted as dist (M), is the smallest distance
between different points in M, that is

dist (M) = min{distq(c1, c2) : c1, c2 ∈M and c1 ̸= c2}
= min{distq(Gm1,Gm2) : m1,m2 ∈ Zn

2 and m1 ̸= m2}. ⊓⊔

The main feature of Minal codes is that, by tuning the tailoring parameter
β, we get better codes for different error distributions. The next section explores
this in more detail, showing tailoring procedures for finding the best value of β
in a way that minimizes the code’s DFR for a given error distribution.

4.3 Tailoring Minal codes for lattice-based schemes

In most lattice-based schemes, the accumulated noise that needs to be corrected
during decryption is a sum of two components. The first is an approximately nor-
mal distribution stemming from the sums of products of polynomials with a small
norm. The second, present in schemes allowing ciphertext compression, is an
approximately uniform component resulting from the decompression error. For
concreteness, notice that the error polynomial ∆m in ML-KEM indeed consists
of an approximately normal factor, coming from (⟨e, r⟩ − ⟨s, e1 +∆u⟩+ e2), and
a somewhat uniform term resulting from ∆v.
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Figure 2. The effect of dv in the DFR and best code, for ML-KEM in Level 5.

While it may be appealing to simply pick the code with the largest mini-
mum distance, the best choice actually depends on the nature of the error. For
example, when the noise is normally distributed, the best code should indeed be
the one with the largest minimum distance. However, if the noise is uniform in
a region, then ML-KEM’s original code would be a better choice.

In what follows, we evaluate how to find the optimal tailoring parameter β
under two settings. First, we consider the case in which we are able to fully
determine the distribution of the noise to be corrected. In this case, a simple
exhaustive search for the parameter that minimizes the DFR gives us very good
results, but this can only be done for small dimensions. In particular, for ML-
KEM, this approach only works for 2D. We then show how to find β in larger
dimensions without the need for the full noise distribution.

Tailoring in 2D using exhaustive search. In this case, we assume that the
multidimensional noise distribution is efficiently computable and known. Using
the noise distribution, we find the parameter β that minimizes the DFR using
a simple exhaustive search. While this simple approach can be very effective, it
does not scale well for dimensions higher than 2 because, in these cases, it is
very expensive to compute the full noise distribution.

For a concrete example, we consider the noise distribution for ML-KEM,
which can be computed using the approach described in Section 6.2. The fol-
lowing experiment shows how the best value of β varies depending on the noise
distribution. For ML-KEM-1024, we changed parameter dv from 1 to 12, and
computed the DFR of 2D Minal codes using β = 0 to 500. Figure 2 depicts our
results.

We can make two important observations. First, we clearly see that the best
values of β get larger for increasing dv, although with diminishing returns. Sec-
ond, we see that the DFR improvement compared to ML-KEM’s code (β = 0)
is more noticeable for higher values of dv. Both of these stem from the fact that,
by increasing dv, we progressively lower the uniform component of the noise, in-
creasing the effectiveness of codes with higher minimum distances. Interestingly,
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Figure 3. Level curves of the 2D noise distribution corresponding to probability
2−128 for different values of dv. The values of p show the p-norms where the shape
is closely approximated by a circle.

even for a code with only 2 dimensions, we can see that tailoring has a major
impact on the DFR, taking the DFR of ML-KEM’s original code (β = 0) from
2−192.4 down to 2−205.8 for the best tailored code (β = 445) when dv = 8.

Tailoring in higher-dimensions using p-norms. We now discuss how to
find a good parameter β for n-dimensional codes without having to compute the
joint distribution in n dimensions. Our main observation is that the shape of the
discrete level curves in the joint distribution of the noise can be approximated
by circles in the p-norm. Concretely, if the noise distribution is approximately
normal, then p is close to 2, corresponding to more circular level curves. Alter-
natively, if the uniform component of the noise is very strong, then p will be
higher, leading to level curves shaped as squared circles.

Figure 3 shows how dv, which is the main parameter that controls the inten-
sity of the uniform component of the noise, impacts the overall shape of the level
curves corresponding to 2−128, when the other parameters are those adopted by
ML-KEM-1024 (Level 5). It is interesting to consider both Figures 2 and 3 to-
gether, which provides a more clear picture of the relation between the optimal
values of β and the overall shape of the noise distribution.

Figure 4 shows how the p-norm that best approximates the shape of the noise
distribution impacts the shape of the best code. Intuitively, for a given error
distribution whose shape is an approximate circle in the p-norm, the best n-
dimensional Minal code should provide a good packing of n-dimensional spheres
defined in the corresponding norm.

We then propose the following steps to find the optimal value of β.

1. Compute the 1D noise distribution D. This is efficient for most modern
schemes – e.g., Kyber [7] and Saber [15] provide scripts for this task.

2. Build the set of 2D points P = {(x1, x2) : D[x1] ·D[x2] ≈ 2−κ}. The set
P ∈ Z2 approximates the level curve corresponding to probability 2−κ in
2D, where 2−κ is close to the DFR values we want to achieve.

3. Find the value of p that best approximate the points in P as a circle in the
p-norm. For this step, we take p as the value that minimizes the variance of
the p-norm for the points in P .

4. Find the parameter β of the n-dimensional Minal code that maximizes the
minimum distance with respect to the p-norm.



Tailorable codes for lattice-based KEMs with applications to ML-KEM 13

0 q 2q

0

q

2q

11
01

11
01

11
01

10

11

00

01

10

11

00

01

10

11

00

01

10

10

11

00

01

10

11

00

01

10

11

00

01

10

10
00

01

10
00

01

10
00

01

10

(a) Minal code with β = 446,
which is the best for p = 2.
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Figure 4. Best codes depending on the p-norm closest to the noise distribution.

In this paper, when implementing step 2, we use κ = 128 for all parameters
as it makes the procedure easier to implement and appears to provide reasonably
good results. Notice that while there is an implicit independence assumption to
approximate the 2D distribution using the 1D distribution D, it does not have
any security impact because we are only using it to get a reasonable value for
β. The DFR of the resulting code will be derived later without requiring any
independence assumptions.

To efficiently implement step 4, it is possible to use a ternary search if we
assume that the minimum distance is an unimodal function of β for any p-
norm. This appears to be the case in our empirical tests, and Figure 2 can
provide some intuition on why unimodality may hold. However, it does not
seem to be trivial to formally prove unimodality for any dimension and p-norm.
Since our Python implementation of this procedure provides good results for
β in dimensions n ⩽ 10, we leave a more formal treatment of our heuristic
assumptions for future work.

5 Implementation and performance

This section describes the practical aspects of our Minal codes, allowing us to
achieve efficient implementations by following isochronous programming prac-
tices to protect against timing attacks. We remark that the encoding using Minal
codes is rather trivial: every row of the generator matrix has only two non-null
entries, so the encoding complexity per bit is independent of the dimension.
Hence, this section only describes how decoding can be efficiently implemented,
whereas the companion implementation contains both operations.

5.1 General decoding algorithm

For concreteness, in this section, we describe the general decoding algorithm
induced from Definition 2 by using 4D Minal codes as basis – see Algorithm 1.
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We emphasize, however, that the same approach can easily be extended to other
dimensions while still following isochronous implementation practices. Indeed,
in the accompanying code, we provide a generic implementation of the decoding
algorithm that works for 2D up to 16D.

To decode a 4D point t ∈ Z4
q, we need to find m ∈ Z4

2 that minimizes
distq(t,Gm) =

∥∥(t−Gm)mod±q
∥∥, where G is the generator matrix of the

Minal code. For the reference ML-KEM implementation, we can assume that
t ∈ [−⌊q/2⌋, ⌈q/2⌉]4 is already reduced modulo q and centered at zero.3 Our im-
plementation is based on two observations. First, we notice that since the gener-
ator matrix is sparse and circulant, there are only four possible values for the co-
ordinates of each codeword, represented by the array CW_COORD_VALUES. There-
fore, the distance between the target and each codeword can be computed more
efficiently by using memorization of the partial squared distances between their
coordinates, which are stored in the 4×4 matrix dist_sqr_matrix. The second
observation is that we do not need a generic reduction algorithm, such as Bar-
rett’s reduction, because the difference between coordinates in [−⌊q/2⌋, ⌈q/2⌉]
is in [−q, q] and we only need the squares of the distances. Therefore, we use a
custom function centered_mod_sqr that, on input x, returns

(
xmod±q

)2.
We can then implement function get_distance_sqr_to_codeword that uses

the memorization matrix to compute, for a given message index idx ∈ {0, 15},
the square of the distance modulo q between the target and the codeword as-
sociated with the binary expansion of idx. Using a secure_min function that
isochronously computes the minimum between two values, the general decoding
is done by iterating over each of the 16 possible messages (represented by idx).

Interestingly, even for more than 4 dimensions, the performance of this de-
coder is comparable to state-of-the-art error correction codes used in PQC. For
example, using HQC’s [29] optimized AVX2 implementation, we observed that
their decoder uses around 660 cycles per decoded bit. This value is close to the
600 cycles per bit we observed when decoding 9D Minal codes.

5.2 Decoding 2D codewords using approximate Voronoi cells

For the 2D decoding, we propose a custom algorithm that is more efficient than
the generic approach from Section 5.1. We begin by observing a symmetry, il-
lustrated in Figure 5a, that can be exploited for decoding. We can see that, by
construction, the codewords of the Minal code M with parameter β are symmet-
ric over the identity line, which separates the [−q/2, q/2]2 square in two triangles.
Because of this property, if a point is closer to a codeword associated with (1, 0)
in the upper triangle, it will be closer to a codeword associated with (0, 1) in the
lower triangle and vice-versa – e.g., see point x in Figure 5a. However, we can
also see that closeness to codewords associated with (0, 0) and (1, 1) is preserved
by reflection around the identity line. Building upon this symmetry, any point
in the upper triangle can be reflected, decoded in the lower triangle, and then
3 In some implementations (e.g., AVX2 and pqm4), it is more convenient to use t ∈
[0, q)4, but this can be accommodated by the algorithm with minor changes.
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1 int16_t CW_COORD_VALUES [4] = {0, CODE_BETA , KYBER_Q/2, CODE_BETA + KYBER_Q /2 - KYBER_Q };
2
3 int32_t centered_mod_sqr(int32_t value) {
4 uint32_t mask_sign = value >> 31;
5 value ^= mask_sign;
6 value += mask_sign & 1; // Result: value = abs(value)
7 value -= KYBER_Q & lower_than_mask(KYBER_Q/2, value); // Result :+-(value center_mod q)
8 return value * value; // Result: (+- (value center_mod q))^2 = (value center_mod q))^2
9 }

10 uint32_t get_distance_sqr_to_codeword(uint16_t idx , uint32_t dist_sqr_matrix [4][4]) {
11 int32_t a0 = dist_sqr_matrix [0][ CODEWORDS[idx ][0]];
12 int32_t a1 = dist_sqr_matrix [1][ CODEWORDS[idx ][1]];
13 int32_t a2 = dist_sqr_matrix [2][ CODEWORDS[idx ][2]];
14 int32_t a3 = dist_sqr_matrix [3][ CODEWORDS[idx ][3]];
15 return (a0 + a1 + a2 + a3) << 4 | idx; // Returns ‘distance_sqr | codeword_index ‘
16 }
17 int decode_minal_4d(int16_t target [4]) {
18 // Build memorization matrix with square distances to target coordinates
19 uint32_t dist_sqr_matrix [4][4] = {0};
20 for (int i = 0; i < 4; i++) {
21 for (int j = 0; j < 4; j++)
22 dist_sqr_matrix[i][j] = centered_mod_sqr(target[i] - CW_COORD_VALUES[j]);
23 }
24 uint32_t min_dist_codeword = get_distance_sqr_to_codeword (0, dist_sqr_matrix);
25 for (size_t i = 1; i < 16; i++)
26 min_dist_codeword = secure_min(get_distance_sqr_to_codeword(i, dist_sqr_matrix),
27 min_dist_codeword);
28 return min_dist_codeword & 0xF; // Extracts the codeword index part
29 }

Algorithm 1. Isochronous implementation of decoding in 4D Minal codes.
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Figure 5. The geometric properties of our codes used during decoding.

reflected once again. Consequently, we only need to devise an efficient decoding
mechanism for the lower triangle.

Suppose we are given a point in the lower triangle and want to find the
closest codeword to this point. One simple way to accomplish that task would
be to compute the distance to all six codewords whose Voronoi cells overlap the
lower triangle, and then output the closest one. Although we considered this
simple strategy, the resulting isochronous implementation was not very efficient
due to the number of comparisons to the closest codeword.

For the sake of building our argument for our optimized strategy, assume for
a moment that q is divisible by 2. In this setting, we can construct the Voronoi
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cells of each codeword relevant for decoding points in the lower triangle, as
illustrated in Figure 5b. By the definition of M, the points whose Voronoi cells
intersect the lower triangle, which are shown in Figure 5b, are defined as:

A = (q/2 + β, q/2 + β), B = (0, 0), C = (β − q/2, β − q/2),

D = (q/2, β), E = (β,−q/2), F = (q/2 + β,−q/2 + β).

The Voronoi cells intersecting the lower triangle can be defined by the perpen-
dicular bisector lines, which we call ℓi, between the codewords and their neigh-
bors. First we define ℓ1, ℓ4 and ℓ5 as the bisectors between pairs (A,D), (B,C),
and (C,E), respectively. Now, since we assume q is even, the set of codewords
{B,D,E, F} forms a square, so line ℓ2 is the bisector of the pairs of points (B,E)
and (D,F ). Similarly, line ℓ3 is simultaneously the bisector of both pairs (B,D)
and (E,F ). This means that, for an even q, we can characterize the Voronoi cells
of these codewords using only 5 lines. To effectively use these lines to decode a
point (x, y) in the lower triangle, we can verify whether (x, y) is above or below
ℓi for each i. For example, if (x, y) is above lines ℓ4 and ℓ2, but below ℓ3, then it
should be decoded as (0, 0).

Now that we have explained how to handle an even q, we have to deal
with the real-world q, which is an odd prime. Since q is not divisible by 2,
we must use α = ⌊q/2⌋. This impacts the definition of some of the points.
In particular, we now have D = (⌊q/2⌋, β), E = (β,−⌊q/2⌋ − 1), and F =
(⌊q/2⌋+ β,−⌊q/2⌋ − 1 + β). Therefore, the set of points {B,D,E, F} does not
form a rectangle anymore. However, since q = 3329 is relatively large, we ob-
serve that {B,D,E, F} can be reasonably well approximated by a square. More
specifically, if we define ℓ3 as the bisector between points (B,D), and ℓ2 as the bi-
sector of points (B,E), then we can say that lines ℓ1, . . . , ℓ5 give an approximate
characterization of the Voronoi cells when q is prime.

We use this approach based on approximate Voronoi cells for decoding when
computing all DFR results involving 2D codes. Since we compute the 2D DFR
based on the probability of Algorithm 2 returning the wrong codeword (see Algo-
rithm 3 from Section 6.2), there is no security problem in using this approximate
decoder as long as its DFR is negligible.

Implementation of the 2D decoding procedure. Algorithm 2 shows the
full algorithm for decoding using these ideas. It builds upon macros ABOVE_Li,
that return 0xffffffff if point (x, y) is above ℓi and 0x0 otherwise. Notice that
the equations that define lines ℓi have only integer coefficients because the rep-
resentatives of all codewords themselves have integer coefficients. Furthermore,
because all points are integers, the implementation of ABOVE_Li based on the
lines’ equations uses only 32-bit integer multiplications, which most implemen-
tations, including the ones of ML-KEM, assume to be isochronous. Furthermore,
we note that a reflection mask is used to reflect (x, y) whenever needed, and then
to reflect the result in case codewords corresponding to (0, 1) or (1, 0) are found.

One remark regarding this algorithm is that decoding could be slightly more
efficient if a different square of representatives was employed. In particular, us-
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1 int decode_minal_2d(int32_t x, int32_t y) {
2 uint32_t reflect_mask = mask_lower_than(x, y); // -1 if (x < y) and 0x0 otherwise
3 int32_t x_prime = (x & ~reflect_mask) | (y & reflect_mask);
4 int32_t y_prime = (y & ~reflect_mask) | (x & reflect_mask);
5 uint8_t abovel1 = ABOVE_L1(x_prime , y_prime);
6 uint8_t abovel2 = ABOVE_L2(x_prime , y_prime);
7 uint8_t abovel3 = ABOVE_L3(x_prime , y_prime);
8 uint8_t abovel4 = ABOVE_L4(x_prime , y_prime);
9 uint8_t abovel5 = ABOVE_L5(x_prime , y_prime);

10 // It is unnecessary to check for (00), but: c00 = (~abovel3 & abovel2 & abovel4);
11 uint8_t c01 = ~abovel2 & ~abovel5 & ~abovel3;
12 uint8_t c10 = abovel2 & abovel3 & ~abovel1;
13 uint8_t c11 = abovel1 | (abovel3 & ~abovel2) | (abovel5 & ~abovel4);
14 c01 &= (1 ^ reflect_mask);
15 c10 &= (2 ^ reflect_mask);
16 return (c01 | c10 | c11) & 3;
17 }

Algorithm 2. Isochronous implementation of decoding in 2D Minal codes.

ing the q × q square whose bottom left point is (⌊−q/2⌋ − ϵ, ⌊−q/2⌋ − ϵ), the
comparison with line ℓ1 is not necessary. However, since this would lead to a
more complex description, we leave possible extra optimizations for future work.

5.3 Performance evaluation

To evaluate the performance of the encoding and decoding operations with Minal
codes, we considered three platforms for which highly optimized ML-KEM im-
plementations are available: AVX2 [7], ARM Cortex-M4 [26], and ARM Cortex-
A53 [12]. We integrated our isochronous implementations of the 2D and 4D Minal
encoding and decoding into the existing Kyber implementations in which the en-
coding and decoding of the full 256-bit message are done by the poly_frommsg
and poly_tomsg functions, respectively. We remark that we did not write any
manual optimizations of the Minal code operations for the given targets.

To obtain the AVX2 cycle counts, we considered the latest AVX2 imple-
mentation provided by the Kyber team [7] running on an Intel Core i7-8700
(Coffee Lake) CPU with a base frequency of 3.20GHz. The code was compiled
using gcc version 14.2.1 with flags -O3, -march=native, -mtune=native, and
-fomit-frame-pointer. We report the median cycle count of 10,000 executions.

For Cortex-A53, we used the aarch64-optimized Kyber implementation from
PQClean [25, commit 0c5bb14], an run it on Raspberry Pi Zero 2W board [32].
The compilation was done using aarch64-none-linux-gnu-gcc v.13.3.1 with
the following flags: -O3, -mcpu=cortex-a53, and -mtune=cortex-a53. For cycle
count benchmarking, we employed the Performance Monitors Cycle Counter
(PMCCNTR_EL0) to measure the average of 10,000 runs.

For Cortex-M4, we used the m4fspeed version of the pqm4 library [26, com-
mit cda61fb], and measured the performance on an STMicroelectronics
Nucleo-F439ZI board [39]. The compilation employed arm-none-eabi-gcc
v.13.2.1 with the following flags: -O3, -mcpu=cortex-m4, -mfpu=fpv4-sp-d16,
-mfloat-abi=hard, and -mthumb. For cycle counts, we used the Data Watch-
point and Trace (DWT) registers to get the average of 100 runs.

Table 3 shows the decoding and decoding cycle counts. Notice that, for the
2D decoding, we used our custom decoder from Section 5.2, which was about
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Table 3. Number of cycles for encoding and decoding under different targets.

Code Dimension Encoding (poly_frommsg) Decoding (poly_tomsg)

AVX2 M4 A53 AVX2 M4 A53

ML-KEM’s code 1D 24 6676 441 17 3587 816
Minal code 2D 79 2017 332 418 9248 2724
Minal code 4D 62 1771 337 986 20,142 7937

35% faster than the general decoder in 2D (e.g., 418 cycles instead of 646 in
our AVX2 setup). We can see that, unsurprisingly, decoding 2D and 4D codes is
more complex under all architectures. However, since the cycle count for decap-
sulation4 is much larger than this difference, the overall performance impact of
Minal codes on the decapsulation procedure should be very small. The impact
of our codes in ML-KEM’s decapsulation time is evaluated in Section 7.2.

6 Analyzing Minal codes’ DFR when used in ML-KEM

In this section, we discuss how to compute the DFR for our Minal codes when
they are used in a lattice-based scheme. For concreteness, we focus specifically on
ML-KEM, but the procedure can be extended to other schemes such as Saber [15]
and NewHope [2]. While one of the main features of our analysis is that it does
not require any independence assumptions on the coefficients of ∆m, designers
who are willing to make such assumptions can also benefit from our approach.
We begin by exploring the source of the dependence between coefficients in ∆m.

Consider the noise polynomial ∆m = ⟨e, r⟩ − ⟨s, e1 +∆u⟩+ e2 +∆v. Notice
that, by definition, all coefficients from e2 and ∆v are independent. However,
the coefficients of the polynomials resulting from the two dot products ⟨e, r⟩ and
⟨s, e1 +∆u⟩ cannot be assumed to be independent, because they are computed
through sums of polynomial multiplications. If ignored, this dependence is known
to cause issues in scenarios where error-correction codes are used, leading to
significantly underestimating the scheme’s DFR [16].

Now, let us focus on ⟨e, r⟩, which is the simplest of the two dot products that
determine ∆m in Kyber. It is defined as

⟨e, r⟩ = e[0]r[0] + . . .+ e[k − 1]r[k − 1].

We start by noticing that every product of polynomials e[i]r[i] is independent
of e[j]r[j] for j ̸= i. Also, because all e[i] and r[i] are sampled from the same
Bη1

, every product e[i]r[i] follows the same distribution for all i. Therefore, in
what follows, we focus our attention on the joint distribution of e[i]r[i] for any
particular i to analyze the distribution of ⟨e, r⟩.

4 For example, the decapsulation cycle counts in our AVX2 setup are 20725, 31748,
and 46104, for levels 1, 3, and 5, respectively.
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6.1 The joint distribution of coefficients in ML-KEM’s noise

We now present two results that allow us to separate the joint probability dis-
tribution of s coefficients of a polynomial product in Rq = Zq[x]/(x

n +1) into a
sum of independent distributions, provided that three conditions are met: (i) n
and s are powers of 2 with 1 < s < n; (ii) the distance between adjacent pairs
of coefficients is n/s; and (iii) the probability distribution for the coefficients of
at least one of the polynomials must be symmetric. In particular, by the end of
this section, we will characterize the s-dimensional noise distribution

Pr (∆m[i, i+ n/2, . . . , i+ (s− 1)n/2]),

which enables us to analyze the DFR of s-dimensional codes without relying on
independence assumptions.

Lemma 1. Let n ⩾ 4 be a power of 2, and let s be a positive nontrivial divisor
of n. Define ν = n/s and consider the probability distribution Pn defined over
s-tuples as

Pn = Pr (c[0, ν, 2ν, . . . , n− ν]),

where the polynomial c is defined by the following experiment. Let D1 be any
distribution over Zq, and D2 be a symmetric distribution also over Zq. Choose
polynomials a and b in Rq = Zq[x]/(x

n + 1) by taking its coefficients from distri-
butions D1 and D2, respectively. Compute their product c = ab ∈ Rq, and output
the tuple c[0, ν, 2ν, . . . , (n− ν)] consisting of the coefficients of c associated with
powers xiν , for i = 0 up to s− 1. Then Pn can be split as Pn = Pn/2 + Pn/2.

Proof. Let n = 2ℓ for some ℓ ⩾ 2. Take polynomials a and b from Rq. If c = ab,
we can use Equation 1 from Section 2 to write each coefficient of the product as

ci = poly_to_vec(c)[i] = ⟨poly_to_vec(a), negashifti(b)⟩ .

Let a = poly_to_vec(a) and b = negashift0(b), i.e., vector b is the first
column of the negacyclic matrix generated by the coefficients of b. Notice that,
since D2 is symmetric, b = (b0,−bn−1, . . . ,−b1) has the same distribution as b.

Because n ⩾ 4 is a power of 2 and s divides n, a and b can be split into s
parts, each of length ν, such that

c0 =
〈[
a1 , a2 , . . . , a(s−1) , as

]
,
[
b1 , b2 , . . . , b(s−1) , bs

]〉
.

More generally, for i = 0 up to s, we can write

ciν =
〈[
a1 , a2 , . . . , a(s−1) , as

]
,
[
−b(s−i+1) , . . . , b(s−i−1) , b(s−i)

]〉
.

Remember that, since s is a nontrivial divisor of n, then ν = n/s is even, so we
can split each ai and bi into two halves, such that ai = [a′i,a

′′
i ] and bi = [b′

i,b
′′
i ],

respectively. Now we write ciν = c′iν + c′′iν where each term is defined as

c′iν =
〈[

a′1 , a′2 , . . . , a′(s−1) , a
′
s

]
,
[
−b′

(s−i+1) , . . . , b
′
(s−i−1) , b

′
(s−i)

]〉
, and

c′′iν =
〈[

a′′1 , a′′2 , . . . , a′′(s−1) , a
′′
s

]
,
[
−b′′

(s−i+1) , . . . , b
′′
(s−i−1) , b

′′
(s−i)

]〉
.
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But notice that the entries of a and b that appear in terms c′0, c
′
ν , . . . , c

′
s−1,

that come from the left halves of the blocks of length ν, are completely indepen-
dent from those appearing in c′′0 , c

′′
ν , . . . , c

′′
s−1, which come from the right halves.

Furthermore, notice that tuples
(
c′0, c

′
ν , . . . , c

′
s−1

)
and

(
c′′0 , c

′′
ν , . . . , c

′′
s−1

)
are not

only equally distributed, but, by the definition of Pj , both of them follow the
s-dimensional distribution Pn/2. Therefore, Pn = Pn/2 + Pn/2. ⊓⊔

We now present an accompanying result showing that we can use the
distribution Pn from Lemma 1 to characterize all probability distributions
Pr (c[i, i+ ν, i+ 2ν, . . . , i+ n− ν]), for i = 0 to ν − 1.

Proposition 1. Let s, ν, and n be positive integers such that ν = n/s, and
1 < s < n. Let a and b be two polynomials in Rq = Zq[x]/(x

n + 1). Suppose
that the coefficients of a and b are sampled from two distributions D1 and D2,
respectively, and assume that D2 is symmetric. If c = ab is their product, then,
for all 0 ⩽ i < ν, we have

Pr (c[i, i+ ν, i+ 2ν, . . . , i+ n− ν]) = Pr (c[0, ν, 2ν, . . . , n− ν]).

Proof. Since c = ab, we use Equation 1 to write each coefficient of c as

ci = poly_to_vec(c)[i] = ⟨poly_to_vec(a), negashifti(b)⟩ .

Notice that this means that the s-tuple c[i, i + ν, i + 2ν, . . . , i+ n− ν] is com-
pletely defined by the sequence of vectors

Si =
(
negashifti(b), . . . , negashift(i+n−ν)(b)

)
.

But remember that the elements of b come from a symmetric distribution. There-
fore, by the definition of the negacyclic shifts, the sequence S has exactly the
same distribution as S0 =

(
negashift0(b), . . . , negashift(n−ν)(b)

)
. ⊓⊔

We notice that Lemma 1 is analogous to the polynomial splitting for recovery
used in NewHope’s original analysis [3, §C]. The main difference is that we
provide a broader presentation for supporting a more direct construction of the
joint distribution, whose effective computation is not needed in related works.

Let us now discuss the applicability of Lemma 1 to ML-KEM. Fix parameters
q = 3329 and n = 256. Consider the two dot products ⟨e, r⟩ and ⟨s, e1 +∆u⟩ that
appear in the computation of ∆m. The first one is done with polynomials whose
coefficients are taken from the centered binomial Bη1

, which is symmetric. In the
second one, elements from s are also drawn from Bη1

. Therefore, we can swap the
operands of the commutative product so that all of the lemma’s hypotheses are
satisfied. We now provide a simple corollary that explicitly states the distribution
of the coefficients of the ML-KEM noise.

Corollary 1. Fix integers s and ν such that ν = n/s and 1 < s < n. Let P(ϕa,ϕb)
prod

denote the probability distribution of a product c = ab of two polynomials
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a, b ∈ Zq/(x
s + 1), whose coefficients are selected according to distributions ϕa

and ϕb, correspondingly. Let D∆u denote the distribution of the coefficients of
∆u and P(∆v+e2) be the probability distribution of (∆v + e2)[i, i+ν, . . . , i+n−ν].
Then, by Lemma 1 and Proposition 1, we have:

∆m[i, i+ ν, . . . , i+n− ν] ∼ kn

s
P
(Bη1 ,Bη1)
prod +

kn

s
P
(Bη2 ,Bη1+D∆u)
prod +P(∆v+e2). ⊓⊔

When s is sufficiently small, we can calculate the base distributions over coef-

ficient pairs, P(
Bη1

,Bη1)
prod and P

(Bη2
,Bη1

+D∆u)
prod , by enumerating the corresponding

polynomials in Zq/(x
s + 1) and computing their products while keeping track

of the associated probabilities. Also, the product rule can be used to directly
compute P(∆v+e2), as the coefficients in both ∆v and e2 are all independent.

The above analysis has an important consequence to how we encode messages
using s-dimensional Minal codes. Since n = 256 in ML-KEM, we are bound to use
codes whose dimension is a power of 2. Additionally, since we need to compute
the base s-dimensional distributions, the complexity grows exponentially, making
it harder to use s ⩾ 8 for ML-KEM parameters. Moreover, to use Corollary 1
when evaluating the DFR of s-dimensional codes applied to ML-KEM, we must
encode each s-bit string in the message m ∈ Zn

2 into coefficients separated by
n/s entries. In the following sections, we show how to evaluate the DFR when
using 2D and 4D Minal codes in ML-KEM.

6.2 Computing the DFR using 2D Minal codes

The core observation allowing us to compute the DFR for 2D Minal codes is that
it is possible to use Lemma 1 to fully compute the 2D joint noise distribution
∆m[i, i + n/2], which is then used for computing the DFR. While the Python
scripts [17] provided by the Kyber team are fast enough to compute the distri-
bution of a single coefficient of ∆m, their approach is highly inefficient when
computing sums of joint distributions. To address this problem, we implemented
a custom 2-dimensional FFT with multiprecision complex arithmetic using the
MPC [19] and MPFR [20] libraries. Running in a standard PC using 6 threads,
the computation of the joint probability distribution Pr (∆m[i, i+ n/2]) with
260 bits of precision takes less than 3 minutes for each parameter set.

Using ∆m[i, i + n/2], Algorithm 3 provides the DFR for a 2D Minal code
M. First, it computes the error probability pfailure for the 2-dimensional code M.
This is done by accumulating the probabilities that noise coefficients drawn from
Pr (∆m[i, i+ n/2]) cause decoding failures for each of the 4 possible codewords.
Since each codeword appears with probability 1/4, the error probabilities have
to be weighed by this factor when updating the value of pfailure in Line 6. The
algorithm then returns the upper bound on the DFR by using the union bound
over the decoding failure for the n/2 = 128 encoded pairs.

6.3 Computing the DFR using 4D Minal codes

If we try to use the approach from Section 6.2 to compute the DFR in the 4D
setting, we need to compute the joint distribution Pr (∆m[0, n/4, n/2, 3n/4]).
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1: procedure DFR 2D(code M, distribution Pr (∆m[i, i+ n/2]))
2: pfailure ← 0 ▷ Accumulates the decoding error probability for M

3: for each codeword c ∈M do
4: for each possible error e ∈ Z2

q do
5: if Decode (c+ e) ̸= c then
6: pfailure ← pfailure +

1
4
Pr (∆m[i, i+ n/2] = e)

7: return n
2
pfailure ▷ Union bound over the n/2 = 128 pairs.

Algorithm 3. Computation of the DFR for a 2D Minal code M.

1: procedure DFR 4D(code M)
2: Compute the 4D Voronoi cells of the main codewords of M
3: pfailure ← 0 ▷ Accumulates the decoding error probability for M

4: for each main codeword c ∈M ∩ Z4
q do

5: vor(c)← Voronoi cell centered in c
6: neigh(c)← set of codewords whose cells share a hyperplane with vor(c)
7: for each adjacent codeword v in neigh(c) ∈M do
8: v̂← v − c
9: Compute the 1D distribution Pr (⟨∆m[0, n/4, 2n/4, 3n/4], v̂⟩)

10: pfailure ← pfailure +
1
16

Pr
(
⟨∆m[0, n/4, 2n/4, 3n/4], v̂⟩ ⩾ ∥v̂∥2

2

)
11: return n

4
pfailure ▷ Union bound over the n/4 = 64 pairs.

Algorithm 4. Computation of the DFR for a 4D Minal code M.

The problem is that the 4D FFTs, which have to be computed with padding so
that the convolutions do not cause cyclic interference, would incur prohibitively
large memory and processing costs. Our solution is then to make a different use
of Lemma 1 in a way which is akin to how the DFR of NewHope’s first variant
was computed [3]. Algorithm 4 briefly describes the 4D DFR computation, while
a detailed explanation is given in what follows.

First, we define the parameters q and β of the Minal code M whose DFR
we want to evaluate. Usually, the field size q is defined by the cryptographic
scheme (e.g., q = 3329 for ML-KEM) and β can be found using the p-norm
approach discussed in Section 4.3. Using these parameters, we can compute the
4D Voronoi cells for all main codewords using the Quickhull [11] algorithm from
the Qhull library [10]. From the 4D Voronoi cells, we can see which are the
Voronoi-relevant vectors of each codeword, i.e., the neighboring codewords that
characterize the Voronoi cells of a given codeword.

Based on the Voronoi cells, we define a function neigh(c) that, for a main
codeword c ∈ M ∩ Z4

q, returns the set of points whose Voronoi cells share a
common hyperplane with the Voronoi cell centered in c. Let perror(c,v) denote
the probability that c′ = c+∆m[0, n/4, 2n/4, 3n/4] is closer to v than to c. The
DFR is then upper-bounded by

DFR ⩽
1

16

∑
c∈M∩Z4

q

 ∑
v∈neigh(c)

perror(c,v)

,
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where the 1/16 factor accounts for the probability of getting each codeword c.
Now, we know from elementary linear algebra that ∥c′ − c∥ ⩾ ∥c′ − v∥ if,

and only if, ⟨c′,v − c⟩ ⩾ 1
2

(
∥v∥2 − ∥c∥2

)
. Then, if we expand c′, we get that

perror(c,v) can be computed as

perror(c,v) = Pr
(
⟨∆m[0, n/4, 2n/4, 3n/4],v − c⟩ ⩾ 1

2∥v − c∥2
)
.

While we cannot compute the noise distribution Pr (∆m[0, n/4, 2n/4, 3n/4])
in 4D, we can compute perror(c,v) as follows. Consider the following vec-

tors and their associated probability distributions: x1 ∼ P
(Bη1 ,Bη1)
prod ,x2 ∼

P
(Bη2

,Bη1)
prod ,x3 ∼ D∆u, and x4 ∼ P(∆v+e2). Define probability distributions

D1,D2,D3,D4 such that each Di = Pr ⟨xi,v − c⟩, for i = 1 up to 4. Then,
using Corollary 1 together with the linearity of the dot product, we have

Pr (⟨∆m[0, n/4, 2n/4, 3n/4],v − c⟩) = kn

s
D1 +

kn

s
D2 +D3 +D4.

Notice that each Pi is efficiently computable because the dimension 4 is
relatively small and is a simple 1D distribution. Now, to compute the multiple
convolutions above, we can again use arbitrary precision FFTs. We notice that,
because v − c may have large coordinates, the padding required for the FFT-
based convolution is relatively high. Therefore, we use Bailey’s [9] trick that
transforms an FFT over a large vector into a 2D FFT with shorter vectors
to make the implementation more efficient. For a given ML-KEM parameter
set, together with the 4D Minal code parameters, our implementation gives the
corresponding DFR in about 1 hour in a standard computer using 6 threads.

7 Applications to compact ML-KEM instantiations

This section shows a key benefit of our proposed codes: with them, ML-KEM
parameter sets associated with shorter ciphertext sizes can achieve failure rates
lower than the DFR targets, thus making them viable. We begin by remarking
that the size of a ciphertext (cu, cv) in ML-KEM is completely determined by
the parameters n, k, du, and dv as

⌈
1
8n(kdu + dv)

⌉
= 32(kdu + dv) bytes. Hence,

to obtain shorter ciphertexts without changing the core parameters n and k, we
need to use smaller parameters for du and dv than those adopted by the current
standard. In this section, we show how this can be accomplished for each security
level supported by ML-KEM.

7.1 Finding compression parameters that yield shorter ciphertexts

First, we consider ML-KEM settings with values of (du, dv), allowing for shorter
ciphertexts than the current standard. We then compute the DFR for the regular
ML-KEM 1D code, and for our 2D and 4D Minal codes tailored for the error
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Figure 6. The impact of our 2D and 4D Minal codes in obtaining viable com-
pression parameters (du, dv) allowing for shorter ciphertexts.

distribution induced by these parameters. Then, we can select points with shorter
ciphertext sizes, as long as their DFR lies below the target for each security level.

Figure 6 shows our results. Note that results for the experiment described
above are the regular (du, dv) points, i.e., points marked as (du, dv)⋆ or (du, dv)†
are not part of this experiment, as they require additional changes that are
described later in this section. We can see that the impact of our codes is greater
in Level 5, as there are multiple points using 2D and 4D codes with significantly
shorter ciphertexts – namely, up to 8% compression. This results from the fact
that Level 5 parameters, in general, use higher values of dv, so the uniform part
of the noise is less relevant, and our codes are better at error correction. To
allow for an easier comparison of the actual numbers, we collect in Table 4 the
relevant parameters discussed in this section.

Now, to obtain compressed ciphertexts for levels 1 and 3, we proceed as
follows. First, remember that the security evaluation of ML-KEM-512 uses not
only the LWE hardness but also considers the deterministic compression noise
when evaluating the Core-SVP hardness associated with the ciphertext security,
which is akin to also considering the LWR in the security analysis. This allows
ML-KEM-512 to use a slightly lower value5 for η2, without compromising se-
curity, because the extra noise introduced by the compression accounts for the
decrease in η2. If we extend this idea further, we can use even more aggressive
compression factors than the values (du, dv) = (10, 4) used in ML-KEM-512 and
ML-KEM-768, and get rid of η2 completely. This idea is actually not new, as it
is even mentioned in Kyber’s round 1 specification [5, §6.4.6]. However, for this

5 Remember that η2 defines the centered binomial distribution used for generating
vector e1 and polynomial e2 used in encryption.
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Table 4. Relevant parameters allowing for ciphertext compression. Non-viable
codes whose DFR lie above the DFR target are marked with a slash.
NIST
Level

DFR
target du dv η2

Parameter
set name

Requires
LWR?

Ciphertext
size (bytes)

Minimum DFR found
1D 2D 4D

1 2−120 10 4 2 ML-KEM-512 Yes 768 2−139.1 2−144.0 2−153.3

9 5 0 None Yes 736 ���
2−108.9 ���

2−115.6 2−125.5

3
2−136

10 4 2 ML-KEM-768 No 1088 2−165.2 2−170.6 2−183.2

10 3 1 None Yes 1056 2−149.2 2−149.2 2−151.6

9 5 0 None Yes 1024 ���
2−122.1 ���

2−129.6 2−141.6

5 2−160

11 5 2 ML-KEM-1024 No 1568 2−175.2 2−185.1 2−201.8

11 4 2 None No 1536 ���
2−154.2 ���

2−159.4 2−172.7

10 6 2 None No 1472 ���
2−151.7 2−161.8 2−177.6

10 5 2 None No 1440 ���
2−143.3 ���

2−151.7 2−165.9

approach to be successful for ML-KEM, one needs to use a better error correc-
tion code because it is more difficult to deal with the higher compression noise,
which is uniform in nature, than with the noise from the centered binomials.

The result of this approach is illustrated in Figure 6 by the points (9, 5)⋆

and (10, 3)† that define η2 = 0 and η2 = 1, respectively. Note that these are
only considered for levels 1 and 3. We can see that our 4D Minal codes allow
for viable points, providing 4% and 6% shorter ciphertexts for both levels 1 and
3, respectively. Finally, we remark that all parameters provide the same Core-
SVP hardness as ML-KEM’s standards for the corresponding security level, as
computed by the security scripts provided by the Kyber team [17].

7.2 Proposed parameters and their performance impact

Section 5.3 shows that the decoding operation of Minal codes is significantly more
costly than that of ML-KEM’s 1D code, due to the higher-dimensional nature
of our proposal. However, we emphasize that the time taken by our isochronous
decoding algorithms is still orders of magnitude lower than the full decapsulation
time. Moreover, since our Minal codes allow η2 = 0 to be a viable setting, to-
gether with (du, dv) in levels 1 and 3, the full setup also benefits from not having
to make the additional samplings related to η2 in the encryption procedure.

To show this reduced impact, we benchmarked ML-KEM’s operations us-
ing Minal codes for the same targets and settings from Section 5.3. We also
use a general isochronous implementation of the Minal code operations, rather
than optimizing it for the given targets, while integrating our code into highly
optimized implementations for AVX2 [7], Cortex M4 [26] and Cortex-A53 [12].

The results are depicted in Table 5, which shows the speedup of our proposal
compared with the encapsulation and decapsulation times for ML-KEM imple-
mentations using standard parameters. As expected, the performance impact is
minor. For levels 1 and 3, there is even a significant speedup resulting from the
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Table 5. ML-KEM instantiations with compressed ciphertexts and speedups for
full encapsulation and decapsulation, for different security levels and platforms.
NIST
Level (du, dv, η2) Minal code Ciphertext

compression
Encaps speedup Decaps speedup

AVX2 M4 A53 AVX2 M4 A53

1 (9, 5, 0) 4D (β = 745) 4.17% 0.96 1.14 1.13 0.99 1.08 1.02

3 (9, 5, 0) 4D (β = 741) 5.88% 1.07 1.10 1.07 1.05 1.07 1.01

5 (10, 6, 2) 2D (β = 442) 6.12% 0.99 1.00 1.00 1.00 1.00 0.99
5 (10, 5, 2) 4D (β = 741) 8.16% 1.01 1.00 1.00 0.99 0.99 0.97

fact that some of the sampling operations are not needed in encryption6 since
η2 = 0. For level 5, no speedup was observed since there is no change to η2, but
the performance impact is still negligible, specially when 2D codes are used. Note
that all parameters in Table 5 provide the same core-SVP hardness as the stan-
dard ML-KEM parameters, for the corresponding security levels, as computed
by Kyber’s security scripts [17]. Furthermore, if we compare our results with the
ones obtained in [36,37] with 8D lattice codes (see Table 2), we can see the power
of tailoring. For concreteness, consider level 5: even the low-dimensional 2D Mi-
nal codes already provide ciphertext compression, requiring a simple change in
the compression factors; in contrast, the 8D codes from [36, 37] require changes
to core ML-KEM parameters, and actually increase the ciphertext size.

7.3 An overview of additional applications of our codes

Due to space limitations, the results presented so far focus more on applications
to ciphertext compression, which are arguably more immediately applicable to
ML-KEM. However, we argue that there are other important applications to
which our codes also have a relevant impact, as briefly discussed next.

Eliminating the LWR assumption from ML-KEM-512. Remember that
ML-KEM-512 requires a hardness assumption similar to LWR to achieve its
claimed security using η2 = 2 < η1. Using our 4D codes, though, we can instan-
tiate ML-KEM-512 using η2 = η1 = 3, and get a DFR of 2−135.6 that is very
close to the one observed for ML-KEM-512. This would not only eliminate the
need for the LWR assumption but it would also result in an easier specification
by removing the need of one additional parameter. Moreover, it would allow
for simpler vectorized implementations of the sampling, since only one function
would be needed for generating all centered binomial values.

Public-key compression for free. Kyber’s round 1 specification [5] allowed
compression of the public key. Using a slightly different formulation of the noise
6 In ML-KEM, the decapsulation also calls the encryption procedure due to the reen-

cryption step of the Fujisaki-Okamoto transform.
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polynomial ∆m to take public key compression into account [13, Thm. 1], we
can easily extend our analysis for this case. Namely, our Minal 4D codes allow
for 8% compression of the ML-KEM public key while keeping the DFR very
close7 to the current standards without compression.

Exploring the parameter space considering our codes. From our results,
we can see that the usage of higher-dimensional Minal codes empowers designers
of lattice-based KEMs by providing a richer set of trade-offs between failure rate
and both ciphertext and public key sizes. In this paper, we build upon this
flexibility to show how Minal codes can be directly applied to the ML-KEM
scheme without changing its core parameters. Nevertheless, our results suggest
that Minal codes can be explored much beyond this particular case, leading to
interesting parameter sets that yield significantly more compact schemes.

8 Conclusion and future work

We present a new family of error-correction codes called Minal codes. By propos-
ing a novel way to model the accumulated noise in lattice-based schemes as n-
dimensional circles under different p-norms, we show how Minal codes can be
tailored to improve their error correction capability for each particular applica-
tion without requiring any change to the target scheme’s parameters. We then
demonstrate how to compute the decryption failure rate (DFR) of our Minal
codes without making independence assumptions on the real noise distribution.

We use ML-KEM, which is arguably the most relevant KEM today, to il-
lustrate how our proposed codes can impact even state-of-the-art constructions
by obtaining up to 8% ciphertext compression for this highly optimized scheme.
Additionally, we provide efficient isochronous implementations of our code’s de-
coding procedure that cause only a minor impact on the full decapsulation exe-
cution time, even compared with optimized implementations of ML-KEM under
three relevant targets: Intel’s AVX2, ARM Cortex-M4, and ARM Cortex-A53.

This work also raises several questions, both in theory and practice. We
believe the most important theoretical question is whether we can build more
efficient decoders, possibly borrowing results from decoding of lattice codes and
adapting them to our case. However, there are other interesting research direc-
tions, such as formalizing and possibly proving some of our heuristic8 assump-
tions used for tailoring, or trying to find even better error-correction codes by
considering more complex constructions with additional parameters.

With respect to the practical side, it would be interesting to devise efficient
implementation using SIMD instructions for CPUs supporting AVX2/AVX512
or ARM NEON. It would also be interesting to extend our analysis to ML-KEM
using 8D Minal codes. If, as in our present work, one is not willing to make
simplifying independence assumptions because these can yield underestimated
7 Less than 2 bits of impact in the corresponding DFR.
8 The heuristic assumptions are only used for tailoring and have no security impact.
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DFR values [16], the main challenge is the increased complexity of computing
the joint 8D base distributions (before the self-convolutions). We also think it
would be important to understand how our codes might improve other prominent
lattice-based schemes such as Saber [15] and NewHope [3].
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