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Abstract. Quantum pseudorandom state generators (PRSGs) have stim-
ulated exciting developments in recent years. A PRSG, on a fixed initial
(e.g., all-zero) state, produces an output state that is computationally
indistinguishable from a Haar random state. However, pseudorandom-
ness of the output state is not guaranteed on other initial states. In fact,
known PRSG constructions provably fail on some initial state.
In this work, we propose and construct quantum Pseudorandom State
Scramblers (PRSSs), which can produce a pseudorandom state on an
arbitrary initial state. In the information-theoretical setting, we obtain
a scrambler which maps an arbitrary initial state to a distribution of
quantum states that is close to Haar random in total variation distance.
As a result, our scrambler exhibits a dispersing property. Loosely, it can
span an ϵ-net of the state space. This significantly strengthens what
standard PRSGs can induce, as they may only concentrate on a small
region of the state space as long as the average output state approximates
a Haar random state in total variation distance.
Our PRSS construction develops a parallel extension of the famous Kac’s
walk, and we show that it mixes exponentially faster than the standard
Kac’s walk. This constitutes the core of our proof. We also describe a
few applications of PRSSs. While our PRSS construction assumes a post-
quantum one-way function, PRSSs are potentially a weaker primitive and
can be separated from one-way functions in a relativized world similar
to standard PRSGs.

Keywords: Quantum pseudorandom states · Kac’s walk · Pseudoran-
dom unitary operators

1 Introduction

Pseudorandomness is a fundamental concept in complexity theory and cryp-
tography, offering efficient approximation to true randomness against computa-
tionally bounded adversaries. Recently, Ji, Liu and Song [31] introduced quan-
tum pseudorandom state generators (PRSGs) as a family of quantum states
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{|ϕk⟩}k∈K, which can be generated in polynomial time, and no computationally-
bounded quantum adversary can distinguish polynomially many copies of |ϕk⟩
from polynomially many copies of a Haar random state. PRSGs can be considered
as a quantum counterpart to classical pseudorandom generators, and can be con-
structed assuming the existence of one-way functions that are hard for efficient
quantum adversaries [31,10,11,4,1]. What is surprising, PRSGs are proven weaker
than one-way functions in a relativized world [36,37]. Since one-way functions are
considered the minimal assumption in classical cryptography, this opens up the
possibility of basing quantum cryptography on weaker assumptions. There have
been exciting advances in recent years, realizing a host of cryptographic tasks
based on PRSGs [6,5,40,4,19]. In addition to cryptographic interest, pseudoran-
dom states have also inspired new developments for quantum gravity theory and
string theory [8,35,12,1,47].

Another fundamental quantum pseudorandom primitive, pseudorandom uni-
tary operators (PRU), was also introduced in [31] as a quantum analogue of
pseudorandom functions. A PRU is a set of polynomially-time unitary operators
that are computationally indistinguishable from Haar random unitaries. PRUs
clearly imply PRSGs and could further enrich the toolkit in cryptography and
physics [8,35,12,47,22]. Nonetheless, constructing a provably-secure PRU remains
an open problem, and progress has been slow (e.g., conjectured constructions
in [31], a stateful simulation in [2], and on the negative side some barriers such
as impossibility of PRUs that are sparse or of real entries [27]). In fact, even
basic properties that are necessary for PRUs have not been achieved. It is easy
to see that a PRU gives a family of polynomial-sized quantum circuits which
can map an arbitrary pure state to a family of pseudorandom states. However,
a PRSG can be viewed as a family of polynomial-sized quantum circuits which
map a specific initial state, typically |0n⟩, to a family of pseudorandom states.
Indeed, all existing construction of PRSGs necessitates a specific initial state,
and it can be shown that they fail to produce pseudorandom states for certain
initial states. This limitation has indeed caused a variety of technical challenges
in the cryptographic applications mentioned before that need to be addressed in
ad hoc ways. It hence becomes imperative to understand the following question
and its consequences.

Can we construct a family of polynomial-sized quantum circuits which
map an arbitrary input (pure) state to pseudorandom states?

1.1 Our Contributions

In this work, we answer the question affirmatively as a steady step towards
bridging the gap between PRSGs and PRUs. We formally encapsulate the prop-
erty of “scrambling” an arbitrary input state in a novel quantum pseudorandom
primitive, termed a quantum pseudorandom state scrambler (PRSS), which iso-
metrically maps an arbitrary pure state to a pseudorandom state. We then con-
struct a PRSS based on any quantum-secure PRF. A central technical novelty
is to design a parallel version of Kac’s walk, which is a random walk on a unit
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sphere, and prove a mixing time exponentially faster than the standard Kac’s
walk [44]. Although Kac’s walk was introduced by Kac in [33] more than half
a century ago and has been studied by a large body of works since then, this
work, to our knowledge, is the first time to employ Kac’s walk to design quantum
pseudorandom objects.

Our construction also exhibits a notable dispersing property. Loosely speak-
ing, the output states of our scrambler constitute an ϵ-net on the sphere, and the
distribution closely approximates the Haar random distribution under the strong
Wasserstein distance, when sufficient randomness is supplied. Such a powerful
“randomizing” capability needs not be present even in PRUs.

Overview on the construction and analysis. Our construction is inspired by Kac’s
walk, originally a model for a Boltzmann gas [33]. This approach differs from
previous constructions for PRSGs. Let us consider an arbitrary unit-vector v ∈
RN . In one step of Kac’s walk, two distinct coordinates (i, j) and an angle

θ ∈ [0, 2π) are chosen uniformly at random. Then Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
is

applied to rotate the two-dimensional subvector (vi, vj)
T . It is proven that it

converges to the Haar measure on the unit sphere of RN in O(N logN) steps [44].
However, if we view the input vector as an n = logN -qubit state, then the factor
N in the mixing time is prohibitive for the purpose of an efficient (polynomial
in n) scrambler.

Can we parallelize Kac’s walk in hope of shaking off a factor of N? Notice
that in Kac’s walk, if any two consecutive steps overlap on the random choices
of coordinates, then they need to be executed in sequence. One might consider
conditioning on the event of “collision-free” in the coordinate choices, but this
occurs with negligibly small probability since we intend to compress Ω(N) steps
into one.

We design a parallel Kac’s walk that rapidly mixes in O(logN) time, an
exponential improvement over the original walk. In each step, instead of working
with an individual pair of coordinates, we randomly partition the N coordinates
intoN/2 pairs, then each pair is rotated by a random angle chosen independently.
Although the mixing time of Kac’s walk is not directly applicable, we show that
the specific path-coupling proof strategy of [44] can be extended here.

We then construct a quantum circuit to implement our parallel Kac’s walk. In
each step, we use a random permutation to realize the coordinate partition, and
employ a random function to compute a random rotation angle, under a careful
discretization, for each pair of coordinates. Finally, we obtain our pseudoran-
dom state scramblers by replacing the random permutations and functions with
quantum-secure pseudorandom permutations and functions, which exist based
on post-quantum one-way functions [50].

The discussion so far works with real Hilbert spaces. To construct a PRSS in
a complex Hilbert space, we further develop a parallel Kac’s walk on complex
Hilbert spaces. The construction starts likewise by randomly partitioning N
coordinates to N/2 pairs, and then applying random 2 × 2 unitary matrices
independently to each pair. As unitary matrices have more degrees of freedom
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than real orthogonal rotation matricies, the analysis of the mixing time is more
involved. The extension of Kac’s walk to a complex Hilbert space, as well as the
parallelization, has not been studied previously as far as we are aware. This may
be of independent interest.

Applications. It is easy to see that PRSSs subsume standard PRSGs as well as
scalable PRSGs. We also demonstrate that PRSSs can be used to achieve a black-
box realization of a variant of PRSGs known as pseudorandom function-like state
generators (PRFSGs), which in turn enable a host of cryptographic primitives
such as IND-CPA SKE and EUF-CMA MAC [5,4]. A PRFSG takes an additional
classical input x (from a poly-size domain) and produces a pseudorandom state.
In the literature, a PRFSG (with logarithmic input length) can be constructed
from PRSGs by measuring a part of a pseudorandom state and post-select on x.
This inevitably is error-prone and consumes multiple copies, i.e., multiple invo-
cations of a PRSG, to evaluate on a single x. Given our PRSS (with a sufficiently
long key), we can simply feed |x⟩ as the initial state to the PRSS, and hence only
one, rather than polynomially-many, run of PRSS suffices.

We observe that the argument by Kretschmer [36] also implies that PRSS is
strictly weaker than one-way functions relative to an oracle. Thus PRSSs may
further enhance the new cryptographic landscape without assuming one-way
functions. We demonstrate some use cases of PRSSs beyond what are already
possible from PRSGs. For starters, a PRSS enables efficient encryption of quan-
tum messages by effectively “scrambling” any initial state, and allowing multiple
copies of the same state to be encrypted under the same key. The fact that PRSS
provides a secure encryption also enables committing quantum states, thanks to
a new characterization of [22]. The commitment scheme can be further made
succinct, where the commitment message has smaller size than the size of the
message to be committed. Existing constructions rely on potentially stronger
assumptions than PRSSs.

Subsequent work

A follow-up work [3] gave a construction that is indistinguishable from applying
the tensor product of a Haar random isometry when the input state is restricted
to one of three special families: (1) |ψ⟩⊗q for a pure state |ψ⟩ and polynomially-
bounded q; (2)

⊗q
i=1 |xi⟩; and (3) ⊗qi=1 |ϕi⟩, where every ϕi is Haar random.

Their construction requires adding an ancilla system |0m⟩, and the security loss
scales with 1/2m. As a result, it necessarily cannot preserve the input dimen-
sion and m is chosen to be a polynomial to obtain negligible security loss. This
also incurs poly overheads in the applications such as quantum encryption. In
other words, it only (unitarily) scrambles states |ψ⟩ |0m⟩ for a |ψ⟩ chosen from
one of the three families above and a polynomial m. More recently, several
independent works on constructing pseudorandom unitaries which are secure
against non-adaptive queries have been presented. Metger, Poremba, Sinha and
Yuen [39] proposed a construction using a composition of Clifford gates, pseudo-
random functions and pseudorandom permutations. Brakerski and Magrafta [9]
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presented a construction for real-valued unitaries that look like Haar random on
any polynomial-sized set of orthogonal input states. Chen, Bouland, Brandao,
Docter, Hayden, and Xu [18] achieved similar results via products of exponenti-
ated sums of random permutations with random phases. It is not clear whether
these constructions are able to generate an ϵ-net and realize the dispersing prop-
erty (details in Appendix A), a strong randomizing property achieved by our
construction.

1.2 Discussions and Open Questions

There is a rich history of studying Kac’s walk in probability and mathematical
physics[26,21,30,43,32,28]. Determining the total variation mixing time of Kac’s
walk is particularly challenging, and it is currently only known to be between
the order O(n4 log n) and O(n2) [45].

There has also been extensive efforts on approximations to Haar measures
in a statistical setting, known as state and unitary t-designs [46,20]. For in-
stance, a unitary t-design mimics a Haar random unitary up to the t-th mo-
ment. It is known that a unitary t-design can be constructed by a quantum
circuit of size polynomially in t, composed of Haar random single or two-qubit
gates [24,13,23,25,42]. It is interesting to note that a path-coupling technique
in [43] for analyzing Kac’s walk also plays an essential role in the proofs of these
unitary design results. It is reasonable to anticipate improvements on the effi-
ciency of the unitary designs with new advances on Kac’s walk. However, it is
worth stressing that another critical component in their proofs involving spectral
gaps appears to inevitably incur a dependency on t, which is a serious limitation.
For instance, in order for the output state to approximate a Haar random state
when the number of copies can be an arbitrary polynomial, we would need to
pick a superpolynomial t in the unitary design. As far as we know, our PRSS is
the first to employ Kac’s walk directly in the construction of a quantum pseu-
dorandom object, and the exponential improvement on the mixing time of our
parallel walk enables flipping the quantifiers, i.e., a fixed poly-size construction
that is nonetheless pesudorandom against any polynomial-time distinguisher, a
desired feature towards PRUs.

Kac’s walks have also found applications in algorithm design. Recently, a fast
and memory-optimal dimension-reduction algorithm is proposed based on Kac’s
walk and its discrete variants [29]. We would like to invite more exploration of
Kac’s walk in theoretical computer science broadly.

We describe several interesting open problems emerged from our work.

1. Is it possible to simplify the quantum circuits for these primitives? Can we
replace random permutations by a sequence of parallel (pseudo) random
local permutations? Can we use the same random rotation or even a fixed
one (e.g., Hadamard transform) in a single iteration? Recent advances on
repeated averages on graphs [41] and orthogonal repeated averaging [17,29]
alludes to an affirmative answer.
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2. We believe that PRSSs, potentially weaker than PRUs, are an important
primitive in its own right. Can we discover more applications of PRSSs and
the dispersing property, especially in cryptography as well as in quantum
gravity theory? For example, We envision a form of uncloneable knowledge
tokens from a PRSS that may enable novel quantum proof systems and
delegated computation.

3. Is our construction of PRSS capable of scrambling polynomial quantum
states? This appears to require strengthening the coupling technique in our
current analysis, and it might be useful to analyze other variants of Kac’s
walk.

4. How far are we from a PRU? Can we get it by strengthening our parallel
Kac’s walk approach or can we show that our construction is already a PRU?
By a simple hybrid argument, it suffices prove that our parallel Kac’s walk
on SO(N) converges within polylog(N) time in terms of the L∞ Wasserstein
distance. Indeed, there has been a large body of work devoting to studying
the speed of the convergence with respect to different metrics [21,33,32,45].
One of the most relevant works is Oliveira’s result [43] showing a tight conver-
gence time of order O(N2 logN) with respect to the stronger L2 Wasserstein
distance. Our parallelization achieves a quadratic speedup, which leads to an
Õ(2n)-time construction of PRU. Since the L∞ Wasserstein distance is a less
stringent metric than the L2 Wasserstein distance, there is hope to obtain
an improved convergence rate. To our knowledge, the speed of convergence
of Kac’s walk with respect to L∞ Wasserstein distance has not been studied,
and hence developing new techniques to overcome the tightness of Oliveira’s
L2 result would be an exciting research direction.
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2042414, CCF-2054758 (CAREER) and CCF-2224131. MQ, PY and MZ were
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Organization. Section 2 contains preliminary materials on basic notations and
cryptographic primitives. Section 3 describes definitions and properties of our
new primitives. Section 4 introduces the parallel Kac’s walk. Then Section 5
constructs PRSSs via implementing the parallel Kac’s walk in Section 4. Section 6
describes applications of PRSSs. In Appendix A we introduce dispersing RSS.
In Appendix B, we give details on the connections between PRSSs and existing
PRS variants. Some proofs are deferred to Appendix C.
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2 Preliminary

2.1 Basic Notation

For n ∈ N, [n] denotes {1, . . . , n}. For x ∈ {0, 1}n, we use xi to denote the i-th
bit of x and define val(x) =

∑n
i=1 2

−ixi. Suppose that x and y are bit strings of
finite length, we denote xy to be the concatenation of x and y. For finite sets X
and Y, we use XY to denote the set of all functions {f : X → Y}. We use SX
to denote the permutation group over elements in a finite set X . We often write
S2n instead of S{0,1}n to denote the permutation group over elements in {0, 1}n.

For any symbol x and n ∈ N, (xi)ni=1 represents (x1, . . . , xn). With a slight
abuse of notation, we let (xi)

n
i=1 ⊆ S represent xi ∈ S for all i ∈ [n]. For n ∈ N,

SnR denotes the set of all unit vectors in Rn, SnC denotes the set of all unit vectors
in Cn, SO(n) denotes the special orthogonal group of n×n real matrices, SU(n)
denotes the special unitary group of n× n complex matrices, O(n) denotes the
n×n orthogonal group and U(n) denotes the n×n unitary group. For a Hilbert
space H, we use S(H) to denote the set of pure quantum states in H and D(H)
to denote the set of density operators on H.

For an n-dimensional vector v and i ∈ [n], we use v[i] to denote the i-th
coordinate of v. For S ⊆ [n] and v ∈ Cn, define

∥v∥1 =
∑
i∈[n]

|v[i]| , ∥v∥1,S =
∑
i∈S
|v[i]| , ∥v∥2 =

√∑
i∈[n]

|v[i]|2 .

For an n×n matrix M and p ∈ N, the p-norm of M is defined to be ∥M∥p =(
Tr
[(
M†M

)p/2])1/p, and ∥M∥∞ is defined to be the largest singular value of
M . The following fact will be used in our paper and is easy to prove by the
triangle inequality.

Fact 1. Given m,n ∈ N, U1, . . . , Um, V1, . . . , Vm ∈ O(n) (or U(n)), then

∥U1 . . . Um − V1 . . . Vm∥∞ ≤
m∑
i=1

∥Ui − Vi∥∞ .

Given two density operators ρ, σ ∈ D(H), the trace distance between ρ and
σ is TD(ρ, σ) = ∥ρ− σ∥1 .

Let V be a real or complex vector space, and ϵ > 0 be a positive real number.
For any S ⊆ V , a set of vectors N ⊆ S is said to be an ϵ-net of S if, for every
vector u ∈ S, there exists a vector v ∈ N such that ∥u− v∥2 ≤ ϵ.

We adopt the standard quantum circuit model. A quantum circuit with gates
drawn from a finite gate set can be encoded as a binary string. {Qλ : λ ∈ N}
is said to be a polynomial-time generated family4 if there exists a determinis-
tic Turing machine that, on any input λ ∈ N, outputs an encoding of Qλ in
4 More precisely, each circuit should be written as Q1λ . Note that in a polynomial-time

generated family, then Qλ must have size polynomial in λ.
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polynomial-time in λ. A quantum polynomial-time algorithm is identified with a
polynomial-time generated circuit family. In cryptography it is conventionally to
model adversaries as non-uniform algorithms. We model a non-uniform quantum
polynomial-time algorithm as a family {Qλ, ρλ}λ, where {Qλ} is a polynomial-
time generated circuit family, and {ρλ} is a collection of advice states. Qλ acts
on ρλ besides the actual input state.

2.2 Probability Theory

For two probability measures ν1 and ν2 defined on measurable space (Ω,F), the
total variation distance of ν1 and ν2 is defined as

∥ν1 − ν2∥TV = sup
A∈F
|ν1(A)− ν2(A)| .

Closeness in total variation distance is a strong promise. For example, when
applied to quantum states, it implies closeness in trace distance of the average
states.

Lemma 1. Let µ and ν be two arbitrary probability measures over S2nR (S2nC ).
Then for all ℓ ∈ N,∥∥∥∥ E

|ψ⟩∼µ

[
(|ψ⟩⟨ψ|)⊗ℓ

]
− E
|φ⟩∼ν

[
(|φ⟩⟨φ|)⊗ℓ

]∥∥∥∥
1

≤ ∥µ− ν∥TV .

We denote the distribution of a random variable X by L(X). If L(X) = ν,
we write X ∼ ν. A coupling of two probability measures µ and ν is a joint
probability measure whose marginals are µ and ν. We use Γ (µ, ν) to denote the
set of all couplings of µ and ν. For p ≥ 1 The Wasserstein p-distance between
two probability measures µ and ν is

Wp(µ, ν) =

(
inf

γ∈Γ (µ,ν)
E

(x,y)∼γ
[∥x− y∥p2]

)1/p

.

The Wasserstein ∞-distance is W∞(µ, ν) = limp→∞Wp(µ, ν).
The following lemmas about Markov chain in [38] serve as crucial tools in

this work.

Lemma 2 (Coupling Lemma). [38, Theorem 5.4] Let K be the transition
kernel of a Markov chain with unique stationary distribution ν on state space Ω.
Let {Xt}t≥0 , {Yt}t≥0 be two corresponding Markov chains started at X0 = x ∈ Ω
and Y0 ∼ ν. Define the coalescence time of the chains

τ(x) = min {t : Xt = Yt} .

Assume that a coupling of {Xt}t≥0 , {Yt}t≥0 satisfies Xt = Yt for all t ≥ τ(x).
Then for any t ≥ 0,

∥L(Xt)− ν∥TV ≤ Pr[τ(x) > t] .
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Lemma 3. [38, Lemma 4.10, Lemma 4.11 and Equation 4.29] Let {Xt}t≥0 be
a Markov chain with unique stationary distribution ν on state space Ω. Then for
integers t1, t2 ∈ N, we have

– if t2 ≥ t1, then

sup
X0∈Ω

∥L(Xt2)− ν∥TV ≤ 2 sup
X0∈Ω

∥L(Xt1)− ν∥TV .

– if t2 = s · t1 for some integer s ∈ N, then

sup
X0∈Ω

∥L(Xt2)− ν∥TV ≤
(
2 · sup

X0∈Ω
∥L(Xt1)− ν∥TV

)s
.

We also utilize the following lemmas, which present upper bounds on the
probability of a coordinate in a Haar random vector being small:

Lemma 4 (Lemma 3.5 in [44]). Let Y ∼ µ where µ is the Haar measure on
SnR . Then for all 1 < c <∞ and any 1 ≤ i ≤ n,

Pr
[
Y [i]2 ≤ n−3c

]
≤ 2n1−c .

Lemma 5. Let Y ∼ µC where µC is the Haar measure on SnC . Then for all
1 < c <∞ and any 1 ≤ i ≤ n,

Pr
[
|Y [i]|2 ≤ (2n)

−3c
]
≤ 2 · (2n)1−c .

Proof. Let g1, . . . , g2n be 2n i.i.d. real random variable with N (0, 1) distribution.
We have

Pr
[
|Y [i]|2 ≤ (2n)

−3c
]
= Pr

[
g21 + g22∑2n
k=1 g

2
k

≤ (2n)
−3c

]

≤ Pr

[
g21∑2n
k=1 g

2
k

≤ (2n)
−3c

]
≤ 2 · (2n)1−c .

The last inequality follows from Lemma 4.

2.3 Cryptography

In this section, we will review various definitions and results in cryptography.
Throughout this work, λ denotes a security parameter.

Pseudorandom Functions and Pseudorandom Permutations

Definition 1 (Quantum-Secure Pseudorandom Function). Let K,X and
Y be the key space, the domain and range, all implicitly depending on the security
parameter λ. A keyed family of functions {PRFk : X → Y}k∈K is a quantum-
secure pseudorandom function (QPRF) if the following two conditions hold:
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1. Efficient generation. PRFk is polynomial-time computable on a classical
computer.

2. Pseudorandomness. For any polynomial-time quantum oracle algorithm
A, PRFk with a random k ← K is indistinguishable from a truly random
function f ← YX in the sense that:∣∣∣∣ Prk←K

[
APRFk

(
1λ
)
= 1
]
− Pr
f←YX

[
Af
(
1λ
)
= 1
]∣∣∣∣ = negl(λ) .

Definition 2 (Quantum-Secure Pseudorandom Permutation). Let K be
the key space, and X be both the domain and range, implicitly depending on
the security parameter λ. A keyed family of permutations {PRPk ∈ SX }k∈K is a
quantum-secure pseudorandom permutation (QPRP) if the following two condi-
tions hold:

1. (Efficient generation). PRPk and PRP−1k are polynomial-time computable
on a classical computer.

2. (Pseudorandomness). For any polynomial-time quantum oracle algorithm
A, PRPk with a random k ← K is indistinguishable from a truly random
permutation σ ← SX in the sense that:∣∣∣∣ Prk←K

[
APRPk,PRP−1

k

(
1λ
)
= 1
]
− Pr
σ←SX

[
Aσ,σ

−1(
1λ
)
= 1
]∣∣∣∣ = negl(λ) .

We adopt the definition of a strong quantum-secure PRP in this paper. And
when referring to a quantum oracle algorithm having oracle access to a permu-
tation σ, we imply that it has oracle access to both σ and its inverse σ−1.

Under the assumption that post-quantum one-way functions exist, Zhandry
proved the existence of QPRFs [50]. QPRPs can be constructed from QPRFs
efficiently [49].

Given two QPRFs F and G, one independently samples Fk1 from F and
Gk2 from G. A standard hybrid argument shows that Fk1 , Gk2 are computation-
ally indistinguishable from two independent random functions, as stated in the
following lemma. The proof, which is deferred to Appendix C, can be readily
extended to the scenario when polynomially many pseudorandom primitives (or
random primitives) are given.

Lemma 6. Let keyed families of functions F : K1×X1 → Y1 and G : K2×X2 →
Y2 be QPRFs. Then we have for any polynomial-time quantum oracle algorithm
A,∣∣∣∣∣ Pr
k1←K1,k2←K2

[
AFk1

,Gk2

(
1λ
)
= 1
]
− Pr
f←YX1

1 ,g←YX2
2

[
Af,g

(
1λ
)
= 1
]∣∣∣∣∣ = negl(λ) .

It also holds if X2 = Y2, G is a family of QPRPs and g ← YX2
2 is replaced by

g ← SX2
.
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Quantum Pseudorandomness The concept of quantum pseudorandom state
generators was originally introduced in [31].

Definition 3 (Quantum Pseudorandom State Generator). Let K be a key
space and H be a Hilbert space. K and H depend on the security parameter λ.
A pair of polynomial-time quantum algorithms (K,G) is a pseudorandom state
generator (PRSG) if the following holds:

– Key Generation. K(1λ) chooses a uniform k ∈ K and outputs it as the
key.

– State Generation. For all k ∈ K, G(1λ, k) outputs a quantum state |ϕk⟩ ∈
S(H).

– Pseudorandomness. Any polynomially many copies of |ϕk⟩ with the same
random k is computationally indistinguishable from the same number of
copies of a Haar random state. More precisely, for any n ∈ N, any efficient
quantum algorithm A and any ℓ ∈ poly(λ),∣∣∣∣ Prk←K

[
A
(
|ϕk⟩⊗ℓ

)
= 1
]
− Pr
|ψ⟩←µ

[
A
(
|ψ⟩⊗ℓ

)
= 1
]∣∣∣∣ = negl(λ) ,

where µ is the Haar measure on S(H).

We call the keyed family of quantum states {ϕk}k∈K a pseudorandom quantum
state (PRS) in H.

PRSGs exist assuming the existence of QPRFs. Given any QPRF PRF : K ×
{0, 1}n → {0, 1}n (where K and N = 2n are implicitly functions of the security
parameter λ), [31] constructed a PRS {ϕk}k∈K, referred to (pseudo)random phase
states, as follows:

|ϕk⟩ =
1√
N

∑
x∈{0,1}n

ω
PRFk(x)
N |x⟩

for k ∈ K and ωN = ei
2π
N . Additionally, they conjectured the variant with binary

phase (i.e., replacing ωN with -1) remains a PRS, and this was later confirmed
in [10].

It is worth noting that both of these constructions rely on state generation
algorithms that require a specific initial state, typically the all-zero state |0⟩⊗n.
If we were to use a different initial state, such as the equally weighted super-
position state |+⟩⊗n, their state generation algorithms would fail to produce a
pseudorandom state. Therefore, the specific initial state is crucial for the success
of these constructions.

3 Pseudorandom State Scramblers

We describe our new primitive quantum Pseudorandom State Scramblers (PRSS).
A PRSS is capable of generating a pseudorandom state on an arbitrary initial
state, addressing the limitation of acting on one specific initial state.
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Definition 4 (Pseudorandom State Scrambler). Let Hin and Hout be
Hilbert spaces of dimensions 2n and 2m respectively with n,m ∈ N and n ≤ m.
Let K = {0, 1}κ be a key space, and λ be a security parameter. A pseudorandom
state scrambler (PRSS) is an ensemble of isometric operators

Rn,m := {{Rn,m,λk : Hin → Hout}k∈K}λ ,

satisfying:

– Pseudorandomness. For any ℓ = poly(λ), any |ϕ⟩ ∈ S(Hin), and any
non-uniform poly-time quantum adversary A,∣∣∣∣ Prk←K

[
A
(
|ϕk⟩⊗ℓ

)
= 1
]
− Pr
|ψ⟩←µ

[
A
(
|ψ⟩⊗ℓ

)
= 1
]∣∣∣∣ = negl(λ) ,

where |ϕk⟩ := Rn,m,λk |ϕ⟩ and µ is the Haar measure on S(Hout).
– Uniformity. Rn,m can be uniformly computed in polynomial time. That

is, there is a deterministic Turing machine that, on input (1n, 1m, 1λ, 1κ),
outputs a quantum circuit Q in poly(n,m, λ, κ) time such that for all k ∈ K
and |ϕ⟩ ∈ S(Hin)

Q |k⟩|ϕ⟩ = |k⟩|ϕk⟩ ,

where |ϕk⟩ := Rn,m,λk |ϕ⟩.
– Polynomially-bounded key length. κ = log |K| = poly(m,λ). As a result,
Rn,m can be computed efficiently in time poly(n,m, λ).

By strengthening the pseudorandomness condition in PRSS, we define ran-
dom state scramblers as follows.

Definition 5 (Random State Scrambler). Let Hin and Hout be Hilbert
spaces of dimensions 2n and 2m respectively with n,m ∈ N and n ≤ m. Let
K = {0, 1}κ be a key space, and λ be a security parameter. A random state
scrambler (RSS) is an ensemble of isometric operators Rn,m := {Rn,m,λ}λ with
Rn,m,λ := {Rn,m,λk : Hin → Hout}k∈K satisfying:

– Statistical Pseudorandomness. For any ℓ = poly(λ), and any |ϕ⟩ ∈
S(Hin),

TD

(
E

k←K

[
|ϕk⟩⟨ϕk|⊗ℓ

]
, E
|ψ⟩∈µ

[
|ψ⟩⟨ψ|⊗ℓ

])
= negl(λ) ,

where |ϕk⟩ := Rn,m,λk |ϕ⟩ and µ is the Haar measure on S(Hout).
– Uniformity. Rn,m can be uniformly computed in polynomial time. That

is, there is a deterministic Turing machine that, on input (1n, 1m, 1λ, 1κ),
outputs a quantum circuit Q in poly(n,m, λ, κ) time such that for all k ∈ K
and |ϕ⟩ ∈ S(Hin)

Q |k⟩|ϕ⟩ = |k⟩|ϕk⟩ ,

where |ϕk⟩ := Rn,m,λk |ϕ⟩.
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Random Pseudorandom Main property

Haar unitary PRU {Uk} {Uk} ≈c Haar unitary

RSS PRSS {Rk}
∀ |ϕ⟩ , {Rk |ϕ⟩} ≈ Haar state

(trace distance or comp. indist.)

Haar state PRSG {Rk}
for some fixed |ϕ⟩ (e.g., |0⟩)

{Rk |ϕ⟩} ≈c Haar state

Table 1: A collection of quantum random and pseodurandom objects.

3.1 Properties of Pseudorandom State Scramblers

We discuss basic characteristics of the new primitives, as well as their relation-
ships with pseudorandom state generators and their siblings.

Unitary to isometry. It is sufficient to construct PRSSs from H to H, since
we can construct PRSSs from H1 to H2 (n < m) in the following way. Let
Rm,m := {Rm,m,λ}λ be a PRSS with Rm,m,λ := {Rm,m,λk : H2 → H2}. For all
λ ∈ N and k ∈ K, we define Rn,m,λk = Rm,m,λk

(
1⊗ |0⟩⊗(m−n)

)
where 1 is the

identity of H1. It is not hard to verify that Rn,m is a PRSS from H1 to H2. We
may write Rm instead of Rm,m when m = n.

Connections with Existing PRS variants. Several definitions of quantum pseudo-
randomness on states with slight variations have been proposed and constructed
since the regular PRS has been introduced. Brakerski and Shmueli [11] intro-
duced scalable pseudorandom states (scalable PRSs) to eliminate the depen-
dence between the state size and the security parameter. This modification aids
in assuring the security when the state size n is much smaller than the security
parameter λ. Ananth, Qian and Yuen [5] introduced pseudorandom function-
like states (PRFS s), which extend PRSs by augmenting with classical inputs
alongside the secret key. Although the security is initially based on pre-selected
classical queries to the PRFS generator, the subsequent work [4] relaxes this to
allow adversaries making adaptive (classical or quantum) queries resulting in
three levels of security. The following theorem states that PRSSs subsume the
original PRSs and those variants. The proof is deferred to Appendix B.

Theorem 2. PRSGs, scalable PRSGs, and PRFSGs can be constructed via in-
voking PRSSs in a black-box manner.

Oracle Separation from OWFs. According to [36, Theorem 2], PRUs exist relative
to a quantum oracle O, even when BQPO = QMAO, indicating the non-existence
of one-way functions. Since PRUs imply PRSSs, we obtain the same oracle sep-
aration result for PRSSs.

Theorem 3. There exists a quantum oracle O relative to which PRSSs exist,
but BQPO = QMAO.
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4 Parallel Kac’s Walk

In this section, we design a parallel version of the standard Kac’s walk on SnR [44]
and demonstrate that it mixes exponentially faster with respect to the metrics
of our interest. We assume n = 2m for some m ∈ N throughout this section.

4.1 Parallel Kac’s Walk on Real Space

Before introducing our parallel Kac’s walk, we first review the standard one. The
standard Kac’s walk on vectors within a real Hilbert space is a Markov process.
At each discrete time t, we randomly select two coordinates (i, j) of the vector,
and then apply a two-dimensional rotation to the corresponding subvector with
an angle θ drawn randomly and uniformly. After a predetermined number of
steps, the Markov chain converges to a Haar distribution over the unit sphere.
It is proved in [44] that the mixing time of Kac’s walk on SnR with respect to
the total variation distance is Θ(n log n). The formal definition of Kac’s walk is
given below.

Definition 6. Kac’s walk on SnR is a discrete-time Markov chain {Xt ∈ SnR}t≥0.
At each time t, two coordinates i(t), j(t) ∈ [n] and an angle θ(t) ∈ [0, 2π) are
chosen uniformly at random. Xt+1 is obtained by the following update rules:(

Xt+1[i
(t)]

Xt+1[j
(t)]

)
=

[
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

](
Xt[i

(t)]
Xt[j

(t)]

)
,

Xt+1[k] = Xt[k] for k /∈
{
i(t), j(t)

}
.

We denote the Kac’s walk as G : [n]× [n]× [0, 2π)× SnR → SnR such that

Xt+1 = G
(
i(t), j(t), θ(t), Xt

)
. (1)

In our parallel Kac’s walk, instead of randomly rotating one subvector, we
simultaneously rotate m subvectors. Here we give its formal definition.

Definition 7. The parallel Kac’s walk is a discrete-time Markov chain {Xt ∈ SnR}t≥0.
At each step t, the parallel Kac’s walk first selects a random perfect matching of
the set {1, . . . , n}, denoted by

Pt =
{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i(t)m , j(t)m

)}
,

where
⋃m
k=1

{
i
(t)
k , j

(t)
k

}
= {1, . . . , n}. Then m independent angles θ(t)1 , . . . , θ

(t)
m ∈

[0, 2π) are chosen uniformly at random. For every pair
(
i
(t)
k , j

(t)
k

)
in Pt, it sets(

Xt+1[i
(t)
k ]

Xt+1[j
(t)
k ]

)
=

[
cos(θ

(t)
k ) − sin(θ

(t)
k )

sin(θ
(t)
k ) cos(θ

(t)
k )

](
Xt[i

(t)
k ]

Xt[j
(t)
k ]

)
.
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Let F : ([n]× [n])
m × [0, 2π)m × SnR → SnR denote the map associated with the

above random walk such that

Xt+1 = F
(
Pt, θ

(t)
1 , . . . , θ(t)m , Xt

)
. (2)

In one step of the parallel Kac’s walk, we obtain m distinct coordinate pairs
by randomly sampling a perfect matching Pt of set [n]. For each pair, a rotation
angle is selected independently and uniformly at random. Recall the notation in
Definition 6. Let Xt,1 = Xt and Xt,k+1 = G

(
i
(t)
k , j

(t)
k , θ

(t)
k , Xt,k

)
for 1 ≤ k ≤ m.

It is evident that

Xt,m+1 = Xt+1 = F
(
Pt, θ

(t)
1 , . . . , θ(t)m , Xt

)
.

We can observe that taking one step of the parallel Kac’s walk can be viewed as
taking m = n/2 steps in the original Kac’s walk when there are no collisions in
the pairing step. All the subvectors being rotated in a single step of the parallel
Kac’s walk are distinct, and thus not independent. Consequently, the results for
the original Kac’s walk cannot be directly applied. Fortunately, by enhancing the
coupling technique for analyzing the mixing time of the standard Kac’s walk,
we are able to prove that the parallel Kac’s walk rapidly mixes in time O(log n)
with respect to two different metrics: (1) the Wasserstein 1-distance; and (2) the
total variation distance.

In the context of the Wasserstein 1-distance, after walking T steps, the differ-
ence between the output distribution of a parallel Kac’s walk and the normalized
Haar measure decays exponentially as T grows, which leads to a O(log n) mixing
time. Formally,

Theorem 4. Let {Xt ∈ SnR}t≥0 be a Markov chain that evolves according to the
parallel Kac’s walk. Then, for sufficiently large n, c > 0, and T = 10(c+1) log n,

sup
X0∈Sn

R

W1(L(XT ) , µ) ≤
1

2c logn
,

where µ is the normalized Haar measure on SnR .

Furthermore, we get a stronger result regarding the total variation distance:

Theorem 5. Let {Xt ∈ SnR}t≥0 be a Markov chain that evolves according to the
parallel Kac’s walk. Then, for sufficiently large n, c > 515 and T = c log n,

sup
X0∈Sn

R

∥L(XT )− µ∥TV ≤
1

2(c/515−1) logn−1
,

where µ is the normalized Haar measure on SnR .

Notably, while the Wasserstein 1-distance is a weaker metric compared to
the total variation distance, Theorem 4 provides an adequate foundation for
constructing a PRSS. Additionally, the analysis of Theorem 5 further reveals a
dispersing property of our construction of RSS. The remainder of this section is
devoted to proving Theorem 4. The proof for Theorem 5, along with an expla-
nation of the dispersing property, is deferred to Appendix A.
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Xt

Xt+1

Yt

Yt+1
φ

θ

θ′

i

j

Fig. 1: Transformation of subcoordinates Xt[i, j] and Yt[i, j]

The Proportional Coupling. Our technique for proving the mixing time in
Theorem 4 accommodates the proportional coupling [44] that sufficiently reduces
the distance between two copies of Kac’s walk. At each time t in the proportional
coupling (illustrated in Figure 1), an angle θ is chosen uniformly at random from
[0, 2π) for rotating the subvector (Xt[i], Xt[j]), where indices i and j are picked
as in Definition 6. The angle θ′ is specifically selected for (Yt[i], Yt[j]) to make it
collinear with (Xt[i], Xt[j]), i.e., they share the same argument φ. Taking into
account the marginal distribution, both θ and θ′ are drawn from the uniform
distribution over the interval [0, 2π), validating the proportional coupling for two
Kac’s walks.

Following a similar idea, we define the proportional coupling of two copies of
the parallel Kac’s walk, which couples each pair of indices from the randomly
sampled perfect matching using the propositional coupling.

Definition 8 (Proportional Coupling for the Parallel Kac’s Walk). We
define a coupling of two copies {Xt}t≥0 , {Yt}t≥0 of the parallel Kac’s walk in
the following way: Fix Xt, Yt ∈ SnR .

1. Choose a perfect matching Pt =
{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i
(t)
m , j

(t)
m

)}
and m angles

θ
(t)
1 , . . . , θ

(t)
m ∈ [0, 2π) uniformly at random, and set

Xt+1 = F
(
Pt, θ

(t)
1 , . . . , θ(t)m , Xt

)
.

2. Sample m angles θ′(t)1 , . . . , θ′
(t)
m in the following manner: for every 1 ≤ k ≤

m,
(a) choose φk ∈ [0, 2π) uniformly at random among all angles that satisfy

Xt+1[i
(t)
k ] =

√
Xt[i

(t)
k ]2 +Xt[j

(t)
k ]2 cos(φk) ,

Xt+1[j
(t)
k ] =

√
Xt[i

(t)
k ]2 +Xt[j

(t)
k ]2 sin(φk) ,
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(b) and then choose θ′(t)k ∈ [0, 2π) uniformly among the angles that satisfy

cos(θ′
(t)
k ) · Yt[i(t)k ]− sin(θ′

(t)
k ) · Yt[j(t)k ] =

√
Yt[i

(t)
k ]2 + Yt[j

(t)
k ]2 cos(φk) ,

sin(θ′
(t)
k ) · Yt[i(t)k ] + cos(θ′

(t)
k ) · Yt[j(t)k ] =

√
Yt[i

(t)
k ]2 + Yt[j

(t)
k ]2 sin(φk) .

And set Yt+1 = F
(
Pt, θ

′(t)
1 , . . . , θ′

(t)
m , Yt

)
.

In this coupling scheme, we enforce Xt and Yt to employ an identical ran-
dom matching (Pt in step 1) to generate all the m pairs of coordinates. And
then we sample m rotation angles for Xt and obtain Xt+1 by rotating the m
coordinate pairs by their corresponding angles. Next, in step 2, we determine
the rotation angle for each coordinate pair of Yt. For the k-th pair, our ob-
jective is to select a suitable angle θ′

(t)
k such that the two-dimensional sub-

vector (Yt+1[i
(t)
k ], Yt+1[j

(t)
k ]) aligns collinearly with (Xt+1[i

(t)
k ], Xt+1[j

(t)
k ]). To

achieve this, we ensure that (Yt+1[i
(t)
k ], Yt+1[j

(t)
k ]) shares the same argument

φk as (Xt+1[i
(t)
k ], Xt+1[j

(t)
k ]). Typically, the values of angles φk and θ′

(t)
k are

uniquely determined. However, in the scenario where either (Xt[i
(t)
k ], Xt[j

(t)
k ]) or

(Yt[i
(t)
k ], Yt[j

(t)
k ]) equals the zero vector, all angles satisfy the required conditions.

In such cases, we resort to uniform random selection for determining the angles.

Remark 1. This coupling forces Xt+1[i]Yt+1[i] ≥ 0 for all i ∈ [n] since the signs
are determined by the same arguments.

In each step of our coupling scheme, a quarter of the distance between vectors
Xt and Yt is reduced, which is formally shown in

Lemma 7. Let X0, Y0 ∈ SnR . For t ≥ 0, we couple (Xt+1, Yt+1) conditioned on
(Xt, Yt) according to the proportional coupling defined in Definition 8. We define

At[i] = Xt[i]
2 , Bt[i] = Yt[i]

2 .

Then for any l ∈ N, we have

E

[
n∑
i=1

(Al[i]−Bl[i])2
]
≤ 2 ·

(
1− 1

4

)l
.

Proof. Fix Xt, Yt ∈ SnR . Let (Xt+1, Yt+1) obtained from (Xt, Yt) by applying the
coupling defined in Definition 8. Recall that n = 2m. Let N = n!

2mm! be the
number of perfect matchings for [n]. To keep the notations short, the perfect

matching
{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i
(t)
m , j

(t)
m

)}
at step t is denoted by

(−→
i(t),
−→
j(t)
)

.
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We have

E

[
n∑
i=1

(At+1[i]−Bt+1[i])
2

]

=
1

N

∑
(−→
i(t),
−−→
j(t)

)E

[
n∑
i=1

(At+1[i]−Bt+1[i])
2

∣∣∣∣∣Pt =
(−→
i(t),
−→
j(t)
)]

︸ ︷︷ ︸
(⋆)

. (3)

By the definition of the parallel Kac’s walk, we have

(⋆) =

m∑
k=1

E
[((

At[i
(t)
k ] +At[j

(t)
k ]
)
cos(φk)

2 −
(
Bt[i

(t)
k ] +Bt[j

(t)
k ]
)
cos(φk)

2
)2]

+

m∑
k=1

E
[((

At[i
(t)
k ] +At[j

(t)
k ]
)
sin(φk)

2 −
(
Bt[i

(t)
k ] +Bt[j

(t)
k ]
)
sin(φk)

2
)2]

=
3

4

m∑
k=1

((
At[i

(t)
k ] +At[j

(t)
k ]
)
−
(
Bt[i

(t)
k ] +Bt[j

(t)
k ]
))2

=
3

4

m∑
k=1

((
At[i

(t)
k ]−Bt[i(t)k ]

)2
+
(
At[j

(t)
k ]−Bt[j(t)k ]

)2)
︸ ︷︷ ︸

(⋆⋆)

+
3

4

m∑
k=1

2
(
At[i

(t)
k ]−Bt[i(t)k ]

)(
At[j

(t)
k ]−Bt[j(t)k ]

)
︸ ︷︷ ︸

(⋆⋆⋆)

, (4)

where the second equality is by E
[
cos(φk)

4
]
= E

[
sin(φk)

4
]
= 3/8.

As
{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i
(t)
m , j

(t)
m

)}
is a perfect matching, we have

(⋆⋆) =
3

4

n∑
i=1

(At[i]−Bt[i])2 . (5)

Combing Eqs. (3)(4)(5), we obtain

E

[
n∑
i=1

(At+1[i]−Bt+1[i])
2

]
=

3

4

n∑
i=1

(At[i]−Bt[i])2 +
1

N

∑
(−→
i(t),
−−→
j(t)

)(⋆ ⋆ ⋆)
︸ ︷︷ ︸

(4⋆)

.

(6)
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For the last term,

(4⋆) =
3

2N

∑
(−→
i(t),
−−→
j(t)

)
m∑
k=1

(
At[i

(t)
k ]−Bt[i(t)k ]

)(
At[j

(t)
k ]−Bt[j(t)k ]

)

=
3

2N
· (n− 2)!

2m−1(m− 1)!

∑
i<j

(At[i]−Bt[i]) (At[j]−Bt[j])

=
3 ·m

2n(n− 1)

( n∑
i=1

(At[i]−Bt[i])

)2

−
n∑
i=1

(At[i]−Bt[i])2


=− 3

4(n− 1)

n∑
i=1

(At[i]−Bt[i])2 . (7)

Combining Eqs. (6)(7), we have

E

[
n∑
i=1

(Al[i]−Bl[i])2
]
= E

[
E

[
n∑
i=1

(Al[i]−Bl[i])2
∣∣∣∣∣Xl−1, Yl−1

]]

≤ 3

4
E

[
n∑
i=1

(Al−1[i]−Bl−1[i])2
]

≤
(
3

4

)l n∑
i=1

(A0[i]−B0[i])
2 ≤ 2 ·

(
3

4

)l
.

Proof of Theorem 4. Let T = 10(c + 1) log n for c > 0. We couple two copies
{Xt}t≥0 and {Yt}t≥0 of the parallel Kac’s walk with starting points X0 = x ∈ SnR
and Y0 ∼ µ, by applying the proportional coupling. We have

W1(L(XT ) , µ) =W1(L(XT ) ,L(YT )) ≤ E[∥XT − YT ∥2] ≤
(
E
[
∥XT − YT ∥42

])1/4
.

Then by Cauchy-Schwarz inequality, we have

W1(L(XT ) , µ) ≤
(
nE
[
∥XT − YT ∥44

])1/4
. (8)

Note that the proportional coupling forces XT [i]YT [i] ≥ 0 for all i ∈ [n]. There-
fore, for all i ∈ [n]

|XT [i]− YT [i]| ≤ |XT [i] + YT [i]| .

This gives us

∥XT − YT ∥44 =

n∑
i=1

(XT [i]− YT [i])4 ≤
n∑
i=1

(
XT [i]

2 − YT [i]2
)2

. (9)



20 C. Lu et al.

Combing Eqs. (8) and (9), we have

W1(L(XT ) , µ) ≤

(
nE

[
n∑
i=1

(
XT [i]

2 − YT [i]2
)2])1/4

(Lemma 7) ≤

(
2n

(
3

4

)T)1/4

≤ 1

2c logn
.

4.2 Parallel Kac’s Walk on Complex Space

In this section, we extend the parallel Kac’s walk to complex vectors. In the real
case, for each pair of coordinates, we uniformly select a matrix according to Haar
measure on SO(2). In the complex case, we will naturally choose a matrix from
SU(2) according to Haar measure on it. The Haar random unitary in SU(2) can
be obtained by sampling three random angles [51]. Let

U(α, β, θ) =

(
eiα cos(θ) −eiβ sin(θ)
e−iβ sin(θ) e−iα cos(θ)

)
. (10)

If we pick α, β ∈ [0, 2π) and ζ ∈ [0, 1) uniformly at random and set θ = arcsin
√
ζ,

then U (α, β, θ) is a Haar random unitary on SU(2).

Kac’s walk on complex vectors We define Kac’s walk on SnC as a discrete-
time Markov chain {Xt ∈ SnC}t≥0. At each time t, two coordinates i(t), j(t) ∈
{1, . . . , n} and two angles α(t), β(t) ∈ [0, 2π) are chosen uniformly at random.
Additionally, a real number ζ(t) ∈ [0, 1) is selected uniformly at random and
compute

θ(t) = arcsin
√
ζ(t) .

Xt+1 is obtained by the following update rules:(
Xt+1[i

(t)]
Xt+1[j

(t)]

)
= U

(
α(t), β(t), θ(t)

)(Xt[i
(t)]

Xt[j
(t)]

)
,

Xt+1[k] = Xt[k] for k /∈
{
i(t), j(t)

}
.

We denote the Kac’s walk on complex vectors asGC : [n]×[n]×[0, 2π)3×SnC → SnC
such that

Xt+1 = GC

(
i(t), j(t), α(t), β(t), θ(t), Xt

)
.
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Parallel Kac’s walk on complex vectors In a parallel Kac’s walk, we choose a
perfect matching at each step and apply the one-step Kac’s walk GC on each
pair. More specifically, the parallel Kac’s walk on complex vectors is a discrete-
time Markov chain {Xt ∈ SnC}t≥0. At each step t, it first selects a random perfect
matching of the set [n], denoted by

Pt =
{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i(t)m , j(t)m

)}
where

⋃m
k=1

{
i
(t)
k , j

(t)
k

}
= [n]. And then 2m independent angles

α
(t)
1 , . . . , α(t)

m , β
(t)
1 , . . . , β(t)

m ∈ [0, 2π)

are chosen uniformly at random. Additionally, m independent real numbers
ζ
(t)
1 . . . , ζ

(t)
m ∈ [0, 1) are selected uniformly at random and compute

θ
(t)
k = arcsin

(√
ζ
(t)
k

)
for all k ∈ {1, . . . ,m}. Then for every pair

(
i
(t)
k , j

(t)
k

)
in Pt, it sets(

Xt+1[i
(t)
k ]

Xt+1[j
(t)
k ]

)
= U

(
α
(t)
k , β

(t)
k , θ

(t)
k

)(
Xt[i

(t)
k ]

Xt[j
(t)
k ]

)
.

Let FC : ([n]× [n])
m× [0, 2π)3m×SnC → SnC denote the map associated with the

above random walk such that

Xt+1 = FC

(
Pt,
{
α
(t)
k

}m
k=1

,
{
β
(t)
k

}m
k=1

,
{
θ
(t)
k

}m
k=1

, Xt

)
.

As the number of steps increases, the output distribution of the parallel
Kac’s walk on complex vectors converges exponentially fast to the Haar measure
in terms of Wasserstein-1 distance and total variation distance. Formally,

Theorem 6. Let {Xt ∈ SnC}t≥0 be a Markov chain that evolves according to the
parallel Kac’s walk on complex vectors. Then, for sufficiently large n, c > 0 and
T = 10(c+ 1) log n,

sup
X0∈Sn

C

W1(L(XT ) , µ) ≤
1

2c logn
,

where µC is the Haar measure on SnC .

Theorem 7. Let {Xt ∈ SnC}t≥0 be a Markov chain that evolves according to the
parallel Kac’s walk on complex vectors. Then, for sufficiently large n, c > 515
and T = c log n,

sup
X0∈Sn

C

∥L(XT )− µ∥TV ≤
1

2(c/515−1) logn−1
,

where µC is the Haar measure on SnC .
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· · ·

· · ·

· · ·

· · ·

...
...

...

|x1⟩

Uσ

Rπ Rπ
2

R π
2d−1

Uσ−1 Working register

|x2 · · ·xn⟩

Of O†f

|0⟩⊗d Ancilla register

Fig. 2: Circuit diagram for the construction of the Kσ,f

The proofs of above theorems follow a similar line of reasoning as the proof
in the real case. Therefore, to avoid redundancy, we defer the complete proof to
Appendix C.

5 Constructions of RSSs and PRSSs

In this section, we present a family of circuits that implements RSSs, specifically
realizing the parallel Kac’s walk on the real (complex) unit sphere. To obtain
circuits for PRSSs, one can simply replace the random primitives with their
post-quantum secured pseudorandom counterparts.

5.1 Constructing (P)RSS over the Real Space

We begin by constructing a unitary gate that simulates a single step of the
parallel Kac’s walk on S2nR . In every step, we denote the corresponding permu-
tation by σ ∈ S2n . And we use the function f : {0, 1}n−1 → {0, 1}d to manage
the precision of the rotation angle that was originally chosen from the interval
[0, 2π), where d is the parameter controlling the precision of the rotation angle.
Specifically, for every σ and f , we define a unitary gate Kσ,f = Uσ−1WfUσ,
where

Uσ =
∑

x∈{0,1}n
|σ(x)⟩⟨x| , Wf =

∑
y∈{0,1}n−1

(
cos (θy) − sin (θy)
sin (θy) cos (θy)

)
⊗ |y⟩⟨y| , (11)

and θy = 2π·val(f(y)) is the rotation angle for every subvector
(
σ−1(0y), σ−1(1y)

)
,

y ∈ {0, 1}n−1. In Figure 2, we show a quantum circuit that realizes Kσ,f .
The circuit consists of:

1. Permutation: a unitary Uσ which transforms |x⟩ to |σ(x)⟩ for any x ∈ {0, 1}n.
This unitary can be implemented via making quires to oracles Oσ and Oσ−1 ,
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and using n ancilla qubits: for any x ∈ {0, 1}n,

|x⟩ |0⟩ Oσ−→ |x⟩ |σ(x)⟩ SWAP−→ |σ(x)⟩ |x⟩
Oσ−1−→ |σ(x)⟩ |0⟩ .

We omit this detail in the above figure for the sake of conciseness.
2. Implementing rotation operator Wf :

(a) an oracle Of which queries f(x2, . . . , xn) and stores the d-bit result in
the ancilla qubits.

(b) d controlled-rotation gates. The i-th ancilla qubit controls R π

2i−1
gate

acting on the first qubit, where the gate Rθ denotes the rotation trans-

formation
(
cos θ − sin θ
sin θ cos θ

)
.

(c) an oracle Of again for uncomputing the ancilla qubits.
3. Inverse permutation: a unitary Uσ−1 .

Remark. The gate Kσ,f approximates one step of the parallel Kac’s walk. It
starts by partitioning the computational basis (indices) into 2n−1 pairs based
on a selected permutation σ. For each pair

(
σ−1(0y), σ−1(1y)

)
labeled by y ∈

{0, 1}n−1, the gate applies a rotation with an approximated angle θy indicated
by f to the corresponding two dimensional subvector.

Stepwise State Evolution To gain insight into the functionality of Kσ,f , we
assume the initial state to be a pure state

|φ⟩ =
∑

x∈{0,1}n
px |x⟩ .

First, to pair up the indices by applying Uσ, the initial state is transformed into∑
x∈{0,1}n

px |σ(x)⟩ ⊗
∣∣0d〉 = ∑

x′∈{0,1}n
pσ−1(x′) |x′⟩ ⊗

∣∣0d〉
=

∑
y∈{0,1}n−1

(
pσ−1(0y) |0⟩+ pσ−1(1y) |1⟩

)
⊗ |y⟩ ⊗

∣∣0d〉 .

Then, to rotate each subvector, the oracle Of stores f(y) in the ancilla register
as control qubits, resulting in the state∑

y∈{0,1}n−1

(
pσ−1(0y) |0⟩+ pσ−1(1y) |1⟩

)
⊗ |y⟩ ⊗ |f(y)⟩ .

Next, a series of controlled-rotation gates are applied to the first qubit, rotating
it by an angle of θy = 2π · val(f(y)). Therefore, we have the following state:∑

y∈{0,1}n−1

(
p′σ−1(0y) |0⟩+ p′σ−1(1y) |1⟩

)
⊗ |y⟩ ⊗ |f(y)⟩
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where

p′σ−1(0y) = cos (θy) · pσ−1(0y) − sin (θy) · pσ−1(1y) ,

p′σ−1(1y) = sin (θy) · pσ−1(1y) + cos (θy) · pσ−1(1y) .

After reverting the ancilla qubits and applying the inverse permutation, we ob-
tain the output state∑
y∈{0,1}n−1

(
p′σ−1(0y)

∣∣σ−1(0y)
〉
+ p′σ−1(1y)

∣∣σ−1(1y)
〉)

⊗
∣∣∣0d〉 =

∑
x∈{0,1}n

p′x |x⟩ ⊗
∣∣∣0d〉 .

Constructing RSSs We first define an ensemble RSGn of unitary operators that
represents applying Kσ,f for T -step with i.i.d. random selections of permutations
and functions. Then, we prove that such an ensemble forms an RSS.

Definition 9. Let n, T, d ∈ N, and H be a real Hilbert space with dimension 2n.
An ensemble of unitary operators RSGn :=

{
RSGn,λ

}
λ

with

RSGn,λ :=
{

RSGn,λ
(σi)Ti=1,(fi)

T
i=1

: H → H
}
(σi)Ti=1⊆S2n ,(fi)

T
i=1⊆{f :{0,1}n−1→{0,1}d}

is define as
RSGn,λ

(σi)Ti=1,(fi)
T
i=1

= KσT ,fT · · ·Kσ2,f2Kσ1,f1

where Kσ,f = Uσ−1WfUσ is defined in (11).

Theorem 8. Let n ∈ N, d = log2λ+ log2n and T = 10(λ+ 1)n. The ensemble
of unitary operators RSGn defined in Definition 9 is an RSS.

To prove Theorem 8, we define a new ensemble of (infinitely many) unitary

operators R̃SG
n
:=

{
R̃SG

n,λ
}
λ

with

R̃SG
n,λ

:=

{
R̃SG

n,λ

(σi)Ti=1,(f̃i)
T
i=1

: H → H
}

(σi)Ti=1⊆S2n ,(f̃i)
T
i=1⊆{f :{0,1}n−1→[0,1)}

and
R̃SG

n,λ

(σi)Ti=1,(f̃i)
T
i=1

= K̃σT ,f̃T
· · · K̃σ2,f̃2

K̃σ1,f̃1

where K̃σ,f̃ = Uσ−1W̃f̃Uσ and W̃f̃ is defined to be

W̃f̃ =
∑

y∈{0,1}n−1

cos
(
θ̃y

)
− sin

(
θ̃y

)
sin
(
θ̃y

)
cos
(
θ̃y

) ⊗ |y⟩⟨y| , (12)

in which θ̃y = 2π · f̃(y) for y ∈ {0, 1}n−1.
RSGn and R̃SG

n
differ in the way the angles are chosen. In RSGn, the an-

gles are selected from the discrete set
{
2π · i

2d
: i ∈

{
0, 1, . . . , 2d − 1

}}
, while in
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R̃SG
n
, the angles are chosen from the interval [0, 2π). For uniformly random σ

and f̃ , applying gate K̃σ,f̃ results in the selection of a random matching on the
computational basis, with each pair in the matching being rotated by a random
angle in [0, 2π) determined by the corresponding value of f̃ . This is exactly one
step of parallel Kac’s walk described in Section 4. R̃SG

n
serves as an intermediate

scrambler in the proof of Theorem 8. To analyse the difference between RSGn

and R̃SG
n
, we need the following lemma.

Lemma 8. Let σ ∈ S2n and f̃ : {0, 1}n−1 → [0, 1). Let f be the function satis-
fying for any y ∈ {0, 1}n−1, f(y) is the d digits after the binary point in f̃(y).
Then ∥∥∥Kσ,f − K̃σ,f̃

∥∥∥
∞
≤ 21−dπ ,

where Kσ,f = Uσ−1WfUσ is defined in (11) and K̃σ,f̃ = Uσ−1W̃f̃Uσ is defined
in (12).

Proof.∥∥∥Kσ,f − K̃σ,f̃

∥∥∥
∞

=
∥∥∥Uσ−1

(
Wf − W̃f̃

)
Uσ

∥∥∥
∞

=

∥∥∥∥∥∥
∑

y∈{0,1}n−1

(
cos θy − cos θ̃y −

(
sin θy − sin θ̃y

)
sin θy − sin θ̃y cos θy − cos θ̃y

)
⊗ |y⟩⟨y|

∥∥∥∥∥∥
∞

= max
y∈{0,1}n−1

{
2

∣∣∣∣∣sin θy − θ̃y2

∣∣∣∣∣
∥∥∥∥∥
(
− sin

θy+θ̃y
2 − cos

θy+θ̃y
2

cos
θy+θ̃y

2 − sin
θy+θ̃y

2

)∥∥∥∥∥
∞

}
≤ max

y∈{0,1}n−1

{∣∣∣θy − θ̃y∣∣∣} ≤ 21−dπ .

Proof of Theorem 8. It is easy to see that the uniformity condition is satisfied.
Let κ denote the key length. Quantum circuit RSGn,λ applies RSGn,λ

(σi)Ti=1,(fi)
T
i=1

after reading (σi)
T
i=1 and (fi)

T
i=1. To implement RSGn,λ

(σi)Ti=1,(fi)
T
i=1

, we need to
realize each of the T = 10(λ+1)n unitary gates K. Since each gate K can be im-
plemented in poly(n, λ, κ) time, the total construction time for RSGn,λ

(σi)Ti=1,(fi)
T
i=1

is also poly(n, λ, κ).
Thus, it suffices to prove the requirement of Statistical Pseudorandomness is

satisfied. Fix |η⟩ ∈ S(H). Define three distributions:

– ν be the distribution of RSGn,λ
(σi)Ti=1,(fi)

T
i=1

|η⟩ with independent and uniformly
random permutations (σi)

T
i=1 ⊆ S2n and random functions (fi)

T
i=1 ⊆ {f :

{0, 1}n−1 → {0, 1}d}.
– ν̃ be the distribution of R̃SG

n,λ

(σi)Ti=1,(f̃i)
T
i=1
|η⟩ with independent and uniformly

random permutations (σi)
T
i=1 ⊆ S2n , and random functions (f̃i)

T
i=1 ⊆ {f :

{0, 1}n−1 → [0, 1)}.
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– µ be the Haar measure on S2nR .

We first prove that the trace distance between ν and ν̃ is negligible. To this
end, we construct a coupling γ0 of ν and ν̃ by using the same permutation σt
and letting ft be the function satisfying ft(y) is the d digits after the binary
point in f̃t(y) for all y ∈ {0, 1}n−1. Therefore, for any (|ϕ⟩ , |φ⟩) ∼ γ0, we have

∥|ϕ⟩ − |φ⟩∥2 =

∥∥∥∥R̃SG
n,λ

(σi)Ti=1,(f̃i)
T
i=1
|η⟩ − RSGn,λ

(σi)Ti=1,(fi)
T
i=1

|η⟩
∥∥∥∥
2

≤
∥∥∥∥R̃SG

n,λ

(σi)Ti=1,(f̃i)
T
i=1
− RSGn,λ

(σi)Ti=1,(fi)
T
i=1

∥∥∥∥
∞

≤ 21−dπT =
20π(λ+ 1)n

λlog λ · nlogn
,

where the last inequality is from Fact 1 and Lemma 8. Thus, for any l ∈
poly(λ, n)∥∥∥∥ E

|ϕ⟩∼ν

[
(|ϕ⟩⟨ϕ|)⊗l

]
− E
|φ⟩∼ν̃

[
(|φ⟩⟨φ|)⊗l

]∥∥∥∥
1

≤ E
(|ϕ⟩,|φ⟩)∼γ0

[∥∥∥(|ϕ⟩⟨ϕ|)⊗l − (|φ⟩⟨φ|)⊗l
∥∥∥
1

]
≤ l E

(|ϕ⟩,|φ⟩)∼γ0
[∥|ϕ⟩⟨ϕ| − |φ⟩⟨φ|∥1]

≤ l

(
E

(|ϕ⟩,|φ⟩)∼γ0
[∥|ϕ⟩ (⟨ϕ| − ⟨φ|)∥1] + E

(|ϕ⟩,|φ⟩)∼γ0
[∥(|ϕ⟩ − |φ⟩) ⟨φ|∥1]

)
≤ 2l E

(|ϕ⟩,|φ⟩)∼γ0
[∥|ϕ⟩ − |φ⟩∥2] ≤

40π(λ+ 1)nl

λlog λ · nlogn
. (13)

As for the trace distance between ν̃ and µ, note that ν̃ is the output distribution
of T -step parallel Kac’s walk. Thus by Theorem 4, we have

W1(ν̃, µ) ≤
1

2λn
.

So there exists a coupling of ṽ and µ, denoted by γ1, that achieves

E
(|φ⟩,|ψ⟩)∼γ1

[∥|φ⟩ − |ψ⟩∥2] ≤
3

2λn
.

Therefore, similar to Eq. (13), we have for any l ∈ poly(λ, n)∥∥∥∥ E
|φ⟩∼ν̃

[
(|φ⟩⟨φ|)⊗l

]
− E
|ψ⟩∼µ

[
(|ψ⟩⟨ψ|)⊗l

]∥∥∥∥
1

≤ 2l E
(|φ⟩,|ψ⟩)∼γ1

[∥|φ⟩ − |ψ⟩∥2] ≤
6l

2λn
.

(14)

Finally, by the triangle inequality, Eqs. (13) and (14), we have∥∥∥∥ E
|ϕ⟩∼ν

[
(|ϕ⟩⟨ϕ|)⊗l

]
− E
|ψ⟩∼µ

[
(|ψ⟩⟨ψ|)⊗l

]∥∥∥∥
1

≤ 40π(λ+ 1)nl

λlog λ · nlogn
+

6l

2λn
= negl(λ) .

This establishes the Statistical Pseudorandomness property.



Quantum Pseudorandom Scramblers 27

Constructing PRSS We construct a PRSS by replacing the random functions
and permutations used in RSS with QPRFs and QPRPs.

Definition 10. Let n, T ∈ N, H be a real Hilbert space with dimension 2n,
τ : K1×{0, 1}n → {0, 1}n be a QPRP with key space K1 and F : K2×{0, 1}n−1 →
{0, 1}d be a QPRF with key space K2. An ensemble of unitary operators SGn :={

SGn,λ
}
λ

with SGn,λ :=
{

SGn,λk : H → H
}
k∈(K1×K2)

T
is defined as

SGn,λk = KτrT ,FsT
· · ·Kτr2 ,Fs2

Kτr1 ,Fs1

for k = (r1, s1, r2, s2, . . . , rT , sT ) ∈ (K1 ×K2)
T , where Kσ,f = Uσ−1WfUσ is

defined in (11).

Theorem 9. Let n ∈ N, d = log2λ+ log2n and T = 10(λ+ 1)n. The ensemble
of unitary operators SGn defined in Definition 10 is a PRSS.

Proof. Due to the efficiency of τ and F , the key length is bounded by 2T ·
poly(n, d) = poly(n, λ). Thus the condition of polynomial-bounded key length
is satisfied. To implement SGn,λk , we need to realize each of the T = 10(λ+ 1)n

unitary gates K that make up SGn,λk . Since each K can be realized in poly(n, λ)

time (efficiency of τ and F ), the overall construction time for SGn,λk will be
poly(n, λ). Thus the uniformity is also satisfied.

We now prove the pseudorandomness property. To this end, we consider three
hybrids for an arbitrary |ϕ⟩ ∈ S(H) and l ∈ poly(λ, n):

H1: |ϕk⟩⊗l for |ϕk⟩ = SGn,λk |ϕ⟩ where k ← (K1 ×K2)
T is chosen uniformly at

random.
H2:

∣∣∣φ(σi)Ti=1,(fi)
T
i=1

〉⊗l
for
∣∣∣φ(σi)Ti=1,(fi)

T
i=1

〉
= RSGn,λ

(σi)Ti=1,(fi)
T
i=1

|ϕ⟩ with indepen-

dently and uniformly random permutations (σi)Ti=1 ⊆ S2n and random func-
tions (fi)

T
i=1 ⊆ {f : {0, 1}n−1 → {0, 1}d}. RSGn,λ

(σi)Ti=1,(fi)
T
i=1

is defined in
Definition 9.

H3: |ψ⟩⊗l for |ψ⟩ chosen according to the Haar measure µ on S2nR .

We first prove that H1 and H2 are computationally indistinguishable. By
the quantum-secure property of τ and F , we know the following two situations
are computationally indistinguishable for any polynomial-time quantum oracle
algorithm A (see Lemma 6):

– given oracle access to τr1 , · · · , τrT and Fs1 , · · · , FsT where (ri)
T
i=1 ⊆ K1 and

(si)
T
i=1 ⊆ K2 are independently and uniformly random keys.

– given oracle access to independent and uniformly random permutations (σi)Ti=1

⊆ S2n and random functions (fi)
T
i=1 ⊆ {f : {0, 1}n−1 → {0, 1}d}.

Thus, we have for any polynomial-time quantum algorithm A,∣∣∣∣Pr [A(|ϕk⟩⊗l) = 1
]
− Pr

[
A
(∣∣∣φ(σi)Ti=1,(fi)

T
i=1

〉⊗l)
= 1

]∣∣∣∣ = negl(λ) .
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For H2 and H3, they are statistically indistinguishable since RSGn defined
in Definition 9 is an RSS by Theorem 8. Finally, by the triangle inequality we
establish H1 and H3 are computationally indistinguishable. This accomplishes
the proof.

5.2 Constructing (P)RSS over the Complex Space

This section provides constructions of a RSS and a PRSS over C. Similar to the
case over R, our initial step is to create a unitary gate that can be utilized to
simulate a single iteration of parallel Kac’s walk within a complex Hilbert space.
Fix f, g, h : {0, 1}n−1 → {0, 1}d and σ ∈ S2n . Let L̂σ,f,g,h = Uσ−1Q̂f,g,hUσ,
where Uσ is defined as before and Q̂f,g,h is

∑
y∈{0,1}n−1

ei(αy+βy
2

)
0

0 e
−i

(
αy+βy

2

)
(cos θy − sin θy

sin θy cos θy

)ei(αy−βy
2

)
0

0 e
−i

(
αy−βy

2

)
⊗ |y⟩⟨y| ,

(15)

in which

θy = arcsin
(√

val(f(y))
)
, αy = 2π · val(g(y)) , βy = 2π · val(h(y)) .

Here we decompose U(αy, βy, θy) into a product of three matrices according to
the formula(
eiα cos θ −eiβ sin θ
e−iβ sin θ e−iα cos θ

)
=

(
ei(

α+β
2 ) 0

0 e−i(
α+β

2 )

)(
cos θ − sin θ
sin θ cos θ

)(
ei(

α−β
2 ) 0

0 e−i(
α−β

2 )

)
.

(16)

We approximate Q̂f,g,h by another unitary Qf,g,h which can be constructed as
follows applying the similar technique in Section 5:

– apply Of , Og, Oh and store the results f(y), g(y), h(y) in ancilla qubits,
– calculate three parameters γ+y ≈

val(g(y))+val(h(y))
2 , γ−y ≈

val(g(y))−val(h(y))
2

and ξy ≈ 2
π arcsin

(√
val(f(y))

)
with a precision up to d bits after the binary

point,
– use γ+y , ξy and γ−y in the above step to construct a series of controlled gates

on the first qubit which approximates the three matrices in the RHS of (16),
– uncompute all the ancilla qubits.

As a result, we construct a unitary gate Lσ,f,g,h = Uσ−1Qf,g,hUσ where Qf,g,h is

∑
y∈{0,1}n−1

(
ei2πγ

+
y 0

0 e−i2πγ
+
y

)(
cos
(
π
2 ξy
)
− sin

(
π
2 ξy
)

sin
(
π
2 ξy
)

cos
(
π
2 ξy
) )(ei2πγ−

y 0

0 e−i2πγ
−
y

)
⊗ |y⟩⟨y| ,

(17)
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and for any y ∈ {0, 1}n−1,∣∣∣π
2
ξy − θy

∣∣∣ ≤ 2−d−1π ,

∣∣∣∣2πγ+
y − αy + βy

2

∣∣∣∣ ≤ 21−dπ ,

∣∣∣∣2πγ−y − αy − βy
2

∣∣∣∣ ≤ 21−dπ .

By utilizing the gate Lσ,f,g,h together with random permutations and random
functions, we can implement the following scheme to produce an RSS:

Definition 11. Let n, T, d ∈ N, and H be a complex Hilbert space with di-
mension 2n. An ensemble of unitary operators RSGCn :=

{
RSGCn,λ

}
λ

with

RSGCn,λ :={
RSGCn,λ

(σi)
T
i=1,(fi)

T
i=1,(gi)

T
i=1,(hi)

T
i=1

}
(σi)

T
i=1⊆S2n ,(fi)

T
i=1,(gi)

T
i=1,(hi)

T
i=1⊆{f :{0,1}

n−1→{0,1}d}

is define as

RSGCn,λ
(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

= LσT ,fT ,gT ,hT
· · ·Lσ2,f2,g2,h2

Lσ1,f1,g1,h1

where Lσ,f,g,h = Uσ−1Qf,g,hUσ is defined in (17).

Theorem 10. Let n ∈ N, d = 2
(
log2λ+ log2n

)
and T = 10(λ + 1)n. The

ensemble of unitary operators RSGCn defined in Definition 11 is an RSS.

Based on this, we obtain a PRSS by substituting the random functions and
permutations utilized in RSS with their quantum-secure pseudorandom counter-
parts.

Definition 12. Let n, T ∈ N, H be a complex Hilbert space with dimension 2n,
τ : K1×{0, 1}n → {0, 1}n be a QPRP with key space K1 and F : K2×{0, 1}n−1 →
{0, 1}d be a QPRF with key space K2. An ensemble of unitary opertors SGCn :={

SGCn,λ
}
λ

with SGCn,λ =
{

SGCn,λk : H → H
}
k∈(K1×K2×K2×K2)

T
is defined as

SGCn,λk = LτrT ,FuT
,FsT

,FtT
· · ·Lτr2 ,Fu2

,Fs2
,Ft2

Lτr1 ,Fu1
,Fs1

,Ft1

for k = (r1, u1, s1, t1, r2, u2, s2, t2, . . . , rT , uT , sT , tT ) ∈ (K1 ×K2 ×K2 ×K2)
T ,

where Lσ,f,g,h = Uσ−1Qf,g,hUσ is defined in (17).

Theorem 11. Let n ∈ N, d = 2
(
log2λ+ log2n

)
and T = 10(λ + 1)n. The

ensemble of unitary operators SGCn defined in Definition 12 is a PRSS.

The detailed proofs of two theorems above share similarities with the real
case. For this reason, we attach them in Appendix C.

6 Applications

Since pseudorandom state scramblers subsume pseudorandom state geneators
and its siblings in the literature, all applications enabled by PRSGs can also be
obtained from PRSSs. This includes for instance symmetric-key encryption and
commitment of classical messages as well as secure computation. In this section,
we showcase a few novel applications beyond what PRSGs are capable of.
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6.1 Compact Quantum Encryption

Because PRSSs map any initial state to a pseudorandom output state, we can
readily employ them to encrypt quantum messages. Furthermore, it turns out
that PRSS-based quantum encryption schemes offer improvements in terms of
compactness, a point we discuss below.

We start by recalling the well-known Quantum One-Time Pad, which is the
quantum analogue of one-time pad and achieves perfect secrecy. Given an n-
qubit state |ψ⟩, we sample a uniform 2n-bit key k = k1∥k2 with k1, k2 ∈ {0, 1}n
and encrypt |ψ⟩ by

|ψk⟩ = QOTPk|ψ⟩ = Xk1Zk2 |ψ⟩ ,

where X and Z are Pauli operators applied on each qubit of |ψ⟩.
We can reduce the key length by using pseudorandom keys. For instance,

given a pseudorandom genrator PRG : {0, 1}n → {0, 1}2n, we can expand a
uniform n-bit key under PRG and use PRG(k) as the key to QOTP. Namely we
encrypt by

|ψk⟩ = QOTPPRG(k)|ψ⟩ .

We refer to this scheme as prg-QOTP.
These two schemes are secure if the same key is never used more than once.

One can extend it to multi-time security with hybrid encryption, using in ad-
dition a post-quantum secure encryption for classical bits. For concreteness, we
use a post-quantum PRFk : {0, 1}n → {0, 1}2n. To encrypt |ψ⟩, we sample a
uniformly random string r, and use PRFk(r) as the key to QOTP, i.e., we output
cipherstate (r, |ψk,r⟩) where

|ψk,r⟩ = QOTPPRFk(r)|ψ⟩ .

We call this scheme prf-QOTP.
Now suppose we have a PRSS ({Rn,mk }) with key space K = {0, 1}κ, and for

simplicity we assume that n = m and we ignore them in the notation. We can
construct three encryption schemes, analogous to each of the schemes above.

– PRSS-enc: on random key k and state |ψ⟩, output |ψk⟩ := Rk|ψ⟩.
– prg-PRSS-enc: given a PRG : {0, 1}n → K, on random key k and state |ψ⟩,

output |ψk⟩ := RPRG(k)|ψ⟩.
– prf-PRSS-enc: given a PRF : {0, 1}n → K, the key is a random key k for the

PRF. On state |ψ⟩, output (r, |ψk,r⟩), where r ← {0, 1}n and

|ψk,r⟩ = RPRFk(r)
|ψ⟩ .
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ℓ copies of |ψ⟩ (prg-)QOTP (prg-)PRSS-enc

ℓ = 1 |ψk⟩ = QOTPk or PRG(k)|ψ⟩ |ψk⟩ = PRSSk or PRG(k)|ψ⟩

ℓ > 1 (|ψk1⟩ , . . . , |ψkℓ⟩) (|ψk⟩ , . . . , |ψk⟩)

Comparison Need to exchange ℓ indep. keys
k1, . . . , kℓ

Single key for any polynomial ℓ

ℓ copies of |ψ⟩ prf-QOTP prf-PRSS-enc

ℓ = 1
(
r, |ψk,r⟩ = QOTPPRFk(r)|ψ⟩

)
(r, |ψk,r⟩) = PRSSPRFk(r)|ψ⟩

ℓ > 1
(
. . . ,

(
rj ,

∣∣ψk,rj

〉)
, . . .

)
(r, |ψk,r⟩ , . . . , |ψk,r⟩)

Comparison Cipher size grows by ℓ factor Cipher size grows by 1
2
(ℓ+ 1)

Table 2: Advantages of PRSS-based encryptions: maintaining single key instead
of linear number of keys or reducing the cipher size growth factor by half.

Advantages of PRSS-based quantum encryption. One distinct benefit of PRSS-
enc over QOTP is that we can encrypt multiple copies of a state |ψ⟩ using PRSS-
enc under the same key k. This follows from the multi-copy indistinguishability
in our PRSS definition. In contrast, QOTP needs independent keys to encrypt
each copy of |ψ⟩. This considerably improves compactness, and it holds similarly
in the other two types of schemes.

A related concept called quantum private broadcasting has been investigated
by Broadbent, Gonzàlez-Guillén and Schuknecht [14]. They employ (symmetric)
t-designs to encrypt t copies of an n-qubit quantum message. While the key
length in their construction scales logarithmically with t, it grows exponentially
with n. Our PRSS-based scheme maintains a key size of poly(n).

We stress that this applies only to encrypting multiple copies of the same
input state. If we want to encrypt different states, then fresh keys in (prg-)PRSS-
enc or randomness in prf-PRSS-enc should be used.

6.2 Succinct Quantum State Commitment

Next we show how PRSS enables quantum commitment. Bit commitment is a
fundamental primitive in cryptography. A sender Alice commits to an input bit
b to a receiver Bob in the commit phase, which can be revealed later in the
open phase. This naturally extends to committing bit strings. Two properties
are essential.

– Hiding. Bob is not able to learn the message b before the open phase.
– Binding. Alice cannot fool Bob to accept a different message b′ ̸= b in the

open phase.

We will focus on non-interactive commitment schemes where both commit
and open phases consist of a single message from the sender to the receiver. If
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the protocol involves exchanging and processing quantum information, we call it
a quantum bit commitment (QBC) scheme. QBC has been extensively studied,
and it is shown that QBC can be constructed based on standard PRSGs [5,40].

In a similar vein, one can also consider committing to a quantum input state,
and this is called quantum state commitment (QSC). QSC has proven useful such
as in zero-knowledge proof systems for QMA [16,15].

Recently, Gunn, Ju, Ma and Zhandry give a systematic treatment on QSC [22].
They propose a new characterization of binding termed swap-binding. They show
a striking hiding-binding duality theorem for (non-interactive) quantum commit-
ment: binding holds if the opening register held by the sender hides the input
state. This significantly simplifies proving binding. They then construct binding
commitment schemes which in addition are succinct, where the register contain-
ing the commitment has a smaller size than the message state.5

Succinct QSC from PRSS. The succinct QSC schemes by [22] are based on post-
quantum one-way functions or the potentially weaker primitive of pseudoran-
dom unitary operators (PRU). We show below the viability of building succinct
commitment on PRSS. Specifically, we observed that a succinct PRSS implies a
succinct one-time quantum encryption, and it was shown in [22] that a succinct
one-time quantum encryption gives a succinct QSC scheme. Hence (succinct one-
time) PRSSs offer an alternate approach of realizing succinct one-time quantum
encryptions based on potentially weaker assumptions than one-way functions,
and could be weaker than the instantiation via PRUs in [22]. Meanwhile, one-
time quantum encryption does not seem to follow immediately from PRS or other
primitives implied by PRS.

Theorem 12. Assuming a succinct PRSS, i.e., |K| < 2n, there exists a succinct
QSC.

Proof. This follows from a generic claim in [22]. They show that any one-time
secure quantum encryption scheme with succinct keys, where the key is shorter
than the state to be encrypted, readily gives a succinct QSC. A PRSS is a secure
quantum encryption as discussed above. Succinctness translates if PRSS’s key
length is shorter than the size of the input state. This is stated below. We choose
not to fully spelled out the syntax and definitions of the involved primitives for
the sake of clarity, and refer the readers to [22].

Lemma 9. Assuming a succinct PRSS, i.e., |K| < 2n, there exists a succinct
one-time quantum encryption scheme.

How to instantiate a succinct PRSS? Our construction is not immediately
succinct, because the key length Ω(λ · n). We can remedy this by using a pseu-
dorandom generator to expand a key shorter than n into pseudorandom keys for
each iteration (QPRF and QPRP).

5 Note that hiding is not required in these succinct schemes.
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A Dispersing RSS

As mentioned before, our parallel Kac’s walk also mixes rapidly in terms of
total variation distance, which endows our scramblers with a unique dispersing
property. We first give the formal definitions of a random scrambler with a
dispersing property in Section A.1. Then, Section A.2 analyses the total variation
mixing time of the parallel Kac’s walk on both real and complex Hilbert spaces.
Lastly in Section A.3, we utilize this rapid mixing property to demonstrate
that the ensembles of unitary operators we construct in Section 5 do exhibit a
dispersing property.

A.1 Definitions

We introduce the concept of dispersing random state scramblers (DRSS), which
ensure the approximation of Haar randomness with respect to Wasserstein dis-
tance.

Definition 13 (Dispersing Random State Scrambler). Let Hin and Hout

be Hilbert spaces of dimensions 2n and 2m respectively with n,m ∈ N and n ≤ m.
Let K = {0, 1}κ be a key space, and λ be a security parameter. A dispersing
random state scrambler (DRSS) is an ensemble of isometric operators Rn,m :=

{Rn,m,λ}λ with Rn,m,λ := {Rn,m,λk : Hin → Hout}k∈K satisfying:

– Sphere Coverage. There exist ϵ = negl(λ) such that for any |ϕ⟩ ∈ S(Hin),
the family of states {Rn,mk |ϕ⟩}k∈K forms an ϵ-net of S(Hout).

– Wasserstein Approximation of Haar randomness. There exist δ, δ′ =
negl(λ) such that for any |ϕ⟩ ∈ S(Hin),

• Let ν be the distribution of Rn,mk |ϕ⟩ with uniformly random k ← K, and
µ be the Haar measure on S(Hout). Then, there exists a distribution ν̃
such that

∥µ− ν̃∥TV ≤ δ, and W∞(ν, ν̃) ≤ δ′.

– Uniformity. Rn,m can be uniformly computed in polynomial time. That
is, there is a deterministic Turing machine that, on input (1n, 1m, 1λ, 1κ),
outputs a quantum circuit Q in poly(n,m, λ, κ) time such that for all k ∈ K
and |ϕ⟩ ∈ S(Hin)

Q |k⟩|ϕ⟩ = |k⟩|ϕk⟩ ,

where |ϕk⟩ := Rn,m,λk |ϕ⟩.

In particular, small Wasserstein distance implies small trace distance between
the average states drawn from the two distributions.

Proposition 1. A DRSS is an RSS with the same parameters.
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Proof. It suffices to prove that Wasserstein approximation of Haar randomness
implies statistical pseudorandomness. Let ν and µ be the distribution of the
output states of a DRSS and the Haar measure, respectively. By the assumption,
there exists a distribution ν̃ on S(Hout) and a coupling γ of ν and ν̃ such that

Pr
(|ψ⟩,|ψ′⟩)∼γ

[∥|ψ⟩ − |ψ′⟩∥2] ≤ negl(λ) .

Notice that ℓ is polynomial in λ. By the triangle inequality,

TD

(
E
|ψ⟩∼ν

[
|ψ⟩⟨ψ|⊗ℓ

]
, E
|ψ⟩∼ν̃

[
|ψ⟩⟨ψ|⊗ℓ

])
≤ negl(λ) .

By Lemma 1, the condition that ∥µ− ν̃∥TV ≤ negl(λ) implies

TD

(
E
|ψ⟩∼ν̃

[
|ψ⟩⟨ψ|⊗ℓ

]
, E
|ψ⟩∼µ

[
|ψ⟩⟨ψ|⊗ℓ

])
≤ negl(λ) .

The result follows from the triangle inequality.

Moreover, we introduce a continuous version of random state scrambler,
where continuous randomness is allowed.

Definition 14 (Continuously Random State Scrambler). Let Hin and
Hout be Hilbert spaces of dimensions 2n and 2m respectively with n,m ∈ N and
n ≤ m. Let K be a (continuous) key space, and λ be a security parameter. A con-
tinuously random state scrambler (CRSS) is an ensemble of isometric operators
Rn,m := {Rn,m,λ}λ with Rn,m,λ := {Rn,m,λk : Hin → Hout}k∈K satisfying:

– Total-Variation Approximation of Haar randomness. Let |ϕ⟩ ∈ S(Hin)

be an arbitrary pure state. Let ν be the distribution of Rn,m,λk |ϕ⟩ with uni-
formly random k ← K, and µ be the Haar measure on S(Hout). Then there
exists δ = negl(λ) such that the total variation distance between ν and µ is
at most δ, i.e., ∥ν − µ∥TV ≤ δ.

A.2 Total Variation Mixing Time of the Parallel Kac’s Walk

We assume n = 2m for some m ∈ N throughout this section.

Background: Two-Phase Proof Strategy in [44] It is proved in [44] that
the total variation mixing time of Kac’s walk on SnR is Θ(n log n).

Theorem 13 (Theorem 1, [44]). Let {Xt ∈ SnR}t≥0 be a Markov chain that
evolves according to Kac’s walk. Then, for sufficiently large n, and T > 200n log n,

sup
X0∈Sn

R

∥L(XT )− µ∥TV = O

(
1

poly(n)

)
,

where µ is the normalized Haar measure on SnR .
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We informally revisit their proof approach that utilizes the famous coupling
lemma (see Lemma 2). The coupling lemma offers a practical approach to es-
timate the mixing time of a Markov chain by comparing the behavior of two
coupled random walks. The total variation distance at time T is bounded by the
probability that two coupled random walks are distinct at time T . Through a
two-phase coupling of {Xt}t≥0 and {Yt}t≥0, they show that the probability that
two copies are not equal at time T , i.e., Pr[XT ̸= YT ], approaches zero when n is
sufficiently large and T > 200n log n. Specifically, the two-step coupling consists
of an initial contracting phase followed by a subsequent coalescing phase. The
contracting phase aims to sufficiently reduce the distance between two copies of
Kac’s walk so that during the coalescing phase, they can be further fine-tuned to
coalesce. These two phases are described below, with a focus on how the random
angles are coupled.

Contracting Phase (from t = 0 to T0). The contracting phase starts from
time 0 and continues until time T0. In this phase, {Xt} and {Yt} undergo the
proportional coupling. which aims at reducing the distance between two copies
of Kac’s walk. The proportional coupling is introduced in Section 4.

Coalescing Phase (from t = T0 to T0 + T1). This phase employs a non-
Markovian coupling6 starting from a close-by pair XT0

and YT0
. Let T1 be de-

termined later. Initially, the coupling independently and identically samples T1
pairs of coordinates {(it, jt)}T0+T1−1

t=T0
all at once, which are subsequently used to

generate T1+1 partitions of [n], denoted by {Pt}T0+T1

t=T0
. The construction of these

partitions is done inductively in reverse order. The last partition is enforced to
be PT0+T1

= {{1}, {2}, . . . , {n}}. Starting from t = T1 + T0 − 1 and decrement-
ing down to T0, the construction of partition Pt uses the chosen coordinate pair
(it, jt) as a guide. Specifically, it is generated by merging two sets in Pt+1: one
set includes it, and the other includes jt; while leaving other sets untouched.
Then, the value of T1 is determined such that PT0 = {[n]} with high probability.

The aim of this phase is to ultimately coalesce X and Y . To see how to
achieve this, we introduct the event At in which, at time t,∑

i∈S
Xt[i]

2 =
∑
i∈S

Yt[i]
2, ∀S ∈ Pt

and
Xt[k]Yt[k] ≥ 0, k ∈ {it−1, jt−1} .

Intuitively, event At states that if we partition Xt and Yt based on Pt, then
both Xt and Yt carry equal significance within each segment S at time t; and
meanwhile the corresponding updated subvectors share the same sign at time
t−1. Conditioning on PT0 = {{1, · · · , n}}, which holds with high probability, it is
not hard to verify that AT0

occurs and ∩T0+T1

t=T0
At implies that the corresponding

entries in vectors XT0+T1
and YT0+T1

are equal. Thus, to prove that X and Y

6 The non-Markovian coupling refers to a situation where the transition between states
depend not only on the current state but also on the future states, violating the
memoryless property of a standard Markov process.
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are identical by the end of this phase, it suffices to prove that all events occur
with a high probability during the process.

So, the non-Markovian coupling aims to ensure that At+1 takes place with
a high probability, conditioned on all previous events occur. This is achieved
by sampling θ and θ′ from a “good” joint distribution, which makes sure that
both marginal distributions are uniformly distributed on [0, 2π). Such a desirable
distribution is made possible by the entry-wise closeness achieved during the first
phase.

Intuitively, the parallel Kac’s walk is expected to have a mixing time that
is only on the order of O(log n), saving factor of n in the mixing time of the
original Kac’s walk. However, the mixing time for the parallel Kac’s walk cannot
be derived from the mixing time for the original Kac’s walk, directly. Fortunately,
through careful modifications to the two-phase coupling approach above, we have
discovered a logarithmic mixing time for the parallel Kac’s walk, resulting in
exponential speedup compared to the original random walk.

Real Case As we introduced in Section 4, the total variation distance between
the output distribution of a parallel Kac’s walk after T steps and the normalized
Haar measure on SnR decays exponentially as T grows. We restate the theorem
here.

Theorem 5. Let {Xt ∈ SnR}t≥0 be a Markov chain that evolves according to the
parallel Kac’s walk. Then, for sufficiently large n, c > 515 and T = c log n,

sup
X0∈Sn

R

∥L(XT )− µ∥TV ≤
1

2(c/515−1) logn−1
,

where µ is the normalized Haar measure on SnR .

To prove Theorem 5, we will use the coupling lemma (see Lemma 2) and
extend the two-phase coupling method described in [44] to accommodate parallel
Kac’s walks. We have already extended the proportional coupling used in the
contracting phase in Section 4.1. We now introduce the non-Markovian coupling
employed in the coalescing phase to ensure thatX and Y converge to an identical
state, and integrate these two couplings into a comprehensive two-phase coupling
to establish the mixing time of the parallel Kac’s walk.

Coalescing Phase: the Non-Markovian Coupling The non-markovian coupling is
defined in Definition 15. As we will see later, if the initial vectors of two parallel
Kac’s walks, namely XT0 and YT0 , are close, this coupling guarantees a high
probability of collision between XT and YT , when T is sufficiently large.

Definition 15 (Non-Markovian Coupling). Fix T0 ≤ T ∈ N. We couple
{Xt}T0≤t≤T , {Yt}T0≤t≤T in the following way:

1. For each T0 ≤ t < T , choose a perfect matching

Pt =
{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i(t)m , j(t)m

)}
uniformly at random.
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2. Set PT,1 = {{1} , . . . , {n}}, and define a sequence of partitions

{Pt,k}T0≤t<T, 1≤k≤m+1

of [n] inductively by the process:
(a) If k = m+ 1, let Pt,k = Pt+1,1.
(b) If 1 ≤ k ≤ m, write Pt,k+1 =

{
S1(t, k + 1), . . . , Slt,k+1

(t, k + 1)
}

with
Sr(t, k + 1) ⊆ [n] for 1 ≤ r ≤ lt,k+1. Let ut,k, vt,k be the indices such
that

i
(t)
k ∈ Sut,k

(t, k + 1) and j
(t)
k ∈ Svt,k(t, k + 1) .

i. If ut,k = vt,k, set Pt,k = Pt,k+1.
ii. If ut,k ̸= vt,k, construct Pt,k by merging Sut,k

(t, k+1) and Svt,k(t, k+
1) in Pt,k+1.

3. If PT0,1 = {[n]}, we couple {Xt}T0≤t≤T , {Yt}T0≤t≤T in the following way:
– Define the set

H = {(t, k) : T0 ≤ t < T, 1 ≤ k ≤ m, Pt,k ̸= Pt,k+1} . (18)

– Fix T0 ≤ t < T , Xt and Yt, and we couple Xt+1 and Yt+1 in the following
way:
(a) Set Xt,1 = Xt and Yt,1 = Yt.
(b) For 1 ≤ k ≤ m,

i. If (t, k) /∈ H, uniformly choose θ(t)k ∈ [0, 2π). Let

Xt,k+1 = G(i
(t)
k , j

(t)
k , θ

(t)
k , Xt,k) and Yt,k+1 = G(i

(t)
k , j

(t)
k , θ′

(t)
k , Yt,k)

where G(·) is defined in Eq. (1) and θ′(t)k is obtained in the same
way as the proportional coupling defined in Definition 8.

ii. If (t, k) ∈ H, let θ0 be the angle satisfies

Xt,k[i
(t)
k ] =

√
Xt,k[i

(t)
k ]2 +Xt,k[j

(t)
k ]2 cos(θ0) ,

Xt,k[j
(t)
k ] =

√
Xt,k[i

(t)
k ]2 +Xt,k[j

(t)
k ]2 sin(θ0) ,

θ′0 be the angle satisfies

Yt,k[i
(t)
k ] =

√
Yt,k[i

(t)
k ]2 + Yt,k[j

(t)
k ]2 cos(θ′0) ,

Yt,k[j
(t)
k ] =

√
Yt,k[i

(t)
k ]2 + Yt,k[j

(t)
k ]2 sin(θ′0) ,

and then choose the best distribution ν among all joint distri-
butions on [0, 2π)× [0, 2π) with both marginal distributions uni-
formly distributed on [0, 2π) which maximizes the probability of
the following events when (θ, θ′) ∼ ν:∑
i∈Sr(t,k+1)

Xt,k+1[i]
2 =

∑
i∈Sr(t,k+1)

Yt,k+1[i]
2 , 1 ≤ r ≤ lt,k+1

Xt,k+1[i] · Yt,k+1[i] ≥ 0 , i ∈
{
i
(t)
k , j

(t)
k

}
,
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where

Xt,k+1 = G(i
(t)
k , j

(t)
k , θ−θ0, Xt,k) and Yt,k+1 = G(i

(t)
k , j

(t)
k , θ′−θ′0, Yt,k) .

Then choose (θ
(t)
k , θ′

(t)
k ) ∼ ν, and set

Xt,k+1 = G(i
(t)
k , j

(t)
k , θ

(t)
k −θ0, Xt,k) and Yt,k+1 = G(i

(t)
k , j

(t)
k , θ′

(t)
k −θ′0, Yt,k) .

(c) Set Xt+1 = Xt,m+1 and Yt+1 = Yt,m+1.
4. If PT0,1 ̸= {[n]}, for T0 ≤ t ≤ T , we couple Xt+1 and Yt+1 in the following

way: choose m independent angles θ(t)1 , . . . , θ
(t)
m ∈ [0, 2π) uniformly at random

and set

Xt+1 = F
(
Pt, θ

(t)
1 , . . . , θ(t)m , Xt

)
and Yt+1 = F

(
Pt, θ

(t)
1 , . . . , θ(t)m , Yt

)
,

where F (·) is given in Eq. (2).

Step 1 samples T −T0 matchings, generating all coordinate pairs that will be
updated in the succeeding process. Step 2 utilizes this matchings to construct a
series of partitions of [n] in a back propagation manner. Starting from PT,1 =
{{1} , . . . , {n}}, it sequentially construct

PT−1,m+1 PT−1,m · · · PT−1,1 PT−2,m+1 · · · PT−2,1 · · · PT0,1 .

Pt,m+1 is set equal to Pt+1,1 directly. For 1 ≤ k ≤ m, Pt,k is obtained based
on Pt,k+1 and the k-th pair of coordinates in matching Pt. If two coordinates of
the k-th pair belong to different components in partition Pt,k+1, we merge these
two components. Otherwise, Pt,k is set equal to Pt,k+1. This series of partitions
thus consists of random partitions of set [n] and with high probability the first
partition PT0,1 is {[n]} (see Lemma 10). This follows from the argument for
bounding the probability of the connectivity of Erdös-Rényi graphs [7, Theorem
7.3]. The proof is deferred to Appendix C.

Lemma 10. Fix c > 0 and T0 ∈ N. Let l = 5(1 + c) log n and T = T0 + l. Then
we have for n sufficiently large,

Pr[PT0,1 ̸= {[n]}] ≤ 2n−c ,

where PT0,1 is defined in Definition 15.

If PT0,1 = {[n]}, step 3 serves as the crucial step of this coupling. To provide
a clearer explanation of how this coupling technique works, Definition 16 intro-
duces a series of events {A(t, k)}. Intuitively, A(t, k) indicates that the (k−1)-th
updated coordinates in both vectors have the same signs at time t, and both vec-
tors have the same weight within each component of the partition Pt,k.
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Definition 16. Let A(T0, 1) denote the event∑
i∈Sr(T0,1)

XT0,1[i]
2 =

∑
i∈Sr(T0,1)

YT0,1[i]
2, 1 ≤ r ≤ lT0,1 .

For other T0 ≤ t ≤ T and 1 ≤ k ≤ m+ 1, we define the event A(t, k) as 7

∑
i∈Sr(t,k)

Xt,k[i]
2 =

∑
i∈Sr(t,k)

Yt,k[i]
2 , 1 ≤ r ≤ lt,k (19)

Xt,k[i] · Yt,k[i] ≥ 0 , i ∈
{
i
(t)
k−1, j

(t)
k−1

}
. (20)

It is worthy noting that under the assumption PT0,1 = {[n]}, A(T0, 1) occurs
since the sum of squares of the components of a unit vector is equal to 1. And if
{A(t, k)} take place in the entire process, we can conclude that XT = YT because
A(T, 1) guarantees the corresponding coordinates have the same absolute values
and Remark 1 together with (20) guarantees that they have the same signs
as well. So we want to couple the rotation angles to ensure that A(t, k + 1)
occurs with a high probability, given that all previous events have already taken
place. The coupling of the rotation angles are divided into two cases: whether
the coordinate pair

(
i
(t)
k , j

(t)
k

)
is a “merge point” in the construction process of

partitions. If not, the rotation angles are coupled using the proportional coupling
(see step 3.b.i). For non-“merge point”, the proportional coupling does not affect
the partition and also maintain the weight within each component, and thus
A(t, k + 1) must occur conditioned on A(t, k). In the other case, we sample the
rotation angles from a “good” joint distribution which maximizes the probability
that A(t, k + 1) occurs (see step 3.b.ii).

We next show why such a “good” joint distribution exists. Before that, we
set some notations. For T0 ≤ t ≤ T and 1 ≤ k ≤ m+ 1, define

At,k[i] = Xt,k[i]
2 , Bt,k[i] = Yt,k[i]

2 . (21)

For T0 ≤ t1, t2 ≤ T and 1 ≤ k1, k2 ≤ m+ 1, we define a partial order ⊑ as

(t1, k1) ⊑ (t2, k2) iff (t1 < t2) ∨ (t1 = t2 ∧ k1 ≤ k2) .

Note that if
(
i
(t)
k , j

(t)
k

)
is a “merge point”, Pt,k+1 differs from Pt,k only in the

components in which i(t)k and j(t)k are, namely Sut,k
(t, k + 1) and Svt,k(t, k + 1).

To see whether A(t, k + 1) occurs given A(t, k), we only need to check whether
(19) holds for r = ut,k, that is,∑

i∈Sut,k
(t,k+1)

Xt,k[i]
2 =

∑
i∈Sut,k

(t,k+1)

Yt,k[i]
2 .

7 In Eq. (20), if k = 1, then i ∈
{
i
(t−1)
m , j

(t−1)
m

}
.
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Rewrite

A =
∑

i∈Sut,k
(t,k+1)\i(t)k

Xt,k[i]
2 , B = Xt,k[i

(t)
k ]2 +Xt,k[j

(t)
k ]2 ,

C =
∑

i∈Sut,k
(t,k+1)\i(t)k

Yt,k[i]
2 , D = Yt,k[i

(t)
k ]2 + Yt,k[j

(t)
k ]2 .

We will have∑
i∈Sut,k

(t,k+1)

Xt,k[i]
2 = A+B cos(θ

(t)
k )2 ,

∑
i∈Sut,k

(t,k+1)

Yt,k[i]
2 = C+D cos(θ′

(t)
k )2 .

The following lemma states that |A− C| and |B −D| are bounded by the initial
distance of two vectors. Its proof is the same as Lemma 4.4 in [44].

Lemma 11. Fix T0 < T , and couple two chains {Xt}T0≤t≤T , {Yt}T0≤t≤T using
the non-Markovian coupling defined in Definition 15. Fix T0 ≤ t0 ≤ T and
1 ≤ k0 ≤ m + 1. Then, on the event

⋂
(t,k)⊑(t0,k0)A(t, k) ∩ {PT0,1 = {[n]}}, we

have
∥At,k −Bt,k∥1,S ≤ ∥AT0,1 −BT0,1∥1

for all (t, k) ⊑ (t0, k0) and S ∈ Pt,k. Moreover, for all (t, k) ⊑ (t0, k0) ,

∥At,k −Bt,k∥1 ≤ n ∥AT0,1 −BT0,1∥1 .

Knowing that A,B and C,D are close, the following lemma states the exis-
tence of a good distribution ν for θ(t)k and θ′(t)k such that

∑
i∈Sut,k

(t,k+1)Xt,k[i]
2

agrees with
∑
i∈Sut,k

(t,k+1) Yt,k[i]
2 with high probability.

Lemma 12 (Lemma 4.6 in [44]). Fix positive reals 1 < p < q′ < q/2. Let
θ, θ′ ∼ Unif[0, 2π) and let

S = A+B cos(θ)2 and S′ = C +D cos(θ′)2

for some 0 ≤ A,B,C,D ≤ 1 that satisfy

|A− C| , |B −D| ≤ n−q and B,D ≥ n−p .

Then for sufficiently large n, there exists a coupling of θ, θ′ so that

Pr[S = S′] ≥ 1− 6× 103n−c

and
cos(θ) cos(θ′) ≥ 0 and sin(θ) sin(θ′) ≥ 0

where c = min
(
q′

2 , q − 2q′
)
> 0.
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Proof of the Total Variation Mixing Time

Proof of Theorem 5. Let a = 66, b = 24, T0 = 500 log n, T1 = 15 log n, T =
T0 + T1 = 515 log n. We construct a coupling of two copies {Xt}t≥0 and {Yt}t≥0
of the parallel Kac’s walk with starting points X0 = x ∈ SnR and Y0 ∼ µ. The
coupling is as follows:

1. couple {Xt}0≤t≤T0
, {Yt}0≤t≤T0

by using the proportional coupling defined
in Definition 8,

2. couple {Xt}T0≤t≤T , {Yt}T0≤t≤T by using the non-Markovian coupling de-
fined in Definition 15.

Define the events

E1 =
{
∥AT0 −BT0∥1 ≥ n

−a} ,

E2 = {PT0,1 ̸= {{1, . . . , n}}} ,

E3 = {XT ̸= YT } .

By Lemma 2,

sup
X0∈Sn

R

∥L(XT )− µ∥TV ≤ sup
X0∈Sn

R

Pr[E3] ≤ sup
X0∈Sn

R

(Pr[E1] + Pr[E2] + Pr[E3 ∩ Ec
1 ∩ Ec

2 ]) .

(22)

By Markov’s inequality, we have

Pr[E1] = Pr
[
∥AT0

−BT0
∥1 ≥ n

−a]
≤ Pr

[
∥AT0

−BT0
∥2 ≥ n

−a−1/2
]

(Lemma 7) ≤ n2a+1 · 2 ·
(
3

4

)T0

≤ 1

n2
. (23)

Moreover, by Lemma 10, we have

Pr[E2] ≤ 2n−2 . (24)

In order to bound Pr[E3 ∩ Ec1 ∩ Ec2 ], recall the definition of A(t, k) in Defini-
tion 16. It is evident that

⋂
(t,k)⊑(T,1)A(t, k) implies Ec3 . Thus, E3 ∩ Ec1 ∩ Ec2

implies
⋃

(t,k)⊑(T,1)A(t, k)c ∩ Ec1 ∩ Ec2 . So, we have

Pr[E3 ∩ Ec1 ∩ Ec2 ] ≤ Pr

 ⋃
(t,k)⊑(T,1)

A(t, k)c ∩ Ec1 ∩ Ec2


≤

T−1∑
t=T0

m∑
k=1

Pr

A(t, k + 1)c ∩

 ⋂
(t′,k′)⊑(t,k)

A(t′, k′)

 ∩ Ec1 ∩ Ec2


+ Pr[A(T0, 1)c ∩ Ec1 ∩ Ec2 ] . (25)
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Notice that if Ec2 happens, we have∑
i∈[n]

XT0,1[i]
2 =

∑
i∈[n]

YT0,1[i]
2 = 1 ,

and the proportional coupling forces XT0,1[i] ·YT0,1[i] = XT0
[i] ·YT0

[i] ≥ 0 for all
1 ≤ i ≤ n. Therefore, A(T0, 1) must occur, i.e.,

Pr[A(T0, 1)c ∩ Ec1 ∩ Ec2 ] = 0 . (26)

Combining (25) and (26), we have

Pr[E3 ∩ Ec1 ∩ Ec2 ] ≤
T−1∑
t=T0

m∑
k=1

Pr

A(t, k + 1)c ∩

 ⋂
(t′,k′)⊑(t,k)

A(t′, k′)

 ∩ Ec1 ∩ Ec2
 .

(27)
We are now left to find a upper bound for

Pr

A(t, k + 1)c ∩

 ⋂
(t′,k′)⊑(t,k)

A(t′, k′)

 ∩ Ec1 ∩ Ec2


when T0 ≤ t ≤ T − 1 and 1 ≤ k ≤ m. To this end, we define

B(t, k) =
{

min
(t′,k′)⊑(t,k):t′≤t

min
1≤i≤n

Yt′,k′ [i]
2 ≥ n−b

}
.

Note that

Pr

A(t, k + 1)c ∩

 ⋂
(t′,k′)⊑(t,k)

A(t′, k′)

 ∩ Ec1 ∩ Ec2


≤Pr

A(t, k + 1)c ∩

 ⋂
(t′,k′)⊑(t,k)

A(t′, k′)

 ∩ B(t, k) ∩ Ec1 ∩ Ec2
+ Pr[B(t, k)c] .

(28)

By Lemma 4 and a union bound over all (t′, k′) such that (t′, k′) ⊑ (t, k) and
t′ ≤ t, we have for sufficiently large n,

Pr[B(t, k)c] ≤ 15n3−
b
3 log(n) . (29)

Next, we consider two cases of the term

Pr

A(t, k + 1)c ∩

 ⋂
(t′,k′)⊑(t,k)

A(t′, k′)

 ∩ B(t, k) ∩ Ec1 ∩ Ec2
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in (28): (t, k) /∈ H and (t, k) ∈ H, where H is defined in Definition 15. In the case
that (t, k) /∈ H, we have Pt,k = Pt,k+1 and we apply the proportional coupling.
Thus A(t, k) implies A(t, k + 1) which means

Pr

A(t, k + 1)c ∩

 ⋂
(t′,k′)⊑(t,k)

A(t′, k′)

 ∩ B(t, k) ∩ Ec1 ∩ Ec2
 = 0 . (30)

In the other case that (t, k) ∈ H, let

A =
∑

i∈Sut,k
(t,k+1)\i(t)k

Xt,k[i]
2 , B = Xt,k[i

(t)
k ]2 +Xt,k[j

(t)
k ]2 ,

C =
∑

i∈Sut,k
(t,k+1)\i(t)k

Yt,k[i]
2 , D = Yt,k[i

(t)
k ]2 + Yt,k[j

(t)
k ]2 ,

S = A+B cos(θ
(t)
k )2 , S′ = C +D cos(θ′

(t)
k )2 .

On the event
⋂

(t′,k′)⊑(t,k)A(t′, k′) ∩ B(t, k) ∩ Ec1 ∩ Ec2 , we have by Lemma 11

|A− C| ≤ ∥At,k −Bt,k∥1 ≤ n ∥AT0
−BT0

∥1 ≤ n
1−a .

Similarly,

|B −D| ≤ ∥At,k −Bt,k∥1 ≤ n ∥AT0
−BT0

∥1 ≤ n
1−a .

Moreover, D ≥ n−b and B ≥ D − |B −D| ≥ n−b for sufficiently large n. Then
apply Lemma 12 with p = b, q = a− 1 and q′ = 2(a−1)

5 , we know there exists a
distribution ν0 such that when (θ

(t)
k , θ′

(t)
k ) ∼ ν0, we have

cos(θ
(t)
k ) cos(θ′

(t)
k ) ≥ 0 and sin(θ

(t)
k ) sin(θ′

(t)
k ) ≥ 0

Pr
(θ

(t)
k ,θ′

(t)
k )∼ν0

S ̸= S′|
⋂

(t′,k′)⊑(t,k)

A(t′, k′) ∩ B(t, k) ∩ Ec1 ∩ Ec2

 ≤ 6× 103n−
a−1
5 .
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We choose the best distribution which maximizes the probability of event de-
scribed in (19) and (20), so

Pr

A(t, k + 1)c ∩

 ⋂
(t′,k′)⊑(t,k)

A(t′, k′)

 ∩ B(t, k) ∩ Ec1 ∩ Ec2


≤Pr

A(t, k + 1)c|
⋂

(t′,k′)⊑(t,k)

A(t′, k′) ∩ B(t, k) ∩ Ec1 ∩ Ec2


≤ Pr

(θ
(t)
k ,θ′

(t)
k )∼ν0

A(t, k + 1)c|
⋂

(t′,k′)⊑(t,k)

A(t′, k′) ∩ B(t, k) ∩ Ec1 ∩ Ec2


= Pr

(θ
(t)
k ,θ′

(t)
k )∼ν0

S ̸= S′|
⋂

(t′,k′)⊑(t,k)

A(t′, k′) ∩ B(t, k) ∩ Ec1 ∩ Ec2

 ≤ 6× 103n−
a−1
5 .

(31)

Combining (27), (28), (29), (30) and (31), we have for sufficiently large n

Pr[E3 ∩ Ec1 ∩ Ec2 ] ≤
T−1∑
t=T0

m∑
k=1

6× 103n−
a−1
5 + 15n3−

b
3 log(n) ≤ 1

n2
. (32)

By (22), (23), (24) and (32), we have for sufficiently large n and T = 515 log n

sup
X0∈Sn

R

∥L (XT )− µ∥TV ≤ sup
X0∈Sn

R

Pr[E3] ≤
1

2n
.

As for T = c log n where c > 515, by Lemma 3 we have

sup
X0∈Sn

R

∥L (XT )− µ∥TV ≤ 2

(
1

n

)⌊ T
515 log n⌋

≤ 1

2(c/515−1) logn−1
.

Complex Case The output distribution of the parallel Kac’s walk on complex
vectors after T steps approaches the Haar measure on the complex unit sphere
of Cn exponentially fast as T grows. We restate the theorem here.

Theorem 7. Let {Xt ∈ SnC}t≥0 be a Markov chain that evolves according to the
parallel Kac’s walk on complex vectors. Then, for sufficiently large n, c > 515
and T = c log n,

sup
X0∈Sn

C

∥L(XT )− µ∥TV ≤
1

2(c/515−1) logn−1
,

where µC is the Haar measure on SnC .

We defer the complete proof to Appendix C, as it is similar to the proof of
Theorem 5.
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A.3 Construction of DRSS

Real Case The following theorem proves that the RSS we construct over real
space is also a DRSS.

Theorem 14. Let n ∈ N, d = log2λ+log2n and T = 515(λ+1)n. The ensemble
of unitary operators RSGn defined in Definition 9 is a DRSS.

To prove Theorem 14, recall the ensemble of unitary operators R̃SG
n

:={
R̃SG

n,λ
}
λ

we define in Section 5.1. We have the following proposition for R̃SG
n
.

Proposition 2. For T = 515(λ + 1)n, the ensemble of unitary operator R̃SG
n

is a CRSS.

Proof. Note that a uniformly random R̃SG
n,λ

(σi)Ti=1,(f̃i)
T
i=1

corresponds to a T -step
parallel Kac’s walk on S2nR . The proposition then follows from Theorem 5 and
the definition of the CRSS.

Let |η⟩ ∈ S(H) be an arbitrary real state. Set

N =
{

RSGn,λ
(σi)Ti=1,(fi)

T
i=1

|η⟩
}

and Ñ =

{
R̃SG

n,λ

(σi)Ti=1,(f̃i)
T
i=1
|η⟩
}

. (33)

We need the following two lemmas. Both proofs are deferred to Appendix C.

Lemma 13. Ñ = S2nR .

Lemma 14. There exists an ϵ = negl(λ) such that N is an ϵ-net for real vectors
in S(H), where N is defined in Eq. (33).

Proof of Theorem 14. It is easy to see that the uniformity condition is satisfied.
Let κ denote the key length. Quantum circuit RSGn,λ applies RSGn,λ

(σi)Ti=1,(fi)
T
i=1

after reading (σi)
T
i=1 and (fi)

T
i=1. To implement RSGn,λ

(σi)Ti=1,(fi)
T
i=1

, we need to re-
alize each of the T = 515(λ+1)n unitary gates K. Since each gate K can be im-
plemented in poly(n, λ, κ) time, the total construction time for RSGn,λ

(σi)Ti=1,(fi)
T
i=1

is also poly(n, λ, κ).
Combining with Lemma 14, it suffices to prove that there exists a good

distribution ν̃ satisfying the requirement in Definition 13. Fix |η⟩ ∈ S(H). Define
three distributions:

– ν be the distribution of RSGn,λ
(σi)Ti=1,(fi)

T
i=1

|η⟩ with independent and uniformly
random permutations (σi)

T
i=1 ⊆ S2n and random functions (fi)

T
i=1⊆ {f :

{0, 1}n−1 → {0, 1}d}.
– ν̃ be the distribution of R̃SG

n,λ

(σi)Ti=1,(f̃i)
T
i=1
|η⟩ with independent and uniformly

random permutations (σi)
T
i=1 ⊆ S2n , and random functions (f̃i)

T
i=1 ⊆ {f :

{0, 1}n−1 → [0, 1)}.
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– µ be the Haar measure on S2nR .

Note that ν̃ is the output distribution of T -step parallel Kac’s walk. Thus by
Theorem 5, we have

∥ν̃ − µ∥TV ≤
1

2λn−1
= negl(λ) . (34)

We are left to show the Wasserstein∞-distance between ν and ν̃ is negligible. To
this end, we construct a coupling γ0 of ν and ν̃ by using the same permutation
σt and letting ft be the function satisfying ft(y) is the d digits after the binary
point in f̃t(y) for all y ∈ {0, 1}n−1. Therefore

W∞(ν, ν̃)

= lim
p→∞

(
inf

γ∈Γ (ν,ν̃)
E

(|v⟩,|u⟩)∼γ
[∥|v⟩ − |u⟩∥p2]

)1/p

≤ lim
p→∞

(
E

(|v⟩,|u⟩)∼γ0
[∥|v⟩ − |u⟩∥p2]

)1/p (Eq. (62))
≤ 1030π(λ+ 1)n

λlog λnlogn
= negl(λ) .

(35)

This completes the proof.

Complex Case Likewise, the ensemble of unitary operators built over complex
space in Section 5.2 turns out to be a DRSS. The proof is provided in Appendix C.

Theorem 15. Let n ∈ N, d = 2
(
log2λ+ log2n

)
and T = 515(λ + 1)n. The

ensemble of unitary operators RSGCn defined in Definition 11 is a DRSS.
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B Connections with Existing PRS variants

In this section, we formally demonstrate that the existing PRS and its variants
can all be constructed from PRSS in a black-box manner.

(Scalable) Pseudorandom States. Originally, the definition of PRS in [31] iden-
tifies the number of qubits n as the security parameter. Consequently, the secu-
rity of PRS is not guaranteed when n is small. This issue was addressed by [11]
through defining scalable PRSGs, in which n and λ are treated separately. This
allows for the tuning of security when n < λ. We rephrase the scalable definition
in a style that is congruent with PRSS.

Definition 17 ((Scalable) PRSG). Let K = {0, 1}κ be a key space, H be a
Hilbert space of dimension 2n with n ∈ N, λ be a security parameter. A (scalable)
pseudorandom state generator (PRSG) is an ensemble of unitaries

Gn := {{Gn,λk : H → H}k∈K}λ

satisfying

– Pseudorandomness. Any polynomially many ℓ copies of |ϕk⟩ with the
same random k is computationally indistinguishable from the same num-
ber of copies of a Haar random state. More precisely, for any n ∈ N, any
efficient quantum algorithm A and any ℓ ∈ poly(λ),∣∣∣∣ Prk←K

[
A
(
|ϕk⟩⊗ℓ

)
= 1
]
− Pr
|ψ⟩←µ

[
A
(
|ψ⟩⊗ℓ

)
= 1
]∣∣∣∣ = negl(λ) ,

where |ϕk⟩ := Gn,λκ |0n⟩ and µ is the Haar measure on S(H).
– Uniformity. Gn can be uniformly computed in polynomial time. That is,

there is a deterministic Turing machine that, on input (1n, 1λ, 1κ), outputs
a quantum circuit Q in poly(n, λ, κ) time such that for all k ∈ K and |ϕ⟩ ∈
S(Hin)

Q |k⟩|ϕ⟩ = |k⟩|ϕk⟩ ,

where |ϕk⟩ := Gn,λk |ϕ⟩.
– Polynomially-bounded key length. κ = log |K| = poly(m,λ). As a result,
Gn can be computed efficiently in time poly(n, λ).

We informally call the keyed family of quantum states {|ϕk⟩}k∈K a (scalable)
pseudorandom quantum state in H.

The existence of PRSSs implies the existence of (scalable) PRSGs [11,31]
straightforwardly by definition.

Lemma 15. If Rn,m is a PRSS from Hin to Hout over a key space K with
security parameter λ,

{
Rn,m,λk |ϕ⟩

}
k∈K

is a (scalable) PRS in Hout for any |ϕ⟩ ∈
S(Hin).
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Pseudorandom Function-like States. We recall the definition of the pseudoran-
dom function-like states generator with three levels of security:

Definition 18 (PRFSG [4,5]). Let K = {0, 1}λ be a key space. Let C = {0, 1}n
be a classical input space and H be a Hilbert space of dimension 2m. A pair
of poly(λ,m)-time quantum algorithm (K,G) is a pseudorandom function-like
state generator if the following holds:

– Key Generation. For all λ ∈ N, K(1λ) outputs a uniform key k ∈ K.
– State Generation. For all k ∈ K and x ∈ C, G(1λ, k, x) computes |ϕx,k⟩ ∈
S(H).

– Pseudorandomness. The pseudorandomness can be defined in three dif-
ferent levels (from weaker to stronger):
• Selective security. For any λ ∈ N, s ∈ poly(λ) , ℓ ∈ poly(λ), any

efficient quantum algorithm (non-uniform) A and a set of pre-declared
input {x1, . . . , xs} ⊆ C,∣∣∣∣ Pr
k←K

[
A(x1, . . . , xs, |ϕ1⟩⊗ℓ , . . . , |ϕs⟩⊗ℓ) = 1

]
− Pr
|ψ1⟩,...,|ψs⟩←µ

[
A(x1, . . . , xs, |ψ1⟩⊗ℓ , . . . , |ψs⟩⊗ℓ) = 1

] ∣∣∣∣ ≤ negl(λ) ,

where, for each i, |ϕi⟩ denotes |ϕxi,k⟩ generated by G; and |ψi⟩ is a Haar
random state.

• Adaptive security. Given classical-access to either the PRFS oracle
OPRFS or the Haar-random oracle OHaar, for any λ ∈ N, any efficient
quantum algorithm (non-uniform) A with polynomial length quantum
advice ρλ,∣∣∣∣ Prk←K

[
AOPRFS(k,·)(ρλ) = 1

]
− Pr
OHaar

[
AOHaar(·)(ρλ) = 1

]∣∣∣∣ ≤ negl(λ) ,

where on input x ∈ C, OPRFS(k, ·) outputs G(1λ, k, x); and OHaar(·) out-
puts a Haar random |ψx⟩.

• Quantum-accessible adaptive security. Given quantum-access to a
PRFS or Haar-random oracle, for any λ ∈ N, for any efficient quantum
algorithm (non-uniform) A with polynomial length quantum advice ρλ,∣∣∣∣ Prk←K

[
A|OPRFS(k,·)⟩(ρλ) = 1

]
− Pr
OHaar

[
A|OHaar(·)⟩(ρλ) = 1

]∣∣∣∣ ≤ negl(λ) ,

where on input a n-qubit register X, OPRFS(k, ·) applies a channel that
controlled on the register X containing x, and stores G(1λ, k, x) in the
register Y, then output (X,Y); instead, OHaar(·) stores a Haar random
|ψx⟩⟨ψx| on the register Y, then output (X,Y).

As previously mentioned, the security of our PRSS is maintained when ap-
plied to any arbitrary initial pure state, making it straightforward to derive a
PRFSG with selective security.
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Lemma 16. Assume Rn,m is a PRSS from Hin to Hout over a key space K with
security parameter λ s.t. n = O(log λ). Construct (K̂, Ĝ) in the following way:

– (Key generation.) For all λ ∈ N, K̂(1λ) sets a large enough s ∈ poly(λ) and
generates a key k = {k1, . . . , ks} such that for i ∈ [s], ki is chosen uniformly
and independently from K;

– (State generation.) For all k and classical queries {xi ∈ C}si=1, Ĝ(1λ, k, xi)
computes |ϕi⟩ = Rn,m,λki

|xi⟩.

Then, (K̂, Ĝ) is a PRFSG with selective security.

Proof. The algorithm (K̂, Ĝ) is efficient as it essentially performs PRSS a poly-
nomial number of times. Meanwhile, the indistinguishability holds because all
output states are obtained via independent keys.

When we consider log-inputs by restricting n = O(log λ) and setting s =
O(2n) ∈ poly(λ), the construction in Lemma 16 produces sufficient key segments
to ensure that every x ∈ C has its own independent key, without assuming the
number of queries from the adversary. As a consequence, log-input PRFSGs with
adaptive security can be achieved through the use of PRSSs. Furthermore, as
demonstrated by the results in [50], quantum superposition queries over the
input domain do not provide any additional advantages when the output state
is known for every input string, which results in quantum-accessible adaptive
security.

Lemma 17. If Rn,m is a PRSS from Hin to Hout over a key space K with secu-
rity parameter λ s.t. n = O(log λ), then (K̂, Ĝ) is a PRFSG satisfying adaptive
security and quantum-accessible adaptive security.

Prior works [4,5] have demonstrated that log-input PRFSGs can be con-
structed from a PRS. However, this approach requires a test procedure involving
a post-selection among the classical input domain, which introduces errors and
incurs computation overhead. Our PRSS, with its flexibility in choosing initial
states, provides a cleaner method. It is worth noting that PRFSGs on long in-
puts (i.e., exponentially large domain) may appear stronger and might not be
achievable from either PRSs or PRSSs in a black-box manner.
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C Deferred Proofs

C.1 Proof of Lemma 1

Proof of Lemma 1. We demonstrate that the real case and the complex case can
be established using the same approach.

Let ζ+ − ζ− be the Hahn decomposition of the signed measure µ− ν. Then∥∥∥∥ E
|ψ⟩∼µ

[
(|ψ⟩⟨ψ|)⊗l

]
− E
|φ⟩∼ν

[
(|φ⟩⟨φ|)⊗l

]∥∥∥∥
1

=

∥∥∥∥∥
∫
S2n

R

(|u⟩⟨u|)⊗l (µ− ν) (d |u⟩)

∥∥∥∥∥
1

=

∥∥∥∥∥
∫
S2n

R

(|u⟩⟨u|)⊗l
(
ζ+ − ζ−

)
(d |u⟩)

∥∥∥∥∥
1

≤

∥∥∥∥∥
∫
S2n

R

(|u⟩⟨u|)⊗l ζ+ (d |u⟩)

∥∥∥∥∥
1

+

∥∥∥∥∥
∫
S2n

R

(|u⟩⟨u|)⊗l ζ− (d |u⟩)

∥∥∥∥∥
1

≤
∫
S2n

R

∥∥∥(|u⟩⟨u|)⊗l∥∥∥
1
ζ+ (d |u⟩) +

∫
S2n

R

∥∥∥(|u⟩⟨u|)⊗l∥∥∥
1
ζ− (d |u⟩)

= ζ−
(
S2

n

R

)
+ ζ−

(
S2

n

R

)
= ∥µ− ν∥TV .

C.2 Proof of Lemma 6

Proof of Lemma 6. We first prove the case that F : K1 × X1 → Y1 and G :
K2 ×X2 → Y2 are both QPRFs. We prove the lemma by contradiction. Suppose
there exists a polynomial-time quantum oracle algorithm A who queries q times
such that∣∣∣∣∣ Pr
k1←K1,k2←K1

[
AFk1

,Gk2

(
1λ
)
= 1
]
− Pr
f←YX1

1 ,g←YX2
2

[
Af,g

(
1λ
)
= 1
]∣∣∣∣∣ = 1

poly(λ)
.

By the triangle inequality,∣∣∣∣∣ Pr
k1←K1,k2←K1

[
AFk1

,Gk2

(
1λ

)
= 1

]
− Pr

k1←K1,g←Y
X2
2

[
AFk1

,g
(
1λ

)
= 1

]∣∣∣∣∣
+

∣∣∣∣∣ Pr
k1←K1,g←Y

X2
2

[
AFk1

,g
(
1λ

)
= 1

]
− Pr

f←YX1
1 ,g←YX2

2

[
Af,g

(
1λ

)
= 1

]∣∣∣∣∣ ≥ 1

poly(λ)
.

Without loss of generality, we assume∣∣∣∣∣ Pr
k1←K1,g←Y

X2
2

[
AFk1

,g
(
1λ
)
= 1
]
− Pr
f←YX1

1 ,g←YX2
2

[
Af,g

(
1λ
)
= 1
]∣∣∣∣∣ ≥ 1

2 · poly(λ)
.
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Thus we can define a polynomial-time quantum oracle algorithm A′ that is
able to distinguish Fk1 from a random function f . Once A′ gets an oracle access
to some function h ∈ {Fk1 , f}, it simulates the execution of A with oracle access
to h and a random function g. Since A makes at most q queries, A′ can efficiently
simulate a random oracle using 2q-wise independent function (see [48, Theorem
6.1]). This contradicts the quantum-security property of F .

To prove the case that F : K1×X1 → Y1 is a QPRF and G : K2×X2 → X2 is
a QPRP, we may assume as above that there exists a polynomial-time quantum
oracle algorithm A who queries q times such that∣∣∣∣∣ Pr
k1←K1,g←SX2

[
AFk1

,g
(
1λ
)
= 1
]
− Pr
f←YX1

1 ,g←SX2

[
Af,g

(
1λ
)
= 1
]∣∣∣∣∣ ≥ 1

2 · poly(λ)
.

Then we define the following efficient algorithm A′′ to distinguish a QPRF from
a random function:

1. Given h ∈ {Fk1 , f}, it chooses a permutation g uniformly at random from
a 2q-wise almost independent family of permutations to simulate a random
permutation oracle. This sampling procedure can be done in polynomial time
(see [34, Theorem 5.9]).

2. It simulates A with oracle access to h and g, and outputs what A returns.

This breaks the quantum-security property of QPRFs.

C.3 Proof of Theorem 6

To prove Theorem 6, we extend the the proportional coupling introduced in real
case to complex case. In the proportional coupling, the real case lets (Xt[i], Xt[j])
be collinear with (Yt[i], Yt[j]) so that the distance from Xt to Yt is reduced
by a constant factor in each step. However in complex case, (Xt[i], Xt[j]) is
actually a two dimensional complex vector and this makes it unsuitable to adopt
the previous approach directly. To deal with this, in the complex case, we let
(|Xt[i]| , |Xt[j]|) align collinearly with (|Yt[i]| , |Yt[j]|) in real two dimensional
real plane, and make Xt[i] and Yt[i], as well as Xt[j] and Yt[j], share the same
argument in complex plane in the meantime. We assume n = 2m.

Proportional Coupling

Definition 19 (Proportional Coupling). We define a coupling of two copies
{Xt}t≥0 , {Yt}t≥0 of parallel Kac’s walk on complex vectors in the following way:
Fix Xt, Yt ∈ Cn.

1. Choose a perfect matching of [n], denoted by Pt =
{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i
(t)
m , j

(t)
m

)}
,

uniformly at random.
2. Let Xt,1 = Xt and Yt,1 = Yt. For every 1 ≤ k ≤ m:
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(a) let l(t)k =

√∣∣∣Xt,k[i
(t)
k ]
∣∣∣2 + ∣∣∣Xt,k[j

(t)
k ]
∣∣∣2 and l′(t)k =

√∣∣∣Yt,k[i(t)k ]
∣∣∣2 + ∣∣∣Yt,k[j(t)k ]

∣∣∣2.
Let U0 and U ′0 be the unitary operators in SU (2) which satisfy

U0

(
Xt,k[i

(t)
k ]

Xt,k[j
(t)
k ]

)
=

(
l
(t)
k

0

)
and U ′0

(
Yt,k[i

(t)
k ]

Yt,k[j
(t)
k ]

)
=

(
l′
(t)
k

0

)
.

(b) pick α(t)
k , β

(t)
k ∈ [0, 2π) and ζ(t)k ∈ [0, 1) uniformly at random and set

θ
(t)
k = arcsin

√
ζ
(t)
k . (36)

(c) set

Xt,k+1 = GC

(
i
(t)
k , j

(t)
k , α

(t)
k , β

(t)
k , θ

(t)
k , U0Xt,k

)
,

Yt,k+1 = GC

(
i
(t)
k , j

(t)
k , α

(t)
k , β

(t)
k , θ

(t)
k , U ′0Yt,k

)
.

3. Finally, set Xt+1 = Xt,m+1 and Yt+1 = Yt,m+1.

Remark 2. In step 2(a), if l(t)k ̸= 0, Xt,k[i
(t)
k ] = r1e

iγ and Xt,k[j
(t)
k ] = r2e

iδ with
r1, r2 ∈ [0, 1] and γ, δ ∈ [0, 2π), then U0 is U(α0, β0, θ0) where

α0 = −γ , β0 = π − δ , θ0 = arccos
r1√
r21 + r22

.

If l(t)k = 0, U0 can be arbitrary matrix in SU(2). The same applies to U ′0.

Due to the unitary invariance of Haar measures, UU0 is Haar distributed on
SU(2) for a random random U sampled according to Haar measure on SU(2).
This guarantees that the proportional coupling is indeed a valid coupling.

Remark 3. The proportional coupling forces Xt+1[i], Yt+1[i] and the original
point to be collinear in the complex plane. In other words, Xt+1[i] and Yt+1[i]
have the same argument. Specifically, we can write

Xt+1[i] = eiϕl and Yt+1[i] = eiϕl′

for some l, l′ ∈ [0, 1], ϕ ∈ [0, 2π).

Through proportional coupling , X and Y approach each other at an expo-
nential rate. Formally, we have

Lemma 18. Let X0, Y0 ∈ SnC . For t ≥ 0, we couple (Xt+1, Yt+1) conditional
on (Xt, Yt) according to the proportional coupling defined in Definition 19. We
define

At[i] = |Xt[i]|2 , Bt[i] = |Yt[i]|2 .

Then for any l ∈ N, we have

E

[
n∑
i=1

(Al[i]−Bl[i])2
]
≤ 2 ·

(
2

3

)l
.
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Proof of Lemma 18. Fix Xt, Yt ∈ SnC . Let (Xt+1, Yt+1) obtained from (Xt, Yt)
by applying the coupling defined in Definition 19. Recall that n = 2m. Let
N = n!

2mm! be the number of perfect matchings for [n]. A perfect matching{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i
(t)
m , j

(t)
m

)}
of [n] at step t is denoted by

(−→
i(t),
−→
j(t)
)

.

We have

E

[
n∑
i=1

(At+1[i]−Bt+1[i])
2

]

=
1

N

∑
(−→
i(t),
−−→
j(t)

)E

[
n∑
i=1

(At+1[i]−Bt+1[i])
2

∣∣∣∣∣Pt =
(−→
i(t),
−→
j(t)
)]

︸ ︷︷ ︸
(⋆)

. (37)

By the definition of the parallel Kac’s walk on complex vectors, we have

(⋆) =

m∑
k=1

E
[((

At[i
(t)
k ] +At[j

(t)
k ]
)
cos(θ

(t)
k )2 −

(
Bt[i

(t)
k ] +Bt[j

(t)
k ]
)
cos(θ

(t)
k )2

)2]

+

m∑
k=1

E
[((

At[i
(t)
k ] +At[j

(t)
k ]
)
sin(θ

(t)
k )2 −

(
Bt[i

(t)
k ] +Bt[j

(t)
k ]
)
sin(θ

(t)
k )2

)2]

=
2

3

m∑
k=1

((
At[i

(t)
k ] +At[j

(t)
k ]
)
−
(
Bt[i

(t)
k ] +Bt[j

(t)
k ]
))2

=
2

3

m∑
k=1

((
At[i

(t)
k ]−Bt[i(t)k ]

)2
+
(
At[j

(t)
k ]−Bt[j(t)k ]

)2)
︸ ︷︷ ︸

(⋆⋆)

+
2

3

m∑
k=1

2
(
At[i

(t)
k ]−Bt[i(t)k ]

)(
At[j

(t)
k ]−Bt[j(t)k ]

)
︸ ︷︷ ︸

(⋆⋆⋆)

, (38)

where the second equality is by E
[
cos(θ

(t)
k )4

]
= E

[
sin(θ

(t)
k )4

]
= 1/3.

As
{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i
(t)
m , j

(t)
m

)}
is a perfect matching, we have

(⋆⋆) =
2

3

n∑
i=1

(At[i]−Bt[i])2 . (39)
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Combing Eqs. (37)(38)(39), we obtain

E

[
n∑
i=1

(At+1[i]−Bt+1[i])
2

]
=

2

3

n∑
i=1

(At[i]−Bt[i])2 +
1

N

∑
(−→
i(t),
−−→
j(t)

)(⋆ ⋆ ⋆)
︸ ︷︷ ︸

(4⋆)

.

(40)

Using the same calculation in Eq. (7), we have

(4⋆) = − 2

3(n− 1)

n∑
i=1

(At[i]−Bt[i])2 . (41)

Combining Eqs. (40)(41), we have

E

[
n∑
i=1

(Al[i]−Bl[i])2
]
= E

[
E

[
n∑
i=1

(Al[i]−Bl[i])2
∣∣∣∣∣Xl−1, Yl−1

]]

≤ 2

3
E

[
n∑
i=1

(Al−1[i]−Bl−1[i])2
]

≤
(
2

3

)l n∑
i=1

(A0[i]−B0[i])
2 ≤ 2 ·

(
2

3

)l
.

Proof of the Mixing Time

Proof of Theorem 6. Let T = 10(c + 1) log n for c > 0. We couple two copies
{Xt}t≥0 and {Yt}t≥0 of the parallel Kac’s walk with starting points X0 = x ∈ SnC
and Y0 ∼ µ, by applying the proportional coupling. We have

W1(L(XT ) , µ) =W1(L(XT ) ,L(YT )) ≤ E[∥XT − YT ∥2] ≤
(
E
[
∥XT − YT ∥42

])1/4
.

Then by Cauthy-Schwarz inequality, we have

W1(L(XT ) , µ) ≤
(
nE
[
∥XT − YT ∥44

])1/4
. (42)

Note that the proportional coupling forces XT [i] and YT [i] share the same argu-
ment for all i ∈ [n]. Therefore, for all i ∈ [n]

|XT [i]− YT [i]| = ||XT [i]| − |YT [i]|| ≤ |XT [i]|+ |YT [i]| .

This gives us

∥XT − YT ∥44 =

n∑
i=1

|XT [i]− YT [i]|4 ≤
n∑
i=1

(
|XT [i]|2 − |YT [i]|2

)2
. (43)
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Combing Eqs. (42) and (43), we have

W1(L(XT ) , µ) ≤

(
nE

[
n∑
i=1

(
|XT [i]|2 − |YT [i]|2

)2])1/4

(Lemma 18) ≤

(
2n

(
2

3

)T)1/4

≤ 1

2c logn
.

C.4 Proof of Theorem 10

To prove Theorem 10, we first introduce a new ensemble of (infinitely many)

unitary operators R̃SGC
n
:=

{
R̃SGC

n,λ
}
λ

with R̃SGC
n,λ

:=

{
R̃SGC

n,λ

(σi)
T
i=1,(f̃i)

T
i=1,(g̃i)

T
i=1,(h̃i)

T
i=1

}
(σi)

T
i=1⊆S2n ,(f̃i)

T
i=1,(g̃i)

T
i=1,(h̃i)

T
i=1⊆{f :{0,1}

n−1→[0,1)}

and

R̃SGC
n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

= L̃τT ,f̃T ,g̃T ,h̃T
· · · L̃τ2,f̃2,g̃2,h̃2

L̃τ1,f̃1,g̃1,h̃1

where L̃σ,f̃ ,g̃,h̃ = Uσ−1Q̃f̃ ,g̃,h̃Uσ and Q̃f̃ ,g̃,h̃ is defined to be

Q̃f̃ ,g̃,h̃ =
∑

y∈{0,1}n−1

U
(
α̃y, β̃y, θ̃y

)
⊗ |y⟩⟨y| , (44)

in which U(α, β, θ) is defined in (10) and for any y ∈ {0, 1}n−1

θ̃y = arcsin

(√
f̃(y)

)
, α̃y = 2π · g̃(y) , β̃y = 2π · h̃(y) .

Similar to the real case, L̃σ,f̃ ,g̃,h̃ represents one step of parallel Kac’s walk in
complex space for independently and uniformly random σ, f̃ , g̃ and h̃.

Lemma 19. Let σ ∈ S2n and f̃ , g̃, h̃ : {0, 1}n−1 → [0, 1). Let f : {0, 1}n−1 →
{0, 1}d be the function satisfying for any y ∈ {0, 1}n−1, f(y) is the d digits after
the binary point in f̃(y). The same applies to g and h. Then∥∥∥Lσ,f,g,h − L̃σ,f̃ ,g̃,h̃∥∥∥∞ ≤ 26−

d
2 ,

where Lσ,f,g,h = Uσ−1Qf,g,hUσ is defined in (17) and L̃σ,f̃ ,g̃,h̃ = Uσ−1Q̃f̃ ,g̃,h̃Uσ
is defined in (44).

Proof of Lemma 19. Recall the unitary L̂σ,f,g,h = Uσ−1Q̂f,g,hUσ defined in (15).
We will prove
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–
∥∥∥Lσ,f,g,h − L̂σ,f,g,h∥∥∥

∞
≤ 23−dπ .

–
∥∥∥L̂σ,f,g,h − L̃σ,f̃ ,g̃,h̃∥∥∥∞ ≤ 24−

d
2 .

The claim then follows from the triangle inequality.

Proof of the first bound Fix a y ∈ {0, 1}n−1, we have∥∥∥∥(cos (θy) − sin (θy)
sin (θy) cos (θy)

)
−
(
cos
(
π
2 ξy
)
− sin

(
π
2 ξy
)

sin
(
π
2 ξy
)

cos
(
π
2 ξy
) )∥∥∥∥

∞
≤ 2−d−1π ,∥∥∥∥∥∥

ei(αy+βy
2

)
0

0 e
−i

(
αy+βy

2

)
−(ei2πγ+

y 0

0 e−i2πγ
+
y

)∥∥∥∥∥∥
∞

≤ 21−dπ ,

∥∥∥∥∥∥
ei(αy−βy

2

)
0

0 e
−i

(
αy−βy

2

)
−(ei2πγ−

y 0

0 e−i2πγ
−
y

)∥∥∥∥∥∥
∞

≤ 21−dπ .

Thus, by the triangle inequality and the decomposition for matrix U(α, β, θ), we
have for any y ∈ {0, 1}n−1∥∥∥U(αy, βy, θy)− U

(
2π(γ+y + γ−y ), 2π(γ

+
y − γ−y ),

π

2
ξy

)∥∥∥
∞
≤ 23−dπ .

Therefore we have∥∥∥Lσ,f,g,h − L̂σ,f,g,h∥∥∥
∞

=
∥∥∥Qf,g,h − Q̂f,g,h∥∥∥

∞

= max
y∈{0,1}n−1

∥∥∥U(2π(γ+y + γ−y ), 2π(γ
+
y − γ−y ),

π

2
ξy

)
− U(αy, βy, θy)

∥∥∥
∞

≤ 23−dπ .

Proof of the second bound Fix a y ∈ {0, 1}n−1, we have |αy − α̃y| ≤ 21−dπ, and∣∣∣βy − β̃y∣∣∣ ≤ 21−dπ. Therefore,

∥∥∥∥∥∥∥
ei(αy+βy

2

)
0

0 e
−i

(
αy+βy

2

)
−

ei
(

α̃y+β̃y
2

)
0

0 e
−i

(
α̃y+β̃y

2

)

∥∥∥∥∥∥∥
∞

≤ 21−dπ , (45)

∥∥∥∥∥∥∥
ei(αy−βy

2

)
0

0 e
−i

(
αy−βy

2

)
−

ei
(

α̃y−β̃y
2

)
0

0 e
−i

(
α̃y−β̃y

2

)

∥∥∥∥∥∥∥
∞

≤ 21−dπ . (46)
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Moreover, we have
∣∣∣val(f(y))− f̃(y)∣∣∣ ≤ 2−d and thus∥∥∥∥∥∥

(
cos (θy) − sin (θy)
sin (θy) cos (θy)

)
−

cos
(
θ̃y

)
− sin

(
θ̃y

)
sin
(
θ̃y

)
cos
(
θ̃y

) ∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
√1− val(f(y))−

√
1− f̃(y) −

√
val(f(y)) +

√
f̃(y)√

val(f(y))−
√
f̃(y)

√
1− val(f(y))−

√
1− f̃(y)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
√1− val(f(y))−

√
1− f̃(y) −

√
val(f(y)) +

√
f̃(y)√

val(f(y))−
√
f̃(y)

√
1− val(f(y))−

√
1− f̃(y)

∥∥∥∥∥∥
2

=

√
2

(√
1− val(f(y))−

√
1− f̃(y)

)2

+ 2

(√
val(f(y))−

√
f̃(y)

)2

≤ 2−
d
2+

3
2 ,

(47)

where the last inequality is by the following fact.

Fact 16. For a, b ∈ [0, 1] and d ∈ N, if |a− b| ≤ 2−d, then
∣∣∣√a−√b∣∣∣ ≤ 2−

d
2+

1
2 .

Proof. Let δ = 2−d+1. If a ≤ δ and b ≤ δ, we have
∣∣∣√a−√b∣∣∣ ≤ max

{√
a,
√
b
}
≤

√
δ = 2−

d
2+

1
2 . If a > δ or b > δ, we will have a > δ/2 and b > δ/2, and therefore∣∣∣√a−√b∣∣∣ ≤ 1√

2δ
· |a− b| ≤ 2−

d
2−1 .

Hence, we have by (45), (46) and (47), for any y ∈ {0, 1}n−1,∥∥∥U(αy, βy, θy)− U
(
α̃y, β̃y, θ̃y

)∥∥∥
∞
≤ 24−

d
2 .

Therefore,∥∥∥L̂σ,f,g,h − L̃σ,f̃ ,g̃,h̃∥∥∥∞ =
∥∥∥Q̂f,g,h − Q̃f̃ ,g̃,h̃∥∥∥∞

= max
y∈{0,1}n−1

∥∥∥U(αy, βy, θy)− U
(
α̃y, β̃y, θ̃y

)∥∥∥
∞

≤ 24−
d
2 .

Proof of Theorem 10. It is easy to see that the uniformity condition is satisfied.
Let κ denote the key length. Quantum circuit RSGCn,λ applies the operator
RSGCn,λ

(σi)Ti=1,(fi)
T
i=1,(gi)

T
i=1,(hi)Ti=1

after reading (σi)
T
i=1, (fi)

T
i=1, (gi)

T
i=1 and (hi)

T
i=1.

To implement RSGCn,λ
(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

, we need to realize each of the
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T = 10(λ + 1)n unitary gates L. Since each gate L can be implemented in
poly(n, λ, κ) time, the total construction time for RSGCn,λ

(σi)Ti=1,(fi)
T
i=1,(gi)

T
i=1,(hi)Ti=1

is also poly(n, λ, κ).
Thus, it suffices to prove the requirement of Statistical Pseudorandomness is

satisfied. Fix |η⟩ ∈ S(H). Define three distributions:

– ν be the distribution of RSGCn,λ
(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

|η⟩ with independent
and uniformly random permutations (σi)

T
i=1 ⊆ S2n , and random functions

(fi)
T
i=1, (gi)

T
i=1, (hi)Ti=1 ⊆ {f : {0, 1}n−1 → {0, 1}d}.

– ν̃ be the distribution of R̃SGC
n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

|η⟩ with independent
and uniformly random permutations (σi)

T
i=1 ⊆ S2n , and random functions

(f̃i)
T
i=1, (g̃i)

T
i=1, (h̃i)Ti=1 ⊆ {f : {0, 1}n−1 → [0, 1)}.

– µ be the Haar measure on S(H).
We first proof the trace distance between ν and ν̃ is negligible. To this end,

we construct a coupling γ0 of ν and ν̃ by using the same permutation σt and
letting ft be the function satisfying ft(y) is the d digits after the binary point
in f̃t(y) for all y ∈ {0, 1}n−1 (The same applies to gt and ht). Therefore, for any
(|ϕ⟩ , |φ⟩) ∼ γ0, we have

∥|ϕ⟩ − |φ⟩∥2

=

∥∥∥∥RSGCn,λ
(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

|η⟩ − R̃SGC
n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

|η⟩
∥∥∥∥
2

≤
∥∥∥∥RSGCn,λ

(σi)Ti=1,(fi)
T
i=1,(gi)

T
i=1,(hi)Ti=1

− R̃SGC
n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

∥∥∥∥
∞

≤ 26−
d
2 T =

640(λ+ 1)n

λlog λ · nlogn
,

where the last inequality is from Fact 1 and Lemma 19. Thus, for any l ∈
poly(λ, n)∥∥∥∥ E

|ϕ⟩∼ν

[
(|ϕ⟩⟨ϕ|)⊗l

]
− E
|φ⟩∼ν̃

[
(|φ⟩⟨φ|)⊗l

]∥∥∥∥
1

≤ E
(|ϕ⟩,|φ⟩)∼γ0

[∥∥∥(|ϕ⟩⟨ϕ|)⊗l − (|φ⟩⟨φ|)⊗l
∥∥∥
1

]
≤ l E

(|ϕ⟩,|φ⟩)∼γ0
[∥|ϕ⟩⟨ϕ| − |φ⟩⟨φ|∥1]

≤ l

(
E

(|ϕ⟩,|φ⟩)∼γ0
[∥|ϕ⟩ (⟨ϕ| − ⟨φ|)∥1] + E

(|ϕ⟩,|φ⟩)∼γ0
[∥(|ϕ⟩ − |φ⟩) ⟨φ|∥1]

)
≤ 2l E

(|ϕ⟩,|φ⟩)∼γ0
[∥|ϕ⟩ − |φ⟩∥2] ≤

1280(λ+ 1)nl

λlog λ · nlogn
. (48)

As for the trace distance between ν̃ and µ, note that ν̃ is the output distribution
of T -step parallel Kac’s walk. Thus by Theorem 6, we have

W1(ν̃, µ) ≤
1

2λn
.
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So there exists a coupling of ṽ and µ, denoted by γ1, that achieves

E
(|φ⟩,|ψ⟩)∼γ1

[∥|φ⟩ − |ψ⟩∥2] ≤
3

2λn
.

Therefore, similar to Eq. (48), we have for any l ∈ poly(λ, n)∥∥∥∥ E
|φ⟩∼ν̃

[
(|φ⟩⟨φ|)⊗l

]
− E
|ψ⟩∼µ

[
(|ψ⟩⟨ψ|)⊗l

]∥∥∥∥
1

≤ 2l E
(|φ⟩,|ψ⟩)∼γ1

[∥|φ⟩ − |ψ⟩∥2] ≤
6l

2λn
.

(49)

Finally, by the triangle inequality, Eqs. (48) and (49), we have∥∥∥∥ E
|ϕ⟩∼ν

[
(|ϕ⟩⟨ϕ|)⊗l

]
− E
|ψ⟩∼µ

[
(|ψ⟩⟨ψ|)⊗l

]∥∥∥∥
1

≤ 1280(λ+ 1)nl

λlog λ · nlogn
+

6l

2λn
= negl(λ) .

This establishes the Statistical Pseudorandomness property.

C.5 Proof of Theorem 11

Proof of Theorem 11. The key length is bounded by 4T ·poly(n, d) = poly(n, λ)
since τ and F are efficient. Thus the condition of polynomial-bounded key length
is satisfied. To implement SGCn,λk , we need to realize each of the T = 10(λ+1)n

unitary gates L that compose SGCn,λk . Since each gate L can be implemented in
poly(n, λ) time due to the efficiency of τ and F , the total construction time for
SGCn,λk is also poly(n, λ). Thus the uniformity is also satisfied.

We now prove the pseudorandomness property. To this end, we consider three
hybrids for an arbitrary |ϕ⟩ ∈ S(H) and l ∈ poly(λ, n):

H1: |ϕk⟩⊗l for |ϕk⟩ = SGCn,λk |ϕ⟩ where k ← (K1 ×K2 ×K2 ×K2)
T is chosen

uniformly at random.

H2:
∣∣∣φ(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

〉⊗l
for∣∣∣φ(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

〉
= RSGCn,λ

(σi)Ti=1,(fi)
T
i=1,(gi)

T
i=1,(hi)Ti=1

|ϕ⟩

with independent and uniformly random permutations (σi)
T
i=1 ⊆ S2n and

random functions (fi)
T
i=1, (gi)

T
i=1, (hi)

T
i=1 ⊆ {f : {0, 1}n−1 → {0, 1}d}. Here

the unitary RSGCn,λ
(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

is defined in Definition 11.

H3: |ψ⟩⊗l for |ψ⟩ chosen according to the Haar measure µ on S(H).

We first prove that H1 and H2 are computationally indistinguishable. By
the quantum-secure property of τ and F , we know the following two situations
are computationally indistinguishable for any polynomial-time quantum oracle
algorithm A (see Lemma 6):
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– given oracle access to τr1 , · · · , τrT and Fu1 , · · · , FuT
, Fs1 , · · · , FsT , Ft1 , · · · , FtT

where (ri)
T
i=1 ⊆ K1 and (ui)

T
i=1, (si)

T
i=1, (ti)

T
i=1 ⊆ K2 are independent and

uniformly random keys.

– given oracle access to independent and uniformly random permutations (σi)Ti=1

⊆ S2n and random functions (fi)
T
i=1, (gi)

T
i=1, (hi)

T
i=1 ⊆ {f : {0, 1}n−1 →

{0, 1}d}.

Thus, we have for any polynomial-time quantum algorithm A,

∣∣∣∣Pr [A(|ϕk⟩⊗l) = 1
]
− Pr

[
A
(∣∣∣φ(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

〉⊗l)
= 1

]∣∣∣∣ = negl(λ) .

For H2 and H3, they are statistically indistinguishable since RSGCn defined
in Definition 11 is an RSS by Theorem 10. Finally, by the triangle inequality we
establish H1 and H3 are computationally indistinguishable. This accomplishes
the proof.

C.6 Proof of Lemma 10

Proof of Lemma 10. Let graph G0 = (V = [n], E0 = ∅). We recursively define
G1, . . . , Gl as follows: given Gi = ([n], Ei), choose a perfect matching Mi of [n]
uniformly at random, and set

Gi+1 = ([n], Ei+1 = Ei ∪Mi) .
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Then

Pr[PT0,1 ̸= {[n]}]
= Pr[Gl is disconnected]
= Pr[∃ S ⊆ [n] such that there is no edge between S and [n]\S in Gl]

≤
∑
i∈[m]

i is even

∑
S∈([n]

i )

Pr[There is no edge between S and [n]\S in Gl]

≤
∑
i∈[m]

i is even

∑
S∈([n]

i )

 i!
2i/2(i/2)!

· (n−i)!
2(n−i)/2((n−i)/2)!
n!

2n/2(n/2)!

l

=
∑
i∈[m]

i is even

∑
S∈([n]

i )

(
(n− i)(n− i− 1) · · · ((n− i)/2 + 1)

n(n− 1) · · · ((n+ i)/2 + 1)
· i(i− 1) · · · (i/2 + 1)

((n+ i)/2) · · · (n/2 + 1)

)l

≤
∑

i∈[m], i is even

∑
S∈([n]

i )

(
i(i− 1) · · · (i/2 + 1)

((n+ i)/2) · · · (n/2 + 1)

)l

≤
∑
i∈[m]

i is even

∑
S∈([n]

i )

(
2i

n+ i

)il/2

≤
∑
i∈[m]

i is even

(
n

i

)(
2

3

)il/2
≤

(
1 +

(
2

3

)l/2)n
− 1 ≤ n

(
2

3

)l/2(
1 +

(
2

3

)l/2)n−1
.

When l = 5(1 + c) log n and n is sufficiently large,

n

(
2

3

)l/2
≤ n−c and

(
1 +

(
2

3

)l/2)n−1
≤ 2 .

C.7 Proof of Theorem 7

To prove Theorem 7, we extend the two-stage coupling introduced in real case to
complex case. We have introduced the proportional coupling of complex space
in Definition 19. We now extend the the non-Markovian coupling and then prove
the mixing time. We assume n = 2m.

Non-Markovian Coupling

Definition 20 (Non-Markovian Coupling). Fix T0 ≤ T ∈ N. We couple
{Xt}T0≤t≤T , {Yt}T0≤t≤T in the following way:
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1. For each T0 ≤ t < T , choose a perfect matching

Pt =
{(
i
(t)
1 , j

(t)
1

)
, . . . ,

(
i(t)m , j(t)m

)}
uniformly at random.

2. Set PT,1 = {{1} , . . . , {n}}, and define a sequence of partitions

{Pt,k}T0≤t<T, 1≤k≤m+1

of [n] in the same way as Definition 15.
3. If PT0,1 = {{1, . . . , n}}, we couple {Xt}T0≤t≤T , {Yt}T0≤t≤T in the following

way:
– Define the set

H = {(t, k) : T0 ≤ t < T, 1 ≤ k ≤ m, Pt,k ̸= Pt,k+1} .

– Fix T0 ≤ t < T , Xt and Yt, and we couple Xt+1 and Yt+1 in the following
way:
(a) Set Xt,1 = Xt and Yt,1 = Yt.
(b) For 1 ≤ k ≤ m,

i. If (t, k) /∈ H, we obtained Xt,k+1 and Yt,k+1 in the same way as
the proportional coupling defined in Definition 19.

ii. If (t, k) ∈ H, let

l
(t)
k =

√∣∣∣Xt,k[i
(t)
k ]
∣∣∣2 + ∣∣∣Xt,k[j

(t)
k ]
∣∣∣2

and

l′
(t)
k =

√∣∣∣Yt,k[i(t)k ]
∣∣∣2 + ∣∣∣Yt,k[j(t)k ]

∣∣∣2.
Let U0 and U ′0 be the unitary operators which satisfy

U0

(
Xt,k[i

(t)
k ]

Xt,k[j
(t)
k ]

)
=

(
l
(t)
k

0

)
and U ′0

(
Yt,k[i

(t)
k ]

Yt,k[j
(t)
k ]

)
=

(
l′
(t)
k

0

)
.

Then we choose the best distribution ν among all joint distribu-
tions on [0, 1)× [0, 1) with both marginal distributions uniformly
distributed on [0, 1) which maximizes the probability of the fol-
lowing events when (ζ, ζ ′) ∼ ν and α, β are uniformly sample
from [0, 2π):∑
i∈Sr(t,k+1)

|Xt,k+1[i]|2 =
∑

i∈Sr(t,k+1)

|Yt,k+1[i]|2 , 1 ≤ r ≤ lt,k+1

where

Xt,k+1 = GC

(
i
(t)
k , j

(t)
k , α, β, arcsin

√
ζ, U0Xt,k

)
,

Yt,k+1 = GC

(
i
(t)
k , j

(t)
k , α, β, arcsin

√
ζ ′, U ′0Yt,k

)
.
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Then choose (ζ
(t)
k , ζ ′

(t)
k ) ∼ ν and α(t)

k , β
(t)
k uniformly from [0, 2π),

and set

Xt,k+1 = GC

(
i
(t)
k , j

(t)
k , α

(t)
k , β

(t)
k , arcsin

√
ζ
(t)
k , U0Xt,k

)
,

Yt,k+1 = GC

(
i
(t)
k , j

(t)
k , α

(t)
k , β

(t)
k , arcsin

√
ζ ′

(t)
k , U ′0Yt,k

)
.

(c) Set Xt+1 = Xt,m+1 and Yt+1 = Yt,m+1.
4. If PT0,1 ̸= {{1, . . . , n}}, for T0 ≤ t ≤ T , we couple Xt+1 and Yt+1 in the

following way: choose 2m independent angles

α
(t)
1 , . . . , α(t)

m , β
(t)
1 , . . . , β(t)

m ∈ [0, 2π)

uniformly at random. Additionally, m independent real numbers ζ(t)1 . . . , ζ
(t)
m ∈

[0, 1) are selected uniformly at random and compute

θ
(t)
k = arcsin

(√
ζ
(t)
k

)
for all k ∈ {1, . . . ,m}. We set

Xt+1 = FC

(
Pt,
{
α
(t)
k

}m
k=1

,
{
β
(t)
k

}m
k=1

,
{
θ
(t)
k

}m
k=1

, Xt

)
,

Yt+1 = FC

(
Pt,
{
α
(t)
k

}m
k=1

,
{
β
(t)
k

}m
k=1

,
{
θ
(t)
k

}m
k=1

, Yt

)
.

For T0 ≤ t ≤ T , 1 ≤ k ≤ m+ 1 and 1 ≤ i ≤ n we define

At,k[i] = |Xt,k[i]|2 , Bt,k[i] = |Yt,k[i]|2 ,

and define the event A(t, k) by

A(t, k) = {Eq. (50) are satisfied for all (t′, k′) ⊑ (t, k) such that T0 ≤ t′ ≤ t} .∑
i∈Sr(t′,k′)

At′,k′ [i] =
∑

i∈Sr(t′,k′)

Bt′,k′ [i] , 1 ≤ r ≤ lt′,k′ . (50)

Similarly, we have the following two lemmas as Lemma 11 and Lemma 12
before.

Lemma 20. Fix T0 < T and two chains {Xt}T0≤t≤T , {Yt}T0≤t≤T are coupled
using the non-Markovian coupling defined in Definition 20. Fix T0 ≤ t ≤ T and
1 ≤ k ≤ m+ 1. Then, on the event A(t, k) ∩ {PT0,1 = {1, . . . , n}}, we have

∥At′,k′ −Bt′,k′∥1,S ≤ ∥AT0
−BT0

∥1

for all (t′, k′) ⊑ (t, k) such that T0 ≤ t′ ≤ t and S ∈ Pt′,k′ . Moreover, for all
(t′, k′) ⊑ (t, k) such that T0 ≤ t′ ≤ t,

∥At′,k′ −Bt′,k′∥1 ≤ n ∥AT0 −BT0∥1 .
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The proof of above lemma is the same as Lemma 4.4 in [44].

Lemma 21. Fix positive reals 1 < p < q. Let ζ, ζ ′ ∼ Unif[0, 1) and let

S = A+Bζ and S′ = C +Dζ ′

for some 0 ≤ A,B,C,D ≤ 1 that satisfy

|A− C| , |B −D| ≤ n−q and B,D ≥ n−p .

Then for sufficiently large n, there exists a coupling of ζ, ζ ′ so that

Pr[S = S′] ≥ 1− 3n−(q−p) .

Proof. Without loss of generality, we assume B ≥ D. The total variation distance
between S and S′ is

∥S − S′∥TV ≤ 1−
∫
(A,A+B)∩(C,C+D)

1

B
dx

≤ 1−
∫ A+B−2n−q

A+n−q

1

B
dx

= 1−
(
B − 3n−q

) 1

B

=
3n−q

B
≤ 3n−(q−p) .

This implicitly defines a coupling of ζ, ζ ′ that satisfies Pr[S = S′] ≥ 1−3n−(q−p).

Proof of Theorem 7 Let a = 30, b = 24, T0 = 500 log n, T1 = 15 log n, T =
T0+T1 = 515 log n. We construct a coupling of two copies {Xt}t≥0 , {Yt}t≥0 with
starting point X0 ∈ SnC and Y0 ∼ µC. The coupling is as follows:

1. Couple {Xt}0≤t≤T0
, {Yt}0≤t≤T0

by using the proportional coupling defined
in Definition 19.

2. Couple {Xt}T0≤t≤T , {Yt}T0≤t≤T by using the non-markovian coupling de-
fined in Definition 20.

Define the event

E1 =
{
∥AT0 −BT0∥1 ≥ n

−a} ,

E2 = {PT0,1 ̸= {{1, . . . , n}}} ,

E3 = {XT ̸= YT } .

By Lemma 2,

sup
X0∈Sn

C

∥L (XT )− µC∥TV ≤ sup
X0∈Sn

C

Pr[E3]

≤ sup
X0∈Sn

C

(Pr[E1] + Pr[E2] + Pr[E3 ∩ Ec1 ∩ Ec2 ]) . (51)
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By Lemma 18 and Markov’s inequality, we have

Pr[E1] = Pr
[
∥AT0

−BT0
∥1 ≥ n

−a]
≤ Pr

[
∥AT0 −BT0∥2 ≥ n

−a−1/2
]

≤ n2a+1 · 2 ·
(
2

3

)T0

≤ 1

n2
. (52)

Moreover, by Lemma 10, we have

Pr[E2] ≤ 2n−2 . (53)

In order to bound Pr[E3 ∩ Ec1 ∩ Ec2 ], recall the definition of A(t, k) in (50). If
A(T, 1) occurs, we have |Xt[i]| = |Yt[i]| for all i ∈ {1, . . . , n}. Meanwhile, our
coupling ensures Xt[i] and Yt[i] have the same argument. This means A(T, 1)
implies Ec3 . As a result, E3 ∩ Ec1 ∩ Ec2 implies A(T, 1)c ∩ Ec1 ∩ Ec2 . So, we have

Pr[E3 ∩ Ec1 ∩ Ec2 ]
≤ Pr[A(T, 1)c ∩ Ec1 ∩ Ec2 ]

≤
T−1∑
t=T0

Pr[A(t+ 1, 1)c ∩ A(t, 1) ∩ Ec1 ∩ Ec2 ] + Pr[A(T0, 1)c ∩ Ec1 ∩ Ec2 ]

=

T−1∑
t=T0

Pr[A(t,m+ 1)c ∩ A(t, 1) ∩ Ec1 ∩ Ec2 ] + Pr[A(T0, 1)c ∩ Ec1 ∩ Ec2 ]

≤
T−1∑
t=T0

m∑
k=1

Pr[A(t, k + 1)c ∩ A(t, k) ∩ Ec1 ∩ Ec2 ] + Pr[A(T0, 1)c ∩ Ec1 ∩ Ec2 ] . (54)

Notice that if Ec2 happens, we have∑
i∈{1,...,n}

|XT0,1[i]|
2
=

∑
i∈{1,...,n}

|YT0,1[i]|
2
= 1 .

Therefore,

Pr[A(T0, 1)c ∩ Ec1 ∩ Ec2 ] = 0 . (55)

Combining (54) and (55), we have

Pr[E3 ∩ Ec1 ∩ Ec2 ] ≤
T−1∑
t=T0

m∑
k=1

Pr[A(t, k + 1)c ∩ A(t, k) ∩ Ec1 ∩ Ec2 ] . (56)

We are now left to find a upper bound for Pr[A(t, k + 1)c ∩ A(t, k) ∩ Ec1 ∩ Ec2 ]
when T0 ≤ t ≤ T − 1 and 1 ≤ k ≤ m. To this end, we define

B(t, k) =
{

min
(t′,k′)⊑(t,k):t′≤t

min
1≤i≤n

|Yt′,k′ [i]|2 ≥ (2n)−b
}

.
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Note that

Pr[A(t, k + 1)c ∩ A(t, k) ∩ Ec1 ∩ Ec2 ]
≤ Pr[A(t, k + 1)c ∩ A(t, k) ∩ B(t, k) ∩ Ec1 ∩ Ec2 ] + Pr[B(t, k)c] .

(57)

By Lemma 5 and a union bound over all (t′, k′) such that (t′, k′) ⊑ (t, k) and
t′ ≤ t, we have for sufficiently large n,

Pr[B(t, k)c] ≤ 15 · 21− b
3 · n3− b

3 log(n) ≤ 1

n4
. (58)

Next, we consider two cases of the term

Pr[A(t, k + 1)c ∩ A(t, k) ∩ B(t, k) ∩ Ec1 ∩ Ec2 ]

in (57): (t, k) /∈ H and (t, k) ∈ H, where H is defined in Definition 20. In the case
that (t, k) /∈ H, we have Pt,k = Pt,k+1 and we apply the proportional coupling.
Thus A(t, k) implies A(t, k + 1) which means

Pr[A(t, k + 1)c ∩ A(t, k) ∩ B(t, k) ∩ Ec1 ∩ Ec2 ] = 0 . (59)

In the other case that (t, k) ∈ H, let

A =
∑

i∈Svt,k
(t,k+1)\j(t)k

|Xt,k[i]|2 , B =
∣∣∣Xt,k[i

(t)
k ]
∣∣∣2 + ∣∣∣Xt,k[j

(t)
k ]
∣∣∣2 ,

C =
∑

i∈Svt,k
(t,k+1)\j(t)k

|Yt,k[i]|2 , D =
∣∣∣Yt,k[i(t)k ]

∣∣∣2 + ∣∣∣Yt,k[j(t)k ]
∣∣∣2 ,

S = A+Bζ
(t)
k , S′ = C +Dζ ′

(t)
k .

On the event A(t, k) ∩ B(t, k) ∩ Ec1 ∩ Ec2 , we have by Lemma 11

|A− C| ≤ ∥At,k −Bt,k∥1 ≤ n ∥AT0 −BT0∥1 ≤ n
1−a .

Similarly,

|B −D| ≤ ∥At,k −Bt,k∥1 ≤ n ∥AT0 −BT0∥1 ≤ n
1−a .

Moreover, D ≥ n−(b+1) and B ≥ D − |B −D| ≥ n−(b+1) for sufficiently large
n. Then apply Lemma 21 with p = b + 1, q = a − 1, we know there exists a
distribution ν0 such that when

(
ζ
(t)
k , ζ ′

(t)
k

)
∼ ν0, we have

Pr(
ζ
(t)
k ,ζ′

(t)
k

)
∼ν0

[S ̸= S′|A(t, k) ∩ B(t, k) ∩ Ec1 ∩ Ec2 ] ≤ 3n−(a−b−2) .
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We choose the best distribution which maximizes the probability of event de-
scribed in (50) , so

Pr[A(t, k + 1)c ∩ A(t, k) ∩ B(t, k) ∩ Ec1 ∩ Ec2 ]
≤Pr [A(t, k + 1)c| A(t, k) ∩ B(t, k) ∩ Ec1 ∩ Ec2 ]
≤ Pr(

ζ
(t)
k ,ζ′

(t)
k

)
∼ν0

[A(t, k + 1)c| A(t, k) ∩ B(t, k) ∩ Ec1 ∩ Ec2 ]

= Pr(
ζ
(t)
k ,ζ′

(t)
k

)
∼ν0

[S ̸= S′| A(t, k) ∩ B(t, k) ∩ Ec1 ∩ Ec2 ] ≤ 3n−(a−b−2) . (60)

Combining (56), (57), (59), (60) and (58), we have for sufficiently large n

Pr[E3 ∩ Ec1 ∩ Ec2 ] ≤
T−1∑
t=T0

m∑
k=1

3n−(a−b−2) + n−4 ≤ 1

n2
. (61)

By (51), (52), (53) and (61), we have for sufficiently large n and T = 515 log n

sup
X0∈Sn

C

∥L (XT )− µC∥TV ≤
1

2n
.

As for T ≥ 515 log n, by Lemma 3 we have

sup
X0∈Sn

C

∥L (XT )− µC∥TV ≤ 2

(
1

n

)⌊ T
515 log n⌋

≤ 1

2(c/515−1) logn−1
.

C.8 Proof of Lemma 13

Proof of Lemma 13. To see why Ñ = S2nR , we prove S2nR ⊆ Ñ since Ñ ⊆ S2nR is
trivial. Given |ξ⟩ ∈ S2nR , we prove |ξ⟩ ∈ Ñ by constructing a series of (σt, f̃t) for
t ≤ n such that

K̃σn,f̃n
· · · K̃σ1,f̃1

|η⟩ = |ξ⟩

(we let K̃σt,f̃t
= 1 for t > n).

The idea is to bisect K̃σt,f̃t
· · · K̃σ1,f̃1

|η⟩ and |ξ⟩ accordingly and recursively,
always keeping the 2-norm of each part of the two vectors equal.

To illustrate the process in detail, we begin with indexing the entries of a
vector in S2nR by a bit string of length n. In step t ∈ [n], we divide the index set
{0, 1}n into 2t sets based on the first t bits. For y ∈ {0, 1}t, we define Sy to be
the set of all elements in {0, 1}n with prefix y. We then split |η⟩ and |ξ⟩ into 2t

sub-vectors, according to Sy where y ∈ {0, 1}t. Let Ly be the function from S2nR
to R that gives the length of the sub-vector corresponding to Sy. Let

|η0⟩ = |η⟩ , |ηt⟩ = K̃σt,f̃t
|ηt−1⟩ for t ∈ [n] .

Our goal is to construct (σt, f̃t) at each step t ∈ [n], such that Ly(|ηt⟩) = Ly(|ξ⟩)
for every t ∈ [n− 1], y ∈ {0, 1}t and that |ηn⟩ = |ξ⟩.
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To accomplish this, we first define σt ∈ S2n to be

σt(x) = xtx1 . . . xt−1xt+1 . . . xn for all x ∈ {0, 1}n .

For any y ∈ {0, 1}t−1, σt matches every index in Sy0 with another index in Sy1
that shares a common suffix of length n− t.

Next, we move to construct f̃t. Define αy for each y ∈ {0, 1}t−1 as

αy =

{
arccos

Ly0(|ξ⟩)
Ly(|ξ⟩) if Ly (|ξ⟩) ̸= 0 and t < n ,

0 if Ly (|ξ⟩) = 0 and t < n .

When t = n, we define αy for y ∈ {0, 1}n−1 to be any angle satisfying

(|ξ⟩)y0 = Ly (|ξ⟩) cosαy ,

(|ξ⟩)y1 = Ly (|ξ⟩) sinαy .

We want to design f̃t which controls the rotation of each index pair to let each
pair of indices between Sy0 and Sy1 (induced by σt) form an angle αy with the
x-axis in a two-dimensional Cartesian coordinate system. To this end, for each
y ∈ {0, 1}t−1 and z ∈ {0, 1}n−t, we define βy(z) to be any angle satisfying

(|ηt−1⟩)y0z =
√

(|ηt−1⟩)2y0z + (|ηt−1⟩)2y1z cosβy(z),

(|ηt−1⟩)y1z =
√

(|ηt−1⟩)2y0z + (|ηt−1⟩)2y1z sinβy(z),

and we define f̃t to be

f̃t(yz) = (αy − βy(z)) /(2π)

for all y ∈ {0, 1}t−1 and z ∈ {0, 1}n−t. It can be easily verified that

Ly (|ηt⟩) = Ly (|ξ⟩) for t ∈ [n− 1] and y ∈ {0, 1}t,

and |ηn⟩ = |ξ⟩.

C.9 Proof of Lemma 14

Proof of Lemma 14. Let |u⟩ = R̃SG
n,λ

(σi)Ti=1,(f̃i)
T
i=1
|η⟩ ∈ Ñ for some (σi)

T
i=1 ⊆ S2n

and (f̃i)
T
i=1 ⊆ {f : {0, 1}n−1 → [0, 1)}. For every t ∈ [T ], we define ft by letting

ft(y) be the d digits after the binary point in f̃t(y) for all y ∈ {0, 1}n−1. It is
evident that |v⟩ = RSGn,λ

(σi)Ti=1,(fi)
T
i=1

|η⟩ ∈ N . And

∥|u⟩ − |v⟩∥2 =

∥∥∥∥R̃SG
n,λ

(σi)Ti=1,(f̃i)
T
i=1
|η⟩ − RSGn,λ

(σi)Ti=1,(fi)
T
i=1

|η⟩
∥∥∥∥
2

≤
∥∥∥∥R̃SG

n,λ

(σi)Ti=1,(f̃i)
T
i=1
− RSGn,λ

(σi)Ti=1,(fi)
T
i=1

∥∥∥∥
∞
≤ 21−dπT =

1030π(λ+ 1)n

λlog λnlogn
,

(62)

where the last inequality is from Fact 1 and Lemma 8. This proves that N
is indeed an ϵ-net for Ñ where ϵ = 1030π(λ+1)n

λlog λnlog n = negl(λ). Combining with
Lemma 13, we conclude the result.
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C.10 Proof of Theorem 15

To prove Theorem 15, recall the ensemble of (infinitely many) unitary operators

R̃SGC
n
:=

{
R̃SGC

n,λ
}
λ

defined in Section C.4.

Proposition 3. For T = 515(λ+1)n, the ensemble of unitary operator R̃SGC
n

is a CRSS.

Proof. Note that a uniformly random R̃SGC
n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

corresponds
to a T -step parallel Kac’s walk on S2nC . The proposition then follows from The-
orem 7 and the definition of CRSS.

Let η ∈ S(H) be an arbitrary state. Denote

N =
{

RSGCn,λ
(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

|η⟩
}

and Ñ =

{
R̃SGC

n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

|η⟩
}

.

We prove the following two lemmas.

Lemma 22. Ñ = S(H) .

Proof. We prove S2nC ⊆ Ñ since Ñ ⊆ S2nC is trivial. Given |ξ⟩ ∈ S2nC , we prove
|ξ⟩ ∈ Ñ by constructing a series of (σt, f̃t, g̃t, h̃t) for t ≤ n+ 1 such that

L̃σn,f̃n+1,g̃n+1,h̃n+1
· · · L̃σ1,f̃1,g̃1,h̃1

|η⟩ = |ξ⟩

(we let L̃σt,f̃t,g̃t,h̃t
= 1 for t > n+ 1).

The proof idea is similar to Appendix C.8. For any t ∈ [n] and y ∈ {0, 1}t,
we use the definition of Sy, Ly (change the domain to S2nC ), and |ηt⟩ (change
K̃σt,f̃t

to L̃σt,f̃t,g̃t,h̃t
) there. Our goal is to construct (σt, f̃t, g̃t, h̃t) at each step

t ∈ [n + 1], such that Ly(|ηt⟩) = Ly(|ξ⟩) for every t ∈ [n − 1], y ∈ {0, 1}t and
that |ηn+1⟩ = |ξ⟩. That is, after n − 1 steps, for every y ∈ {0, 1}n−1, the two-
dimensional sub-vectors of |ηn⟩ and |ξ⟩ induced by Sy have the same length. In
the final two steps, we adjust the two sub-vectors to be equal.

For any t ∈ [n], let σt be defined as in Appendix C.8. We now construct
f̃t, g̃t, h̃t.

For any t ∈ [n], y ∈ {0, 1}t−1, z ∈ {0, 1}n−t, suppose that

(|ηt−1⟩)y0z = eiθ
η
y,0,zrηy,0,z and (|ηt−1⟩)y1z = eiθ

η
y,1,zrηy,1,z ,

(|ξ⟩)y0z = eiθ
ξ
y,0,zrξy,0,z and (|ξ⟩)y1z = eiθ

ξ
y,1,zrξy,1,z ,

where θηy,0,z, θ
η
y,1,z, θ

ξ
y,0,z, θ

ξ
y,1,z ∈ [0, 2π), rηy,0,z, r

η
y,1,z, r

ξ
y,0,z, r

ξ
y,1,z ∈ [0, 1].

For t ∈ [n− 1], define

αy =

{
arccos

Ly0(|ξ⟩)
Ly(|ξ⟩) if Ly (|ξ⟩) ̸= 0 ,

0 otherwise.
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and

ρy(z) =

arccos
rηy,0,z√

(rηy,0,z)
2
+(rηy,1,z)

2
if
(
rηy,0,z

)2
+
(
rηy,1,z

)2
> 0 ,

0 otherwise.

We then define f̃t, g̃t, h̃t to be

f̃t(yz) = sin2 (αy − ρy(z)) ,
g̃t(yz) = θηy,1,z/(2π),

h̃t(yz) = θηy,0,z/(2π),

for all y ∈ {0, 1}t−1 and z ∈ {0, 1}n−t. It can be easily verified that

Ly (|ηt⟩) = Ly (|ξ⟩) for t ∈ [n− 1] and y ∈ {0, 1}t.

For t = n, we set the second entry of the sub-vector of |ηn−1⟩ induced by Sy to
zero for all y ∈ {0, 1}n−1. That is, define

f̃n(y) =


(rηy,1)

2

(rηy,0)
2
+(rηy,1)

2 if
(
rηy,0
)2

+
(
rηy,1
)2
> 0,

0 otherwise,

g̃n(y) = −θηy,0/(2π),

h̃n(y) =
(
π − θηy,1

)
/(2π),

for all y ∈ {0, 1}n−1. We then have

Ly (|ηn⟩) = Ly (|ηn−1⟩) = Ly (|ξ⟩) for all y ∈ {0, 1}n−1.

For the final step, we let σn+1 = σn, and define

f̃n+1(y) =


(rξy,1)

2

(rξy,0)
2
+(rξy,1)

2 if
(
rξy,0

)2
+
(
rξy,1

)2
> 0,

0 otherwise,

g̃n+1(y) = θξy,0/(2π),

h̃n+1(y) = −θξy,1/(2π),

for all y ∈ {0, 1}n−1. It can be easily verified that |ηn+1⟩ = |ξ⟩.

Lemma 23. There exists an ϵ = negl(λ) such that N is an ϵ-net for S(H) .

Proof. By Lemma 22, it suffices to prove that there exists an ϵ = negl(λ) such
that N is an ϵ-net for Ñ .

Let |u⟩ = R̃SGC
n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

|η⟩ ∈ Ñ for some (σi)
T
i=1 ⊆ S2n

and (f̃i)
T
i=1, (g̃i)Ti=1, (h̃i)Ti=1 ⊆ {f : {0, 1}n−1 → [0, 1)}. For every t ∈ [T ], we
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define ft by letting ft(y) be the d digits after the binary point in f̃t(y) for all
y ∈ {0, 1}n−1. We define gt and ht for t ∈ [T ] in the same way. It is evident that
|v⟩ = RSGCn,λ

(σi)Ti=1,(fi)
T
i=1,(gi)

T
i=1,(hi)Ti=1

|η⟩ ∈ N . And

∥|u⟩ − |v⟩∥2

=

∥∥∥∥RSGCn,λ
(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

|η⟩ − R̃SGC
n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

|η⟩
∥∥∥∥
2

≤
∥∥∥∥RSGCn,λ

(σi)Ti=1,(fi)
T
i=1,(gi)

T
i=1,(hi)Ti=1

− R̃SGC
n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

∥∥∥∥
∞

≤ 26−
d
2 T =

32960(λ+ 1)n

λlog λnlogn
, (63)

where the last inequality is from Fact 1 and Lemma 19. This proves that N is
indeed an ϵ-net for Ñ where ϵ = 32960(λ+1)n

λlog λnlog n = negl(λ).

Proof of Theorem 15. It is easy to see that the uniformity condition is satisfied.
Let κ denote the key length. Quantum circuit RSGCn,λ applies RSGCn,λ

(σi)Ti=1,(fi)
T
i=1,(gi)

T
i=1,(hi)Ti=1

after reading (σi)
T
i=1, (fi)

T
i=1, (gi)

T
i=1 and (hi)

T
i=1. To implement RSGCn,λ

(σi)Ti=1,(fi)
T
i=1,(gi)

T
i=1,(hi)Ti=1

,
we need to realize each of the T = 515(λ + 1)n unitary gates L. Since each
gate L can be implemented in poly(n, λ, κ) time, the total construction time for
RSGCn,λ

(σi)Ti=1,(fi)
T
i=1,(gi)

T
i=1,(hi)Ti=1

is also poly(n, λ, κ).
In conjunction with Lemma 23, it suffices to prove the existence of a good

distribution ν̃ meeting the requirement in Definition 13. Fix |η⟩ ∈ S(H). Define
three distributions:

– ν be the distribution of RSGCn,λ
(σi)Ti=1,(fi)

T
i=1,(gi)

T
i=1,(hi)Ti=1

|η⟩ with independent
and uniformly random permutations (σi)

T
i=1 ⊆ S2n , and random functions

(fi)
T
i=1, (gi)

T
i=1, (hi)Ti=1 ⊆ {f : {0, 1}n−1 → {0, 1}d}.

– ν̃ be the distribution of R̃SGC
n,λ

(σi)Ti=1,(f̃i)
T
i=1,(g̃i)

T
i=1,(h̃i)Ti=1

|η⟩ with independent
and uniformly random permutations (σi)

T
i=1 ⊆ S2n , and random functions

(f̃i)
T
i=1, (g̃i)

T
i=1, (h̃i)Ti=1 ⊆ {f : {0, 1}n−1 → [0, 1)}.

– µ be the Haar measure on S(H).

Note that ν̃ is the output distribution of T -step parallel Kac’s walk in S2nC . Thus
by Theorem 7, we have

∥ν̃ − µ∥TV ≤
1

2λn−1
= negl(λ) . (64)

We are left to show the Wasserstein∞-distance between ν and ν̃ is negligible. To
this end, we construct a coupling γ0 of ν and ν̃ by using the same permutation
σt and letting ft be the function satisfying ft(y) is the d digits after the binary
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point in f̃t(y) for all y ∈ {0, 1}n−1 (The same applies to gt and ht). Therefore

W∞(ν, ν̃) = lim
p→∞

(
inf

γ∈Γ (ν,ν̃)
E

(|v⟩,|u⟩)∼γ

[
∥|v⟩ − |u⟩∥p2

])1/p

≤ lim
p→∞

(
E

(|v⟩,|u⟩)∼γ0

[
∥|v⟩ − |u⟩∥p2

])1/p (Eq. (63))
≤ 32960(λ+ 1)n

λlog λnlogn
= negl(λ) .

(65)

Thus we conclude the result.
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