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Abstract. This paper addresses the spinor genus, a previously unrec-
ognized classification of quadratic forms in the context of cryptography,
related to the lattice isomorphism problem (LIP). The spinor genus lies
between the genus and equivalence class, thus refining the concept of
genus. We present algorithms to determine whether two quadratic forms
belong to the same spinor genus. If they do not, it provides a negative
answer to the distinguishing variant of LIP. However, these algorithms
have very high complexity, and we show that the proportion of genera
splitting into multiple spinor genera is vanishing (assuming rank n ≥ 3).
For the special case of anisotropic integral binary forms (n = 2) over
number fields with class number 1, we offer an efficient quantum algo-
rithm to test if two forms lie in the same spinor genus. Our algorithm
does not apply to the HAWK protocol, which uses integral binary Her-
mitian forms over number fields with class number greater than 1.

Keywords: quadratic forms · lattice isomorphism problem · spinor genus
· class group.

1 Introduction

Lattices have been studied for almost 30 years by the cryptographic commu-
nity, since works by Ajtai [1, 2] gave worst-case to average-case reductions for
lattice problems and an encryption scheme whose hardness was based on such
worst-case lattice problems, as well as the introduction of NTRU [21]. Since
then other foundational problems for lattice-based cryptography have been in-
troduced, notably Learning with Errors [28]. A recent addition to these is the
Lattice Isomorphism problem.

Informally, the Lattice Isomorphism problem (LIP) is, given two lattices, to
decide if they are isomorphic or not. This can be rephrased in the language of
quadratic forms: the LIP is, given two quadratic forms, to decide whether they
lie in the same equivalence class or not, and if so to find such an isomorphism.
This problem was studied by Haviv and Regev [20], who gave an nO(n) algorithm
to solve the problem. This problem was given cryptographic applications by van
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Woerden and Ducas [15], who gave worst-case to average-case reductions for cer-
tain forms of the problem, and constructed a KEM and signature scheme relying
on the hardness of LIP. This was followed by the signature scheme HAWK [14],
which relied on the security of LIP restricted to module lattices. The growing
application and use of LIP-based schemes thus makes cryptanalysis of interest
to the cryptological community. We also note [5], which studied a closely related
problem to the LIP, named the lattice distortion problem.

The first step in a cryptanalytic direction was made in [7], which analysed the
distribution of quadratic forms corresponding to random q-ary lattices in genera.
Each quadratic form has an associated equivalence class, and each equivalence
class lies in a genus. The disjoint union of equivalence classes ‘fills out’ the genera
(i.e. each genus is a disjoint union of equivalence classes, and each class lies in
one genus). Thus, if two forms were to lie in distinct genera, and this could be
efficiently verified, a method for providing a negative answer to the LIP would
be provided. The conclusion of that study was, informally, that ‘most’ random
q-ary lattices lie inside one of few ‘large’ genera, and thus two forms can be sam-
pled at random from a ‘large’ genus with the property that rejection sampling
only negligibly biases the final distribution of forms.

Further work was done investigating the viability of using lattice hulls to
solve LIP instances in [13], and the possibility of using characteristic vectors
and lattice automorphisms to solve LIP was studied in [23].

In this work we continue the above line of investigation, studying notions
of equivalence for positive definite integral quadratic forms. The contribution
of this paper begins with a largely expository account of the spinor genus, a
collection of equivalence classes with respect to an equivalence relation defined
by the kernel of a certain homomorphism known as the spinor norm. A spinor
genus is a disjoint union of equivalence classes, much like the genus, but a genus
may contain multiple spinor genera. Thus, given two quadratic forms, one might
compute their spinor genera, and if they lie in different spinor genera, the forms
are not equivalent, providing a negative answer to distinguish LIP for those
two forms. We observe that the spinor genus was omitted from the ‘arithmetic
fingerprint’ of [15], and we here fill this lacuna.

1.1 Overview of Methodology

At a high level, spinor genera provide a finer classification of quadratic forms
over Z than genera. It is well known that for quadratic forms over Q, the equiv-
alence of two forms can be determined by checking their equivalence over the
p-adic fields Qp for all primes p (including p = ∞). According to the famous
local-global principle, two forms are equivalent over Q if and only if they are
equivalent over Qp for all p. While it may seem tempting to extend this method
to classify quadratic forms over Z, the theory encounters limitations. If two forms
are equivalent over the p-adic integers Zp for all p (including p = ∞), they are
not necessarily equivalent over Z; rather, they only belong to the same genus.
In a sense, the genus highlights the constraints of local methods.

The spinor genus is a new classification intermediate between the genus and
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Fig. 1: Relation between the genus and spinor genus of quadratic forms.

the integrally equivalent class. It combines local and global methods. To study
the spinor genus, we need the theory of Clifford algebra to define the spin group
and spinor norm. A Clifford algebra is an algebra generated by a vector space
V equipped with a quadratic form, which is a powerful mathematical machinery
to study quadratic forms. The spin group Spin(n) gives a double cover of the
special orthogonal group of a vector space. A prototype spin group, Spin(3),
consisting of unit quaternions, is widely used in computer graphics to rotate
objects in 3 dimensions. The spin group is closely related to the spinor kernel,
which consists of autometries of a vector space determined by certain elements
with spinor norm 1 in the Clifford algebra [8]. Therefore, the spinor kernel is
well suited to the study of LIP.

The relation between the genus and spinor genus is illustrated in Fig. 1. Us-
ing the language of lattices, we give in Table 1 a more precise comparison of the
definitions of the equivalent class, spinor genus and genus. Since both orthogonal
group O(V ) and spinor kernel Θ(Vp) are subgroups of orthogonal group O(Vp),
it is easy to see the inclusions in Fig. 1. For extensive treatments of quadratic
forms, see the classic references [8, 27].

Classification Definition Transform Remark

Class Γ = γΛ γ ∈ O(V ) O orthogonal group

Spinor genus Γp = γδpΛp,∀p γ ∈ O(V ), δp ∈ Θ(Vp) Θ spinor kernel

Genus Γp = βpΛp, ∀p βp ∈ O(Vp) p prime

Table 1: Comparison of various classifications of lattices. Γ,Λ are lattices, V is a
vector space, and subscript p denotes localization. See Sections 2, 3 for details.
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1.2 Main Results

It is well known that the while genera of quadratic forms exist in any dimension
n ≥ 3 which contain multiple spinor genera, such genera are in some sense rare.
To each quadratic form is associated a Jordan p-symbol, which classifies the genus
of the form. We show that the proportion of Jordan p-symbols which correspond
to genera which split into multiple spinor genera is a vanishing fraction of all
possible Jordan p-symbols. We summarise this as

Theorem 1. (Informal) For the set of quadratic forms of prime power determi-
nant and rank such that the genus could split into multiple spinor genera, only
a negligible proportion of such forms do in fact lie in such genera.

A similar result holds for composite determinant. We then proceed to study
algorithms to compute the number of spinor genera in a genus, and whether two
forms lie in the same spinor genus. We consider such algorithms first over the
rational integers, and then over rings of integers in number fields. The latter case
is extracted from the work of [4]. We include discussion of the complexity of this
algorithm. Summarising the results of Section 5, we find:

Theorem 2. Let F be a number field with ring of integers OF is a PID. Assume
V is an n-dimensional vector space over F with a non-degenerate quadratic form
ϕ and associated symmetric bilinear form b, and n ≥ 3. Suppose L and L̃ are
quadratic lattices on V and they are in the same genus. Then there is an effective
algorithm to decide if L̃ ∈ spn+(L), the proper spinor genus of L.

We also discuss the barriers to this algorithm being efficient. Currently, the
complexity of these algorithms to compute the spinor genus appears to be super-
exponential, and we welcome further research to reduce their complexity.

Finally, we study the special case of integral binary quadratic forms over the
ring of integers of a number field. This is of particular cryptographic interest,
since HAWK relies on the hardness of these instances. In this case, when the
ring of integers of the number field is a principal ideal domain (PID), it turns
out that the spinor genus can be computed via a particularly simple algorithm:
deciding if two forms lie in the same spinor genus is equivalent to deciding
quartic residuosity in a certain class group, which can be done efficiently using
(quantum) algorithms by Hallgren. We note that in the case of forms over Z, a
similar result was proved in [19]; we rely on the subsequent work of [16, 17].

To state our result, let F be a number field with ring of integers OF . If (V, ϕ)
is a quadratic space over F and we need not reference ϕ, we may simply write
V for the space; in the binary case, when (V, ϕ) is anisotropic, we may view
V as a quadratic field extension of F with ring of integers OV . Let the proper
spinor genus of a quadratic form g be written spn+(g). Let Lg be the lattice
corresponding to the quadratic form g. Finally, denote the left order of a lattice
L by Ol(L) := {x ∈ V : xL ⊂ L} ⊂ V . We prove:

Theorem 3. Let F be a number field with ring of integers OF is a PID. Let f
and g be two anisotropic binary quadratic forms, integral over OF , in the same
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genus. Let V be the dimension 2 quadratic space containing Lf and Lg. Then if
Lf · L−1

g generates an ideal coprime to the conductor of Ol(Lg) in OV , there is
a quantum polynomial time algorithm to decide if f ∈ spn+(g).

We note that this does not affect HAWK, since HAWK uses integral binary
Hermitian forms over cyclotomic fields of conductor n ∈ {512, 1024}. The cyclo-
tomic field of largest conductor such that it has ring of integers a PID has n = 90.
However, our work complements that of [26], since they show that module-LIP
over the ring of integers of totally real fields has an efficient solution, and we
note that the class number of maximal totally real subfields of cyclotomic fields
of power-of-two conductor is believed to be 1 for all powers of two, and that this
is confirmed up to n = 256, and assuming GRH, for n = 512 [25]. Our result
does not just hold for these (maximal totally real sub-) fields, however, since
it applies to all integral binary quadratic forms over number fields with ring of
integers a PID.

1.3 Paper Organisation

After providing some background, we then define the notion of spinor genera in
Section 3. We begin with quadratic forms over Z: in Section 3.3, a step is taken
towards understanding ‘how often’ genera split into distinct spinor genera, while
in Section 4, an algorithm is presented to compute the spinor genus of a positive
definite integral quadratic form, adapted from Conway and Sloane [12, Chapter
15]. After this, we move to quadratic forms over number fields: in Section 5
Conway and Sloane’s algorithm is extended to lattices over number fields; in
Section 6 we specialise to binary quadratic forms over maximal orders of number
fields, and give a quantum polynomial time algorithm to decide if two forms lie
in the same spinor genus. We conclude the paper in Section 7, applying our
results to LIP and commenting on their applicability to existing schemes.

2 Preliminaries

2.1 Notation

We write [n] for the set of integers {1, ..., n}. For any field F , we denote by F×

its group of units. For two orthogonal subspaces V1, V2 we use V1 ⊥ V2 to denote
their direct sum. The dual space of V will be denoted V̂ .

2.2 Lattices

A lattice is a discrete additive subgroup of Rn. A lattice L can be generated
by a number of linearly independent vectors b1, ...,bm that form a basis B =
[b1, ...,bm], and if m = n then L is full-rank. A lattice L with basis B may be
written L = L(B).

One may consider lattices, more abstractly, as discrete additive subgroups of
a vector space V over a field F . The case of the previous paragraph is then that
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of F = R. We state an important theorem for lattices, known as the Invariant
Factors Theorem:

Theorem 4. [27, §81D] Let L1 and L2 be lattices on a vector space V/F . Then
there is a basis x1, ..., xn for V such that

L1 = a1x1 + ...+ anxn and L2 = a1t1x1 + ...+ antnxn

where the ai and ti are fractional ideals satisfying t1 ⊃ t2 ⊃ ... ⊃ tn. Moreover,
the ti satisfying the above are unique.

2.3 Quadratic Forms

Let F be a number field with characteristic not equal to 2, and OF be the ring
of integers of F . A quadratic form is a homogeneous polynomial of degree two,
written f(x) =

∑m
i,j=1 aijxixj , with coefficients aij lying in F . Such a form can

be associated to an m×m symmetric matrix Af = (aij)i,j . The determinant of
f is the determinant of Af .

We say that two quadratic forms f, g are equivalent over OF if and only if
there exists U ∈ GLm(OF ) such that Ag = UTAfU . This is an equivalence
relation, and the classes obtained from the quotient by this relation are called
classes of quadratic forms.

Definition 1. A quadratic form f is called isotropic if there exists x ∈ V \ {0}
such that f(x) = 0. If no such x exists, we call f anisotropic.

When F is a totally real number field (i.e., all embeddings of F into C are
real), we will be most concerned with certain families of quadratic forms:

Definition 2. We call f positive definite if f(x) is totally positive (i.e., all
conjugates of f(x) are positive) for any x ∈ V \{0}, and f negative definite if f(x)
is totally negative (i.e., all conjugates of f(x) are negative) for any x ∈ V \ {0}.
Otherwise, we call f indefinite.

All forms over totally real number fields below will be assumed positive def-
inite. Note if a form is positive definite, it is anisotropic. One may then obtain
the Cholesky decomposition of Af , Af = BT

f Bf , so one can always write the
symmetric matrix of a quadratic form in such a manner. We denote the lattice
with basis B satisfying Af = BTB by Lf = L(B).

Given a lattice L with basis B, one can form the symmetric matrix BTB. This
can then be considered as the matrix corresponding to a quadratic form f . Thus
one can move between the ‘world’ of lattices and the ‘world’ of quadratic forms.
In this vein, we call the pair of a vector space V over F and a quadratic form
mapping from V to F , say ϕ, a quadratic space. We call V regular if detϕ ̸= 0.

To any quadratic form ϕ on V is also associated a symmetric bilinear form
b : V × V → F , which can be constructed via the polarisation identity

b(v, w) =
1

2
(ϕ(v + w)− ϕ(v)− ϕ(w))



Spinor Genus and LIP 7

2.4 Orthogonal Groups

Let (V, ϕ) be a quadratic space. We may then consider the isomorphisms σ :
V → V such that ϕ(σx) = ϕ(x), that is the set of automorphisms preserving
the quadratic form. This collection forms a group known as the orthogonal group
O(V ) of V . These are linear transformations, so we can define the determinant of
σ to be the determinant of the corresponding linear transformation of V , fixing
some basis of V/F . An element of the orthogonal group has either determinant
equal to 1 or −1; it thus contains a subgroup known as the proper orthogonal
group; we have

O(V ) = {σ : V → V : ϕ(σx) = ϕ(x)∀x} and O+(V ) = {σ ∈ O(V ) : detσ = 1}

These notions have analogues for lattices within a quadratic space: for any lattice
L ⊂ V we set

O(L) = {σ ∈ O(V ) : σL = L} and O+(L) = {σ ∈ O+(V ) : σL = L}

Important subsets of O(V ) are the involutions and symmetries. An element
σ ∈ O(V ) is called an involution if σ2 = Id. There is a family of involutions
known as symmetries, which we will use below: we say an involution τ is a
symmetry3 if there is some fixed anisotropic vector y ∈ V such that

τ(x) = τy(x) := x− b(x, y)

ϕ(y)
y

for all x ∈ V .
We can use the orthogonal group to give a definition of equivalence of lattices:

we say Γ is equivalent to Λ if and only if there exists some γ ∈ O(V ) such that
Γ = γΛ.

2.5 p-adic Integers

We give a brief introduction to p-adic arithmetic; for a fuller introduction aimed
at cryptographers, see for example [10].

Let p be a prime and a
b ∈ Q×. We may then write a

b = pi · a′

b′ uniquely with
both a′, b′ coprime with p and i ∈ Z. We may then define the p-adic norm on Q
as |ab |p := p−i. One may verify that this satisfies the properties of a norm, and
satisfies the ultrametric inequality.

Taking the completion of Q with respect to | · |p for some fixed prime p yields
the p-adic rationals Qp. This contains a subring Zp, the p-adic integers, defined

Zp := {x ∈ Qp : |x|p ≤ 1}

One may view Zp as the completion of Z with respect to the p-adic norm.
It will also be useful to consider another subring of Qp, the localisation of Z

at a prime p:

Z(p) :=
{a
b
: a ∈ Z, b ∈ Z \ pZ

}
3 Sometimes known as a ‘reflection’.
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This is in fact both a subring of Zp and a subring of Q.
We now record some useful properties of Zp and Z(p). We begin with units.

We have

Z×
p = {x ∈ Qp : |x|p = 1} and Z×

(p) =
{a
b
∈ Z(p) : gcd(a, p) = 1

}
Both rings each has only one prime ideal, which is therefore maximal:

Spec(Zp) = pZp and Spec(Z(p)) = pZ(p)

The units therefore are

Z×
p = Zp \ pZp and Z×

(p) = Z(p) \ pZ(p)

We may define an equivalence relation on Q×
p as follows: we say a ∼ b if and

only if a
b ∈

(
Q×

p

)2
. The quotient of Q×

p by this relation yields a number of p-adic
square classes. We list the possible classes here, for future reference, categorised
by the value of p (following the notation of [12]; for more detail see [8]):

1. p = ∞ (i.e. the case of R): we have representatives u and −u, where u is any
strictly positive number.

2. p = 2: we have 8 classes, with representatives u1, u3, u5, u7, 2u1, 2u3, 2u5, 2u7,
where ui ∈ Z×

2 satisfies ui ≡ i mod 8.
3. p > 2: we have 4 classes, with representatives u+, u−, pu+, pu−, where u+

(u− respectively)∈ Z×
p is a quadratic residue (nonresidue respectively).

p-adic Diagonalisation Given any quadratic form f , it is possible to diago-
nalise the matrix Af over the p-adic integers, and in fact diagonalise Af over
the subring Z(p) ⊂ Zp (except that this is a block-diagonalisation if p = 2). The
algorithm to perform this diagonalisation is given in [12], and runs as follows:
find the entry of Af least divisible by p. If this entry is on the diagonal, begin
diagonalising as usual (subtracting multiples of rows and columns from one an-
other). If this entry is off the diagonal in the (i, j)th position, add the jth row
to the ith row and the jth column to the ith column, and proceed as before. If
p = 2, it is possible to obtain a block of the form

2k
(
a b
b c

)
for some k, where a, c are even and b is odd, instead of a wholly diagonal matrix.

One then obtains a corresponding decomposition of f over Zp. If p > 2, this
has the form

f = f0 ⊕ pf1 ⊕ ...⊕ pkfk ⊕ ...

where the fi are p-adically integral represented by diagonal npi × npi matrices
with gcd(det fi, p) = 1, and if p = 2 the fi may possibly be represented by the
2× 2 matrices given above. The fi are called the Jordan constituents of f .
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Genera We say f and g lie in the same genus if and only if they are locally
equivalent for all primes p, and over the reals; that is to say, we have

Ag ∼Zp
Af ∀ p

and Ag ∼R Af , which is the case if and only if there exist Up ∈ GLm(Zp) such
that Ag = UT

p AfUp for all p, and U ∈ GLm(R) such that Ag = UTAfU . There
are finitely many genera with the given determinant and dimension, and each
genus is a finite disjoint union of equivalence classes.

Equivalently, in terms of lattices we say that Γ and Λ which are on the same
space V lie in the same genus if there exist βp ∈ O(Vp) such that Γp = βpΛp for
all primes p.

p-adic Norms and Number Fields The above can all be extended to alge-
braic number fields. We assume some familiarity with the splitting and rami-
fication of primes in rings of integers of number fields; for background, see for
example [24]. We begin with a definition: say two norms | · |1, | · |2 are equivalent
if there exists some ϱ ∈ R+ such that | · |ϱ1 = | · |2.

Let F be a number field with ring of integers OF . Let p be a prime ideal of
OF . Then we say there is a norm of F corresponding to each prime ideal p of
OF , each embedding σ of F into R, and each pair of embeddings into C. The
latter two kinds of norms are called real and complex respectively.

We first consider the norms associated to prime ideals. For any α ∈ F×, let
(α) = pi

∏
j p

ej
j be the factorisation of (α) into products of prime ideals. We

then define |α|p = NF/Q(p)
−i. By a prime spot p we mean the equivalence class

of norms containing | · |p. We may then consider the completion Fp of F under
| · |p.

For a real embedding σ, we define a norm | · |σ = |σ(·)|, the absolute value
of the embedding into R. We call the equivalence class of norms containing | · |σ
a real spot. We can define the complex spots in a similar manner.

2.6 Jordan p-Symbols

From a p-adic diagonalisation of f as above, one can read off a number of invari-

ants of f , which classify the genus of f . In fact, with

(
a
p

)
denoting the Legendre

symbol, one can say

Theorem 5. [12, Chapter 15, Theorem 9] For p ̸= 2, f is equivalent to g over
Zp if and only if the precise powers of p, the dimensions npi , and the signs

ϵpi =

(
det fi
p

)
occuring in their Jordan decompositions are identical.

These invariants are encoded in the Jordan p-symbol (called the ‘p-adic sym-
bol’ in [12]), which is a formal product of factors qϵq,nq .

A similar but more complicated result holds for p = 2, which we omit for
brevity.
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3 Spinor Genera and Proportion of Splitting Genera

In this section we define the spinor genus of a quadratic form. In order to make
the definition precise, we proceed via Clifford algebra.

3.1 Clifford Algebra

Let (V, ϕ) be a regular quadratic space of dimension n over a field K. There is
a unique algebra C(V ) over K of dimension 2n satisfying

1. C(V ) is spanned by 1 and formal products x1...xr, xi ∈ V ,
2. xx = ϕ(x) for x ∈ V .

If V has normal basis e1, ..., en, then in C(V ) we have eiej = −ejei and eiei =
ϕ(ei) ∈ K. This C(V ) is the Clifford algebra associated to V .

For J ⊂ [n] with j1 < ... < jr, define e(J) := ej1ej2 ...ejr and set e(I)e(J) =
ℓ(I, J)e(K) where K = {i : i ∈ I or i ∈ J , i ̸∈ I ∩ J}, and

ℓ(I, J) =

 ∏
i∈I,j∈J,i>j

−1

 ·

( ∏
i∈I∩J

ϕ(ei)

)
.

Sending x 7→ −x ∈ V extends to give an automorphism of C(V ). Set

C0(V ) = {u ∈ C(V ) : u is fixed by the above automorphism}.

The involution on C(V ) is defined by extending linearly the map

e(J) = ej1ej2 ...ejr 7→ ejrejr−1
...ej1 =: e(J)′

This involution4 satisfies

1. (u′)′ = u for all u ∈ C(V )
2. u′ = u if u ∈ V
3. (uv)′ = v′u′ for any u, v ∈ C(V ).

For u ∈ C(V ), if u is (multiplicatively) invertible define Tu : x 7→ uxu−1. Then

Lemma 1. [8, Chapter 10, Lemma 3.1] If u ∈ C(V ) is invertible and Tu(x) =
uxu−1 ∈ V for all x ∈ V , then Tu ∈ O(V ).

Inspired by this, define the group

M0(V ) = {u ∈ C0(V ) : u−1 exists, Tu : V → V }

Then

Lemma 2. [8, Chapter 10, Theorem 3.1] O+(V ) ∼= M0(V )/K×.

4 The involution (sometimes called the ‘transpose’) is not to be confused with the
automorphism used to define C0(V ).
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Moreover, if u ∈ M0(V ), then u = a1...ar for an even r, aj ∈ V , and uu′ ∈
K×. Define the spin group

Spin(V ) = {u ∈ M0(V ) : uu′ = 1}

and
Θ(V ) = {Tu : uu′ = 1}.

The latter is called the spinor kernel, a name which will be clarified in the
following section. We now relate Spin(V ) and Θ(V ):

Theorem 6. [8, Chapter 10, Theorem 3.3] There is an homomorphism

Spin(V ) ↠ Θ(V ), u 7→ Tu

with kernel {±1}.

Spinor Norm We reach the application of the theory developed in the previous
sections. Let σ ∈ O+(V ). Then we can write σ as a map Tu for some u ∈ M0(V ),
and then map u 7→ uu′ mod (K×)2. The composition of these maps is called the
spinor norm:

Theorem 7. [8, Chapter 10, Corollary 3] The map θ : σ 7→ uu′ mod (K×)2 is
a multiplicative homomorphism.

Proof. It is plain that the identity maps to the identity. Consider σ, τ ∈ O+(V ).
We show θ(στ) = θ(σ)θ(τ).

First note that by Lemma 2, στ corresponds to some product uv ∈ M0(V )/K×.
Then θ(στ) = (uv)(uv)′ = uvv′u′ = uu′vv′ since vv′ ∈ K×. Moreover, we have
θ(σ)θ(τ) = uu′vv′.

3.2 Defining the Spinor Genus

The spinor norm can be used to define an equivalence relation on the space of
quadratic forms, via lattices.

Definition 3. Let Γ,Λ be lattices on the quadratic space (V, ϕ). Say S(Γ,Λ)
holds if there exist γ ∈ O+(V ) and δp ∈ Θ(Vp) such that

Γp = γδpΛp, for all p.

We call the equivalence classes under this relation the (proper) spinor genera.
Note that if f ∼ g, then setting the δp to be the identity for all p implies that
S(Lf , Lg) holds. So equivalent lattices lie in the same spinor genus. Moreover, if
S(Lf , Lg) holds, then since Θ(Vp) ⊂ O(Vp), we have g ∈ gen(f). The following
demonstrates that the spinor genus truly is an ‘intermediate’ relation to the class
and the genus:

Theorem 8. [8, Chapter 11, Lemma 1.4] S(Γ,Λ) is an equivalence relation.
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Proof. Symmetry and reflexivity are straightforward; here we demonstrate tran-
sitivity. Suppose Γ,Λ,∆ are three lattices satisfying S(Γ,Λ) and S(Λ,∆). Then
there are γ1, γ2 ∈ O+(V ) and β1p, β2p ∈ Θ(Vp) such that Γp = γ1β1pΛp and
Λp = γ2β2p∆p for each prime p. Combining these, one has

Γp = γ1β1pγ2β2p∆p = (γ1γ2)(γ
−1
2 β1pγ2β2p)∆p

for each prime p. It is easy to check γ1γ2 ∈ O+(V ) and γ−1
2 β1pγ2β2p ∈ Θ(Vp).

Hence S(Γ,Λ) holds.

We record some standard facts on the set of spinor genera [8, Chapter 11]:

Proposition 1. 1. The number of spinor genera in any genus is a power of 2.
2. For all n ≥ 3 there exist lattices whose genus contains multiple spinor genera.
3. Let (V, ϕ) be a quadratic space of dimension n ≥ 3, Λ ⊂ V a lattice, and ϕ

takes integral values on Λ. If gen(Λ) contains multiple spinor genera, either

there exists p > 2: p
n(n−1)

2 | det(Λ), or 2n(n−3)/2+⌊(n+1)/2⌋ | det(Λ).

3.3 Proportion of Genera Splitting into Multiple Spinor Genera

In this section we obtain an upper bound on the number of Jordan p-symbols
corresponding to forms which lie in a genus which splits into multiple spinor
genera. In the rest of this subsection we will call such genera, forms in a given
genera, and their corresponding p-symbols, ‘splitting’, for convenience. The point
of this result is to show that a negligible number of such p-symbols in the prime-
power case correspond to forms in such genera, when n ≥ 3.

Odd Prime-power Determinant We begin by considering forms of rank
n ≥ 3 and determinant pn(n−1)/2 for some prime p > 2, as this is the mini-
mal prime-power determinant for which the genus of a form specified by rank
and determinant can split into more than one spinor genus (cf. Proposition 1).
Observe that a necessary condition for such splitting is that the Jordan decom-
position of the form has no component with dimension larger than one, i.e. the
prime powers occurring in the p-adic diagonalisation of the form are all distinct
(this may be seen from Section 4, (i)). That is, up to multiplication by p-adic
quadratic residues or non-residues on the diagonal elements and reordering, f
has corresponding matrix A p-adically diagonalising to

AD,p =


1 0 0 ... 0
0 p 0 ... 0
0 0 p2 ... 0
...
...

...
. . .

...
0 0 0 ... pn−1

 ,

which has determinant pn(n−1)/2. If a form has determinant a higher power of
p, the proportion of forms will be upper bounded by the below result also. We
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do not address the power-of-two case, for simplicity.
We will proceed by (straightforwardly) finding the number of splitting Jordan

p-symbols, and we then lower bound the total number of p-symbols for forms
with the above-specified parameters (rank f = n, detf = pn(n−1)/2). In the latter
instance, f has corresponding matrix A p-adically diagonalising to

AD,p =


pi1 0 ... 0
0 pi2 ... 0
...

...
. . .

...
0 0 ... pin

 , (1)

up to multiplication by quadratic residues (or non-residues), with determinant
pn(n−1)/2, so

∑
j ij = n(n− 1)/2. In the more general case of determinant pm

for some m > n(n− 1)/2, one has
∑

j ij = m.

Step 1: splitting symbols To find the number of splitting Jordan p-symbols,
observe from the algorithm reproduced above that we must have distinct prime
powers on the diagonal of AD,p. Thus the Jordan p-symbol of a splitting form

must be 1ϵ1,1pϵp,1p2
ϵp2 ,1...pn−1ϵpn−1 ,1. Moreover, in the case of prime-power de-

terminant, all the ϵi agree: the diagonals must all be distinct powers of p, either
multiplied by quadratic residues modulo p, or all multiplied by quadratic non-
residues modulo p. So there are at most two splitting p-symbols for such fixed
parameters.

Step 2: bounding the number of p-symbols We lower bound the number of
p-symbols for the family of forms mentioned above. The number we are seeking
to approximate is the following:

An,m :=

∣∣∣∣∣
{
1ϵ1,n1pϵp,np ...pn−1ϵpn−1 ,npn−1

:

n−1∑
i=0

npi = n and

n−1∑
i=0

inpi = m

}∣∣∣∣∣ ,
initially in the specific instance m = n(n−1)/2. By observing (1), it is sufficient
to count the number of n-tuples (i1, ..., in) satisfying

∑
j ij = m, each multiplied

by 2k−1, where k is number of distinct terms in the n-tuple; this multiplicative
factor, since each entry of the diagonal of (1) may be multiplied by a quadratic
residue or non-residue.

We use some elementary partition theory to conduct this counting exercise;
for more background on partitions, see for example [3].

Definition 4. Let l be an integer. A decomposition l = λ1+ ...+λk into positive
integers λi is called a partition of l. The λi are called the parts of the partition,
and k is called the length of the partition. The number of partitions of an integer
l is denoted by p(l).

Now let

pi,j(l) := |{partitions of l of length i with j distinct parts}|.
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Write r := n(n− 1)/2. One can then express An,r as a weighted sum of pi,j(r):

An,r =

n∑
(i,j) : i≥j≥1

pi,j(r) · 2j ,

because of the quadratic residues or non-residues on each diagonal term of (1).
Pick (i, j) such that i+ j is maximal in [2, 2n] with respect to the property

that pi,j(r) ̸= 0. Then An,r > pi,j(r)·2j . So we now proceed to find (i, j) maximal
with respect to i+ j such that pi,j(r) ̸= 0.

Recall r = n(n− 1)/2. Then

pi,j(r) = |{partitions of n(n− 1)/2 of length i with j distinct parts}|

is pi,j(·) applied to the (n−1)th triangle number, which has a maximal partition
of length n − 1 into distinct parts of length n − 1 by definition. So (i, j) =
(n− 1, n− 1) is a pair satisfying i+ j is maximal and pi,j(r) is non-zero. Then

An,r =

n∑
i≥j≥1

pi,j(n(n− 1)/2) · 2j

> pn−1,n−1(n(n− 1)/2) · 2n−1 = 2n−1.

Now suppose detf ≥ pm for odd prime p and integer m ≥ r. The number of
splitting p-symbols in this case is upper bounded by

2 (pn,n(m) + pn−1,n−1(m)) ≤ 4pn−1,n−1(m)

To bound the total number of symbols, observe that pn−1,n−1(m) ≥ 1 for
m ≥ r. From the above reasoning it follows that a lower bound on An,m is

An,m =

n∑
i≥j≥1

pi,j(m) · 2j

≥ pn−1,n−1(m) · 2n−1 ≥ 2n−1

Step 3: proportion of splitting forms for odd prime-power determi-
nants Since there are at most 2 splitting Jordan p-symbols, for a form of de-
terminant pr and rank n, the fraction of symbols corresponding to forms whose
genus splits into multiple spinor genera is less than 2/2n−1 = 1

2n−2 , which is a
negligible function in n. We have thus arrived at

Theorem 9. Let p > 2 be a prime. The proportion of splitting p-symbols cor-
responding to positive definite quadratic forms of rank n ≥ 3 and determinant
pn(n−1)/2 among all possible p-symbols is strictly less than 2−(n−2).

When m > r, an upper bound for the proportion of splitting p-symbols is

4pn−1,n−1(m)∑
i≥j≥1 pi,j(m) · 2j
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The proportion can then be bounded by considering i = j = n− 1:

4pn−1,n−1(m)∑n
i≥j≥1 pi,j(m) · 2j

≤ 4

2n−1
=

1

2n−3
,

which is a negligible function in n.

For the case of odd composite determinants, we note the following. As above,
we have a set S, comprised of prime divisors of 2d and ∞. Suppose |S| = t. We
then have to compute the Jordan p-symbols at each element of this set. By
Proposition 1, there must be at least one prime divisor of the determinant which
divides the determinant many times, and any element of S may be this divisor.
We can thus upper bound the proportion of splitting symbols by t

2n−3 , which is
negligible when t is polynomially large.

We leave the p = 2 case to the interested reader, for brevity; the details of
this case can be found in [12].

4 An Algorithm to Compute Spinor Genera

Inspired by Conway and Sloane [12, Chapter 15], in this section we provide a
(quantum) polynomial time algorithm to calculate the number of spinor genera
in the given genus with rank n is at least 3. Let f and g be two positive definite
quadratic forms with determinant d in the same genus. In view of [30, Theorem
50], there is a rational matrix M such that Af = M tAgM with |detM | = 1 and
denominators of its entries are relatively prime to 2d . Let Lf and Lg be the
corresponding lattices that reflect this property. Then [Lf : Lf ∩ Lg] = [Lg :
Lf ∩ Lg] = r for some integer r which is relatively prime with 2d.

Let S be the finite set of prime divisors of 2d. We denote a spinor operator by
a sequence (. . . , rp, . . .)p∈S , where rp is a p-adic unit square class. For each p ∈ S,
choose a proper isometry σp ∈ O+(Vp) with θ(σp) = rp. Let Lh be the lattice
in the genus of Lf with (Lh)p = σp(Lf )p for each p ∈ S and (Lh)p = (Lf )p
for each p /∈ S. Then the spinor operator (. . . , rp, . . .)p∈S sends spn+(f) to
spn+(h) where h is a quadratic form defined on Lh. More information about
the action of a spinor operator can be found in [8, Chapter 11]. In this notation
the group operation is componentwise multiplication, and the rational or p-adic
integers can be regarded as spinor operators in the following way. For a rational
integer r that is relatively prime to 2d, the corresponding spinor operator is
∆(r) = (r, . . . , r); for a p-adic integer Ap = pka there corresponds the spinor
operator ∆p(Ap) = (pk, . . . , pk, a, pk, . . . , pk) whose q-coordinate for q ̸= p is the
q-adic unit square class of pk and whose p-coordinate is the p-adic unit square
class of a.

By [8, Theorem 4.1 in Chapter 11], ∆(r) ∗ spn+(f) = spn+(g) where r =
[Lf : Lf ∩ Lg] . Moreover when the rank is at least 3, ∆(r) ∗ spn+(f) is defined
for every positive integer r prime to 2d. Thus there is a surjective map from the
set of spinor operators ∆(r) with r positive integers prime to 2d to the set of
spinor genera in gen(f), and we can determine the number of the spinor genera
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by determining the kernel of this map, i.e., those ∆(r) which fix each spinor
genus.

By Theorem 16 and Theorem 17 in [12, Chapter 15], the spinor operator
kernel consists of the spinor operators ∆(r) for which the positive integer r is an
automorphous number (the spinor norm of a proper integral isometry in O+(Lf ))
and relatively prime to 2d. The spinor operator kernel can be calculated locally
and is generated by the spinor operators ∆p(Ap) for each p ∈ S where Ap is a
p-adically automorphous number (the spinor norm of a proper p-adic integral
isometry in O+((Lf )p)).

As the spinor operator kernel is completely determined by the p-adically
automorphous numbers, it is necessary to introduce an algorithm for identifying
the p-adically automorphous numbers associated with the given quadratic form
f . Recall that f is diagonalizable at p ≥ 3, and f is a direct sum of quadratic

forms that are of the shapes 2k(x) or 2k
(
a b
b c

)
at p = 2, where a, c are even and

x, b are odd. Now we want to create a set consisting of numbers in the following
two parts:

(I) when p ≥ 3, all the diagonal entries; when p = 2, the diagonal entries 2kx.
(II) only when p = 2, the numbers 2k+1u1, 2

k+1u3, 2
k+1u5, 2

k+1u7 for every 2-

dimensional component 2k
(
a b
b c

)
.

Then the group of p-adically automorphous numbers is generated by the p-
adic square classes of the products of all pairs of numbers from the above list,
and supplemented by:

(i) all p-adic units if either p ≥ 3 and dimfk ≥ 2 for any k, or p = 2 and
2kfk ⊕ 2k+1fk+1 ⊕ 2k+2fk+2 ⊕ 2k+3fk+3 has dimension ≥ 3 for any k.
(ii) the square classes 2u1, 2u3, u5, u3, u7 whenever p = 2 and part (I) of the
list contains two entries whose product has the form u1, u5, (1 or 4 or 16)uodd,
(2 or 8)u1 or 5, (2 or 8)u3 or 7 respectively.

Remark:

1. If there is a prime p such that, for each p-adic unit u, the spinor operator
∆p(1, . . . , 1, u, 1, . . . , 1) is in the spinor operator kernel, then the prime p can
be removed from the set S, as it conveys no information modulo the spinor
operator kernel. We call such a prime p tractable.

2. For any spinor operator (r1, . . . , rs), by the Strong Approximation Theorem
[27, 21:2], there is a positive integer r such that ∆(r) = (r1, . . . , rs).

Theorem 10. There is a (quantum) polynomial time algorithm to determine
the number of spinor genera in the genus of the given quadratic form f .

Proof. Let d be the determinant of the given quadratic form f . There are at
most log2(2d) different prime divisors of 2d. We can compute in time poly(n,
log2d) the diagonalisation of fp using the method introduced in Section 2.5 and
its p-adically automorphous numbers for all primes p dividing 2d.
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Algorithm 1: An algorithm to determine the number of spinor gen-
era in gen(f)

Input: Quadratic form f
Output: Answer
1: Compute the p-adic diagonalisation of f for each p | 2d
2: Compute p-adically automorphous numbers for each p | 2d
3: S := {p | 2d : p is intractable}
4: Compute a basis G of the spinor operators kernel with respect to S.
5: if 2 ∈ S then
6: Output‘2|S|+1−|G|’
7: else
8: output ‘2|S|−|G|’
9: end if

When p ≥ 3, p is tractable if the non-square unit u− is in θ(O+((Lf )p) or
both pu+ and pu− are contained in θ(O+((Lf )p). Therefore, if p is intractable,
then p contributes at most one non-trivial spinor operator ∆p(pu+) or ∆p(pu−)
to the generators of the spinor operator kernel. The prime 2 is tractable if one
of the following is true:

1. two of three non-square units u3, u5, u7 are in θ(O+((Lf )2);
2. three of four prime elements 2u1, 2u3, 2u5, 2u7 are contained in θ(O+((Lf )2);
3. one non-square unit u and two prime elements whose product is in the dif-

ferent square class from u in θ(O+((Lf )2).

Therefore if 2 is intractable, then 2 contributes at most three non-trivial spinor
operators to the generators of the spinor operator kernel. Let S = {p | 2d :
p is intractable}. Then there are 2|S| different spinor operators with respect to S
when 2 /∈ S and 2|S|+1 different spinor operators with respect to S when 2 ∈ S.
Once we can determine the size of the spinor operator kernel with respect to S,
the number of the spinor genera in gen(f) will be determined.

Let G = {∆1, . . . ,∆t} (t ≤ log2(8d)) be the set of different non-trivial spinor
operators obtained from the p-adically automorphous numbers for all p ∈ S. It
generates the spinor operator kernel with respect to S. We can further obtain a
basis by applying Gaussian elimination to the matrix G with log∆1, . . . , log∆t

as its rows. We denote log u1 = 0 for p = 2 and log u+ = 0 for p ≥ 3. Suppose
log∆′

1, . . . , log∆
′
t′ are all nonzero rows in the “Echelon form” of G, then the set

G̃ = {∆′
1, . . . ,∆

′
t′} is a basis of the spinor operator kernel with respect to S and

can be obtained in time poly(log2d).

Algorithm 1 shows the pseudocode of the procedure given above. The spinor
operator kernel can also help us to identify if two quadratic forms f and g are
in the same spinor genus or not: f and g are in the same spinor genus if and
only if ∆(r) where r = [Lf : Lf ∩ Lg] is a product of some generators ∆p(Ap)
where Ap ∈ θ(O+(Lf )p). This is shown in Algorithm 2, where all the steps can
be completed in (quantum) polynomial time except for Steps 1. For Step 1, [12]
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Algorithm 2: An algorithm to distinguish the spinor genera

Input: Quadratic forms f and g in the same genus
Output: Answer
1: Compute a rational matrix M with denominators of its entries relatively prime

to 2d by solving the system of quadratic equations Af = M tAgM
2: Compute a matrix Bg such that Bt

gBg = Ag using Cholesky decomposition
3: Lg ← lattice generated by Bg

4: Bf := BgM and Lf ← lattice generated by Bf

5: Compute r = [Lf : Lf ∩ Lg] using Hermite Normal Form
6: Compute the p-adic diagonalisation of fp for each p | 2d
7: Compute p-adically automorphous numbers and the corresponding spinor

operators for each p | 2d
8: if ∆(r) is a product of some spinor operators obtained in the above step then
9: output ‘same spinor genus’
10: else
11: output ‘different spinor genera’
12: end if

suggested an exhaustive search through all rational matrices until a rational
equivalence with denominator r relatively prime to 2d is found. This would cost
complexity at least eO(n2), which may be reduced significantly using a better
method. For Step 8, we can determine whether ∆(r) is in the spinor operator
kernel by applying Gaussian elimination in time poly(log2d) since the number
of generators of spinor operator kernel is bounded by t ≤ log2(8d), as explained
above.

5 Spinor Genus Algorithm for Quadratic Forms over
Number Fields

In this section, we will investigate the complexity of an algorithm, that was
introduced by Benham and Hsia [4], to determine if two quadratic forms over
number fields which are in the same genus are in the same spinor genus or not.
For the convenience, we discuss it in the lattice setting. This algorithm was
implemented in MAGMA (see [11]) but without discussion of its complexity.
Let F be an algebraic number field with O its ring of integers. Assume V is an
n-dimensional vector space over F with a non-degenerate quadratic form ϕ and
its associated symmetric bilinear form b satisfying b(v, w) = 1

2 (ϕ(v+w)−ϕ(v)−
ϕ(w)), and L is a quadratic lattice on V . We assume n ≥ 3 in the sequel.

Let Ω be the set consisting of all spots on F . For a prime spot p ∈ Ω, define
dLp, the discriminant of Lp = Opv1 + · · · + Opvn with respect to the basis
{v1, . . . , vn}, as the determinant of the Gram matrix ALp

= (b(vi, vj))n×n when
n is even and as half of the determinant when n is odd. We say L is good at p
(or simply Lp is good) if ϕ(Lp) ⊆ Op and dLp ∈ 2−nup where up is the group
of units of Fp. Recall that we say Lp is Op-maximal if ϕ(Lp) ⊆ Op and if for
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every lattice Np with Lp ⊆ Np and ϕ(Np) ⊆ Op we have Lp = Np. The following
lemma shows that Lp is Op-maximal if Lp is good.

Lemma 3. When L is good at p, Lp is Op-maximal.

Proof. Let ALp
= (aij)n×n be the Gram matrix of Lp. Define the scale ideal

sLp to be the fractional ideal generated by the entries aij with 1 ≤ i, j ≤ n, and
the volume vLp to be the fractional ideal generated by detALp

. Remember that
the discriminant dLp is detALp

when n is even and is 1
2detALp

when n is odd.
When L is good at p, ϕ(Lp) ⊆ Op and dLp = 2−nu with u a p-unit. Therefore
vLp = 2−nOp when n is even and vLp = 2−n+1Op when n is odd.

When p is non-dyadic (|2|p = 1), 2 is a p-unit. We have Lp is unimodular
since sLp ⊆ Op and vLp = Op (see [27, 82G]). By [27, 82:19], Lp is Op-maximal.

Now let p be dyadic (0 < |2|p < 1). Suppose that there is a lattice Np on
Vp such that Lp ⊆ Np and ϕ(Np) ⊆ Op. We want to show that Lp = Np by
comparing their volumes. When n is even, since ϕ(Np) ⊆ Op, we have sNp ⊆ 1

2Op

and vNp ⊆ (sNp)
n ⊆ 2−nOp = vLp. When n is odd, Np = ⟨α⟩ ⊥ N ′

p with
α ∈ Op. Then vNp = αvN ′

p ⊆ (sN ′
p)

n−1 ⊆ 2−n+1Op = vLp. Therefore, by [27,
82:11], Np = Lp and Lp is Op-maximal.

Suppose L̃ is a lattice on V that is also good at p, so Lp and L̃p are Op-
maximal lattices. By [27, 91:2], there is a local basis {e1, f1, . . . , et, ft, z2t+1, . . . , zn}
for Lp satisfying ϕ(ei) = ϕ(fi) = 0, b(ei, fj) =

1
2δij , b(ei, ej) = b(fi, fj) = 0 for

i ̸= j, b(ei, zk) = b(fi, zk) = 0, the subspace spanned by {z2t+1, . . . , zn} is
anisotropic, and

L̃p = pa1e1 + p−a1f1 + · · ·+ patet + p−atft +Opz2t+1 + · · ·+Opzn,

where a1, . . . , at are nonnegative exponents. It follows that

[Lp : Lp ∩ L̃p] = [L̃p : Lp ∩ L̃p] = |O/p|a1+···+at .

We define R(L : p) to be the global graph containing lattices L̃ ∈ gen(L)
such that L̃q = Lq at all prime spots q ̸= p as vertices. The distance dist(L, L̃, p)

between L̃ and L is r = a1 + · · · + at. In particular, two vertices L̃ and L are
connected by an edge when r = 1 and they are called neighbors. It is known that
the vertices of R(L : p) belong to at most two spinor genera, and two vertices
belong to the same spinor genus when r is even. Therefore, all the vertices are
in the same spinor genus spn+(L) if and only if the neighbor of L is in spn+(L).

Let JV = {Σ ∈
∏

q∈Ω O+(Vq) : ||Σq||q = 1 for almost all q ∈ Ω} be the

group of split rotations and JL
V = {Σ ∈ JV : ΣL = L} be the set of stabilizers

of L. Let πp be a fixed prime element of the local field Fp. Define Σ(p) ∈ JV
by setting Σ(p)q to be the identity map for all primes q ̸= p and Σ(p)p =
τe1−f1 · τe1−πpf1 , where τw denotes the symmetry with respect to the anisotropic
line Fpw. It is easy to check that the action of Σ(p) does not depend on the
choice of πp. Let JF = {i ∈

∏
q∈Ω F×

q : |iq|q = 1 for almost all q ∈ Ω}. Define
j(p) ∈ JF to have 1 at all primes q ̸= p and πp at prime p. Since Lp is maximal,
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θ(O+(Lp)) contains all the units in Fp [27, 91:8] so that j(p) is well-defined
modulo θ(JL

V ). Moreover, θ(Σ(p)) ≡ j(p) mod θ(JL
V ).

Suppose L′ = Σ(p)L is a neighbor of L; then the graph R(L : p) contains
only one spinor genus if and only if L′ ∈ spn+(L) if and only if j(p) ∈ PDJL

F ([27,
102:7]), where PD is the subgroup of principal idèles generated by the elements
in D = θ(O+(V )) which equals the set of elements in F× that are positive at
all real spots q at which Vq is anisotropic ([27, 101:8]), and JL

F = {i ∈ JF : iq ∈
θ(O+(Lq)) for all prime spots q}.

Given a lattice L̃ in the genus of L, based on the above observations, Ben-
ham and Hsia designed an algorithm to identify a prime spot p such that
L′ = Σ(p)L ∈ spn+(L̃) is a neighbor of L in the graph R(L : p). One can
determine whether L̃ is in spn+(L) by checking if j(p) ∈ PDJL

F .

Step 1: Compute X and T where X is the set of all real spots on F and T is a
finite set of prime spots satisfying

1. q ∈ T for all dyadic prime spots q;
2. Lq is unimodular at all prime spots q /∈ T ;
3. Lq = L̃q for all prime spots q /∈ T .

Step 2: For each q ∈ T , compute an isometry Σq ∈ O+(Vq) such that L̃q =
ΣqLq.

Step 3: For each q ∈ T , compute an element xq ∈ Oq ∩ θ(Σq) · F×2
q and set

aq = ordq(xq) + ordq(4) + 1.

Step 4: Compute an algebraic integer c ∈ O such that c is positive with respect
to all q ∈ X and c is congruent to xq mod qaq for each q ∈ T .

Step 5: Write the ideal (c) =
∏

q∈T qkq · a where a is relatively prime to each
q in T and define a modulus m =

∏
q∈T qaq ·

∏
q∈X q. Given a fractional ideal

u = bc−1 where b and c are integral ideals, u is said to be relatively prime to
q if both b and c are relatively prime to q. Let ImF := {fractional ideals of F
that are relatively prime to each q ∈ T}, Fm,1 := {a ∈ F× : a ≡ 1 mod m}
where a ≡ 1 mod m means ordq(a − 1) ≥ aq for each q ∈ T and a > 0 at each
q ∈ X, and Sm = {aO : a ∈ Fm,1}. By a density theorem from class field theory,
each ray class in the ray class group ImF /Sm contains infinitely many primes.
Compute a prime ideal p in the ray class a · Sm. This p is the prime spot we are
looking for.

Step 6: Determine if j(p) ∈ PDJL
F .

In the remaining of this section, we would like to restrict our attention to the
number fields with class number 1, and study the complexity of this algorithm.
Every quadratic lattice is free with a basis {v1, . . . , vn} such that L = Ov1 +
· · · + Ovn, and dL = det(b(vi, vj)) is called the discriminant of L with respect
to the basis {v1, . . . , vn}. Moreover, if L is given in the form a1w1 + · · ·+ anwn

where a1, . . . , an are fractional ideals, then a21 . . . a
2
ndet(b(wi, wj)) = dLO. We

use the same symbol q to denote the prime ideal in both O and Oq, and use πq

to denote their common generator.
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Lemma 4. Suppose Lq and L̃q are maximal lattices, then there is an isometry

σq in O+(Vq) sending Lq to L̃q and θ(σq) = π
1
2 ordq(d(L∩L̃)/dL)O
q .

Proof. Since Lq and L̃q are maximal lattices, by [27, 91:2] there is a local basis
{e1, f1, . . . , et, ft, z2t+1, . . . , zn} for Lq satisfying ϕ(ei) = ϕ(fi) = 0, b(ei, fj) =
1
2δij , b(ei, ej) = b(fi, fj) = 0 for i ̸= j, b(ei, zk) = b(fi, zk) = 0, the subspace

spanned by {z2t+1, . . . , zn} is anisotropic, and L̃q = qa1e1+q−a1f1+ · · ·+qatet+
q−atft +Oqz2t+1 + · · ·+Oqzn. Define the isometry

σq = τe1−f1τe1−π
a1
q f1

· · · τet−ftτet−π
at
q ft ,

then σq(Lq) = L̃q and θ(σq) = πa1+···+at
q . Note that

Lq ∩ L̃q = qa1e1 +Oqf1 + · · ·+ qatet +Oqft +Oqz2t+1 + · · ·+Oqzn,

and q2(a1+···+an) = (d(Lq ∩ L̃q)/dLq)Oq. Therefore

θ(σq) = π
1
2 ordq(d(Lq∩L̃q)/dLq)Oq

q = π
1
2 ordq(d(L∩L̃)/dL)O
q .

Lemma 5. Suppose L̃ is in the genus of L. Then Lq = L̃q if and only if

ordq(d(L ∩ L̃)/dL)O = 0.

Proof. Since both L and L̃ are lattices on V , their intersection L ∩ L̃ is also a
lattice on V . Now, by the Invariant Factors Theorem (Theorem 4), there is a
basis {v1, . . . , vn} of V such that

L = Ov1 + · · ·+Ovn L ∩ L̃ = a1v1 + · · ·+ anvn

with a1 ⊇ · · · ⊇ an integral ideals. Therefore, Lq = L̃q if and only if Lq = Lq∩L̃q

if and only if a1, . . . , an are Oq at q, i.e., ordq(d(L ∩ L̃)/dL)O = 0.

Lemma 6. The finite set T of prime spots in Step 1 can be computed in (quan-
tum) polynomial time.

Proof. The set T in Step 1 consists of the prime ideals that appear in the factor-
ization of 2dLO or in the factorization of d((L∩L̃)/dL)O. The basis of L∩L̃ can
be found using Hermite Normal Form in polynomial time, and the factorization
of fractional ideals can be obtained in (quantum) polynomial time according to
[18, Lemma 4.1].

Lemma 7. The algebraic integer c in Step 4 can be computed in (quantum)
polynomial time.

Proof. Since O is dense in the set Oq, we can choose xq to be an element in O.
An algebraic integer c such that c ≡ xq mod qaq can be obtained in (quantum)
polynomial time according to [18, Lemma 3.1, Lemma 3.5]. Also, let q1, . . . , qt be
the rational prime numbers lying below the prime ideals q1, . . . , qt in T . We can
add a multiple of the product q

aq1
1 . . . q

aqt
t to c to satisfy the positive conditions

at each real spot in X.
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For Steps 2, 3 and 5, there are effective but possibly not efficient methods
to compute the solutions. Let BL and BL̃ be the generating matrix of L and

L̃ respectively. Search for a matrix M ∈ Mn×n(F ) with detM is a unit and
whose entries are in Oq for each prime spot q dividing 2dLO such that Bt

LBL =
M t(Bt

L̃
BL̃)M . The existence of such a matrix M can be found in [27, Example

102:4], and we can replace L by the lattice generated by BL̃M which is in the
proper class of L.

Then in Steps 2 and 3, for all primes spots q dividing 2dLO, since Lq = L̃q,
we can choose Σq to be the identity map and θ(Σq) = 1. For the remaining

prime spots q ∈ T , both Lq and L̃q are maximal and Σq and its spinor norm
can be found in Lemma 4.

For Step 5, one can find a prime ideal p in the ray class of a by searching
through all (finitely many) prime ideals with norm bounded by the constant
given in [31] that can be effectively calculated.

6 Spinor Genera of Binary Forms over Number Fields

Many results given above, which appear to frustrate algebraic approaches to
solving LIP via computing spinor genera, have the condition n ≥ 3. However,
HAWK uses rank 2 forms, integral over a cyclotomic field. In this section we ask:
how does the spinor norm behave in this setting? In Section 7.1 we explain in
more detail the connection between our results and the HAWK signature scheme.

Our result relies on the work of Earnest and Estes, who prove in [16] (via
[17]) that in the binary setting, two lattices in the same genus lie in the same
spinor genus if and only if they are fourth powers (quartic residues) in the class
group of some order in the field, when the ring of integers is a PID. Thus if one
can compute quartic residues in class groups of non-maximal orders, one could
correctly decide the answer to the distinguish LIP problem, when the forms lie
in different spinor genera.

There are quantum algorithms to compute the class group of a suborder
of any number field efficiently, under GRH [6]. Moreover, deciding quadratic
residuosity in the class group can be performed efficiently, given the data from
those quantum algorithms; and the same is true for quartic residuosity. The
quantum algorithm we will need is:

Theorem 11. [6, Theorem 1.2] (Class group Computation) Under the General-
ized Riemann Hypothesis, there is a quantum algorithm for computing the class
group of an order O in a number field K which runs in polynomial time in the
parameters n = deg(K) and log(|∆|), where ∆ is the discriminant of O.

We note that the above algorithm ‘computes the class group’ by computing
a generating set of prime ideals together with the relations between them.

We now explain in more detail the result of Earnest and Estes. In the fol-
lowing, we consider regular binary quadratic spaces (V, ϕ) over a number field F



Spinor Genus and LIP 23

and anisotropic binary quadratic forms over the ring of integers OF . These cor-
respond to lattices of rank 2 over that ring of integers, contained in V . We may
fix a basis such that this vector space is in fact isomorphic to a field extension
of degree 2, when (V, ϕ) is anisotropic. We then have V ∼= F (

√
−d) for some d,

and we write OV for the ring of integers of F (
√
−d). There is then an involution

∗ on V fixing F such that ϕ(x) = xx∗ for any x ∈ V . For more details see [17].
The following two results combine to imply that two lattices L1, L2 ⊂ V in

the same genus are in the same proper spinor genus if and only if L1L
−1
2 is a

quartic residue in the class group of the left order of L2 in V . Recall that the
left order is defined as Ol(L2) := {x ∈ V : xL2 ⊂ L2} ⊂ V , and any lattice is a
left ideal in its left order.

Proposition 2. [17, Proposition 2.3] A necessary and sufficient condition that
L1 be in cls+(L2) (resp. spn

+(L2) or gen(L2)) is that L1L
−1
2 be in cls+ (Ol(L2))

(resp. spn+ (Ol(L2)) or gen (Ol(L2))).

For any (possibly non-maximal) OF -order O ⊂ V , denote the group of in-
vertible fractional ideals of O by I(O), and the subgroup of principal invertible
fractional ideals by P(O). Set

H(O) = gen(O)/ spn+(O),

and
C(O) = I(O)/P(O).

Then

Corollary 1. [16, §4] Suppose F is a number field and OF is a PID. Let O be
a degree 2 order over OF . Then we have H(O) ∼= C(O)2/C(O)4.

A consequence of this is that we find spn+(O)/ cls+(O) ∼= C(O)4. Thus we
can prove

Theorem 12. Let F be a number field and suppose OF is a PID. Let f and g
be two anisotropic binary quadratic forms, integral over OF , lying in the same
genus. Let V (= F · Lf = F · Lg) be the rank 2 quadratic space containing Lf

and Lg. Then if Lf ·L−1
g generates an ideal coprime to the conductor of Ol(Lg)

in OV , there is a quantum polynomial time algorithm to decide if f ∈ spn+(g).

Proof. Let the corresponding lattices to f, g be denoted by Lf , Lg. Since f, g are
anisotropic, V is anisotropic and hence isomorphic to a quadratic field extension
of F ; identify V with this extension. Begin by computing a basis of the left
order of Lg in V , Ol(Lg). Next, use Theorem 11 to compute the class group
structure, obtaining a generating set of prime ideals in the class group of Ol(Lg)
in quantum polynomial time, together with their defining relations. This system
of relations forms a lattice Λ, and we obtain an isomorphism C(Ol(Lg)) → Zn/Λ
by writing an element of C(Ol(Lg)) as a product of powers of prime ideals from
our generating set, and mapping to the vector of exponents (modulo the lattice
of relations). That is, for I ∈ C(Ol(Lg)), we write I =

∏n
i=1 p

ei
i and then send
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I 7→ (e1, ..., en) + Λ.
Since Zn/Λ is an abelian group, we can then consider C(Ol(Lg)) ∼= ⊕iZ/diZ,

and the image of Lf ·L−1
g in ⊕iZ/diZ for some integers di, where the factors di

are obtained by the algorithm of Theorem 11. Moreover, the algorithm outputs
a list of vectors gi of order di which form a basis of Zn/Λ ∼= ⊕iZ/diZ [9, §6.5.4].

If Ol(Lg) is a maximal order or more generally if Lf ·L−1
g generates an ideal

coprime to the conductor ofOl(Lg) inOV , this can be done by factorising Lf ·L−1
g

into a product of prime ideals contained in our generating set, and then reducing
modulo the relations between the prime ideals in the class group obtained by
the algorithm of Theorem 11. We then map Lf ·L−1

g 7→ (f1, ..., fn)+Λ for some
exponents fi.

Testing such an element for quartic residuosity can then be done efficiently
as follows: we may take the basis g1, ..., gn and express (f1, ..., fn) =

∑
i λigi

for some coefficients λi ∈ Z/diZ, i = 1, ..., n; thus fj =
∑

i λigij . We then

express the above as a matrix-vector equation: (f1, ..., fn)
T = G · λ where G is

the matrix with ith column gTi and λ is a vector with ith entry λi. We then
compute G−1 · (f1, ..., fn)T = λ; if λi = 4γi mod di for some γi ∈ Z/diZ and for
all i = 1, ..., n, we conclude that Lf ·L−1

g is a quartic residue in the class group.
Finally, if Lf · L−1

g is a quartic residue in C(Ol(Lg)), then f ∈ spn+(g) by
Corollary 1; otherwise, f ̸∈ spn+(g).

Algorithm 3: Quantum Algorithm for Spinor Genus of Binary Forms

Input: Quadratic forms f and g in the same genus
Output: Answer
1: Compute basis of Ol(Lg)
2: ({p1, ..., pn}, Λ, {d1, ..., dn}, {g1, ..., gn})← Algorithm of Theorem 11
3: Lf · L−1

g =
∏

pfii
4: (f ′

1, ..., f
′
n) := (f1, ..., fn) mod Λ

5: Compute G−1 · (f ′
1, ..., f

′
n)

T

6: if G−1 · (f ′
1, ..., f

′
n)

T = 0 mod 4 then
7: Output ‘Yes’
8: else
9: Output ‘No’
10: end if

We make the following remark:

Corollary 2. Let F be a number field and suppose OF is a PID. Let f and g be
two anisotropic binary quadratic forms, integral over OF , in the same genus. Let
V be the rank 2 quadratic space containing Lf and Lg. Suppose Lf ·L−1

g generate
an ideal coprime to the conductor of Ol(Lg) in OV , and gcd(|C(Ol(Lg))|, 2) = 1.
Then f ∈ spn+(g).

Proof. When |C(Ol(Lg))| is odd, then none of the di obtained in the course of the
algorithm implicit in the proof of Theorem 6 are even. Then in the penultimate
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paragraph of the proof, when one computes G−1 · (f1, ..., fn)T = λ, and checks
if λi = 4γi mod di for some γi ∈ Z/diZ and for all i = 1, ..., n, we must find that
there always exist such γi mod di, since gcd(4, di) = 1. Thus in this setting the
two forms f, g always lie in the same spinor genus.

We note that there are many examples of number fields with odd class num-
bers which may be considered relevant to LIP in cryptography: for instance,
the power-of-two cyclotomic fields Q(ζ64), Q(ζ128), and Q(ζ256) all have odd
class number, being 17, 359057, and 10449592865393414737 respectively (see
[22],[25],[29]). However, many cyclotomic fields have even class number, such as
Q(ζ130), which has class number 64. We conclude from this that if one is choos-
ing parameters for LIP-based schemes over number fields, one must choose the
number field carefully to avoid distinguishing attacks as detailed in the section
below.

We also derive two corollaries regarding cyclotomic fields:

Corollary 3. Let F = Q(ζn) be a cyclotomic field and

n ∈ {1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84}

Let f and g be two anisotropic binary quadratic forms, integral over OF , in the
same genus. Let V be the rank 2 quadratic space containing Lf and Lg. Then if
Lf · L−1

g generates an ideal coprime to the conductor of Ol(Lg) in OV , there is
a quantum polynomial time algorithm to decide if f ∈ spn+(g).

Proof. [29, Theorem 11.1] states that the cyclotomic fields with n as in the
corollary statement are all the cyclotomic fields with class number equal to one.
We may then apply the theorem for binary integral anisotropic quadratic forms
over such rings of integers.

Corollary 4. Let F be the maximal totally real subfield of Q(ζn) and n ∈ S :=
{4, 8, 16, 32, 64, 128, 256} (and assuming GRH, n ∈ S ∪ {512}). Then there is a
quantum polynomial time algorithm to decide if f ∈ spn+(g).

Proof. [25, Theorem 2.1] states that the cyclotomic fields with n as in the corol-
lary statement are all the cyclotomic fields for which we know unconditionally
(and conditionally for n = 512) that the maximal real subfield has class number
equal to one. We may then apply the theorem for binary integral anisotropic
quadratic forms over such rings of integers.

7 Application to Distinguish LIP

We now apply the theory of the previous sections to the lattice isomorphism
problem. We begin by defining these problems. Denote the real orthogonal group
in n dimensions by On(R).

Definition 5. (search LIP, lattices) Given two isometric lattices L1, L2 ⊂ Rn,
find an orthogonal transformation O ∈ On(R) such that L2 = O · L1.
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We redefine this in terms of quadratic forms:

Definition 6. (search LIP, quadratic forms) Given two positive definite integral
quadratic forms Q1, Q2 in the same equivalence class, find a unimodular U ∈
GLn(Z) such that Q2 = U tQ1U .

There is a distinguishing variant of this problem:

Definition 7. (distinguish LIP, quadratic forms) Given two positive definite
integral quadratic forms Q0, Q1, the distinguish LIP problem ∆-LIP is, given
any quadratic form Q′ ∈ [Qb] for b ∈ {0, 1} a uniform random bit, to find b.

And a decision variant:

Definition 8. Given positive definite integral quadratic form Q, the decision
LIP problem dLIPQ is, given any Q′, to decide if Q′ ∈ [Q] or not.

As discussed in [15], for ∆-LIP to be hard Q0 and Q1 must be equivalent over
Q,R,Qp, and Zp for all p, as well as the forms to agree on any other computable
invariant. However, that paper did not discuss the spinor genus of the forms; we
fill in that gap in this section.

We outline the immediate consequence of Section 6 for LIP over number
fields. Suppose in the∆-LIP experiment,Q0 andQ1 are integral binary quadratic
forms over the ring of integers of a number field which is a PID, lying in the
same genus (and that the implicit quadratic space is anisotropic). Then suppose
we are given Q′ which lies in either [Q0] or [Q1]. We run the algorithm implicit
in the proof of Theorem 12 on the pairs (Q′, Q0), (Q

′, Q1). If the spinor genus
has not been accounted for and the forms Q0, Q1 lie in different spinor genera
within the same genus, we may answer ∆-LIP correctly in polynomial time by
ruling out the form lying in the wrong spinor genus, since Q′ lies in the same
spinor genus as Qb.

Similarly, in the dLIPQ experiment, if Q′ and Q lie in the same genus but in
distinct spinor genera, in the event that the forms not only lie in distinct equiv-
alence classes but also distinct spinor genera, we may detect this and correctly
answer ‘No’.

7.1 Implications for the Schemes of [15] and [14]

In [15], the authors gave a KEM and a signature scheme, both having their
hardness founded on distinguish LIP. These schemes were designed for integral
forms of rank n (≫ 5) and we conclude from the analysis of Section 3.3 that, if a
‘random’ quadratic form of determinant pm has its Jordan p-symbol uniformly
distributed among possible Jordan p-symbols, then with only negligible proba-
bility do two such forms lie in a genus which splits into multiple spinor genera.

However, our work does have consequences for structured cases of these LIP
instances. Moving from forms over the rational integers of rank n = 2m to bi-
nary quadratic forms over the ring of integers of a number field of degree m
yields forms of the same overall rank, yet would introduce structure into the
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LIP instances which makes them vulnerable to our Theorem 12. We thus cau-
tion against the use of such structured LIP instances in cryptography.

In HAWK [14], the authors gave a signature scheme, which was later submit-
ted to the first round of NIST’s additional post-quantum standardisation process
for digital signatures. This scheme was designed for rank two forms over the ring
of integers of cyclotomic fields of power-of-two conductor. These correspond to
rank two modules over such rings. At first sight, it might seem that our result
affects the security of HAWK. However, firstly, these rings of integers are not
PIDs, so our theorem does not apply; secondly, our result applies to distinguish
LIP, whereas the security of HAWK is based on a search problem; and thirdly,
HAWK is based on Hermitian forms, which we do not consider. To explain this
last point, we give a brief overview of HAWK which illuminates the differences
to the notions studied in this work, following the notation of [26].

Let K be an algebraic number field of degree n. Then there are n embeddings
σi : K ↪→ C. We define the canonical embedding of K as

σK : K → Rr1 × C2r2

defined by
x 7→ (σ1(x), ..., σn(x))

Here imσK ⊂ H := {(x1, ..., xn) ∈ Rr1 × C2r2 : xr1+r2+j = xr1+j , 1 ≤ j ≤ r2}.
This map is extended to vectors over K componentwise. For every module
M ⊂ Kℓ of finite rank over a Dedekind domain R ⊂ K, there exist ideals
Ik of R and linearly independent vectors bk of Kℓ such that M =

∑m
k=1 Ik · bk.

Then [(Ik)k , (bk)k] is a pseudo-basis of M. Write KR = K ⊗ R. Then a module
lattice in σK(KR)

ℓ for some ℓ > 0 is given by the embedding of M under σK .
Let Un(KR) denote the n × n unitary matrices with entries in KR, that is,

matrices A ∈ Mn(KR) such that A−1 = A
T
, where · is complex conjugation. We

then say that two module lattices M1,M2 ⊂ σK(KR)
ℓ are isomorphic if there

exists U ∈ Uℓ(KR) such that M2 = UM1. The module LIP problem is, given
two such module lattices, to find such a U .

There is a corresponding notion of quadratic forms; these are Hermitian

forms, defined as follows. A matrix A in Mn(KR) is a Hermitian form if A
T
= A.

Such a form is positive definite when ϕA(x) = xTAx > 0 for all x ∈ Kn
R with

entries which do not embed to 0.
We call K totally real if the image of every embedding lies properly in R.

Then Um(KR) is the set of matrices A such that A−1 = AT , since complex
conjugation acts trivially. Then isomorphism of module lattices corresponds to
our above definitions of equivalence of lattices, and our results may apply to
such problems. However, this is the very setting in which [26] solved the binary
module LIP problem.

In the case when K is not totally real, we use a different notion of equiva-
lence of lattices to HAWK (since we do not define equivalence by the conjugate
transpose above). Thus our results do not affect HAWK. However, we leave it
as an open problem to see if the spinor genus can be efficiently computed for
integral binary Hermitian forms over number fields.
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