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Abstract. Non-interactive zero-knowledge (NIZK) proofs enable a prover to convince a verifier
of an NP statement’s validity using a single message, without disclosing any additional infor-
mation. These proofs are widely studied and deployed, especially in their succinct form, where
proof length is sublinear in the size of the NP relation. However, efficient succinct NIZKs typically
require an idealized setup, such as a a common reference string, which complicates real-world
deployment. A key challenge is developing NIZKs with simpler, more transparent setups.
A promising approach is the random-oracle (RO) methodology, which idealizes hash functions
as public random functions. It is commonly believed that UC NIZKs cannot be realized using
a non-programmable global RO—the simplest incarnation of the RO as a form of setup—since
existing techniques depend on the ability to program the oracle.
We challenge this belief and present a methodology to build UC-secure NIZKs based solely on
a global, non-programmable RO. By applying our framework we are able to construct a NIZK
that achieves witness-succinct proofs of logarithmic size, breaking both the programmability
barrier and polylogarithmic proof size limitations for UC-secure NIZKs with transparent setups.
We further observe that among existing global RO formalizations put forth by Camenisch et
al. (Eurocrypt 2018), our choice of setup is necessary to achieve this result.
From the technical standpoint, our contributions span both modeling and construction. We lever-
age the shielded (super-poly) oracle model introduced by Broadnax et al. (Eurocrypt 2017) to
define a UC NIZK functionality that can serve as a drop-in replacement for its standard variant—
it preserves the usual soundness and zero-knowledge properties while ensuring its compositional
guarantees remain intact. To instantiate this functionality under a non-programmable RO setup,
we follow the framework of Ganesh et al. (Eurocrypt 2023) and provide new building blocks for it,
around which are some of our core technical contributions: a novel polynomial encoding technique
and the leakage analysis of its companion polynomial commitment, based on Bulletproofs-style
folding. We also provide a second construction, based on a recent work by Chiesa and Fenzi
(TCC 2024), and show that it achieves a slightly weaker version of the NIZK functionality.
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1 Introduction

A proof system allows two entities, a prover and a verifier, to interact so that, at the end of the
interaction, the verifier can be convinced of the validity of some NP statement. Informally, a proof
system is zero-knowledge (ZK) [GMR85] if the verifier, upon receiving the proof, learns nothing more
than the fact that the statement is true (e.g., any secret/witness the prover may need to issue the proof
is protected). In the non-interactive scenario, a proof consists of one message sent from the prover to
the verifier. These kinds of proofs, introduced in [BFM88], are called Non-Interactive Zero-Knowledge
(NIZK) proofs. NIZK proofs are particularly useful and easy to use due to their publicly-verifiable
nature. This means that any verifier that has access to a proof, can verify it. This flexibility of NIZK
proofs has been proven to be remarkably useful in privacy-preserving applications or to instantiate
more complex cryptographic primitives.



Succinctness and setup in NIZKs. Nowadays we have quite efficient NIZK schemes with strong
succinctness properties, i.e., the size of the proofs is extremely small compared to the size of the
statement being proven. Unfortunately, there is a big catch in the use of NIZK proofs: the security of
a NIZK protocol holds as long as the prover and the verifier have access to a pre-agreed setup. Most
commonly deployed NIZKs are based on the existence of a common reference string (CRS). A common
reference string is a bitstring that must be generated by a third party that is trusted to: 1) generate
the CRS according to a predetermined randomized algorithm; and 2) never reveal the random coins
used to generate the CRS.

The requirement of a CRS inherently introduces a critical point of failure. This is because [GO94]
shows that we can trust neither the prover nor the verifier to generate such a CRS. One way to generate
the CRS without relying on a single trusted party could be via a distributed protocol, e.g., via a multi-
party computation (MPC) protocol [Yao86,GMW87]. There are two problems with this approach: 1) it
is not clear what incentives the parties running the MPC protocol have in being honest (and so which
proportion of them we can reliably assume to be honest); and 2) if we want to securely generate the
CRS in the case where the majority of the parties may be corrupted, then we may need a CRS to run
the MPC protocol itself. Even in the case where we can securely run an MPC protocol, in practice,
things can go wrong. For example, ZCash generated the CRS for their NIZK scheme, using an MPC
protocol, but it was later discovered that an adversary that had access to the transcript of the MPC
protocol could break the soundness of the NIZK proof [Swi19], and hence, double-spend coins.

A better form of setup is one that is transparent, in the sense that its generation procedure should
be simple, not contain any trapdoor and such that it should be easy to convince users that the setup
was indeed generated correctly. A type of setup widely accepted to be transparent is the Random
Oracle (RO). In this model, the security of the NIZK protocol is proven assuming that the prover
and verifier have access to a trusted party that behaves like a random function. In practice, the RO
is heuristically replaced by a cryptographic hash function (e.g., SHA-256), hence, there is no need to
generate any ad hoc CRS as described in the previous paragraph.

Most of the approaches based on the RO methodology rely on the unrealistic assumption that the
RO (hence the hash function) is used by only one instance of the cryptographic protocol. Technically
speaking, the security of NIZK is guaranteed only as long as the RO is used as a local resource. This
makes the usage of this ideal setup non-transparent, and furthermore, in practice, the RO is replaced
by a single hash function which is used in many other applications as well (for example SHA-256).
Therefore, it would be much more desirable and realistic to consider NIZK protocols that remain secure
even if the same hash function is used across different sessions, following for example the Global RO
model introduced by Canetti et al. [CJS14].
How to design NIZK in the Global RO. What makes it difficult to prove results in the Global
RO setting, is that the simulator cannot program the random oracle. Indeed, as recalled in [CV22],
it is impossible to realize a NIZK proof system in the non-programmable RO (NPRO) model unless
we introduce additional setup assumptions (e.g., a CRS). In the same work the authors show that
it is in fact possible to build NIZKs assuming the existence of a NPRO if we allow the simulator to
run in super-polynomial time. The notion of super-polynomial time simulation (SPS) was introduced
in [Pas03], and allowed to already circumvent known impossibility results, yielding to a two-round
zero-knowledge protocol, assuming no setup and no RO. In [Pas04] it is shown that two rounds are
necessary and sufficient for quasi-polynomial time simulatable arguments, hence, super-polynomial
time alone does not suffice to obtain NIZK. Despite [CV22] providing a positive result, their NIZK
proof is secure only in the standalone setting (non-composable), and it does not enjoy any form of
succinctness6.
Our research question. In this work, we investigate whether the same result can be obtained in a
composable setting while providing a scheme with succinct proof size.

Is it possible to construct a composable NIZK proof system, where the only available setup is
a Global (non-programmable) Random Oracle?

In this work, we answer the above question in a positive sense by considering a relaxed (but still
meaningful) version of the zero-knowledge functionality. We formally prove our results in the UC with
shielded oracles [BDH+17] (more details on this follow), providing a scheme that relies only on standard
polynomial-time falsifiable assumptions. Given the above positive findings, we make a step forward and
6 In this work we say a proof system has succinct proofs if their size is sublinear in the size of the witness.
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we ask whether our NIZK satisfies some form of succinctness. Only very recently thanks to the results
of [GKO+23, CF24, BFKT24] we had constructions of UC-NIZK that have proof size sub-linear in
both the theorem and the witness size. However, these constructions need to rely on an additional
local setup (e.g., programming the random oracle or a structured local CRS) due to the impossibility
mentioned above. Our final scheme is witness succinct and makes use only of a Global RO as its setup.
In a bit more detail, we prove the following.
Theorem 1 (informal). Assuming the hardness of the Discrete Logarithm and Decisional Diffie-
Hellman assumptions against probabilistic-polynomial time adversaries, there exists a composable NIZK
proof system with succinct proofs—specifically, logarithmic in the witness size—assuming that the only
available setup is a Global (non-programmable) Random Oracle.

Our results break both the barrier of programmability of the random oracle and of polylogarithmic
proof size for UC-secure NIZKs with transparent setups (see Table 1).

1.1 Technical Overview

Circumventing the impossibility. We study the security of NIZK proofs in the Universal Com-
posable (UC) [Can01] setting. In this, the NIZK properties are captured by an ideal functionality
FNIZK parametrized by an NP-relation R. This functionality, upon receiving a statement-witness pair
(denoted with (x, w)) from a prover, checks if the pair belongs to R, and if this is the case, it generates
a string (the proof) π. The functionality then records the entry (x, π) and sends π to the verifier. If
the functionality is invoked with the pair (x′, π′) by any party (verifier), and this pair is recorded, then
the functionality returns 1, else it returns 0.

This functionality, in a nutshell, generates a special certificate/proof about the validity of an NP
statement x, only if x comes with a valid witness w. A natural question now is: How is π generated?
In the standard NIZK functionality, π is completely generated by the ideal-world adversary (aka
the simulator). This is quite important, as in the real world, the protocol that realizes the NIZK
functionality will generate π, hence, to argue indistinguishability between real and ideal worlds, the
ideal and the real proof must be the same (or at least belong to computational indistinguishable
distributions).

The soundness property of a real-world protocol is captured by the fact that no adversary can
generate a proof π for a false statement x. This comes from the fact that no pair (x, π) for a false
statement x will ever be recorded by the ideal functionality. At the same time, to prove that the scheme
is zero knowledge, we need to design a simulator that can somehow generate a valid proof π without
knowing the witness. Hence, we need a real-world efficient procedure, that allows the simulator to
create valid proof π, without knowing the witness. But it is important to stress that for soundness to
hold we need to guarantee that a corrupted prover cannot use this process. This inherent contradiction
is usually broken by allowing the simulator an additional power that the real-world adversary does not
have. This is done by assuming that the real-world protocol relies on some trusted setup that helps only
the simulator generate fake proofs, but it does not provide any help to the real-world prover. This goes
against the concept of what a global setup is. Indeed, a global setup should expose the same interface
and the same capabilities to all the parties. In the case of random oracles, this additional power is
represented by the ability of the simulator to program the queries made to the RO, a capability that
instead the real-world adversary cannot exploit.

To avoid this common problem, we start from this basic observation. A zero-knowledge simulator
is invoked for a theorem x only when in the ideal world a proof query (x, w) is issued, with (x, w) ∈ R.
Our idea is to give a proof π to the simulator (the ideal world adversary) any time that a valid theorem-
witness pair is generated. But as observed before, in standard NIZK functionality, π is generated by
the ideal adversary and this is quite crucial to argue indistinguishability between real and ideal world.
However, we observe that π can indeed be generated by the NIZK functionality. For example let us
consider an ideal NIZK functionality that, upon receiving a valid statement-witness pair, samples a
special string π and sends it to the adversary and the verifier. This NIZK functionality still captures
the basic properties of zero-knowledge and soundness, but unfortunately, it is not clear how to realize
it. This is because an honest prover in the real-world protocol should be able to generate the same
string π, when creating a proof.

To make this functionality realizable, we parametrize the functionality FNIZK by a helper oracle.
This oracle can only be invoked on a statement x, for which a valid witness w exists. When the oracle
is correctly invoked and receives only the statement x, it can run in time T to generate a proof π,
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that looks like a real-world proof. Note that the property of zero-knowledge is still captured, as π is
generated without using the witness, but how T is implemented will determine how meaningful is the
zero-knowledge achieved. For example, in the case when T is exponential, we face a situation where
the helper oracle could potentially generate the witness π = w directly. Specifically, the trivial real
proof system in which the prover outputs the witness itself would realize this functionality. To avoid
this problematic scenario that undermines the meaningfulness of the zero-knowledge property, we can
restrict T to be just quasi-polynomial time. Indeed, if we can design a protocol that realizes this new
NIZK functionality to prove statements that require more than quasi-polynomial time to be decided
then we have again a useful and meaningful zero-knowledge protocol.

In a nutshell, we are enhancing the NIZK functionality with a helper-oracle that can be invoked
both in the ideal and in the real world, which is useful to produce valid proofs only for statements with
valid witnesses. Crucially, this means that the real-world adversary would never be able to use this
helper unless he provides a valid statement-witness pair. Indeed, the helper can be invoked by parties
that have a valid witness for a statement x (hence, in this case, the helper is useless for the party)
and cannot be invoked for statements for which no witness exists (the helper cannot be used to forge
a proof).

We will argue that such a NIZK functionality can be realized assuming as the only form of setup
a global (non-programmable) random oracle. Before showing how our construction works, we need to
describe how to modify the UC framework to enable this quasi-polynomial time helpers/oracles.
Designing the UC-NIZK functionality with shielded oracles. Luckily for us, a modified version
of the UC framework that allows to properly model our new NIZK functionality already exists, and it is
called UC with shielded oracle model [BDH+17]. Intuitively, shielded oracles transform a functionality
F into a weaker functionality FO that gives additional power at the adversarial interface. Notably, the
oracle is allowed to perform quasi-polynomial time computations and assist the functionality and/or the
simulator in simulating. This makes the functionality easier to realize as the simulator has more power:
the simulator has (controlled) access to results that stem from a quasi-polynomial time computation.
However, in view of composition, FO is now the functionality one has to deal with in further protocol
design steps and it is weaker than F. In particular, whatever output O gives at the adversarial interface
must be carefully inspected as it impacts composition with other protocols. That is, the additional
power could be “abused” to attack other protocols, since it is, presumably indirectly, the output of
a computation that cannot be emulated by a polytime environment. Protocols must now be secure
against a new class of environments beyond quasi-polynomial time, denoted by Z[FO], which are all
poly-time processes Z with black-box access to different sessions of FO.

Our first goal is to define an adjoined oracle O for UC-NIZKs that “weakens” the standard zero-
knowledge functionality FNIZK in the above sense in a controlled way that plausibly does not impact the
soundness property and enables composition in other contexts where the zero-knowledge functionality
FNIZK would be used. We have already given a high-level intuition about how we relax FNIZK, but
before describing it in more detail we provide a high-level overview of our construction. This will help
to understand how the simulator works and in particular the motivations behind the design of our new
NIZK functionality and oracle.
A starting point for building a NIZK protocol. Our construction is inspired by [CV22], where the
authors construct a standalone (i.e., not composable) NIZK protocol in the SPS + NPRO model. The
scheme proposed in [CV22] works as follows. To prove that a statement x belongs to some NP-language
L, the prover runs a witness-indistinguishable (WI) proof of knowledge (PoK) protocol ΠPoK, proving
either the knowledge of the witness for x or the solution of a puzzle puzz. This puzzle is sampled
by querying the random oracle on input the statement x, thus obtaining a string that is parsed as a
random group element. The solution of the puzzle is represented by its discrete logarithm.

Crucially ΠPoK is proven secure in the NPRO, and the PoK extractor is straight-line (i.e., it does
not perform any rewind to the adversary). The hardness of the puzzle is parametrized in such a way
that it is hard to solve by a polynomial time algorithm, but it is easy to solve by a quasi-polynomial
time algorithm. To simulate a proof, the simulator computes the solution to the puzzle running in
quasi-polynomial time and generates a valid proof using the solution of the puzzle as the witness.
This simulated proof, due to the WI property of the underlying scheme, will be guaranteed to be
indistinguishable from the honestly generated proof.

The scheme of [CV22] that we have just sketched seems to be a promising candidate for our goal.
This is because both the zero-knowledge simulator and the PoK extractor are straight-line, and neither
the simulator nor the PoK extractor need to program the RO. Unfortunately, this is not the case. The
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reason is that to hope to get some composability properties, we need to argue that the PoK extractor
successfully extracts the witness for the statement proven by a corrupted prover, while at the same
time, simulated proofs are generated and provided to the adversary. In a nutshell, we need the property
of simulation extractability [DDO+01], and [CV22] does not satisfy this strong notion of security. On
top of that, the scheme of [CV22] does not provide any form of succinctness.
Towards SIM-EXT and succinctness. For the reasons above we will have to follow a slightly
different approach. Instead of using a WI-PoK scheme, we take as our main building block a simulation-
extractable NIZK protocol Π with the following two properties: 1) no CRS is needed (hence, the zero-
knowledge simulator may need to program the RO) and 2) the PoK extractor only needs to access the
RO queries made by the adversary, and it works in a straight-line manner (i.e., no rewind is performed).

Equipped with this stronger tool, we can follow the same approach as before, but using Π to prove
either the knowledge of a witness for x ∈ L, or the solution of puzz. The puzzle in this case is sampled
by querying the RO on input the session identifier and the theorem to be proven. Our simulator
crucially will not use the simulator of the underlying Π, instead, it issues proofs that are generated by
running the prover algorithm of Π, but using the solution of puzz as the witness. To perform extraction
from proofs generated by the adversary, our simulator runs the straight line extractor of Π, which by
definition does not program the RO.

Note that in our proof we rely on the security of Π, specifically, we will have a hybrid experiment in
which the simulator (who programs the RO) of Π will actually be used. However, this will constitute
just a step in our proof, and the simulator of Π will never be used in the final simulation of the ideal
world.
Intermezzo: how to design FNIZK. In the next paragraph, we will argue how to obtain Π, but let
us first explain our design choice for our NIZK functionality FNIZK. As explained above, in the shielded
oracle, our NIZK functionality FNIZK has access to an oracle O that can do quasi-polynomial time work.
A simple solution would be to ask O to solve the puzzles and give the solutions back to the simulator.
This clearly does not work, as the adversary is also allowed to access O, and as such he could use the
solutions to the puzzle to generate accepting proofs for false statements (thus breaking the soundness).
Instead, we design our ideal functionality and oracle to work as follows. Upon receiving a prove query
(prove, sid, x, w), FO

NIZK checks that w is a witness for the NP statement x, and if this is the case,
it sends (sid, x) to O. O now queries the random oracle with input (sid, x), thus obtaining the puzzle
puzz, solves the puzzle running in quasi-polynomial time, and computes a proof π running Π on input
the solution of the puzzle as a witness. Then it returns the obtained proof back to functionality, which
records (x, π), and forwards π to the adversary. A verifier can check if the proof π for a statement x
is valid by querying FO

NIZK on input (verify, sid, x, π). If the entry (x, π) has been recorded by FO
NIZK,

then the functionality returns 1, else it returns 0.
The high-level idea here is that the simulator will receive a simulated proof π from the ideal

functionality, any time that in the ideal world, an honest party issues a query (prove, sid, x, w) to
FO

NIZK. At the same time, this mechanism does not help a malicious prover, as simulated proofs can be
issued only for statements that in the ideal world come with a valid witness. For more detail on how
our ideal functionality is formalized, we refer to Section 3.4.

We end this paragraph by recalling from [BDH+17] that UC with shielded oracles implies security
in the SPS model, it therefore remains impossible in the shielded oracle model to construct a NIZK
proof without additional setup. We note that other UC models have been considered where quasi-
polynomial time resources are available, such as UC with helpers (or angels) [PS04,CLP10]. However,
these notions are stronger than the shielded oracle framework, hence we naturally decided to go with
the weakest notion, which notably is fully compatible with the UC framework, i.e., protocols proven
secure in the UC framework remain secure in our framework.
Implementing a weaker functionality. We are left to argue how we design one of our main building
blocks Π. We recall that we want a simulation-extractable NIZK that only uses a RO as its setup,
and that has a straight-line PoK extractor that does not program the RO. Moreover, we need Π to be
succinct. The recent result of Chiesa and Fenzi [CF24] suggests that we could use the Micali [Mic94]
and the BCS [BCS16] zkSNARKs as possible instantiations. However, we can argue that both these
constructions achieve a slightly weaker notion of simulation extractability, thus our protocol would UC-
realize a weaker NIZK functionality FwNIZK (we elaborate more in Section 3.4). Whether the weak or
the strong form is more useful depends on the use case: as an analogy, some applications of signatures
only require existential unforgeability while others require full-fledged strong unforgeability.
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Implementing the standard functionality. The scheme that comes near to our ideal candidate
is the one proposed in [GKO+23] . The protocol [GKO+23] is described as a compiler that takes
as input 1) a succinct (non-UC) simulation-extractable NIZK argument, and 2) a special polynomial
commitment. The output of the compiler is a UC NIZK in the global RO model, whose setup consists
of the setups of the input protocols. Since the underlying tools proposed by [GKO+23] assume the
existence of a structured CRS (i.e., a CRS that cannot be generated by simply querying the RO),
in order to obtain Π, we need to propose different instantiations of these tools based on transparent
building blocks, as we elaborate hereafter.
Constructing the right building blocks. We start by observing that we can adopt as a succinct
(non-UC) simulation-extractable NIZK the version of Bulletproofs [BBB+18] presented in [DG23]. As a
consequence, our main efforts is on obtaining a new special polynomial commitment, whose only setup
is the RO. We call the polynomial commitment special because [GKO+23] adds certain additional
properties compared to standard ones for polynomial commitments (e.g., evaluation binding)7. The
first of these properties is specific to the polynomial commitment scheme (or, PCS) alone and requires
that the polynomial opening proofs should be unique, i.e., it should be infeasible for an adversary to
come up with two valid proofs for the same evaluation point. The second required property is a form
of hiding. In order to state it, we first recall the methodology followed in the compiler in [GKO+23],
which can be thought of as an encode&commit approach where the prover computes the following:

cmf ← PCS.Com(fw), where fw ← PES.Enc(w)

That is, it first encodes the witness into a polynomial—using a “polynomial encoding scheme” PES—to
which it then commits using a polynomial commitment PCS. The encoding algorithm is randomized
and its role is to mask the witness, so that the latter is still hidden to the verifier even after seeing
several—approximately λ—polynomial evaluation proofs. If this is the case we say that the polynomial
commitment PCS is “evaluation-hiding” with respect to the encoding scheme PES. This property—
which can be thought of as a form of as a leakage-resilience feature of PCS when used in conjunction
ot PES—is the second special requirement of the compiler in [GKO+23]8.

To the best of our knowledge, there is no polynomial commitment scheme relying only on the
RO in literature with all of the above properties (with respect to some PES). In our work, we prove
that a polynomial commitment scheme based on Bulletproofs of [BBB+18,DG23] does satisfy all the
properties we need when paired with an appropriate PES based on secret sharing (or SS-PES) which
we also introduce in this work and which was the main source of technical challenges (discussed also
in Remark 6). We provide further details in Section 5.3, while below we give a high-level overview.

A stepping-stone observation is that a building block of Bulletproofs itself—its inner-product ar-
gument, or BP-IPA—has several properties that we can use as a bridge to our desired features. After
formalizing a simple polynomial commitment based on BP-IPA we can prove evaluation binding (the
standard minimal property for polynomial commitments) through standard techniques based on DLOG
and the unique-proofs property by leveraging previous results in [DG23].
Polynomial encodings from new techniques. A more substantial challenge is finding a suitable
polynomial encoding scheme that, together with the PCS above, would satisfy evaluation hiding. The
approach to polynomial encoding from [GKO+23] cannot unfortunately work in our setting. Here are
some intuitions on why. The building blocks used in [GKO+23] are, respectively, KZG [KZG10], as a
PCS and a simple PES, called the Lagrange encoding, based on parsing a vector as a tuple of evaluations
of a polynomial in a known domain and extending it with random evaluations (the same paper proposes
also another encoding scheme but this is not important for our discussion). The authors of [GKO+23]
are able to prove that KZG with the Lagrange PES satisfies evaluation hiding . Unfortunately for us,
it is easy to observe that the polynomial encoding(s) proposed in [GKO+23] cannot achieve evaluation
hiding when used with a Bulletproofs-flavored PCS like ours (see rest of this overview and Remark 6).

This leaves us with the task of building a PES from a different approach. Our setting has in fact a
number of additional challenges compared to [GKO+23], which we now sketch. Their starting point
7 We stress that we do not require the polynomial commitment to be extractable or zero-knowledge. In

particular, it is hard to require zero-knowledge because this property clashes with the constraint of having
unique proofs we discuss later.

8 The reader familiar with [GKO+23] may have noticed we are not discussing another property explicitly
required by the compiler, called non-extrapolation. The reason is that it is implied directly by evaluation
binding and evaluation hiding (see proof in Appendix D.4). For the sake of this introduction, we also do not
discuss “ϕ”, a parameter usually associated with evaluation hiding, because mostly irrelevant here.
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Setup Model Assumption UC
Model

Proof
Size

NIZK
Functionality

[GKO+23] Trusted NPRO xPKE+SDH standard Oλ(1) standard

[CF24] Transp. RO — standard Oλ(polylog(n)) weak

[BFKT24] Trusted GGM Pairings standard Oλ(1) weak

This work Transp. NPRO — shielded
oracles Oλ(polylog(n)) weak

This work Transp. NPRO DLOG+PKE shielded
oracles Oλ(log n) standard

Table 1: Comparison with other works on UC witness-succinct NIZKs. xPKE stands for eXtended
Power Knowledge of Exponent, GGM stands for Generic Group Model, NPRO stands for Non-
Programmable Random Oracle and RO stands for Programmable Random Oracle. PKE denotes the
existence of public-key encryption (with mild efficiency requirements; see Section 5.2).

as a PCS is KZG, which is a completely non-interactive polynomial commitment relying on DLOG
hardness (plus more) whose proof consists of a constant number of group elements. In contrast, our
design based on BP-IPA, is highly interactive before applying Fiat-Shamir and its transcript consists
of “folded” versions of previous transcript elements, creating non-trivial connections among them, this
makes it harder to argue a hiding property like the one we are interested in.

As a consequence of the above, we need to use completely different techniques from the ones
in [GKO+23]. Our approach to build the encoding scheme is described in Section 5.2. Internally, it
uses additive secret sharing and an encryption scheme. Ignoring many details, given a vector w, its
polynomial encoding consists of a polynomial fw whose coefficients include (s1, . . . , sℓ, sℓ+1, . . . ), where
the si-s are additive secret shares of some secret value. Being able to show evaluation hiding properties
for PES and PCS eventually boils down to showing that the leakage from polynomial evaluation proofs
for fw does not allow an adversary to distinguish whether si-s are shares of a given secret or they are
random values.

We first observe that the type of leakage in our polynomial commitment (based on BP-IPA) can be
reduced to the leakage of linear combinations of the coefficients (s1, . . . , sℓ, sℓ+1, . . . ) of the evaluated
polynomial. Therefore, we define a “leakage-resiliance” flavored game for additive secret sharing (Def-
inition 26 in the Appendix) that captures this type of leakage: an adversary A can query the vector of
(alleged) shares and try to gather information on them receiving a linear combination of its choice. In
a few more details, A has access to an oracle that, on input a vector θ, returns the linear combination∑

i θisi; the adversary can ask at most ℓ such queries; at the end of the game, the adversary wins if it
is able to guess whether the si-s are random or shares of a given secret.

With this notion under our belt, we can then prove our desired security if we are able i) to reason
about what type of constraint on the vectors θ would be sufficient for an adversary not to win in
the above game, and (ii) to later show that the “linear combination” leakage in BP-IPA satisfies the
constraints identified in step (i). It is relatively straightforward to identify a general meta-property of
such constraints for (i), but it is quite more challenging to realize step (ii). The resulting analysis is
highly non-trivial and requires showing that with overwhelming probability a determinant det(M) is
non-zero, where the matrix M is (intuitively) derived by the vectors θ describing the leakage of the
BP-IPA protocol. In Lemma 4 (in the Appendix) we prove this core result. We leave as future work
further applications of our techniques and formal connections between them and computational or
leakage-resilient secret sharing.

Related work. Other than the prior works we have already mentioned, in concurrent and indepen-
dent work [CF24] the authors design a succinct NIZK in the global programmable random oracle
of [CDG+18]. In this, everyone can program the random oracle, but honest parties can detect if a
query has been programmed. This verification is done via a special command that the parties issue to
the random oracle that should be used on any query. In our work instead, we rely on the simpler (and
strictly less powerful) global random oracle of [CJS14] that does not allow anyone to program hence,
it does not require the parties to verify every query during the execution of the real-world protocol.
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1.2 Discussion: Comparing UC-SNARK Compilers and Our Instantiation Choices

We chose two flavors of instantiations in our work: one from [CF24] and the other adapting the compiler
in [GKO+23]. The advantages of the approach in [CF24] include its simplicity, the fact that one can
obtain “unconditional” security (relying only on the ROM) and the fact that it introduces no prover
overhead. The compiler from [GKO+23] is technically more complicated and incurs an overhead for
the prover (e.g., the correct encoding and commitment of the witness needs to be proven through the
underlying NIZK). On the other hand the latter compiler has also several advantages that, in our
opinion, make it a more viable choice scientifically in the long term (and motivate its prominent role
in the main text of this work).

As discussed above, a first limitation of the framework from [CF24] is that it can yield only a
limited form of the NIZK functionality since this weaker notion could be realized by schemes that are
possibly malleable, thus one should be careful when designign a protocol that uses it as inner building
block. We notice that a similar limitation holds for the setting studied by Bobolz et al. [BFKT24] as
they prove the UC-security of Groth16 [Gro16], a zkSNARK whose proof can be re-randomized and
hence is malleable.

Second, the compiler from [GKO+23] is fully general, in that it can in principle be used to lift any
simulation-extractable zkSNARK; in contrast, the approach in [CF24] requires to assume specific forms
of zkSNARKs that are already straight-line extractable, such as Interactive Oracle Proofs [BCS16]. This
implies that one cannot use their work to lift the vast pool of efficient SNARKs based on frameworks
with polynomial oracles [GKKB12, CFF+21, GWC19, BFS20]. Another disadvantage of the approach
in [CF24] is that, by relying on Merkle Trees as an almost essential tool, it cannot inherently go below
the logarithmic barrier for proof size. On the other hand a set of techniques based on PCS may enable
future works building on ours to apply the next-generation of transparent SNARKs and PCS with
smaller proof sizes9.

Besides what has already been mentioned above, these two types of instantiations obtain different
tradeoffs for proof size and verification time. In fact, our instantiation from [GKO+23] obtains the
smallest proof size (logarithmic) at the cost of a slower verifier (running in linear time, due to Bullet-
proofs). In contrast, our instantiation from [CF24] features a larger proof—of size O(log2(N))—but a
more efficient verifier—running in time O(log2(N)).

1.3 Future Work and Alternative Instantiations

The instantiations we obtain achieve logarithmic proof size but verification time linear in the witness. In
order to obtain a more balanced efficiency profile (e.g., poly-logarithmic proof size and poly-logarithmic
verification time) one would need to look for different instantiations of the polynomial commitment
and NIZK with the required properties.

For polynomial commitments, we see as a plausible candidate the Dory commitment scheme [Lee21],
which is transparent and achieves both logarithmic opening size and logarithmic verification time. Dory
is, at its heart, a Bulletproofs-based polynomial commitment but reduces the verification time through
an appropriately crafted verification key and the use of commitments to vectors of group elements
in a bilinear setting. It may be possible to prove unique-response of variants of Dory using some of
the techniques in [DG23], but at the moment this is still an open problem. We find it plausible that
the ϕ-evaluation hiding profile of Dory is similar to that of the Bulletproofs polynomial commitment
scheme presented here.

A line of research [GM17,GKK+22,DG23,KPT23,FFK+23,FFR24,CFR24] has shown that notable
zkSNARKs are simulation-extractable, but none of these works is suitable for our setting since either
the schemes are non-transparent or the results are rewinding-based. For what concerns transparent
simulation-extractable NIZKs with succinct proofs, we see as a possible candidate the NIZK Spar-
tan [Set20]. As of now, however, the only version of Spartan explicitly proved as simulation-extractable
uses Hyrax [WTs+18] with openings of size square root and square root verification time [DG23]10 We
9 There are reasons to think this will happen soon. At the time we are writing, there already exists constant-

size constructions of transparent PCS, e.g. [AGL+23,SB23]. These works currently have limitations such as
being secure only in idealized algebraic models and other efficiency caveats, but it is plausible these be lifted
by future work since they do not seem inherent.

10 We remark that the variant of Spartan mentioned above could be used in this work as an alternative
instantiation of the SIM-EXT NIZK. However, while this improves the NIZK verification time going from
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find it plausible that the techniques in [DG23] may be generalized to instantiations with n1/c effi-
ciency for c ≥ 2. We leave this as an open problem for future work which could potentially lead to a
first transparent UC-NIZK with sublinear verification time, full non-malleability and secure without
programming the RO.

Paper outline In Section 2, we present the necessary preliminaries, including background on public-
key encryption, secret sharing, and polynomial commitment schemes. Our formal definition of the NIZK
functionality in the global random oracle model appears in Section 3. In Section 4, we describe our
main UC NIZK protocol and its realization. Section 5 provides concrete instantiations of our scheme,
including our approach to polynomial encoding and polynomial commitments. Most of the security
proofs and additional technical discussions are deferred to the appendices.

2 Preliminaries

We use the notation [x, y] to denote {x, x + 1, . . . , y}, for some positive integer x, y where x < y. The
notation x←$ X indicates sampling x from the uniform distribution defined over X. We write F[X] to
denote polynomials over a finite field F. For an integer d ≥ 1, we denote the polynomials with degree
≤ d as F<d[X] ⊆ F[X]. The security parameter is denoted with λ. If f is some function (possibly in
other parameters), we denote by Oλ(f) the class O(poly(λ) ·f). Given two vectors a, b ∈ Fn we denote
by c = a ◦ b their Hadamard product, that is ci = ai · bi for i ∈ [n]. For m ∈ [n] we denote by v[:m]
the prefix (v1, . . . , vm−1) and by v[m:] the suffix (vm, . . . , vn). Let G be a multiplicative group. If g and
v are vectors of n elements in G and F, respectively, then we denote by gv the product

∏
i gvi

i . We
denote by M⊺ the transpose of a matrix M .

If Π = (P, V ) is an interactive argument system in the random oracle model, we denote by ΠFS =
(PFS, VFS) the non-interactive version of that argument compiled in the standard manner through
Fiat-Shamir transform [FS87]. We refer the reader to [DG23, Section 2] for additional details.
Discrete Logarithm Assumption. In our constructions we make use of a variant of the discrete
logarithm (DLOG) assumption for multiple generators. Below G denotes a group generator.

Assumption 1 (Generalized DLOG [BBB+18]) For all PPT A, λ ∈ N and m ≥ 2

Pr

 G← G(1λ)
(g1, . . . , gm)←$ G

(a1, . . . , am)← A(G, g1, . . . , gm)
:
∃j∗ ∈ [m] aj∗ ̸= 0 ∧∏

j∈[m]

g
aj

j = 1G

 ≤ negl(λ)

Diffie-Hellman Assumption. Below G denotes a group generator.

Assumption 2 (DDH) For all PPT A, λ ∈ N

Pr



G← G(1λ)
g ←$ G

a, b, c←$ {1, . . . , |G|}
β ←$ {0, 1}

z := βab + (1− β)c
β′ ← A(G, g, ga, gb, gz)

: β′ = β


≤ 1

2 + negl(λ)

2.1 Public-Key Encryption

Let F be a field. We consider public-key encryption schemes whose input is a vector of field elements
and output a vector of field elements (of a different size).

Definition 1. A PKE scheme consists of a tuple of algorithms PKE = (KG, Enc, Dec) with the follow-
ing syntax:

Oλ(n) to Oλ(
√

n), it provides only a concrete efficiency improvement for our final verifier: its total running
time is in fact dominated by the verification of BP-PC which is Oλ(n).
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– KG(1λ)→ (pk ∈ Fκ, sk ∈ F): generates a key pair (the algorithm is randomized).
– Enc(pk ∈ Fκ, m ∈ Fn) → ct ∈ Fn′ : produces a ciphertext corresponding to a message m through

the public key (the algorithm is randomized).
– Dec(sk ∈ F, ct ∈ Fn′) → m ∈ Fn: decrypts a ciphertext through the secret key (the algorithm is

deterministic).
We require the following properties:

Correctness. For any λ, n ∈ N, any plaintext m ∈ Fn,

Pr [Dec(sk, ct) = m] = 1

where (pk, sk)← KG(1λ) and ct← Enc(pk, m).

Semantic security.11 For all λ ∈ N, for any PPT adversary A = (A1,A2),∣∣∣∣∣Pr
[

(pk, sk)← KG(1λ), (st, m0, m1)← A1(pk)
b←$ {0, 1}, ct← Enc(pk, mb), b′ ← A2(st, ct)

: b = b′

]
− 1/2

∣∣∣∣∣ = negl(λ)

2.2 Secret Sharing

Definition 2 (Additive m-out-of-m Secret Sharing). Let F be a field. An additive secret sharing
scheme consists of a pair of algorithms SS = (Share, Reconstr) such that:

– Share(m ∈ N, s′ ∈ F) : Sample s1, . . . , sm s.t. sm := s′ +
∑m−1

i=1 si. Return (s1, . . . , sm).
– Reconstr(m ∈ N, s ∈ Fm) : Return sm −

∑m−1
i=1 si.

Two basic facts (which we will use in our proofs) regarding the construction above:
– the reconstruction algorithm is always able to reconstruct the secret from its shares.
– to any (potentially unbounded) adversary, a set of up to m− 1 shares of any secret will look as if

randomly distributed.

2.3 Non-interactive Arguments

A non-interactive argument system (NARG) for relation R in the random oracle model, denoted by
ΠR, consists of a tuple of algorithms (PGen,P,V) having black-box access to a random oracle H : {0,
1}∗ → {0, 1}λ, with the following syntax:

– pp← PGen(1λ): Takes as input the security parameter 1λ and outputs public parameters pp. Once
PGen is invoked we assume that all of the following algorithms take pp as an implicit input. In
this work, we have consider transparent setup and pp can be generated with a call to the random
oracle.

– π ← PH(x, w): Takes as input a statement x and witness w, and outputs a proof π if (x, w) ∈ R.
– b← VH(x, π): Takes as input a statement x and proof π, and outputs a bit b, indicating “accept”

or “reject”.

Definition 3 (Completeness). A NARG ΠR satisfies completeness if for every (x, w) ∈ R, it holds
that

Pr
[
b = 1 : pp← PGen(1λ); π ← PH(x, w); b← VH(x, π)

]
= 1.

Besides completeness, basic security properties of (zk)NARGs are zero-knowledge and knowledge-
soundness. Informally, an argument is zero-knowledge if a proof reveals no information about the
witness, and it is knowledge-sound if from a prover producing a valid proof it is possible to extract a
valid witness: this extraction procedure, denoted by an algorithm E , may either “rewind” the prover
or not: in the latter case the extractor is said to be straight-line.
11 In this game we assume for simplicity that the two adversarial plaintexts have the same length.
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Definition 4 (Knowledge-soundness). A NARG ΠR is (adaptively) knowledge sound (KS) if
there exists an extractor E running in expected polynomial time such that for every PPT adversary P∗,
the following probability is negligible in λ :

AdvKS
ΠR,R (E ,P∗) :=

∣∣∣Pr
[
KSP∗

0,ΠR
(λ)

]
− Pr

[
KSE,P∗

1,ΠR,R(λ)
]∣∣∣ .

The knowledge soundness games are defined in Fig. 1.

Game KSP∗
0,ΠR (λ) Game KSE,P∗

1,ΠR,R(λ)
pp← PGen

(
1λ

)
pp← PGen

(
1λ

)
(x, π)← (P∗)H (pp) (x, π)← (P∗)H (pp)
b← VH(pp, x, π) b← VH(pp, x, π)
return b w ← EP∗

(pp, x, π)
return b ∧ (pp, x, w) ∈ R

Fig. 1: Knowledge soundness security games. Here the extractor E is given black-box access to P∗. In
particular, E implements H for P∗ and can rewind P∗ to any point.

Definition 5 (Straight-line Knowledge Soundness). Protocol ΠR is knowledge-extractable if for
any PPT adversary A, there exists a PPT extractor EOext such that

Pr
[

b = 1 ∧ (x, w) /∈ R :
pp← PGen(1λ); (x, π)← AH(pp);

b← VH(x, π); w ← E
Oext (x, π)

]
< ν(λ)

where Oext is a stateful oracle which stores the list L all the input-output (in, out) queries made to
H by A, and upon being queried it provides L.
Zero-Knowledge. We define zero-knowledge by following the syntax of [FKMV12,GOP+22]. A zero-
knowledge simulator S is defined as a stateful algorithm with initial state st = pp that operates in two
modes. The first mode, (out, st′) ← S(1, st, in) takes care of handling calls to the oracle H on input
in; specifically S1(in) can reprogram the random oracle H, and observe the query made to H by the
adversary. The second mode, (π, st′) ← S(2, st, x) simulates a proof for the input statement x. For
convenience we define three “wrapper” oracles. These oracles are stateful and share the internal state
st, which initially contains an empty string.

– S1(in) to denote the oracle that returns the first output of S(1, st, in);
– S2(x, w) that returns the first output of S(2, st, x) if (x, w) ∈ R and ⊥ otherwise;
– S ′

2(x) that returns the first output of S(2, st, x).

Definition 6 (Zero-Knowledge). Protocol ΠR is unbounded non-interactive zero-knowledge (NIZK),
if there exists a PPT simulator S with wrapper oracles S1 and S2 such that for all PPT adversaries A
it holds that ∣∣∣∣∣Pr

[
b = 1 :

pp← PGen(1λ);
b← AH,P(pp)

]
− Pr

[
b = 1 :

pp← PGen(1λ);
b← AS1,S2(pp)

]∣∣∣∣∣ < ν(λ).

Simulation extractability. A stronger security property is simulation extractability, which roughly
speaking captures knowledge-soundness in presence of simulated proofs (provided by a simulator).

In this work, we consider different flavors of simulation extractability depending on the type of
algorithm or the conditions under which the extractor E is required to succeed.

First, similarly to the knowledge-soundness setting, we make a distinction between straight-line
and rewinding-based simulation extractability depending on the behavior of the extractor. Moreover,
we have true-simulation extractability [DHLW10] if the adversary can see simulated proofs only by
providing a pair (x, w) ∈ R to the simulator.

We formalize these properties hereafter.
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Definition 7 (Simulation Extractability). Consider a non-interactive proof system ΠR = (PGen,
P,V) in the random oracle model H for relation R with an NIZK simulator S. Let (S1,S ′

2) be wrapper
oracles for S as defined in Definition 6. ΠR is simulation-extractable (SIM-EXT) with respect to S, if
for any PPT adversary A, there exists a PPT extractor EA such that

Pr
[

(x, π) /∈ Q ∧ (x, w) /∈ R
∧ b = 1

:
pp← PGen(1λ); (x, π)← AS1,S′

2(pp);
b← VS1(x, π); w ← EA(x, π, st)

]
< negl(λ)

where st is the final state of the simulator S, and Q is a set of statement-proof pairs (x, π) with x being
a statement queried by A to the proof simulation wrapper oracle S ′

2, and π being the corresponding
simulated proof, respectively.

Definition 8 (Straight-line Simulation Extractability). Consider a non-interactive proof system
ΠR = (PGen,P,V) for relation R in the random oracle model H : {0, 1}∗ → {0, 1}λ with an associated
NIZK simulator S, where (S1,S ′

2) denote the wrapper oracles for S as defined above. Let further Oext
be a stateful oracle which stores the list L all the input-output (in, out) queries made to S1, and upon
being queried it provides L.

Protocol ΠR is simulation-extractable (SIM-EXT) with respect to S, if for any PPT adversary A,
there exists a PPT extractor EOext such that

Pr
[

(x, π) /∈ Q ∧ (x, w) /∈ R
∧ b = 1

:
pp← PGen(1λ); (x, π)← AS1,S′

2(pp);

b← VS1(x, π); w ← E
Oext (x, π, st)

]
< ν(λ)

where st is the final state of the simulator S, and Q is a set of statement-proof pairs (x, π) with x being
a statement queried by A to the proof simulation wrapper oracle S ′

2, and π being the corresponding
simulated proof, respectively.

We observe that the notion of straight-line simulation extractability implies the notion of straight-
line knowledge soundness. The definition of simulation extractability reported above is also referred
to as the strong variant of (straight-line) simulation extractability, whereas the weak variant restricts
the adversary to provide a proof for a fresh statement for which has never queried the simulator.
Interestingly, Kosba et al. [KZM+15] show that it suffices for a typical UC application.

We recall a weaker version introduced by Dodis et al. [DHLW10] and dubbed true-simulation
extractability. We adapt it to the context of straight-line extractors in the random oracle model.

Definition 9 (Straight-line True-Simulation Extractability). Consider a non-interactive proof
system ΠR = (PGen,P,V) for relation R in the random oracle model H : {0, 1}∗ → {0, 1}λ with an
NIZK simulator S, where (S1,S2) denote the wrapper oracles for S as defined above. Let further Oext
be a stateful oracle which stores the list L all the input-output (in, out) queries made to S1, and upon
being queried it provides L.

Protocol ΠR is true-simulation-extractable (TRUE-SIM-EXT) with respect to S, if for any PPT
adversary A, there exists a PPT extractor EOext such that

Pr
[

(x, π) /∈ Q ∧ (x, w) /∈ R
∧ b = 1

:
pp← PGen(1λ); (x, π)← AS1,S2(pp);

b← VS1(x, π); w ← E
Oext (x, π, st)

]
< ν(λ)

where st is the final state of the simulator S, and Q is a set of statement-proof pairs (x, π) with x being
a statement queried by A to the proof simulation wrapper oracle S ′

2, and π being the corresponding
simulated proof, respectively.

Similarly, one can weaken the above definition by requiring the adversary to provide a proof for a fresh
statement for which has never queried the simulator: this definition is referred to as the weak variant
of the straight-line true-simulation extractability.

Finally, we can consider a weaker version of true-simulation extractability in which E is required
to work only on statements for which the adversary has never queried the simulation oracle, whereas
the strong variant does not restrict this.
Unique response. We finally state an important definition regarding non-interactive proofs derived
via the Fiat-Shamir Transform [FS87]. We refer the reader to [DG23] (Sections 2.3 and 2.4) for addi-
tional details.
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Definition 10 (k-Unique Response). Let Π = (PGen,P,V) be a (2r + 1)-message public-coin
interactive argument, with ΠFS = (PGen,PFS,VFS) its associated FS-transformed NARG and k ∈ [0, r].
We say ΠFS satisfies k-unique response (k-UR) if for all PPT adversaries A, the following probability
(defined with respect to the game in Fig. 2) is negligible in λ:

Advk-UR
ΠFS

(A) := Pr
[
k-URA

ΠFS
(λ)

]
.

When k = 0, we say that ΠFS has (computationally) unique proofs.

Game k-URA
ΠFS (λ)

pp← PGen
(
1λ, ppG

)
(x, π, π′, c)← AH(pp)
b← VH[(pp,x, π|k)7→c]

FS (pp, x, π) = 1

b′ ← V
H

[(
pp,x, π′|

k

)
7→c

]
FS (pp, x, π′) = 1

return b ∧ b′ ∧ π ̸= π′ ∧ π|k = π′|k

Fig. 2: Security game for k-unique response. Here H [(pp, x, π|k) 7→ c] denotes the random oracle where
the input (pp, x, π|k) is reprogrammed to output c.

2.4 Succinct Polynomial Commitment Schemes and Polynomial Encoding Schemes

The following definition is adapted from [GKO+23], which in turns adapts it from the full version
of [CHM+20]. In Appendix B.1, we elaborate on the differencese between our minor adaptations and
the definitions in [GKO+23].

Definition 11 (Polynomial Commitment Scheme). A polynomial commitment scheme in the
random oracle model H : {0, 1}∗ → {0, 1}λ over field F, denoted by PCS, is a tuple of algorithms
(PCGen, Com, Eval, Check):
1. ck← PCGen(1λ, d): Takes as input the security parameter λ and the maximum degree bound d and

generates the public parameters ck as output.
2. c← Com(ck, f): Takes as input ck, the polynomial f ∈ F<d[X] and outputs a commitment c.
3. π ← EvalH(ck, c, z, y, f): Has oracle access to H and takes as input ck, the commitment c, eval-

uation point z ∈ F, claimed polynomial evaluation y ∈ F, the polynomial f , and outputs a non-
interactive proof of evaluation π.

4. b← CheckH(ck, c, z, y, π): Has oracle access to H and takes as input statement (ck, c, z, y) and the
proof of evaluation π and outputs a bit b.
satisfying the following properties:

Completeness. For any integer d, for all polynomials f ∈ F<d[X], for all evaluation points z ∈ F

Pr

b = 1 :
ck← PCGen(1λ, d); c← Com(ck, f);
y := f(z); π ← EvalH(ck, c, z, y, f);
b← CheckH(ck, c, z, y, π)

 = 1.

Evaluation Binding. For any integer d, for all PPT adversaries A,

Pr

 y ̸= y′

∧ b = 1
∧ b′ = 1

:
ck← PCGen(1λ, d); (c, z, y, y′, π, π′)← AH(ck);

b← CheckH(ck, c, z, y, π);
b′ ← CheckH(ck, c, z, y′, π′)

 ≤ negl(λ).

Following [GKO+23] we require that a PCS satisfies also the following additional properties.
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Definition 12 (Unique Proof). For all PPT adversaries A,

Pr


π ̸= π′

∧ b = 1
∧ b′ = 1

:

ck← PCGen(1λ, d);
(c, z, y, π, π′)← AH(ck);

b← CheckH(ck, c, z, y, π);
b′ ← CheckH(ck, c, z, y, π′)

 ≤ negl(λ).

We adopt a minor variant of the definition of polynomial encoding scheme given in [GKO+23]. In
some respect we specialize it, in others we generalize it (see Appendix B.1). At its essence, a polynomial
encoding scheme takes a vector of field elements and outputs an appropriate randomized polynomial.

Definition 13 (Polynomial Encoding Scheme). A polynomial encoding scheme, denoted by PES,
is a tuple of algorithms (Enc, Dec)

– f ← Enc(1λ, w, n, ℓ; ρ): Takes as inputs a security parameter, w ∈ Fn, dimension of the vector
n > 0, evaluation bound ℓ > 0, and randomness ρ ∈ Fℓ, and outputs a polynomial f ∈ F<d[X]
where d is a function of n and ℓ.

– w′ ← Dec(1λ, f, n, ℓ): Takes as inputs a security parameter, f ∈ F<n+ℓ[X], n > 0, and ℓ > 0, and
deterministically outputs w′ ∈ Fn.

We say PES is correct if w = Dec(1λ, Enc(1λ, w, n, ℓ; ρ), n, ℓ) for any n > 0, ℓ > 0, w ∈ Fn, and
ρ ∈ Fℓ. We define the stretch factor stretch(λ, n, ℓ) of the PES as the difference between the size of the
encoding and the original size of the vector w, i.e., stretch(λ, n, ℓ) will always be equal to deg(f)+1−n.

We only consider polynomial encoding schemes where the size of the field domain is exponential in the
security parameter, i.e. |F| ∈ O(2λ).

Advanced properties. We further state two properties adapted from [GKO+23].

Definition 14 (ϕ-Evaluation Hiding). Let PCS = (PCGen, Com, Eval, Check) be a polynomial
commitment scheme in the random oracle model H and PES = (Enc, Dec) be a polynomial encoding
scheme. We say PCS is ϕ-evaluation hiding with respect to PES if for all PPT adversaries A = (A1,
A2), for all λ, n, r ∈ N

Pr



b = b′ :

ℓ := ϕ(λ, n, r); d := n + stretch(λ, n, ℓ);
ck← PCGen(1λ, d);

Fn ∋ w← AH
1 (ck); z←$ Fr

ρw ←$ Fℓ; b←$ {0, 1};
f ← Enc(1λ, b ·w, n, ℓ; ρw);

c← Com(ck, f);
y := f(z);

π ← EvalH(ck, c, z, y, f);
b′ ← AH

2 (c, y, π)



≤ 1
2 + negl(λ)

where A1,A2 share the internal states, y := f(z) denotes setting yi := f(zi) for all i ∈ [|z|], and
π ← EvalH(ck, c, z, y, f) denotes setting πi ← EvalH(ck, c, zi, yi, f) for all i ∈ [|z|].

Definition 15 (ϕ-Non-Extrapolation). Let PCS = (PCGen, Com, Eval, Check) be a polynomial
commitment scheme in the random oracle model H and PES = (Enc, Dec) be a polynomial encoding
scheme. We say PCS supports ϕ-non-extrapolation with respect to PES if for all PPT adversaries A,
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for all λ, n, r ∈ N

Pr



v = 1 ∧ z∗ /∈ z :

ℓ := ϕ(λ, n, r); d := n + stretch(λ, n, ℓ);
ck← PCGen(1λ, d);
z←$ Fr; ρw ←$ Fℓ;

f ← Enc(1λ, 0n, n, ℓ; ρw);
c← Com(ck, f);

y := f(z);
π ← EvalH(ck, c, z, y, f); z∗ ←$ F
(y∗, π∗)← AH(ck, c, z, y, π, z∗);

v ← CheckH(ck, c, z∗, y∗, π∗)



≤ negl(λ)

We use the following bundle definition that is going to allow us to simplify the very general statement
of theorem Theorem 2; the specific assumption over the efficiency of the encoding algorithm is not
crucial but it simplifies our treatment.

Definition 16 (ϕ-admissibility). We say that a polynomial commitment PCS is ϕ-admissible with
respect to a polynomial encoding PES if it satisfies both ϕ-evaluation hiding and ϕ-non-extrapolation
and the encoding algorithm of PES runs in linear time, i.e. Oλ(n + ℓ).

Remark 1. In this work, we focus on PCS with a transparent setup, therefore ck can be generated with
a call to the random oracle.

2.5 Dense Samplable Puzzle system

We adopt the notion of puzzle system PuzSys defined in [BKZZ16], and the following definitions are
taken almost verbatim from [CV22].

We denote the puzzle space as PSλ, the solution space as SSλ, and the hardness space as HSλ.

Definition 17. A Dense Samplable Puzzle (DSP) system PuzSys = (Sample, Solve, Verify) is a triple
of algorithms wit the following properties, where ν(.) denotes a negligible function.
Completeness. A puzzle system PuzSys is complete, if for every h in the hardness space HSλ:

Pr
[
puz← Sample(1λ, h), sol← Solve(1λ, h, puz) : Verify(1λ, h, puz, sol) = 0

]
≤ ν(λ).

The number of steps that Solve takes to run is monotonically increasing in the hardness factor h
and may exponentially depend on λ, while Verify and Sample run in time polynomial in λ.
g-Hardness. Let StepsB(·) be the number of steps (i.e., machine/operation cycles) executed by algo-
rithm B. We say that a puzzle system PuzSys is g-hard for some function g, if for every adversary A
there exists a negligible function ν such that for every auxiliary tape z ∈ {0, 1}∗ and for every h ∈ HSλ

the following holds:

Prob[puz← Sample(1λ, h), sol← A(1λ, z, puz) : Verify(1λ, h, puz, sol) = 1 ∧
StepsA(1λ, z, h, puz) ≤ g(StepsSolve(1λ, h, puz))] ≤ ν(λ).

Dense Puzzles. Given λ, h ∈ Z+ and a polynomial function ℓ, there exists a negligible function
ν such that ∆[Sample(1ν , h), Uℓ(λ,h))] ≤ ν(λ) where Uℓ(λ,h) stands for the uniform distribution over
{0, 1}ℓ(λ,h).

As observed in [CV22] the properties of density and g-hardness imply that for every adversary A, there
exists a negligible function ν such that for every auxiliary tape z ∈ {0, 1}⋆ and for every h ∈ HSλ the
following holds:

Prob[sol← A(1λ, z, η) : η ← {0, 1}ℓ(λ,h) ∧ Verify(1λ, h, η, sol) = 1 ∧
StepsA(1λ, z, h, η) ≤ g(StepsSolve(1λ, h, η))] ≤ ν(λ).

Following [BKZZ16] we also require the existence of the following algorithm and respective prop-
erties:
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– SampleSol(1λ, h) is a probabilistic solved puzzle instance sampling algorithm. On input the security
parameter 1λ and a hardness factor HSλ, it outputs a puzzle instance and solution pair (puz,
sol) ∈ PSλ × SSλ.
Correctness of Sampling: We say that a puzzle system PuzSys is correct with respect to sampling,

if for every h ∈ HSλ, we have that:

Pr
[
(puz, sol)← SampleSol(1λ, h), : Verify(1λ, h, puz, sol) = 0

]
= ν(λ).

Efficiency of Sampling: We say SampleSol is efficient with respect to the puzzle g-hardness, if for
every λ ∈ Z+, h ∈ HSλ and puz ∈ PSλ, we have that:

StepsSampleSol(1λ, h) < g(StepsSolve(1λ, h, puz))

Statistical Indistinguishability: We define the following two probability distributions

Ds,λ,h =
{

(puz, sol)← SampleSol(1λ, h)
}

and

Dp,λ,h =
{

puz← Sample(1λ, h), sol← Solve(1λ, h, puz) : (puz, sol)
}

We say a PuzSys is statistically indistinguishable, if for every λ ∈ Z+ and h ∈ HSλ:

∆[Ds,λ,h,Dp,λ,h)] = ν(λ)

In [BKZZ16] the authors show how to construct puzzles assuming the hardness of the discrete
logarithm (DLOG) problem. In particular, at the end of page 37 (full version) the authors argue that
it is possible to obtain a puzzle by randomly sampling an instance of the DLOG problem. The solution
to this puzzle is simply the DLOG of the instance.

3 The NIZK Functionality with an Adjoined Oracle

In this work, we use the Universal Composability (UC) framework [Can01] to formulate our security
claims. UC follows the simulation-based paradigm where the security of a protocol is defined with
respect to an ideal world where a trusted party, the functionality F, performs an idealized computation.
A protocol Π securely realizes F in the real world if for any real world adversary A, there exists an
ideal world adversary Sim, called the simulator, such that the real-world protocol execution, and the
ideal-world protocol execution are indistinguishable to any environment:

∀A∃Sim∀Z : Exec(F, Sim,Z) ≈ Exec(Π,A,Z).

Since the ideal functionality F is by definition what we want to achieve in terms of security, the real
world must thus be secure too. On an intuitive level, this notion is composable: if a higher-level protocol
uses F to achieve some task, then F can be safely replaced by the protocol realizing it, as this must go
unnoticed to the higher level protocol as otherwise, we would have found a distinguisher. Finally, we
point out that simulating for the dummy adversary is complete; that is, if there exists a simulator for
the adversary that just follows the environment’s instructions, then the above statement is implied.

3.1 Global Random Oracles

We are going to use one version of the global random oracle defined in [CDG+18], that is not pro-
grammable but observable. The random oracle functionality GRO can be invoked with two commands:
query and observe. GRO answers all new query command via “lazy sampling” from the domain and
stores them locally in a list Q. A repeated query requires a simple lookup in Q. Some query queries
are marked “illegitimate” and can be observed via observe command. We now recall the definition
of an illegitimate query. Each party is associated with its party identifier pid and a session identifier
sid. When a party queries GRO with the command (query, x), the query is parsed as (s, x′) where s
denotes the session identifier associated with the party. A query is marked as illegitimate if the sid
field of the query differs from the sid associated with the party making the query. In other words,
these are the queries made outside the context of the current session execution. We formally define
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Functionality 1: GRO

GRO is parametrized by the output length ℓ(λ).
– Query Upon receiving a query (query, x), from some party P = (pid, sid) or from the adversary

Sim do:
• Look up v if there is a pair (x, v) for some v ∈ {0, 1}ℓ(λ) in the (initially empty) list Q of past

queries. Else, choose uniformly v ∈ {0, 1}ℓ(λ) and store the pair (x, v) in Q.
• Parse x as (s, x′). If sid ̸= s then add (s, x′, v) to the (initially empty) list of illegitimate queries

for SID s, that is denoted by Q|s.
• Return v to P.

– Observe Upon receiving a request (observe, sid) from the adversary Sim, return the list Q|sid of
illegitimate queries for SID sid to the adversary.

Fig. 3: Functionality for Global Random Oracle GRO [CDG+18]

the functionality GRO in Fig. 3. Intuitively, observing these illegitimate queries is helpful for proving
security of protocols. The ideal adversary (or the simulator) can a priori only observe queries made
by the corrupt party during the protocol session (and of course query as it pleases to emulate honest
parties in this session). However, the environment has direct access to the random oracle also outside
the current session and without observability, the simulator would remain oblivious to these additional
queries. Therefore, the formulation in [CDG+18] discloses such queries to the simulator via observe
command. Note that any GRO query for session sid made by a party (or the simulator) participating
in the session identified by sid will never be marked as illegitimate. Thus, any query made by the
simulator itself is not recorded by the functionality and hence cannot be observed by anyone. This is
crucial for proving UC security (as this gives an edge to the simulator over the real-world adversary:
the simulator “knows” all queries, while the real-world adversary does not).

As shown in [BCH+20], with a specific treatment of random oracles in [BHZ21] as global setup,
a global subroutine can be fully captured in standard UC. A global subroutine can be imagined as a
module that a protocol uses as a subroutine, but which might be available to more than this protocol
only. In a nutshell, if π is proven to realize ϕ in the presence of a global subroutine γ, then the
environment can access this subroutine in both, the ideal and the real world, which must be taken care
of by the protocol. The framework presented in [BCH+20] defines a new UC-protocol M[π, γ] that is
an execution enclave of π and γ. M[π, γ] provides the environment access to the main parties of π and
γ in a way that does not change the behavior of the protocol or the set of machines. The clue is that
M[π, γ] itself is a normal UC protocol and the emulation is perfect under certain mild conditions on π
and γ that are met for the comparably simple case of a GRO [BHZ21]. UC-emulation in the presence
of a global subroutine can be stated as follows:12

Definition 18 (UC emulation with global subroutines [BCH+20]). Let π, ϕ and γ be protocols.
We say that π UC-emulates ϕ in the presence of γ if protocol M[π, γ] UC-emulates protocol M[ϕ, γ].

While the above is a general formulation, in our work we are mainly considering γ := IDEAL(FO)
as well as ϕ := IDEAL(F), for which we can use the shorthand notation M[π,GRO] and M[F,GRO],
respectively to say that π realizes F in the presence of global setup GRO.

3.2 Constructions with Setup

When realizing NIZKs, we typically rely on setup assumptions, that is, any protocol ΠNIZK realizing
FNIZK needs some setup to give the simulator some edge in simulating. Intuitively, if Π worked in the
plain model, then the simulator, who needs to extract a witness from valid proofs generated by an
attacker, would imply that the protocol cannot be zero-knowledge, as the extraction strategy would be
a simple poly-time algorithm that could be equivalently run in the real world. Likewise, the simulator
is expected to come up with valid proofs for honest parties without knowing their witnesses. If this
12 We omit the UC concept of identity bounds for simplicity as they are not relevant to our GRO modeling.
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was possible by a plain poly-time algorithm, the NIZK system would not be a knowledge argument.
Therefore, constructing a NIZK typically requires some non-trivial setup, such as a common reference
string or a random oracle that the simulator could program. In the former case, the simulator can
embed a trapdoor in the ideal world (which is not possible in the real world), and in the latter case,
the simulator can tune random-oracle outputs to its liking. We can denote this construction of ΠNIZK as
FSetup

ΠNIZK=⇒ FNIZK, where the right-hand side indicates the constructed functionality, while the left-hand
side depicts the setup assumption.

When viewing cryptographic protocols as constructions as above, it is apparent that a weaker
left-hand side would be more beneficial. For example, a programmable CRS as a setup is a strong
assumption and has furthermore undesirable consequences when deploying a protocol in practice:
the CRS must be generated in a trustworthy ceremony (as otherwise, some malicious party might
apply the simulator’s trick). Likewise, a programmable random oracle is a session-specific random
function, however in reality a hash function is not tied to a specific session but is global. Therefore, it
would be beneficial in theory and practice, if we could work with transparent setups, especially non-
programmable (and global) random oracle as the (heuristic) ideal model of a hash function. However,
in this model, realizing FNIZK is not possible [Pas04].

3.3 Weakening the Ideal Functionality

When insisting on a non-programmable and global RO as a setup, the only option is therefore to weaken
the right-hand side of the construction, i.e., aiming at a statement of the form GRO

ΠNIZK=⇒ F∗
NIZK, where

F∗
NIZK is a NIZK-like functionality that must admit more capabilities at the adversarial interface than
FNIZK. But what “weakening” is reasonable and still reflects a reasonable UC-NIZK that can be used
in applications? It appears that the standard UC-NIZK functionality (cf. Fig. 15 for reference in the
Appendix) cannot, at first sight, be reasonably weakened in a straightforward sense, as its guarantees
(soundness and zero-knowledge) seem pretty minimal.

In a foundational paper [BDH+17], which we survey in Appendix A, Broadnax et al. introduced
a concept called shielded oracles. Shielded oracles, intuitively speaking, transform a functionality F
into a weaker functionality FO that gives additional power at the adversarial interface. Notably, the
oracle is allowed to perform quasi-polynomial time computations and assist the functionality and/or the
simulator in simulating. This makes the functionality easier to realize as the simulator has more power:
the simulator has (controlled) access to results that stem from a quasi-polynomial time computation.
However, in view of composition, FO is now the functionality one has to deal with in further protocol
design steps and it is weaker than F. In particular, whatever output O gives at the adversarial interface
must be carefully inspected as it impacts composition with other protocols. That is, the additional
power could be “abused” to attack other protocols, since it is, presumably indirectly, the output of
a computation that cannot be emulated by a poly-time environment. Protocols must now be secure
against a new class of environments beyond quasi-polynomial time, denoted by Z[FO], which are all
poly-time processes Z with black-box access to different sessions of FO.

The objective in this work is to define an adjoined oracle O for UC-NIZKs that “weakens” FNIZK
in the above sense in a controlled way that plausibly does not impact its use when composed in other
contexts where FNIZK would be used. Perhaps surprisingly, we achieve this by having the oracle only
compute specifically crafted proofs for selected statements that preserve the zero-knowledge property
(simulation without knowing the honest user’s witness), leveraging some quasi-polynomial power. The
resulting functionality FO

NIZK is described in Section 3.4 below.
As for the other property, soundness, we must ensure that for Z[FO

NIZK] (1) it is non-trivial to
generate proofs for any statement, jeopardizing soundness of the protocol itself, and (2) the additional
power is essentially useless to attack other protocols, as it is easy to foil the additional power. We do
this by restricting the quasi-polynomial time computations to specific instances that are verifiably tied
to a session (using proper domain separation). Thus, all additional power Z[FO

NIZK] has compared to
Z alone is a proof-generation oracle for statements that are tied to certain sessions and thus easy to
shield against.

We note that the above intuition of not harming other sessions can be captured by a formal definition
coined polynomial simultability and put forth in [BDH+17]. When satisfied, it formally implies that the
presence of the oracle-adjoined functionality, despite its super-poly power, does not harm composition
with other (standard) UC protocols. The intuitive reason is that the powerful oracle is sufficiently
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shielded to prevent adverse effects on the rest of the system. Our functionality fulfills this notion
(cf. Definition 25).
On the choice of the GRO. There exist several variants of the global random oracle [CDG+18] of
different strengths and for our final construction statement, GRO

ΠNIZK=⇒ FO
NIZK we would like to pick the

weakest possible version such that we can obtain a UC succinct argument system for NP-relations. A
folklore argument reveals that with a plain global random oracle (no observability, no programmability)
one cannot get succinct UC arguments for general NP-relations, even with an adjoined oracle with
runtime say T (unless T is defined to enable brute forcing any witness for any relation, which is
however a meaningless notion).

Lemma 1. In the above setting with a plain GRO, some adjoined oracle O′ with time bound T , and
an oracle-adjoined UC NIZK-functionality FO′

NIZK (for some relation R) which forces the simulator to
provide a witness upon the first verification query for some statement x (which is accompanied by a
presumably succinct proof string π of length at most k), then the existence of a good UC simulator
(required to prove the UC realization statement) implies that deciding whether a statement x is in the
language induced by R is possible in time no more than T + 2k.

Proof. In general, any choice of the adjoined oracle’s time bound T yields an upper bound on the
extraction runtime: the simulator can make use of the adjoined oracle to do the extraction task and
of course query the random oracle like a hash function. Assume we have a UC-secure construction for
a general relation and the proofs are of size k. This directly implies that we can decide whether any
statement x is in the language or not in time no more than T + 2k (by iterating over all proof strings,
finding an accepting one, and extracting from there in time at most T by assumption). ⊓⊔

Since there are relations that require more time to decide, yet we want succinct proofs, this rules
out the existence of the simulator in the above setting aiming at a succinct argument system for any
NP-relation. The next “most light-weight” assumption among the RO variants is hence the observable
global RO, which is what our paper uses to obtain succinct proofs.

3.4 Definition of the Oracle-Adjoined NIZK Functionality

The description of the functionality is given in Fig. 4 and the adjoined oracle that we define is given
in Fig. 5. The functionality presents the same interface as a standard UC NIZK functionality, with
the exception that upon input (prove, sid, x, w) from an honest party, the proof string is generated
by the oracle without the knowledge of the witness w. Therefore, the proof string π does not contain
information on w. However, the proof string is only generated if w is a valid witness for x. The fact
that the adjoined oracle only helps the simulator for valid statements is very crucial. This ensures that
the super-poly power is only exercised in circumstances where one could, as a thought experiment,
generate the proof string efficiently (namely by using w). This feature is useful when arguing that the
functionality remains poly-time simulatable.

Upon verification, we distinguish two versions of the functionality: the strong version, which is
what we denote by FO

NIZK, requires that for every new pair (x, π) the simulator is required to know and
provide the witness to allow successful verification. In the weak version dubbed FO

wNIZK, the simulator
is not required to provide a witness if the statement has already been proven in this session in a
prior invocation. The differences relate to different notions of malleability, where the latter, inspired
from [CF24], is capturing that once a statement is proven, other proof strings for the same statement
are easy to generate, while the former (and stronger version) requires that the explicit association of
pairs (x, π) to witnesses w is known to the simulator.
Adjoined oracles and global ROs. We note that the presence of global subroutines, in particular
our case of an GRO, is compatible with the shielded oracle framework, since it builds on standard
UC concepts and global subroutines can be represented in standard UC too as described above. We
observe that F can always have subroutines in standard UC and applying the transformation M[F,GRO]
does merely expose that particular subroutine to the environment Z, but leaving the input-output
behavior identical as well as imposing only a minor runtime overhead. That is, UC-emulation with
shielded oracles and global subroutines is obtained by considering the UC protocol M[FO,GRO] instead
of the UC protocol IDEAL(FO) in the definitions above, which leaves in particular the composition
theorem [BDH+17, Thm. 9] intact as it only relies on the properties of standard UC protocol execution.
One minor detail to clarify here is also that the standard definition of an adjoined oracle does not
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consider (explicitly) subroutines of the adjoined oracle, while we call the GRO as a subroutine. This
change is however immaterial: it is easy to see that one could formally instruct the functionality F
to do RO queries instead and pass the return value back and hence drop the explicity call from O to
GRO. This also is not impacting the runtime considerations [BDH+17] since the random oracle itself
has a very simple query-response structure as is idealizing a hash-function evaluation.

Functionality 2: FO
wNIZK

FO
wNIZK is parametrized by polynomial-time-decidable relation R ∈ {0, 1}∗×{0, 1}∗ and runs with parties

P1, . . . , PN and an ideal process adversary Sim. It stores an initially empty proof table Q , and a list of
statements queried Qx.

– Proof Upon receiving input (prove, sid, x, w) from an honest party Pi, do the following: if (x, w) /∈ R
return the activation to the environment. Otherwise, proceed as follows:
1. Send (query, (sid, x, puzzle)) to GRO to obtain instance puz. Send (prove, sid, x, puz) to O.
2. Upon receiving the reply π from O, store (x, π) in Q and give back the activation to O.
3. Upon receiving (out, sid, x, π) from O, output (proof, sid, x, π) to Pi.

– Verification Upon receiving input (verify, sid, x, π) from a party Pi

• if (x, π) ∈ Q return (verification, sid, 1) to the party Pi

• else, if Qx contains x, send (verify-replay, sid, x, π) to Sim. Upon receiving (verification, sid,
x, π, b) from Sim, store (x, π) in Q if b = 1

• else, send (verify, sid, x, π) to Sim. Upon receiving (witness, x, w) from Sim store (x, π) in Q if
(x, w) ∈ R

Finally, return (verification, sid, (x, π) ∈? Q) to the party Pi.

Fig. 4: Functionality for non-interactive zero-knowledge FO
wNIZK with an adjoined oracle. The function-

ality without the highlighted parts (i.e., dropping the set Qx as well as the second bullet point under
Verification) is the stronger version FO

NIZK, the one that includes those highlighted parts is the weaker
version FO

wNIZK.

4 Protocol for Realizing our UC NIZK Functionality

We give a UC protocol denoted ΠTS-R that realizes the functionality FO
NIZK. Our protocol is built on

top of two main building blocks: non-interactive arguments (cf. Section 2.3) and a puzzle system (cf.
Section 2.5). As we will see, depending on the strength of the underlying argument system satisfies,
the protocol either UC-realizes FO

NIZK or FO
wNIZK.

4.1 Description of the UC Protocol ΠTS-R

The protocol ΠTS-R, for an NP-relation R, makes use of the following tools:
– A NIZK Π = (P,V) for the NP-relation R′ = {((x, puz, h), w) : (x, w) ∈ R ∨ Verify(1λ, h,

puz, w) = 1}, where as discussed above, the parameters are generated via a call to the random
oracle.

– A dense samplable puzzle system PuzSys = (Sample, Solve, Verify, SampleSol) such that for every
hardness factor h ∈ HSλ there exists a negligible function ν such that the following holds:
1. Pr

[
puz←$ (1λ, h) : g(StepsSolve(1λ, h, puz)) ≤ λlog λ

]
≤ ν(λ);

2. the worst-case running time of Solve(1λ, h, ·) is λpoly(log λ).13

13 This type of puzzle was used before in Theorem 7 of [BKZZ16].
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Oracle O

O is parametrized by a protocol Π for the relation R′ as defined in Section 4.1.
– Init Upon first invocation, call pp← PGen(1λ) and provide pp to Sim.
– Proof Simulation Upon input (prove, sid, x, puz) from the functionality, do the following:

1. Run Solve(1λ, h, puz) to obtain sol.
2. Define x′ = (x, puz) and run the prover P of Π on input pp, x′, and sol to obtain a proof π.

Whenever P makes a call to H with input in, send (query, (sid, in, proof)) to GRO to receive a
response out which is forwarded to P.

3. Send (proof, sid, pp, x, π) to Sim.
4. Upon receiving (ack, sid, pp, x, π) from Sim, provide (out, sid, x, π) to the functionality.

Fig. 5: The adjoined oracle O.

The protocol ΠTS-R is described below and is parameterized by the security parameter λ. We as-
sume domain separating suffixes that we denote genparams, proof, puzzle in the invocations to the GRO,
so separate the generation of parameters, proofs of the underlying argument system Π and puzzle
instances.

– Proof: Upon receiving (prove, sid, x, w), where (x, w) ∈ R, Pi does:
1. Send (query, (sid, x, genparams)) to GRO receiving back pp.
2. Send (query, (sid, x, puzzle)) to GRO receiving back v, set puz = v.
3. Define x′ = (x, puz) and run the prover P of Π on input pp, x′, and w to obtain a proof π.

Whenever P makes a call to H with input in, send (query, (sid, in, proof)) to GRO to receive
a response out which is forwarded to P.

4. Output (proof, sid, π).
– Verification: Upon receiving input (verify, sid, x, π) Pi does:

1. Send (query, (sid, x, genparams)) to GRO receiving back pp.
2. Send (query, (sid, x, puzzle)) to GRO receiving back v, and set x′ = (x, v)
3. Output (verfication, sid,1) if the following condition is satisfied, else output (verfication,

sid,0):
(a) The verifier V of Π on input pp, x′, π outputs 1. Whenever V makes a call to H with input

in, send (query, (sid, in, proof)) to GRO to receive a response out which is forwarded to V.
Hereafter, we state the conditions under which ΠTS-R realizes the FO

NIZK and the FO
wNIZK functionalities

described in Fig. 4, and we highlight the parts needed only for the weaker functionality.

Theorem 1. Let Π be a succinct straight-line weak true-simulation-extractable NIZK, as captured
in Definition 9, for the relation R′. Let PuzSys be a dense samplable puzzle system as defined in Defi-
nition 17. Let ΠTS-R be the protocol defined in Section 4.1 and let O be the oracle defined in Fig. 5.
Then ΠTS-R ≥FO

wNIZK
FO

wNIZK in the GRO-hybrid model.

Proof intuition. The main idea of the proof is to consider a sequence of hybrid experiments for a
PPT environment Z that may externally invoke polynomially many FO

wNIZK-sessions and iteratively
replace those ideal sessions by the real protocol ΠTS-R: in particular, the ideal-world honest proof will
be computed by O (see Fig. 5) using (puz, sol) as witness for Π, while in the real-world experiment,
the witness w for the relation R will be used. This is done by leveraging the fact that the super-
polynomial computation of O is shielded and thus the replacement is unnoticeable by Z, as otherwise
we would obtain a PPT adversary against the witness-indistinguishability (which is implied by the
zero-knowledge) of Π.

We stress that, in this proof, we consider only polynomial time adversaries and we do not rely on
any assumption that is sub-exponentially secure. In the intermediate hybrids, we internally emulate
the random oracle; therefore, in the intermediate hybrids where we switch witness and we need a pair
(puz, sol) as a witness for Π, it is possible to sample them using SampleSol and program the random
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oracle accordingly, avoiding in this way to compute in the hybrids and (consequently in the security
reductions) a solution for puz in quasi-polynomial time.
Proof of Theorem 1 In what follows, we highlight the parts of the proof that are needed for the
weaker NIZK functionality.

By Proposition 1 it suffices to find a simulator for the dummy adversary (cf. Definition 24). We
start by describing the simulator Sim for ΠTS-R.

– Upon receiving (proof, sid, x, π) from O, send back (ack, sid, x, π) to O
– Upon receiving (verify, sid, x, π) from FO

wNIZK, Sim acts as a honest verifier in the execution of
ΠTS-R with the adversary. If the proof π is accepting then Sim executes the knowledge-soundness
extractor Eks of Π in order to obtain w′. Whenever Eks makes a call to Oext, Sim queries (observe,
sid) to GRO and forwards the response to Eks. If (x, w′) /∈ R then Sim sets w = ⊥, otherwise, she
sets w = w′ and sends (witness, w) to FO

wNIZK.
– Upon receiving (verify-replay, sid, x, π) from FO

wNIZK, Sim acts as a honest verifier in the execu-
tion of ΠTS-R and sends (verification, sid, x, π, b) to FO

wNIZK, where b is the output of the verifier
V of Π on (x, π).
We show a sequence of hybrid experiments for a PPT environment Z that can invoke externally

many sessions of FO
wNIZK and replace internally these executions with the real protocol ΠTS-R. Without

loss of generality, we consider the case in which there is one prover and one verifier in each session.
Step 1: Let Exec(FO

wNIZK, Sim,Z) be the random variable that denotes the output of the experiment
where the PPT environment Z invokes many sessions of FO

wNIZK and interacts with the simulator Sim.
Let Exec(ΠTS-R,A,Z) be the random variable that denotes the output of the experiment where the
executions of FO

wNIZK are replaced with invocations of ΠTS-R in which the dummy adversary A is
playing. We will proceed to show that:

Exec(FO
wNIZK, Sim,Z) ≈ Exec(ΠTS-R,A,Z)

If both parties are corrupted then the O-adjoinded functionalities can be treated as part of the
environment. Therefore, we only consider the case where Z participates in sessions with a corrupted
prover (prover sessions) or with a corrupted verifier (verifier session).

Let us denote with bad the event that in any prover session, the simulator Sim given a proof π
w.r.t. statement x fails to extract w s.t. (x, w) ∈ R.

We distinguish two cases:
1. The event bad occurs with non-negligible probability.
2. The event bad occurs with negligible probability;

Case 1: Let the j∗-th prover session be the first prover session of the real-world execution (i.e. where
protocol ΠTS-R is executed) where bad happens with non-negligible probability. Since the environment
Z opens a polynomial number q′ of prover sessions, the index j∗ can be guessed with non-negligible
probability. Therefore it is sufficient to focus on an environment Z ′ which internally runs Z and opens
all verifier sessions that Z wants to participate in, while opening only one prover session (the j∗-th
prover session) and emulates internally the other prover sessions that Z ′ wants to open. Let us assume
that Z opens q verifier sessions (this number can be guessed with non-negligible probability since Z is
polynomially bounded). Since j∗ can be guessed with non-negligible probability, then Z ′ participates
in a prover session where bad occurs with non-negligible probability. More specifically, in the prover
session Sim receives an accepting proof π̄ w.r.t. theorem x̄′ = (x̄, puz) from A and in the ideal world
it fails with non-negligible probability to extract a witness w s.t (x, w) ∈ R.

We are going to argue now that the probability that the event bad happens is non-negligible even
when the calls to the ideal functionality FO

wNIZK are replaced with execution of ΠTS-R. To do so, let us
consider the following hybrid experiments, where the simulator defined in the hybrid H acts with Z ′ in
the j-th verifier session, for j ∈ [1, q], using as a session identifier the value sidH∥j, and in the unique
prover session using as session identifier the value sidH∥0. Moreover, let pbad(H) be the probability that
the event bad happens in the hybrid H.

– Let H1 be equivalent to the ideal experiment but H1 additionally emulates the calls to GRO in the
eyes of Z ′. In particular, on input a query (query, (sid, in)), the hybrid H1 answers in the following
way:
• Check if there is a pair (in, out) for some out ∈ {0, 1}ℓ(λ) in the (initially empty) list Q of past

queries. Else choose uniformly out ∈ {0, 1}ℓ(λ) and store the pair (in, out) in Q.
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• Parse in as (s, in′, prefix). If sid ̸= s then add (s, in′, out) to the (initially empty) list of illegiti-
mate queries for SID s, that is denoted by Q|s.
• Return out

Moreover, if a request (observe, sid) is received, the hybrid (emulating GRO) sends the list Q|sid.
This hybrid is indistinguishable from the ideal execution since H1 perfectly emulates GRO in the
eyes of Z ′. Thus we have that:

pbad(H1) = pbad(Exec(FO
wNIZK, Sim,Z))

– Let H1
0 be equivalent to H1. For all i ∈ [1, q], let H1

i be equivalent to H1
i−1 but the following

modification is made:
• H1

i additionally runs (puzi, soli)← SampleSol(1λ, h)
• when emulating the calls to GRO, on input a new query (query, (sid, in)), the hybrid H1

i ad-
ditionally does the following: If there is not a pair (in, out) for some out ∈ {0, 1}ℓ(λ) in the
(initially empty) list Q of past queries, parse in as (s, in′, prefix) and if prefix = puzzle and
sid = sidH1

i
∥i then send puzi, otherwise choose uniformly out ∈ {0, 1}ℓ(λ) and store the pair

(in, out) in Q.
First, we observe that two consecutive hybrids H1

i and H1
i−1 behave the same way except on how

they program GRO to output the puzzle for the i-th verifier session. The probability of distinguishing
two consecutive hybrids is then negligible due to the statistical indistinguishability of PuzSys.
Moreover, we notice that for the prover session, the adversary has a session identifier that is
different from sidH1

i
∥j, for all i, j ∈ [q], therefore in the prover session the puzzle puz is generated

honestly by sampling a string uniformly at random (for which the hybrid does not know the
solution). Therefore we have that:

pbad(H1
q) ≥ pbad(H1)− q · νPuzSys

where νPuzSys ∈ negl is the statistical distance between the uniform distribution and the puzzle
distribution output by SampleSol.

– Let H2
0 be equivalent to H1

q. For all i ∈ [1, q], let H2
i be equivalent to H2

i−1 except on how it computes
the solution to the puzzle for the i-th verifier session: in particular, the hybrid H2

i computes the
proof πi running the (honest) prover of Π w.r.t. statement x′

i = (xi, puzi) and the witness soli,
where the pair (soli, puzi) is generated as output of SampleSol, instead of executing Solve (as done
by O in FO

wNIZK).
The view of Z ′ in two consecutive hybrids is identically distributed since Z ′ has only black-box
access (i.e. only to the input/output behaviors) to the functionality. Therefore we have that:

pbad(H2
q) = pbad(H1

q)

Due to the knowledge-soundness of Π and the fact that pbad is non-negligible, we can conclude
that from the prover session the hybrid H2

q extracts with non-negligible probability a solution sol
for puz, where puz is generated honestly in the experiment.

– Let H3
0 be equivalent to H2

q. For all i ∈ [q] let H3
i be equivalent to H3

i−1 except on how the proof πi

is generated: specifically, when the hybrid H3
i computes the proof πi running the zero-knowledge

simulator SΠ = (S1,S2) of Π w.r.t. statement x′
i = (xi, puzi); whenever S1 wants to handle a

query to GRO with a specific (in, out) the hybrid sees it and casts this pair (in, out) in his emulation
of the GRO.
The probability of distinguishing two consecutive hybrids is negligible due to the zero-knowledge
property of Π. Moreover, we can argue that ∀i ∈ [q]:

pbad(H3
i ) ≥ pbad(H3

i−1)− negl

Let us assume by contradiction that this is not the case for some i∗ ∈ [q]. We show a reduction B
that breaks the zero-knowledge of Π, as follows.
Let CH be the challenger of the zero-knowledge game of Π, i.e., CH samples a bit b ∈ {0, 1} and
offers a proving oracle that on input a pair (x, w) ∈ R:
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• If b = 0, run π ← P(pp, x, w)
• If b = 1, run π ← S2(x, w)

and output the proof π.
The reduction B internally runs Z ′ and when Z ′ opens the i-th verifier session w.r.t. theorem xi the
reduction runs (puzi, soli) ← SampleSol(1λ, h) emulating GRO, as explained above, programming
the output of the puzzle queries. Moreover, on input a proof query to GRO of the form (query, (sid,
in, proof)), where sid is associated with the i-th verifier session:
• If i = i∗, forward the query to S1 and output whatever it gives as result
• Else, internally emulate the call to GRO as done in H2

q

In the i-th verifier session, on input (prove, sid, x, w) the reduction sets x′ = (x, puzi), and obtains
the proof πi as follows:
• If i < i∗ then run the honest prover algorithm πi ← P(pp, x′, soli) using soli as witness, as

done in H2
q

• If i > i∗ then run the simulator of Π, i.e. πi ← S2(x′, soli)
• If i = i∗ send to CH the pair (x′, soli) and receive the proof πi

Upon receiving π̄ w.r.t. instance x̄′ = (x̄, puz) from the prover session the reduction runs the
straight-line weak true-simulation extractor Etse of Π to obtain the witness w̄. The extractor Etse

needs oracle access to the list of RO queries, which the reduction can provide.
If the reduction fails to extract a valid witness, then aborts. If the reduction obtains as a witness
the solution of the puzzle puz then the reduction outputs 1 and 0 otherwise.
The idea is that the reduction B embeds in her emulation of GRO towards Z ′ the list of queries made
by CH to the random oracle to compute the possibly simulated proof πi∗ . We observe that if b = 0
then πi∗ is computed using the simulator of Π and the experiment is distributed as H3

i∗ , and as
H3

i∗−1 otherwise. Since Π is weak true-simulation-extractable, the probability to abort is at most
negligible if the statement x′ is fresh, namely the reduction has never issued a simulation query
for x′ to the simulator of Π. Moreover, the probability that x′ is not fresh is at most negligible:
this is because puz is the output of a random oracle query on input the session id of the prover,
and thus a collision between two puzzles across different sessions, with distinct session ids, is only
negligible.
If the difference between pbad(H3

i∗) and pbad(H3
i∗−1) is non-negligible, then B retains a non-negligible

advantage in the zero-knowledge security game.
By union bound we derive that:

pbad(H3
q) ≥ pbad(H2

q)− q · negl

– Let H4
0 be equivalent to H3

q. For all i ∈ [1, q], let H4
i be equivalent to H4

i−1 except on how the the
i-th puzzle puzi is computed: in particular, the hybrid H4

i samples a string uniformly at random
rather than running SampleSol.
Similarly to the switch made in the hybrids H1

i , we observe that the probability of distinguishing
two consecutive hybrids is negligible due to the statistical indistinguishability of PuzSys. Therefore,
we have that:

pbad(H4
q) ≥ pbad(H3

q)− q · νPuzSys

– Let H5
0 be equivalent to H4

q. For all i ∈ [1, q] let H5
i be equivalent to the hybrid H5

i−1 except on how
the i-th verifier session is handled: specifically, in the hybrid H5

i the i-th verifier session is run like
the real world protocol ΠTS-R, but the GRO is still emulated by the hybrid.
The probability of distinguishing two consecutive hybrids is negligible due to the zero-knowledge
property of Π. Similarly to the switch made in H3

i , we can claim that:

pbad(H5
q) ≥ pbad(H4

q)− q · negl

– Let H6
0 be equivalent to H5

q. For all i ∈ [1, q], let H6
i be the same as H6

i−1 except on how the queries
to GRO are handlded: in particular, in the hybrid H6

i the environment Z ′ interatcs directly with
the functionality GRO (that is not emulated anymore by the hybrid)
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With a similar argument shown for the proof of hybrid H1
i we can claim that:

pbad(H6
q) = pbad(H5

q)

Finally, we observe that the hybrid H6
q corresponds to the real-world experiment.

From the above arguments, it follows that in the real-world experiment, the probability that the
event bad happens is non-negligible. Specifically, in the prover session Sim receives a proof π̄ w.r.t.
theorem x̄′ = (x̄, puz) from A from which she fails to extract w such that (x, w) ∈ R. Due to the
soundness of Π, Sim successfully extracts, unless with negligible probability, a witness w̄′ for the
relation R′. Since pbad(Exec(ΠTS-R,A,Z)) is non-negligible, w̄′ corresponds to the solution of puz. If
this is the case, we can show a polynomial time reduction that breaks the fact that a random instance
of PuzSys can not be solved in less than λlog λ steps.

The reduction runs the real-world experiment with Z ′, acting as an honest prover in the verifier
sessions and as a verifier in the prover session. Upon receiving π̄ w.r.t. instance x̄′ = (x̄, puz) from
the prover session, the reduction applies the extractor Eks of Π to obtain the witness w̄. Since by
contradiction in the real-world experiment Sim extracts a solution sol for the puzzle puz from π̄, then
the reduction forwards sol to CH. The reduction runs in polynomial time while PuzSys cannot be
solved in less than λlog λ steps, hence we reach a contradiction that concludes the proof.

Case 2: First, we notice that the distribution of the prover sessions in the ideal world and the real
world are statistically close. Therefore, we can focus only on the verifier sessions. It follows from the
same chains of hybrids (and similar arguments) shown in Case 1 that the real-world execution of the
verifier sessions can be replaced with calls to the ideal functionality, therefore the distribution of the
output of Z is indistinguishable in the real and ideal world.
Step 2: We will now argue that:

Exec(FO
wNIZK, Sim,Z[FO

wNIZK]) ≈ Exec(ΠTS-R,A,Z[FO
wNIZK])

If the prover is corrupted, by Step 1 Case 2 the probability that the event bad happens is negligible,
therefore the distribution of the output of FO

wNIZK- augmented is indistinguishable in the real and ideal
world.

If the verifier is corrupted, by Step 1 the real-world execution of the prover and verifier sessions
can be replaced with calls to the ideal functionality FO

wNIZK. Therefore the distribution of the output
of FO

wNIZK- augmented is indistinguishable in the real and ideal world.
If both parties are corrupted then the distribution of the views of FO

wNIZK- augmented environment
in the real and ideal experiments is identical.

If no party is corrupted it is possible to obtain a polynomial-time adversary following Step 1, then
one can argue that the distribution of the output of FO

wNIZK- augmented is indistinguishable in the real
and ideal world due to the zero-knowledge property of Π. ⊓⊔

5 Concrete Realizations

We observe that Theorem 1 comes in two flavors and states under which assumptions we are able to
realize the stronger functionality FO

NIZK or the weaker version FO
wNIZK. We describe how to instantiate

the main critical assumption in Theorem 1, namely the required argument system in the RO model,
that either satisfies Definition 9 (for the stronger version) or its weaker version (that is sufficient to
realize the weaker functionality).
Realizing the weaker version. The weaker version follows from the work by Chiesa and Fenzi [CF24]
by proving that their construction, which UC-realizes functionality FARG depicted in Fig. 14, implies a
succinct non-interactive straight-line weak true-simulation-extractable argument in the RO model. We
prove this in Theorem 10 in Appendix E. This result allows us to plug the Micali and BCS zkSNARKs
into Theorem 1 obtaining a construction with the same efficiency profile as that in [CF24].
Realizing the stronger version. Getting the stronger version requires substantially more work and
does not follow from existing results. In a nutshell, to construct the desired succinct non-interactive
straight-line true-simulation-extractable argument in the RO model meeting Definition 9, our starting
point is the compiler of [GKO+23]. This compiler takes as input three main building blocks: a poly-
nomial commitment (with some additional properties), a polynonmial encoding scheme, as well as a
simulation-extractable NIZK for a specific relation. All of these building blocks are allowed to make use
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of a local setup (like a CRS) in their compiler which is the main obstacle to overcome in this section
and requires developing new building blocks and an adjusted compiler. In more detail, we achieve the
required SNARK for the stronger version of Theorem 1 in a sequence of steps (we note in passing that
we actually achieve here the stronger property Definition 8 that implies Definition 9):
1. As a first step in Section 5.1, we reformulate the compiler from [GKO+23] in a simpler model

just assuming a standard (local) random oracle. We show that as intuitively expected, the result-
ing protocol UC-realizes FNIZK based on well-defined building blocks that need to meet specific
requirements stated as assumptions in Theorem 2.

2. Armed with the above, a technical step is to formally extract the SNARK required by Theorem 1
from the UC protocol obtained from the previous step. We show this as a general statement
in Theorem 11 in Appendix E. While this might appear as a technicality at first, this step is
needed to bridge the gap to Theorem 1 which is intentionally left more general and based on
standard definitions (i.e., a tuple of algorithms satisfying game-based notions) rather than an
already UC-secure protocol as a starting point.

3. Clearly, the final step is to finally construct the new building blocks: as a consequence of using
the RO only, we are constraint to realize the underlying building blocks in a transparent way, yet
still satisfy the requirements needed for the compiler to retain security. We construct these three
building blocks:
(a) The polynomial encoding scheme in Section 5.2.
(b) The polynomial commitment scheme in Section 5.3.
(c) The underlying simulation-extractable NIZK in Section 5.4.

5.1 Constructing the Argument System via the Modified Compiler

We defer the formal definition of our compiler to Appendix B.2 as it follows from adopting in a
straightforward manner the techniques of [GKO+23] to the RO-only setting.

We are now ready for the main statement for our instantiation.

Theorem 2. Assume the following building blocks:
– ΠNIZK be a simulation-extractable NIZK (Definition 7), for the relation R with proof size Oλ(f(n))

for a witness of size n.
– ΠPCS be a polynomial commitment scheme with Oλ(g(d)) size commitments and evaluation proofs

(for a polynomial of degree d), evaluation binding, unique proofs (Definition 11).
– PES = (Enc, Dec) be an n →λ d encoding scheme (Definition 13) such that ΠPCS is ϕ-admissible

(Definition 16) w.r.t. PES for some function ϕ(·, ·, ·).
Then we can construct a straight-line simulation-extractable NIZK in the random oracle model satis-
fying Definition 8 with proof size Oλ

(
f(n + ϕn,λ) + g(d)

)
where14 ϕn,λ := ϕ(λ, n, λ). Furthermore, if

ΠNIZK and ΠPCS both have transparent setups, then the final NIZK also has a transparent setup.

Proof. It is clear that once the modified compiler is UC-secure, we can apply Theorem 11 to extract
the NIZK that is secure according to Definition 8. Furthermore, from the definition of the compiler
of [GKO+23], it is clear that if the underlying components are transparent (only make use of the
random oracle as an assumption), then the final protocol has a transparent setup too. Therefore, the
only thing remaining is to show that the compiler ported to the RO-only world does preserve UC-
security which we do in Lemma 2 in Appendix B.2. ⊓⊔

Putting it all together. Looking ahead, we can instantiate ΠNIZK and ΠPCS in the random oracle
model under the DLOG assumption; we are able to instantiate PES under the DDH assumption. As
explained in Section 2.5 also PuzSys can be instantiated under the DLOG assumption. To show how
we precisely can instantiate Theorem 2 using the concrete building blocks in the following sections, we
14 The function ϕ (see e.g. Definition 14 in Appendix) takes as input three parameters: a security parameter,

the size n of the original string w and r, the “number of iterations of the polynomial opening”. In the next
paragraphs we explain we make the choice of parameter r = λ and this motivates our definition of ϕn,λ

above.
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provide here a qualitative and quantitative overview of their main features regarding transparency (and
use of the RO); efficiency of the building blocks as well as parameter choice and final succinctness.
Transparent setup and use of the RO. The setups of both our instantiations are transparent: they both
require sampling a Pedersen basis in a group where DLOG is hard which can be done by invoking
the random oracle (e.g., gi = H(i), etc.). Notice that, crucially, the commitment algorithm in Fig. 7
does not use the random oracle. This is important to instantiate our scheme since in the construction
from [GKO+23] invokes a NIZK to prove that the commitment has been computed correctly. The only
other property, besides the ROM, required for the security of the building blocks is DLOG and DDH.
Efficiency of our building blocks. The construction BP-PC inherits the efficiency properties of Bullet-
proofs [BBB+18]. The key property we are interested in this paper is degree-succinctness, in particular
the size of the opening is Oλ(log d) where d is the degree of the committed polynomial. We point out
that the verification complexity for the polynomial opening proof is, however, linear in the degree of
the polynomial. The commitment has constant size, i.e. Oλ(1). The prover has running time Oλ(d).
Our NIZK instantiation has similar properties: its proofs are of size Oλ(log n) for a witness of size n,
while the verifier runs in linear time in n. Using the language of Theorem 2 we can then conclude that
our building blocks are such that f(n) = log n and g(d) = log d.
Parameter Choice and Final Succinctness We recall, staying at a very high-level, that the compiler
in [GKO+23] works by applying an “extractable proof of work” [Fis05] through multiple evaluations
of a committed polynomial. The latter polynomial is an encoding of the witness (whose size is n) of
final degree d > n. Some of the key parameters in the compiler are:

– r: the number of iterations in which the prover shows an evaluation of the committed polynomial.
– T : the maximum number of “grinding” attempts for the prover per iteration.
– b: the hardness factor of the proof-of-work.

The authors of [GKO+23] show that a possible choice of parameters is:

r = λ ∈ Oλ(1), T = Oλ(d), b = Oλ(log d)

Of the above parameters, only the first is relevant for us for proof succinctness (while the choices b
and T above simply provide bounds for the proving running time). This parameter choice is the one
giving us the statement in Theorem 2.

We now first argue how to appropriately choose ϕ for our polynomial encoding scheme so that
we can argue security and then discuss its implications for the final proof size. In order to obtain
ϕ-evaluation hiding, we need to have ϕ satisfying the requirements of Theorem 8. We observe that,
for an appropriately chosen constant c > 0, the function ϕn,λ = c · λ2 log2 (λn) satisfies this require-
ment1516.From Remark 3, we know that our choice of PES transforms a string of size n into one with
size d = ϕn,λ+O(nλ). We can then plug all our observations so far into the statement of Theorem 2 and
conclude that our total proof size is then Oλ(log (poly(λ) · d)) which can be shown to stay Oλ(log(n)).

We conclude this section by a succinct theorem of our main result combining Theorem 1 and The-
orem 2. (We stress that the requirement of “compactness” for the PKE below is extremely mild and
related to efficiency-only. One could lift it to “secure PKE” and directly obtain a secure but less tight
analysis in our technical lemmas)

Theorem 3. Under the DLOG assumption and the existence of a mildly compact PKE (Definition 19)
ΠTS-R ≥FO

NIZK
FO

NIZK in the GRO-hybrid model, where ΠTS-R is the protocol defined in Section 4.1.

5.2 Instantiation of the Polynomial Encoding Scheme

Here we describe our new polynomial encoding scheme. We require two main ingredients: an additive
secret-sharing scheme and a public-key encryption scheme. Let w be the vector we are aiming to encode
and let ℓ ∈ N be a parameter (intuitively the number of evaluations of the polynomial allowed to the
adversary in the ϕ-evaluation hiding game). At the high-level, our construction works as follows (a full
formal description is in Appendix C):
15 Some hints to see why: the required bound in Theorem 8, for r ∈ Oλ(1), is in O(λ + log(ϕ + λn)) ⊆

O(λ log ϕ log n); we can then use the fact that log ϕ, for ϕ defined as above, is Θ(λ + log log(λn)).
16 Simpler, but more wasteful, choices of ϕ are also possible, such as ϕn,λ = poly(λ) · n.
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– sample a key pair (pk, sk) for the encryption scheme;
– encrypt the vector w using pk obtaining a tuple of field elements17 ctw;
– secret share the decryption key sk (through additive secret sharing) obtaining ℓ + 1 shares, each a

field element;
– let v be the vector of scalars obtained by concatenating the ciphertext ctw, the public key pk and

the secret shares. The output of the encoding is the polynomial f whose coefficients are defined by
the vector v.
The decoding process is straightforward: on input the coefficients of f , parse them appropriately,

reconstruct the secret key sk, decrypt ctw and return the resulting plaintext.

Below we further expand on some requirements and parameters for the encryption scheme. The defi-
nition below bundles together some efficiency requirements that simplify our treatment. The specific
concrete bounds are not crucial for our approach to work (they mostly stem from the instantiation in
Remark 2); our efficiency profile would still follow with O(poly(λ)) larger parameters and there exist
instantiations other than the ones in Remark 2 satisfying them.

Definition 19 (Mildly Compact PKE). Consider a PKE scheme over a field Fλ parametrized by
λ ∈ N with |F| = O(2λ) if it is correct and secure and if it satisfies the following efficiency parameters
(in field elements):

– the secret key |sk| consists of a single field element
– κ = 2 (public-key size)
– n′ = 4λn (ciphertext size, for a plaintext of size n)
– the encryption algorithm runs in time Oλ(n)

Remark 2 (Possible instantiations of the PKE). For simplicity (it makes part of the treatment easier)
we require a PKE whose secret key can be represented as a field element, while its public key and
ciphertexts can be described as vectors of field elements in the same field. We observe that El Gamal
encryption can be instantiated with some care to satisfy this syntax. In particular it is possible to
use an elliptic curve where DDH is hard, whose elliptic curve points can be described as pairs of
the type F2 and whose discrete logarithms can be described as elements in the same field F (the
last two requirements can be summarized as: the scalar field and the base field of the elliptic curve
should be roughly the same). An example of such an instantiation would be through the 2-tower of
curves provided by the Jabberwock curve on top of Ristretto25519 described in [CHA22]. For efficient
decryption we can use bit-by-bit El Gamal encryption.

Remark 3 (Size of the encoding). Let ϕ and ϕn,λ as in Theorem 2. When choosing ℓ = ϕn,λ, the
encoding a string of size n through the construction in this section has size d = ϕn,λ + O(λn) when we
instantiate the underlying encryption scheme in our PES with one satisfying Definition 19.

Remark 4 (Efficiency of proving encryption in zero-knowledge). The choice of fields as described in
Remark 2 is also particularly useful because it allows to prove encryption (and the whole encoding
of the polynomial) through efficient techniques using Bulletproofs (our choice of instantiation for the
simulation-extractable NIZK) as described in [CHA22] and [CHAK23].

Remark 5 (On secret-key encryption as an alternative approach). We stress that, from a security stand-
point, our techniques in this section do not strictly require public-key encryption. Secret-key encryption
with (multi-)message indistinguishability could actually be enough with straightforward adaptations
of our construction. The reasons we decided to express our solution through public-key encryption lie
essentially in Remark 2 and Remark 4: it is easy to come up with instantiations of public-key schemes
where the secret key, the plaintexts and ciphertexts can be embedded in a field keeping the overall
scheme efficient. Secret-key solutions are usually bit-string based and would require some form of em-
bedding. This would simply be slightly more awkward to capture in a fully formal way. Moreover, we
would not be able to exploit algebraic properties of efficient SNARKs for efficiency in the secret-key
setting.
17 We assume that both the ciphertext and the public key can be parsed in such a manner, i.e. as a vector of

field elements. We later discuss candidate schemes where this assumption holds.
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5.3 Instantiation of the Succinct Polynomial Commitment Scheme

We consider a variant of the Bulletproofs polynomial commitment scheme [BBB+18]. Since we require
special properties to satisfy the hypothesis of Theorem 2, we build it starting from the inner-product
argument described by Dao and Grubbsin [DG23]. We then observe that we can use several properties
proven by [DG23] as a bridge to obtain all the special polynomial commitment features required
by [GKO+23].

5.3.1 Building Block: Inner-Product Argument We describe the inner-product argument
based on Bulletproofs in Fig. 6. We will use the following result to prove properties of our polynomial
commitment:

Theorem 4 ( [BBB+18,DG23]). The construction BP-IPAFS (i.e., the protocol in Fig. 6 compiled
with Fiat-Shamir) is complete, knowledge-sound, 0-unique response under the DLOG assumption in
the random-oracle model (see Appendix for definitions).

Inner Product Relation. Given n = 2k and g, h ∈ Gn, u ∈ G,

RBP-IPA =
{

((n, g, h, u), P, (a, b)) | P = gahbu⟨a,b⟩} .

Interaction Phase. Set n0 ← n, g(0) ← g, h(0) ← h, P (0) ← P, a(0) ← a, b(0) ← b. For i = 1, . . . , k :
1. P computes ni = ni−1/2, cL =

〈
a(i−1)

[:ni] , b(i−1)
[ni:]

〉
, cR =

〈
a(i−1)

[ni:] , b(i−1)
[:ni]

〉
, and

Li =
(

g(i−1)
[ni:]

)a(i−1)
[:ni] ·

(
h(i−1)

[:ni]

)b(i−1)
[ni:] · ucL , Ri =

(
g(i−1)

[:ni]

)a(i−1)
[ni:] ·

(
h(i−1)

[ni:]

)b(i−1)
[:ni] · ucR

P sends Li, Ri to V.
2. V sends challenge xi

$← F∗.
3. P,V both compute P (i) = L

x2
i

i · P
(i−1) ·Rx−2

i
i , and

g(i) =
(

g(i−1)
[:ni]

)x−1
i ◦

(
g(i−1)

[ni:]

)xi

, h(i) =
(

h(i−1)
[:ni]

)xi

◦
(

h(i−1)
[ni:]

)x−1
i

.

4. P computes a(i) = a(i−1)
[:ni] · x

−1
i + a(i−1)

[ni:] · xi, b(i) = b(i−1)
[:ni] · xi + b(i−1)

[ni:] · x
−1
i .

After k rounds, P sends a(k), b(k) to V.
Verification. V checks whether P (k) ?=

(
g(k))a(k)

·
(
h(k))b(k)

· ua(k)·b(k)
.

Fig. 6: Bulletproofs’ Inner Product Argument BP-IPA

5.3.2 The Polynomial Commitment Scheme We describe our polynomial commitment BP-PC
in Fig. 7 and its core building block, the inner-product argument BP-IPA18, in Fig. 6.

The following theorems summarize the security properties we use to instantiate Theorem 2. We
refer the reader to Appendix C and Appendix D for details on the proofs. The PES from Section 5.2
is described in full formal details in Definition 28 in Appendix C.3. The specific bounds in Theorem 6
come from our leakage analysis

Theorem 5. The construction BP-PC in Fig. 7 is a polynomial commitment scheme satisfying cor-
rectness, evaluation binding and unique-response (see Section 2.4) under the DLOG assumption in the
random-oracle model (Assumption 1 in the Appendix).
18 We remark that arguments for linear maps (rather than inner product), such as Compressed Σ-

protocols [AC20] would also have been sufficient for our application. The argument BP-IPA offered the
advantaged of having been studied exactly as in the formulation in Fig. 6 under the lens of 0-unique re-
sponse in [DG23].
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– PCGen(1λ, d)→ ck: Sample random generators g ∈ Gd, h ∈ Gd, u ∈ G. Output ck := (g, h, u).

– Com(ck, f ∈ F<d[X])→ cm: Output cm := ga where f(X) :=
∑d−1

i=0 aiX
i

– Eval(ck, f ∈ F<d[X], x ∈ F) → π: Let y = f(x), b =
(
x0, . . . , xd−1)

recompute cm ← Commit(ck,

f). Let P = gahbuy. Run BP-IPAFS, the (Fiat-Shamir version of the) protocol in Fig. 6 between
P(ck, P, (a, b)) and V(ck, P ). Return π, the resulting transcript.

– Check(ck, cm, x ∈ F, y ∈ F, π): Compute b =
(
x0, . . . , xd−1)

. Let P = cm · hbuy. Check that proof π
for BP-IPAFS verifies on public input P ; reject otherwise.

Fig. 7: Bulletproofs-based Polynomial Commitment BP-PC. All algorithms have implicitly access to
the random oracle. For simplicity, we describe PCGen as explicitly sampling the Pedersen basis, but it
can be sampled using the RO.

Theorem 6. Under the DLOG assumption and the existence of a mildly compact PKE (Definition 19)
the construction BP-PC in Fig. 7 is ϕ-admissible with respect to the PES from Section 5.2, where ϕ
satisfies the bound ϕ(λ, n, r) > 1 + 2r (1 + 2⌈log(ϕ(λ, n, r) + 7λn)⌉).

5.4 Instantiation of the Succinct Simulation-Extractable NIZK

In order to instantiate our framework we consider the full-blown version for arithmetic circuits of
Bulletproofs [BBB+18].

Theorem 7 ( [DG23]). Non-Interactive Bulletproofs compiled with Fiat-Shamir is a simulation-
extractable NIZK under the DLOG assumption in the random oracle model. The resulting scheme has
proofs of size Oλ(log n) where n is the multiplicative complexity of the arithmetic circuit describing the
relation.

Remark 6 (On the technical challenges around suitable building blocks). As mentioned in the introduc-
tion, the compiler in [GKO+23] requires a polynomial commitment with unique proofs and satisfying
a weak form of hiding, evaluation hiding, when paired with an encoding scheme. Although these are
relatively unstudied properties for polynomial commitments (the second notion was introduced in their
work) Ganesh et al. are able to use KZG [KZG10], a polynomial commitment with a trusted setup, for
their instantiations. Since our goal was to achieve a transparent proof system, this changed the pool
of candidate proof systems. While there exist several transparent schemes in literature, to the best
of our knowledge, only Bulletproofs-based techniques [BBB+18] have been studied in terms under a
lens similar to that of unique proofs [DG23], which made it a natural starting point. On the other
hand, Bulletproofs had a completely different leakage profile than KZG and therefore none of the
simple encoding techniques in [GKO+23] were applicable (or even pointed in the right directions)—
we had to try completely different approaches. After several false starts, we landed on the potentially
suitable technique based on secret sharing. Yet, this still required analyzing it under the lens of the
inner-product-flavored leakage that is specific to Bulletproofs. The latter contained a large part of our
technical challenges: none of the existing literature on secret sharing (to the best of our knowledge)
could offer insights on how to approach this; we therefore had to rely on and develop our own tools
(mainly in Appendix C and Appendix D.3).

Remark 7 (Differences between the “NIZK” Bulletproofs and our “Bulletproofs-based polynomial com-
mitment”). We clarify some differences between the construction in this sub-section and the one in
Section 5.3. First, for polynomial commitments we require only a very basic component of Bulletproofs,
namely its inner-product argument. On the other hand, for the NIZK we need the whole machinery of
the argument system: it needs to be able to handle arbitrary arithmetic circuits. Second, in order to
satisfy the requirements of Theorem 2 the two—the NIZK and the polynomial commitment—need to
satisfy very different requirements: the NIZK needs to be simulation-extractable (and zero-knowledge);
for the polynomial commitment scheme full-blown zero-knowledge and extractability are not required—
we require instead weaker properties such as evaluation-binding, hiding with respect to some polyno-
mial encoding schemes, et cetera. We remark for example that BP-IPA is completely deterministic and
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does not satisfy zero-knowledge as it is. Further implications of these fine-grained requirements had
to do with the technical work required to prove the respective requirements: for NIZK Bulletproofs,
these came out-of-the-box from [DG23], whereas for the polynomial commitment scheme they required
additional observations (see also discussion in the Technical Overview).
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Supplementary Material

A The Shielded Oracle Framework [BDH+17]

We give here a brief overview of the main definitions of the framework of [BDH+17]. The main ingre-
dients compared to standard UC are threefold:
1. The definition of a shielded oracle O and the definition of adjoined functionalities FO.
2. The definition of a new environment class Z[FO].
3. A composable UC-realization notion π ≥FO ϕ.

We give first give the definitions from [BDH+17] for completeness here:

Definition 20 (Shielded oracles). A shielded oracle is a stateful oracle O that can be implemented in
quasi-polynomial time. By convention, the outputs of a shielded oracle O are of the form (output-to-fnct,
y) or (output-to-adv, y).

Definition 21 (O-adjoined functionalities). Given a functionality F and a shielded oracle O,
define the interaction of the O-adjoined functionality FO an ideal protocol execution with a session
identifier sid as follows

– FO internally runs an instance of F with session identifier sid
– When receiving the first message x from the adversary, FO internally invokes O with input (sid, x).

All subsequent messages from the adversary are passed to O.
– Messages between the honest parties and F are forwarded.
– Corruption messages are forwarded to F and O.
– When F sends a message y to the adversary, FO passes y to O.
– The external write operations of O are treated as follows:
• If O sends (output-to-fnct, y), FO sends y to F.
• If O sends (output-to-adv, y), FO sends y to the adversary.

UC-realization notion. Let IDEAL(FO) be the ideal protocol with functionality FO as defined
in [Can01].

Definition 22 ( The FO execution experiment). An execution of a protocol σ with adversary A
and an FO-augmented environment Z on input a ∈ {0, 1}∗ and with security parameter λ ∈ N is a
run of a system of interactive Turing machines (ITMs) with the following restrictions:

– First, Z is activated on input a ∈ {0, 1}∗.
– The first ITM to be invoked by Z is the adversary A.
– Z may invoke a single instance of a challenge protocol, which is set to be σ by the experiment. The

session identifier of σ is determined by Z upon invocation.
– Z may pass inputs to the adversary or the protocol parties of σ.
– Z may invoke, send inputs to and receive outputs from instances of IDEAL(FO) as long as the

session identifiers of these instances as well as the session identifier of the instance of σ are not
extensions of one another.

– The adversary A may send messages to protocol parties of σ as well as to the environment.
– The protocol parties of σ may send messages to A, pass inputs to and receive outputs from subpar-

ties, and give outputs to Z.

Denote by Exec(σ,A,Z[FO])(λ, a) the output of the FO-augmented environment Z on input a ∈
{0, 1}∗ and with security parameter λ ∈ N when interacting with σ and A according to the above
definition. Define Exec(σ,A,Z[FO]) = {Exec(σ,A,Z[FO])(λ, a)}a∈{0,1}∗,λ∈N

Definition 23. Let π and ϕ be protocols. π is said to emulate ϕ in the presence of FO-augmented
environments, denote by π ≥FO ϕ, if for any PPT adversary A there exists a PPT adversary (called
simulator) Sim such that for every FO-augmented PPT environment Z it holds that:
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Exec(π,A,Z[FO]) ≈ {Exec(ϕ, Sim,Z[FO]).

The definition is shown to be composable in the sense of [Can01] when considering the richer class
of environments.

Definition 24 (The FO emulation with respect to the dummy adversary [BDH+17]). The
dummy adversary D is an adversary that when receiving a message (sid, pid, m) from the environment,
sends m to the party with party identifier pid and session identifier sid, and that, when receiving m
from the party with party identifier pid and session identifier sid, sends (sid, pid, m) to the environment.
Let π and ϕ be protocols. π is said to emulate ϕ in the presence of FO-augmented environments with
respect to the dummy adversary

∃SimD∀Z : Exec(π, D,Z[FO]) ≈ {Exec(ϕ, SimD,Z[FO])

Proposition 1 ( [BDH+17]). Let π and ϕ be protocols. π is said to emulate ϕ in the presence of FO-
augmented environments if and only if ϕ emulates π in the presence of FO-augmented environments
with respect to the dummy adversary.

Finally, we report the definition of polynomial simultability introduced in [BDH+17]. This notion
is useful in [BDH+17] to prove the compatibility of the UC framework. In particular, it implies that
the presence of the augmented functionality, despite its super-poly power, does not harm composition
with standard UC. The intuitive reason is that the powerful oracle is sufficiently shielded to prevent
adverse effects on the rest of the system.

Definition 25. Let O be a shielded oracle, F a functionality. Say that O adjoined to F is polynomially
simulatable if there exists a (PPT) functionality M such that for all F O-augmented environments Z
it holds that FO ≥FO M.

We note that the FO
NIZK defined in Fig. 4 enjoys this property this follows from Theorem 1. This

is because the only output of the adjoined oracle visible via the attacker’s interface is proof strings
for problem instances x for which the functionality has seen the witness w, even if it does not use
w to generate them (as per zero-knowledge requirements). Therefore, the execution of the adjoined
oracle could be replaced by a PPT machine M that generates the proof following the honest prover
procedure on input (x, w). Using Theorem 1 it is possible to argue that a polynomial attacker can not
distinguish how the proof is generated assuming the GRO-hybrid model. Further, the above argument
can be carried out even for parallel executions of FO

NIZK since a proof issued in a session is rejected in
any session that is not the one in which the proof is generated.

B Main Definitions and Compilers to Witness-Succinct UC-NIZKs

In Appendix B.1, we give a comparison between the definitions in [GKO+23] and our minor adaptions
in Section 2.4. Finally, we show the compiler of [GKO+23] for the sake of self-containment.

B.1 On the Differences between our Definitions and [GKO+23]

We applied the following changes compared to the original framework in [GKO+23]19:
– we removed the explicit randomness in the polynomial commitment (our focus is on deterministic

commitments);
– we explicitly add the RO to the algorithms and adversaries of the polynomial commitments;
– more generally, the polynomial encoding scheme takes as input a parameter λ (we use this in our

construction);
– for evaluation hiding and non-extrapolation, we let ϕ be a function of both n and the size of z

rather than only the latter. We also let it be a function of λ. This is more general and it is actually
necessary in our constructions.

19 We stress that all these changes have no noteworthy implications for the original security proofs in [GKO+23].
We made sure of this by inspecting the original proofs and by private communication with the authors.
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– we generalize the “stretch” introduced by the encoding through the function stretch. The quantity
stretch(λ, n, ℓ) reflects how much larger than w is the encoding of w ∈ Fn when using ℓ additional
randomness and with security parameter λ. This was assumed to be always ℓ in [GKO+23]. We
stress that this change does not affect the proofs and does not impact the efficiency analysis in any
substantial way: our stretch stays Oλ(n) as in [GKO+23];

– we let some parameters such as n and r be quantified universally rather than being provided by
the adversary;

– we simplify the definition by removing the explicit evaluation domain and just sampling points
randomly from the field (in both our construction and the one in [GKO+23] this is sufficient for
security because of the asymptotic size of the field);

– we removed bounded independence as an essential property of polynomial encoding schemes. This
is used in [GKO+23] to prove ϕ-evaluation hiding, but we do not need it.

B.2 The compiler ΠGKOPTT of [GKO+23] in an RO-only world.

In this section, we describe the compiler, UC protocol ΠGKOPTT, of [GKO+23] for NP-relation R. This
section is taken almost verbatim from [GKO+23] with the adjustments related to our instantiations
based on the random oracle with transparent setups and to other cosmetic changes as pointed out
in Section 5. Specifically, recall that the compiler makes use of the following tools:

– Let ΠNIZK be a simulation-extractable NIZK in the RO model (Definition 7), for the relation
RNIZK = {((x, ck, n, ℓ), (w, ρw)) : (x, w) ∈ R∧ c = Com (ck, Enc (w, n, ℓ; ρw))} where w denotes the
witness w parsed as a vector of field elements in Fn.

– Let ΠPCS be a polynomial commitment scheme with evaluation binding, unique proofs (Defini-
tion 11), ϕ-evaluation hiding (Definition 14), and supports ϕ-non-extrapolation (Definition 15)
with respect to the encoding scheme PES = (Enc, Dec) (Definition 13).

Protocol parameters. The protocol is parameterized by:
1. Security parameter λ
2. Finite field F
3. Evaluation hiding factor ϕ : Z+ × Z+ × Z+ → Z+ and stretch stretch : Z+ × Z+ × Z+ → Z+

4. Number of parallel repetitions r = r(λ) > 0
5. Proof-of-work parameter b(λ) > 0
6. Bound T (λ) > 0
7. Maximum degree bound D > 0 for ΠPCS

Protocol description. The protocol in UC is formulated with FRO as its hybrid functionality, which
is the usual UC RO functionality. We use the notation FRO to clearly distinguish it from a global
random oracle used in other parts of this work. Furthermore, the underlying NIIZK ΠNIZK is defined
in the standalone model w.r.t. to a random oracle which is denoted H as per Definitions in Section 2.3.
Not surprisingly, the UC protocol will use its hybrid functionality to answer the RO-invocations made
by ΠNIZK.

– Proof: On input (prove, sid, x, w), ignore if (x, w) /∈ R; otherwise, Pi does:
1. Send (query, (sid, x, genparamsproof)) to FRO receiving back pp.
2. Send (query, (sid, x, genparamspc)) to FRO receiving back ck.
3. Parse w = w ∈ Fn. Let ℓ := ϕ(λ, n, r) and d := stretch(λ, n, ℓ) + n. If d > D, abort by outputting

(proof, sid, ⊥).
4. Generate a polynomial encoding of the witness vector: f ← Enc

(
1λ, w, n, ℓ; ρw

)
, where ρw ← Fℓ.

5. Generate a commitment to the polynomial encoding: cm← Com (ck, f)
6. Run the prover P of ΠNIZK on input x′ = (pp, (x, ck, n, ℓ)) and w′ = (w, ρw) to obtain a proof π′.

Whenever P makes a call to H with input in, send (query, (sid, in, proof)) to FRO to receive a
response out which is forwarded to P.

7. Initialize empty sets z, y, and πPCS.
8. For each iteration i ∈ [r] do:

(a) Initialize counter ctr := 0 and set of used evaluation points Di := ∅.
(b) If ctr = T , abort by outputting (proof, sid, runout_eval).
(c) Sample an evaluation point: zi ←$ F\Di. Update ctr := ctr + 1. Update Di := Di ∪ {zi}.
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(d) Compute yi = f (zi) and evaluation proof πi ← Eval (ck, cm, zi, yi, f), whenever Eval makes
a call to H with input in, send (query, (sid, in, proofpcs)) to FRO to receive a response out,
forwarded to Eval.

(e) Send (query, ( sid, (C′, cm, zi, yi, πi, i))) to FRO. Upon receiving v from FRO, if the first b bits
of v are not 0b, go to step 8b. Otherwise, store zi, yi, and πi in z, y, and πPCS, respectively.

9. Output (proof, sid, π), where π := (π′, cm, z, y, πPCS).
– Verification: Upon receiving input (verify, sid, C, π), Pi does:

1. Send (query, (sid, x, genparamsproof)) to FRO receiving back pp.
2. Send (query, (sid, x, genparamspc)) to FRO receiving back ck.
3. Parse π = (π′, cm, z, y, πPCS). Derive the witness size n from the description of C. Compute ℓ and

d as Proof would and if d > D abort by outputting (verification, sid, 0).
4. Define the statement x′ as the Proof step would.
5. Parse z = (zi)i∈[r] , y = (yi)i∈[r], and πPCS = (πi)i∈[r].
6. Output (verification, sid,1) if all of the following checks pass, otherwise output (verification,

sid, 0):
(a) ΠR.V(pp, x′, π′) outputs 1. (Calls to H by V handled like above).
(b) For all i ∈ [r] : 1 = Check(ck, cm, d, zi, yi, πi), whenever Check makes a call to H with input

in, send (query, (sid, in, checkpcs)) to FRO to receive a response out which is forwarded to
Check

(c) For all i ∈ [r]: send (query, (sid, (C′, cm, zi, yi, πi, i))) to FRO, and the first b bits of the
return value vi are 0b.

Lemma 2. The above compiler adapted from [GKO+23] to the RO-only world preserves UC-security.

Proof. First, we observe that the definition of simulation-extractability in Definition 7 that we assume
above is slightly different from the one used in [GKO+23], as we are in the random oracle model and
we let the extractor access the adversary in a black-box way (instead of providing the code to the
extractor). We observe that the original proof is not affected by this change: this is because their
results hold in the RO and the only point in the proof where they rely on simulation extractability
property is in a reduction where the random oracle can be programmed accordingly.20.

Finally, we also observe that their simulator can be modified to work in the RO-only world. From the
description of the simulator-extractor of ΠGKOPTT at page 18 (Figure 5) of the full-version of [GKO+23],
it is possible to conclude that the extraction relies on the observability of the random oracle, which
is obviously true for our RO-only version of the compiler, since we only need the RO to be local.
Furthermore, the simulator relies on the simulator of the underlying ΠNIZK. While in [GKO+23], this
is based on an extra functionality FSetup, we simply emulate that functionality using the local RO.
This is fine, since our building blocks are defined w.r.t. the random oracle only. ⊓⊔

C Our Polynomial Encoding Scheme

C.1 Further leakage-resilience properties of additive secret sharing

In this section we describe and prove some properties that will be useful to prove security of our
polynomial encoding scheme (both alone and when combined with our polynomial commitment). The
set of properties we will rely on can be described as a form of leakage-resilience of the secret sharing
scheme when the adversary is allowed to query (appropriately distributed) linear combinations of the
shares.

We start by defining the following game.

Definition 26 (Linear leakage resilience). Let adm : {0, 1}∗ → {0, 1} be a predicate (which we
will call it “admissibility” predicate from now on). Let SS be the secret sharing scheme in Definition 2.
Let (Fλ)λ∈N be a family of finite fields such that |F| ∈ O(2λ). We say that SS is resistant against
adm-linear leakage if for any (possibly unbounded) A = (A1,A2) for any λ ∈ N, ℓ ≥ 1

Pr[GSS-lin(A, λ, ℓ) = 1] ≤ 1
2 + negl(λ)

20 This was confirmed by private communication with the authors. Note also that at page 20 of the full version
of [GKO+23] it is indeed discussed that their result can be instantiated using [BBB+18], which satisfies the
above definition as proven in [DG23].
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where GSS-lin is described in Fig. 8 and we use Fλ as a field for SS.

GSS-lin(A, λ, ℓ) :

(s ∈ F, st)← A1(1λ, 1ℓ)
Sample b←$ {0, 1}
if b = 0 then

σ ← SS.Share(ℓ + 1, s)
else

σ ←$ Fℓ+1

b′ ← AO
2 (st)

Return 1 if b = b′ ∧ adm(Θ); else return 0

The oracle O(θ) is such that:
– it returns ⟨θ, σ⟩ if the adversary asked fewer than ℓ queries so far;
– if the adversary already requested ℓ queries, then return ⊥

Above, Θ is the concatenation of the queries (θ(1)|| . . . ||θ(ℓ)) requested by the adversary.

Fig. 8: Game GSS-lin.

We now provide a definition that will make more sense in light the proof of Lemma 3.

Definition 27. Let Θ = (θ(1)|| . . . ||θ(ℓ)) be the queries made by an adversary during an execution of
GSS-lin (Fig. 8) where for each i ∈ [ℓ] θ(i) ∈ Fℓ+1 Consider the following ℓ-by-ℓ matrix MΘ:

MΘ =



θ
(1)
1 + θ

(1)
ℓ+1 θ

(2)
1 + θ

(2)
ℓ+1 · · · θ

(ℓ−1)
1 + θ

(ℓ−1)
ℓ+1 θ

(ℓ)
1 + θ

(ℓ)
ℓ+1

θ
(1)
2 + θ

(1)
ℓ+1 θ

(2)
2 + θ

(2)
ℓ+1 · · · θ

(ℓ−1)
2 + θ

(ℓ−1)
ℓ+1 θ

(ℓ)
2 + θ

(ℓ)
ℓ+1

...
. . . . . . . . .

...

θ
(1)
ℓ−1 + θ

(1)
ℓ+1 θ

(2)
ℓ−1 + θ

(2)
ℓ+1 · · · θ

(ℓ−1)
ℓ−1 + θ

(ℓ−1)
ℓ+1 θ

(ℓ)
ℓ−1 + θ

(ℓ)
ℓ+1

θ
(1)
ℓ + θ

(1)
ℓ+1 θ

(2)
ℓ + θ

(2)
ℓ+1 · · · θ

(ℓ−1)
ℓ + θ

(ℓ−1)
ℓ+1 θ

(ℓ)
ℓ + θ

(ℓ)
ℓ+1


(⋆)

We define the admissibility predicate admdet as the one that is true iff det(MΘ) ̸= 0.

Lemma 3. Let (Fλ)λ∈N be a family of finite fields such that |F| = O(2λ) and let SS be defined as in
Definition 2 and admdet as in Definition 27. Then SS is resistant against admdet-linear leakage.

Proof. Consider the adversary’s oracle queries θ(1), . . . , θ(ℓ) in the game in Fig. 8. For each i ∈ [ℓ], let
θ(i) =

(
θ

(i)
1 , . . . , θ

(i)
ℓ+1

)
. By definition of the sharing algorithm in SS, after the i-th query, the adversary

receives
y(i) =

(
θ

(i)
1 + θ

(i)
ℓ+1

)
· s1 + . . .

(
θ

(i)
ℓ + θ

(i)
ℓ+1

)
· sℓ + θ

(i)
ℓ+1s′

In order to prove our statement, we proceed as it is common in secret sharing: we claim that for any
guess on s′ a certain system of equations defined by the linear combination queries will always have
exactly one solution. This allows us to claim that the information received by the adversaries does not
allow them to discern among different possible values of s′. Thus, for each i, let ŷ(i) := y(i) − θ

(i)
ℓ+1s′

and consider the following system of equations:
θ

(1)
1 + θ

(1)
ℓ+1 · · · θ

(1)
ℓ + θ

(1)
ℓ+1

... . . . ...
θ

(ℓ)
1 + θ

(ℓ)
ℓ+1 · · · θ

(ℓ)
ℓ + θ

(ℓ)
ℓ+1


s1

...
sℓ

 =

ŷ(1)

...
ŷ(ℓ)

 (1)
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Notice that the ℓ-by-ℓ matrix M on the left in Eq. (1) is the transpose of the one defined in Definition 27.
This allows us to conclude that the system of equations above admits exactly one solution (regardless
of the value of s′) if and only if det(M) ̸= 0. Observing that the latter property matches the definition
of admdet in Definition 27 concludes the proof. ⊓⊔

C.2 Further Analysis of admdet-Linear Leakage

In this section we make further observations on the structure of admdet (Definition 27). In particular
we will observe when the matrix MΘ in Eq. (⋆) has a non-zero determinant.

Recall that if we add or subtract a multiple of a row/column from a matrix, its determinant will
not change. We then first subtract the first row from all others obtaining:
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(2)

We can then apply Laplace expansion to the first row and observe that:

det(MΘ) =
∑
k∈[ℓ]

(−1)k+1 ·
(

θ
(k)
1 + θ

(k)
ℓ+1

)
· det(MΘ,(1,k))

where MΘ,(1,k) is defined as the matrix obtained removing the first row and the k-th column in MΘ.
By continuing expanding each minor one row at the time we can convince ourselves that det(MΘ) has
the following form: ∑

π

±
(

θ
(π(1))
1 + θ

(π(1))
ℓ+1

) (
θ

(π(2))
2 − θ

(π(2))
1

)
. . .

(
θ

(π(ℓ))
ℓ − θ

(π(ℓ))
1

)
(†)

where above π is enumerated over all possible permutations of [ℓ] and ± denotes a plus or minus sign
that is a function of π (we leave it unspecified since it will not be necessary for our observations later
on).

C.3 Secret-Sharing Based Polynomial Encoding Scheme

We are now ready to describe our polynomial encoding scheme. We apply a different encoding scheme
(see Definition 13) than the one in the work in [GKO+23]. The reason is that we will need additional
properties, namely that the adversary cannot learn any useful information by a bounded number of
(appropriately distributed) linear combinations of the coefficients of the output of the encoding. Our
polynomial encoding scheme can be seen as defining a polynomial whose coefficients are partly the
output of a secret sharing of a secret key, partly ciphertexts of the original string to be encoded (plus
the public key).

Definition 28 (Secret-Sharing Based Encoding). Let PKE be a public-key encryption scheme
and let SS be a secret sharing scheme, then we define PESss = (Enc, Dec) as follows:
♦ Enc(1λ, w, n, ℓ) :

(pk, sk)← PKE.KG(1λ)
ctw ← PKE.Enc(pk, w)
s← SS.Share(ℓ + 1, sk)
Let d := ℓ + 1 + |pk|+ |ctw|
Let f(X) :=

∑
0≤i<d fi+1Xi where f := (s||pk||ctw)

return f

♦ Dec(1λ, f, n, ℓ) :
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// the sizes of the subvectors below is known
Parse the coefficients of f as f = (s||pk||ctw)
sk← SS.Reconstr(ℓ, s)
w← PKE.Dec(sk, ctw)
return w

The stretch is stretch(λ, n, ℓ) = (ℓ + 1) + κ + n′(n)− n, where κ and n′ are as in Definition 1 (i.e.,
they are respectively the size of the public key and of the ciphertext in field elements).

D Proofs for the Security of BP-PC

D.1 Proof of Theorem 5

Proof. Correctness. Correctness follows immediately from the completeness of the BP-IPA construc-
tion and by inspection: we are reducing polynomial evaluation to checking the inner product between
the coefficient of the polynomial (vector a) and the vector of powers of the evaluation point (vector
b).
Evaluation binding. To show evaluation binding, consider an adversaryA providing a tuple (cm, z, y, π, y′, π′).
In order for the adversary to win in the experiment the following conditions need to hold: y ̸= y′;
BP-IPAFS.Verify(ck, P, π) = 1; BP-IPAFS.Verify(ck, P ′, π′) = 1, where P = cm · hbuy, P ′ = cm · hbuy′ ,
b =

(
z0, . . . , zd−1)

.
Now consider the following adversary for the DLOG experiment (Assumption 1) for 2n + 1 generators
g1, . . . , gn, h1, . . . , hn, u:

ADLOG(G, g1, . . . , gn, h1, . . . , hn, u)

Let ck := (g, h, u)(
cm, z, y, π, y′, π′)← A(ck)

(â, b̂)← B(ck, cm, z, y, π)

(â′, b̂′)← B′(ck, cm, z, y′, π′)
Let a′′ := â − â′

Let y′′ := ŷ − ŷ′ − y + y′ where ŷ := ⟨â, b̂⟩, ŷ′ := ⟨â′, b̂′⟩

Let b′′ := b̂− b̂′

Return
(
a′′||b′′||y′′)

Above B (resp. B′) compute P ← cm · hbuy (resp. P ← cm · hbuy′) where b =
(
z0, . . . , zd−1)

and
return the output of the BP-IPA extractor EBP-IPAFS on (P, π) (resp. (P ′, π′)) .

Throughout the remainder of this proof we will make use of this fact: if Pr[A] is non-negligible then
it must be that Pr[A ∧B] is non-negligible or Pr[A ∧ ¬B] is non-negligible.

Let E∗ the event “A winning the evaluation binding game”. Now assume A breaks evaluation
binding, that is Pr[E∗] is non-negligible. We consider two cases:

– Case 1: Pr[â = â′ ∧E∗] is non-negligible: We now consider two sub-cases:
• Case 1a: Pr[â = â′ ∧ b̂ = b̂′ ∧ E∗] is non-negligible: We can show that this case leads to

a contradiction as follows. First, observe that whenever A wins the evaluation binding game
we have that P ̸= P ′ by their definition in the polynomial commitment verifier. Therefore
Pr[P ̸= P ′ |E∗] = 1. We proceed to show a contradiction by showing that Pr[P = P ′ |E∗] > 0.
Observation: that whenever the extractors work correctly we have that â = â′ ∧ b̂ = b̂′

implies P = P ′ since:
P = gâ · hb · u⟨â,b⟩ ∧ P ′ = gâ · hb · u⟨â,b⟩

Let us denote by Eext the event that extractor works correctly when invoked both in B and in B′.
By knowledge soundness we know that Pr[Eext] is overwhelming. Notice that Pr[P = P ′] > 0
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implies that Pr[P = P ′ |E∗]. We observe that:

Pr[P = P ′] ≥ (3)
Pr[â = â′ ∧ b̂ = b̂′ ∧Eext] = (4)
Pr[â = â′ ∧ b̂ = b̂′ |Eext] · Pr[Eext] ≥ (5)
Pr[â = â′ ∧ b̂ = b̂′ |Eext]− negl (6)

where the first inequality follows from the first observation; the last inequality follows from
knowledge soundness. It remains now to show that Pr[â = â′ ∧ b̂ = b̂′ |Eext] is non-negligible.
Recall that by hypothesis Pr[â = â′ ∧ b̂ = b̂′ ∧ E∗] is non-negligible. Let us denote the latter
probability by µ. Then:

µ = Pr[â = â′ ∧ b̂ = b̂′ |Eext] · Pr[Eext] + Pr[â = â′ ∧ b̂ = b̂′ ∧E∗ ∧Eext]

By applying knowledge soundness and denoting through ϵ and ϵ′ two negligible functions, the
above implies:

Pr[â = â′ ∧ b̂ = b̂′ |Eext] = µ− ϵ

Pr[Eext]
= µ

Pr[Eext]
− ϵ′

≥ µ− ϵ′

≥ non-negligible

• Case 1b: Pr[â = â′ ∧ b̂ ̸= b̂′ ∧E∗] is non-negligible: Under the assumptions of case 1b, we
can show the following: if A wins the evaluation-binding game with non-negligible probability
p∗, then ADLOG wins the DLOG game with non-negligible probability. In order to see this, it
is sufficient to combine the following two claims:

∗ Claim (i): if p∗ is non-negligible then Pr[b̂ ̸= b̂′ ∧E∗] is non-negligible
∗ Claim (ii): the winning probability of ADLOG is negligibly close to Pr[b̂ ̸= b̂′ ∧E∗].

To prove Claim (i), it is sufficient to observe that:

Pr[b̂ ̸= b̂′ ∧E∗] =
Pr[b̂ ̸= b̂′|E∗] · Pr[E∗] ≥
Pr[â = â′ ∧ b̂ ̸= b̂′ |E∗] · Pr[E∗]
(1/q(λ)) · p∗ ≥ non-negligible

were q is some polynomial in λ. We now prove Claim (ii). We first observe that, by knowledge-
soundness of BP-IPA the following holds with overwhelming probability:

P = gâ · hb̂ · uŷ ∧ P ′ = gâ′
· hb̂′

· uŷ′
(7)

where all variables are as defined in the code of ADLOG. Applying Eq. (7) we can conclude
that

P

P ′ = ga′′
· hb′′

· uŷ−ŷ′
(8)

At the same time, by construction of the polynomial commitment verifier we know that:

P

P ′ = cm · hb · uy

cm · hb · uy′ = uy−y′
(9)

Combining Eq. (8) and Eq. (9) we can conclude that

ga′′
· hb′′

· uŷ−ŷ′−y+y′
= ga′′

· hb′′
· uy′′

= 1G (10)

Finally, we observe that whenever A wins the evaluation binding game and b̂ ̸= b̂′ at least one
entry in the vector (a′′||b′′||y′′) will be non-zero, which concludes the proof.
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– Case 2: Pr[â ̸= â′ ∧ E∗] is non-negligible: here we reason similarly to case 1b and argue that
the winning probability of ADLOG is negligibly close to Pr[â ̸= â′ ∧E∗].
Unique-Response. Unique-response (Definition 12) follows directly from the 0-unique-response
property of BP-IPAFS (Theorem 4).

⊓⊔

D.2 Proof of Theorem 6

The theorem follows directly by combining the following two results (proved in the rest of this section).

Theorem 8. The construction BP-PC is ϕ-evaluation hiding with respect to the PES from Section 5.2
under DLOG and the existence of an mildly compact PKE, where ϕ satisfies the bound ϕ(λ, n, r) >
1 + 2r (1 + 2⌈log(ϕ(λ, n, r) + 7λn)⌉).

Theorem 9. The construction BP-PC satisfies ϕ-non-extrapolation with respect to the PES from Sec-
tion 5.2 under DLOG and the existence of an mildly compact PKE, where ϕ satisfies the bound ϕ(λ,
n, r) > 1 + 2r (1 + 2⌈log(ϕ(λ, n, r) + 7λn)⌉).

D.3 Proof of Theorem 8

Proof. Consider an adversary Aϕ = (Aϕ,1,Aϕ,2) against the ϕ-evaluation game. We define a series of
hybrids. The first hybrid H0 (Fig. 9) corresponds to the ϕ-hiding game where we encode the vector
w provided by the adversary. We fully expand the encoding step of the polynomial encoding scheme
since this is where the changes will occur between hybrids. The last hybrid H3 (Fig. 9) corresponds to
the same game as H0 but where we encode the vector of all zeros instead of what is provided by the
adversary.

– H0 ≈ H1 : the difference between these two games has to do with the coefficients of f from secret
sharing: in one case (H0) they are actually shares of the secret encryption key; in another (H1) they
are random values. In order to show that an adversary will have only a negligible change in output
distribution, we can rely on this intuition: the leakage provided by the polynomial commitment
proofs and the evaluation outputs can be reduced to a linear leakage on the secret shares. As
a consequence, if H0 ̸≈ H1 then we can build an adversary against the linear leakage game for
additive secret sharing. This adversary would emulate all the parts of the execution that are not
derived from the alleged secret shares (the ciphertexts, the polynomial commitment proofs, etc.)
and then use the output of Aϕ to identify whether it is interacting with random field elements or
with actual shares. We formalize this intuition in Lemma 4.

– H1 ≈ H2 : the only difference between these two hybrids is what is actually encrypted in the
output of PESss.Enc (w or 0). We can rely on semantic security to claim that the difference in
the advantage of the adversary is negligible. We construct an adversary Asem against semantic
security (Definition 1) in Fig. 10. By inspection, it follows immediately that a noticeable difference
in output between the two hybrids corresponds to a noticeable advantage against the semantic
security experiment (implied by the security of PKE from Definition 19), leading to a contradiction.

– H2 ≈ H3 : here we can argue exactly as we did to show H0 ≈ H1.
Since we have shown that H0 ≈ H3, we can immediately conclude that the advantage of any PPT
adversary against ϕ-hiding would be negligible. ⊓⊔

43



H0 :

ck← BP-PC.PCGen(1λ, d)

Fn ∋ w← AH
ϕ,1(ck); z←$ Fr

(pk, sk)← PKE.KG(1λ)
ctw ← PKE.Enc(pk, w)
s← SS.Share(ℓ + 1, sk)

Let f(X) :=
∑

0≤i<d

fi+1Xi

where f := (s||pk||ctw)
c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′ = 1

H1 :

ck← BP-PC.PCGen(1λ, d)

Fn ∋ w← AH
ϕ,1(ck)); z←$ Fr

(pk, sk)← PKE.KG(1λ)
ctw ← PKE.Enc(pk, w)

s← Fℓ+1

Let f(X) :=
∑

0≤i<d

fi+1Xi

where f := (s||pk||ctw)
c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′ = 1

H2 :

ck← BP-PC.PCGen(1λ, d)

Fn ∋ w← AH
ϕ,1(ck)); z←$ Fr

(pk, sk)← PKE.KG(1λ)
ct0 ← PKE.Enc(pk, 0)

s← Fℓ+1

Let f(X) :=
∑

0≤i<d

fi+1Xi

where f := (s||pk||ct0)
c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′ = 1

H3 :

ck← BP-PC.PCGen(1λ, d)

Fn ∋ w← AH
ϕ,1(ck)); z←$ Fr

(pk, sk)← PKE.KG(1λ)
ct0 ← PKE.Enc(pk, 0)
s← SS.Share(ℓ + 1, sk)

Let f(X) :=
∑

0≤i<d

fi+1Xi

where f := (s||pk||ct0)
c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′ = 1

Fig. 9: Hybrids in the proof of evaluation hiding (changes compared to the previous hybrid are hinted
in blue). Hybrids are parametrized by λ, n, r. Above d := n + stretch(λ, n, ℓ) where ℓ := ϕ(λ, n, r) and
stretch as in Definition 28.
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A1
sem(pk) :

ck← BP-PC.PCGen(1λ, d)

w← AH
ϕ,1(ck); z←$ Fr

ck← BP-PC.PCGen(1λ, d)
Save ck, pk, z as state st
return (st, m0 := 0, m1 := w)

A2
sem(st, ct) :

s← Fℓ+1

Let f(X) :=
∑

0≤i<d

fi+1Xi where f := (s||pk||ct)

c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′

Fig. 10: Reduction to semantic security for showing H1 ≈ H2. We assume that the Asem appropri-
ately simulates each RO invocation with a random function. Notice that we can compute ℓ and d
appropriately from λ, n, r, which we assume are known to the adversary.
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The following lemma shows that H0 ̸≈ H1 in the proof of Theorem 8 implies violating Lemma 3.

Lemma 4. If H0 ̸≈ H1 in the proof of Theorem 8 then there exists an adversary with non-negligible ad-
vantage against the admdet-linear leakage of SS whenever ℓ := ϕ(λ, n, r) > 1+2r (1 + 2⌈log(ϕ(λ, n, r) + 7λn)⌉).

Proof. In Fig. 11 we describe an adversary Alin against the game in Definition 26 whose advantage is
the same as the distinguishing advantage of Aϕ between H0 and H1.

At the high-level Alin works by emulating the view of Aϕ. The basic approach of Alin is to sample
Pedersen basis g, h, u so that it knows their discrete logarithm and can properly apply this knowledge
when using the linear combination queries of GSS-lin. Naturally the information obtained by Aϕ in the
hybrids H0 and H1 is derived not only by the alleged secret shares but also by the coefficients due to
the public key and ciphertexts. The algorithm Alin can perfectly emulate the latter and then combine
it with the response from the linear share queries. This logic is abstracted away in the definition of the
pseudo-oracle O′ in Fig. 11.

One of the key challenges in constructing Alin is that it should be able to express all the “update”
operations during the polynomial opening proofs without knowledge of a, the prefix of polynomial
coefficients related to the secret shares. Additionally, Alin has to be able to express the whole view of
Aϕ in terms of linear combinations of a based on terms of which it has knowledge. The details of the
code of Alin do exactly that. Instead of updating the vector a as in the code of BP-IPA, it appropriately
updates a “query” vector qa. It also uses two additional auxiliary vectors which roughly correspond to
g and b in the same code. In order to do this we use some type of “index book-keeping” in order to
appropriately combine the information in qa and the auxiliary vectors.

By inspection, it is easy to observe that for any g, h, u, vector of evaluations z, encoded polynomial
f(X) :=

∑
i aiX

i, the output of the Aϕ in H0 (resp. H1) will be the same as that of Alin when b = 0
(resp. b = 1) in GSS-lin conditioned to the queries of Alin being admissible. In the remainder of this
proof we will claim this occurs with overwhelming probability.

We now observe some basic facts on the queries to O by Alin. We can bound the number of queries
q to the oracle O as q ≤ 1 + 2r(1 + 2⌈log d⌉) by inspection of Fig. 11. We have:

– Commitment to the polynomial: 1 query (of the form r(g));
– Polynomial evaluations: r queries (of the form

(
z0, z1, z2, . . . , zℓ

)
for each evaluation point z);

– For each of the r polynomial opening proofs:
• For each of the log d rounds:

∗ Two queries—for Li,g, Ri,g—such that only half of the elements are non-zero. A non-zero
element in position j has the form r

(g)
j ·P

x,x−1

j where P x,x−1

j is defined as in Item 4 (in the
list at the end of this proof) using the challenges in the protocol up to that round.

∗ Two queries—for Li,u, Ri,u—such that only half of the elements are non-zero. A non-zero
element in position j has the form r(u) · bj ·P x,x−1

j where P x,x−1

j is defined as in Item 4 (in
the list at the end of this proof) using the challenges in the protocol up to that round.

• A final query for a(k) where each element is of the form P x,x−1

j where P x,x−1

j is defined as in
Item 4 (in the list at the end of this proof) using all the challenges in the protocol.

Without loss of generality we will assume in the rest of this proof that the number of queries q
is identical to ℓ. The case q > ℓ will not occur given our bound in the statement of the lemma. If
instead ℓ > q we can always modify Alin to “pad” its oracle queries at the end of its execution with
some dummy ones of which it will discard the output. The only constraint on these additional queries
is that they do not substantially increase the probability of the whole query set being not admissible.
This is not a problem since with overwhelming probability random evaluation queries will not make
the set inadmissible (this will be an implication of some of the observations we make below).

Recall that admissibility can essentially be reduced to the fact that the determinant of a matrix
associated with the queries is non-zero (Lemma 3 and Definition 27). Let us now consider Eq. (†) from
Appendix C.2. Recall this states that the polynomial describing the determinant has this form:∑

π

±
(

θ
(π(1))
1 + θ

(π(1))
ℓ+1

) (
θ

(π(2))
2 − θ

(π(2))
1

)
. . .

(
θ

(π(ℓ))
ℓ − θ

(π(ℓ))
1

)
where the sum is over all possible permutations π.
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Our goal is now to claim that the determinant above is non-zero with overwhelming probability.
We proceed as follows:

– We observe that it is sufficient to show that the above can be reduced to the evaluation of a non-
zero multivariate polynomial where each variable is sampled randomly from the field. The degree
of the polynomial is of polynomial size while the size of the field is exponential. We can then apply
Schwartz-Zippel to conclude that with overwhelming probability the determinant is non-zero.

– We show that, under certain assumptions on the parameters of the encoding scheme (required by
statement of the lemma) we can show that there exists at least one monomial among the summands
in Eq. (†) that is non-zero.

– It is then sufficient to show that this monomial is not “cancelled out” by contributions of other
summands in Eq. (†).
We observe that the sum above yields (among others) the following monomial:

θ
(π∗(1))
ℓ+1 θ

(π∗(2))
2 . . . θ

(π∗(ℓ))
ℓ

for some permutation π∗. The coefficient in front of this monomial will be either 1 or −1, but this is
irrelevant for our argument.

Let us first observe that there must exist a permutation π∗ such that all those terms are non-zero
with overwhelming probability given the sampling in the definition of Alin. The only queries with some
zero elements are the “internal” ones during the polynomial opening proof (Li,g, Li,u, Ri,g, Ri,u). How
many of these queries are there? Approximately 4r log d. Each of these queries, moreover, has exactly
ℓ/2 non-zero elements21. We can guarantee the existence of π∗ as long as ℓ is large enough to guarantee
that each of the O(r log d) “internal” queries can be mapped to some index j ∈ [ℓ] so that the query is
non-zero in j (plus leaving enough space for the other types of queries of which there are O(r)). This
is the case for the ϕ (and therefore the ℓ) we are requiring in the statement of Theorem 8.

Without loss of generality we assume that π∗(1) refers to the query for rcm. This implies that
θ

(π∗(1))
ℓ+1 = r

(g)
ℓ+1. This fact will be handy later.

Let us now make some observations on the structure of the monomial of the form above given by
π∗. We will be able to factor it according to the type of queries that contribute to each factor. In
particular we can write it as follows:

r
(g)
ℓ+1︸︷︷︸
rcm

·
∏

j

zj
kj︸ ︷︷ ︸

evaluations

·
∏
j′

r(u)P x,x−1

j′ zj′

kj′︸ ︷︷ ︸
Li,u,Ri,u

·
∏
j′′

r
(g)
j′′ P x,x−1

j′′︸ ︷︷ ︸
Li,g,Ri,g,a(k)

(11)

Some explanations on the notation above:
1. we write in underbraces the type of queries each factor refers to.
2. The indices j, j′, j′′ are enumerated so that together they cover the set {2, . . . , ℓ}.
3. the k-s are indices from 1 to r and refer to the evaluation points for the polynomial.

4. The notation P x,x−1

j refers to some product (the exact product depends on j) of the challenges x
sampled through the random oracle at every round of the polynomial opening proof. We use the
notation x, x−1 to refer to the fact that these products are a mixture of products of challenges and
of inverses of challenges.
We now want to argue that a monomial with the structure above cannot be obtained “in any other

way” than by π∗. We first make two easy observations to exclude the possibility that the same permu-
tation may yield the same monomial (through the θ1-s in Eq. (†)) and that two different permutations
may yield the same set of individual factors of π∗.

Observation 1: for all queries θ(j) we have that θ
(j)
i ̸= θ

(j)
1 with overwhelming probability (for i ̸= 1

and conditioned to θ
(j)
i ̸= 0).

Observation 2 let j ̸= j′, for i ̸= i′ with i, i′ ̸= 1, then θ
(j)
i ̸= θ

(j′)
i′ with overwhelming probability

(conditioned to θ
(j)
i , θ

(j′)
i′ ̸= 0).

21 This is not really accurate since in principle we are truncating the queries in oracle O′ and not working with
polynomials of degree ≈ ℓ, but this inaccuracy is innocuous and does not invalidate the core point.
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The important implication of the observations above is that the only hope of obtaining the same
monomial is by a different permutation π̃ that, despite having different factors θ

(π̃(1))
ℓ+1 , θ

(π̃(2))
2 , . . . , θ

(π̃(ℓ))
ℓ ,

obtains the same monomial through their product.
Observe that in Eq. (11):

1. No evaluation point zk can appear twice (even with different exponents).

2. All of the r
(g)
j′′ are distinct.

We can now start observing constraints on the hypothetical permutation π̃ yielding the same monomial.
Observe that:

– π̃ must contribute exactly the same elements r
(g)
j′′ in the product indexed by j′′ although they can

appear from different polynomial evaluation proofs. The reason is that this is item (2) above (on
the distinct r

(g)
j′′ -s) and that the only product in which they are contributed is the rightmost one.

(the leftmost factor r
(g)
ℓ+1 cannot appear here since otherwise some other element with index ℓ + 1

would have to be θ
(π̃(1))
ℓ+1 but no such element appears in Eq. (11)).

– An implication of the previous item is that the set of r
(g)
j′′ appearing must be exactly the same and

it must be that they are “swapped” among different polynomial proofs. However, this implies that
they have different products P x,x−1

j′′ since each polynomial opening has disjoint sets of challenges
with overwhelming probability. By inspection, we can convince ourselves, that there is no way to
compensate these differences in challenges products in some other way.

– Assume that there is some difference in π̃ in the set of contributing factors indexed by j′. This,
however, can occur only if the number of factors is exactly the same (otherwise the exponent for
r(u) would be different) and each of the zkj′ is swapped with some other zkj in the second product
and with the same exponent (otherwise there would not be the same set of evaluations being
contributed). This would require π̃ to “compensate” the difference in P x,x−1

j′ -s from the swaps.
Nonetheless, by inspecting the ways challenges are indexed, we can convince ourselves that this is
not possible.

The above shows that with high probability there exists a monomial with non-zero coefficients in the
determinant polynomial and it concludes the proof. ⊓⊔
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A1
lin(1λ, 1ℓ) :

(pk, sk)← PKE.KG(1λ)
Save sk, pk as state st
return (s := sk, st)

A2,O
lin (st) :

Sample a RO H
Let g0 be a generator of G
d := stretch(λ, n, ℓ) + n

Sample r(g) ←$ Fd, r(h) ←$ Fd, r(u) ←$ F

Let gi := g
r

(g)
i

0 , hi := g
r

(h)
i

0 for i = 1, . . . , d

Let u := gr(u)
0

ck := (g, h, u)

w← AH
ϕ,1(ck); z←$ Fr

ctw ← PKE.Enc(pk, w)

Let rcm ← O′
(

r
(g)
1 , . . . , r

(g)
d

)
cm← grcm

0

for j = 1, . . . , |z| :

yj := O′ (
z0

j , . . . , zd−1
j

)
πj ← MakeProof(zj)

b′ ← AH
ϕ,2

(
cm, z, y, π1, . . . , π|z|

)
return b′

O′(q) : // Auxiliary interface to linear query oracle

Parse q as (qss||qrst) with |qss| = ℓ + 1
Let ansss := O(qss)
Let ansrst := ⟨qrst, (pk||ctw)⟩
return ansss + ansrst

Fig. 11: Adversary Alin. Recall that the adversary has access to a linear combination oracle O as defined
in Fig. 8. Auxiliary functions are defined in Fig. 12 and Fig. 13.
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MakeProof(z)

b :=
(
z0, . . . , zd−1)

Let k such that d = 2k

n0 ← d, g(0) ← g, h(0) ← h, b(0) ← b
// Define the following query vector:

q(0)
a := (1, . . . , 1) ∈ Fd

// and the following auxiliary vectors:

aux(0)
b := (b1, . . . , bd), aux(0)

g := (r(g)
1 , . . . , r

(g)
d )

for i = 1, . . . , k :(
q(i−1)

a,L , q(i−1)
a,R

)
:= splitQ(q(i−1)

a , i),
(

q(i−1)
b,L , q(i−1)

b,R

)
:= auxToQuery(aux(i−1)

b , i),
(

q(i−1)
g,L , q(i−1)

g,R

)
:= auxToQuery(aux(i−1)

g , i)

ni = ni−1/2

Li,g = g
O′

(
q(i−1)

g,R
◦q(i−1)

a,L

)
0 , Li,u = g

O′
(

r(u)·q(i−1)
a,L

◦q(i−1)
b,R

)
0 , Ri,g = g

O′
(

q(i−1)
g,L

◦q(i−1)
a,R

)
0 , Ri,u = g

O′
(

r(u)·q(i−1)
a,R

◦q(i−1)
b,L

)
0

// Assemble proof pieces

Li = Li,g ·
(

h(i−1)
[:ni]

)b(i−1)
[ni:] · Li,u, Ri = Ri,g ·

(
h(i−1)

[ni:]

)b(i−1)
[:ni] ·Ri,u.

xi := H (transcript till now)

Update g(i), h(i), b(i) as in Fig. 6
// Emulate as queries the update of a, b, g respectively

q(i)
a = updateQ(q(i−1)

a , xi, i), aux(i)
b = aux(i−1)

b[:ni] · xi + aux(i−1)
b[ni:] · x

−1
i , aux(i)

g = aux(i−1)
g[:ni] · x

−1
i + aux(i−1)

g[ni:] · xi

// After k rounds:

a(k) = O′(q(k)
a )

Let π :=
(
L1, R1, . . . , Lk, Rk, a(k), b(k))

return π

Fig. 12: Auxiliary function MakeProof for adversary Alin.
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updateQ(qa, x, i) :

(J0, J1)← splitIndices(i)// partition of [d]

Define “update vector” u ∈ Fdso that:

uj :=
{

x−1, if j ∈ J0

x, if j ∈ J1

q′
a := u ◦ qa

return q′
a

splitQ(qa, i) :

(J0, J1)← splitIndices(i)// partition of [d]

Define vectors qa,L, qa,R ∈ Fdso that:

qa,L,j :=
{

qa,j , if j ∈ J0

0, if j ∈ J1

qa,R,j :=
{

0, if j ∈ J0

qa,j , if j ∈ J1

return (qa,L, qa,R)

auxToQuery(aux, i) :

Let auxL := aux[:ni], auxR := aux[ni:]

(J0, J1)← splitIndices(i)// partition of [d]

We define two query vectors qL, qR ∈ Fd as follows
(NB: we apply an inversion on purpose here, i.e., we assign the “L” side of aux to J0 indices and viceversa.)
for j ∈ J0 :

Assign qL,j ← 0

Parse j − 1 as a bit string of the form ᾱ0β̄, ᾱ ∈ {0, 1}i−1, β̄ ∈ {0, 1}k−i

Assign qR,j ← auxR,β+1 // the (β + 1)-th item in auxR parsing β as an integer
for j ∈ J1 :

Assign qR,j ← 0

Parse j − 1 as a bit string of the form ᾱ1β̄, ᾱ ∈ {0, 1}i−1, β̄ ∈ {0, 1}k−i

Assign qL,j ← auxL,β+1 // the (β + 1)-th item in auxR parsing β as an integer
return (qL, qR)

splitIndices(i) :

Denote by bin(j)i the i-th bit (from the left) in the binary representation of j

J0 := {j ∈ [n] : bin(j)i = 0}
J1 := {j ∈ [n] : bin(j)i = 1}
return (J0, J1)

Fig. 13: Further auxiliary functions for adversary Alin.
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D.4 Proof of Theorem 9

Proof. We closely follow the corresponding proof of non-extrapolation of KZG in [GKO+23]22. Consider
the following hybrids:

– Hyb0: this is the same as the game in Definition 15 where an all-zero vector of length n is encoded
as a polynomial and we provide the adversary A = (A1,A2) with up to r evaluation points and
corresponding evaluation proofs.

– Hyb1: we now change part of the challenger’s code. Instead of encoding an all-zero vector, we
proceed by sampling a set of random evaluations and then using (in part) the evaluation points
required by the adversary to interpolate the polynomial. More in detail:
• we first sample d random evaluations yi ←$ F.
• Let z be the sampled evaluation points and let z′ a vector of unique points in z. Let r′ := |z′|

and let n′ := d− r′.
• Sample n′ points z′′ from Fn′ .
• Interpolate f so that f(z′

i) = yi for i ∈ [r′] and f(z′′
j ) = yj+r′ for j ∈ [n′]

• Compute commitments and evaluation proofs as before.
By applying ϕ-evaluation hiding we can conclude that the two hybrids are indistinguishable and
therefore the polynomial f looks random to A after requesting r evaluations. Let us now consider
(y∗, π∗), the output of A2 for z∗ ←$ F. By the previous observation, the probability that Pr[y∗ =
f(z∗)] is negligible. If y∗ ̸= f(z∗) and A wins it is then possible to break evaluation binding since we
can produce two valid evaluation proofs for two distinct points for the same committed polynomial.
This concludes the proof.

⊓⊔

E On Simulation-Extractable NIZKs from UC-secure Protocols

In this section, we show that from protocols UC-realizing specific NIZK functionalities, and under
various setups, we can instantiate true-simulation-extractable zkSNARKs, which is the main building
block for Theorem 1.

In particular, in Appendix E.1 we consider the weaker functionality FARG (Fig. 14) in the observable
and restricted programmable GROM, and in Appendix E.2 we focus on protocols that UC-realize the
standard NIZK functionality FNIZK (Fig. 15).

E.1 From Weaker UC NIZK

Chiesa and Fenzi [CF24] study the UC-security for succinct non-interactive arguments in the global
observable and restricted programmable random oracle model [CDG+18]. They define an ARG ideal
functionality, explicitly adapting the standard NIZK functionality in Fig. 15 to the (G)ROM.

Briefly, their functionality has a proving interface that produces simulated proofs and a verifica-
tion interface that extracts the witness, which capture zero-knowledge and (simulation) straight-line
knowledge-soundness respectively. Additionally, the environment has a GRO interface that allows the
parties to query, program, and detect programmed outputs of the random oracle. The programming/de-
tection interface is limited, in the sense that the parties can only program/detect programming of RO
outputs in their session, thus preventing the environment to directly access the GRO interface and
allowing the UC simulator to intercept these queries. We give in Fig. 14 a slightly simplified definition
of the ARG functionality in the GROM without considering adaptive corruptions as it is not needed
for our analysis. We refer to [CF24] for a more detailed treatment.

Let ΠARG be the following protocol, parametrized by a zkSNARK Π and a relation R ∈ {0, 1}∗ ×
{0, 1}∗.

– Proof: Upon receiving input (prove, sid, x, w), ignore if (x, w) /∈ R. Otherwise, the prover party
MP does:

22 The proof in [GKO+23] turns out to be immediately generalizable to polynomial commitments other than
KZG.
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Functionality 4: FARG

FARG is parametrized by polynomial-time-decidable relation R ∈ {0, 1}∗×{0, 1}∗ and runs with a prover
party MP , a verifier party MV , and an ideal process adversary Sim. It stores proof tableQ which is initially
empty, the list Qx of the instances queried, the list of honestly programmed points hProgrammed, and
the list extTrace of queries of the adversary to the GRO interface.

– Proof Upon receiving input (prove, sid, x, w) from the prover party MP , do the following. If (x,
w) /∈ R return the activation to the environment. Otherwise, invoke the Observe interface, with sid
sid, of the GRO functionality, and get the list of illegitimate queries Qsid associated with sid sid and
add them to extTrace. Send (prove, sid, x) to Sim. Upon receiving (proof, sid, x, π) from Sim, invoke
the Program interface with sid sid for all the points that Sim programmed to generate π: output Fail
if the Program interface rejects. Store the list of these programmed points to hProgrammed. Store
(x, π) in Q and output (proof, sid, x, π) to MP .

– Verification Upon receiving input (verify, sid, x, π) from the verifier party MV :
• if (x, π) ∈ Q return (verification, sid, 1) to the party MV

• else, if Qx contains x, send (verify-replay, sid, x, π) to Sim. Upon receiving (verification, x,
π, b) from Sim, store (x, π) in Q if b = 1

• else, send (verify, sid, x, π, extTrace′) to Sim, where extTrace′ is obtained by removing the queries
in extTrace that are not detected as programmed. Upon receiving (witness, x, w) from Sim store
(x, π) in Q if (x, w) ∈ R

Finally, return (verification, sid, (x, π) ∈? Q) to the party MV .

Fig. 14: The ARG functionality. The ideal adversary is a pair of simulator/extractor algorithms, namely
Sim = (Suc, E), where Suc is the UC-friendly zero-knowledge simulator. The extractor E is straight-
line and receives as input a query-answer trace extTrace′ consisting of the query-answer pairs to the
GRO by the environment and the simulator, filtered to exclude queries whose answers were previously
programmed by the environment; in particular, E may receive queries to the random oracle that were
previously programmed by the simulator, which are stored in hProgrammed.

1. Run the prover P of Π on input (x, w) to obtain a proof π. Whenever P makes a call to H with
input in, send (query, (sid, in, proof)) to GRO to receive a response out which is forwarded to
P.

2. Output (proof, sid, x, π).
– Verification: Upon input (verify, sid, x, π), the verifier party MV outputs (verfication, sid,

1) if the following conditions are satisfied, otherwise outputs (verfication, sid, ,0):
• The verifier V of Π on input x, π outputs 1. Whenever V makes a call to H with input in, send

(query, (sid, in, proof)) to GRO to receive a response out which is forwarded to V.
• Check that none of the outputs out obtained in the previous step is programmed, by querying

the GRO interface.
What [CF24] shows is that the Micali [Mic94] and the BCS [BCS16] constructions, when instantiated
with suitable PCPs and IOPs respectively, yield zkSNARKs that are UC-secure in the observable
and restricted programmable GROM. Formally, by this we mean that the associated protocol ΠARG,
when instantiated with one of these zkSNARKs, UC-realizes FARG in the observable and restricted
programmable GROM.

We can plug these zkSNARKs into Theorem 1 if we show that they are straight-line weak true-
simulation-extractable in the random oracle, as we do.

Theorem 10. Let Π be a zkSNARK and let ΠARG be the associated protocol defined in Appendix E.1. If
ΠARG UC-realizes FARG in Fig. 14 assuming the observable and restricted programmable GROM, then Π
achieves straight-line weak true-simulation extractability in the random oracle model (cf. Definition 9).

Proof. If ΠARG UC-realizes FARG in the GROM, then it is UC-friendly zero-knowledge with respect to a
simulator Suc, according to [CF24]. First, we need to reconcile our definition of zero-knowledge (cf. Def-
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inition 6) with the UC-friendly counterpart of [CF24]. We define a natural stateful NIZK simulator SΠ

associated with Suc that does the following:
Setup phase: initializes the state st = pp and initializes an empty list of RO input-output queries.
RO queries: on input (1, in), returns a uniformly random element from the codomain of H if A never

queried (1, in), otherwise outputs the value out such that (in, out) is in the list of RO queries.
Simulation queries: on input (2, x), where x is in the language, returns the first output of Suc(x).

Let AΠ be an adversary for the weak true-simulation-extractability experiment of the scheme Π
with respect to the NIZK simulator SΠ . Without loss of generality, we assume that AΠ outputs a pair
(x, π) such that x is a fresh statement and V (x, π) = 1 with probability 1. Let ϵt-SE be the minimum
advantage of A, for any PPT extractor algorithm, against the weak true-simulation-extractability
experiment. We show how to construct an environment Z that distinguishes the real-world experiment
from the ideal one with probability at least ϵt-SE.

Let MP and MV be a prover and a verifier party respectively. The reduction Z is defined as follows:
– For any RO query issued by AΠ , it invokes the GRO interface and forwards the output to the

adversary.
– For any simulation query issued by AΠ , it invokes the proving interface of the ARG ideal func-

tionality and forwards the output to the adversary.
– When the adversary outputs the forgery (x, π), Z aborts if (x, π) is not valid; otherwise, it invokes

the verification interface of the ARG ideal functionality. If the verification interface fails, Z outputs
0, otherwise outputs 1.

Since the adversary outputs a pair (x, π) such that V (x, π) = 1, Z never aborts and:
– if Z is in the real-world experiment, it outputs 1 with probability 1: this is because Z never issues

programming queries and then the verification interface equals the verification algorithm of Π;
– if Z is in the ideal experiment, it outputs 1 unless the verification interface fails, which happens

when the extractor algorithm E fails at extracting a valid witness w for x. By definition, this
happens with probability at least ϵt-SE.

Hence we have that Z distinguishes with probability at least ϵt-SE the real-world experiment from the
ideal one.

E.2 From Standard UC NIZK

In this section, we show how to instantiate (strong) true-simulation-extractable zkSNARKs from pro-
tocols that UC-realize, in the FRO-hybrid model, the standard NIZK functionality FNIZK depicted in
Fig. 15.

First, we observe that there is a natural way to instantiate a zkSNARK Π from a protocol ΠNIZK
that UC-realizes FNIZK in the FRO-hybrid model.

In particular, let sid be a dummy session id, Π = (PGen,P,V) is defined as follows:
– PGen(1λ) generates public parameters pp by querying H on input the same string(s) used by the

parties in ΠNIZK to generate the parameters.
– P(x, w) runs the code of the prover in ΠNIZK. Any query to the RO interface is cast to a call to

the random oracle H. When the prover outputs (proof, sid, π), it outputs the proof π

– V(x, π) runs the code of the verifier party in ΠNIZK. Any query to the RO interface is cast to a call
to the random oracle H. When the verifier outputs (verification, sid, x, b), it returns the bit b

Theorem 11. Let Π be the zkSNARK associated with the protocol ΠNIZK, as defined in Appendix E.2.
If ΠNIZK UC-realizes in the FRO-hybrid model the functionality FNIZK in Fig. 15, then Π achieves
straight-line true-simulation extractability in the random oracle model (cf. Definition 9).

The proof is similar to that of Theorem 10 and we state it for completeness.

Proof. By the UC-secuurity of ΠNIZK, we know that there is an ideal process simulator Sim, which we
can use to define a natural stateful NIZK simulator SΠ and a straigh-line extractor. Since the protocol
UC-realizes the standard NIZK functionality in the FRO-hybrid model, the simulator is allowed to
program the RO, and hence so does the simulator SΠ .
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Let AΠ be an adversary for the true-simulation-extractability experiment of the scheme Π with
respect to the NIZK simulator SΠ . Without loss of generality, we assume that AΠ outputs a pair (x, π)
such that V(x, π) = 1 with probability 1. Let ϵt-SE be the minimum advantage of A, for any PPT
extractor algorithm, against the true-simulation-extractability experiment. We show how to construct
an environment Z that distinguishes the real-world experiment from the ideal one with probability at
least ϵt-SE.

Let P1 and P2 be a prover and a verifier party respectively. The reduction Z is defined as follows:
– For any RO query issued by AΠ , it invokes the (local) RO interface FRO and forwards the output

to the adversary.
– For any simulation query issued by AΠ , it invokes the proving interface of the NIZK ideal func-

tionality and forwards the output to the adversary.
– When the adversary outputs the forgery (x, π), Z aborts if (x, π) is not valid; otherwise, it invokes

the verification interface of the NIZK ideal functionality. If the verification interface fails, Z outputs
0, otherwise outputs 1.

Since the adversary outputs a pair (x, π) such that V (x, π) = 1, Z never aborts and:
– if Z is in the real-world experiment, it outputs 1 with probability 1: this is because the verification

interface equals the verification algorithm of Π;
– if Z is in the ideal experiment, it outputs 1 unless the verification interface fails, which happens

when Sim fails at extracting a valid witness w for x. By definition, this happens with probability
at least ϵt-SE.

Hence we have that Z distinguishes with probability at least ϵt-SE the real-world experiment from the
ideal one.

Functionality 5: FNIZK

FNIZK is parametrized by polynomial-time-decidable relation R ∈ {0, 1}∗ × {0, 1}∗ and runs with parties
P1, . . . , PN and an ideal process adversary Sim. It stores proof table Q which is initially empty.

– Proof Upon receiving input (prove, sid, x, w) from an honest party Pi, do the following: if (x, w) /∈ R
return the activation to the environment. Otherwise, send (prove, sid, x) to Sim. Upon receiving
(proof, sid, x, π) from Sim, store (x, π) in Q and output (proof, sid, x, π) to Pi.

– Verification Upon receiving input (verify, sid, x, π) from a party Pi, if (x, π) is not stored in Q,
then send (verify, sid, x, π) to Sim. Upon receiving (witness, w) from Sim, if (x, w) ∈ R, store (x, π)
in Q. Finally, return (verification, sid, (x, π) ∈? Q) to Pi.

Fig. 15: Standard functionality for non-interactive zero-knowledge.
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