
Solving Multivariate Coppersmith Problems
with Known Moduli

Keegan Ryan

University of California, San Diego, La Jolla CA 92093, USA
kryan@ucsd.edu

Abstract. We examine the problem of finding small solutions to sys-
tems of modular multivariate polynomials. While the case of univari-
ate polynomials has been well understood since Coppersmith’s original
1996 work, multivariate systems typically rely on carefully crafted shift
polynomials and significant manual analysis of the resulting Copper-
smith lattice. In this work, we develop several algorithms that make
such hand-crafted strategies obsolete. We first use the theory of Gröbner
bases to develop an algorithm that provably computes an optimal set
of shift polynomials, and we use lattice theory to construct a lattice
which provably contains all desired short vectors. While this strategy
is usable in practice, the resulting lattice often has large rank. Next,
we propose a heuristic strategy based on graph optimization algorithms
that quickly identifies low-rank alternatives. Third, we develop a strat-
egy which symbolically precomputes shift polynomials, and we use the
theory of polytopes to polynomially bound the running time. Like Meers
and Nowakowski’s automated method, our precomputation strategy en-
ables heuristically and automatically determining asymptotic bounds.
We evaluate our new strategies on over a dozen previously studied Cop-
persmith problems. In all cases, our unified approach achieves the same
recovery bounds in practice as prior work, even improving the practical
bounds for three of the problems. In five problems, we find smaller and
more efficient lattice constructions, and in three problems, we improve
the existing asymptotic bounds. While our strategies are still heuris-
tic, they are simple to describe, implement, and execute, and we hope
that they drastically simplify the application of Coppersmith’s method
to systems of multivariate polynomials.

Keywords: Coppersmith’s method, Shift polynomials, Gröbner bases

1 Introduction

Coppersmith’s method of finding small roots of polynomial equations is one of
the most widely applied techniques in algebraic cryptanalysis. Although origi-
nally developed to find a root of a single univariate modular polynomial, it has
been repeatedly adapted to heuristically find roots of multivariate polynomials,
integer polynomials, and polynomials modulo divisors. Coppersmith’s method
is a powerful tool, but the main obstacle is that it involves significant manual

analysis and algorithm design for every new system of polynomials one wishes to
solve. In this paper, we analyze systems of multivariate polynomials with known
moduli (or known multiples of moduli), and we develop a collection of proven
and heuristic results that all but eliminate the previously required manual labor.

The challenging part of Coppersmith’s method is selecting shift polynomials.
In essence, the coefficients of a polynomial f modulo p define a linear combina-
tion of its monomials. When a root is small, the monomial valuations are small,
and lattice reduction can be used to efficiently find a small solution to the lin-
ear relations. However, lattice reduction performs worse the more monomials are
involved. In [13], Coppersmith realized that the coefficients of the shifted polyno-
mial xf induce an independent linear constraint, while only introducing a single
new monomial. By considering shift polynomials of the form xif j , Coppersmith
showed that the benefit of adding shift polynomials outweighs the cost of in-
troducing monomials so long as the desired root is smaller than p1/ deg f . This
analysis of overlapping monomials in shift polynomials is easy in the univariate
case, but challenging in the multivariate case.

If one has a system F of multivariate polynomials with a shared root, each
polynomial still induces a linear relation on the monomials, but the amount
of monomial overlap in, for example, xi1

1 xi2
2 f j1

1 f j2
2 depends significantly on the

precise monomials in f1(x1, x2) and f2(x1, x2). This is why so much manual
analysis is necessary for every different system F . One must carefully design
a strategy for constructing shift polynomials with sufficient monomial overlap
for lattice reduction to recover a small root, and then one must analyze the
asymptotic behavior of their strategy to find the largest bound on the small root
for which their method succeeds.

1.1 Our Contributions

We present a collection of tools and techniques that automate the multivariate
Coppersmith method for systems of modular polynomials.1 Our contributions
eliminate much of the arduous manual work that previously went into construct-
ing shift polynomials and analyzing their performance, and our algorithms are
fully practical. In order to achieve this, we rely on results from graph theory, com-
puter algebra, and discrete geometry. Like previous multivariate Coppersmith
approaches, our full algorithms are heuristic, but many of the intermediate re-
sults are proven rigorously.

In Section 2, we give general background on multivariate Coppersmith prob-
lems, and in Section 3, we revisit the connection between shift polynomials and
polynomial ideals. This connection has been observed previously, but we de-
velop it further and show that all shift polynomial selection strategies (to our
knowledge) involve constructing polynomials that belong to particular ideals.

In Section 4, we give a simple, novel, and provable strategy to select shift
polynomials from the ideal. This strategy uses the theory of Gröbner bases over

1 Our implementation is available at https://github.com/keeganryan/cuso

https://github.com/keeganryan/cuso

Euclidean domains, and we prove that our resulting monomials and shift poly-
nomials enable us to build a lattice that is guaranteed to have shorter vectors
than could be obtained via any other choice of shift polynomials.

In Section 5, we explore a heuristic strategy to automatically identify low-
rank and dense sublattices based on the coefficients of the optimal shift poly-
nomials. This significantly reduces the cost of lattice reduction. Our heuristic
strategy is based on an optimization technique for weighted directed graphs,
and in practice, it is fast and highly effective.

In Section 6, we describe a precomputation strategy that eliminates the cost
of Gröbner basis computations from shift polynomial selection. While this strat-
egy lacks some of the provable guarantees of our prior strategies and requires
manually identifying good precomputation parameters, these simplifications al-
low us to apply the theory of Ehrhart polynomials to automatically determine
the asymptotic bounds for a given multivariate Coppersmith problem.

Finally, in Section 7 we describe experiments on 14 different Coppersmith
problems to demonstrate the effectiveness of our new approach. We include a
wide variety of problems which exhibit our algorithm’s ability to match even the
most advanced shift polynomial strategies of prior work. In all cases, our unified
approach achieves similar practical bounds, often outperforming prior work, all
while requiring minimal problem-specific configuration.

2 Background

In this work, we frequently consider polynomials in Z[x1, . . . , xℓ]. Polynomials

consist of terms that are monomials m =
∏ℓ

i=1 x
ei
i multiplied by coefficients cm.

For a particular monomial ordering, each nonzero polynomial f has a leading
term LT(f) with leading monomial LM(f) and leading coefficient LC(f). For
brevity, we often use vector notation: f(x) is shorthand for f(x1, . . . , xℓ). We
are also sometimes casual with function notation: for example, LM(S) means
the set of leading monomials of polynomials in the set S.

2.1 Multivariate Coppersmith Problems

Definition 1 (Multivariate Coppersmith problem). A multivariate Cop-
persmith problem in ℓ variables involves finding the set of bounded, common roots
of a system of modular or integer polynomials. Each input polynomial fi in a set
F ⊂ Z[x] is associated with a constraint on the evaluation of fi at a potential
solution r ∈ Zℓ. This constraint is either modular or integer, and each modulus
pi may either be known or bounded below by a known value:

fi(r) ≡ 0 (mod pi) or fi(r) = 0

For bounds X ∈ Zℓ, find all small points r ∈ Zℓ with |ri| < Xi for i = 1, . . . , ℓ
such that r satisfies the constraint associated with the polynomial fi ∈ F .

We use the term relation to refer to the combination of a polynomial in Z[x]
and its associated constraint. This definition is more generic than in prior work,
since it allows for combinations of input relations with different moduli or no
moduli at all. Although this definition includes integer Coppersmith problems,
our focus in this work is multivariate problems with at least one modular con-
straint and where a multiple Ni of each modulus pi is known. This includes many
interesting applications of Coppersmith’s method. Existing approaches almost
all follow the same general outline:

1. Combine polynomials in F to generate a set of shift polynomials.
2. Construct a lattice basis using the shift polynomials.
3. Run a lattice reduction algorithm to obtain a reduced basis.
4. Use short vectors in the basis to recover the set of bounded roots.

Steps 2, 3, and 4 are well understood at this point and vary little between
applications. However, step 1 is where all of the challenge lies.

2.2 Shift Polynomial Selection

Coppersmith’s original work considered systems of a single, univariate f with
known modulus p [13]. All shift polynomials are of the form xif j , and Cop-
persmith showed that lattice reduction succeeds for this selection of shift poly-
nomials when logp X ≲ 1/ deg f , which is provably optimal [11]. May gave a
generalization of Coppersmith’s result where p is unknown, but a multiple N
of p is known [28]. Coppersmith observed that the same shift polynomials and
lattice methods may work in principle for multivariate polynomials, but did not
explore this in depth.

Jochemsz and May considered systems of a single, multivariate f with known
modulus p (and also the integer variant) [22]. They describe a shift polynomial
strategy based on the monomial sets constructed by considering monomials in
xtfk. In Appendix A, they show how their generalized and heuristic strategy
reproduces the same bounds for problems studied by Boneh and Durfee [7] and
Blömer and May [5].

More recently, Meers and Nowakowski studied systems of multiple multivari-
ate polynomials with known modulus p [33]. They describe a heuristic strategy
for choosing a set of monomials and give an algorithm for selecting shift poly-
nomials from the set of monomials. They claim that their method is globally
optimal, but we show that it is not.

Although it has long been a goal to develop a truly generalized strategy
for selecting shift polynomials, it is far more common in the literature to find
problem-specific strategies. Developing and analyzing increasingly intricate shift
polynomial strategies is time-consuming, so the maximum recoverable bounds
for a given problem take years to grow. Take for example the Modular Inver-
sion Hidden Number Problem (MIHNP) from Boneh et al. in 2001 [8] which
studies ℓ relations of the form fi(α,x) = αxi + ci,1α + ci,2xi + ci,3 (mod p).
They give concrete and asymptotic shift polynomial strategies that succeed

for logp Xi < 1/3 and 2/3. Better strategies were proposed in 2014 [44] and
2018 [46], culminating in the breakthrough result by Xu et al. at Crypto 2019 [47]
that logp Xi < ℓ/(ℓ + 1) − o(1/ℓ) is heuristically solvable. The results were re-
fined further in 2023 [48], but the approach is still limited in practice, since
logp Xi < 0.669 requires ℓ = 32 and a lattice of dimension 46441.

Similar incremental improvements in shift polynomial strategies appear for
the Elliptic Curve Hidden Number Problem [45,49] and RSA-CRT with small
private exponents [26,4,23,20,43], not to mention the many RSA partial key
exposure variants [16,1,40,42,30,31]. These improvements demonstrate that the
existing generalized multivariate shift-polynomial strategies are insufficient for
maximizing the recoverable bounds using Coppersmith’s method.

2.3 Lattice Basis Construction

Given a set of shift polynomials S where all nonzero terms involve monomials in
a set M, there are a couple of ways to build the lattice. Coppersmith’s original
work [13] builds a lattice in which vectors represent solutions to a linearized
version of S. We call this the primal lattice. For ease of explanation, we will focus
on Howgrave-Graham’s construction of the dual lattice [21], in which vectors
represent polynomials. If all f ∈ S share a bounded root modulo p, then a basis
of the dual lattice ΛS is given by{

(cmm(X))m∈M | f(x) =
∑

m∈M
cmm(x) ∈ S

}
.

For example, the Howgrave-Graham lattice of S = {N,Nx1, Nx2, x1x2 + ax1 +
b, x1x

2
2 + ax1x2 + bx2} is spanned by the rows of the basis matrix

N 0 0 0 0
0 NX1 0 0 0
0 0 NX2 0 0
b aX1 0 X1X2 0
0 0 bX2 aX1X2 X1X

2
2

 .

The vectors in the lattice correspond to (scaled coefficient vectors of) polynomi-
als. When S sorted by a monomial order yields a triangular basis (also known as
suitability), the dual lattice is full rank, has dimension |M|, and has determinant

detΛS =
∏
f∈S

LT(f)(X).

The primal lattice is useful for integer constraints or when the modulus is
known. The dual lattice is useful when the shift polynomials share a common
modular constraint. When the modulus is known, Howgrave-Graham showed
that the primal and dual Coppersmith constructions are related by lattice du-
ality [21]. This work focuses on modular Coppersmith problems with a known
multiple of the modulus, so we will use the dual construction.

2.4 Lattice Reduction

Given a basis for lattice Λ of rank d, a lattice reduction algorithm outputs a
reduced basis (b′1, . . . , b

′
d) of short, nearly orthogonal vectors. The LLL algo-

rithm [24] runs in polynomial time, and the basis vectors in the output satisfy

∥b′i∥ ≤ 2
d(d−1)

4(d+1−i) detΛ1/(d+1−i) and ∥b′i∥ ≤ 2d−1λi(Λ)

where λi(Λ) is the i
th successive minimum of the lattice, or the minimum radius

of a ball at the origin containing i linearly independent vectors. These bounds
are found in [27] and [35], and analogous bounds can be derived for more modern
reduction algorithms capable of reducing lattices of large rank [38].

2.5 Root Recovery

In the dual lattice, a short vector corresponds to a polynomial g with small
coefficients. g is an integer linear combination of polynomials in S, so it satisfies
the same constraint (for example g(r) ≡ 0 (mod p)). The following result of
H̊astad [18] and Howgrave-Graham [21] is used to show that g(r) = 0 over the
integers, not just modulo p. We refer to this as the HHG bound.2

Lemma 1 (H̊astad/Howgrave-Graham). For a dual Coppersmith lattice of
dimension n and bound X, let v be a vector and g ∈ Z[x] be the corresponding
polynomial. If g(r) ≡ 0 (mod p) for |r| < X and ∥v∥ < p/

√
n, then g(r) = 0.

To recover the small root, we hope to find at least ℓ polynomials satisfying
this bound. These polynomials share a common root over the integers, and the
following heuristic is used to conclude that the root can be found, using Gröbner
bases for example.

Heuristic 1 The algebraic variety corresponding to the ideal in Q[x] of polyno-
mials recovered by lattice reduction is zero-dimensional.

When S is suitable and all polynomials in S share a root modulo p, the following
condition describes when Coppersmith’s method heuristically succeeds.

2
|S|(|S|−1)

4

∏
f∈S

LT(f)(X) <

(
p√
|S|

)|S|+1−ℓ

(1)

This condition on S ensures that the determinant bound for lattice reduction
implies recovery of ℓ linearly independent vectors satisfying the HHG bound. It
is common to see this in an asymptotic form, where we consider arbitrarily large
p and |S| such that the contribution of several terms becomes negligible.∏

f∈S

LT(f)(X) < p|S| (2)

2 This is often referred to as the Howgrave-Graham bound, but as May notes [29], it
appears in H̊astad’s earlier work as well.

2.6 On the Possibility of an Efficient and Provable Algorithm

In [14], Coppersmith showed that an efficient and provable algorithm for solving
multivariate Coppersmith problems is not possible. More precisely, he shows
that finding small solutions to the modular equation ax2

1 + bx2 − c ≡ 0 (mod p)
implies an efficient solution to an NP-complete problem from number theory.

Despite this inherent limitation, there has been great progress in solving mul-
tivariate problems by considering non-polynomial-time subroutines and making
heuristic assumptions. For example, Gröbner basis computation has doubly ex-
ponential worst-case running time, but modern computer algebra libraries are
efficient, and computing Gröbner bases is usually not a bottleneck in practice. In
line with previous work, our focus is also on developing a fast heuristic approach
which is well supported by practical experiments.

3 Ideals

In this section, we explore how shift polynomials can be represented as members
of an ideal in Z[x]. Prior work has also shown the connection between shift
polynomials and ideals [2], but we hope to elaborate on this in greater depth.

Ideals in a ring represent combinations of the ideal’s generators F ⊂ Z[x]:

J = ⟨F⟩ = {
∑
i

aifi | ai ∈ Z[x], fi ∈ F}.

This resembles the common shift polynomial strategy of multiplying input poly-
nomials by monomials: if f has a root modulo p, then xjf has the same root
modulo p. Indeed, if the generators of an ideal share a root modulo p, then so do
all the elements in the ideal. Addition and multiplication are defined for ideals:

J + J ′ = {f + f ′ | f ∈ J, f ′ ∈ J ′} J · J ′ = ⟨{ff ′ | f ∈ J, f ′ ∈ J ′}⟩.

Multiplication resembles the common shift polynomial strategy of multiplicities.
If N and f share a root modulo p, then N2, Nf , and f2 share a root modulo
p2, have multiplicity 2, and belong to the ideal ⟨N, f⟩2. Ideals of this form are
considered in [2]. If polynomials in J share a root modulo p and polynomials in
J ′ share the same root modulo p′, then polynomials in J + J ′ share the root
modulo gcd(p, p′), and polynomials in J · J ′ share the root modulo pp′.

In general, any sort of shift polynomial strategy that involves taking poly-
nomial combinations input polynomials can be represented as finding members
of an ideal. This encompasses all shift polynomial strategies we are aware of,
including the linear algebra–based strategy in [46,47,48], the exponent tricks
in [25] or the technique of unravelled linearization [19].

3.1 Unravelled Linearization

In 2009, Herrmann and May proposed a novel technique for shift polynomial
selection called unravelled linearization [19]. In essence, they observed that in

the specific input relation f(x) = x2
1−x2+ax1+b ≡ 0 (mod p), it helps to group

together (“linearize”) the terms (x2
1 − x2) 7→ u into a new bounded variable, so

g(x, u) = u+ax1+ b ≡ 0 (mod p). Next, they calculate polynomials of the form
gi,j = xj

1g
i, and finally they back-substitute (“unravel”) x2

1 7→ u+x2 into gi,j to
eliminate all monomials that are a multiple of x2

1. This decreases the resulting
lattice determinant and increases the power of the attack.

There is a simple way of representing unravelled linearization with ideals. We
introduce a new variable u and new polynomial ful(x1, x2, u) = x2

1−u−x2. Now
f, ful, and p all share a small root modulo p bounded by (X1, X2, X

2
1 +X2), so

this is a multivariate Coppersmith problem. The process of unravelling involves
subtracting polynomial multiples of ful, so the resulting shift polynomial gi,j
is in the ideal ⟨f, p⟩i + ⟨ful⟩. If we have a monomial ordering where u < x2

1,
then reduction by ⟨ful⟩ corresponds to eliminating all monomials that are a
multiple of x2

1. We essentially perform unravelled linearization by augmenting
the multivariate Coppersmith problem with an additional polynomial ful ∈ F ′

with an integer constraint.

3.2 Determining the Shift Polynomial Ideal

For input polynomials F , the modular or integer constraints, and root r, define

Ĵpi
= ⟨{f ∈ F | f(r) ≡ 0 (mod pi)}⟩ and Ĵ∞ = ⟨{f ∈ F | f(r) = 0}⟩ .

Note that if pi or a multiple Ni of pi is known, then pi ≡ 0 (mod pi) or Ni ≡ 0
(mod pi) are implicit input relations described by constant polynomials in F . If
all modular relations share the same modulus p, then we may select multiplicity
k and define the ideal

Jk = Ĵk
p + Ĵ∞

which has the property that for f ∈ Jk, f(r) ≡ 0 (mod pk).

However, we also consider situations where the relations involve multiple
moduli [25,32]. Let P be the set of distinct moduli and let Q be a set of pairwise
coprime divisors of the pi. For the sake of notation, we treat ∞ as a modulus

and say everything divides ∞. Then for multiplicity k ∈ Z|Q|
≥0 , we define

Jk =
∑
e∈Ek

∏
i

Ĵei
pi

where Ek =

e ∈ Z|P |
≥0

∣∣∣∏
j

q
kj

j divides
∏
i

peii

 .

Observe that if r satisfies the constraints for the input polynomials, then it also
satisfies the polynomial f ∈ ∏i Ĵ

ei
pi

with the constraint f(r) ≡ 0 (mod
∏

i p
ei
i)

for all e ∈ Ek and the polynomial f ∈ Jk with the constraint f(r) ≡ 0

(mod
∏

j q
kj

j) for all k. One can efficiently compute Jk from smaller multiplici-
ties Jk′ using dynamic programming. Also note that this definition agrees with
the previous one for P = {p,∞} and Q = {p}.

4 Optimal Shift Polynomial Selection

We can construct the ideal which contains all shift polynomials of a given multi-
plicity, but it remains an important question how to select the shift polynomials
for inclusion in the dual lattice. In this section, we provide a provably optimal
strategy that requires selecting a set of monomials in advance. While the main
focus of this paper is modular Coppersmith problems, we note that this strategy
applies equally well to integer Coppersmith problems.

The concept of constructing shift polynomials from a preselected set of mono-
mials is a common one. This framework was used by Jochemsz and May in
2006 [22], and more recently by Meers and Nowakowski in 2023 [33]. The auto-
mated method of Meers and Nowakowski involves taking input polynomials and
finding some product of their leading monomials that divides each monomial in
the preselected set M. They claim that their method finds the optimal set of
shift polynomials. We will show that, even for their example application, this is
not the case.

4.1 Gröbner Bases over Euclidean Domains

Our algorithm is based on the theory of Gröbner bases over principal ideal
domains and Euclidean domains. For our purposes, this is used to find Gröbner
bases for ideals in Z[x]. While there are some crucial differences compared to
the more familiar case of ideals in Q[x], many of the properties of Gröbner bases
over fields have analogues in our setting.

Gröbner bases have been used many times before in Coppersmith-like prob-
lems, but not in this way. As discussed in Section 2.5, Gröbner bases for ideals in
Q[x] are frequently used to find the small root following lattice reduction. Some
more recent works replace this ring with Fp[x] and use the Chinese remainder
theorem to reconstruct the zero-dimensional variety [33,48,49]. Herrmann and
May also used Gröbner bases in 2010 to find a nontrivial relationship between
unravelled linearization variables [20].

Gröbner bases are defined relative to a monomial ordering. There are many
possible orderings, but we typically use the weight order defined by the bounds
on the unknown variables. If small roots are bounded by |r| < X, then we order
monomials by <X , where m1 <X m2 if m1(X) < m2(X). In case of ties, we
fall back to lexicographic order.3

The textbook of Becker and Weispfenning [3] describes an algorithm to find
what they call a D-Gröbner basis G of an ideal J ∈ R[x] where R is a principal
ideal domain. G is a finite subset of J that generates the ideal. We rely on this
additional property of D-Gröbner bases, adapted from [3, Exercise 10.5].

Lemma 2 (Becker and Weispfenning). Let G be a D-Gröbner basis of an
ideal J ∈ R[x]. For nonzero f ∈ J , there exists g ∈ G where LT(g)|LT(f).
3 We take advantage of this tie-breaking when using unravelled linearization. For the
example in Section 3.1, a weight order of (logX1, logX2, 2 logX1) will combine with
the tie-break behavior to achieve u < x2

1 as desired.

To illustrate the difference between Gröbner bases over fields and D-Gröbner
bases, consider the polynomials f1(x) = 10 and f2(x) = 3x2 + 7. The ideal
⟨f1, f2⟩ ∈ Q[x] is trivial, because 1

10f1 = 1 is in the ideal, so the Gröbner basis is
simply {1}. However, since 10 is not invertible in Z, the D-Gröbner basis of ideal
⟨f1, f2⟩ ∈ Z[x] is {x2 +9, 10}. We note that x2 +9 ≡ 3−1(3x2 +7) (mod 10), so
the process of computing the D-Gröbner basis implicitly does arithmetic modulo
10 in order to make one of the polynomials monic. The lemma from Becker and
Weispfenning then states that the leading term of any polynomial in the ideal is
divisible by either x2 or 10. If we have a Coppersmith ideal of the form ⟨N, f⟩ for
monic quadratic f and known modulus N , this aligns with common choices of
shift polynomials {N,Nx, f, fx}. However, the power of D-Gröbner basis to find
shift polynomials is much greater, as is demonstrated by the following algorithm.

4.2 Finding shift polynomials based on monomials

Algorithm 1: Finding optimal shift polynomials

Input : Ideal J , monomial setM
Output: Shift polynomials S with support inM

1 Set monomial order < to any weight order
2 G← D-Gröbner basis of (J,<)

3 M← {m | m ≤ max<M}
4 S ← {}
5 for m ∈M do
6 T ← {g ∈ G | LM(g) divides m}
7 if T ̸= ∅ then
8 g ← argming∈T |LC(g)|
9 h← m

LM(g)
g

10 S ← S ∪ {h}
11 S ← basis of the subspace of spanZ(S) where all coefficients of m /∈M are 0
12 return S

Our method for finding the optimal shift polynomials within an ideal is given
in Algorithm 1. At a high level, the algorithm iterates over a set of monomials,
and for each monomial m in the set, it finds a polynomial h in ideal J with
LM(h) = m. The divisibility property of D-Gröbner bases in Lemma 2 guar-
antees that we can find an h if one exists. Because LC(h) contributes directly
to the lattice determinant, we choose the candidate h with the smallest leading
coefficient.

We must be careful that every polynomial f ∈ S has support in M, or that
the set of monomials that appear in f is a subset of M. To do this, we construct
a superset M ⊃ M with the property that LM(h) ∈ M implies h has support
in M. This means S has support in M, and the linear algebra operations in

line 11 guarantee that S has support in M. Note that for any weight order, M
is finite, so the algorithm terminates.

In many cases in practice, we can use M = M while still ensuring S has
support in M. This allows us to skip the linear algebra step, because S = S.

4.3 Optimality of the algorithm

We claim that Algorithm 1 is optimal for a given choice of monomials, but we
must define our notion of optimality. In essence, if Coppersmith’s method suc-
ceeds for a non-optimal set of shift polynomials, it should succeed for the optimal
set. We use a combination of properties of both lattices and D-Gröbner bases to
prove that the optimal set of shift polynomials for a given set of monomials is
unique (up to unimodular transformations) and is found by our algorithm.

For a particular ideal J and choice of monomials M, a vector in the dual
lattice is the scaled coefficient vector of a polynomial f ∈ J where f has sup-
port in M. There is a natural embedding φ : J → Z|M| that converts shift
polynomials to dual lattice vectors. Furthermore, φ is additively homomorphic:
φ(f+g) = φ(f)+φ(g), so adding polynomials in the ideal corresponds to adding
vectors in a lattice. When the set of shift polynomials S has support in M, the
dual lattice ΛS is the span of vectors {φ(f) | f ∈ S}.

Informally, we define the optimal dual lattice for J and M as the dual lattice
that contains φ(f) for every f ∈ J with support in M. Formally, the proofs
become more direct if we define it in terms of sublattices rather than vectors,
although the definitions are equivalent. For shift polynomial sets S1 and S2,

ΛS1∪S2
= span ({φ(f1) | f1 ∈ S1} ∪ {φ(f2) | f2 ∈ S2}) = ΛS1

+ ΛS2
,

so the union of these sets corresponds to the sum of dual lattices (sometimes
called the lattice union), and ΛS1

is a sublattice of ΛS1∪S2
.

Definition 2 (Optimal Dual Lattice). Let J ⊂ Z[x] be an ideal, and M a
set of monomials. Any subset S ⊂ J of shift polynomials with support in M
defines a dual lattice ΛS . The optimal dual lattice Λ∗ for M has the property
that Λ∗ ⊃ ΛS over all choices of S.

Lemma 3. The optimal dual lattice is unique, if it exists.

Proof. Consider two optimal lattices ΛS1
and ΛS2

. S1 ∪ S2 ⊂ J has support in
M, so ΛS1 ⊂ ΛS1∪S2 ⊂ ΛS1 by lattice summation and optimality of ΛS1 . Thus
ΛS1 = ΛS1∪S2 . The same is true of ΛS2 , so therefore ΛS1 = ΛS2 .

This definition is also useful for bounding the successive minima of the opti-
mal lattice, which bounds the lengths of vectors found by lattice reduction.

Lemma 4. For all S with support in M, the optimal dual lattice Λ∗ satisfies

λi(Λ
∗) ≤ λi(ΛS) for 1 ≤ i ≤ rank(ΛS).

Proof. Since ΛS ⊂ Λ∗, any ball that contains i linearly independent vectors in
ΛS also contains the same in Λ∗.

For full-rank dual lattices, as are typically considered in modular Copper-
smith problems, this means that the strongest bounds on reduced vector lengths
are obtained by considering the optimal lattice. In other words, if vectors are
short enough to be found in any dual lattice, they are short enough to be found
in the optimal lattice. Finally, we arrive at the main result of this section.

Theorem 1. Let S be the shift polynomials returned by Algorithm 1 for ideal J
and monomial set M. Then {φ(f) | f ∈ S} is a basis for the optimal lattice.

Proof. The elements of S are Z-linearly independent, so if ΛS is optimal, then S
defines a basis. It suffices to show that for all possible shift polynomial sets S ′,
ΛS′ ⊂ ΛS . Let v ∈ ΛS′ be a vector, and let f = φ−1(v) ∈ J be the polynomial
whose embedding into the dual lattice is v. By the homomorphic property of φ,
if f is in the integer linear span of S, then v ∈ ΛS , proving ΛS′ ⊂ ΛS .

f has support in M, so f ∈ spanZ(S) if f ∈ spanZ(S). We will iteratively
subtract integer multiples of elements of S until f = 0. Since S ⊂ J , f ∈ J after
each subtraction. First, if f = 0, then we are done. If f ̸= 0, then let m = LM(f)
and let T, g, h be the values in Algorithm 1. T is nonempty by Lemma 2.

Since LM(h) = m and h ∈ S, subtract an integer multiple of h from f so
the coefficient of m in f is in {0, 1, . . . , |LC(h)| − 1}. Note that LC(h) = LC(g).
Assume that that this coefficient is nonzero. Since f ∈ J , Lemma 2 shows there
exists ĝ ∈ G where LT(ĝ)|LT(f). LM(ĝ)|LM(f) and LM(f) = m, so ĝ ∈ T , but
LC(ĝ)|LC(f) ⇒ |LC(ĝ)| ≤ |LC(g)|−1, contradicting the minimality of |LC(g)|
in T . Thus the coefficient of m in f is zero, and we have eliminated the leading
term. Repeat until f = 0.

4.4 Benefits of Our Approach

We compare our strategy to that of Meers and Nowakowski [33]. To solve the
Commutative Isogeny Hidden Number Problem for CSURF key exchange, they
consider a system of two polynomials modulo prime N with known c.

f = (c1 + x1)
2 + 12(c1 + x1)− 4(c1 + x1)(c2 + x2)

2 − 8(c2 + x2)
2 + 36

g = (c3 + x3)
2 + 12(c3 + x3)− 4(c3 + x3)(c1 + x1)

2 − 8(c1 + x1)
2 + 36

Meers and Nowakoswki’s strategy for multiplicity 2 first builds a set M of 33
monomials, then it finds a set of “optimal” shift polynomials that are products
of f and g. However, their algorithm is sensitive to the choice of monomial
order, and the resulting lattice determinant can vary. The lexicographic order
x3 < x2 < x1, lexicographic order x2 < x1 < x3, and degree lexicographic order
results in determinants proportional to N54, N52, and N53.

Our definition of optimality is independent of monomial order. With the
same 33 monomials, Algorithm 1 finds that the optimal lattice has a determinant
proportional to N51. This improvement is possible because the Gröbner basis

calculation finds nontrivial polynomial combinations of f and g. For example,
our method finds the nontrivial shift polynomial with leading term Nx2

2x
3
3:

(−x1x3 + (−c3 − 2)x1 + (−c1 + 2)x3)Nf + (x2
2 − 4−1x1 + 2c2x2)Ng.

The ability to find these nontrivial shift polynomials explains how our approach
minimizes the determinant and maximizes performance.

4.5 Provable Monomial Selection Strategy

While it is difficult to know which monomials to include so that the result-
ing optimal lattice leads to the best performing attack, an easy lemma tells us
which monomials to exclude. This lemma can be applied for modular Copper-
smith problems where an upper bound P on modulus p is known. This includes
problems where p is known or a multiple N of p is known, but it also includes
problems like the General Approximate Common Divisors problem [12] where
no multiple is known.

Lemma 5. We are given bounds X, ideal J in which all polynomials share a
root modulo p, and upper bound P ≥ p. Let M be any monomial set. Define

Mopt = {m | m(X) < P}.

Let Λ be the optimal dual lattice of M and J . If vector v ∈ Λ satisfies the
bound of H̊astad/Howgrave-Graham, then the polynomial corresponding to v has
support in M∩Mopt.

Proof. Let g = φ−1(v) be the polynomial corresponding to v. Consider a mono-
mial m ∈ M \Mopt. The coefficient of m in g is cm ∈ Z, so the entry at index
m in v is an integer multiple cm of m(X). If cm ̸= 0, then ∥v∥ ≥ m(X) ≥
P ≥ p. This contradicts the assertion that v satisfies the HHG bound, since
∥v∥ < p/

√
|M| ≤ p. Therefore cm = 0, so g has support in M∩Mopt.

In other words, it is unhelpful to consider any monomials not in Mopt, be-
cause the coefficients will always be zero in the recovered polynomials. Addition-
ally, if a short vector satisfying the HHG bound exists in the optimal lattice for
M, a vector of the exact same length (corresponding to the same polynomial)
must exist in the optimal lattice for Mopt.

This gives us the provable strategy; for an ideal J with modulus p, we run
Algorithm 1 with Mopt to find the shift polynomials for the optimal lattice.
While this strategy is fully automatic and has provable guarantees, Mopt may
be quite large, meaning lattice reduction is computationally expensive and the
exponential term in lattice reduction vector bounds is large. To improve the prac-
tical performance of our method further, we will require a heuristic monomial
selection strategy.

5 Heuristic Monomial Selection

Section 4 describes a provable strategy for taking an ideal J and selecting mono-
mials Mopt and shift polynomials that are guaranteed to produce a dual Cop-
persmith lattice with useful properties. If a vector in any other dual lattice is
short enough to satisfy the HHG bound, an equally short vector exists in our
provable lattice.

However, |Mopt| is large, and the lattice has large rank, meaning lattice
reduction is expensive and may not be guaranteed to find the short vectors that
exist. If we can directly construct a basis for a low-rank sublattice which still
contains suitably short vectors, then lattice reduction becomes practically faster
and yields better bounds. This section describes a heuristic strategy for finding
shift polynomials which lead to an improved sublattice of the optimal lattice.

At a high level, we bound the length of sublattice vectors using the deter-
minant of the sublattice. It’s easy to compute the determinant when the lattice
is full-rank and the basis is triangular, so we assume that Algorithm 1 returns
a basis S that is triangularized according to some monomial order <, noting
that triangularization of a basis is computationally efficient. The requirement
that the lattice basis is full-rank and triangular is captured by the notion of
(M, <)-suitability.

Definition 3 ([33]). Given monomial set M and monomial ordering <, a set
of shift polynomials S is (M, <)-suitable if every f ∈ S has support in M, and
for each m ∈ M, there is a unique f ∈ S with LM(f) = m.

For a (M, <)-suitable sets S of shift polynomials, the dual lattice is full-
rank, has dimension |S|, and has determinant detΛS =

∏
f∈S LT(f)(X). Since

our focus is modular Coppersmith problems where a multiple N of modulus p is
known, ideal J contains the constant polynomial N . When J has this property,
Algorithm 1 returns a (M, <)-suitable set S. This is because Lemma 2 guaran-
tees that the D-Gröbner basis of J includes a polynomial g with LM(g) = 1, so
T is always nonempty in line 7. The span of S has rank |M|, meaning the span
of S has rank |M| and the triangularized basis is (M, <)-suitable.

5.1 Sublattice Structure

The sublattice structure of Coppersmith lattices addresses one of the major
open questions of prior research: Coppersmith’s method often far outperforms
expectations, finding lattice vectors significantly shorter than predicted by the
determinant bound det(Λ)1/ rank(Λ). These unexpectedly short vectors belong to
dense sublattices, or sublattices Λsub ⊂ Λ where

det(Λsub)
1/ rank(Λsub) ≪ det(Λ)1/ rank(Λ),

so understanding the sublattice structure has two benefits. First, it helps us close
the gap between theoretical performance of Coppersmith’s method and experi-
mental results. Second, if we directly construct a sufficiently dense sublattice of

the optimal Coppersmith lattice, the decreased rank leads to faster lattice reduc-
tion and improved practical performance. We qualitatively observe four causes
of dense sublattices in Coppersmith lattices.

First, many instances of Coppersmith problems assume the existence of a
small root. This implies the existence of a small vector in the Coppersmith
primal lattice, and duality [35] implies the existence of a dense sublattice of
rank |S| − 1 in the Coppersmith dual lattice. This explains the gap between
theory and practice in [19]. We probably cannot construct this sublattice directly
(since then we could construct the small root directly), but we can intentionally
construct instances without small roots, allowing us to study other causes of
dense sublattices.

Second, the choice of shift polynomial ideal can explain some of the sublattice
structure. If the optimal lattice for ideal J includes a dense sublattice, then the
optimal lattice for J2 amplifies this structure, since g ∈ J with small coefficients
implies g2 ∈ J2 with small coefficients. These complex dense sublattices are hard
to analyze, but easy to avoid in practice: simply use as small a multiplicity as
possible. This sublattice structure explains the gap between theory in practice
in [12], particularly the entries in Table 1 which report an LLL factor ≈ 0.5.

Third, the basis of the dual lattice is often sparse, meaning orthogonality in
projected sublattices is more common than expected for random lattices. Since
the sparsity of shift polynomials is known, it’s possible to analyze the nonzero
coefficients of shift polynomials to find improved sublattices. This is explored in
more detail in Section 5.2.

Fourth, shift polynomials sometimes have small, non-zero coefficients. This
leads to near-orthogonality in projected sublattices, which is harder to analyze.
Unravelled linearization can help here, and this is explored in Section 5.3.

5.2 Sparse Polynomials and Graph Search

Size reduction of the triangular basis returned by Algorithm 1 often results in
sparse shift polynomials. Size reduction ensures that non-leading coefficients in
the basis are small relative to leading coefficients, but it is also directly related
to the unique normal form of a polynomial with respect to a D-Gröbner ba-
sis [3, Theorem 10.23]. Sparse shift polynomials mean that many of the entries
in the dual lattice basis are 0, and we can often use this sparsity to find dense
sublattices. For example, consider the dual bases for S = {N,Nx, x2 + a} and
Ssub = {N, x2 + a}:

B =

N 0 0
0 NX 0
a 0 X2

 Bsub =

(
N 0 0
a 0 X2

)
Basis B has determinant N2X3 and rank 3. Because the coefficient of x in Ssub is
always zero, observe that the second column of Bsub can be eliminated without
affecting the lattice vector lengths. This makes it easy to compute that the
lattice spanned by Bsub has determinant NX2 and rank 2. Since (NX2)1/2 <
(N2X3)1/3, this is a dense sublattice.

While the sublattice is easy to identify in this toy example, the problem
becomes more difficult when S contains hundreds or thousands of sparse poly-
nomials. We must search over all possible subsets of S, consider subsets that
contain all-zero columns in the corresponding basis matrix (so the determinant
is easy to compute), and compare the density of the sublattice to the density
of the original lattice. The main contribution of this section is a method based
on graph optimization algorithms that does this, automatically and efficiently
identifying these dense sublattices.

The requirement for all-zero columns is related to shift polynomial suitability.
If S is (M, <)-suitable, and Ssub ⊂ S is (Msub, <)-suitable, then this means Ssub

has support in Msub, and the columns corresponding to monomials M\Msub

are necessarily all zero. Our algorithm involves a directed graph that encodes
information about shift polynomial suitability.

The directed graph represents dependencies between monomials in polyno-
mials in S. Given a (M, <)-suitable set of shift polynomials S, we define a graph
G with vertices M and directed edges (m1,m2) if m1 ̸= m2 and ∃f ∈ S with
LM(f) = m1 and the coefficient of m2 in f is nonzero. Once again, consider the
({1, x, x2}, <)-suitable S = {N,Nx, x2 + a}. The corresponding graph follows.

1 x x2

Directed edges denote dependencies for (Msub, <)-suitable subsets Ssub ⊂ S.
If x2 ∈ Msub, then x2 + a ∈ Ssub, implying 1 ∈ Msub. Indeed, {N, x2 + a} is
a ({1, x2}, <)-suitable set. Finding a suitable subset is therefore equivalent to
finding a subgraph where there are no edges leading out of the subgraph (so
there are no unmet dependencies). This is called a closure.

Definition 4 (Graph Closure). Let G = (V,E) be a directed graph. V ′ ⊂ V is
a closure if there exists no directed edge (v1, v2) ∈ E with v1 ∈ V ′ and v2 ∈ V \V ′.

Picard [37] studied the problem of finding a closure of maximum total weight
in a vertex-weighted directed graph. He proposed an algorithm which efficiently
finds the maximal closure by reducing the problem to an equivalent maximal
flow problem and solving with the Ford-Fulkerson algorithm. We will use Pi-
card’s algorithm as a subroutine to find a (Msub, <)-suitable proper subset
Ssub ⊊ S with better determinant bounds if one exists. This process is doc-
umented in Algorithm 2. Intuitively, we want to find subsets with small de-
terminant, so if we weight vertices by − log LT(f)(X), then a closure which
maximizes the sum of the logarithmic weights is a subset which minimizes the
product

∏
f∈Ssub

LT(f)(X). In our algorithm, we use similar weights,4 call Pi-
card’s algorithm to find a closure, and check if the closure is a proper subset.

4 They are different because we want small det(ΛSsub)
1/|Ssub|, not small det(ΛSsub)

Algorithm 2: Finding a suitable subset of shift polynomials

Input : Bounds X, monomial setM and (M, <)-suitable S
Output:Msub ⊊M and (Msub, <)-suitable Ssub ⊊ S with better

determinant bounds if one exists, else ⊥
1 E ← {(m1,m2) | ∃f ∈ S with LM(f) = m1 and m2 ̸= m1 is a monomial in f}
2 Construct directed graph G ← (M, E)
3 for fm ∈ S with LM(fm) = m do

// Set weight of vertex m ∈M
4 wm ← − log2(LT(fm)(X)) + 1

|S|
∑

g∈S log2(LT(g)(X))

5 Msub ← maximal closure of G with weights {wm}m∈M
6 if

∑
m∈Msub

wm = 0 then

7 return ⊥
8 else
9 Ssub ← {f ∈ S | LM(f) ∈Msub}

10 returnMsub,Ssub

Theorem 2. Algorithm 2 is correct. On input X,M,S, it returns a proper,
nonempty subset Msub and corresponding (Msub, <)-suitable Ssub ⊊ S where

det(ΛSsub
)1/|Ssub| < det(ΛS)

1/|S|

if such a proper subset exists, otherwise it returns ⊥.

Proof. Observe that any closure of G corresponds to a suitable subset of S. Con-
sider closures M′ = ∅ and M′ = M; these closures have weight

∑
m∈M′ wm = 0.

Note that for closure M′ and corresponding S ′ ⊂ S,

det(ΛS′)1/|S
′| < det(ΛS)

1/|S| ⇔
∏
f∈S′

LT(f)(X) <
∏
f∈S

LT(f)(X)|S
′|/|S|

⇔
∑
f∈S′

log2 LT(f)(X) <
|S ′|
|S|

∑
g∈S

log2(LT(g)(X)) ⇔ 0 <
∑

m∈M′

wm.

That is, if a proper nonempty subset M′ exists with improved determinant
bounds, then the maximal closure has positive weight. Picard’s algorithm finds
the maximal closure, which corresponds to a proper nonempty subset Msub.
If no such proper nonempty subset exists, then the maximal closure has total
weight 0, and Algorithm 2 returns ⊥.

To obtain Mheur, we begin with Mopt. We find that inclusion of f ∈ Ĵ∞
in S leads to spurious short vectors that fail to satisfy Heuristic 1, so we set
M′ = Mopt \LM(Ĵ∞), which is easily computed from the Gröbner basis of Ĵ∞.
Next, we iteratively apply Algorithm 2 to M′ until no more proper subsets are
found.5 This final set is Mheur.

5 Incidentally, this iterated process is guaranteed to minimize det(ΛSheur)
1/|Sheur| over

possible closures, which we prove in Appendix B.

5.3 Small Coefficients and Unravelled Linearization

In some cases, the shift polynomials have small coefficients. For example, Boneh
and Durfee’s approach to the small private exponent RSA problem [7] can lead
to S = {N,Nx1, x1x2 + ax1 + 1} and basis

B =

N 0 0
0 NX1 0
1 aX1 X1X2

 .

Because the constant coefficient 1 in x1x2 + ax1 + 1 is small relative to N , the
second and third row are very nearly orthogonal to the first row. The rank-2
sublattice they span has determinant close to NX2

1X2, but Algorithm 2 fails to
find this sublattice because {Nx1, x1x2 + ax1 + 1} is not suitable.

To make the determinant easier to compute, Herrmann and May introduced
the variable u = x1x2 + 1 with bound U = X1X2 + 1 [20]. The lattice bases for
S ′ = {N,Nx1, u+ ax1} and S ′

sub = {Nx1, u+ ax1} are then

B′ =

N 0 0
0 NX1 0
0 aX1 U

 B′
sub =

(
0 NX1 0
0 aX1 U

)
.

With unravelled linearization, the small, nonzero coefficients vanish, S ′
sub is

({x1, u}, <)-suitable, and Algorithm 2 can find the sublattice with determinant
NX1U ≈ NX2

1X2. In general, when Algorithm 2 fails due to small coefficients,
it is often helpful to apply unravelled linearization.

6 Asymptotically Fast Use of Precomputation

The shift polynomial strategies in Sections 4 and 5 are powerful and effective,
but the cost of Gröbner basis computation becomes increasingly expensive as
the multiplicity grows. In addition, it is challenging to analyze the asymptotic
behavior of our approaches. To remedy this, we propose a third strategy based
on symbolic precomputation. In the precomputation phase, we use a symbolic
representation of the input polynomials to calculate symbolic shift polynomials.
Once the actual coefficients of the input polynomials are known, the shift poly-
nomials can be computed quickly and explicitly. We also describe an approach to
extend these shift polynomials to higher multiplicities. Our approach appears to
satisfy a modified heuristic assumption by Meers and Nowakowski [33], enabling
us to automatically determine asymptotic bounds for a precomputed set of shift
polynomials.

There are trade-offs for this approach. Unlike our previous shift polynomial
strategies, this method is not fully automated and requires guessing a good
monomial set before computing the symbolic shift polynomials. It loses the guar-
antee that the dual lattice is optimal, and it may be less effective at recovering
roots for a fixed multiplicity. However, it is fast in practice, and it achieves the
same asymptotic bounds and heuristic polynomial running time guarantees that
are found in prior work without the need for tedious manual calculations.

6.1 Symbolic Representation of Shift Polynomials

In many cases, the algorithms of Sections 3, 4, and 5 can be performed sym-
bolically. Specifically, we consider the case where there is a single modulus p
and a multiple N of the modulus is known. We use variables c to represent the
coefficients which are known during an attack, but unknown in advance, and
work in the fraction field of the polynomial ring Q[c], which we denote by Kc.
We specify input relations by the polynomial ring Kc[N,x]. We build ideals,
calculate Gröbner bases, and run Algorithm 1 in this polynomial ring.

For example, consider the problem of factoring RSA modulus N = pq when
the least significant bits of p are known [34]. N is a known multiple of p, and we
may use relation f(N, x) = c1x+c2 where x represents the most significant bits,
c1 is a power of two, and c2 represents the known least significant bits. Members
of the ideal J = ⟨N, f⟩ ⊂ Kc[N, x] share a root modulo p, and the Gröbner basis
of J2 is {

N2, Nx+
c2
c1

N, x2 +
2c2
c1

x+
c22
c21

}
.

Therefore, by specifying the symbolic input relations, a desired multiplicity

kpre, and a set of monomials, we can compute Ĵ
kpre
p + Ĵ∞ and use Algorithm 1

to return a symbolic representation of the shift polynomials S1 ⊂ Ĵ
kpre
p + Ĵ∞.

If Ĵ∞ is nontrivial, we also compute a symbolic representation of its Gröbner
basis. During an attack, once the values of coefficients c are known, they may
be substituted into the precomputed S1. Division in fraction field Kc is replaced
by inversion modulo Nkpre , so this substitution requires that the denominators
in S are coprime to N . In our example, c1 is a power of two, which is coprime
to the RSA modulus N .

6.2 Extending to Higher Multiplicities

After substituting in the known coefficients, we have shift polynomials S1 which

share a root modulo pkpre and belong to an ideal Ĵ
kpre
p + Ĵ∞ ⊂ Z[x]. We use S1

to compute shift polynomials with higher multiplicities to avoid calculating the

Gröbner basis of Ĵ
kkpre
p + Ĵ∞ during the attack itself.

Given a desired multiplicity k and parameter t ∈ Zℓ
≥0, we have a three step

process to compute shift polynomials Sk,t,ul ⊂ Ĵ
kkpre
p +Ĵ∞. We rely on a filtration

operation Φ, where if multiple shift polynomials share a leading monomial, we
keep the one with the smallest leading coefficient:

Φ(S) =
{
argminf∈S,LM(f)=m|LC(f)| | m ∈ LM(S)

}
Computing polynomials in (Ĵ

kpre
p + Ĵ∞)k. We recursively construct

Sk = Φ ({ff ′ | (f, f ′) ∈ S1 × Sk−1}) .

This set grows similarly to the monomial sets from Jochemsz and May [22] and
Meers and Nowakowski [33], which consider terms in fk and

∏
i f

k
i respectively.

Computing x-shifts in (Ĵ
kpre
p + Ĵ∞)k. In some cases, the bound Xi is small,

so it is beneficial to include extra monomials involving xi. Using t, we compute

Sk,t = Φ

(
Sk ∪

{
ℓ∏

i=1

xei
i f | f ∈ Sk, 0 ≤ ei ≤ ti∀i ∈ {1, . . . , ℓ}

})
.

This is like the extended strategy in [22] and the y-shifts of Boneh and Durfee [7].

Unravelling into Ĵ
kkpre
p + Ĵ∞. As described in Section 5.2, it is empirically

helpful to exclude monomials in LM(Ĵ∞) when using unravelled linearization.

Sk,t,ul =
{
normal formGB(Ĵ∞)(f) | f ∈ Sk,t,LM(f) /∈ LM(Ĵ∞)

}
.

Assuming the polynomials in GB(Ĵ∞) are monic, the normal form [3] of f ensures
that no monomial in LM(Ĵ∞) appears in Sk,t,ul.

For this strategy to be efficient, |Sk,t,ul| cannot grow too quickly, but a näıve
bound on |Sk| ≤ |S1|k is exponential in k. One goal of this section is to show
that for the proper choice of M, the bound is actually polynomial in k.

6.3 Specifying Monomials for Precomputation

In order to use Algorithm 1 to find a symbolic representation of shift polynomials
S1, we must specify a set of monomials M1. Our choice of representation is
related to the theory of Newton polytopes, which have previously been used to
analyze the asymptotic behavior of Coppersmith’s method. To our knowledge,
they were first used by Blömer and May in 2005 [6] to analyze bivariate integer
Coppersmith problems.

Concurrent work by Feng, Luo, Chen, Nitaj, and Pan also uses Newton poly-
topes to compute asymptotic bounds [17]. They arrive at provable bounds with-
out relying on heuristic assumptions like this work and [33] do. However, the
Newton polytope in their work is determined by the input polynomials, and
they analyze the asymptotics of that polytope. In contrast, the polytope in our
work is specified independently.

To define the Newton polytope, note that monomials
∏ℓ

i=1 x
ei
i naturally bi-

ject with nonnegative integer points (e1, . . . , eℓ) in ℓ-dimensional space. The
Newton polytope Pf of a polynomial f is the convex hull of its monomials. By
convexity, if Pf and Pg are the Newton polytopes of polynomials f and g, then
the Minkowski sum Pf +Pg (where each point is the sum of a point in Pf and in
Pg) is the Newton polytope of product fg (where each monomial is the product
of a monomial in f and in g).

We specify the precomputed monomial setM1 using convex polytopes. Given
a set Mvert of monomials representing the vertices of P1 = ConvexHull(Mvert),

M1 =

{
ℓ∏

i=1

xei
i

∣∣∣e is an integer point in P1

}
.

S1 is computed using the symbolic ideal and Algorithm 1. Since a multiple
of the modulus is known, S1 is (M1, <)-suitable, and there is a one-to-one cor-
respondence with M1. We geometrically represent S1 by the polytope P1, and
the sets Sk,Sk,t,Sk,t,ul have geometric interpretations Pk,Pk,t,Pk,t,ul as well.

– If P1 and Pk−1 are polytopes corresponding to S1 and Sk−1, then Pk =
P1 + Pk−1 corresponds to Sk. This follows from the properties of Newton
polytopes and the convexity of P1. By induction, Pk = kP1, a scaled version
(dilation) of P1.

– If Pk corresponds to Sk, then Pk,t is the union of translations of Pk. The
maximum translation in each dimension is ti.

– LM(Ĵ∞) corresponds to a union of cones, so Pk,t,ul is the (non-convex) poly-
tope of Pk,t minus the cones.

These polytopes are depicted in Figure 1.

x0
1 x1

1 x2
1 x3

1 x4
1 x5

1 x6
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

P1

x0
1 x1

1 x2
1 x3

1 x4
1 x5

1 x6
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

P2

x0
1 x1

1 x2
1 x3

1 x4
1 x5

1 x6
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

P2,(0,1)

x0
1 x1

1 x2
1 x3

1 x4
1 x5

1 x6
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

P2,(0,1),ul

Fig. 1: Polytopes corresponding to our shift polynomial sets. Polytope
P1 is defined by vertices Mvert = {1, x3

1, x
3
1x2, x1x

2
2, x

2
2}, and Ĵ∞ = ⟨x2

1x2 − x1⟩.
These correspond to the monomials that appear in S1, S2, S2,(0,1), and S2,(0,1),ul.
Polytope P2 is P1 scaled by 2. Polytope P2,(0,1) is P2 along with monomials from
x2 shifts. P2,(0,1),ul eliminates all monomials that are multiples of x2

1x2.

6.4 Computing lattice properties with polytopes

The dimension of the Coppersmith lattice for a (M, <)-suitable set S is given
by |M|, which happens to be the number of integer points in the polytope:

dimΛS = #(P ∩ Zℓ).

Similarly, the contributions of logXi to the log-determinant can also be expressed
using the polytope:

log
∏

m∈M
m(X) =

∑
xe∈M

ℓ∑
i=1

ei logXi =

ℓ∑
i=1

(∑
e∈P

ei

)
logXi.

As in prior work, we introduce functions sdim, {sxi
}1≤i≤ℓ, and {sCj

}Cj∈LC(S1)

to represent certain terms in the dimension and log-determinant expressions for

the lattice corresponding to Sk,t,ul:

dimΛSk,t,ul
= sdim(k, t)

log detΛSk,t,ul
=

ℓ∑
i=1

sxi
(k, t) logXi +

∑
Cj∈LC(S1)

sCj
(k, t) logCj .

It is clear that sdim and sxi
are weighted sums over integer points in polytopes.

This connection to polytopes allows us to tap into the rich field of Ehrhart
theory. A foundational result of the field states that the number of integer points
in a k-dilation of a polytope is described by a polynomial called the Ehrhart
polynomial. As a result, we may use Ehrhart theory to bound the complexity of
our precomputation strategy. We refer to the introduction of [10] for background
on Ehrhart polynomials and the theorems we cite in this proof. The application
of Ehrhart theory to Coppersmith’s method was independently introduced by
Feng at al. in concurrent work [17].

Lemma 6. Let P1 and S1 be a convex polytope and shift polynomial set as
previously defined. Then |Sk| is polynomial in k. Additionally, if Ĵ∞ = {0} and
we fix t = 0, then sdim(k,0) and sxi

(k,0) are both polynomial in k with degrees
dimP1 and dimP1 + 1 respectively.

Proof. Because Pk is a k-dilation of P1, |Sk| = #(kP ∩ Zℓ). Thus |Sk| is de-
scribed by the Ehrhart polynomial [15] of P1, which has degree dimP1 ≤ ℓ (the
dimension of the polytope is unrelated to the dimension of the lattice). Since
Sk,t,ul = Sk,t = Sk, sdim(k,0) = |Sk| is polynomial in k.

We have sxi
(k,0) =

∑
e∈kP ei, which is a sum over integer points in a dilated

polytope, weighted by a homogeneous polynomial of degree 1. A result of Brion
and Vergne [9] proves that sxi is a polynomial of degree dimP + 1.

Since |Sk| is polynomial in k, it’s simple to prove that |Sk,t| ≤ (max t)ℓ|Sk|
is bounded by a polynomial in k and t, and |Sk,t,ul| is also asymptotically poly-
nomial. This means that Sk,t,ul can be constructed in polynomial time. How-
ever, to analyze the asymptotic behavior further, we need to rely on a heuris-
tic assumption. This assumption is essentially the same as that by Meers and
Nowakowski [33] and is well supported by experiment.

Heuristic 2 Let S1 represent a convex polytope, and let Sk,t,ul be as previously
defined. Then if Sk,t,ul is suitable, the functions sdim, sxi

, and sCj
which define

the lattice dimension and determinant are polynomials in both k and t and have
maximum total degree ℓ+ 1.

As an example of these polynomials, consider the polytope in Figure 1. We
have that |S1,(0,0)| = 10, |S2,(0,0)| = 29, and |S2,(0,1)| = 36. This is satisfied by

|Sk,t| = 5k2 + 2kt1 + 3kt2 + t1t2 + 4k + t1 + t2 + 1.

Similarly, sdim(k, t1, t2) = |Sk,t,ul| = 7k+t1+2t2+1 agrees with |S2,(0,1),ul| = 17.

6.5 Asymptotic Behavior

Meers and Nowakowski used their heuristic assumption to analyze asymptotic
behavior as k → ∞. We do the same here. The following lemma describes the
bounds X for which a Coppersmith problem is solvable, if we can take p to be
arbitrarily large. An extended proof of this lemma and an example application
are found in Appendix C.

Lemma 7. Consider a multivariate Coppersmith problem with known (multiple
of) modulus p where bound Xi is given by constants ai and bi and variable δ:

logXi = (ai + biδ) log p.

Given a precomputed shift polynomial set S1 with shared root modulo p, let sdim,
sxi

, and sCj
represent the functions describing the parameterized lattice dimen-

sion and determinant. Assume Heuristics 1 and 2 hold, and assume the values
substituted into the precomputation are proportional to p. For sufficiently large
p and any τ ≥ 0, the Coppersmith problem is solvable for δ < δ∗ − ϵ where δ∗ =

lim
k→∞

ksdim(k, kτ)−∑ℓ
i=1 aisxi

(k, kτ)−∑Cj∈LC(S1)
sCj

(k, kτ) logp Cj∑ℓ
i=1 bisxi

(k, kτ)
(3)

In particular, for multiplicity k we require

log p = ω

(
sdim(k, kτ)2∑ℓ
i=1 bisxi

(k, kτ)

)
.

For any ϵ > 0, there is a parameter setting in which the time it takes to heuris-
tically solve the multivariate Coppersmith problem (excluding the final root re-
covery step) is polynomial in ϵ−1.

Proof. Equation 3 sets t = kτ and combines Heuristic 2 with heuristic inequal-
ity 1. Since the limit converges polynomially quickly, we may take k = Θ(ϵ−1)
and log p = Θ(poly(k)). By Lemma 6, Sk,t,ul can be computed in polynomial
time. The lattice dimension and entry lengths are polynomial in k, so shift poly-
nomial construction and lattice reduction take polynomial time.

6.6 Precomputing Symbolic Asymptotic Bounds

We combine all ideas in this section into Algorithm 3, which symbolically deter-
mines asymptotic bounds for a given multivariate Coppersmith problem. We use
Section 6.1 to find a symbolic ideal, Section 6.3 to find M1, Algorithm 1 to find
S1, Section 6.2 to find symbolic lattice constructions, interpolation to determine
sdim and the other polynomials, and Lemma 7 to find asymptotic bounds.

This algorithm, which adapts our methods to the approach of Meers and
Nowakowski [33], allows one to compute asymptotic Coppersmith bounds in a
fully automated way. While this approach still requires careful choice of Mvert,
we believe that it greatly simplifies the process of proving and verifying asymp-
totic bounds for multivariate Coppersmith problems.

Algorithm 3: Automatically finding multivariate Coppersmith bounds

Input : F ,X,kpre,Mvert,Xguess

Output: Asymptotic bounds X as determined by δ
1 Symbolically represent ideals Ĵp and Ĵ∞ based on F
2 J ← Ĵ

kpre
p + Ĵ∞ for multiplicity kpre

3 M1 ← integer points in convex hull ofMvert

4 S1 ← output of Algorithm 1 for J andM1, triangularized by <Xguess

5 Compute Sk,t,ul for various (k, t) using S1 and Ĵ∞
6 Use polynomial interpolation to recover sdim, {sxi}1≤i≤ℓ, and {sCj}Cj∈LC(S1)

7 Substitute t = kτ into bound 3 and consider asymptotic behavior as k →∞
8 δ ← Maximize the bound over τ
9 return (τ , δ)

7 Experiments

We compared the performance of our algorithms to over a dozen different ap-
plications of Coppersmith’s method, and we report the results in Table 1. It is
challenging to directly compare compare two shift polynomial selection strate-
gies, so we therefore focus on the following four attributes to demonstrate the
capabilities of our new methods.

– Bounds. For a particular multiplicity and shift polynomial strategy, we ex-
perimentally determine the maximum X for which Coppersmith’s method
successfully recovers the expected small root. The provable strategy in Sec-
tion 4.5 has the strongest guarantees, so we compare the bounds of this
strategy to those of prior work.

– Dimension. A low-rank lattice is typically faster to reduce. We find that the
graph-based strategy in Section 5.2 typically achieves the same bounds as
our provable strategy, but involves significantly smaller lattices. We compare
the ranks of these lattices to those in prior work.

– Time. For practical attacks, running time can be important. We find that
our precomputation strategy in Section 6.2 often has similar bounds as our
provable strategy and rank as our graph strategy, but can be significantly
faster. We compare the concrete running time of this strategy to prior work.

– Asymptotics. A regular feature of Coppersmith papers is asymptotic anal-
ysis to determine the maximum recoverable bound size as a fraction of the
modulus size. We compare the asymptotic analyses from prior work to the
automated asymptotic analysis described in Section 6.6.

A number of large-scale trends are apparent in Table 1. First, our provable
strategy always performs as well as or better than prior strategies when it comes
to maximizing recoverable bounds, supporting our chosen definition of optimal-
ity. Second, our graph-based shift polynomial strategy frequently finds smaller,
and therefore more easily reduced, lattices. In the cases where this algorithm

Table 1: Summary of experimental results. We compare the recoverable
bounds, lattice dimension, running time, and asymptotic behavior of our ap-
proaches with prior work, and note whether our generalized techniques are bet-
ter (✔✔), equivalent to (✔), or worse (✗) than prior shift polynomial strategies.
We say the strategies are the same if the bounds are within a few bits, the di-
mension is within a few, or the time is within a factor of two to allow for small
variations. Full numerical data supporting these results are in Appendix A.

Coppersmith Problem Prior Bounds Dimension Time Asymp.

CIHNP-CSIDH [33] ✔ same ✔ same ✔ same ✔ same
CIHNP-CSURF [17] ✔ same ✔✔ better ✔✔ better ✔✔ better

MIHNP [48] ✔✔ better ✗ worse ✔ same ✔✔ better
ECHNP [49] ✔✔ better ✗ worse ✗ worse ✔✔ better

Stereotyped RSA [28] ✔ same ✔ same ✔ same ✔ same
Partial factoring RSA [28] ✔ same ✔ same ✔ same ✔ same

Partial ACD [12] ✔ same ✔ same ✔ same ✔ same
Small RSA priv. exp. d [20] ✔ same ✔✔ better ✔ same ✔ same

RSA Power Gen. [19] ✔ same ✔✔ better ✔✔ better ✔ same
Small CRT-RSA dp, dq [43] ✔ same ✔✔ better ✗ worse ✗ worse
Partial CRT-RSA dp, dq [30] ✔ same ✔ same - -

SMUPE [32] ✔✔ better ✔✔ better - -
Common prime RSA [25] ✔ same ✔ same ✔ same ✔ same

Small Multipower RSA d [25] ✔ same ✔ same ✔ same ✔ same

finds a larger lattice, it’s because the larger lattice enables recovery with in-
creased bounds. Third, our precomputation strategy is competitive with prior
approaches. However, it requires manual identification of monomials Mvert, and
poor choice of monomials leads to poor performance. Additionally, our symbolic
representation is incompatible with mixed moduli, so we could not apply this
strategy in two cases. Fourth, precomputation of asymptotic bounds often leads
to the same bounds as in prior work. However, our Algorithm 3 is also sensitive
to the choice of Mvert. Sometimes the choice of Mvert is clear because the mono-
mials found by the graph-based strategy follow a clear pattern as multiplicity
increases. In other cases, this is significantly harder. We believe that the problem
of choosing Mvert deserves further study.

Full numerical data and additional details about the diverse array of problems
we examined are available in Appendix A. Although there is not room here to
examine all aspects, we include experimental results from one of the problems
which highlight particular trends in the behavior of our algorithms.

7.1 Experimental setup

We tested the effectiveness of our approaches on several previously studied multi-
variate Coppersmith problems listed in Table 1. For each problem, we evaluated
the maximum bounds X for which the bounded roots are successfully recov-
ered at least 50% of the time for each shift polynomial selection strategy. Each

shift polynomial strategy was evaluated against the same 30 randomly generated
problem instances. When a shift polynomial strategy requires additional param-
eters, we report the parameter that gave the best results. We compare against
the provable strategy from Section 4, the graph-based strategy in Section 5, and
the precomputation strategy in Section 6. We also report the lattice dimension
and average running time in seconds for each multiplicity k.

Each experiment was run in single-threaded mode on a Intel Xeon E5-2699v4
CPU running at 2.2GHz. Our implementation was written in Python. We used
SageMath version 10.2 for generic computer algebra tasks, MSolve v0.7.16 for
Gröbner basis computations in Q[x], and flatter7 for lattice reduction.

7.2 Modular Inversion Hidden Number Problem

Boneh, Halevi, and Howgrave-Graham introduced the Modular Inversion Hidden
Number Problem (MIHNP) in 2001 [8]. Xu et al. revisited the problem in [48].
For MIHNP, the ℓ input relations have the form

fi(α, x1, . . . , xℓ) = (α+ ci,1)(xi + ci,2)− 1

and share a bounded root modulo a known prime p.
We report the results for MIHNP with four relations in Table 2. The shift

strategy in [48] is only defined for multiplicity k ≤ ℓ−2, so their existing “asymp-
totic” bound for four samples is really the maximal bound up to multiplicity 2.

Table 2: MIHNP with ℓ = 4 samples. We use 1000-bit modulus. Hidden
number α is 1000-bits, and the unknown values are lgXi bits long.

[48] All monoms. Graph search Precomputed

k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time

1 0 332 7 4.0 373 16 0.5 373 11 0.4 - - -
2 1 405 16 4.4 410 86 12.2 410 50 6.9 405 16 1.5
3 - - - - 446 296 211.8 446 76 66.0 - - -
4 - - - - - - - 460 221 581.3 442 81 25.7

Existing bound: logp Xi = 0.2432 Our bound: logp Xi = 0.5208

We ran Algorithm 3 on MIHNP with four samples with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 2, Mvert = {
∏

xei
i | ei ∈ {0, 1}}

and got output τi = 0, δ < 0.5208.
This example illustrates many interesting features of our approach. First,

although alpha is unknown, it is not small. We only have the trivial bound
|α| < p. While prior works manually manipulated the fi to eliminate α, our

6 https://msolve.lip6.fr/
7 https://github.com/keeganryan/flatter

https://msolve.lip6.fr/
https://github.com/keeganryan/flatter

weighted monomial ordering recognizes α ≫ xi, and Algorithm 1 automatically
finds shift polynomials with small leading monomial, and therefore exclude α.

This example also illustrates a drawback of our approach. While the approach
in [48] provides asymptotic analysis for ℓ → ∞, our approach only applies to fixed
values of ℓ, and as ℓ increases, Gröbner basis calculations become too expensive.

We also observe that the strategy of using all monomials in Mopt leads to
lattices with large rank and long running times. This is improved by applying
the graph-based strategy, which finds smaller lattices with equivalent bounds.
However, the graph-based strategy still requires Gröbner basis calculations, and
it becomes expensive at high multiplicities as well. The precomputed strategy
has worse practical bounds, but it has easily analyzed asymptotic bounds and
is fast in practice. While no single strategy is perfect, each has its own benefits
when applied to the multivariate Coppersmith problem.

8 Future Work

As a final note, we briefly discuss directions for future work. Although effective
for many modular problems, our graph-based methods are ineffective against
integer Coppersmith problems where lattices are not full-rank. Our approach
also does not capture the multi-step approaches used by Peng et al. [36] or
May et al. [30], which construct multiple Coppersmith lattices to gain partial
information about the roots. While our work resolves some open questions and
greatly simplifies the use of Coppersmith’s method, we look forward to seeing
future improvements to the capabilities of Coppersmith’s method for finding
small roots.

Acknowledgments. We thank Nadia Heninger for helpful discussions, and we thank
Miro Haller and the anonymous reviewers for providing feedback on drafts of this work.
This work was supported in part by a gift from Google.

References

1. Aono, Y.: A new lattice construction for partial key exposure attack for RSA. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 34–53. Springer,
Berlin, Heidelberg (Mar 2009). https://doi.org/10.1007/978-3-642-00468-1 3

2. Aono, Y., Agrawal, M., Satoh, T., Watanabe, O.: On the optimality of lattices
for the Coppersmith technique. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP
12. LNCS, vol. 7372, pp. 376–389. Springer, Berlin, Heidelberg (Jul 2012). https:
//doi.org/10.1007/978-3-642-31448-3 28

3. Becker, T., Weispfenning, V.: Variations on Gröbner Bases, pp. 453–509. Springer
New York, New York, NY (1993). https://doi.org/10.1007/978-1-4612-0913-3 11,
https://doi.org/10.1007/978-1-4612-0913-3 11

4. Bleichenbacher, D., May, A.: New attacks on RSA with small secret CRT-
exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 1–13. Springer, Berlin, Heidelberg (Apr 2006). https://doi.
org/10.1007/11745853 1

https://doi.org/10.1007/978-3-642-00468-1_3
https://doi.org/10.1007/978-3-642-00468-1_3
https://doi.org/10.1007/978-3-642-31448-3_28
https://doi.org/10.1007/978-3-642-31448-3_28
https://doi.org/10.1007/978-3-642-31448-3_28
https://doi.org/10.1007/978-3-642-31448-3_28
https://doi.org/10.1007/978-1-4612-0913-3_11
https://doi.org/10.1007/978-1-4612-0913-3_11
https://doi.org/10.1007/978-1-4612-0913-3_11
https://doi.org/10.1007/11745853_1
https://doi.org/10.1007/11745853_1
https://doi.org/10.1007/11745853_1
https://doi.org/10.1007/11745853_1

5. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Berlin, Heidelberg
(Aug 2003). https://doi.org/10.1007/978-3-540-45146-4 2

6. Blömer, J., May, A.: A tool kit for finding small roots of bivariate polynomials over
the integers. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 251–
267. Springer, Berlin, Heidelberg (May 2005). https://doi.org/10.1007/11426639
15

7. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 1–11. Springer, Berlin,
Heidelberg (May 1999). https://doi.org/10.1007/3-540-48910-X 1

8. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51.
Springer, Berlin, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1 3

9. Brion, M., Vergne, M.: Lattice points in simple polytopes. Journal of the Amer-
ican Mathematical Society 10(2), 371–392 (1997), http://www.jstor.org/stable/
2152855

10. Chen, B.: Ehrhart polynomials of lattice polyhedral functions (2005). https://doi.
org/10.1090/conm/374/06898, http://dx.doi.org/10.1090/conm/374/06898

11. Chinburg, T., Hemenway, B., Heninger, N., Scherr, Z.: Cryptographic applications
of capacity theory: On the optimality of Coppersmith’s method for univariate
polynomials. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS,
vol. 10031, pp. 759–788. Springer, Berlin, Heidelberg (Dec 2016). https://doi.org/
10.1007/978-3-662-53887-6 28

12. Cohn, H., Heninger, N.: Approximate common divisors via lattices. ANTS X p. 271
(2012). https://doi.org/10.2140/obs.2013.1.271

13. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 155–165. Springer, Berlin,
Heidelberg (May 1996). https://doi.org/10.1007/3-540-68339-9 14

14. Coppersmith, D.: Finding small solutions to small degree polynomials. In: Silver-
man, J.H. (ed.) Cryptography and Lattices. pp. 20–31. Springer Berlin Heidelberg,
Berlin, Heidelberg (2001)

15. Ehrhart, E.: Sur les polyèdres rationnels homothétiques à n dimensions. CR Acad.
Sci. Paris 254, 616 (1962)

16. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Berlin, Heidelberg (May 2005). https://doi.org/
10.1007/11426639 22

17. Feng, Y., Luo, H., Chen, Q., Nitaj, A., Pan, Y.: Computing asymptotic bounds
for small roots in Coppersmith’s method via sumset theory. Cryptology ePrint
Archive, Paper 2024/1330 (2024), https://eprint.iacr.org/2024/1330

18. H̊astad, J.: On using RSA with low exponent in a public key network. In: Williams,
H.C. (ed.) CRYPTO’85. LNCS, vol. 218, pp. 403–408. Springer, Berlin, Heidelberg
(Aug 1986). https://doi.org/10.1007/3-540-39799-X 29

19. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
When do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 487–504. Springer, Berlin, Heidelberg (Dec 2009). https://doi.org/
10.1007/978-3-642-10366-7 29

20. Herrmann, M., May, A.: Maximizing small root bounds by linearization and ap-
plications to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Berlin, Heidelberg (May 2010).
https://doi.org/10.1007/978-3-642-13013-7 4

https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/11426639_15
https://doi.org/10.1007/11426639_15
https://doi.org/10.1007/11426639_15
https://doi.org/10.1007/11426639_15
https://doi.org/10.1007/3-540-48910-X_1
https://doi.org/10.1007/3-540-48910-X_1
https://doi.org/10.1007/3-540-45682-1_3
https://doi.org/10.1007/3-540-45682-1_3
http://www.jstor.org/stable/2152855
http://www.jstor.org/stable/2152855
https://doi.org/10.1090/conm/374/06898
https://doi.org/10.1090/conm/374/06898
https://doi.org/10.1090/conm/374/06898
https://doi.org/10.1090/conm/374/06898
http://dx.doi.org/10.1090/conm/374/06898
https://doi.org/10.1007/978-3-662-53887-6_28
https://doi.org/10.1007/978-3-662-53887-6_28
https://doi.org/10.1007/978-3-662-53887-6_28
https://doi.org/10.1007/978-3-662-53887-6_28
https://doi.org/10.2140/obs.2013.1.271
https://doi.org/10.2140/obs.2013.1.271
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/11426639_22
https://doi.org/10.1007/11426639_22
https://doi.org/10.1007/11426639_22
https://doi.org/10.1007/11426639_22
https://eprint.iacr.org/2024/1330
https://doi.org/10.1007/3-540-39799-X_29
https://doi.org/10.1007/3-540-39799-X_29
https://doi.org/10.1007/978-3-642-10366-7_29
https://doi.org/10.1007/978-3-642-10366-7_29
https://doi.org/10.1007/978-3-642-10366-7_29
https://doi.org/10.1007/978-3-642-10366-7_29
https://doi.org/10.1007/978-3-642-13013-7_4
https://doi.org/10.1007/978-3-642-13013-7_4

21. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) 6th IMA International Conference on Cryptography and
Coding. LNCS, vol. 1355, pp. 131–142. Springer, Berlin, Heidelberg (Dec 1997).
https://doi.org/10.1007/bfb0024458

22. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Berlin, Heidelberg
(Dec 2006). https://doi.org/10.1007/11935230 18

23. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than N0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Berlin, Heidelberg (Aug 2007). https://doi.org/
10.1007/978-3-540-74143-5 22

24. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (Dec 1982). https://doi.org/
10.1007/BF01457454

25. Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown
divisors: Revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I.
LNCS, vol. 9452, pp. 189–213. Springer, Berlin, Heidelberg (Nov / Dec 2015).
https://doi.org/10.1007/978-3-662-48797-6 9

26. May, A.: Cryptanalysis of unbalanced RSA with small CRT-exponent. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Berlin, Heidelberg
(Aug 2002). https://doi.org/10.1007/3-540-45708-9 16

27. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis,
University of Paderborn (2003)

28. May, A.: Using LLL-reduction for solving RSA and factorization problems. pp.
315–348. ISC, Springer (2010). https://doi.org/10.1007/978-3-642-02295-1

29. May, A.: Lattice-based integer factorisation: an introduction to Coppersmith’s
method. Computational Cryptography: Algorithmic Aspects of Cryptology pp. 78–
105 (2021)

30. May, A., Nowakowski, J., Sarkar, S.: Partial key exposure attack on short secret
exponent CRT-RSA. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I.
LNCS, vol. 13090, pp. 99–129. Springer, Cham (Dec 2021). https://doi.org/10.
1007/978-3-030-92062-3 4

31. May, A., Nowakowski, J., Sarkar, S.: Approximate divisor multiples - factoring
with only a third of the secret CRT-exponents. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 147–167. Springer,
Cham (May / Jun 2022). https://doi.org/10.1007/978-3-031-07082-2 6

32. May, A., Ritzenhofen, M.: Solving systems of modular equations in one variable:
How many RSA-encrypted messages does Eve need to know? In: Cramer, R. (ed.)
PKC 2008. LNCS, vol. 4939, pp. 37–46. Springer, Berlin, Heidelberg (Mar 2008).
https://doi.org/10.1007/978-3-540-78440-1 3

33. Meers, J., Nowakowski, J.: Solving the hidden number problem for CSIDH
and CSURF via automated Coppersmith. In: Guo, J., Steinfeld, R. (eds.) ASI-
ACRYPT 2023, Part IV. LNCS, vol. 14441, pp. 39–71. Springer, Singapore (Dec
2023). https://doi.org/10.1007/978-981-99-8730-6 2

34. Micheli, G.D., Heninger, N.: Survey: Recovering cryptographic keys from partial
information, by example. CiC 1(1), 28 (2024). https://doi.org/10.62056/ahjbksdja

35. Nguyen, P.Q.: Hermite’s constant and lattice algorithms. pp. 19–69. ISC, Springer
(2010). https://doi.org/10.1007/978-3-642-02295-1

https://doi.org/10.1007/bfb0024458
https://doi.org/10.1007/bfb0024458
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/978-3-540-74143-5_22
https://doi.org/10.1007/978-3-540-74143-5_22
https://doi.org/10.1007/978-3-540-74143-5_22
https://doi.org/10.1007/978-3-540-74143-5_22
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-662-48797-6_9
https://doi.org/10.1007/978-3-662-48797-6_9
https://doi.org/10.1007/3-540-45708-9_16
https://doi.org/10.1007/3-540-45708-9_16
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-030-92062-3_4
https://doi.org/10.1007/978-3-030-92062-3_4
https://doi.org/10.1007/978-3-030-92062-3_4
https://doi.org/10.1007/978-3-030-92062-3_4
https://doi.org/10.1007/978-3-031-07082-2_6
https://doi.org/10.1007/978-3-031-07082-2_6
https://doi.org/10.1007/978-3-540-78440-1_3
https://doi.org/10.1007/978-3-540-78440-1_3
https://doi.org/10.1007/978-981-99-8730-6_2
https://doi.org/10.1007/978-981-99-8730-6_2
https://doi.org/10.62056/ahjbksdja
https://doi.org/10.62056/ahjbksdja
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1

36. Peng, L., Hu, L., Xu, J., Huang, Z., Xie, Y.: Further improvement of factor-
ing RSA moduli with implicit hint. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 14. LNCS, vol. 8469, pp. 165–177. Springer, Cham (May 2014).
https://doi.org/10.1007/978-3-319-06734-6 11

37. Picard, J.C.: Maximal closure of a graph and applications to combinatorial prob-
lems. Management Science 22(11), 1268–1272 (1976). https://doi.org/10.1287/
mnsc.22.11.1268, https://doi.org/10.1287/mnsc.22.11.1268

38. Ryan, K., Heninger, N.: Fast practical lattice reduction through iterated com-
pression. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part III.
LNCS, vol. 14083, pp. 3–36. Springer, Cham (Aug 2023). https://doi.org/10.1007/
978-3-031-38548-3 1

39. Sarkar, S.: Enhanced bound for the commutative isogeny hidden number problem
in CSURF. In: Mukhopadhyay, S., Stănică, P. (eds.) Progress in Cryptology –
INDOCRYPT 2024. pp. 201–211. Springer Nature Switzerland, Cham (2025)

40. Sarkar, S., Maitra, S.: Partial key exposure attack on CRT-RSA. In: Abdalla,
M., Pointcheval, D., Fouque, P.A., Vergnaud, D. (eds.) ACNS 09International
Conference on Applied Cryptography and Network Security. LNCS, vol. 5536,
pp. 473–484. Springer, Berlin, Heidelberg (Jun 2009). https://doi.org/10.1007/
978-3-642-01957-9 29

41. Shani, B.: On the bit security of elliptic curve Diffie-Hellman. In: Fehr, S. (ed.)
PKC 2017, Part I. LNCS, vol. 10174, pp. 361–387. Springer, Berlin, Heidelberg
(Mar 2017). https://doi.org/10.1007/978-3-662-54365-8 15

42. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on RSA: Achieving
the boneh-durfee bound. In: Joux, A., Youssef, A.M. (eds.) SAC 2014. LNCS,
vol. 8781, pp. 345–362. Springer, Cham (Aug 2014). https://doi.org/10.1007/
978-3-319-13051-4 21

43. Takayasu, A., Lu, Y., Peng, L.: Small CRT-exponent RSA revisited. In: Coron, J.S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 130–159.
Springer, Cham (Apr / May 2017). https://doi.org/10.1007/978-3-319-56614-6 5

44. Xu, J., Hu, L., Huang, Z., Peng, L.: Modular inversion hidden number problem
revisited. In: Huang, X., Zhou, J. (eds.) Information Security Practice and Expe-
rience. pp. 537–551. Springer International Publishing, Cham (2014)

45. Xu, J., Hu, L., Sarkar, S.: Cryptanalysis of elliptic curve hidden number prob-
lem from PKC 2017. DCC 88(2), 341–361 (2020). https://doi.org/10.1007/
s10623-019-00685-y

46. Xu, J., Sarkar, S., Hu, L., Huang, Z., Peng, L.: Solving a class of modular poly-
nomial equations and its relation to modular inversion hidden number prob-
lem and inversive congruential generator. DCC 86(9), 1997–2033 (2018). https:
//doi.org/10.1007/s10623-017-0435-4

47. Xu, J., Sarkar, S., Hu, L., Wang, H., Pan, Y.: New results on modular inver-
sion hidden number problem and inversive congruential generator. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 297–321.
Springer, Cham (Aug 2019). https://doi.org/10.1007/978-3-030-26948-7 11

48. Xu, J., Sarkar, S., Hu, L., Wang, H., Pan, Y.: Revisiting modular inversion hidden
number problem and its applications. IEEE Transactions on Information Theory
69(8), 5337–5356 (2023). https://doi.org/10.1109/TIT.2023.3263485

49. Xu, J., Sarkar, S., Wang, H., Hu, L.: Improving bounds on elliptic curve hidden
number problem for ECDH key exchange. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part III. LNCS, vol. 13793, pp. 771–799. Springer, Cham (Dec
2022). https://doi.org/10.1007/978-3-031-22969-5 26

https://doi.org/10.1007/978-3-319-06734-6_11
https://doi.org/10.1007/978-3-319-06734-6_11
https://doi.org/10.1287/mnsc.22.11.1268
https://doi.org/10.1287/mnsc.22.11.1268
https://doi.org/10.1287/mnsc.22.11.1268
https://doi.org/10.1287/mnsc.22.11.1268
https://doi.org/10.1287/mnsc.22.11.1268
https://doi.org/10.1007/978-3-031-38548-3_1
https://doi.org/10.1007/978-3-031-38548-3_1
https://doi.org/10.1007/978-3-031-38548-3_1
https://doi.org/10.1007/978-3-031-38548-3_1
https://doi.org/10.1007/978-3-642-01957-9_29
https://doi.org/10.1007/978-3-642-01957-9_29
https://doi.org/10.1007/978-3-642-01957-9_29
https://doi.org/10.1007/978-3-642-01957-9_29
https://doi.org/10.1007/978-3-662-54365-8_15
https://doi.org/10.1007/978-3-662-54365-8_15
https://doi.org/10.1007/978-3-319-13051-4_21
https://doi.org/10.1007/978-3-319-13051-4_21
https://doi.org/10.1007/978-3-319-13051-4_21
https://doi.org/10.1007/978-3-319-13051-4_21
https://doi.org/10.1007/978-3-319-56614-6_5
https://doi.org/10.1007/978-3-319-56614-6_5
https://doi.org/10.1007/s10623-019-00685-y
https://doi.org/10.1007/s10623-019-00685-y
https://doi.org/10.1007/s10623-019-00685-y
https://doi.org/10.1007/s10623-019-00685-y
https://doi.org/10.1007/s10623-017-0435-4
https://doi.org/10.1007/s10623-017-0435-4
https://doi.org/10.1007/s10623-017-0435-4
https://doi.org/10.1007/s10623-017-0435-4
https://doi.org/10.1007/978-3-030-26948-7_11
https://doi.org/10.1007/978-3-030-26948-7_11
https://doi.org/10.1109/TIT.2023.3263485
https://doi.org/10.1109/TIT.2023.3263485
https://doi.org/10.1007/978-3-031-22969-5_26
https://doi.org/10.1007/978-3-031-22969-5_26

A Experimental Data

A.1 Commutative Isogeny Hidden Number Problem

The Commutative Isogeny Hidden Number Problem (CI-HNP) was proposed by
Meers and Nowakowski to study the bit security of isogeny-based key exchange
schemes [33]. The problem asks whether it is possible to recover a shared elliptic
curve based on the most significant bits of a Diffie-Hellman style key. They
examine CI-HNP for both CSIDH and CSURF key exchanges.

For CSIDH, the input relations have the form

f = (c1 + x1)(c2 + x2) + 2(c1 + x1)− 2(c2 + x2) + 12

g = (c3 + x3)(c2 + x2) + 2(c2 + x2)− 2(c3 + x3) + 12

h = (c1 + x1)(c3 + x3)− 2(c1 + x1) + 2(c3 + x3) + 12

and share a root modulo a prime p. For CSURF, the input relations are

f = (c1 + x1)
2 + 12(c1 + x1)− 4(c1 + x1)(c2 + x2)

2 − 8(c2 + x2)
2 + 36

g = (c3 + x3)
2 + 12(c3 + x3)− 4(c3 + x3)(c1 + x1)

2 − 8(c1 + x1)
2 + 36.

There has been recent progress improving the bounds for CIHNP-CSURF.
The original method of Meers and Nowakowski solved up to logp Xi = 0.2439,
and this was improved by an early draft of Feng et al. [17] in October 2024
to logp Xi = 0.2580. A draft of this work from October 2024 identified Mvert

achieving logp Xi = 0.2528, a slightly worse bound. Sarkar improved this to
logp Xi = 0.2597 in a December 2024 publication [39]. A February 2025 draft by
Feng et al. [17] improved this to logp Xi = 0.2599. The current version of this
work achieves logp Xi = 0.2609.

We ran our shift polynomial strategies on CI-HNP for both CSIDH and
CSURF, and report the results in Table 3 and Table 4 respectively.

Table 3: CI-HNP for CSIDH. Largest solvable bound for 512-bit modulus p.
Note that [33] is only compatible if the multiplicity is divisible by 3.

[33] All monoms. Graph search Precomputed
k lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 - - - 169 20 0.5 169 8 0.5 - - -
2 - - - 189 56 3.4 189 26 2.4 - - -
3 194 27 1.7 199 120 25.3 199 60 16.3 194 27 2.3
4 - - - 204 286 248.9 204 115 87.0 - - -
5 - - - 210 455 1029.1 210 125 169.2 - - -
6 210 125 98.9 - - - 213 215 528.2 210 125 94.4
7 - - - - - - 215 339 1406.6 - - -
8 - - - - - - 216 502 3158.2 - - -
9 216 343 1871.6 - - - - - - 216 343 1178.9

Existing bound: logp Xi = 0.4583 Our bound: logp Xi = 0.4583

We ran Algorithm 3 on CIHNP-CSIDH with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 3, Mvert = {
3∏

i=1

xei
i | ei ∈ {0, 2}}

and got output
τ = (0, 0, 0), δ < 0.4583.

This matches the existing bounds of Xi < p11/24 [33].

Table 4: CI-HNP for CSURF. Largest solvable bound for 512-bit modulus p.
In the all-monomial strategy with k = 2, we have X11 ≈ p2, so whichever value
is larger determines |Mopt|. We report the maximum size, which is 364. t refers
to the parameters (t1, t2) as defined in [17].

[17] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 1,0 71 103 11.2 71 120 14.1 69 48 8.5 - - -
2 1,0 93 229 198.0 93 364 291.9 91 145 142.7 82 65 14.1
3 1,0 103 427 1588.5 103 680 3513.2 101 324 1333.2 - - -
4 1,0 109 713 9610.9 - - - - - - 105 369 1127.5
5 1,0 113 1103 38759.2 - - - - - - - - -
6 - - - - - - - - - - 114 1105 32036.3

Existing bound: logp Xi = 0.2599 Our bound: logp Xi = 0.2609

We ran Algorithm 3 on CIHNP-CSURF with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 2,

Mvert = {1, x4
1, x

4
1x

2
3, x

4
3, x

4
2, x

2
1x

4
2, x

2
1x

4
2x

2
3, x

4
2x

2
3}

and got output
τ = (0, 0, 0), δ < 0.2609.

This bound of δ < 451/1728 improves Feng et al.’s bound [17] of Xi < p0.2599.

A.2 Modular Inversion Hidden Number Problem

Boneh, Halevi, and Howgrave-Graham introduced the Modular Inversion Hidden
Number Problem (MIHNP) in 2001 [8]. Xu et al. revisited the problem in [48].
For MIHNP, the ℓ input relations have the form

fi(α, x1, . . . , xℓ) = (α+ ci,1)(xi + ci,2)− 1

and share a root modulo a known prime p.
Because the bound A on α is large (A = p), prior approaches use resultants

to manually construct input relations that do not include α. However, since our

monomial ordering includes the size of α, our Gröbner basis strategies automat-
ically find shift polynomials that do not include α.

We ran our shift polynomial strategies on MIHNP for three, four, and five
relations, and we report the results in Table 5, Table 6, and Table 7 respectively.
The shift strategy in [48] is parameterized by (n′, d′, t′), which using our variable
names is (ℓ − 1, k, t). Their strategy is only defined for 0 ≤ t ≤ k and k ≤
ℓ−2, so their result is not asymptotic in multiplicity k. To compute the existing
theoretical bound, we evaluate maxk,t λ̂(ℓ − 1, k, t) where λ̂ is defined in [48,
Section VI.A].

Table 5: MIHNP with ℓ = 3 samples.

[48] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 0 248 4 4.6 331 21 0.6 332 8 0.4 - - -
2 - - - - 371 67 5.6 372 26 3.7 372 27 4.4
3 - - - - 390 187 85.6 390 60 27.8 - - -
4 - - - - 401 386 837.9 401 115 152.1 401 125 74.4

Existing bound: logp Xi = 0.0000 Our bound: logp Xi = 0.4444

Table 6: MIHNP with ℓ = 4 samples.

[48] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 0 332 7 4.0 373 16 0.5 373 11 0.4 - - -
2 1 405 16 4.4 410 86 12.2 410 50 6.9 405 16 1.5
3 - - - - 446 296 211.8 446 76 66.0 - - -
4 - - - - - - - 460 221 581.3 442 81 25.7

Existing bound: logp Xi = 0.2432 Our bound: logp Xi = 0.5208

Table 7: MIHNP with ℓ = 5 samples.

[48] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 0 373 11 5.0 398 22 1.0 398 16 1.0 - - -
2 1 449 30 5.6 451 148 40.5 451 31 10.1 451 32 9.9
3 0 451 46 5.4 480 610 3136.8 480 192 312.3 - - -
4 - - - - - - - 496 303 2408.5 487 243 474.2

Existing bound: logp Xi = 0.3708 Our bound: logp Xi = 0.5577

We ran Algorithm 3 on MIHNP with ℓ ∈ {3, 4, 5} samples with input

logp A = 1, logp Xi = δ, logp Xguess,i = 0.1, kpre = 2,

Mvert =

{
{∏ℓ

i=1 x
ei
i | ei ∈ {0, 2}} ℓ = 3

{∏ℓ
i=1 x

ei
i | ei ∈ {0, 1}} ℓ ∈ {4, 5}

and got output

τi = 0, δ <

0.4444 ℓ = 3

0.5208 ℓ = 4

0.5577 ℓ = 5.

A.3 Elliptic Curve Hidden Number Problem

The Elliptic Curve Hidden Number Problem (ECHNP) was proposed by Shani
in 2017 [41] and studied by Xu et al. in 2022 [49]. The problem studies the
hardness of recovering a shared Elliptic Curve Diffie Hellman secret from an
oracle that computes most significant bits.

For ECHNP, the ℓ− 1 input relations have the form

x2
1xi+1 + Eix1xi+1 +Dixi+1 + Cix

2
1 +Bix1 +Ai ≡ 0 (mod p)

where known values {a, b, h0, h1, . . . , hℓ−1, xQ1
, . . . xQℓ−1

} are used to compute

Ai = hi(h0 − xQi
)2 − 2h2

0xQi
− 2(a+ x2

Qi
)h0 − 2axQi

− 4b

Bi = 2(hi(h0 − xQi
)− 2h0xQi

− a− x2
Qi
)

Ci = hi − 2xQi

Di = (h0 − xQi
)2

Ei = 2(h0 − xQi
),

and the relations share a root modulo a known prime p.

We ran our shift polynomial strategies on ECHNP for three, four, and five
relations, and we report the results in Tables 8, 9, and 10 respectively. The shift
strategy in [49] is parameterized by (n′, d′, t′), which using our variable names is
(ℓ, k, t). Their strategy is only defined for 1 ≤ k < ℓ and 0 ≤ t ≤ 2k− 1, so their
result is not asymptotic in multiplicity k. To compute the existing theoretical
bound, we evaluate maxk,t S(ℓ, k, t) where S is defined in [49, Section 4.2].

Table 8: ECHNP with 3 samples. We consider 256-bit modulus p. The shift
strategy in [49] is parameterized by (n′, d′, t′), which using our variable names
is (3, k, t).

[49] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 1 60 14 0.6 64 35 1.8 64 19 1.3 58 19 5.9
2 3 68 32 2.4 78 210 102.2 78 111 58.1 64 108 33.0
3 2 68 48 3.3 85 715 2418.1 83 397 1217.1 66 366 569.8

Existing bound: logp Xi = 0.2083 Our bound: logp Xi = 0.3090

Table 9: ECHNP with 4 samples. We consider 256-bit modulus p. The shift
strategy in [49] is parameterized by (n′, d′, t′), which using our variable names
is (4, k, t). We do not run our precomputation strategy because computing the
symbolic Gröbner basis was too expensive with the large number of variables.

[49] All monoms. Graph search
k 2 lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 1 69 22 1.3 72 56 3.5 72 26 2.9
2 3 79 60 9.8 87 252 215.1 87 172 130.3

Existing bound: logp Xi = 0.2772

Table 10: ECHNP with 5 samples. We consider 256-bit modulus p. The shift
strategy in [49] is parameterized by (n′, d′, t′), which using our variable names
is (5, k, t). We do not run our precomputation strategy because computing the
symbolic Gröbner basis was too expensive with the large number of variables.

[49] All monoms. Graph search
k 2 lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 1 75 32 2.3 77 84 8.7 78 42 5.9
2 2 87 94 21.9 92 462 1301.5 92 309 895.2

Existing bound: logp Xi = 0.3224

We ran Algorithm 3 on ECHNP with 3 samples with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 1,

Mvert = {1, x2
1, x

2
2, x

2
3, x

2
4, x

2
1x

2
2, x

2
1x

2
3, x

2
1x

2
4, x2x3x4}

and got output
τi = 0, δ < 0.3090.

This improves on the previous asymptotic bounds for three ECHNP samples.

A.4 Stereotyped RSA

One of Coppersmith’s original applications was recovering an RSA plaintext from
fixed affine padding [13]. Given modulus N , padding a and ciphertext c, recover
bounded message x by solving the modular polynomial The input relation is
therefore

f(x) = (a+ x)3 − c ≡ 0 (mod N).

We use an alternative shift polynomial strategy by May [28] to solve this problem.
Although this is a univariate example, it serves as a baseline to validate our
approach. We use the shift polynomial strategy in [28], which is parametrized
by the multiplicity k and parameter t. We ran our shift polynomial strategies on
the stereotyped RSA problem and report the results in Tables 11.

Table 11: Stereotyped RSA Largest solvable bounds for 1000-bit N .

[28] All monoms. Graph search Precomputed
k t lgX Dim. Time lgX Dim. Time lgX Dim. Time lgX Dim. Time
1 2 199 5 0.0 199 6 0.1 199 6 0.2 166 4 0.1
2 2 249 8 0.1 249 9 0.3 249 9 0.2 237 7 0.1
4 2 285 14 0.4 285 15 0.7 285 15 0.8 281 13 0.4
6 2 299 20 0.9 299 21 1.6 299 21 1.6 297 19 0.9
8 2 307 26 1.7 307 27 3.2 307 27 3.2 306 25 1.8
10 2 312 32 2.6 312 33 5.6 312 33 5.7 311 31 3.0
12 2 315 38 4.6 315 39 9.7 315 39 9.7 314 37 5.0
14 2 317 44 7.2 317 45 16.1 317 45 16.1 317 43 7.5
16 2 319 50 10.7 319 51 23.5 319 51 24.4 319 49 11.1
18 2 321 56 12.9 321 57 33.9 321 57 34.6 320 55 14.3
20 2 322 62 17.0 322 63 52.7 322 63 55.8 322 61 19.4

Existing bound: logN X = 0.3333 Our bound: logN X = 0.3333

We ran Algorithm 3 on the stereotyped RSA problem with input

logN X = δ, logN Xguess,i = 0.1, kpre = 1, Mvert = {1, x3}

and got output

τ = 0, δ < 0.3333.

This agrees with existing asymptotic bounds of X < N1/3 [13].

Observe that our strategies of using all monomials or graph search are com-
petitive with the previous strategy, but the cost of Gröbner basis calculation
is problematic at high multiplicity. The precomputed strategy avoids this cost,
and even though it performs worse at low multiplicities, it matches the existing
asymptotic behavior.

A.5 RSA factoring with high bits known

We examine the problem of factoring RSA modulus N = pq when the most
significant bits of p are known. This involves modular relations

N ≡ 0 (mod p)

x+ a ≡ 0 (mod p).

We use the shift polynomial strategy by May [28], which is parametrized by the
multiplicity k and parameter t. We ran our shift polynomial strategies on this
problem and report the results in Table 12.

Table 12: RSA partial factoring Largest solvable bounds for 2048-bit N

[28] All monoms. Graph search Precomputed
k t lgX Dim. Time lgX Dim. Time lgX Dim. Time lgX Dim. Time
1 2 340 3 0.0 340 4 0.1 340 4 0.0 340 3 0.1
5 6 464 11 0.3 464 12 0.5 464 12 0.5 464 11 0.4
10 11 486 21 1.9 486 22 3.1 486 22 2.9 486 21 2.1
15 16 494 31 7.7 494 32 12.3 494 32 11.5 494 31 9.1
20 21 498 41 18.4 498 42 29.0 498 42 28.5 498 41 22.9
25 25 500 50 56.4 500 52 63.8 500 52 72.9 500 51 60.4

Existing bound: logp X = 0.5 Our bound: logp X = 0.5

We ran Algorithm 3 on the RSA partial factoring problem with

logp X = δ, logp Xguess = 0.1, kpre = 1, Mvert = {1, x}

and got output

τ = 1.0000, δ < 0.5000.

This agrees with existing asymptotic bounds of X < N1/4 [28].

A.6 Partial Approximate Common Divisors

Heninger and Cohn studied the Partial Approximate Common Divisors (PACD)
problem in [12]. Input relations are defined modulo p, and a multiple N of p is
known. PACD also involves ℓ samples ci which are close to multiples of p. The
input relations are therefore{

N ≡ 0 (mod p)

ci − xi ≡ 0 (mod p) 1 ≤ i ≤ ℓ.

We ran our shift polynomial strategies on PACD for ℓ ∈ {1, 2, 3} samples and
report the results in Tables 13, 14, and 15 respectively. In all cases, we used
1000-bit N and 400-bit p.

Table 13: PACD with ℓ = 1 sample.

[12] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 3 99 4 0.0 99 5 0.3 99 5 0.1 99 4 0.3
5 12 140 13 0.4 142 15 1.0 142 15 0.8 142 14 0.5
10 25 150 26 3.6 150 27 4.9 150 27 4.8 150 26 4.0
15 37 153 38 11.9 153 40 15.3 153 40 15.2 153 39 12.6
20 50 155 51 27.6 155 52 42.3 155 52 42.3 155 51 35.7
25 61 155 62 90.3 156 65 112.9 156 65 112.2 156 64 88.2

Existing bound: logp Xi = 0.4000 Our bound: logp Xi = 0.4000

Table 14: PACD with ℓ = 2 samples.

[12] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 2 174 6 0.1 174 6 0.3 174 6 0.2 - - -
3 5 216 21 1.1 216 21 1.4 216 21 1.4 216 26 1.5
6 10 231 66 20.8 231 66 23.1 231 66 23.0 231 64 20.2
9 14 237 120 164.6 237 136 213.1 237 136 215.5 237 147 208.6
12 19 241 210 753.7 241 210 949.4 241 210 946.4 241 225 925.2

Existing bound: logp Xi = 0.6324 Our bound: logp Xi = 0.6321

Table 15: PACD with ℓ = 3 samples.

[12] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 1 198 4 0.1 198 10 0.5 198 10 0.2 - - -
2 3 243 20 0.9 243 20 1.3 243 20 1.1 - - -
3 4 256 35 4.0 256 35 4.5 256 35 4.6 255 96 7.4
4 6 261 84 26.9 261 84 32.7 261 84 28.1 - - -
5 7 268 120 67.4 268 120 104.9 268 120 91.2 - - -
6 8 271 165 293.7 271 165 298.9 271 165 298.3 271 328 451.1

Existing bound: logp Xi = 0.7368 Our bound: logp Xi = 0.7368

We ran Algorithm 3 on PACD with ℓ = 1 sample with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 1, Mvert = {1, x1}

and got output
τi = 1.5000, δ < 0.4000.

We also ran Algorithm 3 on PACD with ℓ ∈ {2, 3} samples with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 3, Mvert = {1, x4
1, x

4
2, . . . , x

4
ℓ}

and got output {
τi = 0.3811, δ < 0.6321 ℓ = 2

τi = 0.0240, δ < 0.7368 ℓ = 3.

This is nearly the previous bound of logp δ < (logN p)1/ℓ.

A.7 RSA with small private exponent

Boneh and Durfee showed that recovering a small RSA private exponent from a
public key (N, e) is possible by solving the small inverse problem [7]. In partic-
ular, they consider the relation

x1x2 − x1(N + 1)− 1 ≡ 0 (mod e)

which has small modular root (r1, r2) with |r1| < eδ and |r2| < e1/2. In 2010,
Herrmann and May used unravelled linearization

u = x1x2 − 1

to simplify analysis of the problem’s solveable bounds [20].

We ran our shift polynomial strategies on the RSA with small private expo-
nent problem and report the results in Table 16.

Table 16: RSA with small private exponent. Maximally recoverable bound
for size of RSA private exponent for 1000-bit modulus and full-size exponent. In
our strategies with k = 7, variations in modulus e lead to variations in |Mopt|.
We report the maximum size for our all-monomial and graph strategy, which are
746 and 42 respectively.

[20] All monoms. Graph search Precomputed
k t lgX1 Dim. Time lgX1 Dim. Time lgX1 Dim. Time lgX1 Dim. Time
2 1 243 7 0.3 240 40 1.5 - - - - - -
3 1 259 11 0.3 259 83 7.7 259 8 0.9 259 15 0.5
4 2 263 19 1.1 263 174 66.1 263 14 2.3 - - -
5 2 267 27 1.8 267 308 432.0 267 22 3.8 - - -
6 3 270 37 3.8 270 493 2391.7 270 31 7.2 270 40 3.5
7 3 272 48 7.5 271 746 5418.1 272 42 13.3 - - -
8 3 274 60 12.1 - - - 274 50 22.0 - - -
9 4 275 75 24.7 - - - 275 63 39.9 275 77 22.1

Existing bound: logN X1 = 0.2928 Our bound: logN X1 = 0.2925

We ran Algorithm 3 on the small RSA private exponent problem with input

logN (X1, X2, U) = (δ,
1

2
,
1

2
+ δ), logN Xguess = (0.1, 0.5, 0.6), kpre = 3,

Mvert = {1, x3
1, u

3, x2u
3}

and got output

τ = (0, 0.1230, 0), δ < 0.2925.

This is nearly the existing bound of logN Xi < 1−
√
2
2 .

Note that τ2 > 0; our algorithm automatically found the x2-shifts that were
central to [7]. Our automatically determined bound is slightly worse, but we note
that a higher precomputed multiplicity gets even closer, and speculate that the

gap may be related to the irrationality of 1−
√
2
2 .

Our performance is comparable to [20], but observe that graph search finds
a smaller sublattice.

A.8 RSA Power Generators

Herrmann and May studied the problem of state recovery attacks on RSA-based
random number generators [19]. In this problem, an adversary is given the most-
significant bits ci of states obtained from repeated exponentiation. The task is to
recover the unknown least-significant bits. For public modulus N and ℓ outputs,
this yields the relations

(xi + ci)
2 − (xi+1 + ci+1) ≡ 0 (mod N) for 1 ≤ i ≤ ℓ− 1.

Herrmann and May introduce the concept of unravelled linearization, adding

x2
i − ui − xi+1 = 0 for 1 ≤ i ≤ ℓ− 1.

We ran our shift polynomial strategies on the Power Generator state recov-
ery problem for ℓ ∈ {2, 3}, and report the results in Table 17 and Table 18
respectively.

Table 17: RSA Power Generators with ℓ = 2 samples Largest bit leakage
leading to recovery of RSA RNG states with 1024-bit modulus.

[19] All monoms. Graph search Precomputed
k lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 340 3 0.1 339 13 0.5 340 3 0.2 - - -
2 371 6 0.2 371 34 1.5 371 6 0.4 371 6 0.3
3 378 16 1.0 378 95 16.5 378 10 1.0 - - -
4 385 25 0.8 385 161 97.1 385 15 2.0 385 15 0.8
5 388 36 7.2 388 308 785.6 388 21 4.2 - - -
6 392 49 22.5 391 444 2744.1 391 28 7.3 391 28 2.6

Existing bound: logN Xi = 0.4000 Our bound: logN Xi = 0.4000

We ran Algorithm 3 on the RSA Power Generator problem with input

logN Xi = δ, logN Ui = 2δ, logN Xguess,i = 0.1, kpre = 2,

Mvert = {1, x2
1, x2, u

2
1}

and got output

τ = (0, 0, 0), δ < 0.4000.

This matches the existing bounds of Xi < N2/5 for two outputs [19].

Table 18: RSA Power Generators with ℓ = 3 samples Largest bit leakage
leading to recovery of RSA RNG states with 1024-bit modulus.

[19] All monoms. Graph search Precomputed
k lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 - - - 339 28 1.0 340 6 0.4 - - -
2 392 7 0.3 392 108 15.5 392 7 1.3 - - -
3 397 22 1.7 402 308 459.7 402 21 5.0 - - -
4 413 39 1.7 - - - 413 22 16.3 413 22 2.2
5 419 62 10.5 - - - 423 50 77.9 - - -
6 427 93 61.2 - - - 429 93 172.2 - - -
7 430 132 448.5 - - - 433 95 369.7 - - -
8 433 181 5910.4 - - - 437 159 862.7 435 95 50.7

Existing bound: logN Xi = 0.4615 Our bound: logN Xi = 0.4615

We ran Algorithm 3 on the RSA Power Generator problem with input

logN Xi = δ, logN Ui = 2δ, logN Xguess,i = 0.1, kpre = 4,

Mvert = {1, x4
1, x

2
2, x3, u

4
1, u

2
2}

and got output

τ = (0, 0, 0, 0, 0), δ < 0.4615.

This matches the existing bounds of Xi < N6/13 for three outputs [19].

A.9 RSA-CRT with small private exponents

We consider the problem of RSA-CRT with small private exponents, first ex-
plored in [26], with the best current results due to Takayasu, Lu, and Peng [43].
The problem considers RSA modulus N = pq with public exponent e and
small private exponents (dp, dq) satisfying edp ≡ 1 (mod p − 1) and edq ≡ 1
(mod q − 1). This is rewritten as the following relations

−1− x3(x1 − 1) ≡ 0 (mod e)

−1− x4(x2 − 1) ≡ 0 (mod e)

x1x2 −N = 0.

with shared root (p, q,
edp−1
p−1 ,

edq−1
q−1) and bounds X = (1/2, 1/2, 1/2+ δ, 1/2+ δ)

for e ≈ N . Thus dp ≈ X3/X1. We introduce the unravelled linearization

u1 = x1 + x2 u2 = x3x1 + x4x2 + 2

u3 = x3 + x4 − 1 u4 = x3x4

u5 = x3x4x1 + x3x4x2 − x3x1 − x4x2 + x3 + x4 − 1

and ran our shift polynomial strategies on the problem of RSA with small CRT
exponents and report the results in Table 19.

Table 19: RSA-CRT with small secret exponents. Maximum bound for
private exponents dp and dq for 1000-bit modulus N and full-size prime e. The
strategy of [43] yields a lattice of dimension 177 or 179 for k = 8, so we report
the smaller value.

[43] Graph search Precomputed

k lg X3

X1
Dim. Time lg X3

X1
Dim. Time lg X3

X1
Dim. Time

4 33 31 5.9 33 15 42.2 33 21 1.8
5 33 31 3.7 39 40 174.3 - - -
6 52 84 28.8 51 42 779.8 - - -
7 52 84 30.0 56 88 2204.6 - - -
8 62 177 308.5 62 89 7189.0 43 102 33.3

Existing bound: logN
X3

X1
= 0.1220 Our bound: logN

X3

X1
= 0.0468

We ran Algorithm 3 on the small RSA-CRT exponent problem with input

logN X = (
1

2
,
1

2
,
1

2
+ δ,

1

2
+ δ), logN U = (

1

2
, 1 + δ,

1

2
+ δ, 1 + 2δ,

3

2
+ 2δ),

logN Xguess = (0.5, 0.5, 0.65, 0.65), kpre = 4,

Mvert = {1, u1, u
2
2, u

2
3, u

2
4, u

2
5, u1u

2
3, u1u

2
5, u2u3, u2u4, u2u5}

We fixed τ = 0 because Algorithm 3 was too slow otherwise and got output

δ < 0.0486.

This is worse than the existing bound of logN
X3

X1
< 1

2 − 1√
7
.

As seen in Table 19, even though Mopt was too large to run our strategy on
all monomials, our graph-based search algorithm found sublattices of approxi-
mately half the dimension of [43]. Compared to the complicated multi-page shift
polynomial selection strategy in prior works, this demonstrates the value and
effectiveness of our automated approach.

A.10 Partial Key Exposure attacks on CRT-RSA

In 2021, May, Nowakowski, and Sarkar studied Partial Key Exposure attacks on
CRT-RSA [30]. They analyze the case of RSA public exponent e that scales with
modulus N = pq. An attacker learns the least-significant (or most-significant)
bits of private CRT exponents dp, dq. May et al.’s strategy has two steps: first,
recover (edp − 1)/(p− 1) and (edq − 1)/(q− 1) using a Coppersmith-style attack
(for the case of least-significant bits). Second, use these values to factor N using
a second Coppersmith-style attack.

If c1, c2 are the b least-significant bits of dp, dq, then the former step has the
relation

(N − 1)x1x2 − (ec2 − 1)x1 − (ec1 − 1)x2 − e2c1c2 + c1 + c2 − 1 ≡ 0 (mod 2be).

In practice, the Singular and Magma Gröbner basis solvers we tested were
unable to efficiently handle moduli of this form. As a result of the limitations of
these tools, we were unable to apply our methods to this step.

The second step, given a = (edp − 1)/(p− 1) recovered in the first step, has
relations

x+ (ec1 + a− 1)(2−be−1 mod aN) ≡ 0 (mod ap)

a ≡ 0 (mod a)

N ≡ 0 (mod p).

For multiplicity (k1, k2), we can combine these relations to get shift polynomials
with shared root modulo ak1pk2 .

We ran our shift polynomial strategies on May et al.’s second step for per-
forming Partial Key Exposure attacks on CRT-RSA. We report the results in
Table 20.

Table 20: Partial Key Exposure attacks on RSA-CRT. Largest solvable
bound for 1024-bit modulus N with 64-bit e, which is studied in [30]. Since the
input relations have mixed moduli, we don’t run our precomputation strategy.

[30] All monoms. Graph search
k lgX1 Dim. Time lgX1 Dim. Time lgX1 Dim. Time

1, 1 60 2 0.0 210 3 0.1 210 3 0.3
2, 1 231 3 0.0 231 3 0.2 231 3 0.4
4, 2 265 5 0.1 265 5 0.6 265 5 0.6
6, 3 279 7 0.1 279 7 1.4 279 7 1.5
8, 4 287 9 0.2 287 9 3.4 287 9 3.6
10, 5 292 11 0.3 292 11 8.8 292 11 9.0
12, 6 296 13 0.3 296 13 16.0 296 13 15.3
14, 7 299 15 0.5 299 15 28.2 299 15 28.8
16, 8 301 17 0.7 301 17 46.4 301 17 47.3
18, 9 302 19 0.9 302 ≤ 20 72.9 302 19 78.8
20, 10 304 21 1.4 304 ≤ 22 77.1 304 21 115.0

Our strategies match the performance of May et al.

A.11 Systems of Modular Univariate Polynomial Equations

In 2008, May and Ritzenhofen studied systems of modular univariate polynomial
equations (SMUPE) [32]. This problem involves input relations with mutually
coprime moduli, and the original application was polynomially related messages
encrypted under separate public keys. For our experiments, we consider two
messages with affine padding RSA-encrypted over two different public keys with
different public exponents. This leads to the relations

f1 = (x+ a1)
3 − c1 ≡ 0 (mod N1)

f2 = (x+ a2)
5 − c2 ≡ 0 (mod N2).

We ran our shift polynomial strategies on SMUPE and report the results in
Table 21. May and Ritzenhofen’s approach only produces relations with a shared
root modulo a power of N5

1N
3
2 , but our ideal selection strategies can produce

shift polynomials for any multiplicity.

Table 21: SMUPE. Largest solvable bound for affine-padded messages with
1024-bit moduli N1, N2 and public exponents (3, 5). Since the input relations
have mixed moduli, we don’t run our precomputation strategy.

[32] All monoms. Graph search
k lgX Dim. Time lgX Dim. Time lgX Dim. Time

(1, 1) - - - 292 8 0.4 292 8 0.2
(2, 1) - - - 369 9 0.3 369 9 0.3
(2, 2) - - - 371 12 0.6 371 12 0.6
(3, 2) - - - 419 13 0.9 419 13 0.9
(3, 3) - - - 419 15 1.4 419 13 1.4
(4, 3) - - - 443 17 2.2 443 17 2.2
(4, 4) - - - 443 19 3.5 443 17 3.6
(5, 3) 282 30 5.2 461 18 3.2 461 18 3.3
(5, 4) - - - 461 20 5.0 461 18 5.0

Our strategies significantly exceed the performance of [32]. This is because
our method finds novel shift polynomials, such as {f1f2, N1f2, N2f1, N1N2},
which all share a root modulo N1N2.

A.12 Common Prime RSA

In 2014, Lu et al. studied the Common Prime RSA problem [25]. In this prob-
lem, the factors p, q of RSA modulus N have multiplicative orders which share
a common prime g. That is, p = 2ag + 1 and q = 2bg + 1. The public and pri-
vate exponents are e and d respectively. Lu et al. construct the following input
relations, which have a shared root at (d, p+ q − 1):

N − 1 ≡ 0 (mod g)

e− x1 ≡ 0 (mod g)

N − x2 ≡ 0 (mod g2).

We ran our shift polynomial strategies on the Common Prime RSA problem and
report the results in Table 22.

Table 22: Common Prime RSA. Largest solvable bound for 1000-bit modulus
N with 450-bit g, which is studied in [25]. Since the input relations have mixed
moduli, we don’t run our precomputation strategy.

[25] All monoms. Graph search Precomputed
k lgX Dim. Time lgX Dim. Time lgX Dim. Time lgX Dim. Time
1 132 4 0.1 132 4 0.5 132 4 0.1 - - -
2 207 7 0.2 207 7 0.2 207 7 0.2 - - -
3 234 12 0.4 234 12 0.7 234 12 0.5 - - -
4 257 19 0.7 257 20 1.1 257 19 1.1 - - -
5 272 25 1.4 272 25 2.0 272 25 2.0 - - -
6 285 33 3.1 285 33 4.5 285 33 4.2 283 40 4.5
7 292 43 5.9 292 43 7.5 292 43 7.4 - - -
8 300 52 10.1 300 52 12.4 300 52 12.7 - - -
9 305 65 21.3 305 65 27.0 305 65 26.4 - - -
10 310 77 30.3 310 77 37.1 310 76 37.6 - - -
11 314 90 43.8 314 90 60.5 314 90 59.6 - - -
12 317 105 90.8 317 106 119.8 317 105 115.9 317 111 92.5

Existing bound: logp Xi = 0.8100 Our bound: logp Xi = 0.8098

We ran Algorithm 3 on the Common prime RSA problem with

logp X1 = δ, logp X2 = 1.1111, logp X1,guess = 0.1, kpre = 6,

Mvert = {1, x7
1, x

5
2}

and got output

τ = (0.1659, 0.2306), δ < 0.8098.

This nearly matches the existing asymptotic bounds of X1 < N4(0.45)3 [25].

A.13 Small Secret Exponent with Multi-Power RSA

In 2014, Lu et al. studied attacks on Multi-Power RSA with small secret expo-
nents [25]. In this problem, RSA moduli have the form N = prq and the private
exponent d is small. Lu et al.’s method is based on the observation that ed−1 is
a multiple of pr−1, and N is a multiple of pr. For r = 3, this gives the relations

ex− 1 ≡ 0 (mod p2)

N ≡ 0 (mod p3).

We ran our shift polynomial strategies on the small secret exponent multi-
power RSA problem and report the results in Table 23.

Table 23: Small Secret Exponent with Multi-Power RSA. Largest solvable
bound for 2048-bit modulus N with r = 3 and 2048-bit e, which is studied in [25].
Since the input relations have mixed moduli, we don’t run our precomputation
strategy.

[25] All monoms. Graph search Precomputed
k lgX Dim. Time lgX Dim. Time lgX Dim. Time lgX Dim. Time
10 594 9 0.4 594 9 0.8 594 9 0.8 - - -
20 680 16 1.1 680 16 3.5 680 16 3.2 - - -
30 706 22 4.4 706 22 15.5 706 22 15.1 704 21 4.1
40 718 29 11.9 718 29 47.9 718 29 47.9 - - -
50 728 35 20.8 728 36 124.3 728 36 122.5 - - -
60 734 42 33.5 734 42 279.5 734 42 269.5 733 41 33.8

Existing bound: logp Xi = 1.5000 Our bound: logp Xi = 1.5000

We ran Algorithm 3 on the Small Exponent Multi-Power RSA problem with

logp X = δ, logp Xguess = 0.1, kpre = 6, Mvert = {1, x4}

and got output

τ = 0, δ < 1.5000.

This matches the existing asymptotic bounds of X < p3(3−1)/(3+1) [25].

B Optimality of iterating Algorithm 2

In section 5.2, we introduce Algorithm 2, which finds a proper, nonempty, and
suitable subset Ssub ⊊ S where det(ΛSsub

)1/|Ssub| < det(ΛS)
1/|S| if one exists, but

there is no guarantee that Ssub minimizes det(ΛSsub
)1/|Ssub|. We iterate this algo-

rithm until no more proper subsets are found, returning Sheur. Clearly, Sheur ⊆ S
is a nonempty and suitable subset of S and det(ΛSheur

)1/|Sheur| ≤ det(ΛS)
1/|S|,

but it is actually guaranteed that Sheur minimizes det(ΛSheur
)1/|Sheur| over all

possible suitable subsets of S.
This is promising, but unfortunately the use of this algorithm remains heuris-

tic. Although we are guaranteed to minimize the root of the lattice determinant
(leading to an upper bound on the length of the shortest vector), this is not the
same as minimizing the length of the shortest vector. In fact, it is possible that
ΛS contains a vector that is significantly shorter than the determinant bound,
but that vector does not belong to the sublattice determined by Sheur. This some-
times happens in practice when the shift polynomials have small coefficients, as
is discussed in Section 5.3.

Nevertheless, even though the graph optimization method remains heuris-
tic, this leads to an interesting extension of Picard’s algorithm. While Picard’s
algorithm maximizes the total weight of a graph closure, our iterated variant
maximizes the average weight of a graph closure. By setting the weights of our
graph to − log LT(f)(X), this iterated process finds the closure with the largest
average weight, or equivalently the smallest det(ΛSheur

)1/|Sheur|.

Theorem 3. Algorithm 4 is correct. On input G, {wv}v∈V , it returns a nonempty
graph closure V ∗ that maximizes 1

|V ∗|
∑

v∈V ∗ wv.

Algorithm 4: MaxAvgClosure: Maximize average weight of a closure

Input : Directed nonempty graph G = (V,E) with weights {wv}v∈V .
Output: Nonempty graph closure V ∗ ⊂ V maximizing 1

|V ∗|
∑

v∈V ∗ wv

// Modify weights so their average is 0

1 ŵv ← wv − 1
|V |

∑
v∈V wv for all v ∈ V

2 Vsub ← maximal closure of G and {ŵv}v∈V using Picard’s algorithm
3 if

∑
v∈Vsub

ŵv = 0 then

4 return V
5 else
6 Gsub ← directed subgraph of G based on closure Vsub

7 return MaxAvgClosure(Gsub, {wv}v∈Vsub)

Proof. There are two possible outcomes in this recursive algorithm. Either we
reach the base case on line 4 or we reach a recursive call on line 7. For the
base case, we wish to prove that we can do no better than V . For the recur-
sive call, we wish to show that Vsub is a nonempty and proper subset of V
(guaranteeing termination of the algorithm) and that subgraph Gsub always con-
tains a closure of G with maximum average weight. For sake of notation, let
Avg(V ′) = 1

|V ′|
∑

v∈V ′ wv.

As in the proof of Theorem 2, for nonempty V ′,
∑

v∈V ′ ŵv > 0 if and only if
Avg(V ′) > Avg(V):∑

v∈V ′

ŵv > 0 ⇔
∑
v∈V ′

(wv −Avg(V)) > 0 ⇔
∑
v∈V ′

wv > |V ′|Avg(V) ⇔

1

|V ′|
∑
v∈V ′

wv > Avg(V) ⇔ Avg(V ′) > Avg(V).

Let W ∗ = maxAvg(V ′) over all possible nonempty closures V ′ ⊂ V . Since V is
a closure, we have W ∗ ≥ Avg(V). There are two cases. First, we consider W ∗ =
Avg(V), so V is a valid solution (it is a nonempty graph closure that maximizes
the average weight of a closure). Either Vsub is empty or not. If Vsub = ∅, then∑

v∈Vsub
ŵv = 0, and the algorithm returns V on line 4. If Vsub is nonempty,

then Avg(Vsub) ≤ Avg(V) implies
∑

v∈Vsub
ŵv ≤ 0. Because Picard’s algorithm

returns a closure of maximum total weight,
∑

v∈Vsub
w′

v ≥ ∑
v∈V w′

v = 0, so∑
v∈Vsub

w′
v = 0, and Algorithm 4 correctly returns V .

Next, we consider the case where W ∗ > Avg(V). Then there exists nonempty
V ′ with Avg(V ′) > Avg(V), so

∑
v∈V ′ ŵv > 0. By correctness of Picard’s algo-

rithm, we have
∑

v∈Vsub
ŵv ≥ ∑

v∈V ′ ŵv > 0, and Algorithm 4 is called recur-
sively on line 7. We must have that Vsub ̸= ∅ and Vsub ̸= V , because otherwise∑

v∈Vsub
ŵv = 0, so Vsub is a nonempty and proper subset of V .

We know that there exists nonempty V ′ ⊂ V with Avg(V ′) = W ∗ that
maximizes the average weight of closures of G, but Vsub does not necessarily
contain V ′. We wish to show that there exists nonempty closure V ∗ ⊂ Vsub with
Avg(V ∗) = W ∗. If so, then the closure of Gsub with maximum average weight

which is returned by the recursive call is also a closure of G with maximum
average weight.

We use the fact that V ′ ∪ Vsub and V ′ ∩ Vsub are both closures of G, and we
consider V ′ \ Vsub. If

∑
v∈V ′\Vsub

ŵv > 0, then∑
v∈V ′∪Vsub

ŵv =
∑

v∈V ′\Vsub

ŵv +
∑

v∈Vsub

ŵv >
∑

v∈Vsub

ŵv.

This contradicts the correctness of Picard’s algorithm, since Vsub maximizes
the sum of modified weights. Thus

∑
v∈V ′\Vsub

ŵv ≤ 0. If V ′ \ Vsub = ∅, then
V ′ ⊂ Vsub, so V ∗ = V ′ is a nonempty closure of Gsub with Avg(V ∗) = W ∗. If
V ′ ∩Vsub = ∅, then∑v∈V ′ ŵv =

∑
v∈V ′\Vsub

ŵv ≤ 0 implies Avg(V ′) ≤ Avg(V),

contradicting Avg(V ′) = W ∗ > Avg(V).
The only case that remains to be analyzed is therefore V ′ and Vsub with

nonempty V ′\Vsub, nonempty V ′∩Vsub,
∑

v∈V ′ ŵv > 0, and
∑

v∈V ′\Vsub
ŵv ≤ 0.

V ′ ∩ Vsub is a nonempty closure of G and Gsub, and

Avg(V ′ ∩ Vsub)−Avg(V ′)

=
1

|V ′ ∩ Vsub|
∑

v∈V ′∩Vsub

wv −
1

|V ′|
∑
v∈V ′

wv

=
1

|V ′ ∩ Vsub|
∑

v∈V ′∩Vsub

ŵv −
1

|V ′|
∑
v∈V ′

ŵv

=
1

|V ′ ∩ Vsub|

∑
v∈V ′

ŵv −
∑

v∈V ′\Vsub

ŵv

− 1

|V ′|
∑
v∈V ′

ŵv

≥ 1

|V ′ ∩ Vsub|
∑
v∈V ′

ŵv −
1

|V ′|
∑
v∈V ′

ŵv

=

(
1

|V ′ ∩ Vsub|
− 1

|V ′|

) ∑
v∈V ′

ŵv

≥0.

The last inequality is true because |V ′ ∩ Vsub| ≤ |V ′| and ∑v∈V ′ ŵv > 0. Thus
Avg(V ′ ∩ Vsub) ≥ Avg(V ′) = W ∗ implies V ∗ = V ′ ∩ Vsub is a nonempty closure
of G and Gsub achieving maximum average weight W ∗.

C Discussion of Lemma 7

For completeness, we include a full proof of Lemma 7.

Proof (Lemma 7). We begin by deriving equation 3. By equation 1, a Copper-
smith problem of multiplicity k with modulus pk is heuristically solvable when

2|S|(|S|−1)/4
∏
f∈S

LT(f)(X) <

(
pk√
|S|

)|S|+1−ℓ

We take the base-2 logarithm of both sides.

|S|(|S| − 1)

4
+ log2

∏
f∈S

LT(f)(X) < (|S|+ 1− ℓ)(k log2 p− log2
√

|S|)

From Section 6.4, the log-determinant log2
∏

f∈S LT(f)(X) is equivalent to∑ℓ
i=1 sxi

(k, t) log2 Xi +
∑

Cj∈LC(S1)
sCj

(k, t) log2 Cj . We substitute.

|S|(|S| − 1)

4
+

ℓ∑
i=1

sxi(k, t) log2 Xi +
∑

Cj∈LC(S1)

sCj (k, t) log2 Cj <

(|S|+ 1− ℓ)(k log2 p− log2
√
|S|)

Next, we regroup terms.

ℓ∑
i=1

sxi
(k, t) log2 Xi +

∑
Cj∈LC(S1)

sCj
(k, t) log2 Cj <

(|S|+ 1− ℓ)(k log2 p− log2
√
|S|)− |S|(|S| − 1)

4

We substitute log2 Xi = (ai + biδ) log2 p and divide by log2 p.

ℓ∑
i=1

sxi
(k, t)(ai + biδ) +

∑
Cj∈LC(S1)

sCj
(k, t) logp Cj <

(|S|+ 1− ℓ)

(
k − log2 |S|

2 log2 p

)
− |S|(|S| − 1)

4 log2 p

We regroup to isolate δ. ℓ∑
i=1

aisxi
(k, t) +

∑
Cj∈LC(S1)

sCj
(k, t) logp Cj

+

(
ℓ∑

i=1

bisxi
(k, t)

)
δ <

(|S|+ 1− ℓ)

(
k − log2 |S|

2 log2 p

)
− |S|(|S| − 1)

4 log2 p(
ℓ∑

i=1

bisxi
(k, t)

)
δ < (|S|+ 1− ℓ)

(
k − log2 |S|

2 log2 p

)
− |S|(|S| − 1)

4 log2 p
−

 ℓ∑
i=1

aisxi
(k, t) +

∑
Cj∈LC(S1)

sCj
(k, t) logp Cj

δ <

|S|k −∑ℓ
i=1 aisxi(k, t)−

∑
Cj∈LC(S1)

sCj (k, t) logp Cj∑ℓ
i=1 bisxi(k, t)

+

(1− ℓ)k − (|S|+ 1− ℓ) log2 |S|
2 log2 p − |S|(|S|−1)

4 log2 p∑ℓ
i=1 bisxi(k, t)

We set t = kτ and take the limit as k → ∞. For any δ < δ∗ − ϵ where δ∗ =
limk→∞ . . ., there exists k for which the Coppersmith problem is heuristically
solvable.

δ∗ = lim
k→∞

|S|k −∑ℓ
i=1 aisxi

(k, kτ)−∑Cj∈LC(S1)
sCj

(k, kτ) logp Cj∑ℓ
i=1 bisxi

(k, kτ)
+

lim
k→∞

(1− ℓ)k − (|S|+ 1− ℓ) log2 |S|
2 log2 p − |S|(|S|−1)

4 log2 p∑ℓ
i=1 bisxi(k, kτ)

From Section 6.4, the lattice dimension |S| is given by the parametrization |S| =
sdim(k, kτ). We substitute.

δ∗ = lim
k→∞

ksdim(k, kτ)−∑ℓ
i=1 aisxi

(k, kτ)−∑Cj∈LC(S1)
sCj

(k, kτ) logp Cj∑ℓ
i=1 bisxi

(k, kτ)
+

lim
k→∞

(1− ℓ)k − (sdim(k, kτ) + 1− ℓ) log2 sdim(k,kτ)
2 log2 p − sdim(k,kτ)(sdim(k,kτ)−1)

4 log2 p∑ℓ
i=1 bisxi(k, kτ)

By Heuristic 2, sdim(k, kτ) is a polynomial in k. We eliminate low-degree terms
from the right-hand expression which do not contribute to the value of the limit.

δ∗ = lim
k→∞

ksdim(k, kτ)−∑ℓ
i=1 aisxi(k, kτ)−

∑
Cj∈LC(S1)

sCj
(k, kτ) logp Cj∑ℓ

i=1 bisxi(k, kτ)
+

lim
k→∞

−1

4 log2 p

sdim(k, kτ)2∑ℓ
i=1 bisxi(k, kτ)

Our requirement on log p in the statement of Lemma 7 means the second limit
is zero. Thus the Coppersmith problem is heuristically solvable for δ < δ∗ − ϵ
where

δ∗ = lim
k→∞

ksdim(k, kτ)−∑ℓ
i=1 aisxi

(k, kτ)−∑Cj∈LC(S1)
sCj

(k, kτ) logp Cj∑ℓ
i=1 bisxi

(k, kτ)

To prove the claim about running time, observe that δ∗ is the limit of a
rational function. For a given ϵ > 0, the limit converges polynomially quickly,
and there exists k = poly(ϵ−1) such that the use of multiplicity k heuristically
solves the multivariate Coppersmith problem for bound δ < δ∗ − ϵ. By this
choice of multiplicity, we also have log p lower bounded by poly(k) = poly(ϵ−1).
Using the precomputation method involves substituting actual coefficients into
the precomputed shift polynomial set S1, computing Sk,t,ul, constructing the
dual lattice, reducing the dual lattice, and performing the final root recovery

step on the reduced vectors. Substitution into S1 only takes time poly(logp) and
results in a set with a constant number of coefficients of size poly(logp).

When computing Sk,t,ul, observe that Lemma 6 guarantees that |Sk| is poly-
nomial in k, so throughout the computation of Sk, all sets have at most poly(k)
elements, each element is the product of at most k polynomials in the substi-
tuted S1, and so the number of coefficients in each polynomial in Sk is poly(k)
and the size of each coefficient is poly(k, log p). Computing Sk,t from Sk is also
polynomially bounded, and so is computing the normal form to arrive at Sk,t,ul.

Given the shift polynomials in Sk,t,ul and the bounds X, we can build the
Howgrave-Graham dual lattice. Every coefficient in the shift polynomials has bit
length poly(k, log p). The largest degree of any monomial in Sk,t,ul is poly(k),

so the scaling factors
∏ℓ

i=1 X
ei
i (where

∏ℓ
i=1 x

ei
i is a monomial) have bit length

poly(k, log p) as well. Therefore the dual lattice has dimension |Sk,t,ul| = poly(k)
and entries of size poly(k, logp). Reducing this lattice takes time poly(k, logp).

Excluding the final root recovery step, this means that the precomputation
strategy takes time poly(k, logp), and by choosing log p = Θ(poly(k), the overall
running time is polynomial in ϵ−1.

C.1 Example application

To demonstrate how Lemma 7 can be used, we apply it to a relatively simple
example. Note that this example is an instance of the “Generalized Rectangle”
from Jochemsz and May [22, Appendix A]. They predict that their basic strat-

egy finds a small modular root when
∏ℓ

i=1 X
λi
i < p2/((ℓ+1)D). In this worked

example, ℓ = 2, λi = 1, X1 = X2, and D = 1, so their strategy leads to the
bound Xi < p1/3. Our proof, which uses our own lemma, arrives at the same
bound.

Corollary 1. We examine the multivariate Coppersmith problem in ℓ = 2 vari-
ables with known modulus p and relation

f(x1, x2) = x1x2 + c1x1 + c2x2 + c3.

We wish to find bounded root (r1, r2) with f(r1, r2) ≡ 0 (mod p) where |ri| < pδ.
Assume Heuristics 1 and 2 hold. For any choice of ϵ > 0, the Coppersmith
problem is solvable for δ < 1/3− ϵ.

Proof. We choose the precomputed set S1 = {f, px1, px2, p}, noting that the
corresponding polytope is a square. For ease of explanation, we pick τ = 0 so
t = 0 always. However, we could have also left it unspecified and explicitly
construct Sk,t,ul for different values of t with entries between 0 and 2. Then
we would perform multivariate polynomial interpolation. However, with τ = 0,
observe that Ĵ∞ = ⟨0⟩, so Sk,t,ul = Sk. We may explicitly calculate the dimension
and determinant of the lattice for Sk at different multiplicities k. For example,
S1 has 4 shift polynomials, and the product of leading terms is x2

1x
2
2p

3. We
calculate S2 = {f2, px1f, px2f, pf, p

2x2
1, p

2x2
2, p

2x1, p
2x2, p

2}, seeing it has 9 shift

polynomials, and the product of leading monomials is x9
1x

9
2p

13. Continuing the
calculation,

k = 1 dimΛS1
= 4 log detΛS1

= 2X1 + 2X2 + 3 log p

k = 2 dimΛS1
= 9 log detΛS1

= 9X1 + 9X2 + 13 log p

k = 3 dimΛS1
= 16 log detΛS1

= 24X1 + 24X2 + 34 log p

k = 4 dimΛS1
= 25 log detΛS1

= 50X1 + 50X2 + 70 log p

k = 5 dimΛS1
= 36 log detΛS1

= 90X1 + 90X2 + 125 log p.

By Heuristic 2, we conclude

sdim(k, 0) = k2 + 2k + 1

sx1
(k, 0) = sx2

(k, 0) = k3/2 + k2 + k/2

sp(k, 0) = 2k3/3 + 3k2/2 + 5k/6.

By Lemma 7, noting ai = 0 and bi = 1, we see that the Coppersmith problem is
solvable for δ < δ∗ − ϵ where δ∗ =

lim
k→∞

ksdim(k, 0)−
∑

Cj∈{1,p} sCj (k, 0) logp Cj∑ℓ
i=1 sxi(k, 0)

.

Substituting in sdim, sx1
, sx2

, and sp (excluding low-order terms which do not
affect the limit), we see

δ∗ = lim
k→∞

kk2 − 2
3k

3

2(12k
2)

=
1

3
,

implying the bound X1, X2 < p1/3.

	Solving Multivariate Coppersmith Problems with Known Moduli

