
Fully Homomorphic Encryption for
Cyclotomic Prime Moduli

Robin Geelen and Frederik Vercauteren

COSIC, ESAT, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. This paper presents a Generalized BFV (GBFV) fully homo-
morphic encryption scheme that encrypts plaintext spaces of the form
Z[x]/(Φm(x), t(x)) with Φm(x) the m-th cyclotomic polynomial and t(x)
an arbitrary polynomial. GBFV encompasses both BFV where t(x) = p
is a constant, and the CLPX scheme (CT-RSA 2018) where m = 2k and
t(x) = x− b is a linear polynomial. The latter can encrypt a single huge
integer modulo Φm(b), has much lower noise growth than BFV (linear
in m instead of exponential), but cannot be bootstrapped.
We show that by a clever choice of m and higher degree polynomial t(x),
our scheme combines the SIMD capabilities of BFV with the low noise
growth of CLPX, whilst still being efficiently bootstrappable. Moreover,
we present parameter families that natively accommodate packed plain-
text spaces defined by a large cyclotomic prime, such as the Fermat prime
Φ2(2

16) = 216+1 and the Goldilocks prime Φ6(2
32) = 264−232+1. These

primes are often used in homomorphic encryption applications and zero-
knowledge proof systems.
Due to the lower noise growth, e.g. for the Goldilocks prime, GBFV can
evaluate circuits whose multiplicative depth is more than 5 times larger
than native BFV. As a result, we can evaluate either larger circuits or
work with much smaller ring dimensions. In particular, we can natively
bootstrap GBFV at 128-bit security for a large prime, already at ring
dimension 214, which was impossible before. We implemented the GBFV
scheme on top of the SEAL library and achieve a latency of only 5 seconds
to bootstrap a ciphertext encrypting 4096 elements modulo 216 + 1.

Keywords: Fully homomorphic encryption · Bootstrapping · GBFV ·
BFV · CLPX · Cyclotomic prime · Goldilocks prime.

1 Introduction

Homomorphic encryption (HE) schemes are commonly divided into two cate-
gories: on the one hand, there exist schemes that can evaluate “single instruc-
tion, multiple data” operations on a batch encryption of multiple elements (a.k.a.
SIMD schemes). Examples of this first category are BGV [12], BFV [11,25] and
CKKS [19]. On the other hand, some schemes do not have the SIMD option, but
have faster execution times, an easier programming model and smaller parame-
ters. This second category includes FHEW [24] and TFHE [20].

https://orcid.org/0000-0003-4684-3532
https://orcid.org/0000-0002-7208-9599

2 R. Geelen and F. Vercauteren

All previously mentioned homomorphic encryption schemes are noise-based.
Encryption adds a small “noise” or “error” to the ciphertext, and this noise is
removed during decryption. This approach is necessary for security, but it also
comes with a major limitation: homomorphic evaluation of a circuit causes the
noise to grow. As such, the noise must stay below a given threshold for the
ciphertext to remain decryptable.

For current SIMD schemes, the noise-based methodology imposes one more
restriction: let p be the “precision” of the encoding (i.e. the plaintext modulus
in BGV/BFV), then the noise growth of multiplication roughly obeys

nout = c(p) · (n1 + n2),

where n1 and n2 are upper bounds on the input noise, nout is an upper bound on
the output noise, and c(p) is a function that depends linearly on p. This linear
relation results in more noise for larger p and is hence an unfavorable property. As
such, current SIMD schemes are rather impractical for high-precision arithmetic,
which is required in many useful HE applications (see also Section 1.2).

A less well-studied scheme, which does not belong to either of the categories
discussed above, is the CLPX scheme due to Chen et al. [16]. The idea is to
define the plaintext ring modulo a linear polynomial t(x) = x − b, instead of
an integer p in BGV and BFV. As such it can encode a single integer defined
modulo Φm(b) (which typically supports thousands of bits), but has relatively
slow execution time and large parameters. Unfortunately, this scheme is still
rather impractical as it supports only one number per ciphertext and is only a
leveled scheme since it cannot be bootstrapped. On the positive side, the noise
growth under multiplication is only sublinear in the desired precision. Whereas
BGV and BFV are very limited in multiplicative capacity, the CLPX scheme
creates a true “gap” between precision and noise growth. Consequently, the
CLPX scheme is currently the best choice for implementing extremely high-
precision exact arithmetic in homomorphic encryption.

1.1 Contributions

It is an open problem to design HE schemes that natively support both high-
precision arithmetic and SIMD capabilities. In this paper, we propose such a
scheme by significantly generalizing and simplifying BFV and CLPX to arbi-
trary cyclotomic polynomials Φm(x) and arbitrary plaintext polynomials t(x).
We give a detailed noise analysis of the different operations such as addition,
key switching, automorphism and multiplication.

We then instantiate the scheme by a clever choice ofm and t(x) allowing us to
natively compute with vectors of elements in finite fields defined by a cyclotomic
prime, i.e. a prime obtained as the evaluation of a cyclotomic polynomial in an
integer. We also show how to natively deal with extensions of such finite fields.
We give several parameter families including the Fermat prime Φ2(2

16) = 216+1
and the Goldilocks prime Φ6(2

32) = 264 − 232 + 1.
Our construction can be seen as a trade-off between standard BFV and

CLPX: similar to BFV, our scheme offers packing capabilities; and similar to

FHE for Cyclotomic Prime Moduli 3

CLPX, our scheme encrypts large (but not huge) integers with reduced noise
growth. We call the new scheme Generalized BFV (GBFV). Finally, we show
for the first time how an encryption scheme with polynomial plaintext modulus
can be bootstrapped for appropriately chosen parameters. This bootstrapping is
based on a new GBFV-to-BFV conversion and packing algorithms, which may
be of independent interest. We implement our bootstrapping on top of Microsoft
SEAL [59] and extensively compare to regular BFV bootstrapping.1

1.2 Motivation

Various FHE applications require high-precision plaintext spaces. For example,
state-of-the-art private set intersection protocols [17,14,21] work with a plaintext
modulus of 16 up to 26 bits, which is already significant in terms of noise growth
for standard BFV. Privacy preserving machine learning [34] uses even larger
plaintext moduli of up to 80 bits. Other applications of high-precision FHE
include rational number encoding [22,16] and p-adic encoding [38,5].

Outside the FHE domain, many zero-knowledge proof systems also use large
values of p [40,6]. For example, the FRI-based systems known as Plonky2 [56],
Miden-VM [55], Era-Boojum [52] and Risc Zero [58] use the popular Goldilocks
prime p = 264 − 232 + 1.2 A follow-up work will show how GBFV instantiated
with the Goldilocks prime can be used to securely and efficiently delegate proof
generation of a zkSNARK to an untrusted server.

Another reason to use large values of p is packing density. It is well known that
the BFV packing density (i.e. the number of slots divided by the ring dimension)
is equal to 1/d, where d is the multiplicative order of p modulo the cyclotomic
index m (see also Section 2.5). As such, we need p > m if we want to achieve
full packing. And in the specific case of power-of-two cyclotomics, the number
of slots is upper bounded by (p + 1)/2 [26]. This is one of the motivations to
use the popular prime p = 216 + 1 [10], which achieves full packing density up
to index m = 216. The large-p restriction becomes even more apparent during
bootstrapping, where p2 is used as an intermediate modulus. This results in a
precision of 32 bits for the previously mentioned prime.

1.3 Related Work

The idea behind the CLPX scheme originates from the NTRU scheme. Hoffstein
and Silverman [39] noticed that the integer modulus in NTRU encoding can be
replaced with a small polynomial modulus. The CLPX scheme uses this trick in
combination with the BFV scheme to construct leveled homomorphic encryption
for large integers [16]. Later research has shown how the same trick can be used
to encode complex numbers more efficiently [8,15]. To some extent, these works
on complex number encoding already offer a limited form of plaintext packing

1 See https://github.com/KULeuven-COSIC/Bootstrapping BGV BFV/tree/traces.
2 Note that the name “Goldilocks prime” is a slight abuse of terminology here, because
the original prime was of the shape φ2 − φ− 1 rather than φ2 − φ+ 1 [37,7].

https://github.com/KULeuven-COSIC/Bootstrapping_BGV_BFV/tree/traces

4 R. Geelen and F. Vercauteren

by using a modulus of the shape xk− b. However, this is still not general enough
for our use case (we need non-power-of-two cyclotomics and arbitrary plaintext
moduli). Moreover, these prior works are tailored to complex numbers, do not
have a mechanism to permute the encoded plaintext slots, and are not known to
be bootstrappable. Another research direction has found an alternative way to
reduce the modulus consumption in complex number encoding by making the
individual FHE operations more expensive [18]. However, this strategy seems
not applicable to exact schemes.

2 Preliminaries

2.1 Cyclotomic Fields and Rings

We will use the R-LWE problem, so we first introduce definitions and properties
of cyclotomic polynomials. For an integer m ⩾ 1, we take a primitive m-th root
of unity ωm ∈ C. This means that ωk

m = 1 if and only if m divides k. We call

Φm(x) =
∏

j∈Z×
m

(x− ωj
m)

the m-th cyclotomic polynomial. Here we used Z×
m for the unit group of integers

modulo m. The degree of the above polynomial is n = φ(m), where φ(·) is Eu-
ler’s totient function. A standard result states that all cyclotomic polynomials are
monic, irreducible over Q and have integer coefficients [62]. For the R-LWE prob-
lem, we define the m-th cyclotomic number field K = Q(ωm) = Q[x]/(Φm(x))
and its ring of integers R = Z[ωm] = Z[x]/(Φm(x)). The Galois group of K/Q is
written as Gal(K/Q). It consists of the automorphisms σj : x 7→ xj for j ∈ Z×

m.
As such, it is a trivial result that this Galois group is isomorphic to Z×

m. The
multiplicative subgroup generated by g1, . . . , gs ∈ Z×

m is denoted by ⟨g1, . . . , gs⟩.
An ideal in a ring is written with round parentheses, that is (r1, . . . , rs).

Embeddings and norms. For the purpose of noise analysis, we need to embed
the cyclotomic number field into a real or complex vector space. Two common
methods are the coefficient embedding and the canonical embedding. In our
definition, the coefficient embedding uses the powerful basis of K [48].

Definition 1. Let m = m1 · . . . ·ms be the prime-power factorization of m. Let

a =
∑

(i1,...,is)∈I

ai1,...,is · x
i1
1 · . . . · xis

s ,

where xj = xm/mj and I is the set of s-tuples with the j-th entry ranging from 0
to φ(mj)− 1. Then the coefficient embedding is defined by the map

ι : K ↪→ Rn : a 7→ {ai1,...,is}(i1,...,is)∈I .

FHE for Cyclotomic Prime Moduli 5

Definition 2. The canonical embedding is defined by the map

τ : K ↪→ Cn : a = a(x) 7→
{
a(ωj

m)
}
j∈Z×

m
.

This map is well-defined because ωj
m is a root of Φm(x) for each j ∈ Z×

m.

The coefficient embedding preserves addition, and is therefore an additive group
embedding. The canonical embeddings preserves addition and multiplication,
and is therefore a ring embedding. Note that multiplication is defined component-
wise in the embedding space Cn.

To analyze the noise in a ciphertext, we will study its norm through the
coefficient or canonical embedding. The notations

||a||p = ||ι(a)||p and ||a||canp = ||τ(a)||p

denote the ℓp-norm on the coefficient embedding and the canonical embedding
respectively. Since noise estimates are simpler for the canonical embedding, but
decryption is done on the coefficient embedding, it can be useful to upper bound
the coefficient norm in terms of the canonical norm. Fortunately, this is possible
because any two norms on a finite-dimensional vector space are known to be
equivalent. We refer to HElib for more information on how this can be done [35].

The norms satisfy the following lemma.

Lemma 1. Let a, b ∈ K, then

– ||a+ b||can∞ ≤ ||a||can∞ + ||b||can∞
– ||a · b||can∞ ≤ ||a||can∞ · ||b||can∞
– ||a||can∞ ≤ ||a||1.

The first property is the triangle inequality. The second and third property are
given for example by Gentry et al. [33].

2.2 Additional Notations for R-LWE

Throughout this paper, we consider t = t(x), which is either a polynomial in Z[x]
or a non-zero element of R, depending on the context. We write the quotient
ring of R modulo t as Rt = R/tR. All ring and field elements (except for the
modulus t) are shown in bold lower case letters or explicitly as polynomials. For
a ∈ K (which can have non-integral coefficients) and a positive integer N , we
denote the coefficient-wise centered reduction of a modulo N by [a]N . In other
words, this gives the element in NR+ a which has coefficients in [−N/2, N/2).
We employ the standard notations ⌊a⌋, ⌈a⌉ and ⌊a⌉ for coefficient-wise flooring,
ceiling and rounding to the nearest integer, respectively. The result of rounding
goes upwards if the input coefficient is in Z+ 1/2.

We will regularly use vectors and matrices over R. Row vectors are written
as a ∈ R1×ℓ, column vectors as −→a ∈ Rℓ×1 and matrices as −→a ∈ Rℓ1×ℓ2 . For the
inner product between vectors of the same type, we use ⟨·, ·⟩. Finally, we note

6 R. Geelen and F. Vercauteren

that the above notations for modular reduction, flooring, ceiling and rounding
carry over component-wise to vectors and matrices.

We will require probability distributions to define the R-LWE problem and
related homomorphic encryption schemes. The distribution Uq denotes the uni-
form distribution on Rq. We also consider two distributions on R, namely χkey

and χerr for key and error generation respectively.

2.3 The Ideal Norm and the Resultant

To count the number of elements in a quotient ring, we can use the ideal norm.

Definition 3. Let I be an ideal in R, then the absolute norm of I is

N(I) = [R : I].

Lemma 2. Let t ∈ R be non-zero, then N(tR) = |NK/Q(t)| where NK/Q(·) is
the standard field norm.

This lemma shows that the absolute norm and the field norm are compatible for
principal ideals. For the proof, we refer to Marcus [51]. A direct corollary is that
the ring Rt is finite for non-zero t.

Definition 4. Let Pk ⊆ Z[x] be the set of polynomials of degree at most k.
Consider f(x), g(x) ∈ Z[x] of degree i and j respectively. The Sylvester map of
f(x) and g(x) is the linear transformation

Pj−1 ⊕ Pi−1 → Pi+j−1 : (r(x), s(x)) 7→ r(x) · f(x) + s(x) · g(x).

If we use the power basis of x to express the Sylvester map as a matrix, then the
determinant of this matrix is called the resultant Res(f(x), g(x)).

Observe that the image of the Sylvester map is a subset of the ideal (f(x), g(x))
in Z[x]. The next lemma gives an alternative way to count the number of elements
in the ring Rt based on the relation between norms and resultants [53].

Lemma 3. Let t(x) ∈ Z[x], then NK/Q(t(x)) = Res(Φm(x), t(x)).

The following lemma is a standard result (we refer to Knapp [43] for a proof).

Lemma 4. For f(x), g(x) ∈ Z[x], it holds that

– Res(f(x), g(x)) is in the image of the Sylvester map.
– Res(f(x), g(x)) = 0 if and only if f(x) and g(x) have a common factor of

degree at least one.

The former statement generalizes Bézout’s identity. Although the resultant is in
the image of the Sylvester map, it is not necessarily the smallest positive integer
with this property. We therefore use a definition of i Ventosa and Wiese [61,46].

Definition 5. Let f(x), g(x) ∈ Z[x] have non-zero resultant. Then the reduced
resultant or congruence number Con(f(x), g(x)) is the smallest positive integer
in the image of the Sylvester map of f(x) and g(x).

FHE for Cyclotomic Prime Moduli 7

2.4 Ring Learning With Errors

The ring learning with errors problem [47] is an algebraic variant of the learning
with errors problem [57]. Both are commonly used to construct homomorphic
encryption schemes, but we will only need the variant over rings. The R-LWE
problem is based on the R-LWE distribution for an integer q ≥ 2 and a secret s
sampled from χkey.

Definition 6. Fix a secret s ∈ Rq. The R-LWE distribution Aq
s is defined by

first sampling a← Uq, e← χerr and then returning (a, [a · s+ e]q).

Definition 7. Given access to polynomially many samples from R2
q, the deci-

sion R-LWE problem is to distinguish between the distributions Aq
s and U2

q .

Definition 8. Given access to polynomially many samples from Aq
s, the search

R-LWE problem is to find the underlying s.

Both variants of the R-LWE problem are conjectured to be hard for appropriately
chosen parameters [47].

2.5 Basics of BFV and CLPX

This section introduces the secret key variants of BFV and CLPX. In fact, we
describe the improved version of BFV encryption due to Kim et al. [41] where
ring rounding is applied after multiplication by ∆. Details of the BGV scheme
are omitted for conciseness, and because it is roughly equivalent to BFV.

BFV encryption. We fix a plaintext modulus t = p, a ciphertext modulus q
and a scaling factor ∆ = q/t. Encryption of m ∈ Rt is done via R-LWE:

ct = ([⌊∆ ·m⌉+ a · s+ e]q,−a) .

Decryption requires a ciphertext ct = (c0, c1) ∈ R2
q and the secret key s ∈ R:

m = ⌊(c0 + c1 · s)/∆⌉.

One can homomorphically compute three types of operations over the plaintext
space Rt: addition, multiplication and automorphism [62]. The scheme can be
made fully homomorphic by bootstrapping.

CLPX encryption. We fix a plaintext modulus t = t(x) = x− b, a ciphertext
modulus q and a scaling factor ∆ = ⌊q/t⌉. The plaintext space corresponds to

Rt = Z[x]/(Φm(x), x− b) = Z[x]/(x− b, p) ∼= Zp,

where p = Φm(b). Encryption of a single element µ ∈ Zp is done via R-LWE as
follows. First, we compute a “hat encoding” m̂ = µ (mod tR) such that m̂ has
small coefficients. Then the ciphertext is computed as

ct = ([∆ · m̂+ a · s+ e]q,−a) .

8 R. Geelen and F. Vercauteren

Decryption requires a ciphertext ct = (c0, c1) ∈ R2
q and the secret key s ∈ R:

m̂ = ⌊(t/q) · (c0 + c1 · s)⌉.

Finally, the original message is retrieved via m̂ = m̂(x) and µ = m̂(b). One can
homomorphically compute two types of operations over the plaintext space Zp:
addition and multiplication [16]. Since only a single element is encrypted, no
SIMD operations are possible; and since the size of p is exponential in m, it is
not known how to bootstrap for cryptographically secure parameters.

We remark that the hat encoder is redundant if one applies ring rounding
after multiplication of ∆ and m̂ instead of before. This is done in our definition
of the Generalized BFV scheme in Section 3, similarly to the implementation of
the BFV scheme due to Kim et al. [41]. However, we still require the hat encoder
(generalized and renamed to Flatten) for plaintext-ciphertext multiplication.

SIMD operations. It was shown by Smart and Vercauteren [60] that one FHE
plaintext can encode several independent numbers. Their idea is based on the
Chinese remainder theorem (CRT). Specifically, let t = p be a prime that does
not divide m. Then it is a well-known fact that the m-th cyclotomic polynomial
factors modulo p into ℓ = n/d distinct irreducible factors of degree d, where d is
the order of p in Z×

m. In other words, we have the CRT isomorphism

Rp = Z[x]/(Φm(x), p)→ Z[x]/(F1(x), p)× . . .× Z[x]/(Fℓ(x), p)

µ(x) 7→ (µ(x) mod F1(x), . . . , µ(x) mod Fℓ(x)),
(1)

where Fi(x) are the factors of Φm(x) modulo p. Consequently, the plaintext space
is isomorphic to a direct product of ℓ copies of the finite field Fpd . In the case
where t = pe is a prime power, one can apply Hensel lifting so that the plaintext
space is given by ℓ copies of a Galois ring of characteristic pe.

Gentry et al. [32] showed that the plaintext slots can be arbitrarily permuted
based on the group action of Gal(K/Q). This automorphism group contains
the subgroup ⟨σp⟩ generated by the Frobenius automorphism σp. The Frobenius
automorphism itself acts on each slot independently as an automorphism on the
underlying Galois ring. However, it becomes more interesting when considering
automorphisms outside of ⟨σp⟩. These automorphisms can be shown to induce
inter-slot permutations of the plaintext data.3

3 Generalized BFV Scheme

This section describes our generalization of BGV/BFV and CLPX to arbitrary
cyclotomic rings and non-linear polynomial plaintext moduli. Although we de-
scribe the secret key variant of the scheme, it can easily be turned into a public
key encryption scheme using standard techniques [25].

3 In some situations, two automorphisms are needed to implement one properly defined
permutation. However, this detail is outside the scope of this exposition.

FHE for Cyclotomic Prime Moduli 9

3.1 Choosing Small Representatives

Our generalization captures plaintext spaces modulo arbitrary non-zero principal
ideals generated by t = t(x). In some procedures, we require a representative
with small coefficients in R from an element in Rt. To achieve this, we define
the function

Flatten : Rt → R : m 7→ t ·
[m
t

]
1
.

Note that Flatten generalizes both the hat encoder from Chen et al. [16] and the
notation [·]N (since Flatten(m) = [m]t for an integer t). Moreover, it filters out a
unique canonical representative inR: it satisfies Flatten(m) = m (mod tR), and
the output does not depend on the input representative. Also note the similarity
to Babai rounding [3] for approximating the closest vector problem.

3.2 Gadget Decomposition

Two additional functions are required for decomposition and recombination of
ring elements. These functions are defined with respect to integers ω, q ≥ 2 and
ℓω,q = ⌈logω(q)⌉, and they will be used to control the noise growth during key
switching (see later). Let a′ = [a]q for a ∈ R, then we define

Dω,q(a) =

(
[a′]ω,

⌊[
a′

ω

]
ω

⌉
, . . . ,

⌊[
a′

ωℓω,q−1

]
ω

⌉)⊤

and

Pω,q(a) =
(
[a′]q, [a

′ · ω]q, . . . ,
[
a′ · ωℓω,q−1

]
q

)⊤
.

The following essential lemma is proven by Brakerski et al. [12].

Lemma 5. For all a, b ∈ R, it holds that

⟨Dω,q(a),Pω,q(b)⟩ = a · b (mod qR).

We note that alternative methods have been proposed to define D and P, which
are more convenient for the actual implementation of HE schemes. We refer to
Genise et al. [29] for an overview of the state-of-the-art techniques.

3.3 Scheme Definition

The FHE scheme has plaintext spaceRt and ciphertext spaceR2
q for an integer q.

For correctness, we will require that ||t(x)||can∞ ≪ q (similarly to BGV and BFV,
where we assume that t≪ q). We also define the “scaling factor” as∆ = q/t ∈ K.
We do not round the scaling factor to R, which results in a conceptually simpler
scheme definition than the original BFV and CLPX. The scheme then consists
of the following algorithms for key generation, encryption and decryption:

– SecretKeyGen: sample s← χkey and return s.

10 R. Geelen and F. Vercauteren

– EvalKeyGen(s, s′): given secret keys s, s′ ∈ R, sample −→a ← Uℓω,q
q and −→e ←

χ
ℓω,q
err , and compute

−→
evk =

(
[Pω,q(s

′) +−→a · s+−→e]q,−−→a
)
.

Return
−→
evk.

– Encrypt(m, s): given message m ∈ Rt and secret key s ∈ R, sample a← Uq
and e← χerr, and compute

ct = ([⌊∆ ·m⌉+ a · s+ e]q,−a) .

Return ct. Observe that the computed ciphertext is independent of the cho-
sen plaintext representative m due to the scaling by ∆.

– Decrypt(ct, s): given ciphertext ct = (c0, c1) ∈ R2
q and secret key s ∈ R,

compute
m = ⌊(c0 + c1 · s)/∆⌉.

Return m.

In a similar way as BFV, the IND-CPA security of the GBFV homomorphic
encryption scheme (without any evaluation keys) can be reduced to the hardness
of the decision R-LWE problem using a simple indistinguishability argument.
The procedure EvalKeyGen, where s′ depends on s, requires a circular security
assumption on top of R-LWE.

The following algorithms are necessary to compute homomorphic operations
on ciphertexts of the GBFV scheme:

– Add(ct, ct′): given ciphertexts ct, ct′ ∈ R2
q, let ct = (c0, c1) and ct′ = (c′0, c

′
1).

Now compute
ctadd = ([c0 + c′0]q, [c1 + c′1]q)

and return ctadd.

– Add(ct,m): given ciphertext ct ∈ R2
q and message m ∈ Rt, compute

ct′ = ([⌊∆ ·m⌉]q, 0)

and return Add(ct, ct′).

– KeySwitch(c,
−→
evk): given partial ciphertext c ∈ Rq and evaluation key

−→
evk =

(−→r0,−→r1) ∈ R
ℓω,q×2
q , compute

−→c = Dω,q(c), ctswitch =
([〈−→c ,−→r0

〉]
q
,
[〈−→c ,−→r1

〉]
q

)
.

Return ctswitch.

FHE for Cyclotomic Prime Moduli 11

– Multiply(ct, ct′,
−→
evk): given ciphertexts ct, ct′ ∈ R2

q and evaluation key
−→
evk ∈

Rℓω,q×2
q for s′ = s2, let ct = (c0, c1) and ct′ = (c′0, c

′
1). Now compute

ct′′ = ([⌊(c0 · c′0)/∆⌉]q, [⌊(c0 · c′1 + c1 · c′0)/∆⌉]q) , c′′2 = [⌊(c1 · c′1)/∆⌉]q.

Compute ct′′′ = KeySwitch(c′′2 ,
−→
evk) and return Add(ct′′, ct′′′).

– Multiply(ct,m): given ciphertext ct = (c0, c1) ∈ R2
q and message m ∈ Rt,

let m̂ = Flatten(m). Now compute

ctmult = ([m̂ · c0]q, [m̂ · c1]q)

and return ctmult.

– Automorphism(ct, σ,
−→
evk): given ciphertext ct = (c0, c1) ∈ R2

q, automorphism
σ ∈ G where

G = {σ ∈ Gal(K/Q) | σ(t) ∈ tR}

and evaluation key
−→
evk ∈ Rℓω,q×2

q for s′ = σ(s), compute

ct′ = ([(σ(t)/t) · σ(c0)]q, 0) , c′1 = [(σ(t)/t) · σ(c1)]q.

Compute ct′′ = KeySwitch(c′1,
−→
evk) and return Add(ct′, ct′′). Multiplication

by σ(t)/t is not required in the regular BFV scheme because it is equal to 1.

In the BGV and BFV schemes, all automorphisms of Gal(K/Q) induce valid
automorphisms onRt. This is different in the generalized scheme: for correctness,
we impose that σ(t) ∈ tR (which is equivalent to σ(tR) = tR) such that σ is
well-defined over Rt.

Remark 1. Observe that the groups Gal(K/Q(t)) ⊆ G ⊆ Gal(K/Q) are not equal
in general. For example, let m = 8 and t(x) = x2 + 3x+ 1, then

– Gal(K/Q(t)) contains only x 7→ x.

– G contains x 7→ xi for i = 1, 7. Note that σ7(t) = −x2t over R which shows
that indeed σ7 ∈ G.

– Gal(K/Q) contains x 7→ xi for i = 1, 3, 5, 7.

Remark 2. Note that the scheme described in this section is totally general, i.e.
it works for any non-zero plaintext modulus polynomial t(x), and we have not
imposed any restriction except that ||t(x)||can∞ ≪ q. The above example already
illustrates that a “compatible” choice of Φm(x) and t(x) results in a non-trivial
set of valid automorphisms. Similarly, such choice is also required to achieve
non-trivial SIMD capabilities of the scheme.

12 R. Geelen and F. Vercauteren

3.4 Noise Analysis

This section gives a worst-case conservative noise analysis on the canonical em-
bedding. As such, it will demonstrate that the multiplication noise growth (which
is linear in the norm of t) is decoupled from the precision (which can be super-
linear in the norm of t). Heuristic average-case noise formulas are left to future
work. We define the invariant noise of a ciphertext in the same way as CLPX [16].

Definition 9. Let ct = (c0, c1) be a ciphertext that encrypts m ∈ Rt. Its invari-
ant noise is the field element v ∈ K with smallest infinity norm on the coefficient
embedding such that

(c0 + c1 · s)/∆ = m+ v (mod tR). (2)

Observe that we can rewrite the above definition as

c0 + c1 · s = ∆ · (m+ v) (mod qR). (3)

The following lemma gives a condition on the invariant noise for correctness
of decryption, again similar to CLPX.

Lemma 6. A ciphertext ct = (c0, c1) that encrypts m ∈ Rt decrypts correctly
if the invariant noise v satisfies ||v||∞ < 1/2.

Proof. Let
(c0 + c1 · s)/∆ = m+ v + t · a

for a ∈ R. Decryption computes

⌊(c0 + c1 · s)/∆⌉ = ⌊m+ v + t · a⌉ = m+ t · a = m (mod tR),

where the middle equality holds if ||v||∞ < 1/2. ⊓⊔

Additional symbols. We need to bound the ciphertext noise after encryption
and all homomorphic operations. For this purpose, we assume that the key and
error distributions, which were used earlier, are upper bounded. More specifically,
we define three extra symbols:

– Bkey is an upper bound on ||s||can∞ for s← χkey.
– Berr is an upper bound on ||e||can∞ for e← χerr.
– Bt is defined as ||t(x)||can∞ .

The next lemma bounds the “ring rounding” error that occurs when rounding
an element from K to R.

Lemma 7. Let a ∈ K and b = ⌊a⌉ ∈ R, then ||b− a||can∞ ≤ n/2.

Proof. Let ϵ = b− a. According to the third property of Lemma 1, we have

||ϵ||can∞ ≤ ||ϵ||1 ≤ n/2.

The second inequality is obtained by bounding the coefficients of ϵ by 1/2. ⊓⊔

FHE for Cyclotomic Prime Moduli 13

Initial noise. Let ct = (c0, c1) be a freshly encrypted ciphertext. It satisfies

c0 + c1 · s = ⌊∆ ·m⌉+ e = ∆ ·m+ ϵ+ e (mod qR),

where e is sampled from χerr and ϵ is the ring rounding error. The invariant
noise is given by v = (ϵ+ e)/∆. It can be bounded as

||v||can∞ ≤ (n/2 +Berr) ·Bt/q.

Ciphertext-ciphertext addition. The added ciphertext satisfies

[c0 + c′0]q + [c1 + c′1]q · s = (c0 + c1 · s) + (c′0 + c′1 · s)
= ∆ · (madd + vadd) (mod qR),

where madd = m+m′ and vadd = v + v′ are the added message and invariant
noise respectively. The noise can be bounded as

||vadd||can∞ ≤ ||v||can∞ + ||v′||can∞ .

Plaintext-ciphertext addition. We replace the second term by a ring round-
ing error. Then the formula changes to ||vadd||can∞ ≤ ||v||can∞ + (n/2) ·Bt/q.

Key switching. Suppose that we have c ·s′ = ∆ · (m+v) (mod qR). The key
switched ciphertext satisfies[〈−→c ,−→r0

〉]
q
+
[〈−→c ,−→r1

〉]
q
· s =

[〈
Dω,q(c),Pω,q(s

′) +−→a · s+−→e
〉]

q
+[〈

Dω,q(c),−−→a
〉]

q
· s

= ⟨Dω,q(c),Pω,q(s
′)⟩+

〈
Dω,q(c),

−→a · s
〉
+〈

Dω,q(c),
−→e
〉
+
〈
Dω,q(c),−−→a

〉
· s

= c · s′ +
〈
Dω,q(c),

−→e
〉

= ∆ · (m+ vswitch) (mod qR),

where the third equality follows from Lemma 5 and

vswitch = v +
〈
Dω,q(c),

−→e
〉
/∆.

Recall that −→e is sampled from χ
ℓω,q
err . The noise can be bounded as

||vswitch||can∞ ≤ ||v||can∞ +Bswitch,

where Bswitch = ℓω,q · (ω ·n/2) ·Berr ·Bt/q. The factor ω ·n/2 represents decom-
position of c in base ω, which uses a similar observation as in Lemma 7.

14 R. Geelen and F. Vercauteren

Ciphertext-ciphertext multiplication. Before key switching, the multiplied
ciphertext satisfies

c′′0 + c′′1 · s+ c′′2 · s2 = [⌊(c0 · c′0)/∆⌉]q + [⌊(c0 · c′1 + c1 · c′0)/∆⌉]q · s+

[⌊(c1 · c′1)/∆⌉]q · s2

= (c0 · c′0)/∆+ (c0 · c′1 + c1 · c′0)/∆ · s+

(c1 · c′1)/∆ · s2 + (ϵ0 + ϵ1 · s+ ϵ2 · s2)
= (c0 + c1 · s) · (c′0 + c′1 · s)/∆+ (ϵ0 + ϵ1 · s+ ϵ2 · s2)
= ∆ · (m ·m′ +m · v′ + v ·m′ + v · v′) +

(ϵ0 + ϵ1 · s+ ϵ2 · s2) (mod qR).

Note that at this point, we have to fix two particular representatives m,m′ ∈ R
rather than m,m′ ∈ Rt. This is so that we can define the decryption formula
from Equation (2) without reduction modulo tR. The elements ϵi are again ring
rounding errors. Clearly, the intermediate noise is given by

vint = m · v′ + v ·m′ + v · v′ +
ϵ0 + ϵ1 · s+ ϵ2 · s2

∆

= v′ · (m+ v) + v · (m′ + v′)− v · v′ +
ϵ0 + ϵ1 · s+ ϵ2 · s2

∆

= v′ · c0 + c1 · s
∆

+ v · c
′
0 + c′1 · s

∆
− v · v′ +

ϵ0 + ϵ1 · s+ ϵ2 · s2

∆
.

The noise can be bounded as

||vint||can∞ ≤ (n/2) · (Bkey + 1) ·Bt · (||v||can∞ + ||v′||can∞) +

(||v||can∞ · ||v′||can∞) + (n/2) · (1 +Bkey +B2
key) ·Bt/q.

The final noise (after key switching) can be bounded as

||vmult||can∞ ≤ ||vint||can∞ +Bswitch.

Plaintext-ciphertext multiplication. Different from addition, the equations
for plaintext-ciphertext multiplication deviate much from ciphertext-ciphertext
multiplication. That is, the multiplied ciphertext satisfies

[m̂ · c0]q + [m̂ · c1]q · s = m̂ · (c0 + c1 · s)
= ∆ · (mmult + vmult) (mod qR),

where mmult = m ·m′ and vmult = m̂ · v. Note that m′ indicates the plaintext
encrypted by the ciphertext (c0, c1). Here we used the important property that
Flatten(m) = m (mod tR). The invariant noise can then be bounded as

||vmult||can∞ ≤ (n/2) ·Bt · ||v||can∞ .

FHE for Cyclotomic Prime Moduli 15

Automorphism. Before key switching, the computed ciphertext satisfies

[(σ(t)/t) · σ(c0)]q + [(σ(t)/t) · σ(c1)]q · σ(s) = (σ(t)/t) · σ(c0 + c1 · s)
= ∆ · (σ(m) + σ(v)) (mod qR),

where we used the fact that (σ(t)/t) · σ(∆) = ∆. Clearly, the intermediate noise
is given by

vint = σ(v), so ||vint||can∞ = ||v||can∞ .

The final noise (after key switching) can be bounded as

||vauto||can∞ ≤ ||vint||can∞ +Bswitch.

4 Algebraic Structure of the Plaintext Space

This section studies the algebraic structure of the plaintext space. We start with
the special case of binomial moduli (plus some additional assumptions on the
exact shape of the binomial) and then we treat more general moduli.

4.1 Plaintext Space for a Binomial Modulus

We will use the following standard property of cyclotomic polynomials. We refer
to the literature [1] for a proof of the lemma and for a more detailed discussion
about the properties of cyclotomics.

Lemma 8. Let r = rad(m) denote the radical of a positive integer m, i.e. the
product of its distinct prime factors. Then the following relation holds:

Φm(x) = Φr(x
m/r).

We will now derive properties of the plaintext space when the modulus is of the
special shape t(x) = xk − b, where both k and b are integers. We will assume
that 0 < k < n = φ(m) and k | (m/r), where r = rad(m) is the radical of m.

Our plaintext ring is Rt = Z[x]/I, using the ideal I = (Φm(x), t(x)) ⊆ Z[x].
In our special case, this can be simplified with Lemma 8 and Euclidean division
(i.e. by substituting Φm(x) with its reduction modulo t(x) = xk − b) to

I = (Φr(x
m/r), xk − b) = (t(x), p),

where p = Φr(b
m/(rk)). The next lemma shows that for some combinations, the

splitting behaviour of t(x) modulo p is extremely nice.

Lemma 9. Let m ≥ 3 be an integer and let r = rad(m) be its radical. Consider
0 < k < n = φ(m) such that k | (m/r). For an integer b, define t(x) = xk−b and
p = Φr(b

m/(rk)). If p is a prime number and does not divide m, then t(x) splits
over Fp into ℓ′ = k/d distinct irreducible factors of identical degree d, where d is
the multiplicative order of p modulo m. The subgroup G of valid automorphisms
equals G = Gal(K/Q(t)) and consists of the maps x 7→ xi for i = 1 (mod m/k).

16 R. Geelen and F. Vercauteren

Proof. Observe that Φm(x) ∈ (t(x), p), and thus t(x) divides Φm(x) over Fp[x].
As such, the splitting behaviour of t(x) over Fp follows directly from the splitting
behaviour of Φm(x) over Fp, which is well known to split into φ(m)/d distinct
irreducible factors of degree d, with d the multiplicative order of p modulo m.
Since Φm(x) splits completely over Fpd , the same holds for t(x). Moreover, its
roots are primitive m-th roots of unity, so the order of b is exactly m/k.

We now analyze the subgroup of valid automorphisms. Recall that σi : x 7→ xi

is valid if and only if

σi(t) = xk·i − b ∈ tR ⇐⇒ bi − b ∈ tR.

This equivalence holds because xk·i = bi (mod tR). As such, we need p | bi − b,
or even p | bi−1−1 since p and b are coprime by definition. This is true if i−1 is
divisible by the order of b modulo p, which was established to be m/k. Moreover,
all these valid automorphisms satisfy σi(t) = t. ⊓⊔

SIMD operations. Similarly to BFV, we can pack multiple elements in one
plaintext based on the splitting behaviour of t(x) modulo p. We can also compute
arbitrary permutations of the plaintext slots in a similar way as HElib [35]. That
is, we first replace Equation (1) by the isomorphism

Rt = Z[x]/(t(x), p)→ Z[x]/(T1(x), p)× . . .× Z[x]/(Tℓ′(x), p)

µ(x) 7→ (µ(x) mod T1(x), . . . , µ(x) mod Tℓ′(x)).
(4)

Define the slot algebra Fpd = Fp(ζ), where ζ is a formal root of T1(x) over Fp.
Then ζ is also a root of Φm(x), so it is a primitive m-th root of unity. The roots
of t(x) over Fpd are simply obtained by twisting ζ with the k-th roots of unity.
We therefore obtain them as

ζ(m/k)·i+1 for 0 ≤ i < k.

In particular, the roots of T1(x) are the p-th power maps of ζ. Let S ⊆ Z be
a full system of representatives for H/⟨p⟩, where H ∼= G is the subgroup of Z×

m

whose elements are congruent to 1 modulo m/k. Equation (4) is updated to

µ(x) 7→
{
µ(ζh)

}
h∈S

.

This is possible because all ζh are roots of t(x) belonging to different Ti(x).
The hypercube representatives are constructed as

S = { ge11 · . . . · gess | 0 ≤ ei < ℓ′s } ,

where the number of slots is ℓ′ = ℓ′1 · . . . ·ℓ′s and s is the number of dimensions. As
such, we can associate each slot with a tuple (e1, . . . , es) or with h = ge11 · . . . ·gess .

Rotations can be implemented by means of the automorphism group G, in a
similar way as for BFV [28]. Let α be the mask obtained by embedding 0 in the
plaintext slots with indices (e1, . . . , ei, . . . , et) where ei < v, and embedding 1 in

FHE for Cyclotomic Prime Moduli 17

the other slots. Then the rotation with 0 ≤ v < ℓ′i positions in dimension i for a
plaintext m can be computed as

m 7→ α · σj(m) + (1−α) · σk(m),

where j = g−v
i (mod m) and k = g

ℓ′i−v
i (mod m). If the order of gi in H is ℓ′i, the

equation collapses to m 7→ σj(m) and we only need one automorphism. Finally,
observe that the Frobenius automorphism σp acts on each slot separately as the
p-th power map.

4.2 Plaintext Space for a More General Modulus

This section derives properties of the plaintext space for a more general t = t(x).
Define p = Con(Φm(x), t(x)), then for simplicity we assume that p is prime and
does not divide m (this means that p is unramified in K). We remark however,
that the scheme also works if p is not prime, but it would require a more care-
ful analysis of the splitting behaviour for the different prime factors of p. The
definition of p directly implies that it is in the ideal (Φm(x), t(x)), so it must be
divisible by t in R. Let p = β · t for β ∈ R so that we can factor the ideal

pR = βR · tR. (5)

Alternatively, we can factor it into distinct prime ideals as

pR = (F1(x), p) · . . . · (Fℓ′(x), p),

where Fi(x) are the factors of Φm(x) modulo p. This factorization is unique up to
the order. Therefore, we can obtain the factorization from Equation (5) simply
by regrouping the prime ideal factorization, and we have

tR =
∏
i∈I

(Fi(x), p) =

(∏
i∈I

Fi(x), p

)
for some index set I ⊂ Z. Analogously to the binomial modulus that was studied
in the previous section, the ideal is generated by one polynomial and one scalar.
A noteworthy difference with the binomial case is that when we consider our
plaintext ideal I = (Φm(x), t(x)) as an ideal in Z[x] (rather than in R), it is
not necessarily equal to (t(x), p). By definition it is clear that p ∈ I, and thus
I = (Φm(x), t(x), p). Reducing to Fp[x], the ideal becomes principally generated
by t′(x) = gcd(Φm(x), t(x)) ∈ Fp[x]. As such we conclude that I = (t′(x), p).

Remark 3. In the case of binomial plaintext moduli, arbitrary permutations can
be computed as linear combinations of valid automorphisms. This is because

N(tR) = p|G|. (6)

One may expect that Equation (6) holds more generally for arbitrary t(x). This
is however, not necessarily true as shown by a simple example: take m = 8 and
t(x) = x3 − 16x2 + 256x− 4096, then p = 216 + 1 and N(tR) = p3, but |G| = 1.
Nevertheless, arbitrary permutations may still be computed as valid linear com-
binations of invalid automorphisms, but we do not elaborate this idea further.

18 R. Geelen and F. Vercauteren

Interpretation as a subspace of BFV. As already commented on in the
previous section, it is no coincidence that the extension degree of the slot algebra
(i.e. the parameter d) is identical for GBFV and BGV/BFV. In fact, the GBFV
plaintext space can be interpreted as a subspace of Rp. To see this, consider the
factorization of pR in two coprime ideals in Equation (5). The Chinese remainder
theorem implies that

Rp
∼= Rβ ×Rt.

GBFV only uses the BFV slots corresponding to Rt. Those are exactly the slots
in which the polynomial t(x), interpreted as a BFV plaintext, is equal to 0.

4.3 Hensel Lifting to Prime Powers

Some applications (bootstrapping in particular) require a plaintext space defined
modulo a prime power pe rather than a prime p. The following analysis shows
that this can be achieved by changing the plaintext modulus from t to te. Again,
we assume that p = Con(Φm(x), t(x)) is prime and does not divide m.

Our starting point is the observation that Φm(x) is in the ideal (t′(x), p). It
follows immediately that

Φm(x) = β′(x) · t′(x) (mod p).

for some β′(x) ∈ Z[x]. Through the process of Hensel lifting, this equation may
also be defined modulo pe, so we can write

Φm(x) = β′(x) · t′(x) (mod pe). (7)

We now prove that (Φm(x), te(x)) = (t′(x), pe) as ideals in Z[x]. First, observe
that Φm(x) ∈ (t′(x), pe) due to Equation (7). We also know that t(x) ∈ (t′(x), p)
because t′(x) divides t(x) over Fp by construction. A simple binomial expansion
of t(x) = γ(x) · t′(x) + δ(x) · p shows that te(x) ∈ (t′(x), pe), so it follows that

(Φm(x), te(x)) ⊆ (t′(x), pe).

In the opposite direction, note that both ideals have an index equal to (N(tR))e
when seen as additive subgroups of Z[x], so they must be identical. Moreover,
the interpretation as a subspace of BFV with plaintext modulus pe still holds.

4.4 Parameter Sets

In this section, we propose families of parameter sets for 16-bit, 32-bit, 64-bit
and 128-bit cyclotomic prime moduli. These parameter families accommodate a
range of security levels, mainly determined by the degree of Φm(x) and allow for
a flexible trade-off between noise growth and number of slots.

1. p = Φ2(2
16) = 216 + 1: let m = 2j and t(x) = xk − b, with k = 2i+j−5 and

b = 22
i

for some integers 0 ≤ i ≤ 3 and 5 ≤ j ≤ 16.

FHE for Cyclotomic Prime Moduli 19

2. p = Φ2(288
4) = 2884+1: let m = 2j and t(x) = xk− b, with k = 2i+j−3 and

b = 2882
i

for some integers 0 ≤ i ≤ 1 and 3 ≤ j ≤ 16.
3. p = Φ6(2

32) = 264−232+1: let m = 3 ·2j and t(x) = xk−b, with k = 2i+j−6

and b = 22
i

for some integers 0 ≤ i ≤ 5 and 6 ≤ j ≤ 16.
4. p = Φ6(236

8) = 23616 − 2368 + 1: let m = 3 · 2j and t(x) = xk − b, with

k = 2i+j−4 and b = 2362
i

for some integers 0 ≤ i ≤ 3 and 4 ≤ j ≤ 16.

For the proposed parameter families, the polynomial t(x) splits completely mod-
ulo p = 1 (mod m) and our plaintext space is thus isomorphic to Fk

p. Note that
the method is fully parameterizable and has a trade-off between number of slots
and noise growth: a larger value of i results in larger k and b. This gives more
slots but also more noise growth during multiplication, because Bt increases with
b. In the extreme case where b = 2, the multiplication noise is completely dom-
inated by the contribution inherent to the cyclotomic ring and (the Hamming
weight of) the secret key distribution.

Remark 4. In zero-knowledge applications, one typically works in a quadratic or
cubic field extension for the Goldilocks prime (i.e. the third parameter family)
to achieve sufficient soundness. It is of course possible to mimic computations
in such extension fields via Fp-arithmetic, but we show that with a small tweak,
it is also possible to support these extension fields natively. To achieve this, we
need to look for roots of unity that live in Fpd but not in a strict subfield. That

is, we look for small factors of pd−1 (which are not already factors of pd
′ −1 for

some d′ | d and d′ < d); in particular, it suffices to consider small prime factors
of Φd(p). We propose the following augmented parameter sets.

1. To obtain a quadratic extension, we can adjoin a primitive 7-th root of unity
to the cyclotomic ring (which is contained in Fp2 \ Fp). As such, we update
the parameters to m = 7 ·3 ·2j and k = 7 ·2i+j−6. This augmented parameter
set does not satisfy the restrictions from Section 4.1 because k ∤ (m/r). The
number of slots over Fp2 is therefore not k/2, but 3 · 2i+j−6.

2. To obtain a cubic extension, we can adjoin a primitive 9-th root of unity to
the cyclotomic ring (which is contained in Fp3 \Fp). As such, we update the
parameters to m = 9 · 2j and k = 3 · 2i+j−6. The number of slots over Fp3 is
given by 2i+j−6.

Appendix A provides tables illustrating the packing capacity vs. noise growth
for the above families.

Remark 5. In some applications, we want to minimize the size of the ciphertext
resulting from a compuation. To this end, we can perform modulus switching
to the smallest ciphertext modulus q′ which still allows for correct decryption.
However, in the SIMD setting where a ciphertext encrypts a vector of plaintext
values, it can happen that one is only interested in obtaining a ciphertext that
encrypts a subset of this vector. This occurs for instance in delegating proof
generation of a zkSNARK to an untrusted server. Note that the above families

20 R. Geelen and F. Vercauteren

define a tower of cyclotomic fields indexed by j, where mj = 2 ·mj−1, and that
we have the natural embedding

ι : Rm → R2m : x 7→ x2

whenever 2 | m, since Φ2m(x) = Φm(x2). Furthermore, this embedding respects
the definition of t(x) for a fixed i when j is replaced by j + 1. In particular, the
families define compatible cyclotomic rings, but also compatible plaintext spaces.
As such, we can apply ring switching [30] which allows to transform a ciphertext
defined over Rm to a corresponding ciphertext over Rm/2a (assuming that m
is divisible by 2a+1) encrypting a fraction of 1/2a of the original plaintext. We
refer to Gentry et al. [30] for more details, but in short, it suffices to perform
key switching to a secret key that lives in ιa(Rm/2a) ⊂ Rm, select the slots one
is interested in using a linear transformation, and finally map to the ring Rm/2a

using the trace function.

5 Bootstrapping

This section proposes a novel GBFV bootstrapping method inspired by exist-
ing bootstrapping algorithms for regular BFV. We therefore start by reviewing
BFV bootstrapping. Then we describe novel methods to bootstrap single GBFV
ciphertexts and batches of GBFV ciphertext, which are non-trivial adaptations
of BFV bootstrapping.

5.1 Reviewing BFV Bootstrapping

Historically, the “native” BGV/BFV bootstrapping approach was first studied
theoretically [12,31,2] and then implemented in HElib [36]. Later research has
shown how it can be improved by optimizing the involved polynomials [13,27,49]
and linear transformations [26,50]. Below we describe the “thin” bootstrapping
workflow due to Chen and Han [13], because it will be used in Section 5.4:

1. Evaluate a homomorphic linear transformation to map the slots of the input
ciphertext to the coefficients of a different ciphertext.

2. Evaluate a homomorphic inner product to convert a noisy encryption of m
to a low-noise encryption of p ·m+ e.

3. Evaluate a homomorphic linear transformation to map the coefficients of the
ciphertext to the slots of a different ciphertext.

4. Evaluate a homomorphic digit removal polynomial to cancel the terms ei.

These four steps are summarized in Figure 1, where Encp(m) denotes an encryp-
tion of m under plaintext modulus p. For simplicity, we assume that the used
plaintext moduli are a prime p and its square. This is sufficient for our large-p
use case, but it could also be generalized to higher powers of p.

FHE for Cyclotomic Prime Moduli 21

Encp(m1, . . . ,mℓ)

Encp(m)

Encp2(p ·m+ e)

Encp2(p ·m1 + e1, . . . , p ·mℓ + eℓ)

Encp(m1, . . . ,mℓ)

Linear transformation

Inner product

Inverse linear transformation

Digit removal

Fig. 1. Thin bootstrapping workflow, adapted from [13,28]

Alternatives of the native approach. Recently, there were many alternative
BFV bootstrapping proposals. This includes a method to use the slots more
efficiently [54], functional bootstrapping [45,44], and even an algorithm that uses
CKKS bootstrapping as a subroutine [42]. While finding the optimal method is
an interesting research question, this paper does not intend to answer it. Instead,
we use the native approach due to the improvements applied in Section 5.4.

5.2 A First Attempt at GBFV Bootstrapping

Our first (and failed) idea to bootstrap the GBFV scheme was to work with a
temporary plaintext modulus of t2 (instead of p2 in Figure 1). This approach
required us to switch the ciphertext modulus from q to t2 right before the inner
product step. This is technically possible if we introduce a ring rounding error:⌊

t2

q
· c0
⌉
+

⌊
t2

q
· c1
⌉
· s = t ·

(
m+ v +

ϵ0 + ϵ1 · s
t

)
(mod t2R). (8)

Note that this works correctly if the norm of 1/t is small enough (and other-
wise, we can switch to a higher power of t). Let the newly obtained ciphertext
from Equation (8) be denoted by (c′0, c

′
1). We can extract its regular (i.e. non-

invariant) noise e = t · v + ϵ0 + ϵ1 · s as

Flatten(c′0 + c′1 · s) = t ·
[
c′0 + c′1 · s

t

]
1

.

To finish the bootstrapping, we need to extract the noise homomorphically, so
we need to implement Flatten as an arithmetic circuit.

We note that Flatten has a period of t, and when translated to the isomorphic
space modulo p2, this period becomes p. As a result, there exists a polynomial
representation of the required functionality if p is prime [27]. However, since the
interpolation space is Zp2 for a possibly very large number p, the polynomial

22 R. Geelen and F. Vercauteren

may have a huge degree of up to 2p − 1. Moreover, the large-p bootstrapping
trick from Ma et al. [49] does not seem to help here, because multiple small error
coefficients are “spread” over one element of Zp2 .

5.3 GBFV Bootstrapping from Black-Box BFV

To overcome the previous obstacle, we propose a bootstrapping algorithm that
uses BFV bootstrapping as a subroutine. The idea is very simple: first we convert
the GBFV ciphertext to BFV, via a new method that is almost noise-free (it only
adds a small ring rounding error). Then we run the regular BFV bootstrapping.
Finally, the refreshed ciphertext is converted back to GBFV without additional
noise. So the remaining question is how to convert GBFV to BFV and vice versa.

Suppose we have a GBFV ciphertext as in Equation (2) and Equation (3). We
make the reduction modulo t explicit by introducing an extra term:

c0 + c1 · s = ∆ · (m+ t · a+ v).

If we multiply both sides by t/p and round, we get⌊
t

p
· c0
⌉
+

⌊
t

p
· c1
⌉
· s =

q

p
· (m+ t · a+ v + p · (ϵ0 + ϵ1 · s)/q).

This is a BFV encryption of m+ t · a under plaintext modulus p, where a is a
random but irrelevant ring element.

In the other direction, suppose that we start from a BFV ciphertext

c0 + c1 · s =
q

p
· (m+ t · a+ v) (mod qR).

Then we simply multiply by p/t and get(p
t
· c0
)
+
(p
t
· c1
)
· s = ∆ · (m+ v) (mod qR).

Note that this only works correctly because p/t is an element of R.

5.4 Improvements of the Black-Box Approach

Further improvements can be obtained by opening the black box from the previ-
ous section. In particular, BFV bootstrapping with a large value of p is somehow
wasteful, because we do not fully use the available message space. Let us assume
from now on that p is prime and congruent to 1 modulo m, so that d = 1. We
propose an improved bootstrapping based on Section 5.1 as follows:

1. We start with an encryption Enct(m1, . . . ,mℓ′), where ℓ
′ denotes the number

of GBFV slots (to avoid confusion, we use a different symbol ℓ > ℓ′ to denote
the number of BFV slots). As in the previous sections, this notation means
a slot-encoded encryption of mi under plaintext modulus t. In the first step,
we convert this ciphertext to BFV and get Encp(m1, . . . ,mℓ′ , . . . ,mℓ).

FHE for Cyclotomic Prime Moduli 23

Enct(m1, . . . ,mℓ′)

Encp(m1, . . . ,mℓ′ , . . . ,mℓ)

Encp2(p ·m1 + e1, . . . , p ·mℓ′ + eℓ′ , . . . , p ·mℓ + eℓ)

Enct2(p ·m1 + e1, . . . , p ·mℓ′ + eℓ′)

Enct(m1, . . . ,mℓ′)

GBFV to BFV

Partial thin bootstrapping

BFV to GBFV

Digit removal

Fig. 2. GBFV bootstrapping workflow

2. Evaluate the first three steps from thin bootstrapping in Section 5.1.
3. Convert the obtained ciphertext from BFV modulus p2 to GBFV modulus t2.

This step is a multiplication by (p/t)2 and can be folded in the inverse linear
transformation from the previous step, which saves a multiplicative level.

4. Evaluate an adapted digit removal polynomial. This consists of the polyno-
mial from Ma et al. [49] (as also used in [26,50]), followed by multiplication
with (p/t)−1 (mod t), which is simply included in the same polynomial.

These four steps are summarized in Figure 2. They only cover the full splitting
case, which suffices for many parameter sets. For d > 1, we need to include extra
unpacking and repacking operations before and after digit removal [36,26].

This section improves over the black-box approach in terms of noise growth
during digit extraction (which is typically the most depth-consuming step of
bootstrapping). Remark that we now work with plaintext modulus t2, which has
much smaller norm than p2 for typical parameter sets. Consequently, we get the
beneficial multiplication noise growth from Section 3.4. This crucial improvement
will allow us to use a smaller ring dimension of n = 214 than prior work.

5.5 Batch Bootstrapping via Packing

This section proposes one more method to exploit the unused part of the message
space. When multiple GBFV ciphertexts are bootstrapped simultaneously, we
can pack them together during the linear transformations. We assume once more
that p is prime and that it does not divide m. To facilitate the packing step,
we additionally assume a plaintext space with binomial modulus as treated in
Section 4.1. We can pack a maximum of n/k GBFV ciphertexts in one BFV
ciphertext, where n is the ring dimension and k is the degree of t(x).

To ease the notation, let us write β = p/t ∈ R as before. We are given a set
of encryptions Enct(mi) for 1 ≤ i ≤ n/k. These ciphertexts are equal to

Enct(mi) = Encp(β ·mi).

24 R. Geelen and F. Vercauteren

This identity can be seen by expanding the ciphertexts using Equation (2) and
multiplying by β. Consider the subset of the automorphisms {σ(1), . . . , σ(n/k)}
which forms a system of representatives for the quotient group Gal(K/Q)/G.
Packing homomorphically computes

Encp

n/k∑
i=1

σ(i)(β−1β ·mi)

 =

n/k∑
i=1

σ(i)(β−1 · Enct(mi)),

where the inverse of β is defined modulo t. To unpack the i-th message, we simply
apply the inverse of σ(i) and use the BFV-to-GBFV conversion routine. Packing
costs one multiplicative BFV level and n/k automorphisms, whereas unpacking
only requires the same number of automorphisms.

The correctness of the above procedure can be shown as follows. First of all,
we write the inverse of σ(i) as σ(−i). Then we need to show that

mj = σ(−j)

n/k∑
i=1

σ(i)(β−1β ·mi)

 (mod tR).

If i = j, both automorphisms cancel and the remaining term is β−1β ·mj , which
is congruent tomj modulo t. All other terms will disappear completely modulo t,
because σ(i) and σ(j) are in different cosets of Gal(K/Q)/G. More specifically, it
can be seen by the following lemma that σ(−j)(σ(i)(β)) is divisible by t.

Lemma 10. Let σ /∈ G be an automorphism of the cyclotomic number field K,
then σ(β) is divisible by t in R under the conditions stated above.

Proof. The congruence number p is divisible by t and σ(t) (because the division
results are β and σ(β) respectively). So if we can show that the greatest common
divisor of t and σ(t) is 1, then σ(β) = p/σ(t) is divisible by t and we are done.

Consider σ : x 7→ xi, then Lemma 9 implies that i ̸= 1 (mod m/k). Define
the ideal I = (t, σ(t)) ⊆ R and let t(x) = xk − b. Clearly p ∈ I and also bi − b
is in I because it is the reduction of σ(t) modulo t. We proved earlier that the
multiplicative order of b modulo p is equal to m/k. In combination with the fact
that i ̸= 1 (mod m/k), we find that bi−b is not divisible by p. But as p is prime,
it must be coprime to bi − b in Z, so 1 ∈ I by Bézout’s identity. ⊓⊔

The steps for batch bootstrapping are displayed in Figure 3. The workflow is
very similar to Figure 2, except that the conversion steps are replaced by packing
and unpacking. Note that the packing multiplication by β−1 can be folded in the
digit removal polynomial. The choice of doing unpacking before digit extraction,
and not after digit extraction, is a design decision that reduces the noise growth.

6 Implementation and Results

We implemented the GBFV scheme on top of the Microsoft SEAL library [59].
Unfortunately, SEAL is restricted to power-of-two cyclotomic rings, which makes

FHE for Cyclotomic Prime Moduli 25

Enct(miℓ′+1, . . . ,miℓ′+ℓ′) for 0 ≤ i < n/k

Encp(m1, . . . ,mℓ′ , . . . ,mℓ)

Encp2(p ·m1 + e1, . . . , p ·mℓ′ + eℓ′ , . . . , p ·mℓ + eℓ)

Enct2(p ·miℓ′+1 + eiℓ′+1, . . . , p ·miℓ′+ℓ′ + eiℓ′+ℓ′) for 0 ≤ i < n/k

Enct(miℓ′+1, . . . ,miℓ′+ℓ′) for 0 ≤ i < n/k

Packing

Partial thin bootstrapping

Unpacking

Digit removals

Fig. 3. GBFV batch bootstrapping workflow

it impossible to implement all recommended parameter sets. However, there are
two good reasons why we opted for SEAL: first, it supports the BFV scheme,
which uses a GBFV-compatible “most significant bit” encoding. As a result,
the implementation can be conveniently generalized to GBFV. Moreover, the
choice for SEAL allows us to extend the BFV bootstrapping implementation
from Geelen [26] to GBFV. The recent work from Ma et al. [50] also implements
bootstrapping, but in HElib and only for the BGV scheme. Note these two works
mark the state-of-the-art in native BGV/BFV bootstrapping.

In contrast to prior works about BGV/BFV, we are able to use a small ring
dimension of n = 214 at 128-bit security, while still being able to pack a relatively
large number of at least 1024 slots. This small ring dimension is enabled by the
reduced multiplication noise of digit removal: since there is less noise growth,
we can work with smaller q and n at constant security level. To the best of our
knowledge, the only other method that can use ring dimension n = 214 (apart
from the FHEW/TFHE branch) is BLEACH [23,4]. However, this scheme can
only pack bits (whereas we pack 16-bit numbers), has a more expensive addition
(i.e. XOR gate) and its bootstrapping has few remaining multiplicative levels.

We augmented the BFV bootstrapping implementation from Geelen [26] with
sparse secret encapsulation [9]. The benchmarks in this section use similar pa-
rameters as BLEACH bootstrapping [4]: we take n = 214, a modulus q ≈ 2420

and a ternary secret key distribution with Hamming weight h = 256. The sparse
key has Hamming weight h̃ = 32 and we set the noise cut-off parameter [49,26]
to B = 15 for negligible failure probability. We use the prime p = 216 + 1 from
the first recommended parameter family. Similarly to BFV bootstrapping [26],
we also subtracted 15 bits from the initial and remaining noise budget to enable
subdomain interpolation of the noise over [−B,B] ∩ Z. The paragraphs below
show experiments for single and batch bootstrapping operations. All experiments
were conducted with single-threaded Microsoft SEAL version 4.1 on an Intel®

Xeon® Gold 6248R CPU with 500 GB memory and Ubuntu 22.04.3 LTS. The

26 R. Geelen and F. Vercauteren

Table 1. Results for GBFV bootstrapping using m = 215 and p = 216 + 1

Number of slots ℓ′ 1024 2048 4096 8192

Bits per multiplicative level 11 12 14 18

Noise (bits)

Initial 317 317 317 317
Partial thin boot 111 111 114 118
Digit removal 82 91 113 161
Remaining 124 115 90 38

Execution
time (sec)

Partial thin boot 3.69 3.84 3.89 3.69
Digit removal 1.12 1.13 1.14 1.14
Total 4.81 4.97 5.03 4.83

Throughput
#slots · bits/sec 26 · 103 47 · 103 73 · 103 64 · 103
#slots ·#levels/sec 2.3 · 103 3.7 · 103 4.9 · 103 3.4 · 103

Table 2. Results for GBFV batch bootstrapping using m = 215 and p = 216 + 1

Number of slots ℓ′ 1024 2048 4096 8192

Bits per multiplicative level 11 12 14 18

Noise (bits)

Initial 317 317 317 317
Packing 2 2 1 1
Partial thin boot 126 125 126 126
Unpacking 30 29 24 16
Digit removals 82 91 113 161
Remaining 77 70 53 13

Execution
time (sec)

Packing 0.31 0.15 0.07 0.03
Partial thin boot 3.66 3.74 3.76 3.77
Unpacking 0.33 0.16 0.08 0.03
Digit removals 18.31 9.19 4.68 2.34
Total 22.61 13.24 8.59 6.17

Throughput
#slots · bits/sec 56 · 103 87 · 103 101 · 103 35 · 103
#slots ·#levels/sec 5.1 · 103 6.2 · 103 5.7 · 103 0

shown noise budget is the one reported by SEAL and is always normalized to p.
As such, it gives the inherent noise rather than the invariant noise.

Experiments for single bootstrapping. Bootstrapping results for individual
ciphertexts are given in Table 1. We applied 2-stage decomposition of the linear
transformations in partial thin bootstrapping. We used the first recommended
parameter family, which has ℓ′ = k GBFV slots. The trade-off between number
of slots and noise growth is clear from the table: the number of slots increases
gradually from left to right column, while the remaining noise budget decreases.
Increasing the number of slots to 16384 (which would coincide with regular BFV)
is not possible for this parameter set because the remaining noise budget would
be negative. The total bootstrapping execution time is the lowest number ever
demonstrated for BFV-like schemes. In particular, the recent work from Ma et
al. [50] obtained bootstrapping in 20 seconds, which is 4 times slower.

FHE for Cyclotomic Prime Moduli 27

Experiments for batch bootstrapping. Similarly, we also generated results
for batch bootstrapping in Table 2. The displayed number of slots reflects an
individual ciphertext (the number of slots for a full batch is always 16384). The
latency of single bootstrapping is lower than of batch bootstrapping, since in
the latter multiple digit removal polynomials need to be evaluated. However, the
throughput (number of bootstrapped slots times remaining capacity divided by
total execution time) of Table 2 is generally much higher than the corresponding
column in Table 1 since partial thin bootstrapping is only evaluated once for the
entire batch. The notable exception to this is the rightmost column, where the
remaining noise budget of batch bootstrapping is less than a multiplicative level.

6.1 Comparison to Regular BFV Bootstrapping

This section compares the noise of BFV and GBFV bootstrapping for the 64-bit
Goldilocks prime, which gives even more noise reduction than the 16-bit Fermat
prime. Table 3 shows the noise growth for m = 3 · 216 and q ≈ 21680. The results
are based on our Magma implementation, since SEAL only supports power-of-
two cyclotomics. We applied 3-stage decomposition of the linear transformations
for all columns. The table indicates that BFV bootstrapping has very little re-
maining noise budget (less than a multiplicative level, so it is not bootstrappable
for the chosen ring dimension). On the other hand, GBFV has plenty of remain-
ing capacity for further homomorphic operations.

We believe that the smaller ring dimension of GBFV bootstrapping will also
facilitate implementations. For example, one can use substantially smaller keys
and work with smaller batches of encrypted numbers. This speeds up applications
where few plaintext slots are required.

Table 3. Comparison to BFV for m = 3 · 216 and p = 264 − 232 + 1

Bootstrapping algorithm BFV Single GBFV Batch GBFV

Number of slots ℓ or ℓ′ 65536 16384 4096 16384 4096

Total slot count 65536 16384 4096 65536 65536
Bits per multiplicative level 75 27 15 27 15

Noise (bits)
Initial 1477 1477 1477 1477 1477
Consumed 1460 837 681 994 874
Remaining 17 640 796 483 603

Remaining levels 0 23 53 17 40

6.2 Limitations and Future Work

While the proposed algorithm is a significant improvement over well-known BFV
bootstrapping in terms of noise growth, we stress that it cannot bootstrap all
parameter sets. For example, the original CLPX scheme uses a linear polynomial

28 R. Geelen and F. Vercauteren

as the plaintext modulus and the precision p is hence exponential in the ring
dimension n. As a result, bootstrapping would require R-LWE with exponential
modulus-to-noise ratio, because we need to compute the linear transformations
modulo p. It is an open problem to achieve bootstrapping for such parameters.

An important future work is implementing GBFV bootstrapping for the third
parameter family (i.e. instantiated with the Goldilocks prime). This is currently
not possible due to the lack of non-power-of-two cyclotomics in state-of-the-art
FHE libraries.

Acknowledgements. This work was supported by CyberSecurity Research
Flanders with reference number VR20192203. In addition, this work is also
supported in part by the European Commission through the Horizon 2020 re-
search and innovation program Belfort ERC Advanced Grant 101020005 and
through the Horizon 2020 research and innovation program under grant agree-
ment ISOCRYPT ERC Advanced Grant 101020788. Robin Geelen is funded by
Research Foundation – Flanders (FWO) under a PhD Fellowship fundamental
research (project number 1162123N). Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the ERC, the European Union, CyberSecurity
Research Flanders or the FWO.

References

1. Al-Kateeb, A.Q.M., et al.: Structures and properties of cyclotomic polynomials.
(2016)

2. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
CRYPTO (1). Lecture Notes in Computer Science, vol. 8042, pp. 1–20. Springer
(2013)

3. Babai, L.: On lovász’ lattice reduction and the nearest lattice point problem. Comb.
6(1), 1–13 (1986)

4. Bae, Y., Cheon, J.H., Kim, J., Stehlé, D.: Bootstrapping bits with CKKS. In:
EUROCRYPT (2). Lecture Notes in Computer Science, vol. 14652, pp. 94–123.
Springer (2024)

5. Blindenbach, J., Cheon, J.H., Gürsoy, G., Kang, J.: On the overflow and p-adic
theory applied to homomorphic encryption. Cryptology ePrint Archive, Paper
2024/1353 (2024)

6. Block, A.R., Tiwari, P.R.: On the concrete security of non-interactive FRI. Cryp-
tology ePrint Archive, Paper 2024/1161 (2024)

7. Bloemen, R.: The goldilocks prime (2024), https://xn--2-umb.com/22/goldilocks
8. Bootland, C., Castryck, W., Iliashenko, I., Vercauteren, F.: Efficiently processing

complex-valued data in homomorphic encryption. J. Math. Cryptol. 14(1), 55–65
(2020)

https://xn--2-umb.com/22/goldilocks

FHE for Cyclotomic Prime Moduli 29

9. Bossuat, J., Troncoso-Pastoriza, J.R., Hubaux, J.: Bootstrapping for approximate
homomorphic encryption with negligible failure-probability by using sparse-secret
encapsulation. In: ACNS. Lecture Notes in Computer Science, vol. 13269, pp. 521–
541. Springer (2022)

10. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: CHIMERA: combining ring-lwe-
based fully homomorphic encryption schemes. J. Math. Cryptol. 14(1), 316–338
(2020)

11. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: CRYPTO. Lecture Notes in Computer Science, vol. 7417, pp.
868–886. Springer (2012)

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(2014)

13. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: EUROCRYPT (1). Lecture Notes in Computer Science, vol. 10820,
pp. 315–337. Springer (2018)

14. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: CCS. pp. 1223–1237. ACM (2018)

15. Chen, H., Iliashenko, I., Laine, K.: When HEAAN meets FV: A new somewhat
homomorphic encryption with reduced memory overhead. In: IMACC. Lecture
Notes in Computer Science, vol. 13129, pp. 265–285. Springer (2021)

16. Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic in homomorphic
encryption. In: CT-RSA. Lecture Notes in Computer Science, vol. 10808, pp. 116–
136. Springer (2018)

17. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: CCS. pp. 1243–1255. ACM (2017)

18. Cheon, J.H., Cho, W., Kim, J., Stehlé, D.: Homomorphic multiple precision mul-
tiplication for CKKS and reduced modulus consumption. In: CCS. pp. 696–710.
ACM (2023)

19. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: ASIACRYPT (1). Lecture Notes in Computer
Science, vol. 10624, pp. 409–437. Springer (2017)

20. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

21. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosen-
berg, M.: Labeled PSI from homomorphic encryption with reduced computation
and communication. In: CCS. pp. 1135–1150. ACM (2021)

22. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.:
Manual for using homomorphic encryption for bioinformatics. Proc. IEEE 105(3),
552–567 (2017)

23. Drucker, N., Moshkowich, G., Pelleg, T., Shaul, H.: BLEACH: cleaning errors in
discrete computations over CKKS. J. Cryptol. 37(1), 3 (2024)

24. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in
less than a second. In: EUROCRYPT (1). Lecture Notes in Computer Science,
vol. 9056, pp. 617–640. Springer (2015)

25. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Paper 2012/144 (2012)

26. Geelen, R.: Revisiting the slot-to-coefficient transformation for BGV and BFV.
Cryptology ePrint Archive, Paper 2024/153 (2024)

30 R. Geelen and F. Vercauteren

27. Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On polynomial functions mod-
ulo pe and faster bootstrapping for homomorphic encryption. In: EUROCRYPT
(3). Lecture Notes in Computer Science, vol. 14006, pp. 257–286. Springer (2023)

28. Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV revisited. J. Cryptol.
36(2), 12 (2023)

29. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit:
Subgaussian sampling and more. In: EUROCRYPT (2). Lecture Notes in Com-
puter Science, vol. 11477, pp. 655–684. Springer (2019)

30. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in bgv-style ho-
momorphic encryption. J. Comput. Secur. 21(5), 663–684 (2013)

31. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Public Key Cryptography. Lecture Notes in Computer Science,
vol. 7293, pp. 1–16. Springer (2012)

32. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 7237, pp.
465–482. Springer (2012)

33. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: CRYPTO. Lecture Notes in Computer Science, vol. 7417, pp. 850–867. Springer
(2012)

34. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In: ICML. JMLR Workshop and Conference Proceedings, vol. 48,
pp. 201–210. JMLR.org (2016)

35. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic en-
cryption library. Cryptology ePrint Archive, Paper 2020/1481 (2020)

36. Halevi, S., Shoup, V.: Bootstrapping for helib. J. Cryptol. 34(1), 7 (2021)
37. Hamburg, M.: Ed448-goldilocks, a new elliptic curve. Cryptology ePrint Archive,

Paper 2015/625 (2015)
38. Harmon, L., Delavignette, G., Roy, A., da Silva, D.W.H.A.: PIE: p-adic encoding

for high-precision arithmetic in homomorphic encryption. In: ACNS (1). Lecture
Notes in Computer Science, vol. 13905, pp. 425–450. Springer (2023)

39. Hoffstein, J., Silverman, J.H.: Optimizations for ntru. In: Proc. the Conf. on Public
Key Cryptography and Computational Number Theory, Warsaw. pp. 77–88 (2000)

40. Hwang, I., Seo, J., Song, Y.: Concretely efficient lattice-based polynomial commit-
ment from standard assumptions. In: Reyzin, L., Stebila, D. (eds.) Advances in
Cryptology – CRYPTO 2024. pp. 414–448. Springer Nature Switzerland, Cham
(2024)

41. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for
finite fields. In: ASIACRYPT (3). Lecture Notes in Computer Science, vol. 13092,
pp. 608–639. Springer (2021)

42. Kim, J., Seo, J., Song, Y.: Simpler and faster BFV bootstrapping for arbitrary
plaintext modulus from CKKS. Cryptology ePrint Archive, Paper 2024/109 (2024)

43. Knapp, A.W.: Advanced algebra. Springer Science & Business Media (2007)
44. Lee, D., Min, S., Song, Y.: Functional bootstrapping for packed ciphertexts via

homomorphic LUT evaluation. Cryptology ePrint Archive, Paper 2024/181 (2024)
45. Liu, Z., Wang, Y.: Relaxed functional bootstrapping: A new perspective on

BGV/BFV bootstrapping. Cryptology ePrint Archive, Paper 2024/172 (2024)
46. Loeffler, D.: The resultant and the ideal generated by two polynomials in Z[x].

MathOverflow, https://mathoverflow.net/q/17514
47. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors

over rings. J. ACM 60(6), 43:1–43:35 (2013)

https://mathoverflow.net/q/17514

FHE for Cyclotomic Prime Moduli 31

48. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-lwe cryptography. In:
EUROCRYPT. Lecture Notes in Computer Science, vol. 7881, pp. 35–54. Springer
(2013)

49. Ma, S., Huang, T., Wang, A., Wang, X.: Accelerating BGV bootstrapping for
large p using null polynomials over Zpe . In: EUROCRYPT (2). Lecture Notes in
Computer Science, vol. 14652, pp. 403–432. Springer (2024)

50. Ma, S., Huang, T., Wang, A., Wang, X.: Faster BGV bootstrapping for power-
of-two cyclotomics through homomorphic NTT. Cryptology ePrint Archive, Paper
2024/164 (2024)

51. Marcus, D.A., Sacco, E.: Number fields, vol. 1995. Springer (1977)
52. Matter Labs: Era-boojum. GitHub (2023), https://github.com/matter-labs/

era-boojum
53. Myerson, G.: Norms in polynomial rings. Bulletin of the Australian Mathematical

Society 41(3), 381–386 (1990)
54. Okada, H., Player, R., Pohmann, S.: Homomorphic polynomial evaluation using

galois structure and applications to bfv bootstrapping. In: Guo, J., Steinfeld, R.
(eds.) Advances in Cryptology – ASIACRYPT 2023. pp. 69–100. Springer Nature
Singapore, Singapore (2023)

55. Polygon Miden: Miden-vm. GitHub (2021), https://github.com/0xPolygonMiden/
miden-vm

56. Polygon Zero: Plonky2. GitHub (2021), https://github.com/0xPolygonZero/
plonky2

57. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

58. RISC Zero: Risc zero. GitHub (2022), https://github.com/risc0/risc0
59. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023),

microsoft Research, Redmond, WA.
60. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes

Cryptogr. 71(1), 57–81 (2014)
61. i Ventosa, X.T., Wiese, G.: Computing congruences of modular forms and galois

representations modulo prime powers. Arithmetic, geometry, cryptography and
coding theory 2009 521, 145–166 (2009)

62. Zucca, V.: Towards efficient arithmetic for ring-lwe based homomorphic encryption
(2018)

A Packing Capacity versus Noise Growth

The sections below illustrate the trade-off between packing capacity and multi-
plication noise growth for our 16-bit, 32-bit and 64-bit parameter families. The
Hamming weight of the secret key was set to 128 for all tables.

A.1 16-bit prime p = Φ2(2
16) = 216 + 1

We fix m = 215 and t(x) = xk − b with k = 2i+10 and b = 22
i

for 0 ≤ i ≤ 3.

i 0 1 2 3 BFV

Number of slots 1024 2048 4096 8192 16384
Noise PT × CT (bits) 6.4 7.3 9.1 13.2 21.1
Noise CT × CT (bits) 10.5 11.2 13.0 17.3 25.1

https://github.com/matter-labs/era-boojum
https://github.com/matter-labs/era-boojum
https://github.com/0xPolygonMiden/miden-vm
https://github.com/0xPolygonMiden/miden-vm
https://github.com/0xPolygonZero/plonky2
https://github.com/0xPolygonZero/plonky2
https://github.com/risc0/risc0
https://github.com/Microsoft/SEAL

32 R. Geelen and F. Vercauteren

A.2 32-bit prime p = Φ2(288
4) = 2884 + 1

We fix m = 215 and t(x) = xk − b with k = 2i+12 and b = 2882
i

for 0 ≤ i ≤ 1.

i 0 1 BFV

Number of slots 4096 8192 16384
Noise PT × CT (bits) 13.2 21.7 38.0
Noise CT × CT (bits) 17.2 25.8 42.1

A.3 64-bit prime p = Φ6(2
32) = 264 − 232 + 1

Base field encoding. We fix m = 3 · 214 and t(x) = xk − b with k = 2i+8 and

b = 22
i

for 0 ≤ i ≤ 5. The slots are defined over Fp.

i 0 1 2 3 4 5 BFV

Number of slots 256 512 1024 2048 4096 8192 16384
Noise PT × CT (bits) 6.5 7.4 9.2 13.1 21.3 37.3 68.9
Noise CT × CT (bits) 10.3 11.3 13.1 17.2 25.2 41.3 73.0

Quadratic extensions. We fix m = 7 ·3 ·211 and t(x) = xk−b with k = 7 ·2i+5

and b = 22
i

for 0 ≤ i ≤ 5. The slots are defined over Fp2 .

i 0 1 2 3 4 5 BFV

Number of slots 96 192 384 768 1536 3072 6144
Noise PT × CT (bits) 6.3 7.3 9.1 12.9 20.9 37.0 69.2
Noise CT × CT (bits) 10.2 11.1 13.0 16.9 24.7 41.0 73.0

Cubic extensions. We fix m = 9 · 212 and t(x) = xk − b with k = 3 · 2i+6 and

b = 22
i

for 0 ≤ i ≤ 5. The slots are defined over Fp3 .

i 0 1 2 3 4 5 BFV

Number of slots 64 128 256 512 1024 2048 4096
Noise PT × CT (bits) 6.2 6.9 9.0 12.9 21.1 36.6 68.8
Noise CT × CT (bits) 10.1 10.8 12.9 16.9 24.8 40.9 73.0

A.4 128-bit prime p = Φ6(236
8) = 23616 − 2368 + 1

We fix m = 3 · 214 and t(x) = xk − b with k = 2i+10 and b = 2362
i

for 0 ≤ i ≤ 3.
The slots are defined over Fp.

i 0 1 2 3 BFV

Number of slots 1024 2048 4096 8192 16384
Noise PT × CT (bits) 12.9 21.0 36.8 68.2 131.2
Noise CT × CT (bits) 18.3 25.2 40.9 72.5 135.6

	Fully Homomorphic Encryption for Cyclotomic Prime Moduli

