
Fully Secure Searchable Encryption from

PRFs, Pairings, and Lattices

Hirotomo Shinoki∗, Hisayoshi Sato, and Masayuki Yoshino

Hitachi, Ltd., Japan

November 5, 2024

Abstract

Searchable encryption is a cryptographic primitive that allows us to perform searches
on encrypted data. Searchable encryption schemes require that ciphertexts do not leak
information about keywords. However, most of the existing schemes do not achieve the
security notion that trapdoors do not leak information. Shen et al. (TCC 2009) proposed
a security notion called full security, which includes both ciphertext privacy and trapdoor
privacy, but there are few fully secure constructions. Full security is defined for the secret
key settings since it is known that public key schemes cannot achieve the trapdoor privacy
in principle.

In this paper, we construct a query-bounded fully secure scheme from pseudorandom
functions. In addition, we propose three types of efficient (unbounded) fully secure schemes.
One of them is based on bilinear groups, and the others are besed on lattices. We then
analyze the existing constructions. First, we simplify the Cheng et al. scheme (Information
Sciences 2023) and prove its security. This scheme had not been proved to be secure. Second,
we show that the Li-Boyen pairing-based scheme (IACR CiC 2024) does not achieve the
trapdoor privacy, not as claimed.

1 Introduction

Searchable encryption is a cryptosystem that allows keyword search on encrypted data. There
are two types of searchable encryption: Searchable Symmetric Encryption (SSE) [33] and Public
key Encryption with Keyword Search (PEKS) [7]. The secret key is used for encryption in SSE,
while the public key is used in PEKS. To search for a keyword w, one generates a trapdoor Tw

using the secret key. Then, by running the test algorithm, anyone can check whether the given
ciphertext is associated with w.

Searchable encryption requires that ciphertexts leak no information on the keywords. How-
ever, most of the existing schemes do not satisfy the security notion that trapdoors leak no
information. With respect to the public key setting, it is known that PEKS cannot achieve
trapdoor privacy in principle. In fact, Byun et al. [10] showed that PEKS is vulnerable to the
Keyword Guessing Attack (KGA) and the associated keyword is leaked from the trapdoor when
the keyword space is small. In KGA, the attacker tries to find which keyword corresponds to the
given trapdoor. The attacker can choose a keyword, encrypt it, and check whether the chosen
keyword corresponds to the trapdoor by running the test algorithm. If the number of candidate
keywords is small, the attacker can easily find the correct keyword. SSE can achieve the trapdoor
privacy, but many SSE schemes use deterministic trapdoor generation algorithms. In these cases,
anyone can know whether the given two trapdoors are associated with the same keyword.

In 2009, Shen et al. [32] proposed the security notion called predicate privacy for Predicate
Encryption (PE) in the secret key setting. Predicate-private PE for equality is equivalent to

∗hirotomo.shinoki.sw@hitachi.com

1

trapdoor-private SSE. They proposed an inner product predicate encryption with selective pred-
icate privacy using the composite order bilinear groups. They also formulated the notion of full
security, which implies both ciphertext privacy and trapdoor privacy. These security notions can
be generalized to Functional Encryption (FE), and there has been a lot of research on function-
private FE schemes [2,3,4,6,9,13,20,22,34]. However, these schemes have different functionalities
from SSE or have complex structure to support rich functionalities. Until recently, there has been
no research on the construction of simple schemes that support the equality predicate.

In 2024, Li and Boyen [21] proposed two efficient trapdoor-private SSE schemes. These
schemes are based on pairings and lattices respectively. They also proposed a generic construction
of Public key Authenticated Encryption with Keyword Search (PAEKS) from trapdoor-private
SSE and Non-Interactive Key Exchange (NIKE). PAEKS is a variant primitive of PEKS, which
was introduced by Huang and Li [19] in 2017 to prevent KGA. As mentioned above, PEKS is
vulnerable to KGA in principle. In PAEKS, the data sender has its own secret key to authenticate
the ciphertext. Since the test algorithm works correctly only if the ciphertext is authenticated,
PAEKS has the potential to prevent KGA. Many PAEKS schemes have been proposed [11, 12,
16, 23, 28, 29, 30], but most PAEKS schemes achieve only limited trapdoor privacy. Besides the
Li-Boyen constructions, there are two PAEKS with (unlimited) trapdoor privacy [11,12]. These
schemes imply trapdoor-private SSE.

1.1 Our Contributions

In this paper, we propose four types of fully secure SSE.
The first construction uses a pseudorandom function. This construction achieves the bounded

version of full security. In the bounded full security setting, the upper bound of the number of
queries must be determined before the key generation phase. Although this setting is a weaker
variant, the security can be proved without any additional assumption. The other schemes we
propose achieve (unbounded) full security by introducing additional assumptions.

The second construction uses a pseudorandom function and bilinear groups. This construc-
tion is based on the Uniform Matrix Decisional Diffie-Hellman assumption, which we write as
Uk-MDDH. This assumption is parameterized by an integer k ≥ 1. Increasing k makes the as-
sumption weaker, but makes the scheme less efficient. Note that the Uk-MDDH assumption is
weaker than the k-Lin assumption.

The third construction uses a pseudorandom function and lattices. This construction is based
on the (Ring) Learning with Errors assumption. In addition, it is quite simple compared to the
existing schemes. In fact, it does not involve complicated lattice algorithms such as the preimage
sampling.

The forth construction is also based on a pseudorandom function and lattices. By introducing
the NTRU assumption, this scheme is more efficient than the third construction.

The comparison of SSE with trapdoor privacy is summarized in Table 1. CM22 and CQFM23
are PAEKS with trapdoor privacy. It has been claimed that the security of CQFM23 follows from
the Computational Oracle Diffie-Hellman (CODH) assumption in [12], but Li and Boyen [21]
pointed out that there is an error in the security analysis. It was also shown that CODH
is insufficient and that at least the Decisional Bilinear Diffie-Hellman (DBDH) assumption is
required. Thus, no security proof has been given for CQFM23. Note that it seems difficult to
prove the security directly from the DBDH assumption. This is because the bilinear map only
appears in the search algorithm and does not appear in the security analysis. In this paper, we
simplify CQFM23 and show that its security is based on the Decisional Linear (DLin) assumption.
This scheme can be seen as a variant of our U2-MDDH-based construction and can be extended
to k-Lin-based construction. We also show that CQFM23 can be generalized to the asymmetric
bilinear group setting. In this case, the full security is based on the bilateral k-Lin (bil-k-Lin)
assumption. We also analyze the existing constructions by Li and Boyen [21]. In particular,
their security proof for the pairing-based scheme (LB24-P) is incorrect, and the trapdoor privacy
can be broken. The Li-Boyen lattice-based construction framework can be used to construct
LWE-based scheme, RLWE-based scheme, and NTRU-based scheme. We write them as LB24-L,
LB24-R, and LB24-N respectively.

2

Ours1 is the first SSE from symmetric primitives that achieves (at least) bounded trapdoor
privacy. Ours2 is more efficient than the existing pairing-based constructions when k = 1.
For lattice-based constructions, Ours3 is much more efficient compared to CM22 and LB24-L.
Similarly, Ours3 (Ring) and Ours4 are more efficient than LB24-R and LB24-N respectively. The
existing lattice-based constructions use the lattice trapdoor generation algorithm [5,14,26] or the
preimage sampling algorithm [18]. On the other hand, our lattice-based constructions do not use
such complicated algorithms and consist only of simple computations.

Finally, we note that ciphertext privacy and trapdoor privacy have been considered in the
previous research, but full security has not. Full security implies “ciphertext privacy and trapdoor
privacy,” but not vice versa. In this paper, we prove that our constructions achieve full security
instead of proving ciphertext privacy and trapdoor privacy.

Table 1: Comparison of SSE with Trapdoor Privacy

Ciphertext Trapdoor Assumptions Remarks

CM22 [11] Ω(κctn log2 q) Ω(κtdn log2 q) LWE

CQFM23 [12] 4|G| 4|G| PRF, DLin Modified

LB24-P [21] 2|G1|+ |GT | 2|G2| (PRF, DBDH) Broken

LB24-L [21] Ω(κctn log2 q) Ω(κtdn log2 q) PRF, LWE

LB24-R [21] Ω(N log2 q) Ω(N log2 q) PRF, RLWE

LB24-N [21] ≈ 3
2N log q ≈ 3

2N log q PRF, RLWE, NTRU

Ours1 Qct +Qtd · |F| Qtd +Qct · |F| PRF Q-bounded

Ours2 2k|G1| 2k|G2| PRF, Uk-MDDH

Ours3 κct · 3n log q κtd · 3n log q PRF, LWE

Ours3 (Ring) 3N log q 3N log q PRF, RLWE

Ours4 N log q N log q PRF, NTRU

Gen. CQFM23 2k|G1| 2k|G2| PRF, bil-k-Lin

For a finite set S, |S| denotes the bit size of a random element in S. CQFM23 uses a symmetric bilinear map

from G×G. LB24-P, Ours2, and Generalized CQFM23 use a bilinear map from G1 ×G2 to GT . Qct and Qtd

denote upper bounds of the number of ciphertext queries and trapdoor queries respectively. For simplicity, it is

assumed that Qct and Qtd are large enough in Ours1.

1.2 Paper Organization

In Section 2, we summarize the basic definitions used in this paper. In Section 3, 4, and 5, we
propose the PRF-based bounded construction (Ours1), the pairing-based construction (Ours2),
and the lattice-based construction (Ours3 and Ours4) respectively. In Section 6, we analyze
the Cheng et al. scheme (CQFM23) and show that its security can be reduced to the (bil-
)DLin assumption. In Section 7, we analyze the Li-Boyen schemes and give an attack for the
pairing-based scheme.

2 Preliminaries

The basic notations used in this paper are summarized here. “Probabilistic Polynomial-Time”

is abbreviated to “PPT”. For a finite set S, x
$←− S means sampling x uniformly at random from

S, and Unif(S) denotes the uniform distribution over S. We say that a function f : N → R is
negligible and write f(n) = negl(n) if for any positive integer k there exists an integer nk such
that |f(n)| < n−k for any n > nk. We say that a probability p(n) is overwhelming if 1− p(n) is
negligible. Let Zq denote the quotient ring Z /q Z. Let log x denote log2 x. We use the following

3

notations for matrix concatenation:

[A|B] =
(
A B

)
, [A;C] =

(
A

C

)
.

2.1 Pseudorandom Function (PRF)

Let {Kλ}λ∈N, {Xλ}λ∈N, and {Yλ}λ∈N be families of finite sets. A family of functions F = {Fλ :
Kλ ×Xλ → Yλ}λ∈N is said to be pseudorandom if for any PPT adversary A,

AdvPRFA,F (λ) :=
1

2

∣∣Pr[K $←−Kλ : 1← AFλ(K,·)(1λ)]− Pr[f
$←− Func[Xλ,Yλ] : 1← Af(·)(1λ)]

∣∣
is negligible in λ. Here, Func[A,B] denotes the set of all functions from A to B. In this paper,
we often omit the description of λ and write Fλ(K, x) as F (K, x) or FK(x).

2.2 Bilinear Groups

The bilinear group generator G is a PPT algorithm that outputs G := (p,G1, G2, GT , g1, g2, e)←
G(1λ). Here, p is a prime of Θ(λ) bits, G1, G2, GT are cyclic groups of order p, g1 is a generator
of G1, g2 is a generator of G2, and e : G1 × G2 → GT is a non-degenerate bilinear map. For
matrices A = (ai,j) ∈ Zm×n

p , we write [A]1 := (g
ai,j

1) ∈ Gm×n
1 , [A]2 = (g

ai,j

2) ∈ Gm×n
2 , and

[A]T = (e(g1, g2)
ai,j) ∈ Gm×n

T . Also, for matrices A and B, we write e([A]1, [B]2) := [AB]T .
Note that [AB]T is efficiently computable from ([A]1, [B]2).

Definition 1 (Matrix Diffie-Hellman Assumption). Let ℓ > k and Dℓ,k be a distribution on Zℓ×k
p .

We say that the Dℓ,k-Matrix Decisional Diffie-Hellman (Dℓ,k-MDDH) assumption on Gi (i = 1, 2)
holds if (G, [A]i, [Ar]i) is computationally indistinguishable from (G, [A]i, [u]i) where A← Dℓ,k,

r
$←− Zk

p, and u
$←− Zℓ

p. We just say that the Dℓ,k-MDDH assumption holds if it holds for both
G1 and G2.

We say that the bilateral Dℓ,k-Matrix Decisional Diffie-Hellman (bil-Dℓ,k-MDDH) assumption
holds if (G, [A]1, [Ar]1, [A]2, [Ar]2) is computationally indistinguishable from (G, [A]1, [u]1, [A]2, [u]2).

In this paper, we mainly consider the case that ℓ = k + 1 and Dℓ,k is uniform. We call this
case the Uk-MDDH assumption. It is known that Uk-MDDH is weaker than any Dk+1,k-MDDH.
In particular, the k-Lin assumption implies the Uk-MDDH assumption. We use Uk-MDDH in
the following form.

Lemma 1. For i = 1, 2 and r ∈ Zk
p, let Or

Gi
be an oracle that samples a

$←− Zk
p and outputs

([a]i, [a
⊤r]i). Let OGi

be an oracle that samples a
$←− Zk

p, u
$←− Zp and outputs ([a]i, [u]i). If the

Uk-MDDH assumption on Gi holds, for any PPT algorithm A,

AdvUk-MDDH
i,A (λ) :=

1

2

∣∣Pr[1← AOr
Gi (1λ)]− Pr[1← AOGi (1λ)]

∣∣
is negligible for a randomly chosen secret r

$←− Zk
p.

Proof. Using a Uk-MDDH instance ([A]i, [s]i), the oracles in this lemma can be simulated in the

following way: one samples t
$←− Zk+1

p and outputs ([t⊤A]i, [t
⊤s]i). Since the bit length of p is

Θ(λ), A ∈ Z(k+1)×k
p is rank k with an overwhelming probability. Thus, it simulates Or

Gi
when

s = Ar. Similarly, when s is random, [A|s] ∈ Z(k+1)×(k+1)
p is full-rank with an overwhelming

probability. Thus, it simulates OGi
in this case.

For m ≥ 2, m-instance version of Uk-MDDH is defined by replacing r
$←− Zk

p with r
$←− Zk×m

p

and u
$←− Zp with u

$←− Zm
p in the setting of Lemma 1. In this case, we write the advantage as

AdvUk-MDDHm

i,A (λ). Then, the following tight reduction holds.

4

Lemma 2 ([17]). For any PPT adversary A, there exists a PPT algorithm B such that

AdvUk-MDDHm

i,A (λ) ≤ AdvUk-MDDH
i,B (λ) +

1

2(p− 1)
.

2.3 Lattices

We introduce the assumptions on lattices used in this paper.

Definition 2 (LWE Assumption). For each positive integer λ, let n(λ) be a positive integer,
q(λ) ≥ 3 be an integer, and χ(λ) be an error distribution on Zq.

(Normal) LWE [31] For s ∈ Zn
q , let Os be the oracle that samples a

$←− Zn
q , x ← χ and

outputs (a, a⊤s+ x). Let O$ be the oracle that outputs (a, b)
$←− Zn

q ×Zq. We say that the
(n, q, χ)-LWE assumption holds if for any PPT algorithm A,

Adv
LWE(n,q,χ)

A (λ) :=
1

2

∣∣Pr[1← AOs(1λ)]− Pr[1← AO$(1λ)]
∣∣

is negligible for a randomly chosen secret s
$←− Zn

q . If A makes at most m queries, we

write the advantage as Adv
LWEn,m,q,χ

A (λ). We use similar notations for the LWE-variant
assumptions and the NTRU assumption defined below.

Non-uniform LWE [8] Let η be a distribution on Zn
q . For s ∈ Zn

q , let Oη
s be the oracle that

samples a ← η, x ← χ and outputs (a, a⊤s + x). Let Oη
$ be the oracle that outputs

(a, b)← η×Unif(Zq). We say that the (n, q, χ, η)-NLWE assumption holds if for any PPT
algorithm A,

Adv
NLWE(n,q,χ,η)

A (λ) :=
1

2

∣∣Pr[1← AOη
s (1λ)]− Pr[1← AOη

$ (1λ)]
∣∣

is negligible for a randomly chosen secret s
$←− Zn

q .

Boneh et al. [8] proved that the (k, q, χ, η)-NLWE problem is as hard as the (n, q, χ)-LWE
problem if η satisfies the property called coset sampleability.

Definition 3 (Coset Sampleability [8]). A distribution η on Zk
q is called n-coset sampleable if

there exist two PPT algorithms MatrixGen and SamplePre such that:

• MatrixGen(1λ) outputs M ∈ Zn×k
q and auxiliary data T .

• SamplePre(z ∈ Zn
q ,M, T) outputs y ∈ Zk

q such that My = z. In addition, if z is sampled
uniformly at random, the distribution of y is η.

Lemma 3 ([8]). If η is n-coset sampleable, the (k, q, χ, η)-NLWE problem is at least as hard as
the (n, q, χ)-LWE problem. Namely, for any PPT adversary A, there exists a PPT algorithm B
such that

Adv
NLWEk,m,q,χ,η

A (λ) ≤ Adv
LWEn,m,q,χ

B (λ).

Next, we review the notion of Ring-LWE (RLWE) assumption.

Definition 4 (RLWE Assumption). Let N(λ) be a power of 2, q(λ) be a positive integer, and
Rq := Zq[X]/(XN + 1). Let χ(λ) be an error distribution on Rq. For s ∈ Rq, let Os be the

oracle that samples a
$←− Rq, x← χ and outputs (a, as+ x). Let O$ be the oracle that outputs

(a, b)
$←− R2

q. We say that the (N, q, χ)-RLWE assumption holds if for any PPT algorithm A,

Adv
RLWE(N,q,χ)

A (λ) :=
1

2

∣∣Pr[1← AOs(1λ)]− Pr[1← AO$(1λ)]
∣∣

is negligible for a randomly chosen secret s
$←− Rq.

5

Finally, we introduce the NTRU assumption.

Definition 5 (NTRU assumption). LetN(λ) and q(λ) be positive integers, andRq := Zq[X]/(XN+
1). Let χ(λ) be a distribution on Rq and χ× be the conditional distribution of χ on R×

q , where
R×

q is the multiplicative group of Rq. For f ∈ R×
q , let Of be the oracle that samples g ← χ

and outputs f−1g. Let O$ be the oracle that outputs h
$←− Rq. We say that the (N, q, χ)-NTRU

assumption holds if for any PPT algorithm A,

Adv
NTRU(N,q,χ)

A (λ) :=
1

2

∣∣Pr[1← AOf (1λ)]− Pr[1← AO$(1λ)]
∣∣

is negligible for f ← χ×.

2.4 Searchable Symmetric Encryption

The following definition of Searchable Symmetric Encryption (SSE) is a special case of the
symmetric predicate-only encryption proposed by Shen et al [32]. It is called as Symmetric-Key
Equality-Predicate Encryption (EPE) in [21].

• KeyGen(1λ): Given a security parameter λ, it outputs a public parameter pp and a secret
key K.

• Enc(pp,K, w): Given a public parameter pp, a secret key K, and a keyword w, it outputs a
ciphertext C.

• Trapdoor(pp,K, w): Given a public parameter pp, a secret key K, and a keyword w, it
outputs a trapdoor T .

• Test(pp, T, C): Given a public parameter pp, a trapdoor T , and a ciphertext C, it outputs
a bit b ∈ {0, 1}.

For simplicity, we often omit the description of pp from the input of algorithms.
We say that the SSE scheme is correct if Test(T,C) almost always outputs 1 when T and

C have been generated from the same keyword. We say that the SSE scheme is consistent if
Test(T,C) almost always outputs 0 when T and C have been generated from different keywords.
Our formulations below are based on the definitions for PEKS [1].

Definition 6 (Correctness). We say that an SSE scheme is correct if the minimum value of

Pr[(pp,K)← KeyGen(1λ);C ← Enc(K, w);T ← Trapdoor(K, w) : Test(T,C) = 1]

with respect to w is overwhelming in λ.

Definition 7 (Consistency). We say that an SSE scheme is (computationally) consistent if for
any PPT algorithm A,

Pr[(pp,K)← KeyGen(1λ); (w,w′)← A(1λ, pp);C ← Enc(K, w);

T ← Trapdoor(K, w′) : Test(T,C) = 0 ∨ w = w′]

is overwhelming in λ.

We introduce the notion of full security for SSE. As weaker properties, the definitions of
ciphertext privacy and trapdoor privacy are given in Appendix B.

Definition 8 (Full security [32]). We say that an SSE scheme Σ is fully secure if for any PPT
algorithm A, the advantage

AdvFullA,Σ(λ) :=

∣∣∣∣Pr[(pp,K)← KeyGen(1λ); b
$←− {0, 1};

b′ ←AOb
ct(K,·,·),O

b
td(K,·,·)(1λ, pp) : b = b′]− 1

2

∣∣∣∣
is negligible in λ. Here, Ob

ct(K, ·, ·) outputs C ← Enc(K, wb) given (w0, w1) as input. Ob
td(K, ·, ·)

outputs T ← Trapdoor(K, wb) given (w0, w1) as input. The restriction is that for any input
(x0, x1) to Ob

ct and any input (y0, y1) to Ob
td, (x0, x1) = (y0, y1) or “x0 ̸= y0 ∧ x1 ̸= y1” holds.

6

Let Qct(λ) (resp. Qtd(λ)) be an upper bound polynomial of the number of ciphertext (resp.
trapdoor) queries. In the “bounded version” of full security, Qtd and Qct are determined before
KeyGen phase. We write KeyGen(1λ, Qtd, Qct) instead of KeyGen(1λ) when considering bounded
full security. We write the advantage of the bounded full security game as AdvBFullA,Σ (λ).

3 Bounded fully secure SSE from PRF

In this section, we propose an SSE construction from PRF, which we write as SSE1. In addition,
we show that SSE1 satisfies correctness, consistency, and bounded full security.

3.1 Construction

Let F be a finite field of order q(λ) = 2ω(log λ). LetW denote the keyword space. The construction
of SSE1 is as follows:

• KeyGen(1λ, Qtd, Qct):

1. Sets d1 ≥ Qtd and d2 ≥ Qct.

2. Chooses a pseudorandom function F : K ×W → Fd1×d2 .

3. Chooses a distribution ηi on Fdi for i = 1, 2. For each ηi, it is required that di indepen-
dent samples from ηi become linearly independent with an overwhelming probability.

4. Samples K
$←− K.

5. Outputs the public parameter F, η1, η2 and the secret key K.

• Enc(K, w): Samples x← η2 and outputs (c1, c2) := (x, FK(w)x).

• Trapdoor(K, w): Samples y ← η1 and outputs (t1, t2) := (y, FK(w)
⊤y).

• Test((t1, t2), (c1, c2)): Outputs 1 if c⊤1 t2 = c⊤2 t1, otherwise outputs 0.

ηi = Unif(Fdi) satisfies the above condition since q = 2ω(log λ). Instead, different dis-
tributions may be used for more efficient constructions. For example, when q is prime and
ηi = Unif({0, 1}di), the probability that di samples are linearly independent is 1−O(1/p)−2−Ω(di)

[25, 27]. By setting di = ω(log λ), this example satisfies the condition.

3.2 Properties

We show that SSE1 satisfies correctness, consistency, and bounded full security.
Correctness easily follows from the definition. Consistency follows from the pseudorandom-

ness of F .

Theorem 1. SSE1 is consistent provided that F is pseudorandom.

Proof. Suppose that the consistency adversary outputs (w,w′) where w ̸= w′. For (c1, c2) ←
Enc(K, w) and (t1, t2)← Trapdoor(K, w′),

c⊤1 t2 − c⊤2 t1 = x⊤(FK(w
′)− FK(w))

⊤y

holds. By the pseudorandomness of F , it is sufficient to show that

Pr
[
x← η2, y ← η1;M

$←− Fd1×d2 : x⊤M⊤y = 0
]

is negligible. Since x, y ̸= 0 with an overwhelming probability, the probability that x⊤M⊤y = 0
is negligible.

Bounded full security also follows from the pseudorandomness of F . We prove the following
theorem in the next subsection.

Theorem 2. SSE1 is bounded fully secure provided that F is pseudorandom. Namely, for any
PPT adversary A that makes a bounded number of queries, there exists a PPT algorithm B such
that

AdvBFullA,SSE1(λ) ≤ 2AdvPRFB,F (λ) + negl(λ).

7

3.3 Proof of Theorem 2

Let Ob
K denote the pair of the oracles (Ob

ct(K, ·, ·),Ob
td(K, ·, ·)). Consider the following pair of

stateful oracles OM = (OM
ct (·, ·),OM

td(·, ·)).

1. List = ∅ at the beginning.

2. OM
ct (w0, w1) samples x ← η2. If ((w0, w1),M) ∈ List for some M ∈ Fd1×d2 , it returns

(x,Mx). Otherwise, it samples M
$←− Fd1×d2 and returns (x,Mx). Then, ((w0, w1),M) is

appended to List.

3. OM
td(w0, w1) samples y ← η1. If ((w0, w1),M) ∈ List for some M ∈ Fd1×d2 , it returns

(y,M⊤y). Otherwise, it samples M
$←− Fd1×d2 and returns (y,M⊤y). Then, ((w0, w1),M)

is appended to List.

We prove that any PPT adversary cannot distinguish O0
K (or equivalently O1

K) with OM with a
non-negligible advantage provided that F is pseudorandom.

Now, we define O0 by replacing the pseudorandom function in O0
K with the randomly chosen

function. Let FList = ∅ at the beginning. When the oracles compute FK(w) for the first time,

it chooses M
$←− Fd1×d2 and appends (w,M) to FList. After that, the oracles use M instead of

FK(w). Then, for any PPT adversary A, there exists a PPT algorithm B such that∣∣Pr[1← AO0
K(1λ)]− Pr[1← AO0

(1λ)]
∣∣ ≤ 2AdvPRFB,F (λ).

Here, the description of pp is omitted from the input.
Next, we define the intermediate oracles between O0 and OM. O0,i (i = 0, 1, . . . , Q) sets

List = ∅ and FList = ∅ at the beginning. Then, O0,i
ct (·, ·) behaves as follows:

1. It samples x← η2.

2. If ((w0, w1),M) ∈ List for some M ∈ Fd1×d2 , it returns (x,Mx).

3. If |List| < i, it samples M
$←− Fd1×d2 and returns (x,Mx). Then, ((w0, w1),M) is appended

to List.

4. If (w0,M) ∈ FList for some M ∈ Fd1×d2 , it returns (x,Mx).

5. Otherwise, it samples M
$←− Fd1×d2 and returns (x,Mx). Then, (w0,M) is appended to

FList.

O0,i
td (·, ·) are defined in the same way. They sample y ← η1 and return (y,M⊤y). We have
O0 = O0,0 and OM = O0,Q.

We prove that O0,i and O0,i+1 are computationally indistinguishable. Regarding O0,i, let
Qi+1 denote the query in which the first element is appended to FList. In the case of O0,i+1,
this corresponds to the query in which the (i+1)-th element is appended to List. The difference
between these oracles is the behaviour when receiving Qi+1. Let (w0,i+1, w1,i+1) be the pair of
keywords corresponding to Qi+1.

Let E denote the event that (w0,i+1, w1,i+1) has not been queried both to the ciphertext
oracle and the trapdoor oracle throughout the game. In the case of ¬E, queries of the form
(w0,i+1, ·) except (w0,i+1, w1,i+1) are not allowed. Thus, seen from the outside, O0,i and O0,i+1

behave in the same way. It follows that for any PPT adversary A,

Pr[1← AO0,i

(1λ) ∧ ¬E] = Pr[1← AO0,i+1

(1λ) ∧ ¬E].

E can be divided into two cases: E1 and E2. E1 denotes the case that (w0,i+1, w1,i+1) has
been queried only to the ciphertext oracle. E2 denotes the case that (w0,i+1, w1,i+1) has been
queried only to the trapdoor oracle.

By symmetry, we consider the case of E1. Then, trapdoor queries of the form (w0,i+1, ·) are
not allowed. Let O0,i+1/3 denote the oracle constructed by modifying O0,i in the following way:

For Qi+1 or ciphertext queries of the form input = (w0,i+1, ·) after Qi+1,

8

1. If (input,M) ∈ List for some M ∈ Fd1×d2 , it returns (x,Mx) where x← η2.

2. Otherwise, it returns (x, u)← η2 ×Unif(Fd1).

In addition, let O0,2/3 be the oracle defined by applying the above modification only to Qi+1.
The responses to the ciphertext queries on (w0,i+1, ·) that are not in List are summarized

in Table 2. Q+
i+1 denotes the next such ciphertext query of Qi+1. List(·) denotes M such that

(·,M) ∈ List, and FList(·) denotes M such that (·,M) ∈ FList. “Random” means that the oracle
returns a sample from η2 ×Unif(Fd1).

Table 2: Responses to ciphertext queries on (w0,i+1, ·) that are not in List

Qi+1 Q+
i+1 After Q+

i+1

Oi uses FList(w0,i+1)
$←− Fd1×d2 uses FList(w0,i+1) uses FList(w0,i+1)

Oi+1/3 random random random

Oi+2/3 random uses FList(w0,i+1)
$←− Fd1×d2 uses FList(w0,i+1)

Oi+1 uses List(input)
$←− Fd1×d2 uses FList(w0,i+1)

$←− Fd1×d2 uses FList(w0,i+1)

In the case of Oi, let x1, x2, . . . , xk (k ≤ Qct) be the set of x sampled in such queries. Since
x1, x2, . . . , xk are linearly independent with an overwhelming probability,

([x1|x2| · · · |xk],FList(w0,i+1) · [x1|x2| · · · |xk])

is statistically close to the distribution ηk2 × Unif(Fd1×k). Since FList(w0,i+1) is independent of
the other view of A, we have

|Pr[1← AO0,i

(1λ) ∧ E1]− Pr[1← AO0,i+1/3

(1λ) ∧ E1]| = negl(λ).

In the same way, we have

|Pr[1← AO0,i+(t−1)/3

(1λ) ∧ E1]− Pr[1← AO0,i+t/3

(1λ) ∧ E1]| = negl(λ)

for each t = 2, 3. Since this property holds also for E2, we have

|Pr[1← AO0,i

(1λ)]− Pr[1← AO0,i+1

(1λ)]| = negl(λ).

Therefore, ∣∣Pr[1← AO0
K(1λ)]− Pr[1← AOM

(1λ)]
∣∣ ≤ 2AdvPRFB,F (λ) + negl(λ)

and this completes the proof.

4 Pairing-based SSE with Full Security

In this section, we propose an SSE construction based on pairings, which we write as SSE2. In
addition, we show that this construction satisfies correctness, consistency, and full security. Full
security follows from the Uk-MDDH assumption.

4.1 Construction

Let G be a bilinear group generation algorithm and k be a positive integer. For simplicity of
description, we assume that the group order p can be regarded as a deterministic function of
the security parameter λ. Let W denote the keyword space and F : K × W → Zk×k

p be a
pseudorandom function. The construction of SSE2 is as follows:

• KeyGen(1λ):

9

1. Runs G := (p,G1, G2, GT , g1, g2, e)← G(1λ).

2. Samples K
$←− K.

3. Outputs the public parameter G and the secret key K.

• Enc(K, w): Samples x
$←− Zk

p and outputs (c1, c2) := ([x]1, [FK(w)x]1).

• Trapdoor(K, w): Samples y
$←− Zk

p and outputs (t1, t2) := ([y]2, [FK(w)
⊤y]2).

• Test((t1, t2), (c1, c2)): Outputs 1 if e(c1, t2) = e(c2, t1), otherwise outputs 0.

k determines the underlying assumption of SSE2. The case of k = 1 is the most efficient.
The underlying assumption U1-MDDH is the strongest, but still it is weaker than the SXDH
assumption.

4.2 Properties

It is easy to see that SSE2 satisfies correctness. In fact, if a ciphertext (c1, c2) and a trapdoor
(t1, t2) are associated with the same keyword w,

e(c1, t2) =
[
x⊤FK(w)

⊤y
]
T
= e(c2, t1).

Consistency follows from the pseudorandomness of F .

Theorem 3. SSE2 is consistent provided that F is pseudorandom.

Proof. Suppose that the consistency adversary outputs (w,w′) where w ̸= w′. For (c1, c2) ←
Enc(K, w) and (t1, t2)← Trapdoor(K, w′),

e(c1, t2)/e(c2, t1) =
[
x⊤(FK(w

′)− FK(w))
⊤y
]
T

holds. By the pseudorandomness of F , it is sufficient to show that

Pr
[
x, y

$←− Zk
p;M

$←− Zk×k
p : x⊤My = 0

]
is negligible. Since x, y ̸= 0 with an overwhelming probability, the probability that x⊤My = 0
is negligible.

Full security follows from the pseudorandomness of F and the Uk-MDDH assumption. We
prove the following theorem in the next subsection.

Theorem 4. SSE2 is fully secure provided that F is pseudorandom and the Uk-MDDH assump-
tion holds. Namely, for any PPT adversary A that makes at most Q queries, there exist PPT
algorithms B1,B2,B3 such that

AdvFullA,SSE2(λ) ≤ 2AdvPRFB1,F (λ) + 6Q
(
AdvUk-MDDH

1,B2
(λ) + AdvUk-MDDH

2,B3
(λ)
)
+ negl(λ).

4.3 Proof of Theorem 4

The proof flow is the same as that of Theorem 2. Let Q be an upper bound of the number of
queries. We define the oracles O0

K, O0,t/3(t = 0, 1, . . . , 3Q) and the events E,E1, E2 in the same
way.

First, there exists a PPT algorithm B1 such that∣∣Pr[1← AO0
K(1λ)]− Pr[1← AO0

(1λ)]
∣∣ ≤ 2AdvPRFB1,F (λ).

Then, we evaluate the computational difference between O0,i and O0,i+1 for i = 0, 1, . . . , Q− 1.
We have

Pr[1← AO0,i

(1λ) ∧ ¬E] = Pr[1← AO0,i+1

(1λ) ∧ ¬E],

10

so we consider the case of E1 by symmetry. By treating FList(w0,i+1) as the k-instance MDDH
secret, it follows that there exists a PPT algorithm B2,1 such that∣∣Pr[1← AO0,i

(1λ) ∧ E1]− Pr[1← AO0,i+1/3

(1λ) ∧ E1]
∣∣ ≤ 2AdvUk-MDDHk

1,B2,1
(λ).

Similarly, there exist PPT algorithms B2,t (t = 2, 3) such that∣∣Pr[1← AO0,i+(t−1)/3

(1λ) ∧ E1]− Pr[1← AO0,i+t/3

(1λ) ∧ E1]
∣∣ ≤ 2AdvUk-MDDHk

1,B2,t
(λ).

Thus, for some PPT algorithm B2,∣∣Pr[1← AO0,i

(1λ) ∧ E1]− Pr[1← AO0,i+1

(1λ) ∧ E1]
∣∣ ≤ 6AdvUk-MDDHk

1,B2
(λ)

holds. By symmetry, there exists a PPT algorithm B3 such that∣∣Pr[1← AO0,i

(1λ) ∧ E2]− Pr[1← AO0,i+1

(1λ) ∧ E2]
∣∣ ≤ 6AdvUk-MDDHk

2,B3
(λ).

By Lemma 2, the inequality in Theorem 4 holds.

5 Lattice-based SSE with Full Security

In this section, we propose SSE constructions with full security based on lattices. First, we
describe an LWE-based construction, which we write as SSE3-L. Then, we show that the RLWE-
based scheme SSE3-R can be constructed in the same way. Finally, we propose an NTRU-based
construction SSE4, which is more efficient than the (R)LWE-based schemes.

5.1 Revisiting Coset Sampleability

For constructing SSE, we use an n-coset sampleable distribution η on Zk
q that outputs short

vectors. Boneh et al. [8] proposed two examples of such distributions.
In the first example, η is the uniform distribution on {0, 1}k where k = n⌈log q⌉. q is restricted

to a power of 2 if q is polynomially bounded. In the second example, η is a discrete Gaussian
distribution with the deviation σ where k = Ω(n log q) and σ = Ω(

√
n log q).

In both of these cases, k ≥ n log q holds. We propose a generalized construction of the
first example. For an integer d(λ) ≥ 2, we define n-coset sampleable distributions ηd with the
dimension k = dn as follows. Let q0 =

⌈
q1/d

⌉
.

• MatrixGen(1λ): It outputs

M =
[
qd−1
0 In|qd−2

0 In| · · · |In
]
∈ Zn×k

q

and auxiliary data T = ∅.
• SamplePre(z ∈ Zn

q ,M, T): It treats z as z ∈ (−q/2, q/2]n and sets yd−1 =
⌊
z/qd−1

0

⌉
,

zd−1 = z − qd−1
0 yd−1. Then, it inductively sets yi =

⌊
zi+1/q

i
0

⌉
and zi = zi+1 − qi0yi for

i = d− 2, . . . , 0. Finally, it outputs [yd−1; · · · ; y0] ∈ [−q0/2, q0/2]k.

Next, we try to apply the non-uniform setting to the RLWE assumption. However, the non-
uniform RLWE assumption does not hold if η outputs sufficiently short vectors. This is because
if (a1, a1s+x1) and (a2, a2s+x2) are non-uniform RLWE instances, a1(a2s+x2)− a2(a1s+x1)
is relatively short.

To construct non-uniform assumptions that are as weak as RLWE, we introduce the Non-
uniform Module-LWE (NMLWE) assumption.

Definition 9. Let k(λ) be a positive integer and η(λ) be a distribution on Rk
q . Let χ(λ) be

an error distribution on Rq. For s ∈ Rk
q , let Oη

s be the oracle that samples a ← η, x ← χ and

11

outputs (a, a⊤s+ x). Let Oη
$ be the oracle that outputs (a, b)← η×Unif(Rq). We say that the

(N, q, k, χ, η)-NMLWE assumption holds if for any PPT algorithm A,

Adv
NMLWE(N,q,k,χ,η)

A (λ) :=
1

2

∣∣Pr[1← AOη
s (1λ)]− Pr[1← AOη

$ (1λ)]
∣∣

is negligible for a randomly chosen secret s
$←− Rq.

As in the case of NLWE, the NMLWE problem is as hard as the standard MLWE problem
when η achieves some properties. For simplicity of description, we only deal with the problems
that are as hard as RLWE. We define Rq-coset sampleability as follows.

Definition 10. A distribution η on Rk
q is called Rq-coset sampleable if there exist two PPT

algorithms MatrixGen and SamplePre such that:

• MatrixGen(1λ) outputs v ∈ Rk
q and auxiliary data T .

• SamplePre(z ∈ Rq, v, T) outputs y ∈ Rk
q such that v⊤y = z. In addition, if z is sampled

uniformly at random, the distribution of y is η.

In a similar way to the case of n-coset sampleability, for an integer k(λ) ≥ 2, we can construct
Rq-sampleable distributions ηRk . Let q0 =

⌈
q1/k

⌉
.

• MatrixGen(1λ): It outputs

v = (qk−1
0 , qk−2

0 , . . . , 1)⊤ ∈ Rk
q

and auxiliary data T = ∅.
• SamplePre(z ∈ Rq, v, T): It treats coefficients of z as elements in (−q/2, q/2], and sets
yk−1 =

⌊
z/qk−1

0

⌉
, zk−1 = z − qk−1

0 yk−1. Then, it inductively defines yi =
⌊
zi+1/q

i
0

⌉
and

zi = zi+1 − qi0yi for i = k − 2, . . . , 0. Finally, it outputs (yk−1, . . . , y0)
⊤ ∈ Rk

q where each
coefficient is in [−q0/2, q0/2].

For Rq-coset sampleable distributions, the similar reduction to Lemma 3 holds. The following
lemma can be proved in the same way as Lemma 3.

Lemma 4. If η is Rq-coset sampleable, the (N, q, k, χ, η)-NMLWE problem is at least as hard as
the (N, q, χ)-RLWE problem. Namely, for any PPT adversary A, there exists a PPT algorithm
B such that

Adv
NMLWEN,m,q,k,χ,η

A (λ) ≤ Adv
RLWEN,m,q,χ

B (λ).

Proof. Let A be any PPT solver of NMLWE. We construct an RLWE solver B using A. First,

B runs (v, T) ← MatrixGen(1λ) and samples r
$←− Rk

q . Suppose that B has received an RLWE

instance (a, b) ∈ R2
q. B runs a′ ← SamplePre(a, v, T) and sets b′ = b + a′⊤r. Finally, B sends

(a′, b′) to A as an NMLWE instance.
If b = as+ x where s is the secret and x← χ,

b′ = (a′⊤v)s+ a′⊤r + x = a′⊤(sv + r) + x.

Note that sv + r is fixed for all instances. If (a, b) is uniformly random, (a′, b) is distributed as
η ×Unif(Rq). Thus, (a

′, b′) is a proper NMLWE instance.

5.2 LWE-based Construction

Let m(λ), q(λ), κtd(λ), κct(λ) be positive integers such that κtdκct = ω(log λ). Let χ(λ) be an
error distribution on Zq and η(λ) be a distribution that outputs short vectors. Let W denote
the keyword space and F : K ×W → Zm×m

q be a pseudorandom function. The construction of
SSE3-L is as follows:

• KeyGen(1λ):

12

1. Samples K
$←− K.

2. Outputs the secret key K.

• Enc(K, w):

1. Samples cj ← η and xj ← χm for j = 1, . . . , κct.

2. Computes dj = FK(w)cj + xj for each j.

3. Outputs {cj , dj}κct
j=1.

• Trapdoor(K, w):

1. Samples ti ← η and yi ← χm for i = 1, . . . , κtd.

2. Computes ui = FK(w)
⊤ti + yi for each i.

3. Outputs {ti, ui}κtd
i=1.

• Test({ti, ui}κtd
i=1, {cj , dj}

κct
j=1):

1. Computes αi,j = c⊤j ui − d⊤j ti ∈ Zq for each (i, j) ∈ [1, κtd]× [1, κct].

2. Treats αi,j as an integer in (−q/2, q/2]. Outputs 1 if −⌊q/4⌋ < αi,j < ⌊q/4⌋ for every
(i, j), otherwise outputs 0.

5.3 Properties

First, we consider correctness of SSE3-L. Suppose that {ti, ui}κtd
i=1 and {cj , dj}κct

j=1 are generated

from the same keyword. Then, for any (i, j), |αi,j | = |c⊤j yi−x⊤
j ti| holds. This value is relatively

small, so this scheme can achieve correctness in appropriate parameter settings.
For example, consider the case that η = η2 and m = 2n. In order that the worst-case to

average-case reduction works, let χ be the discrete Gaussian with the deviation σ = Θ(
√
n).

Correctness holds if
q =
√
2nq0σ · ω(

√
log n).

Thus, when q = ω(n2 log n), our scheme is correct. As another example, when η = η⌈log q⌉,
smaller q = ω(n log n) can be used. However, since m is large in this example, η2 seems to be
more attractive in terms of efficiency.

Consistency follows from the pseudorandomness of F and the NLWE assumption.

Theorem 5. SSE3-L is consistent provided that F is pseudorandom and the (m, q, χ, η)-NLWE
assumption holds.

Proof. By the pseudorandomness of F and the (m, q, χ, η)-NLWE assumption, it is sufficient to
show that

Pr[cj ← η, dj
$←− Zm

q for j = 1, . . . , κct;

ti ← η, ui
$←− Zm

q for i = 1, . . . , κtd :

1← Test({ti, ui}κtd
i=1, {cj , dj}

κct
j=1)]

is negligible. Let zi,j ← χ for each (i, j) ∈ [1, κtd] × [1, κct]. Then, by the (m, q, χ, η)-NLWE
assumption and the hybrid argument, {c⊤j ui + zi,j}i,j is computationally indistinguishable from

random. Moreover, since dj , ui are independent of cj , ui, zi,j , {c⊤j ui − d⊤j ti + zi,j}i,j is also
computationally indistinguishable from random. Suppose that the output of χ is in [−E,E]
with an overwhelming probability. If Test outputs 1, |c⊤j ui− d⊤j ti + zi,j | < q/4+E holds for any
(i, j). Thus, this probability is bounded above by (1/2+2E/q)κtdκct + negl(λ). When κtd and κct

are large enough that κtdκct = ω(log λ), SSE3-L is consistent.

Full security also follows from the pseudorandomness of F and the NLWE assumption. We
prove the following theorem in the next subsection.

13

Theorem 6. SSE3-L is fully secure provided that F is pseudorandom and the (m, q, χ, η)-NLWE
assumption holds. Namely, for any PPT adversary A that makes at most Q queries, there exist
PPT algorithms B1,B2 such that

AdvFullA,SSE3-L(λ) ≤ 2AdvPRFB1,F (λ) + 12mQ · AdvNLWEm,κQ,q,χ,η

B2
(λ)

where κ := max{κtd, κct}.

5.4 Proof of Theorem 6

The proof flow is the same as that of Theorem 2. Let Q be an upper bound of the number of
queries. We define the oracles O0

K, O0,t/3(t = 0, 1, . . . , 3Q) and the events E,E1, E2 in the same
way.

First, there exists a PPT algorithm B1 such that∣∣Pr[1← AO0
K(1λ)]− Pr[1← AO0

(1λ)]
∣∣ ≤ 2AdvPRFB1,F (λ).

Then, we evaluate the computational difference between O0,i and O0,i+1 for i = 0, 1, . . . , Q− 1.
We have

Pr[1← AO0,i

(1λ) ∧ ¬E] = Pr[1← AO0,i+1

(1λ) ∧ ¬E],

so we consider the case of E1 by symmetry. By treating FList(w0,i+1) as the m-instance NLWE
secret and using the hybrid argument, it follows that there exists a PPT algorithm B2,1 such
that ∣∣Pr[1← AO0,i

(1λ) ∧ E1]− Pr[1← AO0,i+1/3

(1λ) ∧ E1]
∣∣ ≤ 2mAdv

NLWEm,κctQ,q,χ,η

B2,1
(λ).

Similarly, there exist PPT algorithms B2,t (t = 2, 3) such that∣∣Pr[1← AO0,i+(t−1)/3

(1λ) ∧ E1]− Pr[1← AO0,i+t/3

(1λ) ∧ E1]
∣∣ ≤ 2mAdv

NLWEm,κctQ,q,χ,η

B2,t
(λ).

Thus, for some PPT algorithm B2,∣∣Pr[1← AO0,i

(1λ) ∧ E1]− Pr[1← AO0,i+1

(1λ) ∧ E1]
∣∣ ≤ 6mAdv

NLWEm,κctQ,q,χ,η

B2
(λ)

holds. By symmetry, there exists a PPT algorithm B′2 such that∣∣Pr[1← AO0,i

(1λ) ∧ E2]− Pr[1← AO0,i+1

(1λ) ∧ E2]
∣∣ ≤ 6mAdv

NLWEm,κtdQ,q,χ,η

B′
2

(λ).

Therefore, the inequality in Theorem 6 holds.

5.5 RLWE-based Construction

We can construct the RLWE-based variant SSE3-R of SSE3-L. Let k(λ) be a positive integer (e.g.
k = 2). Let χ(λ) be an error distribution on Rq and η(λ) be a distribution on Rk

q that outputs

short vectors. Let W denote the keyword space and F : K ×W → Rk×k
q be a pseudorandom

function. The construction of SSE3-R is as follows:

• KeyGen(1λ):

1. Samples K
$←− K.

2. Outputs the secret key K.

• Enc(K, w):

1. Samples c← η and x← χk.

2. Computes d = FK(w)c+ x.

3. Outputs (c, d).

14

• Trapdoor(K, w):

1. Samples t← η and y ← χk.

2. Computes u = FK(w)
⊤t+ y.

3. Outputs (t, u).

• Test((t, u), (c, d)):

1. Computes α = c⊤u− d⊤t ∈ Rq.

2. Treats the coefficients of α as integers in (−q/2, q/2]. Outputs 1 if they are in
(−⌊q/4⌋, ⌊q/4⌋) for Θ(λ) coefficients in a fixed position, otherwise outputs 0. Note
that N > λ holds for practical RLWE parameters.

Correctness, consistency, and full security can be proved in the same way as SSE3-L.
If (c, d) and (t, u) are generated from the same keyword, c⊤u−d⊤t = c⊤y−x⊤t has relatively

small coefficients. For example, when η = ηR2 and χ is the discrete Gaussian distribution with
the deviation σ, correctness holds if

q =
√
2Nq0σ · ω(

√
logN).

Consistency follows from the pseudorandomness of F and the (N, q, k, χ, η)-NMLWE as-
sumption. The proof is almost the same as that of Theorem 5. By the NMLWE assumption,
c⊤u−d⊤t+z is computationally indistinguishable from random where (c, d), (t, u)← η×Unif(Rq)
and z ← χ.

Full security follows also from the pseudorandomness of F and the (N, q, k, χ, η)-NMLWE
assumption. For any PPT adversary A of SSE3-R that makes at most Q queries, there exist
PPT algorithms B1,B2 such that

AdvFullA,SSE3-R(λ) ≤ 2AdvPRFB1,F (λ) + 12kQ · AdvNMLWEN,Q,q,k,χ,η

B2
(λ).

5.6 NTRU-based Construction

We construct the NTRU-based scheme SSE4. Let χ(λ) be a distribution on Rq that outputs
polnomials with small coefficients. Let W denote the keyword space and F : K×W → R×

q be a
pseudorandom function. The construction of SSE4 is as follows:

• KeyGen(1λ):

1. Samples K
$←− K.

2. Outputs the secret key K.

• Enc(K, w):

1. Samples a← χ.

2. Outputs c = a · FK(w).

• Trapdoor(K, w):

1. Samples b← χ.

2. Outputs t = b · FK(w)
−1.

• Test(t, c):

1. Computes α = c · t ∈ Rq.

2. Treats the coefficients of α as integers in (−q/2, q/2]. Outputs 1 if they are in
(−⌊q/4⌋, ⌊q/4⌋) for Θ(λ) coefficients in a fixed position, otherwise outputs 0.

If c and t are generated from the same keyword, ct = ab has relatively small coefficients since
a, b ← χ. For example, when χ is distributed on {−1, 0, 1}, the negative false does not occur if
we set q > 4N .

15

If c and t are generated from different keywords, (c, t) ∈ Rq × Rq is indistinguishable from
uniform by the NTRU assumption. The RLWE assumption ensures that ct is relatively close
to uniform, as in the case of SSE3-R. A drawback of using the RLWE assumption is that N is
restricted to be a power of 2. One way to use flexible N is sampling g from χ× in Trapdoor. If
|R×

q |/|Rq| is not negligible, t ∈ R×
q is indistinguishable from uniform by the NTRU assumption.

In this case, ct ∈ Rq is indistinguishable from uniform, and consistency follows.
Full security follows from the pseudorandomness of F and the (N, q, χ)-NTRU assumption.

For any PPT adversary A of SSE4 that makes at most Q queries, there exist PPT algorithms
B1,B2 such that

AdvFullA,SSE4(λ) ≤ 2AdvPRFB1,F (λ) + 12Q · AdvNTRUN,Q,q,χ

B2
(λ).

The proof is the same as that of the other constructions, but note that NTRU instances can
be converted to “the ciphertext/trapdoor form” in the proof. Let h be an NTRU instance and

h′ = h ∗ r where r
$←− R×

q . If h = f−1g, h′ = (f−1r)g where f−1r is uniformly random in R×
q . If

h is uniformly random, h′ is also uniformly random.

6 Simplifying and Verifying Cheng et al. Scheme

In this section, we analyze the Cheng et al. PAEKS scheme [12]. This scheme is essentially the
combination of NIKE and SSE, so we focus on the SSE part. It has been unknown whether the
SSE part is secure since Li and Boyen [21] pointed out that the original proof is incomplete. We
simplify and generalize this scheme. Then, we show that full security can be proved from the
bilateral MDDH assumption.

6.1 Simplification of Cheng et al. PAEKS Scheme

First, we describe the algorithms of the Cheng et al. PAEKS [12] scheme. The syntax of PAEKS
is given in Appendix A.

• Setup(1λ):

1. Runs the symmetric bilinear group generation algorithm G = (p,G,GT , g, e)← G(1λ).
2. Chooses hash functions H : {0, 1}∗ → G and Ĥ : G→ {0, 1}ℓ.

3. Samples d
$←− Zp and sets h = gd.

4. Outputs the public parameter pp = (G, h,H, Ĥ).

• KeyGenS(pp): Samples y
$←− Zp and outputs (pkS, skS) = (gy, y).

• KeyGenR(pp): Samples x
$←− Zp and outputs (pkR, skR) = (gx, x).

• Enc(pkR, pkS, skS, w): Samples r1, r2
$←− Zp and outputs the ciphertext (C1, C2, C3, C4)

where

C1 = H(Ĥ(gxy), w, pkR, pkS)
r1 · hyr2 , C2 = gxr1 , C3 = hr2 , C4 = gr1 .

• Trapdoor(pkR, pkS, skR, w): Samples s1, s2
$←− Zp and outputs the trapdoor (T1, T2, T3, T4)

where
T1 = H(Ĥ(gxy), w, pkR, pkS)

s1 · hxs2 , T2 = gys1 , T3 = hs2 , T4 = gs1 .

• Test((T1, T2, T3, T4), (C1, C2, C3, C4)): Outputs 1 if e(C1, T4)·e(C2, T3) = e(T1, C4)·e(T2, C3),
otherwise outputs 0.

In this scheme, H and Ĥ are used to reduce the security to the Computational Oracle Diffie-
Hellman assumption. However, since this reduction is not correct as stated in [21], we replace
this part with a pseudorandom function in order to remove the random oracle. Moreover, it is

16

not necessary to use h since the distribution of (hyr2 , hr2) (resp. (hxs2 , hs2)) is identical to that
of (gyr2 , gr2) (resp. (gxs2 , gs2)).

Now, we propose a simplified version of this scheme, which we write as CSSE. We describe an
SSE scheme since SSE can be easily converted to PAEKS by using NIKE to compute the shared
secret key [21].

Let F : K ×W → Zp be a pseudorandom function. For generality, we use the bilinear map
e : G1 ×G2 → GT where G1 = G2 does not necessarily hold.

• KeyGen(1λ):

1. Runs the bilinear group generation algorithm G = (p,G1, G2, GT , g1, g2, e)← G(1λ).

2. Samples x, y
$←− Zp.

3. Samples K
$←− K.

4. Outputs the public parameter G and the secret key K′ = (K, x, y).

• Enc(K′, w): Samples r1, r2
$←− Zp and outputs a ciphertext (C1, C2, C3, C4) where

C1 = g
FK(w)r1+yr2
1 , C2 = gxr11 , C3 = gr21 , C4 = gr11 .

• Trapdoor(K′, w): Samples s1, s2
$←− Zp and outputs a trapdoor (T1, T2, T3, T4) where

T1 = g
FK(w)s1+xs2
2 , T2 = gys12 , T3 = gs22 , T4 = gs12 .

• Test((T1, T2, T3, T4), (C1, C2, C3, C4)): Outputs 1 if e(C1, T4)·e(C2, T3) = e(C4, T1)·e(C3, T2),
otherwise outputs 0.

Note that instead of setting (x, y) as a part of the secret key, we can set (gx1 , g
y
1 , g

x
2 , g

y
2) as a part

of the public parameter.
Let GK′ :W → Z2×2

p denote the function defined by

GK′(w) :=

(
FK(w) y

x 0

)
.

Using GK′ , ciphertexts and the trapdoors can be written in the similar form to SSE2 based
on the U2-MDDH assumption.

• Ciphertext: ([r]1, [GK′(w)r]1) where r
$←− Z2

p.

• Trapdoor: ([s]2, [GK′(w)⊤s]2) where s
$←− Z2

p.

Compared to U2-MDDH-based SSE2, the ciphertext size and the trapdoor size is the same. The
advantage is the improved computational cost due to the smaller range of F . The disadvantage
is that the security is reduced to a stronger assumption. We describe the details in the next
subsection.

6.2 Security Analysis

Correctness and consistency can be easily proved in the same way as SSE2. We analyze the
security of CSSE. In the (bil-)U2-MDDH assumption, the matrix distribution is Unif(Z3×2

p). In
the (bil-)DLin assumption, the matrix distribution is

A =

a1 0

0 a2

1 1

where a1, a2
$←− Zp .

17

Full security of CSSE is reduced to the bil-MDDH assumption such that the matrix distribution
is

b1 b2

b3 b4

0 1

where b1, b2, b3, b4
$←− Zp,

which we write as V2 in this paper. We show that the (bil-)DLin assumption implies the (bil-)V2-
MDDH assumption using the MDDH reduction method [17]. Let L,R be the matrices defined
as

L =

1 0 l1

0 1 l2

0 0 1

 where l1, l2
$←− Zp, R =

(
1 0

−1 1

)
.

For a bil-DLin instance ([A]1, [z]1, [A]2, [z]2), the distribution of LAR is V2 since

LAR =

a1 l1

−a2 a2 + l2

0 1

 .

By the invertibility of R, ([LAR]1, [LAz]1, [LAR]2, [LAz]2) is a bil-V2-MDDH instance. Thus,
the (bil-)DLin assumption implies the (bil-)V2-MDDH assumption.

We give the security proof in the next subsection.

Theorem 7. The modified Cheng et al. SSE scheme CSSE is fully secure provided that F is
pseudorandom and the bil-V2-MDDH assumption holds.

This scheme can be generalized to the constructions based on the bilateral k-Lin assumption

by setting F : K ×W → Z(k−1)×(k−1)
p , x, y

$←− Zk
p, and

GK′(w) :=

(
FK(w) y

x⊤ 0

)
.

6.3 Proof of Theorem 7

Similarly to Uk-MDDH, the following lemma holds. The proof is the same as that of Lemma 1.

Lemma 5. For r ∈ Z2
p, letOr be an oracle that samples a

$←− Z2
p and outputs ([a]1, [a

⊤r]1, [a]2, [a
⊤r]2).

Let O be an oracle that samples a
$←− Z2

p, u
$←− Zp and outputs ([a]1, [u]1, [a]2, [u]2). If the bil-V2-

MDDH assumption holds, for any PPT algorithm A,

Advbil-V2-MDDH
A (λ) :=

1

2

∣∣Pr[1← AOr

(1λ, [y]1, [y]2)]− Pr[1← AO(1λ, [y]1, [y]2)]
∣∣

is negligible for a randomly chosen secret r = (x, y)⊤
$←− Z2

p.

Proof. Using the bil-V2-MDDH instance ([A]1, [s]1, [A]2, [s]2), the view of A in this lemma can
be simulated. [y]1 and [y]2 are set as the third components of [s]1 and [s]2 respectively. The

oracle simulator samples t
$←− Z3

p and outputs ([t⊤A]1, [t
⊤s]1, [t

⊤A]2, [t
⊤s]2). Since the bit length

of p is Θ(λ) and two rows of A are uniformly random, A ∈ Z3×2
p is rank 2 with an overwhelming

probability. Thus, it simulates Or when s = Ar. When s is random, [A|s] ∈ Z3×3
p is full-rank with

an overwhelming probability since two .rows of [A|s] are uniformly random. Thus, it simulates
O in this case.

18

Let Q be an upper bound of the number of queries. We define the oracles O0
K′ , O0,t/3

x,y (t =
0, 1, . . . , 3Q) and the events E,E1, E2 in the same way as the proof of Theorem 2. Note that the
secret key K′ contains x, y in CSSE, so the oracles depend on x, y.

First, there exists a PPT algorithm B1 such that∣∣Pr[1← AO0
K′ (1λ)]− Pr[1← AO0

x,y (1λ)]
∣∣ ≤ 2AdvPRFB1,F (λ).

In addition, we have

Pr[1← AO0,i
x,y (1λ) ∧ ¬E] = Pr[1← AO0,i+1

x,y (1λ) ∧ ¬E].

In the case of E1, consider treating (FList(w0,i+1), y) as the secret and constructing a bil-

V2-MDDH solver using the oracle distinguisher of O0,i
x,y and O0,i+1/3

x,y . The solver samples

x
$←− Zp. Since the solver knows (x, [y]1, [y]2), it can correctly respond to queries from the

distinguisher. Note that in this case, “random” in Table 2 means that the oracle returns

([(r1, r2)
⊤]1, [(r3, r1x)

⊤]1) where r1, r2, r3
$←− Zp. Thus, it follows that there exists a PPT al-

gorithm B2,1 such that∣∣Pr[1← AO0,i
x,y (1λ) ∧ E1]− Pr[1← AO0,i+1/3

x,y (1λ) ∧ E1]
∣∣ ≤ 2Advbil-V2-MDDH

B2,1
(λ).

Similarly, there exist PPT algorithms B2,t (t = 2, 3) such that∣∣Pr[1← AO0,i+(t−1)/3
x,y (1λ) ∧ E1]− Pr[1← AO0,i+t/3

x,y (1λ) ∧ E1]
∣∣ ≤ 2Advbil-V2-MDDH

B2,t
(λ).

Thus, for some PPT algorithm B2,∣∣Pr[1← AO0,i
x,y (1λ) ∧ E]− Pr[1← AO0,i+1

x,y (1λ) ∧ E]
∣∣ ≤ 12Advbil-V2-MDDH

B2
(λ).

holds. Therefore,
AdvFullA,CSSE(λ) ≤ 2AdvPRFB1,F (λ) + 12QAdvbil-V2-MDDH

B2
(λ)

holds and this completes the proof.

7 Comments on Li-Boyen Schemes

In this section, we show that the Li-Boyen pairing-based SSE [21] is not trapdoor-private. Then,
we give some comments on the Li-Boyen lattice-based SSE.

7.1 Attack on Li-Boyen Pairing-based Scheme

First, we describe the algorithms of the Li-Boyen pairing-based scheme [21]. Let F : K×W → Zp

be a pseudorandom function.

• KeyGen(1λ):

1. Runs G := (p,G1, G2, GT , g1, g2, e)← G(1λ).

2. Samples z
$←− Zp and sets u1 = gz1 , u2 = gz2 .

3. Samples h2
$←− G2.

4. Samples K
$←− K.

5. Outputs the public parameter (G, u1, u2, h2) and the secret key K.

• Enc(K, w): Samples s
$←− Zp and outputs (c1, c2, c3) :=

(
e(g1, h2)

FK(w)·s, us
1, g

s
1

)
.

• Trapdoor(K, w): Samples r
$←− Zp and outputs (t1, t2) :=

(
h
FK(w)
2 ur

2, g
r
2

)
.

• Test((t1, t2), (c1, c2, c3)): Outputs 1 if e(c3, t1) = c1 · e(c2, t2), otherwise outputs 0.

19

They claimed that its ciphertext privacy can be reduced to the DBDH assumption, and
its trapdoor privacy can be reduced to the DDH assumption on G1 (See Appendix B for the
definitions of ciphertext/trapdoor privacy). However, their proof for trapdoor privacy uses an
incorrect DDH definition, and trapdoor privacy can be broken in the following way.

Theorem 8. The Li-Boyen pairing-based SSE does not satisfy trapdoor privacy.

Proof. The adversary chooses arbitrary challenge keywords w∗
0 , w

∗
1 (w∗

0 ̸= w∗
1) and receives a chal-

lenge trapdoor (t∗1, t
∗
2) =

(
h
FK(w

∗
b)

2 ur∗

2 , gr
∗

2

)
where b

$←− {0, 1}. In addition, the adversary receives

a trapdoor (t1, t2) =
(
h
FK(w

∗
0)

2 ur
2, g

r
2

)
of w∗

0 and a ciphertext (c1, c2, c3) =
(
e(g1, h2)

FK(w)·s, us
1, g

s
1

)
of an arbitrary keyword w (w ̸∈ {w∗

0 , w
∗
1}). Then, we have e(c3, t

∗
1)/e(c2, t

∗
2) = e(g1, h2)

FK(w
∗
b)·s

and e(c3, t1)/e(c2, t2) = e(g1, h2)
FK(w

∗
0)·s. By checking whether they are equal, the adversary can

guess whether b = 0 with an overwhelming probability.

In this attack, (u1, g1) can be used instead of (c2, c3). However, we used (c2, c3) to indicate
that keeping (u1, g1) as secret in this scheme does not affect the proof.

7.2 On Li-Boyen Lattice-based Scheme

Li and Boyen have proposed a trapdoor-private SSE framework from GPV sampler [18]. They
gave a concrete instantiation based on RLWE. Note that they set q as prime, but the security
proof uses a kind of regularity lemma for q = 3k [15]. In the case that q is prime, the regularity
lemma by Lyubashevsky et al. [24] can be used (with a little modification in the construction).

Since the algorithms of the LWE-based instantiation and the NTRU-based instantiation are
not concretely described in [21], we give some additional explanations about Table1 here. For the
LWE-based instantiation, one needs to generate multiple pairs of the vectors like our construction
to ensure consistency. We used κct and κtd to indicate that in Table1. For the NTRU-based in-
stantiation, we give the concrete description in Appendix C. It is claimed in [21] that ciphertexts
and trapdoors are in R3

q, but Appendix C shows that they are actually in R2
q.

8 Conclusion

In this paper, we proposed four types of fully secure SSE schemes: the bounded construction from
PRFs, the pairing-based construction, the (R)LWE-based construction, and the NTRU-based
construction. They are more efficient than the existing SSE schemes with trapdoor privacy. We
note that our SSE schemes can be converted to efficient PAEKS schemes with full CI security
and full TI security by using the generic construction [21]. In addition, we gave a security proof
for the Cheng et al. scheme [12], the original proof for which was shown to be incorrect. We
also proved that the Li-Boyen pairing-based scheme [21] does not achieve the trapdoor privacy
property that they claim it does.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi, “Searchable encryption
revisited: Consistency properties, relation to anonymous IBE, and extensions,” CRYPTO
2005, pages 205-222, 2005.

[2] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu, “Multi-input
functional encryption for inner products: Function-hiding realizations and constructions
without pairings,” CRYPTO 2018, pages 597-627, 2018.

[3] Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumarasubra-
manian, Manoj Prabhakaran, and Amit Sahai, “ On the practical security of inner product
functional encryption,” PKC 2015, pages 777-798, 2015.

20

[4] Shweta Agrawal and Shota Yamada, “CP-ABE for circuits (and more) in the symmetric key
setting,” TCC 2020, pages 117-148, 2020.

[5] Joël Alwen and Chris Peikert, “Generating shorter bases for hard random lattices,” Theory
of Computing Systems 48, pages 535-553, 2011.

[6] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk, “Function-hiding inner product en-
cryption,” ASIACRYPT 2015, pages 470-491, 2015.

[7] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano, “Public key
encryption with keyword search,” EUROCRYPT 2004, pages 506-522, 2004.

[8] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan, “Key homomorphic
PRFs and their applications,” CRYPTO 2013, pages 410-428, 2013.

[9] Zvika Brakerski and Gil Segev, “Function-private functional encryption in the private-key
setting,” Journal of Cryptology 31, pages 202-225, 2018.

[10] Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee, “Off-line keyword
guessing attacks on recent keyword search schemes over encrypted data,” SDM 2006, pages
75-83, 2006.

[11] Leixiao Cheng and Fei Meng, “Public key authenticated encryption with keyword search
from LWE,” ESORICS 2022, pages 303-324, 2022.

[12] Leixiao Cheng, Jing Qin, Feng Feng, Fei Meng, “Security-enhanced public-key authenticated
searchable encryption,” Information Sciences 647:119454, 2023.

[13] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay, “Functional encryption for inner
product with full function privacy,” PKC 2016, pages 164-195, 2016.

[14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest, “Efficient identity-based encryption
over NTRU lattices,” ASIACRYPT 2014, pages 22-41, 2014.

[15] Léo Ducas and Daniele Micciancio, “Improved short lattice signatures in the standard
model,” CRYPTO 2014, pages 335-352, 2014.

[16] Keita Emura, “Generic construction of public-key authenticated encryption with keyword
search revisited: stronger security and efficient construction,” APKC 2022, pages 39-49,
2022.

[17] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar, “An algebraic
framework for Diffie–Hellman assumptions,” Journal of Cryptology 30, pages 242-288, 2017.

[18] Craig Gentry, Chris Peikert, Vinod Vaikuntanathan, “Trapdoors for hard lattices and new
cryptographic constructions,” ACM STOC 2008, pages 197-206, 2008.

[19] Qiong Huang and Hongbo Li, “An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks,” Information Sciences 403, pages 1-14, 2017.

[20] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J. Wu,
“Function-hiding inner product encryption is practical,” SCN 2018, pages 544-562, 2018.

[21] Qinyi Li and Xavier Boyen, “Public-key authenticated encryption with keyword search made
easy,” IACR Communications in Cryptology, vol. 1, no. 2, 2024.

[22] Huijia Lin, “Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs,” CRYPTO 2017, pages 599-629, 2017.

[23] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, Yu-Chi Chen, “Public-key
authenticated encryption with keyword search: Cryptanalysis, enhanced security, and
quantum-resistant instantiation,” ASIACCS 2022, pages 423-436, 2022.

21

[24] Vadim Lyubashevsky, Chris Peikert, and Oded Regev, “A toolkit for ring-LWE cryptogra-
phy,” EUROCRYPT 2013, pages 35-54, 2013.

[25] Kenneth Maples, “Singularity of random matrices over finite fields,” arXiv preprint
arXiv:1012.2372, 2010.

[26] Daniele Micciancio and Chris Peikert, “Trapdoors for lattices: Simpler, tighter, faster,
smaller,” EUROCRYPT 2012, pages 700-718, 2012.

[27] Hoi H. Nguyen and Elliot Paquette, “Surjectivity of near-square random matrices,” Com-
binatorics, Probability and Computing 29.2, pages 267-292, 2020.

[28] Mahnaz Noroozi and Ziba Eslami, “Public key authenticated encryption with keyword
search: revisited,” IET Information Security 13(4), pages 336-342, 2019.

[29] Baodong Qin, Yu Chen, Qiong Huang, Ximeng Liu, Dong Zheng, “Public-key authenticated
encryption with keyword search revisited: Security model and constructions,” Information
Sciences 516, pages 515-528, 2020.

[30] Baodong Qin, Hui Cui, Xiaokun Zheng, and Dong Zheng, “Improved security model for
public-key authenticated encryption with keyword search,” ProvSec 2021, pages 19-38, 2021.

[31] Oded Regev, “On lattices, learning with errors, random ear codes, and cryptography,”
Journal of the ACM 56(6), pages 1-40, 2009.

[32] Emily Shen, Elaine Shi, and Brent Waters, “Predicate privacy in encryption systems,” TCC
2009, pages 457-473, 2009.

[33] Dawn Xiaodong Song, David Wagner, and Adrian Perrig, “Practical techniques for searches
on encrypted data,” IEEE S&P 2000, pages 44-55, 2000.

[34] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto, “Efficient functional encryption for
inner-product values with full-hiding security,” ISC 2016, pages 408-425, 2016.

A Public key Authenticated Encryption with Keyword Search
(PAEKS)

We describe the syntax of Public key Authenticated Encryption with Keyword Search (PAEKS).
PAEKS consists of the following six PPT algorithms.

• Setup(1λ): Given a security parameter λ, it outputs a public parameter pp.

• KeyGenS(pp): Given a public parameter pp, it outputs a sender’s public key pkS and a
sender’s secret key skS.

• KeyGenR(pp): Given a public parameter pp, it outputs a receiver’s public key pkR and a
receiver’s secret key skR.

• Enc(pp, pkR, pkS, skS, w): Given a public parameter pp, a receiver’s public key pkR, a sender’s
public key pkS, a sender’s secret key skS, and a keyword w, it outputs a ciphertext C.

• Trapdoor(pp, pkR, pkS, skR, w): Given a public parameter pp, a receiver’s public key pkR, a
sender’s public key pkS, a receiver’s secret key skR, and a keyword w, it outputs a trapdoor
T .

• Test(pp, T, C): Given a public parameter pp, a trapdoor T , and a ciphertext C, it outputs
a bit b ∈ {0, 1}.

In the generic construction of PAEKS by Li and Boyen [21], Enc and Trapdoor compute the
same secret value K using NIKE. Then, ciphertexts and trapdoors are generated by running
SSE.Enc(K, w) and SSE.Trapdoor(K, w) respectively.

22

B Ciphertext/Trapdoor Privacy of SSE

We describe the definitions of ciphertext privacy and trapdoor privacy. Note that full security
implies both of them.

Let Oct(K, ·) be the oracle that outputs C ← Enc(K, w) given a keyword w as input. Let
Otd(K, ·) be the oracle that outputs T ← Trapdoor(K, w) given a keyword w as input.

Definition 11 (Ciphertext Privacy). We say that an SSE scheme is ciphertext-private if for any
PPT algorithm A, the advantage∣∣∣∣Pr[(pp,K)← KeyGen(1λ); (w∗

0 , w
∗
1 , st)← AOct(K,·),Otd(K,·)(find, pp);

b
$←− {0, 1};C∗ ← Enc(K, w∗

b); b
′ ← AOct(K,·),Otd(K,·)(guess, st, C∗) : b = b′]− 1

2

∣∣∣∣
is negligible in λ. The challenge keyword w∗

0 , w
∗
1 cannot be input to Otd(K, ·).

Definition 12 (Trapdoor Privacy). We say that an SSE scheme is trapdoor-private if for any
PPT algorithm A, the advantage∣∣∣∣Pr[(pp,K)← KeyGen(1λ); (w∗

0 , w
∗
1 , st)← AOct(K,·),Otd(K,·)(find, pp);

b
$←− {0, 1};T ∗ ← Trapdoor(K, w∗

b); b
′ ← AOct(K,·),Otd(K,·)(guess, st, T ∗) : b = b′]− 1

2

∣∣∣∣
is negligible in λ. The challenge keyword w∗

0 , w
∗
1 cannot be input to Oct(K, ·).

C Description of Li-Boyen NTRU-based Scheme

We describe the concrete construction of the Li-Boyen NTRU-based scheme. Let DLP.KeyGen
denote the key generation algorithm of Ducas et al. IBE (DLP-IBE) [14] and SampleD denote
the preimage sampler used in DLP-IBE. Let χ(λ) be an error distribution on Rq, σ(λ), β(λ) be
positive real parameters, and F : K × (W × {0, 1})→ {0, 1}ℓ be a pseudorandom function.

• KeyGen(1λ):

1. Samples u
$←− Rq.

2. Samples K
$←− K.

3. Outputs the public parameter u and the secret key K.

• Enc(K, w):

1. Computes rnd0 = FK(w, 0), rnd1 = FK(w, 1).

2. Runs (h,B)← DLP.KeyGen(1λ; rnd0).

3. Runs (h′, B′)← DLP.KeyGen(1λ; rnd1).

4. Samples s, x, y ← χ.

5. Runs (d1, d2)← SampleD(B′, us+ x, σ).
(Then d1 + h′d2 = us+ x holds.)

6. Computes c← hs+ y.

7. Outputs the ciphertext (c, d2) ∈ R2
q.

• Trapdoor(K, w):

1. Computes rnd0 = FK(w, 0), rnd1 = FK(w, 1).

2. Runs (h,B)← DLP.KeyGen(1λ; rnd0).

3. Runs (h′, B′)← DLP.KeyGen(1λ; rnd1).

23

4. Samples s′, x′, y′ ← χ.

5. Runs (u1, u2)← SampleD(B, us′ + x′, σ).
(Then u1 + hu2 = us′ + x′ holds.)

6. Computes t← h′s′ + y′.

7. Outputs the trapdoor (t, u2) ∈ R2
q.

• Test((t, u2), (c, d2)): Outputs 1 if ∥td2 − u2c∥ ≤ β, otherwise outputs 0.

24

	Introduction
	Our Contributions
	Paper Organization

	Preliminaries
	Pseudorandom Function (PRF)
	Bilinear Groups
	Lattices
	Searchable Symmetric Encryption

	Bounded fully secure SSE from PRF
	Construction
	Properties
	Proof of Theorem 2

	Pairing-based SSE with Full Security
	Construction
	Properties
	Proof of Theorem 4

	Lattice-based SSE with Full Security
	Revisiting Coset Sampleability
	LWE-based Construction
	Properties
	Proof of Theorem 6
	RLWE-based Construction
	NTRU-based Construction

	Simplifying and Verifying Cheng et al. Scheme
	Simplification of Cheng et al. PAEKS Scheme
	Security Analysis
	Proof of Theorem 7

	Comments on Li-Boyen Schemes
	Attack on Li-Boyen Pairing-based Scheme
	On Li-Boyen Lattice-based Scheme

	Conclusion
	Public key Authenticated Encryption with Keyword Search (PAEKS)
	Ciphertext/Trapdoor Privacy of SSE
	Description of Li-Boyen NTRU-based Scheme

