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Abstract

Multi-valued validated Byzantine agreement (MVBA), a fundamental primitive of distributed
computing, allows n processes to agree on a valid ℓ-bit value, despite t faulty processes behaving
maliciously. Among hash-based solutions for the asynchronous setting with adaptive faults, the
state-of-the-art HMVBA protocol achieves optimal O(n2) message complexity, (near-)optimal
O(nℓ + n2λ log n) bit complexity, and optimal O(1) time complexity. However, it only toler-
ates up to t < 1

5n adaptive failures. In contrast, the best known optimally resilient protocol,
FIN-MVBA, exchanges O(n3) messages and O(n2ℓ+ n3λ) bits. This highlights a fundamental
question: can a hash-based protocol be designed for the asynchronous setting with adaptive
faults that simultaneously achieves both optimal complexity and optimal resilience?

In this paper, we take a significant step toward answering the question. Namely, we introduce
Reducer, an MVBA protocol that retains HMVBA’s complexity while improving its resilience
to t < 1

4n. Like HMVBA and FIN-MVBA, Reducer relies exclusively on collision-resistant
hash functions. A key innovation in Reducer’s design is its internal use of strong multi-valued
Byzantine agreement (SMBA), a variant of strong consensus we introduce and construct, which
ensures agreement on a correct process’s proposal. To further advance resilience toward the
optimal one-third bound, we then propose Reducer++, an MVBA protocol that tolerates up to
t < ( 13−ϵ)n adaptive failures, for any fixed constant ϵ > 0. Unlike Reducer, Reducer++ does not
rely on SMBA. Instead, it employs a novel approach involving hash functions modeled as ran-
dom oracles to ensure termination. Reducer++ maintains constant time complexity, quadratic
message complexity, and quasi-quadratic bit complexity, with constants dependent on ϵ.

1 Introduction

Multi-valued validated Byzantine agreement (MVBA), first introduced in [14], has become a fun-
damental building block for secure distributed systems, such as fault-tolerant replicated state-
machines. MVBA protocols enable n processes in a message-passing model to agree on an ℓ-bit
value that satisfies a fixed external validity predicate, despite t faulty processes deviating from the
protocol in any arbitrary, possibly coordinated, but computationally bounded manner. Of particu-
lar interest, due to superior robustness to network conditions, is MVBA under asynchrony, where
messages are guaranteed eventual delivery, but no assumptions are made about the timing. The
design of asynchronous MVBA protocols is the subject of this paper.

The seminal FLP impossibility result [31] implies that no deterministic algorithm can solve
asynchronous MVBA. In other words, any asynchronous MVBA protocol must employ random-
ness. Since then, it has become standard practice [29, 28, 51, 42] to construct asynchronous MVBA
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protocols in two parts: an idealized common-coin abstraction, and an otherwise (possibly) deter-
ministic protocol core. The common coin encapsulates the randomness, and upon invocation by
sufficiently many processes provides the same unpredictable and unbiasable random sequence to all
processes. The rest of the protocol is the actual deterministic distributed-computing “core mech-
anism”. We adopt this blueprint as well. The common-coin abstraction can be realized using a
trusted dealer [48]. By relying on threshold pseudorandom functions [15] or dedicated common-coin
protocols [27, 33, 6], the need for a trusted dealer can be eliminated.

For everything other than instantiating the common-coin abstraction, we pursue a hash-based
protocol that is, in particular, setup-free and signature-free. Hash-based protocols rely on relatively
cheap “unstructured” operations like hashes, instead of the relatively expensive “highly-structured”
algebraic operations that underlie, for instance, public-key or threshold cryptography. As a result,
hash-based protocols are plausibly post-quantum secure, and, ceteris paribus, tend to be more
performant. Furthermore, they avoid the complexity, overhead, and trust issues that come with
trusted or private setups.

Finally, [14] has hinted and [29, Sec. 1.2] has shown that the design of good hash-based asyn-
chronous MVBA protocols is easy if security is required only against a static adversary, who de-
termines which processes to corrupt at the beginning of the execution before any randomness of
the protocol’s common coin is sampled. The gold standard, however, is security against adaptive
adversaries, who are at liberty to decide which processes to corrupt during the protocol execution
as randomness is revealed. We thus pursue adaptive security.

Scope & state-of-the-art. In summary, the broad subject of this paper is adaptively-secure, hash-
based, asynchronous MVBA. Within this scope, as is usual, we want to minimize a protocol’s time,
message, and bit complexity, and to maximize its resilience (the number t of faulty processes it can
tolerate relative to the number n of all processes). The best known MVBA protocols in this context
are HMVBA [29] and FIN-MVBA [28] (see Tab. 1). The HMVBA protocol relies solely on collision-
resistant hash functions and achieves optimal O(n2) expected message complexity, (near-)optimal
O(nℓ + n2λ log n) expected bit complexity (where λ denotes the size of a hash value) and optimal
O(1) expected time complexity. A key drawback of HMVBA is its sub-optimal t < n/5 resilience.
FIN-MVBA, on the other hand, tolerates up to t < n/3 faults, while also relying exclusively on
collision-resistant hash functions. However, this comes at a complexity cost. Specifically, FIN-
MVBA exchanges O(n3) messages and O(n2ℓ+ n3λ) bits.

Contributions. It is therefore natural to ask for a protocol that combines the strengths of HMVBA
and FIN-MVBA. To this end, we first present Reducer, an adaptively-secure hash-based asyn-
chronous MVBA protocol that matches the complexity of the HMVBA protocol while improving its
resilience to t < n/4 (see Tab. 1). Like HMVBA and FIN-MVBA, Reducer relies solely on collision-
resistant hash functions. A novel aspect of Reducer’s design is its reliance on strong multi-valued
Byzantine agreement (SMBA), a variant of strong consensus [32], which we introduce and construct
and that ensures that correct processes reach agreement on the proposal of a correct process. In
particular, during “good” iterations—where the common coin produces favorable outputs—Reducer
utilizes the SMBA primitive as a crucial mechanism to guarantee the protocol’s termination. To
achieve Reducer’s optimal complexity, an optimal SMBA algorithm was required. To this end, we
introduce a cryptography-free SMBA algorithm (assuming a common coin) with optimal complexity.
Both SMBA as a primitive and our SMBA algorithm may be of independent interest.

To approach the optimal one-third resilience found in FIN-MVBA, we then propose Reducer++,
a hash-based MVBA protocol with further improved t < (1/3−ϵ)n resilience, for any fixed constant
ϵ > 0 independent of n. Expected time, message, and bit complexity of Reducer++ remain constant,
quadratic, and quasi-quadratic, respectively, with constants depending on ϵ. Reducer++, however,
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Table 1: State-of-the-art adaptively-secure asynchronous MVBA algorithms.

Algorithm Hash-based Messages Bits Time Resilience

CKPS01-MVBA [14] TS ✘ O(n2) O(n2ℓ+ n2λ+ n3) O(1) t < 1
3
n

CKPS01-MVBA/HS [14] H-CR ✔ O(n2) O(n2ℓ+ n3λ) O(1) t < 1
3
n

VABA [4] TS ✘ O(n2) O(n2ℓ+ n2λ) O(1) t < 1
3
n

VABA/HS [4] H-CR ✔ O(n2) O(n2ℓ+ n3λ) O(1) t < 1
3
n

Dumbo-MVBA [42] TS ✘ O(n2) O(nℓ+ n2λ) O(1) t < 1
3
n

Dumbo-MVBA/HS [42] H-CR ✔ O(n2) O(nℓ+ n3λ) O(1) t < 1
3
n

sMVBA [34] TS ✘ O(n2) O(n2ℓ+ n2λ) O(1) t < 1
3
n

sMVBA/HS [34] H-CR ✔ O(n2) O(n2ℓ+ n3λ) O(1) t < 1
3
n

FIN-MVBA [28] H-CR ✔ O(n3) O(n2ℓ+ n3λ) O(1) t < 1
3
n

FIN-MVBA [28] NO ✔ O(n3) O(n2ℓ+ n2λ+ n3 logn) O(1) t < 1
3
n

HMVBA [29] H-CR ✔ O(n2) O(nℓ+ n2λ logn) O(1) t < 1
5
n

OciorMVBArr [20] NO † ✔ O(n2) O(nℓ+ n2 logn) O(1) t < 1
5
n

OciorMVBA [20] NO † ✔ O(n2) O(nℓ logn+ n2 logn) O(logn) t < 1
3
n

OciorMVBAh [20] H-CR † ✔ O(n3) O(nℓ+ n3λ) O(1) t < 1
3
n

FLT24-MVBA [30] H-CR † ✔ O(n2κ) O(nℓ+ n2λ logn+ n2κλ) O(log κ) t < 1
3
n

This work: Reducer H-CR ✔ O(n2) O(nℓ+ n2λ logn) O(1) t < 1
4
n

This work: Reducer++ H-RO ✔ O(n2) O(nℓ+ n2λ logn) O(1) t < ( 1
3
− ϵ)n

Here, ℓ denotes the bit-length of the considered values, while λ represents the length of a hash value or a signature. Notations
“H-CR”, “H-RO”, and “TS” indicate the use of collision-resistant hashes, hashes modeled as a random oracle, and threshold
signatures, respectively, each of length λ; “NO” indicates use of no cryptography (assuming authenticated channels). Notation
“/HS” refers to a hash-based variant in which the threshold signatures of the original protocol are substituted with lists of
hash-based signatures from n− t processes; here, we ignore the fact that some protocols crucially rely on an unforgeable unique
threshold signature to generate a common coin. The κ parameter in the complexity of FLT24-MVBA is a statistical security
parameter. Reducer++’s complexity exhibits a multiplicative constant factor of C2, where C = ⌈ 12

ϵ2
⌉+⌈ 7

ϵ
⌉. As per convention in

the asynchronous-agreement literature, the reported message, bit, and time complexities pertain to the protocol core, assuming
the availability of common coins and consistently omitting their associated costs. Other asynchronous agreement protocols
(including those with a weak common coin) are covered in §7. † Preprints announced shortly after preprint of this work.

necessitates an additional (but standard) assumption: the underlying hash function must be modeled
as a random oracle. This assumption plays a crucial role in ensuring the protocol’s termination.
Theoretical & practical perspective. No sub-cubic hash-based common-coin implementations are
currently known. Therefore, from a theoretical perspective, our results (like [29, 30]) can be seen
as a hash-only reduction from efficient MVBA to efficient common coin while preserving adaptive
security. From a practical perspective, our protocols’ randomness could be derived from natural
shared entropy sources (e.g., proof-of-work blockchains). Importantly, our protocols can (be modi-
fied to) operate only with a weak common coin (which allows a constant probability of disagreement)
so that expensive adversarial manipulation of the randomness source impacting the common-coin
guarantees can only break liveness (and not safety!) of our protocols, and only for the duration of
the manipulation, as discussed in §4. This approach may be sufficient for real-world applications.

Concurrent work. In a preprint announced shortly after the first version of this work, FLT24-
MVBA [30] studies the same problem as we do, and achieves results that are incomparable and
complementary to ours. On the positive side, FLT24-MVBA attains optimal resilience, tolerating
up to one-third faulty processes, which improves upon the resilience of Reducer and Reducer++.
However, our algorithms offer two significant advantages along two other dimensions: (1) Re-
ducer and Reducer++ achieve better complexity, as FLT24-MVBA exchanges O(n2κ) messages,
O(nℓ + n2λ log n + n2λκ) bits, and terminates in O(log κ) time, where κ denotes a statistical se-
curity parameter. Note that κ is a security parameter [37, Sec. 3.1], not a constant (see also the
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detailed discussion in §7.2): for constant κ, any FLT24-MVBA instance stalls indefinitely with
constant probability. This would prohibit the composition of any more than a constant number of
FLT24-MVBA instances and would thus severely limit its applicability, for instance in the standard
and widespread “repeated MVBA” structure, which constructs atomic broadcast or state-machine
replication from MVBA (e.g., in Tendermint [12]). (2) Our protocols satisfy the quality property [4],
which ensures that, with constant probability, the decided value was proposed by a correct process.
In contrast, FLT24-MVBA does not satisfy this property. This, too, for instance, renders FLT24-
MVBA ill-suited for use in “repeated MVBA”, since the absence of the quality property allows the
adversary to indefinitely censor transactions from correct participants. We highlight that FLT24-
MVBA, like other performant MVBA protocols (including ours), is sufficient to efficiently solve the
asynchronous common subset (ACS) problem, although this requires the use of (hash-)signatures.
A detailed discussion of FLT24-MVBA, its techniques, and how they relate to ours is in §7.2.

Roadmap. In §2, we provide a technical overview of our algorithms. We introduce the system model
and formally define the MVBA problem in §3. We outline the building blocks of our algorithms
in §4. In §5, we present the Reducer algorithm and provide an informal proof of its correctness
and complexity. Then, §6 introduces Reducer++, along with a proof sketch of its correctness and
complexity. Finally, §7 concludes the paper with a discussion of related work. The optional appendix
contains all omitted algorithms and proofs.

2 Technical Overview

Given that both Reducer and Reducer++ are inspired by the HMVBA algorithm [29], which achieves
an expected message complexity of O(n2), an expected bit complexity of O(nℓ + n2λ log n) and
terminates in O(1) expected time (see Tab. 1), we start by revisiting HMVBA (§2.1). This review
provides valuable insights into the design principles underlying our algorithms. We then proceed
to outline the key mechanisms of Reducer (§2.2) and Reducer++ (§2.3). Finally, in §2.4, we discuss
why Reducer’s resilience is restricted to t < 1

4n and Reducer++’s to t < (13 − ϵ)n.

2.1 Revisiting HMVBA

At a high level, the HMVBA algorithm follows the “Disseminate-Elect-Agree” paradigm, which we
describe below. Fig. 1 depicts the structure of HMVBA. For simplicity, let n = 5t+ 1.

Dissemination phase. Each process first disseminates its proposal. Specifically, when a cor-
rect process pi proposes a valid value vi, process pi computes n Reed-Solomon (RS) symbols
[m1,m2, ...,mn] of value vi, where vi is treated as a polynomial of degree t. Process pi then utilizes
Merkle-tree-based [44] cryptographic accumulators (see §4) in the following manner:

1. Process pi computes the accumulation value (i.e., the Merkle root) zi for the [m1,m2, ...,mn]
set. We refer to this accumulation value zi as the digest of pi’s proposal vi.

2. For each RS symbol mj , process pi computes the witness (i.e., the Merkle proof of inclusion)
wj proving that mj belongs to the [m1,m2, ...,mn] set.

Subsequently, process pi sends each RS symbol mj along with the digest zi and witness wj via an
init message to process pj . Once a process pj receives a valid RS symbol mj from process pi, i.e.,
an RS symbol corresponding to the received digest zi and the received witness wj , process pj replies
back via an ack message confirming that it has received and stored [mj , zi, wj ]. When process pi
receives n− t = 4t+ 1 ack messages, process pi knows that at least (n− t)− t = 3t+ 1 valid RS
symbols are stored at as many correct processes. Then, process pi broadcasts a done message.1

1In the paper, when a process “broadcasts” a message, it simply unicasts the message to each process.
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Figure 1: Depiction of HMVBA’s structure. The depiction focuses on a good iteration k, where leader(k)
has disseminated its valid proposal v⋆(k) and the corresponding digest z⋆(k). We abridge leader ≜ leader(k),
z⋆ ≜ z⋆(k), v⋆ ≜ v⋆(k).

Once process pi receives n−t = 4t+1 done messages, which implies that at least (n−t)−t = 3t+1
correct processes completed their dissemination, process pi broadcasts a finish message. Finally,
upon receiving n− t = 4t+ 1 finish messages, process pi completes the dissemination phase.
Key takeaways from the dissemination phase. First, if a process pi successfully disseminates its valid
proposal vi, it is guaranteed that at least (n− t)− t = 3t+ 1 correct processes have stored (1) the
digest zi of value vi, and (2) RS symbols of the value vi (one per process). Hence, even if process
pi later gets corrupted, the original value vi can be reconstructed using the material held only by
those 3t+ 1 correct processes.

Second, if a correct process completes the dissemination phase, at least (n − t) − t = 3t + 1
processes have already successfully disseminated their valid proposals (as at most t processes can
be corrupted). Thus, there are 3t + 1 processes whose proposals can be reconstructed, even if
the adversary corrupts (some of) them after dissemination. The HMVBA algorithm leverages this
insight in the subsequent phases.

Election & agreement phases. After the dissemination phase is concluded, processes start
executing HMVBA through iterations. Each iteration utilizes the multi-valued Byzantine agreement
(MBA) primitive [13, 8, 46] ensuring strong unanimity: if all correct processes propose the same
value v, then v is decided. (We formally define the MBA primitive in §4.)

At the beginning of each iteration k, processes go through the election phase: by utilizing an
idealized common coin, processes elect the leader of iteration k, denoted by leader(k). Then, the
agreement phase starts. The goal of this phase is for processes to agree on the leader(k)’s proposal.
Specifically, once the leader is elected, each process pi broadcasts via a stored message the digest
received from leader(k) during the dissemination phase. If no such digest was received, process pi
broadcasts a stored message with ⊥. Once process pi receives n − t = 4t + 1 stored messages,
it executes the following logic:

• If there exists a digest z received in a majority (≥ 2t + 1) of stored messages, process pi
adopts z. If such digest z exists, it is guaranteed that at least (2t + 1) − t = t + 1 correct
processes have valid RS symbols that correspond to z. (Recall that a correct process accepts
an init message with the digest z during the dissemination phase only if the received RS
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symbol and witness match z.)
• Otherwise, process pi adopts ⊥.

Then, process pi disseminates via a reconstruct message the RS symbol received from the leader
during the dissemination phase. If process pi adopted a digest z (̸= ⊥), pi waits until it receives
via the aforementioned reconstruct messages t + 1 RS symbols corresponding to digest z, uses
the received symbols to rebuild some value ri, and proposes ri to the MBA primitive.2 Otherwise,
process pi proposes its proposal vi to the MBA primitive. We refer to the combination of the
reconstruction step and the MBA primitive as the Reconstruct & Agree (R&A) mechanism. If
value v decided from the R&A mechanism (i.e., from the underlying MBA primitive) is valid,
processes decide v from HMVBA and terminate. If not, processes continue to the next iteration.

Correctness analysis. We now briefly explain how HMVBA’s design guarantees its correctness.
Recall that if a correct process completes the dissemination phase, it is guaranteed that at least
(n − t) − t = 3t + 1 processes have already successfully disseminated their valid proposals. The
HMVBA algorithm ensures that all correct processes decide (and terminate) in an iteration k whose
leader is one of the aforementioned 3t + 1 processes. In the rest of the section, we refer to such
iterations as good. Let us analyze how any such good iteration k of HMVBA unfolds.

The dissemination phase ensures that at least (n−t)−t = 3t+1 correct processes have stored (1)
the digest z⋆(k) of the leader(k)’s valid proposal v⋆(k), and (2) RS symbols of value v⋆(k). Hence,
when each correct process pi receives n − t = 4t + 1 stored messages, it is guaranteed (due to
quorum intersection) that pi receives the “good” digest z⋆(k) from at least (n−t)+(n−2t)−n = 2t+1
processes. Therefore, it is ensured that all correct processes adopt digest z⋆(k). We emphasize that
t < 1

5n is critical in this step. Namely, the HMVBA algorithm cannot guarantee that all correct
processes adopt z⋆(k) if t ≥ 1

5n. As we argue in §2.2, this “adoption issue” is the primary challenge
one must overcome to achieve better resilience while preserving HMVBA’s complexity.

After all correct processes have adopted digest z⋆(k), making them agree on the leader(k)’s valid
value v⋆(k) does not represent a significant challenge. Indeed, using the fact that at least t + 1
correct processes have valid RS symbols corresponding to the digest z⋆(k), all correct processes
manage to (1) reconstruct v⋆(k) after receiving t+1 such RS symbols via reconstruct messages,
and (2) propose v⋆(k) to the MBA primitive. Then, all correct processes decide v⋆(k) from the
MBA primitive due to its strong unanimity property. In other words, all correct processes output
valid value v⋆(k) from the R&A mechanism, which ensures that all correct processes decide v⋆(k)
from HMVBA in iteration k and terminate.

In summary, ensuring that all correct processes adopt the digest z⋆(k) of the leader(k)’s success-
fully disseminated valid proposal v⋆(k) is a critical step in efficiently solving the MVBA problem
against an adaptive adversary. Our algorithms adhere to this principle as well.

2.2 Overview of Reducer

To improve the resilience of HMVBA while maintaining its message, bit and time complexity, we
propose Reducer that tolerates up to t < 1

4n failures. For simplicity, let n = 4t+ 1.

Key concepts behind Reducer. In Reducer (Fig. 2, Alg. 1), processes first disseminate their
proposals using a dissemination phase identical to that of HMVBA. After the dissemination phase,
processes start executing Reducer through iterations. Each Reducer’s iteration k starts in the same
way as HMVBA’s iterations: (1) correct processes elect the leader of the iteration k using a common
coin, (2) correct processes broadcast their stored messages containing the digest received from the

2HMVBA [29] actually combines stored and reconstruct messages: each stored message contains both the
digest and the RS symbol received from the leader. For clarity, we separate them as they serve distinct functions.
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Figure 2: Depiction of Reducer’s structure. The depiction focuses on a good iteration k in which the
first two SMBA invocations decide adversarial digests z1 and z2, respectively. Finally, the third invocation
decides the “good” digest z⋆(k) of the leader(k)’s valid proposal v⋆(k). See Fig. 1 for “Dissemination” and
“Reconstruct & Agree” sub-protocols. We abridge leader ≜ leader(k), z⋆ ≜ z⋆(k), v⋆ ≜ v⋆(k).

leader during the dissemination phase, and (3) each correct process waits for n − t = 3t + 1 such
stored messages. To motivate our design choices, we explain how Reducer ensures termination in
a good iteration. Hence, for the remainder of this subsection, we fix a good iteration k.
Resolving the adoption issue. As mentioned in §2.1, Reducer (and HMVBA with n = 4t+1) cannot
ensure that any correct process receives the “good” digest z⋆(k) of the leader(k)’s valid proposal
v⋆(k) in a majority (> 3t+1

2 ) of the received stored messages. Instead, if the adversary corrupts
the leader and makes it disseminate an additional adversarial digest, that adversarial digest might
appear in a majority. Crucially, however, it is guaranteed that every correct process pi receives
z⋆(k) in (at least) t+ 1 received stored messages. Indeed, as at least (n− t)− t = 2t+ 1 correct
processes have stored z⋆(k), any set of n − t = 3t + 1 stored messages must include at least
(n − t) + (n − 2t) − n = t + 1 messages for z⋆(k). Therefore, in Reducer, once a correct process
pi receives n − t = 3t + 1 stored messages, pi marks any digest received in at least t + 1 such
messages as a candidate digest. Concretely, each correct process pi has its local list candidates i
that initially contains all digests received in t + 1 stored messages. Importantly, given that k is
a good iteration, z⋆(k) belongs to the candidates i list at every correct process pi. Moreover, since
3t+1
t+1 < 3, each correct process has at most two candidates. However, if an adaptive adversary
corrupts leader(k) after its election and forces it to disseminate adversarial digests, the adversary
can ensure the existence of linearly many different candidates across all correct processes:

|{candidate of some correct process}| ∈ O(n).

The (first) core idea of our Reducer algorithm is to reduce the number of different candidates across
all correct processes in a good iteration to a constant.3 Thus, the algorithm’s name.
Reducing the number of different candidates. We achieve the reduction in a good iteration k using
an additional “all-to-all” communication step. Specifically, when a correct process pi has determined

3A “reducing” technique similar to ours was previously employed for asynchronous Byzantine agreement by Mosté-
faoui et al. [46]. However, their technique is insufficient for our algorithms, as detailed in §7.
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its list of candidates, it disseminates them via a suggest message. If process pi includes a digest z
in the aforementioned suggest message, we say that pi suggests z in iteration k. Recall that each
correct process suggests at most two digests out of which one is z⋆(k).

Once process pi receives n− t = 3t+1 suggest messages, process pi refines its candidates i list.
Concretely, for every digest z suggested by pi in iteration k, process pi removes z from the candidates i
list unless it receives z in at least (n− t)− t = 2t+1 suggest messages. First, this design ensures
that z⋆(k) “survives” this communication step at pi as (1) every correct process suggests z⋆(k), and
(2) pi hears suggestions of at least (n− t)− t = 2t+1 correct processes. Second, this design ensures
that at most 3 ∈ O(1) digests “survive” this communication step across all correct processes. Let us
elaborate. Given that each correct process suggests at most two digests out of which one is z⋆(k),
there are (at most) n−t = 3t+1 suggestions coming from correct processes for adversarial non-z⋆(k)
digests (assuming there are t faulty processes). Moreover, each adversarial non-z⋆(k) digest that
“survives” this step receives (at least) (2t+1)− t = t+1 suggestions coming from correct processes.
Hence, as 3t+1

t+1 < 3, at most two adversarial non-z⋆(k) candidates get through the suggestion step.
Consequently, a maximum of three candidates, including z⋆(k), remain.
Establishing order in the chaos of candidates. At this point, each correct process has up to two
candidate digests (one of which is z⋆(k)), and across all correct processes there are only up to three
different candidate digests. As we will see below, we isolate and construct a special agreement
primitive—strong multi-valued Byzantine agreement (SMBA), a variant of strong consensus [32],
defined in §4—which ensures that if up to two different digests are proposed by correct processes,
then the decided digest is among those proposed by a correct process. The high-level idea now
is to invoke this primitive multiple times, and in each invocation correct processes pick the digest
to propose from their local candidates in a “smart” way so that: (1) For each invocation, correct
processes propose at most two different digests. (2) As a result, correct processes learn from the
decided digests about the candidate digests of other correct processes, and can adjust their proposals
so that (3) in one of the invocations, all correct processes will inevitably propose and decide z⋆(k).

Specifically, suppose each correct process pi proceeds by sorting its candidates i list lexico-
graphically. If pi has only one candidate, which must be z⋆(k), pi duplicates z⋆(k), resulting in
candidates i = [z⋆(k), z⋆(k)]. We say that a correct process pi 1-commits (resp., 2-commits) a digest
z in iteration k if candidates i[1] = z (resp., candidates i[2] = z) after the sorting and (potentially)
duplicating steps. For any c ∈ {1, 2}, let us define the committed(k, c) set:

committed(k, c) = {z | z is c-committed by any correct process in iteration k}.

We also say that a correct process pi commits a digest z in iteration k if pi 1-commits or 2-commits
z in iteration k. Let us define the committed(k) set:

committed(k) = {z | z is committed by any correct process in iteration k}.

Note that committed(k) = committed(k, 1) ∪ committed(k, 2).
First, suppose |committed(k)| = 2. Let committed(k) = {z, z⋆(k)}, and assume that, without

loss of generality, z⋆(k) is lexicographically smaller than z. Clearly, each correct process pi has its
candidates i list as either [z⋆(k), z⋆(k)] or [z⋆(k), z]. (Recall that each correct process necessarily
commits z⋆(k).) In this case, if the correct processes invoke the SMBA primitive twice—first
proposing their first committed candidate, and then proposing their second committed candidate—
they agree on z⋆(k) during the first invocation. Agreement on z⋆(k) would be sufficient for the
processes to reconstruct v⋆(k), agree on it, and thus terminate.

Now, suppose |committed(k)| = 3, with committed(k) = {z1, z2, z⋆(k)}. Assume that z⋆(k) is
lexicographically smaller than z1 and z2. Then, each correct process pi has its candidates i list
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as either [z⋆(k), z⋆(k)], [z⋆(k), z1], or [z⋆(k), z2]. (We again stress that every correct process is
guaranteed to commit z⋆(k).) The same procedure as in the case above leads to termination:
during the first invocation of the SMBA primitive, correct processes agree on z⋆(k), then agree
on v⋆(k), and terminate. The above argument naturally carries over to the case where z⋆(k) is
lexicographically greater than z1 and z2: the processes agree on z⋆(k) during the second invocation
of the SMBA primitive, ensuring termination.

Finally, consider the case where committed(k) = {z1, z2, z⋆(k)} and z⋆(k) is lexicographically
between z1 and z2. This is where the situation becomes more intricate. Each correct process pi
now has its candidates i list as either [z⋆(k), z⋆(k)], [z1, z⋆(k)], or [z⋆(k), z2]. We employ the same
procedure as outlined above: correct processes invoke the SMBA primitive twice, initially proposing
their first committed candidate, followed by proposing their second committed candidate. However,
in this case, correct processes are not guaranteed to agree on z⋆(k) in any of the two invocations.
The only assurance for the correct processes is that the decided digest from the first invocation is
either z1 or z⋆(k), and the decided digest from the second invocation is either z⋆(k) or z2. If either
of these two invocations decides z⋆(k), we are in a favorable position, following the same reasoning
as previously discussed.

It is left to deal with the case where the digests decided by the two invocations are z1 and z2,
respectively. Our approach is to “retry” the first invocation. Let us elaborate on this. After correct
processes agree on z1 and z2 during the first and second invocation, respectively, they will initiate
the third invocation in the following manner: All correct processes that proposed the digest z1
decided in the first invocation now propose their other committed candidate, which must be z⋆(k).
All correct processes that proposed a digest other than z1 to the first invocation stick with the
same committed candidate for the third invocation—this digest must also be z⋆(k). As a result, all
correct processes propose z⋆(k) in the third invocation (which represents a “repetition” of the first
invocation). Therefore, agreement on z⋆(k) is ensured in the third invocation, which, following the
earlier arguments, implies Reducer’s termination.
Complexity analysis. As Reducer is guaranteed to terminate in the first good iteration and the prob-
ability that each iteration is good is ≥ n−2t

n = 2t+1
4t+1 ≥

1
2 , Reducer terminates in O(1) expected time.

As correct processes send O(n2) messages and O(nℓ+n2λ log n) bits during the dissemination phase
and during each iteration, with Reducer terminating in constantly many iterations, the expected
message complexity is O(n2) and the expected bit complexity is O(nℓ+ n2λ log n).

2.3 Overview of Reducer++

As already noted, Reducer++ improves Reducer’s resilience to t < (13 − ϵ)n Byzantine failures, for
any fixed constant ϵ > 0, while maintaining its complexity. Let n = (3 + ϵ)t+ 1 in this subsection.

Key concepts behind Reducer++. Reducer++ (Figs. 3 and 4, Alg. 2) starts in the same way as
Reducer. First, processes engage in dissemination identical to that of Reducer (and HMVBA). The
only difference is that, when encoding its proposal vi into n RS symbols, each correct process pi
treats vi as a polynomial of degree ϵt (and not t, like in Reducer and HMVBA). Then, Reducer++
proceeds in iterations. Each iteration k of Reducer++ begins in the same manner as Reducer’s
iterations: (1) The leader of iteration k is elected using a common coin. (2) Each correct process
determines its candidates upon receiving n− t = (2 + ϵ)t+ 1 stored messages. A correct process
marks a digest z as its candidate if it receives z in (at least) n− 3t = ϵt+ 1 stored messages. (3)
Each correct process commits some of its candidates upon receiving n− t = (2 + ϵ)t+ 1 suggest
messages. Concretely, a correct process commits its candidate digest z if it receives z in at least
(n − t) − t = (1 + ϵ)t + 1 suggest messages. This ensures that each correct process commits the
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Figure 3: Depiction of Reducer++’s structure. The depiction focuses on a good iteration k where correct
processes decide on the leader(k)’s valid proposal v⋆(k) whose digest is z⋆(k). See Figs. 1 and 4 for “Dissem-
ination” and “Trial” sub-protocols, respectively. We abridge leader ≜ leader(k), z⋆ ≜ z⋆(k), v⋆ ≜ v⋆(k).
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Figure 4: Depiction of Reducer++’s adoption procedure. The depiction focuses on a case where ϕ happens
to be such that the “good” digest z⋆(k) is smallest according to hash(·, ϕ) and is thus adopted by all correct
processes. See Fig. 1 for “Reconstruct & Agree” sub-protocol. We abridge z⋆ ≜ z⋆(k), v⋆ ≜ v⋆(k).

“good” digest z⋆(k) in a good iteration k.
From this point forward, iterations of Reducer++ differ in design from iterations of Reducer. To

justify our design choices, we now explain how Reducer++ guarantees termination with constant
probability in a good iteration. Recall that, in contrast to Reducer++, Reducer deterministically
terminates in a good iteration. For the rest of the subsection, we focus on a fixed good iteration k.
Establishing only constantly many different candidates across correct processes. Reducer++ guaran-
tees that |committed(k)| ≤ C, where C = ⌈12

ϵ2
⌉+⌈7ϵ ⌉. Let us explain. First, each correct process has

at most (2+ϵ)t+1
ϵt+1 ≤ ⌈3ϵ ⌉ candidates after receiving n− t = (2+ ϵ)t+1 stored messages. Second, as

each digest committed by a correct process is suggested by (at least) (n− t)− t− t = ϵt+1 correct

processes, |committed(k)| ≤ ((3+ϵ)t+1)⌈ 3
ϵ
⌉

ϵt+1 ≤ C. (We prove this inequality in §D.)
Unsuccessfully ensuring termination with constant probability. The remainder of iteration k unfolds
as follows. Each correct process adopts (in some way) one of its committed digests. If all correct
processes adopt the “good” digest z⋆(k), correct processes decide the leader(k)’s valid proposal v⋆(k)
from Reducer++ by relying on the R&A mechanism of Reducer (and HMVBA) and terminate.
Therefore, for Reducer++ to terminate with constant probability in iteration k, it is crucial to
ensure that all correct processes adopt z⋆(k) with constant probability. To accomplish this, each
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process follows the adoption procedure outlined below.
For the adoption procedure, Reducer++ employs a common coin, denoted by Noise, that returns

some random λ-bit value ϕ. Intuitively, each correct process pi (1) concatenates each committed
digest z with the obtained random value ϕ, and (2) hashes the concatenation using the hash func-
tion hash(·) modeled as a random oracle. Concretely, once ϕ is obtained, each correct process pi
constructs its local set Hi in the following way:

Hi = {h |h = hash(z, ϕ) ∧ z is committed by pi}.

Finally, process pi adopts the committed digest z′ that produced the lexicographically smallest hash:

∀h ∈ Hi : hash(z
′, ϕ) ≤ h.

Let us analyze the probability that all correct processes adopt z⋆(k). Given that only poly-
nomially many (in λ) random oracle queries can be made and the common coin outputs a λ-bit
random value, the procedure described above emulates a random permutation of the committed
digests. Concretely, for every z ∈ committed(k), hash(z, ϕ) is uniformly random with all but neg-
ligible probability. Hence, the probability that all correct processes adopt z⋆(k) is equal to the
probability that, given the obtained random value ϕ, hash(z⋆(k), ϕ) is lexicographically smallest
in the H = {h |h = hash(z, ϕ) ∧ z ∈ committed(k)} set. As all members of H are uniformly ran-
dom (except with negligible probability), this probability is 1

|H| =
1

|committed(k)| ≥
1
C given that

|H| = |committed(k)| ≤ C.4

The problem. Unfortunately, the approach above has a clear problem. Namely, an adaptive ad-
versary can rig the described probabilistic trial, thus ensuring that not all correct processes adopt
z⋆(k). To illustrate why this is the case, we now showcase a simple adversarial attack.

Note that, once the random value ϕ gets revealed, the adversary learns the value hash(z⋆(k), ϕ)
it needs to “beat”. At this point, the adversary can find an adversarial digest zA such that
hash(zA, ϕ) < hash(z⋆(k), ϕ). Then, by corrupting leader(k) and making it disseminate zA, the
adversary can introduce digest zA to correct processes. Specifically, by delaying some correct pro-
cesses and carefully controlling the scheduling of the stored and suggest messages, the adversary
can force some slow correct processes to commit zA. As hash(zA, ϕ) < hash(z⋆(k), ϕ), these correct
processes would adopt zA, thus preventing termination in good iteration k. In brief, the adversary
is capable of rigging the trial as the set of all digests committed by correct processes is not fixed
once the randomness is revealed: upon observing ϕ, the adversary gains the ability to manipulate
the trial to its advantage.
The solution. Luckily, we can prevent the adversary from manipulating trials “too many” times.
The key insight is this: for the adversary to rig a trial, it needs to force correct processes to commit
an adversarial digest. Hence, whenever the adversary “cheats”, the number of different digests
committed across correct processes increases. However, recall that |committed(k)| ≤ C. Therefore,
given that z⋆(k) is committed by each correct process, the adversary can inject only C−1 adversarial
digests. Roughly speaking, by extending iteration k to contain C sequential and independent trials,
we ensure the existence of (at least) one trial the adversary cannot rig. More specifically, there
exists a trial prior to which the adversary has already injected all of its C − 1 adversarial digests.
Consequently, even though the adversary might be aware of the “winning” adversarial digest for this
trial, it cannot inject it. Thus, this one fair trial indeed provides constant 1

C probability that all

4One could obtain a random permutation of digests via a common-coin object, thus eliminating the need for the
random oracle assumption. However, this would necessitate the coin to disseminate 2λ · λ≫ λ bits.
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correct processes adopt z⋆(k), which further implies constant 1
C probability that correct processes

decide and terminate in good iteration k.
Complexity analysis. Reducer++ terminates in a good iteration with constant 1

C probability. Given
that each iteration is good with probability ≥ n−2t

n = (1+ϵ)t+1
(3+ϵ)t+1 ≈

1
3 , Reducer++ terminates in O(C)

iterations in expectation. As each iteration takes O(C) time (since there are C trials), the expected
time complexity is O(C2). As for the exchanged information, correct processes send O(n2) messages
and O(nℓ+n2λ log n) bits in the dissemination phase. Additionally, each iteration exchanges O(Cn2)
messages and O

(
C(nℓ + n2λ log n)

)
bits. As Reducer++ terminates in expected O(C) iterations,

Reducer++ yields an expected message complexity of O(C2n2) and an expected bit complexity of
O
(
C2(nℓ+ n2λ log n)

)
.

2.4 Discussion on Reducer’s and Reducer++’s Resilience

This subsection discusses the resilience limits of our algorithms.

Reducer below n = 4t + 1. Recall that one of the crucial ingredients of the Reducer algorithm
is the use of the SMBA primitive that guarantees agreement on a digest proposed by a correct
process, as long as at most two different digests are proposed by correct processes. To ensure that
the “two-different-proposals” precondition is met in a good iteration k, Reducer enforces two key
constraints: (1) any correct process commits at most two digests in iteration k, and (2) there are at
most three different digests committed across all correct processes (i.e., |committed(k)| ≤ 3). The
two aforementioned constraints guarantee that correct processes will eventually reach an invocation
of the SMBA primitive where they all propose and decide z⋆(k). In brief, Reducer cannot improve
upon the t < 1

4n resilience threshold because such a “z⋆(k)-agreeing” invocation of the SMBA
primitive may never be reached in a good iteration k assuming n = 4t.
Observation 1: Each correct process can have more than two candidates. First, we note that when
n = 4t, each correct process may have up to three different candidates after the exchange of stored
messages in good iteration k. Indeed, as n = 4t, leader(k) has successfully disseminated the digest
z⋆(k) of its valid proposal v⋆(k) to at least (n − t) − t = 2t correct processes. Hence, each correct
process is guaranteed to hear z⋆(k) only from (n− t) + (n− 2t)− n = n− 3t = t processes once it
receives n−t = 3t stored messages in iteration k. Thus, to ensure that every correct process marks
the “good” digest z⋆(k) as a candidate, the “candidate-threshold” is n − 3t = t. As each correct
process waits for n−t = 3t stored messages before determining its candidates, each correct process
may end up with up to 3t

t = 3 different candidates.
Observation 2: The number of different candidates across correct processes may be greater than
three. To ensure that every correct process commits the “good” digest z⋆(k), each correct process
commits its candidate z if it hears (n − t) − t = 2t suggest messages for z. The fact that each
correct process can suggest two different adversarial (non-z⋆(k)) digests implies that the number of
different candidates “surviving” the suggestion phase across all correct processes might be greater
than three: |committed(k)| > 3. Concretely, it can be shown that |committed(k)| ≤ 7 with n = 4t.
Observation 3: Reducer among n = 4t would require an impossible variant of the SMBA primitive.
Let us demonstrate a problematic scenario that may arise given |committed(k)| ≤ 7. Suppose
committed(k) = {z1, z2, z⋆(k), z3, z4} with z1 < z2 < z⋆(k) < z3 < z4 according to the lexicographic
order. Let us partition all correct processes into three non-empty and disjoint sets S1, S2, and S3.
The following “spread” of the committed digests is possible:

• Correct processes in the S1 set commit [z1, z2, z
⋆(k)].

• Correct processes in the S2 set commit [z2, z
⋆(k), z3].
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• Correct processes in the S3 set commit [z⋆(k), z3, z4].
Thus, for any c ∈ {1, 2, 3}, there exist 3 > 2 different c-committed digests.

For Reducer to deal with the scenario above (when n = 4t), we would need to develop the
SMBA primitive with strictly stronger properties than those required for n = 4t + 1. Specifically,
for correct processes to learn about the proposals of other correct processes—the core principle
underlying Reducer—the primitive must satisfy the following guarantee: if up to d > 2 different
digests are proposed by correct processes, then the decided digest was proposed by a correct process.
(Without this guarantee, correct processes might keep deciding “useless” digests not held by any
correct process.) Unfortunately, Fitzi and Garay [32] prove that, among n = 4t processes, such a
primitive cannot be implemented in asynchrony even for d = 3, indicating that Reducer’s structure
is not suitable for n < 4t+ 1.

Reducer++ with optimal n = 3t + 1. We conclude the section by explaining why Reducer++
cannot achieve optimal resilience. One reason is that, when t < 1

3n, Reducer++ cannot maintain its
quasi-quadratic expected bit complexity. To ensure that the “good” digest z⋆(k) is identified as a
candidate by each correct process after receiving n− t = 2t+1 stored messages in a good iteration
k, the “candidate threshold” must be set at (n − t) + (n − 2t) − n = 1. Therefore, each correct
process could have linearly many candidates after collecting the stored messages. As a result,
disseminating these candidates via the suggest messages would require O(n3λ) exchanged bits
(digests are of size λ bits), thereby violating the desired quasi-quadratic upper bound. Incorporating
the ϵ · t gap into the resilience of Reducer++ allows each correct process to have only constantly
many candidates, thus ensuring that the exchange of suggest messages incurs O(n2λ) bits.

3 System Model & Problem Definition

System model. We consider n processes p1, p2, ..., pn connected through pairwise authenticated
channels. This work considers a computationally bounded and adaptive adversary capable of cor-
rupting up to t > 0 processes throughout (and not only at the beginning of) the protocol execution.
For Reducer, we consider t < 1

4n, while for Reducer++, we assume t < (13 − ϵ)n, where ϵ > 0 is any
fixed constant. Processes not corrupted by the adversary at a certain stage are said to be so-far-
uncorrupted. Once the adversary corrupts a process, the process falls under the adversary’s control
and may behave maliciously. A process is said to be correct if it is never corrupted; a non-correct
process is said to be faulty.

We focus on an asynchronous communication network where message delays are unbounded (but
finite). Thus, we assume the adversary controls the network and can delay messages arbitrarily,
but every message exchanged between correct processes must be delivered eventually. We underline
that the adversary possesses the after-the-fact-removal capabilities: if a so-far-uncorrupted process
pi sent a message and then got corrupted by the adversary before the message was delivered, the
adversary is capable of retracting the message, thus preventing its delivery.

Multi-valued validated Byzantine agreement (MVBA). In this paper, we aim to design an
MVBA [4, 42, 29, 16, 18, 41] protocol that operates in the model described above. Informally,
MVBA requires correct processes to agree on a valid ℓ-bit value. The formal specification is given
in Module 1.

4 Preliminaries

This section recapitulates the building blocks employed in our algorithms.
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Module 1 MVBA
Associated values:
- set ValueMVBA of ℓ-bit values

Associated functions:
- function valid : ValueMVBA → {true, false}; a value v ∈ ValueMVBA is said to be valid if and only if valid(v) = true

Events:
- input propose(v ∈ ValueMVBA): a process proposes value v.
- output decide(v′ ∈ ValueMVBA): a process decides value v′.

Assumed behavior:
- Every correct process proposes exactly once and it does so with a valid value.

Properties: ▷ ensured only if correct processes behave according to the assumptions stated above
- External validity: No correct process decides an invalid value.
- Weak validity: If all processes are correct and a correct process decides a value v ∈ ValueMVBA, then v was

proposed by a correct process.
- Agreement: No two correct processes decide different values.
- Integrity: No correct process decides more than once.
- Termination: All correct processes eventually decide.
- Quality: If a correct process decides a value v ∈ ValueMVBA, then the probability that v is a value determined

by the adversary is at most q < 1.

Broadcasting operation. When a process broadcasts a message in our algorithms, the process
simply unicasts the message to each process individually. As a result, this broadcasting operation
is unreliable: if the sender is faulty, correct processes may receive different messages, or some may
not receive any message at all.

Reed–Solomon codes. Our algorithms rely on Reed–Solomon (RS) codes [49]. Reducer and
Reducer++ use RS codes as erasure codes; no (substitution-)error correction is required. We use
encode(·) and decode(·) to denote RS’ encoding and decoding algorithms. Namely, in a nutshell,
encode(v) takes a value v, chunks it into the coefficients of a polynomial of degree t (for Reducer)
or degree ϵt (for Reducer++), and outputs evaluations of the polynomial (i.e., the RS symbols) at
n (the total number of processes) distinct locations. Similarly, decode(S) takes a set S of t + 1
(for Reducer) or ϵt + 1 (for Reducer++) RS symbols (from distinct locations) and interpolates
them into a polynomial of degree t (for Reducer) or degree ϵt (for Reducer++), whose coefficients
are concatenated and output as decoded value v. The bit-size of an RS symbol obtained by the
encode(v) algorithm is O( |v|n + log n), where |v| denotes the size of value v.

Hash functions. For Reducer, we assume a collision-resistant hash function hash(·) guaranteeing
that a computationally bounded adversary cannot find two different inputs resulting in the same
hash value (except with negligible probability). In contrast, Reducer++ requires hash functions
modeled as a random oracle with independent and uniformly distributed hash values. Each hash
value is of size λ bits; we assume λ > log n.5

Cryptographic accumulators. We adopt the definition of cryptographic accumulators from
earlier works [10, 47]. A cryptographic accumulator scheme constructs an accumulation value for a
set of values and produces a witness for each value in the set. Given the accumulation value and
a witness, any process can verify if a value is indeed in the set. More formally, given a security
parameter λ and a set D of n values d1, ..., dn, an accumulator has the following syntax:

• Gen(1λ, n): Takes a parameter λ in unary representation 1λ and an accumulation threshold n
(an upper bound on the number of values that can be accumulated securely); returns a public

5Otherwise, t ∈ O(n) faulty processes would have computational power exponential in λ.
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accumulator key ak.
• Eval(ak,D): Takes an accumulator key ak and a set of values D to be accumulated; returns

an accumulation value z for the set D.
• CreateWit(ak, z, di,D): Takes an accumulator key ak, an accumulation value z for D, a value
di and a set of values D; returns ⊥ if di /∈ D, and a witness wi if di ∈ D.

• Verify(ak, z, wi, di): Takes an accumulator key ak, an accumulation value z for D, a witness
wi, and a value di; returns true if wi is the witness for di ∈ D, and false otherwise.

An accumulator scheme is secure if the adversary cannot produce a valid witness for a value di
that was not in the set D used to produce the accumulation value z, i.e., for any accumulator key
ak ← Gen(1λ, n), it is computationally infeasible to obtain ({d1, ..., dn}, d′, w′) such that (1) d′ /∈
{d1, ..., dn}, (2) z ← Eval(ak, {d1, ..., dn}), and (3) Verify(ak, z, w′, d′) = true.

Concretely, we use Merkle trees [44] as our accumulators given they are hash-based. Elements of
D form the leaves of a Merkle tree, the accumulator key is a specific hash function, an accumulation
value is the Merkle tree root, and a witness is a Merkle tree proof. Importantly, the size of an
accumulation value is O(λ) bits, and the size of a witness is O(λ log n) bits, where λ denotes the
size of a hash value. Throughout the remainder of the paper, we refrain from explicitly mentioning
the accumulator key ak as we assume that the associated hash function is fixed. For Merkle trees,
accumulator security stems from collision resistance of the underlying hash function [44].

Our algorithms instruct each process pi to construct a Merkle tree over the RS symbols of
its proposal vi, with the resulting Merkle root serving as a digest of vi. Therefore, throughout
the remainder of this paper, we use the terms “accumulation value” and “digest” interchangeably.
Since our algorithms require tracking the position of each RS symbol, the Merkle trees used in our
algorithms effectively function as vector commitments [19].

Common coin. We follow the approach of prior works [9, 22, 45, 52, 28, 29] and assume the
existence of an idealized common coin, an object introduced by Rabin [48], that delivers the same
sequence of random coins to all processes. To ensure that the adversary cannot anticipate the coin
values in advance, we establish the condition that the value is disclosed only after t + 1 processes
(thus, at least one correct process) have queried the coin. Concretely, both of our algorithms
use the common-coin objects for (1) obtaining a uniformly random (log n)-bit integer, denoted by
Election(), and (2) obtaining a uniformly random integer in a specified constant range, denoted by
Index(). Reducer++ utilizes an additional common-coin object, denoted by Noise(), that generates
a uniformly random λ-bit value. All coins are independent. Our protocols can be easily adapted
to rely only on a weak common coin, which allows a constant probability of disagreement among
correct processes. This can be achieved by following the Index() common coin with an MBA instance
(see §§ 5 and 6) to ensure agreement on the coin’s random output.6

Multi-valued Byzantine agreement (MBA). Our algorithms internally utilize the well-known
MBA primitive [13, 8, 46]. MBA is similar to the MVBA primitive: processes propose their val-
ues and decide on a common value. The formal specification of the MBA primitive is given in
Module 2. In contrast to the MVBA primitive, MBA ensures justification (sometimes also called
“non-intrusion”), but it does not guarantee external validity. Note that, whenever correct processes
propose different values, MBA might decide futile ⊥MBA. An MVBA algorithm must decide a valid
(non-⊥MBA) value in this case, which represents a crucial difference between these two primitives.
We treat the special value ⊥MBA as an invalid value. Specifically, the function valid(·) (see Module 1)
is defined for ⊥MBA, with valid(⊥MBA) = false. We utilize this in our algorithms.

Our algorithms utilize MBA to agree on (1) ℓ-bit values (i.e., ValueMBA ≡ ValueMVBA), and (2) on
O(λ)-bit digests (i.e., ValueMBA ≡ Digest, where Digest denotes the set of all digests). For agreeing

6We underline that the SMBA and MBA algorithms utilized in our protocols require only a weak common coin.
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Module 2 MBA
Associated values:
- set ValueMBA

- special value ⊥MBA /∈ ValueMBA; we assume valid(⊥MBA) = false ▷ we assume that ⊥MBA is an invalid value

Events:
- input propose(v ∈ ValueMBA): a process proposes value v.
- output decide(v′ ∈ ValueMBA ∪ {⊥MBA}): a process decides value v′.

Assumed behavior:
- Every correct process proposes exactly once.

Properties: ▷ ensured only if correct processes behave according to the assumptions stated above
- Strong unanimity: If all correct processes propose the same value v ∈ ValueMBA and a correct process decides a

value v′ ∈ ValueMBA ∪ {⊥MBA}, then v′ = v.
- Agreement: No two correct processes decide different values.
- Justification: If any correct process decides a value v′ ∈ ValueMBA (v′ ̸= ⊥MBA), then v′ is proposed by a correct

process.
- Integrity: No correct process decides more than once.
- Termination: All correct processes eventually decide.

on ℓ-bit values, our algorithms rely on our MBA implementation MBAℓ (relegated to §A) with
O(n2) expected message complexity, O(nℓ+ n2λ log n) expected bit complexity and O(1) expected
time complexity. For agreeing on digests (utilized in our implementation of the SMBA primitive;
see §B), we rely on the cryptography-free MBA implementation proposed in [46, 2] with O(n2)
expected message complexity, O(n2λ) expected bit complexity and O(1) expected time complexity.
Both utilized MBA algorithms tolerate up to t < 1

3n failures.

Strong multi-valued Byzantine agreement (SMBA). Finally, the Reducer algorithm relies
on strong multi-valued Byzantine agreement (SMBA), a variant of strong consensus [32], which we
isolate as a separate primitive and construct, and which may be of independent interest. Concretely,
Reducer utilizes SMBA to enable correct processes to agree on a digest. The formal specification
of the SMBA primitive can be found in Module 3. We stress that the specification of the SMBA
primitive assumes that correct processes propose only a constant number of different digests; this
assumption is introduced solely for complexity reasons (see §B for more details). Crucially, our
Reducer algorithm—specifically its reducing technique—enforces this condition: only O(1) different
digests are proposed by correct processes in any instance of the SMBA primitive utilized in Reducer.
Intuitively, the SMBA primitive ensures that all correct processes eventually agree on the same digest
z. Moreover, if no more than two different digests are proposed by correct processes, the primitive
ensures that z was proposed by a correct process. If correct processes propose three (or more)
different digests, a non-proposed digest can be decided. In Reducer, we utilize our cryptography-
free SMBA algorithm SMBAλ (relegated to §B), which has an expected message complexity of (n2),
an expected bit complexity of O(n2λ) and an expected time complexity of O(1); SMBAλ tolerates
up to t < 1

4n adaptive corruptions.
SMBA vs. strong consensus. Here, we point out subtle differences between the SMBA primitive
(defined above) and the well-known strong consensus primitive [32]. Like SMBA, strong consensus
requires agreement on the proposal of a correct process. Importantly, the strong consensus primi-
tive provides strong validity, agreement, integrity, and termination only if correct processes propose
values from a domain of possible inputs where (1) the domain is known to the protocol, and (2) the
domain contains at most two values. Fitzi and Garay [32] prove that strong consensus (with two
different values) can be solved in asynchrony if and only if n > 3t. In contrast, our SMBA primitive
does not require knowledge of the domain of correct processes’ proposals, and provides agreement,
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Module 3 SMBA
Associated values:
- set Digest of O(λ)-bit digests ▷ SMBA is exclusively utilized for agreement on digests

Events:
- input propose(z ∈ Digest): a process proposes digest z.
- output decide(z′ ∈ Digest): a process decides digest z′.

Assumed behavior:
- Every correct process proposes exactly once.
- Only O(1) different digests are proposed by correct processes.

Properties: ▷ ensured only if correct processes behave according to the assumptions stated above
- Strong validity: If up to two different digests are proposed by correct processes and a correct process decides a

digest z′ ∈ Digest, then z′ is proposed by a correct process.
- Agreement: No two correct processes decide different values.
- Integrity: No correct process decides more than once.
- Termination: All correct processes eventually decide.

integrity, and termination irrespective of the size of the set comprising all correct processes’ propos-
als, while it provides strong validity if it so happens that the set comprising all correct processes’
proposals contains at most two values. In other words, SMBA “knows” that the size of the domain
of correct inputs is at most two, but does not “know” the values in said domain, and only its validity
is conditional on this knowledge, not its agreement, integrity, or termination.

Given that the SMBA problem is harder than the strong consensus problem, our SMBAλ al-
gorithm naturally solves the strong consensus problem. Moreover, we underline that our SMBAλ

algorithm can trivially be adapted to solve the strong consensus problem even with optimal t < 1
3n

resilience (see §B for more details).7 Additionally, SMBAλ can be easily modified to allow us to solve
the strong consensus problem with x different proposals, for any x ∈ O(1), with optimal resilience
of n > (x+ 1)t [32], no employed cryptography, and optimal complexity.

5 Reducer: Pseudocode & Proof Sketch

This section presents our Reducer algorithm. Recall that Reducer exchanges O(n2) messages and
O(nℓ + n2λ log n) bits, and terminates in O(1) time. Reducer tolerates up to t < 1

4n failures. We
start by introducing the pseudocode of the Reducer algorithm (§5.1). Then, we provide an informal
analysis of Reducer’s correctness and complexity (§5.2). A formal proof can be found in §C.

5.1 Pseudocode

The pseudocode of Reducer is given in Alg. 1. Given that the correctness of our solution crucially
depends on the exact number of “reduced” digests held by correct processes in an iteration, the
presented solution assumes n = 4t+1. Note that it is trivial to adapt the solution for any n > 4t+1
in the following way: (1) First 4t+ 1 processes (i.e., the 4t+ 1 processes with smallest identifiers)
execute the Reducer algorithm among 4t+1 processes (as explained in the rest of the section). (2) The
aforementioned 4t+1 processes then utilize the cryptography-free asynchronous data dissemination
(ADD) primitive [25] that efficiently disseminates the decided value to all n > 4t+ 1 processes.

Pseudocode description. Lines 1 to 18 define the employed primitives, the rules governing the
behavior of correct processes, as well as the constants and local variables. When processes start

7Recall that the resilience of the SMBAλ algorithm when solving the SMBA problem is t < 1
4
n.
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Algorithm 1 Reducer: Pseudocode (for process pi) [part 1 of 2]
1 Uses:
2 ▷ SMBAλ exchanges O(n2) messages and O(n2λ) bits and terminates in O(1) time
3 SMBA algorithm SMBAλ, instances SMBA[k][x], ∀k ∈ N,∀x ∈ {1, 2, 3}
4 ▷ MBAℓ exchanges O(n2) messages and O(nℓ+ n2λ logn) bits and terminates in O(1) time
5 MBA algorithm MBAℓ with ValueMBA = ValueMVBA, instancesMBA[k][x], ∀k ∈ N, ∀x ∈ {1, 2, 3}

6 Rules:
7 - Any message with an invalid witness is ignored.
8 - Only one init message is processed per process.

9 Constants:
10 Digest default ▷ default digest

11 Local variables:
12 ValueMVBA vi ← pi’s proposal
13 Boolean dissemination_completed i ← false
14 Map(Process→ [RS,Digest,Witness]) symbolsi ← empty map
15 List(Digest) candidatesi ← empty list ▷ will be reset every iteration
16 Digest adopted_digest i ← ⊥
17 Digest first_digest i ← ⊥
18 List(ValueMVBA) quasi_decisionsi ← empty list

19 upon propose(ValueMVBA vi) ▷ start of the algorithm
20 ▷ dissemination phase starts
21 List(RS) [m1,m2, ...,mn]← encode(vi) ▷ encode(vi) treats vi as a polynomial of degree t

22 Digest zi ← Eval
([

(1,m1), (2,m2), ..., (n,mn)
])

▷ compute the digest
23 for each Process pj :
24 Witness wj ← CreateWit

(
zi, (j,mj),

[
(1,m1), (2,m2), ..., (n,mn)

])
▷ compute the witness

25 send ⟨init,mj , zi, wj⟩ to process pj

26 upon receiving ⟨init,RS mi,Digest zj ,Witness wi⟩ from a process pj :
27 if dissemination_completed i = false:
28 symbolsi[pj ]← [mi, zj , wi] ▷ store the received RS symbol
29 send ⟨ack⟩ to process pj

30 upon receiving ⟨ack⟩ from n− t processes (for the first time):
31 broadcast ⟨done⟩

32 upon receiving ⟨done⟩ from n− t processes (for the first time):
33 broadcast ⟨finish⟩ if pi has not broadcast ⟨finish⟩ before

34 upon receiving ⟨finish⟩ from t+ 1 processes (for the first time):
35 broadcast ⟨finish⟩ if pi has not broadcast ⟨finish⟩ before

executing the Reducer algorithm, they first disseminate their proposals in the dissemination phase
(lines 19-37). The dissemination phase of Reducer is identical to that of HMVBA and has already
been covered in §2. Briefly, processes disseminate their proposals via init messages: each init
message contains an RS symbol, a digest, and a witness proving the validity of the RS symbol
against the digest. When a process receives a valid init message, the process stores the content
of the message and acknowledges the reception by sending an ack message back. Once a process
receives n − t ack messages, it informs all other processes that its proposal is disseminated by
broadcasting a done message. Upon receiving n− t done messages, a process broadcasts a finish
message; a process may also broadcast a finish message upon receiving t + 1 finish messages.
Lastly, when a process receives n − t finish messages, the process completes the dissemination
phase.

After completing the dissemination phase, processes start executing Reducer through iterations.
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Algorithm 1 Reducer: Pseudocode (for process pi) [part 2 of 2]
36 upon receiving ⟨finish⟩ from n− t processes (for the first time)
37 dissemination_completed i ← true ▷ dissemination phase completes
38 for each k = 1, 2, ...: ▷ iteration k starts
39 candidatesi ← empty list ▷ reset the list of candidates
40 Process leader(k)← Election() ▷ elect a random leader
41 broadcast ⟨stored, k, symbolsi[leader(k)].digest()⟩ ▷ disseminate the leader’s digest
42 wait for n− t = 3t+ 1 stored messages for iteration k
43 for each Digest z included in n− 3t = t+ 1 received stored messages:
44 candidatesi.append(z)
45 broadcast ⟨suggest, k, candidatesi⟩ ▷ disseminate pi’s candidates
46 wait for n− t = 3t+ 1 suggest messages for iteration k:
47 for each Digest z ∈ candidatesi:
48 if z is not included in n− 2t = 2t+ 1 received suggest messages:
49 candidatesi.remove(z)
50 if candidatesi.size = 0: ▷ if no candidate “survives” the suggestion step
51 candidatesi[1]← default ; candidatesi[2]← default ▷ commit the default digest
52 else if candidatesi.size = 1: ▷ if exactly one candidate “survives” the suggestion step
53 candidatesi[2]← candidatesi[1] ▷ copy the candidate
54 Sort candidatesi in the lexicographic order ▷ these digests are committed
55 for each x = 1, 2, 3:
56 if x ̸= 3:
57 adopted_digest i ← candidatesi[x] ▷ adopt the x-th committed digest if x ̸= 3
58 else if first_digest i = candidatesi[1]: ▷ is the first committed digest decided from SMBA[k][1]?
59 adopted_digest i ← candidatesi[2] ▷ if yes, adopt the other committed digest
60 else:
61 adopted_digest i ← candidatesi[1] ▷ if not, stick with the first committed digest
62 Digest z ← SMBA[k][x].propose(adopted_digest i)
63 if x = 1: first_digest i ← z ▷ store first decided digest as it is important for third sub-iteration
64 ▷ Reconstruct & Agree
65 broadcast ⟨reconstruct, k, x, symbolsi[leader(k)]⟩
66 wait for n− t = 3t+ 1 reconstruct messages for sub-iteration (k, x)
67 Set(RS) Si ← the set of all received RS symbols with valid witnesses for digest z
68 if |Si| ≥ t+ 1: ▷ check if a value can be decoded using Si

69 ValueMVBA ri ← decode(Si) ▷ if yes, set ri to the decoded value
70 else:
71 ValueMVBA ri ← vi ▷ if not, set ri to pi’s proposal
72 ValueMVBA ∪ {⊥MBA} v ←MBA[k][x].propose(ri) ▷ propose ri
73 if valid(v) = true:
74 quasi_decisionsi.append(v) ▷ quasi-decide v

75 if quasi_decisionsi.size > 0 and pi has not previously decided:
76 Integer I ← Index() ▷ obtain a random integer I in the [1, 3] range
77 trigger decide

(
quasi_decisionsi[(I mod quasi_decisionsi.size) + 1]

)
▷ for quality

Each iteration k ∈ N unfolds as follows (lines 38-77):
1. Processes randomly elect the iteration’s leader, denoted by leader(k) (line 40).
2. Processes establish their candidate digests through stored and suggest messages (lines 41-

54), as previously discussed in §2.2. Concretely, each process pi commits up to two candidate
digests. Formally, we say that a correct process pi c-commits a digest z in iteration k, for
any c ∈ {1, 2}, if and only if candidates i[c] = z when process pi reaches line 55. Moreover, we
define the committed(k, c) set, for any c ∈ {1, 2}, as

committed(k, c) = {z | z is c-committed by a correct process in iteration k}.
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The default digest (line 10) is introduced solely to ensure that processes have always two
committed candidates (see line 51), even if they do not commit any candidate through the
standard stored and suggest steps.

3. Processes aim to agree on a valid value (lines 55-74). To achieve this, in every good iteration
k—leader(k) has disseminated proposal v⋆(k) with digest z⋆(k)—the following holds:(

z⋆(k) ∈ committed(k, 1) ∧ |committed(k, 1)| ≤ 2
)
∨
(
{z⋆(k)} = committed(k, 2)

)
. (⊚)

As noted in §2.2, if (only) the first disjunct holds true, it may require two repetitions for
processes to agree on z⋆(k) when correct processes propose two different digests from the
committed(k, 1) set to the SMBA primitive. In the first repetition, they may decide on a non-
z⋆(k) digest (the other digest from the committed(k, 1) set), and only in the second repetition
do they succeed in agreeing on z⋆(k). For this reason, each iteration k is divided into three
sub-iterations (k, 1), (k, 2), and (k, 3). In sub-iterations (k, 1) and (k, 2), processes aim to
agree on their first and second committed digests, respectively. The sub-iteration (k, 3) serves
as a repetition of the first sub-iteration.
Each sub-iteration (k, x) unfolds as follows (lines 56-74). Each process pi begins by adopting
a digest. If x = 1 or x = 2, pi adopts its x-committed digest. Otherwise, pi engages its
“proposal-switching” logic: it checks whether the value it proposed to the first invocation of
the SMBA primitive was decided. If so, pi adopts its 2-committed digest; otherwise, pi adopts
its 1-committed digest. Process pi then proposes its adopted digest (i.e., adopted_digest i) to
the SMBA primitive. Once processes agree on a digest z via SMBA, processes start the R&A
mechanism. Specifically, processes disseminate the RS symbols received from leader(k) during
the dissemination phase. Using the received RS symbols, each correct process pi decodes
some value ri if possible; otherwise, pi sets ri to its proposal vi. Then, each correct process
pi proposes value ri to the MBA primitive. If the decided value v is valid, each process pi
quasi-decides v by appending it to its quasi_decisioni list.

4. The final phase (lines 75-77) of the iteration is designed to ensure the quality property. After
completing all three sub-iterations, processes check if any value was quasi-decided. If so,
processes obtain a random integer I ∈ [1, 3], which is then used to select one of the previously
quasi-decided values for the decision.

5.2 Proof Sketch

This subsection provides a proof sketch of Reducer’s correctness and complexity. Recall that a
formal proof can be found in §C.

Correctness. We first give a proof sketch of the following theorem.

Theorem 1 (Reducer is correct). Given n = 4t + 1 and the existence of a collision-resistant hash
function, Reducer (see Alg. 1) is a correct implementation of the MVBA primitive in the presence
of a computationally bounded adversary.

We now analyze each property separately.
Agreement. The agreement property is ensured by (1) the agreement property of the MBA primitive
employed in each iteration (line 72), and (2) the fact that any Index() request (line 76) returns the
same integer to all correct processes.
Weak validity. Suppose all processes are correct and a correct process pi decides some value v in
an iteration k. Due to the justification property of the MBA primitive, some correct process pj
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proposed v to the MBA primitive in iteration k. If pj decoded v at line 69, v is the proposal of
leader(k). Otherwise, v is pj ’s proposal (line 71). In any case, v is proposed by a correct process.
External validity. The property is trivially satisfied due to the check at line 73.
Integrity. The property is trivially satisfied due to the check at line 75.
Termination. As discussed in §2.2, Reducer is guaranteed to terminate in a good iteration. We
now formally define what constitutes a good iteration. Let pfirst denote the first correct process
that broadcasts a finish message at line 33. Note that pfirst broadcasts the finish message at
line 33 upon receiving a done message from n − t = 3t + 1 processes. Let Dfirst denote the set
of so-far-uncorrupted processes from which pfirst receives a done message before broadcasting the
aforementioned finish message; note that |Dfirst| ≥ (n− t)− t = 2t+ 1.

Definition 1 (Good iterations). An iteration k ∈ N is good if and only if leader(k) ∈ Dfirst.

We are now ready to show that Reducer terminates in the first good iteration k. Let v⋆(k) denote
the valid proposal of leader(k) and let z⋆(k) denote the digest of v⋆(k). As k is a good iteration,
leader(k) has stored valid RS symbols of its proposal v⋆(k) at (n− t)− t = 2t+1 correct processes.
As discussed in §5.1 (and proven in §C), Reducer ensures that Eq. (⊚) holds:(

z⋆(k) ∈ committed(k, 1) ∧ |committed(k, 1)| ≤ 2
)
∨
(
{z⋆(k)} = committed(k, 2)

)
.

We now separate two cases:
• Let committed(k, 2) = {z⋆(k)}. Consider sub-iteration (k, 2). All correct processes decide
z⋆(k) from the SMBA primitive (line 62). Then, as leader(k) has disseminated RS symbols of
its valid proposal v⋆(k) to (at least) n − 2t = 2t + 1 correct processes, each correct process
receives (n − t) + (n − 2t) − n = n − 3t = t + 1 RS symbols that correspond to digest
z⋆(k) (line 66). Hence, all correct processes decode v⋆(k) (line 69) and propose v⋆(k) to
the MBA primitive (line 72). The strong unanimity property of the MBA primitive ensures
that all correct processes decide v⋆(k) from it and, thus, quasi-decide v⋆(k) (line 74). Hence,
termination is ensured.

• Let z⋆(k) ∈ committed(k, 1) and |committed(k, 1)| ≤ 2. Consider sub-iteration (k, 1). As
|committed(k, 1)| ≤ 2, correct processes propose at most two different digests to the SMBA
primitive (line 62). The strong validity property guarantees that the decided digest z is
proposed by a correct process. We further investigate two possibilities:

– Let z = z⋆(k). Following the same reasoning as in the previous scenario, all correct
processes decode v⋆(k) (line 69) and propose v⋆(k) to the MBA primitive (line 72). The
strong unanimity property of the MBA primitive ensures that all correct processes decide
v⋆(k) from it and, thus, quasi-decide v⋆(k) (line 74). Hence, termination is guaranteed
in this case.

– Let z ̸= z⋆(k). In this case, the “proposal-switching” logic (lines 58-61) ensures that all
correct processes propose z⋆(k) to the SMBA primitive in sub-iteration (k, 3). (Recall
that all correct processes commit z⋆(k).) Therefore, z⋆(k) is decided from the SMBA
primitive (line 62) in sub-iteration (k, 3). This implies that all correct processes decode
v⋆(k) (line 69) and propose v⋆(k) to the MBA primitive (line 72). Hence, all correct
processes quasi-decide v⋆(k) (line 74), showing that Reducer terminates even in this case.

Quality. Let P1 denote the probability that the first iteration is good; note that P1 ≥ n−2t
n =

2t+1
4t+1 ≥

1
2 . As seen in the analysis of termination, correct processes are guaranteed to quasi-decide

a non-adversarial value (i.e., the leader’s valid proposal) in a good iteration k. Let P2 denote the
probability that the Index() request (line 76) invoked in a good iteration k that quasi-decides a
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non-adversarial value indeed selects a non-adversarial quasi-decided value; P2 ≥ 1
3 as at most three

values (some of which might be the same) can be quasi-decided. Therefore, the probability that
the decided value is non-adversarial is (at least) the probability that (1) the first iteration is good,
and (2) the Index() request chooses a non-adversarial value. Therefore, the probability that an
adversarial value is decided is 1− P1 · P2 ≤ 5

6 < 1.

Complexity. Next, we provide a proof sketch of the following theorem.

Theorem 2 (Reducer’s expected complexity). Given n = 4t + 1 and the existence of a collision-
resistant hash function, the following holds for Reducer (see Alg. 1) in the presence of a computa-
tionally bounded adversary:

• The expected message complexity is O(n2).
• The expected bit complexity is O(nℓ+ n2λ log n).
• The expected time complexity is O(1).

Let us informally prove the theorem.
Expected time complexity. As previously argued, Reducer terminates in a good iteration. Given that
each iteration is good with a probability P ≥ 1

2 , Reducer terminates in expected two iterations.
As (1) each iteration takes O(1) time to complete in expectation, and (2) the dissemination phase
consists of O(1) rounds of communication, the expected time complexity is O(1).
Expected message complexity. Given that (1) each iteration exchanges O(n2) messages in expec-
tation, and (2) Reducer terminates in O(1) iterations in expectation, correct processes exchange
O(n2) messages in expectation through the iterations of Reducer. Finally, correct processes ex-
change O(n2) messages in expectation throughout the entire Reducer protocol as the dissemination
phase exchanges O(n2) messages as well.
Expected bit complexity. The dissemination phase exchanges O(nℓ+n2λ log n) bits. Moreover, each
iteration exchanges O(nℓ + n2λ log n) bits in expectation. Given that there are O(1) iterations in
expectation, the expected bit complexity of Reducer is

O(nℓ+ n2λ log n)︸ ︷︷ ︸
dissemination phase

+O(1) ·O(nℓ+ n2λ log n)︸ ︷︷ ︸
each iteration

⊆ O(nℓ+ n2λ log n).

6 Reducer++: Pseudocode & Proof Sketch

This section introduces Reducer++, our MVBA algorithm that comes ϵ-close to optimal one-third
resilience, for any fixed constant ϵ > 0. Reducer++ exchanges O(n2C2) messages and O

(
C2(nℓ +

n2λ log n)
)

bits, and terminates in O(C2) time, where C = ⌈12
ϵ2
⌉+ ⌈7ϵ ⌉. As a downside compared to

Reducer, Reducer++ requires hash functions modeled as a random oracle that uniformly distributes
its outputs. We start by presenting Reducer++’s pseudocode (§6.1). Then, we give an informal
analysis of Reducer++’s correctness and complexity (§6.2). A formal proof is relegated to §D.

6.1 Pseudocode

The pseudocode of Reducer++ is given in Alg. 2.

Pseudocode description. Lines 1 to 17 define the employed primitives, the rules governing the
behavior of correct processes, as well as the constants and local variables. When processes start
executing the Reducer++ algorithm (line 18), they engage in the dissemination phase (line 19) that
is identical to the dissemination phase of Reducer (and HMVBA) except that values are treated as
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polynomials of degree ϵt. Once the dissemination phase is completed, processes execute Reducer++
through iterations. Each iteration k ∈ N proceeds as follows (lines 22-55):

1. Processes elect the leader—leader(k)—using a common coin (line 24).
2. Processes determine their candidate digests through stored and suggest messages (lines 25-

33), as explained in §2.3. Formally, we say that a correct process pi commits a digest z in
iteration k if and only if z belongs to the candidates i list when pi reaches line 34 in iteration
k. As argued in §2.3 (and proven in §D), given a good iteration k, (1) each correct process
commits up to ⌈3ϵ ⌉ digests, and (2) there are at most C = ⌈12

ϵ2
⌉+⌈7ϵ ⌉ different digests committed

across all correct processes (i.e., |committed(k)| ≤ C).
3. Processes aim to agree on a valid value through C sequential probabilistic trials (lines 34-52).

Concretely, we divide iteration k into C sub-iterations (k, 1), (k, 2), ..., (k,C). Each sub-
iteration (k, x ∈ [1, C]) represents the x-th probabilistic trial within iteration k, and unfolds
as follows. First, correct processes obtain a random value ϕ by utilizing a common coin. Then,
each correct process pi adopts a digest by updating its adopted_digest i variable:

• If no digest is committed by pi, process pi adopts the fixed default digest.
• Otherwise, process pi adopts a digest as follows: (1) For each committed digest z, pi ap-

pends hash(z, ϕ) to the hashed_candidates i list. (2) Process pi sorts hashed_candidates i
in the lexicographic order. (3) Finally, process pi adopts the committed digest z′ that,
along with ϕ, produced the smallest element of the sorted hashed_candidates i list.

We underline that correct processes might adopt different digests.
Once processes adopt their digests, they start the R&A mechanism. Specifically, processes
disseminate the RS symbols received from leader(k) during the dissemination phase. Each
correct process pi, if possible, decodes some value ri using the received RS symbols that
correspond to its adopted digest; if it is impossible to decode any value, process pi sets ri to
its proposal vi. Finally, each correct process pi proposes value ri to the MBA primitive. If
the decided value v is valid, process pi quasi-decides v.

4. The final phase (lines 53-55) of the iteration ensures the quality property. After finishing all
C sub-iterations, processes check if any value was quasi-decided. If so, processes obtain a
random integer I ∈ [1, C], which is then used to select one of the previously quasi-decided
values for the decision.

6.2 Proof Sketch

This subsection gives a proof sketch of Reducer++’s correctness and complexity. Recall that a
formal proof is relegated to §D.

Correctness. We start by providing a proof sketch of the following theorem.

Theorem 3 (Reducer++ is correct). Given n = (3 + ϵ)t + 1, for any fixed constant ϵ > 0, and
the existence of a hash function modeled as a random oracle, Reducer++ (see Alg. 2) is a correct
implementation of the MVBA primitive in the presence of a computationally bounded adversary.

Since the analysis of Reducer++’s agreement, weak validity, external validity, and integrity
follows the arguments made in the analysis of Reducer (see §5.2), we primarily focus on Reducer++’s
termination and quality.
Termination. Reducer++ ensures termination with constant 1

C probability in any good iteration
(see Def. 1). We now provide an informal justification for this statement. Let k be any good
iteration. Let v⋆(k) denote the valid proposal of leader(k) and let z⋆(k) denote the digest of v⋆(k).
As discussed in §2.3, the adversary can only inject C − 1 adversarial digests in iteration k (as
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Algorithm 2 Reducer++: Pseudocode (for process pi)
1 Uses:
2 ▷ MBAℓ exchanges O(n2) messages and O(nℓ+ n2λ logn) bits and terminates in O(1) time
3 MBA algorithm MBAℓ with ValueMBA = ValueMVBA, instancesMBA[k][x], ∀k, x ∈ N

4 Rules:
5 - Any message with an invalid witness is ignored.
6 - Only one init message is processed per process.

7 Constants:
8 Digest default ▷ default digest
9 Integer C = ⌈ 12

ϵ2
⌉+ ⌈ 7

ϵ
⌉ ▷ constant C is used by all processes

10 Local variables:
11 ValueMVBA vi ← pi’s proposal
12 Boolean dissemination_completedi ← false
13 Map(Process→ [RS,Digest,Witness]) symbolsi ← empty map
14 List(Digest) candidatesi ← empty list ▷ will be reset every iteration
15 List(Hash) hashed_candidatesi ← empty list ▷ will be reset every iteration
16 Digest adopted_digesti ← ⊥
17 List(ValueMVBA) quasi_decisionsi ← empty list

18 upon propose(ValueMVBA vi): ▷ start of the algorithm
19 Execute the dissemination phase identical to that of Reducer (lines 19-37 of Alg. 1) except that values are treated as

polynomials of degree ϵt

20 upon receiving ⟨finish⟩ from n− t processes (for the first time):
21 dissemination_completedi ← true ▷ dissemination phase completes
22 for each k = 1, 2, ...:
23 candidatesi ← empty list; hashed_candidatesi ← empty list ▷ reset the candidates
24 Process leader(k)← Election() ▷ elect a random leader
25 broadcast ⟨stored, k, symbolsi[leader(k)].digest()⟩ ▷ disseminate the leader’s digest
26 wait for n− t = (2 + ϵ)t+ 1 stored messages for iteration k
27 for each Digest z included in n− 3t = ϵt+ 1 received stored messages:
28 candidatesi.append(z)
29 broadcast ⟨suggest, k, candidatesi⟩ ▷ disseminate pi’s candidates
30 wait for n− t = (2 + ϵ)t+ 1 suggest messages for iteration k
31 for each Digest z ∈ candidatesi:
32 if z is not included in n− 2t = (1 + ϵ)t+ 1 received suggest messages:
33 candidatesi.remove(z)
34 for each x = 1, 2, ..., C:
35 Integer ϕ← Noise() ▷ obtain a random λ-bit value ϕ
36 if candidatesi.size = 0: adopted_digesti ← default ▷ if no digest is committed, then adopt default
37 else:
38 for each j = 1, 2, ..., candidatesi.size:
39 hashed_candidatesi[j] = hash(candidatesi[j], ϕ)
40 ▷ find the smallest hashed candidate and adopt the associated digest
41 Sort hashed_candidatesi in the lexicographic order
42 Hash smallesti ← hashed_candidatesi[1]
43 Let z′ ∈ candidatesi be the digest such that smallesti = hash(z′, ϕ)
44 adopted_digesti ← z′

45 ▷ Reconstruct & Agree
46 broadcast ⟨reconstruct, k, x, symbolsi[leader(k)]⟩
47 wait for n− t = (2 + ϵ)t+ 1 reconstruct messages for sub-iteration (k, x)
48 Set(RS) Si ← the set of received RS symbols with valid witnesses for adopted_digesti
49 if |Si| ≥ ϵt+ 1: ValueMVBA ri ← decode(Si) ▷ if a value can be decoded, set ri to the decoded value
50 else: ValueMVBA ri ← vi ▷ if not, set ri to pi’s proposal
51 ValueMVBA ∪ {⊥MBA} v ←MBA[k][x].propose(ri) ▷ propose ri
52 if valid(v) = true: quasi_decisionsi.append(v) ▷ quasi-decide v

53 if quasi_decisionsi.size > 0 and pi has not previously decided:
54 Integer I ← Index() ▷ obtain a random integer I in the [1, C] range
55 trigger decide

(
quasi_decisionsi[(I mod quasi_decisionsi.size) + 1]

)
▷ for quality
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z⋆(k) is committed by every correct process and |committed(k)| ≤ C), resulting in at least one fair
probabilistic trial that the adversary cannot rig.

More specifically, the following holds for some trial T : start(T ) = end(T ), where start(T ) (resp.,
end(T )) denotes the set of all digests committed by any correct process before (in global time) the
first correct process starts (resp., ends) trial T . Note that if a correct process adopts the “good”
digest z⋆(k), the process rebuilds value v⋆(k) (line 49) as it necessarily receives n − 3t = ϵt + 1
reconstruct messages for digest z⋆(k). Therefore, the probability that all correct processes
adopt the “good” digest z⋆(k) and input v⋆(k) to the MBA primitive (of trial T ) before the first
correct process ends trial T—which is enough to guarantee that v⋆(k) is decided due to the strong
unanimity property of the MBA primitive—is given by

1

|start(T )|
=

1

|end(T )|
≥ 1

C

since start(T ) = end(T ) ⊆ committed(k) and |committed(k)| ≤ C. If this indeed happens, Re-
ducer++ ensures that all correct processes (quasi-)decide v⋆(k) in trial T and terminate. A formal
argument for Reducer++’s termination can be found in §D.
Quality. If (1) the first iteration is good, (2) correct processes quasi-decide the valid non-adversarial
value v⋆(1), and (3) the Index() request (line 54) selects v⋆(1) as the final decision, a non-adversarial
value is indeed decided from Reducer++. Hence, this occurs with a probability of:

P ≥ (1 + ϵ)t+ 1

(3 + ϵ)t+ 1
· 1
C
· 1
C
≈ 1

3C2
.

As a result, the probability that an adversarial value is decided is 1− P ≤ 1− 1
3C2 < 1.

Complexity. Next, we provide a proof sketch of the following theorem.

Theorem 4 (Reducer++’s expected complexity). Given n = (3 + ϵ)t + 1, for any fixed constant
ϵ > 0, and the existence of a hash function modeled as a random oracle, the following holds for
Reducer++ (see Alg. 2) in the presence of a computationally bounded adversary:

• The expected message complexity is O(n2C2).
• The expected bit complexity is O

(
C2(nℓ+ n2λ log n)

)
.

• The expected time complexity is O(C2).

Let us now informally prove the theorem.
Expected time complexity. As previously discussed, Reducer++ terminates in a good iteration with
at least 1

C probability. Given that each iteration is good with a probability of P ≥ (1+ϵ)t+1
(3+ϵ)t+1 ≈

1
3 ,

Reducer++ terminates in expected 3C iterations. As (1) each iteration takes O(C) time to complete
in expectation, and (2) the dissemination phase consists of O(1) rounds of communication, the
expected time complexity of Reducer++ is O(C2).
Expected message complexity. As (1) each iteration exchanges O(n2C) messages in expectation, and
(2) Reducer++ terminates in O(C) iterations in expectation, correct processes exchange O(n2C2)
messages in expectation through the iterations of Reducer++. Finally, correct processes exchange
O(n2C2) messages in expectation throughout the entire Reducer++ protocol as the dissemination
phase exchanges only O(n2) messages.
Expected bit complexity. The dissemination phase exchanges O(nℓ+n2λ log n) bits. Moreover, each
iteration exchanges O

(
C(nℓ+n2λ log n)

)
bits in expectation. Given that there are O(C) iterations

in expectation, the expected bit complexity of Reducer++ is

O(nℓ+ n2λ log n)︸ ︷︷ ︸
dissemination phase

+O(C) ·O
(
C(nℓ+ n2λ log n)

)︸ ︷︷ ︸
each iteration

⊆ O
(
C2(nℓ+ n2λ log n)

)
.
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7 Related Work

First, we examine earlier results on Byzantine agreement in asynchronous settings (§7.1). Second,
we compare our techniques with those of closely-related works (§7.2).

7.1 Earlier Results

Byzantine agreement in the full information model with an adaptive adversary. Ben-
Or [7] introduced the first solution to the asynchronous Byzantine agreement problem. In Ben-
Or’s algorithm, each process relies on a local coin. This algorithm has the notable advantage of
operating in the full information model (where the adversary is aware of the internal states of all
processes) and tolerating an adaptive adversary. However, since each process uses a local coin—
ensuring an agreement probability of 2−n—the algorithm suffers from exponential latency. Solving
asynchronous Byzantine agreement in the full information model with an adaptive adversary, and
without assuming a common coin, remains a significant challenge, as highlighted in several works
[35, 36, 38, 39, 40, 43]. A major breakthrough occurred in 2018 with the first polynomial-time
algorithm offering linear resilience [40], which corrected a technical flaw made in an earlier result
[39]. Despite this progress, the resilience of the solution in [40] was limited to 1.14 · 10−9 · n.
More recently, the first polynomial-time algorithm achieving optimal resilience for this model was
presented in [36], building on a near-optimal-resilience result from the same authors [35]. However,
this achievement comes with a significant drawback: an expected time complexity of Õ(n12), which
is prohibitively high for practical applications.

Byzantine agreement with private channels. Faced with the significant challenges of solving
Byzantine agreement in the full information model, the research community shifted its focus to a
model incorporating private channels. In this alternative model, algorithms typically depend on a
weak common coin, which permits a constant probability of disagreement on a random value. The
use of a weak common coin for designing Byzantine agreement protocols was pioneered by Canetti
and Rabin [17], who proposed an information-theoretically and adaptively secure asynchronous
binary agreement algorithm with O(n7) bit complexity and O(1) time complexity. Building on
this approach, Abraham et al. [3] developed an adaptively secure asynchronous common subset
(ACS) algorithm with O(n3λ) bit complexity and constant time complexity, relying on public-key
cryptography (where λ represents the signature size). More recently, Abraham et al. [1] introduced a
statistically secure ACS protocol with O(n5) bit complexity and O(1) time complexity, designed for
t < 1

4n. To achieve optimal one-third resilience, this protocol incorporates asynchronous verifiable
secret sharing (AVSS). While it is formally proven to be secure against a static adversary, the
authors conjecture that their protocol can be extended to withstand an adaptive adversary as well.
Similarly, the hash-based ACS protocol proposed by Das et al. [24] employs a weak common coin,
achieving O(1) time complexity and O(n3λ) bit complexity, but its security is limited to static
adversaries.

Byzantine agreement with an idealized common coin. It has become standard practice [29,
28, 51, 42, 30] when constructing asynchronous Byzantine agreement protocols to do so in two parts:
an idealized common-coin abstraction, and an otherwise (possibly) deterministic protocol core. The
common coin encapsulates the randomness, and upon invocation by sufficiently many processes
provides the same unpredictable and unbiasable random sequence to all processes. The rest of
the protocol is the actual deterministic distributed-computing “core mechanism”. A common coin
can be implemented without a trusted dealer (assumed in the pioneering work of Rabin [48]) by
utilizing threshold cryptography [15]. Moreover, the literature contains some dedicated common
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coin protocols [27, 33, 6, 5, 50]. As discussed in §4, Reducer and Reducer++ can also be made to
work with only weak common coins.

MVBA algorithms. The MVBA problem was introduced in [14] alongside a protocol that achieves
O(1) time complexity, O(n2ℓ+n2λ+n3) bit complexity, and optimal one-third resilience (see Tab. 1).
VABA [4] improves bit complexity to O(n2ℓ + n2λ) while maintaining optimal resilience and time
complexity, as does sMVBA [34]. Dumbo-MVBA [42] further reduces bit complexity to O(nℓ+n2λ)
while retaining O(1) time complexity and one-third resilience. All these protocols are secure against
an adaptive adversary, but rely on threshold cryptography which requires trusted setup (or expensive
key generation protocols), is not post-quantum secure, and tends to be slow.

These limitations have sparked growing interest in designing adaptively-secure MVBA protocols
that are hash-based from the ground up (assuming a common-coin object), the state-of-the-art of
which are HMVBA [29], FIN-MVBA [28], and FLT24-MVBA [30] (see Tab. 1). HMVBA achieves
O(nℓ + n2λ log n) bit complexity and O(1) time complexity, but only sub-optimal one-fifth re-
silience. FIN-MVBA tolerates up to t < n/3 faults, while also achieving O(1) time complexity,
but only sub-optimal O(n2ℓ + n3λ) or O(n2ℓ + n2λ + n3 log n) bit complexity. FIN-MVBA itself
is an improvement over the hash-based MVBA protocol implied by the distributed key generation
protocol of [27, 26], which suffers from O(log n) time complexity, and is only secure against static ad-
versaries. Both HMVBA and FIN-MVBA satisfy the quality property. FLT24-MVBA [30] achieves
optimal resilience, tolerating up to one-third faulty processes. Moreover, FLT24-MVBA exchanges
O(nℓ+n2λ log n+n2λκ) bits and terminates in O(log κ) time, where κ denotes a statistical security
parameter (that cannot be treated as a constant, as explained in §7.2). It is also important to
mention that FLT24-MVBA does not satisfy the quality property (see §1).

Other Byzantine agreement solutions. Beyond MVBA, Byzantine agreement primitives such
as multi-valued Byzantine agreement (MBA), asynchronous common subset (ACS), and atomic
broadcast (ABC) are well-studied in distributed systems. Mostefaoui et al. [46, 45] introduced a
cryptography-free asynchronous MBA protocol with optimal resilience, O(n2ℓ) bits and O(1) time.
In [47], a general way of building MBA protocols for long values by “extending” MBA protocols for
short values is proposed (both in synchrony and asynchrony).

PACE [52] solves the ACS problem by relying on n parallel instances of asynchronous binary
agreement, thus obtaining O(log n) time complexity. Building on FIN-MVBA, [28] presents a hash-
based ACS protocol with O(1) time complexity and O(n2ℓ + n3λ) bit complexity. Similarly, [1]
achieves ACS with O(1) time complexity without assuming a common coin, but only with 1/4
resilience and O(n4 log n) bit complexity; it is worth noting that [1] is safe against an adaptive
adversary. Moreover, it is worth mentioning that [1] proposes a similar result with statistical security
for t < n/3. Constructing ABC from MVBA is possible, as shown in [14]. ABC constructed from
FIN-MVBA has O(n3) message complexity, which [51] reduces to O(n2) but without reducing the
O(n2ℓ+ n3λ) bit complexity any further. All of these protocols have optimal resilience.

7.2 Our Techniques vs. Techniques of Closely-Related Works

FLT24-MVBA [30]. The FLT24-MVBA algorithm starts with the dissemination phase in which
each process disseminates its value using a method similar (but not identical) to the approach
employed by HMVBA and our algorithms. The dissemination phase ensures that if a process pi
successfully disseminates its proposal, then at least n− 2t correct processes can reconstruct it even
if process pi later gets corrupted. Then, processes elect κ leaders L1, L2, ..., Lκ whose values they
try to reconstruct; κ denotes a statistical security parameter.
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The crux of the FLT24-MVBA algorithm is a primitive called synchronized multi-valued broad-
cast (SMB); this primitive is inspired by the MV broadcast primitive introduced by Mostefaoui et
al. [46]. The primitive ensures that if n − 2t correct processes broadcast the same input v, then
all correct processes output a set containing at most two values. Furthermore, the outputs of any
two correct processes are guaranteed to overlap: if one process outputs a single value, that value
must appear in the other process’s output set. If both processes output two values, their sets are
identical. The SMB primitive acts as a robust filtering mechanism, ensuring that processes consider
at most two different valid values per each elected leader.

Let us focus on a specific leader Lj . To select one of the two values as the final output of leader
Lj , FLT24-MVBA employs an asynchronous reliable consensus (ARC) protocol. ARC ensures
agreement among processes and guarantees termination if all correct processes share the same input
value. Since SMB may leave two possible values, all correct processes participate in two parallel
ARC protocols, one for each value. However, a termination issue may arise if one of the two values
is not held by all correct processes. To address this, the algorithm utilizes a standard technique [23]
based on the asynchronous binary agreement (ABA) primitive: an ABA protocol follows each ARC
instance in order to decide whether that value (out of the two) should be selected. If a process
outputs 1 in one ABA instance, it proposes 0s to all other ABA instances whose corresponding
ARC counterparts have not yet terminated. Finally, as there exists at least one “good” leader
L (except with negligible probability in κ), L’s SMB instance will terminate, allowing all correct
processes to reach consensus.
Comparison with FLT24-MVBA. The filtering SMB step and our reducing step serve the same
fundamental purpose, making our algorithms similar in this regard. However, a key difference lies
in how termination is handled. In FLT24-MVBA, the SMB-ARC-ABA sequence fails to terminate
if it is tied to a “bad” leader. This constraint prevents FLT24-MVBA from adopting our “one-leader-
per-iteration” structure, as electing a bad leader—which happens with constant probability—would
then cause the entire algorithm to stall indefinitely.

To address this problem, FLT24-MVBA incorporates a statistical security parameter κ. It is
essential to understand why κ cannot be treated as a constant. First, note that, if no “good” leader
is elected, FLT24-MVBA stalls indefinitely, i.e., fails to terminate. Consequently, the protocol solves
the MVBA problem with probability 1− cκ, where c represents the fraction of “bad” leaders. Only
treating κ as a security parameter (rather than as a constant) results in the desired negligible (in κ)
error probability, and allows for instance the algorithm to be used in a polynomial (in κ) composition
while maintaining this negligible error probability (e.g., in the “repeated MVBA” construction of
atomic broadcast or state-machine replication; see §1). In contrast, treating κ as a constant would
result in a constant error probability, making the algorithm ill-suited for composition.

The current design of FLT24-MVBA, where “the fastest leader wins”, prevents the protocol from
ensuring quality. For example, a single adaptive corruption can lead to the decision of an adversarial
value. If a fast, corrupted leader propagates an adversarial value and quickly moves through the
SMB, ARC, and ABA phases, correct processes are forced to follow it. To these processes, the leader
may appear correct and be seen as their only path to termination. As this leader is significantly
faster than others, only the ABA instance tied to its adversarial value will decide on 1, while all other
instances will decide 0, ultimately forcing correct processes to decide on the adversarial value. In
contrast, our algorithms guarantee that the original valid proposal of a “good” leader is eventually
decided (with at least some constant probability), thereby ensuring quality—the importance of
which is discussed in §1.

Comparison with [46]. While the ideas of [46] share the same spirit as ours, they are insufficient
for our algorithms. To elaborate, [46] introduces two broadcasting primitives: (1) the reducing
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(RD) broadcast primitive that reduces the number of values to a constant, and (2) the multi-valued
validated (MV) broadcast primitive that outputs a set of values such that, if the output set of a
correct process contains a single value v, then the output set of any other correct process contains
v. (Recall that the MV broadcast primitive served as inspiration for the SMB primitive of FLT24-
MVBA [30].) Crucially for our discussion, both the RD and MV broadcast primitives guarantee a
delivery of a given value v only if all correct processes broadcast v. In other words, the RD and
MV broadcast primitives ”preserve” a value only if all correct processes hold it. If a majority—but
not all—of the correct processes broadcast v, these primitives do not guarantee that any correct
process will deliver v, meaning v might not be preserved. This design aligns with the focus of [46] on
multi-valued Byzantine agreement (MBA; see Module 2), which satisfies (only) strong unanimity:
if all correct processes propose the same value, that value must be decided; otherwise, any value
can be decided. In this context, the RD and MV broadcast primitives are sufficient, as the MBA
problem only requires preserving a value when all correct processes propose it.

Our algorithms, on the other hand, necessitate the preservation of a value even when it is not
held by all correct processes, which represents the primary reason why the techniques of [46] cannot
be directly applied to our algorithms. To clarify, the main sub-problem in our algorithms can be
seen as follows: If n − 2t correct processes hold a “good” digest z in a good iteration, each correct
process must obtain z and rebuild the corresponding “good” value v (which occurs only with constant
probability in Reducer++). This must be satisfied even if other correct processes hold adversarial
non-z digests, as such an attack can occur in any good iteration. As a result, our algorithms require
stronger techniques (SMBA in Reducer and hash-based adoption procedure in Reducer++) than
those of [46]: as only n − 2t (and not all!) correct processes hold a “good” digest, RD and MV
broadcasts may never deliver z, thus preventing termination. Finally, we design our own MBA
algorithm instead of using the one from [46] as that one requires O(n2ℓ) bits.
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A MBAℓ: Pseudocode & Proof

This section presents MBAℓ, our adaptively-secure asynchronous MBA protocol employed by both
Reducer and Reducer++. MBAℓ exchanges O(n2) messages and O(nℓ + n2λ log n) bits, and termi-
nates in O(1) time. Moreover, MBAℓ tolerates up to t < 1

3n failures. Recall that the specification
of the MBA primitive is given in Module 2.
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Module 4 Graded Consensus
Associated values:
- set ValueMBA of ℓ-bit values

Events:
- input propose(v ∈ ValueMBA): a process proposes value v.
- output decide(v′ ∈ ValueMBA, g

′ ∈ {0, 1}): a process decides value v′ with grade g′.

Assumed behavior:
- Every correct process proposes exactly once.

Properties: ▷ ensured only if correct processes behave according to the assumptions stated above
- Strong unanimity: If all correct processes propose the same value v ∈ ValueMBA and a correct process decides a

pair (v′ ∈ ValueMBA, g
′ ∈ {0, 1}), then v′ = v and g′ = 1.

- Consistency: If any correct process decides a pair (v ∈ ValueMBA, 1), then no correct process decides any pair
(v′ ∈ ValueMBA, ·) with v′ ̸= v.

- Justification: If any correct process decides a pair (v′ ∈ ValueMBA, ·), then v′ is proposed by a correct process.
- Integrity: No correct process decides more than once.
- Termination: All correct processes eventually decide.

Module 5 Binary Byzantine Agreement
Events:
- input propose(v ∈ {0, 1}): a process proposes binary value v.
- output decide(v′ ∈ {0, 1}): a process decides binary value v′.

Assumed behavior:
- Every correct process proposes exactly once.

Properties: ▷ ensured only if correct processes behave according to the assumptions stated above
- Strong unanimity: If all correct processes propose the same value v ∈ {0, 1} and a correct process decides a

value v′ ∈ {0, 1}, then v′ = v.
- Agreement: No two correct processes decide different values.
- Integrity: No correct process decides more than once.
- Termination: All correct processes eventually decide.

A.1 Pseudocode

The pseudocode of the MBAℓ algorithm is given in Alg. 3. Before discussing MBAℓ’s pseudocode,
we formally introduce the graded consensus and binary Byzantine agreement primitives employed
in MBAℓ.

Graded consensus. The formal specification of the primitive is given in Module 4.
In our MBAℓ algorithm, we rely on a deterministic implementation [21] of the graded consensus

primitive that exchanges O(n2) messages and O(nℓ+ n2λ log n) bits, and terminates in O(1) time.
This implementation tolerates up to t < 1

3n faulty processes and relies solely on a collision-resistant
hash function. Note that, as the implementation is deterministic, it is inherently secure against an
adaptive adversary.

Binary Byzantine agreement. The binary agreement primitive is similar to the MBA primitive
(see Module 2). However, there are two major differences: (1) correct processes only propose 0 and
1, and (2) correct processes cannot decide a special value, i.e., only 0 and 1 can be decided from
BA. The formal specification is given in Module 5.

In our MBAℓ algorithm, we utilize a binary agreement algorithm proposed by Mostefaoui and
Raynal [45]; this algorithm is safe and live against an adaptive adversary, exchanges O(n2) messages
and bits in expectation, terminates in O(1) time in expectation, and relies on no cryptography.

Pseudocode description. When a correct process pi proposes its value vi (line 6), it forwards the
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Algorithm 3 MBAℓ: Pseudocode (for process pi)
1 Uses:
2 ▷ [21] exchanges O(n2) messages and O(nℓ+ n2λ logn) bits and terminates in O(1) time
3 Graded consensus algorithm [21] on the ValueMBA set, instance GC
4 ▷ [45] exchanges O(n2) messages and O(n2) bits and terminates in O(1) time
5 Binary Byzantine agreement algorithm [45], instance BA

6 upon propose(ValueMBA vi): ▷ start of the algorithm
7 (ValueMBA, {0, 1}) (adopted_value, g)← GC.propose(vi)
8 {0, 1} g′ ← BA.propose(g)
9 if g′ = 1:

10 trigger decide(adopted_value)
11 else:
12 trigger decide(⊥MBA)

value to the GC graded consensus algorithm (line 7). Then, process pi proposes the grade decided
from GC to the BA binary Byzantine agreement algorithm (line 8). If the bit decided from BA is
1, then process pi decides the value decided from GC (line 10). Otherwise, process pi decides ⊥MBA

(line 12).

A.2 Proof of Correctness & Complexity

This section proves MBAℓ’s correctness and complexity.

Proof of correctness. To prove the correctness of MBAℓ, we prove the following lemma.

Lemma 1 (MBAℓ is correct). Given t < 1
3n and the existence of a collision-resistant hash func-

tion, MBAℓ (see Alg. 3) is a correct implementation of the MBA primitive in the presence of a
computationally bounded adversary.

In the rest of the section, we say that a correct process pi adopts a value v if and only if
adopted_value = v at process pi when process pi reaches line 8. First, we prove that if any correct
process proposes 1 to the BA instance of the BA primitive, then no two correct processes adopt
different values.

Claim 1. If any correct process proposes 1 to BA, then no two correct processes adopt different
values.

Proof. Let pi be any correct process that proposes 1 to BA. Hence, pi decides with grade 1 from
GC. The statement of the claim then holds due to the consistency property of GC.

We are ready to prove MBAℓ’s strong unanimity.

Proposition 1 (MBAℓ satisfies strong unanimity). Given t < 1
3n and the existence of a collision-

resistant hash function, MBAℓ (see Alg. 3) satisfies strong unanimity in the presence of a computa-
tionally bounded adversary.

Proof. Suppose all correct processes propose the same value v. Hence, each correct process pi
decides (v, 1) from GC (due to its strong unanimity property) and adopts v. Furthermore, each
correct process proposes 1 to BA, which ensures that all correct processes decide 1 from BA (due
to its strong unanimity property). Finally, each correct process decides v.

Next, we prove MBAℓ’s agreement.
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Proposition 2 (MBAℓ satisfies agreement). Given t < 1
3n and the existence of a collision-resistant

hash function, MBAℓ (see Alg. 3) satisfies agreement in the presence of a computationally bounded
adversary.

Proof. Let g⋆ denote the binary value decided from BA. We distinguish two cases:
• Let g⋆ = 0. In this case, all correct processes that decide do so with ⊥MBA. The agreement

property is satisfied in this case.
• Let g⋆ = 1. Therefore, every correct process decides its adopted value. Moreover, the strong

unanimity property of BA ensures that a correct process proposes 1 to BA. Therefore, the
agreement is satisfied due to Claim 1.

As agreement is ensured in any possible case, the proof is concluded.

We proceed by proving MBAℓ’s justification.

Proposition 3 (MBAℓ satisfies justification). Given t < 1
3n and the existence of a collision-resistant

hash function, MBAℓ (see Alg. 3) satisfies justification in the presence of a computationally bounded
adversary.

Proof. Suppose a correct process pi decides a non-⊥MBA value v. Hence, process pi adopts v. Finally,
the justification property of GC guarantees that v is proposed to MBAℓ by a correct process, which
concludes the proof.

Next, we prove the integrity property.

Proposition 4 (MBAℓ satisfies integrity). Given t < 1
3n and the existence of a collision-resistant

hash function, MBAℓ (see Alg. 3) satisfies integrity in the presence of a computationally bounded
adversary.

Proof. The integrity property is satisfied due to the integrity property of BA.

Finally, we prove MBAℓ’s termination.

Proposition 5 (MBAℓ satisfies termination). Given t < 1
3n and the existence of a collision-resistant

hash function, MBAℓ (see Alg. 3) satisfies termination in the presence of a computationally bounded
adversary.

Proof. The termination property is satisfied as both GC and BA terminate.

Proof of complexity. We now proceed to prove MBAℓ’s complexity.

Lemma 2 (MBAℓ’s expected complexity). Given t < 1
3n and the existence of a collision-resistant

hash function, the following holds for MBAℓ (see Alg. 3) in the presence of a computationally bounded
adversary:

• The expected message complexity is O(n2).
• The expected bit complexity is O(nℓ+ n2λ log n).
• The expected time complexity is O(1).

Proof. As the worst-case message complexity of GC is O(n2) and the expected message complexity
of BA is O(n2), the expected message complexity of MBAℓ is O(n2). Given that correct processes
send O(nℓ + n2λ log n) bits in GC and O(n2) bits in BA, the expected bit complexity of MBAℓ is
indeed O(nℓ + n2λ log n). Finally, as both GC and BA terminate in O(1) time in expectation, the
expected time complexity of MBAℓ is O(1).
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Module 6 CRB
Associated values:
- set Digest of O(λ)-bit digests
- special value ⊥CRB /∈ Digest

Events:
- input broadcast(z ∈ Digest): a process broadcasts digest z.
- output deliver(z′ ∈ Digest ∪ {⊥CRB}): a process delivers digest z′ or the special value ⊥CRB.

Assumed behavior:
- Every correct process broadcasts exactly once.
- Only O(1) different digests are broadcast by correct processes.

Properties: ▷ ensured only if correct processes behave according to the assumptions stated above
- Validity: If up to two different digests are broadcast by correct processes, no correct process delivers the special

value ⊥CRB.
- Justification: If any correct process delivers a digest z′ ∈ Digest (z′ ̸= ⊥CRB), then z′ is broadcast by a correct

process.
- Integrity: No correct process delivers unless it has previously broadcast.
- Termination: All correct processes deliver at least once.
- Totality: If any correct process delivers z ∈ Digest ∪ {⊥CRB}, then all correct processes eventually deliver z.

B SMBAλ: Pseudocode & Proof

This section presents SMBAλ, our adaptively-secure asynchronous SMBA protocol employed in
Reducer. SMBAλ exchanges O(n2) messages and O(n2λ) bits, and terminates in O(1) time. The
specification of the SMBA primitive can be found in Module 3.

B.1 Collective Reliable Broadcast (CRB): Pseudocode & Proof

First, we introduce the CRB primitive that plays a major role in our SMBAλ algorithm.

Primitive definition. The CRB primitive closely resembles the reliable broadcast primitive de-
scribed in [13]. Its formal specification is provided in Module 6.

We emphasize that, per Module 6, any correct process may deliver multiple times. Moreover,
the termination property ensures that each correct process delivers at least once.

B.1.1 Pseudocode

The pseudocode of CRBλ, our CRB algorithm, can be found in Alg. 4. Our CRBλ algorithm
exchanges O(n2) messages and O(n2λ) bits, and terminates in O(1) time. Moreover, the CRBλ

algorithm tolerates up to t < 1
4n faulty processes. We underline that the CRBλ algorithm is heavily

inspired by Bracha’s reliable broadcast algorithm [11].

Pseudocode description. We describe the pseudocode of the CRBλ algorithm from the perspec-
tive of a correct process pi. Upon broadcasting its digest zi (line 16), process pi broadcasts an init
message for zi (line 17). Once process pi receives the same digest z in (at least) t+1 init messages
(line 18), which proves that z is broadcast by a correct process, process pi broadcasts an echo
message for z (line 19). Similarly, once process pi receives the same digest z in (at least) 2t + 1
echo (line 20) or t + 1 ready messages (line 22), process pi broadcasts a ready message for z
(line 21 or line 23). Finally, once process pi receives 2t + 1 ready messages for the same digest
(line 24), it delivers the digest (line 25).

Upon realizing that there are at least three different digests broadcast by correct processes
(line 32), process pi broadcasts a broken message (line 33). Similarly, upon receiving t+1 broken
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Algorithm 4 CRBλ: Pseudocode (for process pi)
1 Rules:
2 - Only one init message is processed per process.
3 - At most one echo message is broadcast per digest.
4 - At most one ready message is broadcast per digest.
5 - At most one broken message is broadcast.
6 - No computational steps are taken unless a digest was previously broadcast.

7 Local variables:
8 Digest zi ← pi’s broadcast digest
9 Map(Digest→ Integer) numi ← {0, for every z ∈ Digest}

10 Local functions:
11 - distinct() = |{z ∈ Digest |numi[z] > 0}|.
12 - eliminated():
13 (1) Let Z = {z ∈ Digest |numi[z] > 0}.
14 (2) Sort Z in the ascending order according to the numi map.
15 (3) Return the greatest integer x ∈ N≥0 such that numi[Z[1]] + ...+ numi[Z[x]] ≤ t.

16 upon broadcast(Digest zi): ▷ start of the algorithm
17 broadcast ⟨init, zi⟩

18 upon exists Digest z such that ⟨init, z⟩ is received from t+ 1 processes:
19 broadcast ⟨echo, z⟩

20 upon exists Digest z such that ⟨echo, z⟩ is received from 2t+ 1 processes:
21 broadcast ⟨ready, z⟩

22 upon exists Digest z such that ⟨ready, z⟩ is received from t+ 1 processes:
23 Broadcast ⟨ready, z⟩

24 upon exists Digest z such that ⟨ready, z⟩ is received from 2t+ 1 processes:
25 trigger deliver(z)

26 upon ⟨broken⟩ is received from t+ 1 processes:
27 broadcast ⟨broken⟩

28 upon ⟨broken⟩ is received from 2t+ 1 processes:
29 trigger deliver(⊥CRB)

30 upon receiving ⟨init,Digest z⟩:
31 numi[z]← numi[z] + 1

32 upon (1) distinct()− eliminated() ≥ 3, and (2) ≥ n− t ≥ 3t+ 1 init messages are received:
33 broadcast ⟨broken⟩

messages (line 26), process pi rebroadcasts the message (line 27). Once process pi receives 2t + 1
broken messages (line 28), it delivers the special value ⊥CRB (line 29).

B.1.2 Proof of Correctness & Complexity

This subsection proves CRBλ’s correctness and complexity.

Proof of correctness. To prove CRBλ’s correctness, we prove the following lemma.

Lemma 3 (CRBλ is correct). Given t < 1
4n, CRBλ (see Alg. 4) is a correct implementation of the

CRB primitive in the presence of a computationally unbounded adversary.

In the rest of the proof, let BC denote the set of all digests broadcasts by correct processes. We
start by proving that CRBλ satisfies the validity property. To this end, we show that if there exists
a correct process that broadcasts a broken message at line 33, then |BC | ≥ 3.
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Claim 2. If there exists a correct process that broadcasts a broken message at line 33, then
|BC | ≥ 3.

Proof. Let pi be any correct process that broadcasts a broken message at line 33. By contradiction,
suppose |BC | ≤ 2. Let init denote the set of all init messages received by pi prior to broadcasting
the broken message at line 33. Let us define a set I:

I = {(pj , z) | ∃m = ⟨init, z⟩ : m ∈ init ∧ pj is the sender of m}.

Note that |I| ≥ n− t ≥ 3t+ 1 (due to the second condition of the rule at line 32). We now define
a set of digests correct_digs in the following way:

correct_digs = {z | ∃(pj , z) ∈ I : pj is a correct process}.

Let X = |correct_digs|. Note that X ∈ {1, 2} (as |BC | ≤ 2, |I| ≥ 3t + 1 and there are at most t
faulty processes). We also define a set of digests faulty_digs:

faulty_digs = {z | ∃(pj , z) ∈ I : pj is a faulty process}.

Note that distinct() = |correct_digs ∪ faulty_digs|. Let F be defined as

F = |{(pj , z) | (pj , z) ∈ I ∧ pj is a faulty process}|.

Note that F ≤ t as process pi accepts at most one init message per process (line 2) and there are
up to t faulty processes.

Let Z denote the sorted list of digests constructed by the eliminated() function (line 14). We
say that a digest z is eliminated if and only if (1) z = Z[i], and (2) i ∈ [1, eliminated()]. (If
eliminated() = 0, no digest is eliminated.)

As process pi sends the broken message at line 33, distinct() − eliminated() ≥ 3 at process pi
(line 32). Therefore, there are at least three non-eliminated digests. We distinguish two possible
scenarios:

• Let X = 1. Let correct_digs = {z}, for some digest z. Note that numi[z] ≥ 2t+1 (as there are
at least 2t+1 messages in init that are received from correct processes). Therefore, z cannot be
eliminated. Moreover, note that there does not exist a digest z′ ∈ correct_digs ∪ faulty_digs
such that z precedes z′ in Z. If such z′ existed, numi[z

′] ≥ 2t+ 1, which further implies that
z′ ∈ correct_digs. As correct_digs = {z}, this is impossible. Therefore, z must be the last
digest in the list Z.
For every digest z′ ∈ faulty_digs \ {z}, all init messages for z′ received by pi are sent by
faulty processes. Hence, every digest z′ ∈ faulty_digs \ {z} is eliminated. Thus, distinct() −
eliminated() = |{z} ∪ faulty_digs| − |faulty_digs \ {z}| = 1, which represents a contradiction
with the fact that distinct()− eliminated() ≥ 3. This means that this case is impossible.

• Let X = 2. Let correct_digs = {z1, z2}, for some digests z1 and z2. Note that numi[z1] ≥ t+1
or numi[z2] ≥ t + 1 (as there are at least 2t + 1 init messages received by pi from correct
processes). Without loss of generality, let numi[z1] ≥ t + 1. Therefore, the digest z1 cannot
be eliminated. Observe also that there cannot exist a digest z3 ∈ faulty_digs \ correct_digs
such that z1 precedes z3 in Z. Indeed, for such digest z3 to exist, num_i [z3] ≥ t + 1, which
then implies that z3 must belong to correct_digs. As this is not the case, the only digest that
can succeed z1 in the list Z is z2.
We distinguish two cases:

– Let z2 not be eliminated. We further study two cases:
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∗ Let z1 precede z2 in the sorted list of digests Z. In this case, z2 is the last digest
in the list Z and z1 is the penultimate digest in the list Z. (This holds as only z2
can succeed z1 in Z.) Crucially, all other digests in the list are eliminated as (1)
init messages for them are sent only by faulty processes, and (2) there are at most t
faulty processes. Therefore, distinct()− eliminated() = 2, which contradicts the fact
that distinct()− eliminated() ≥ 3. Thus, this case is impossible.

∗ Let z2 precede z1 in the sorted list of digests Z. In this case, z1 is the last digest in
the list. (This holds as only z2 can succeed z1 in Z.) Note that all values that precede
z2 in the list Z are eliminated (as these are values held by faulty processes only). Let
eliminated denote the set of eliminated digests. Let Beliminated =

∑
z∈eliminated

numi[z].

Note that Beliminated ≤ t due to the definition of the eliminated digests. Importantly,
as z2 is not eliminated, we have Beliminated + numi[z2] ≥ t+1, which further implies
numi[z2] ≥ t+ 1−Beliminated .
By contradiction, suppose there exists a digest z3 such that (1) z2 precedes z3 in
Z, and (2) z3 precedes z1 in Z. As z3 ∈ faulty_digs \ correct_digs, Beliminated

messages are used on the values preceding z2 and there are F messages issued by
faulty processes, numi[z3] ≤ F − Beliminated . Moreover, numi[z3] ≥ numi[z2] (as z2
precedes z3 in Z). This implies numi[z2] ≤ F−Beliminated . Hence, t+1−Beliminated ≤
numi[z2] ≤ F − Beliminated , which further implies t + 1 ≤ F . This is impossible as
F ≤ t.

– Let z2 be eliminated. Note that, as z2 is eliminated and z1 is not eliminated, z2 precedes
z1 in list Z. Given that only z2 can succeed z1 in list Z, z1 is the last digest in Z. As
distinct() − eliminated() ≥ 3 and z1 is not eliminated, there are at least two digests in
Z that are (1) not eliminated, and (2) not broadcast by correct processes. Let z′ =
Z[eliminated() + 1] and z′′ = Z[eliminated() + 2]. Note that z2 precedes both z′ and z′′

as z2 is eliminated and z′ and z′′ are not. Moreover, note that all init messages sent for
z′ or z′′ are sent by faulty processes (as z′, z′′ ∈ faulty_digs \ correct_digs).
Let eliminated denote the set of eliminated digests. For each digest z ∈ eliminated , let
Cz (resp., Bz) denote the number of ⟨init, z⟩ messages received by pi from correct (resp.,
faulty) processes. (Hence, for each digest z ∈ eliminated , numi[z] = Cz + Bz.) Note
that Cz2 > 0 (as z2 ∈ correct_digs); for every digest z ∈ eliminated \ {z2}, Cz = 0.
Let Beliminated =

∑
z∈eliminated

Bz. Observe that Cz2 + Beliminated + numi[z
′] ≥ t + 1 as,

otherwise, z′ would also be eliminated. Therefore, numi[z
′] ≥ t+1−Cz2−Beliminated . As

numi[z
′′] ≥ numi[z

′], numi[z
′′] ≥ t+ 1− Cz2 −Beliminated . Thus, numi[z

′] + numi[z
′′] ≥

2t+2− 2Cz2 − 2Beliminated . Moreover, numi[z
′] + numi[z

′′] ≤ F −Beliminated (as all init
messages for z′ or z′′ are sent by faulty processes and there are already Beliminated faulty
processes that sent init messages for digests different from z′ and z′′). Hence, we have:

2t+ 2− 2Cz2 − 2Beliminated ≤ numi[z
′] + numi[z

′′] ≤ F −Beliminated .

This implies 2t+2− 2Cz2 − 2Beliminated ≤ F −Beliminated , which implies 2Cz2 ≥ 2t+2−
Beliminated − F .
Observe that numi[z

′′] ≥ numi[z
′] ≥ Cz2 (as neither z′ nor z′′ are eliminated, numi[z2] ≥

Cz2 and z2 is eliminated). Therefore, numi[z
′] + numi[z

′′] ≥ 2Cz2 . Therefore, F −
Beliminated ≥ 2Cz2 .
Thus, we have 2t + 2 − Beliminated − F ≤ 2Cz2 ≤ F − Beliminated . Therefore, 2t + 2 −
Beliminated −F ≤ F −Beliminated , which implies 2t+2 ≤ 2F . As F ≤ t, this is impossible.
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The claim holds as its statement holds in all possible cases.

We are now ready to prove the CRBλ satisfies validity.

Proposition 6 (CRBλ satisfies validity). Given t < 1
4n, CRBλ (see Alg. 4) satisfies validity in the

presence of a computationally unbounded adversary.

Proof. Let |BC | ≤ 2. By contradiction, suppose there exists a correct process pi that delivers ⊥CRB.
Therefore, there exists a correct process that broadcasts a broken message. The first correct
process that broadcasts a broken message does so at line 33. Hence, Claim 2 proves that |BC | ≥ 3,
which implies contradiction with |BC | ≤ 2. Thus, CRBλ satisfies validity.

Next, we prove the termination property of CRBλ. To do so, we first show that if there exists a
digest z broadcast by at least t + 1 correct processes, then every correct process delivers z within
O(1) asynchronous rounds.

Claim 3. Let there exist a digest z broadcast by at least t+1 correct processes. Then, every correct
process delivers z within O(1) asynchronous rounds.

Proof. As t + 1 correct processes broadcast z, every correct process eventually receives t + 1 init
messages for z (line 18) and broadcasts an echo message for z (line 19). (This occurs within a
single message delay.) Therefore, every correct process eventually broadcasts a ready message for
z (line 21) upon receiving an echo message for z from (at least) 2t + 1 processes (line 20). (This
incurs another message delay.) Finally, every correct process eventually receives a ready message
for z from (at least) 2t+1 processes (line 24) and delivers z (line 25) in 3 ∈ O(1) message delays.

The following claim proves that all correct processes deliver the special value ⊥CRB within O(1)
asynchronous rounds given that (1) |BC | > 3, and (2) no digest is broadcast by t + 1 (or more)
correct processes.

Claim 4. If (1) |BC | > 3, and (2) no digest is broadcast by t+1 correct processes, then every correct
process delivers ⊥CRB within O(1) asynchronous rounds.

Proof. To prove the claim, we prove that all correct processes broadcast a broken message within
O(1) message delays, which then implies that all correct processes receive 2t+ 1 broken messages
(line 28) and deliver ⊥CRB (line 29) within O(1) message delays. Let |BC | = x > 3. Without loss of
generality, let BC = {z1, z2, ..., zx−1, zx}, for some digests z1, z2, ..., zx. Consider any correct process
pi and time τ at which process pi receives init messages from all correct processes. Note that this
occurs within a single message delay. Let I denote the set of init messages received by pi at time
τ ; note that |I| ≥ n − t ≥ 3t + 1 as there are at least n − t ≥ 3t + 1 correct processes. Next, we
define a set of digests correct_digs in the following way:

correct_digs = {z | z is received in a message m ∈ I whose sender is correct}.

Note that correct_digs = {z1, z2, ..., zx−1, zx}. For each digest z ∈ correct_digs, let Cz (resp., Bz)
denote the number of ⟨init, z⟩ messages received by pi from correct (resp., faulty) processes at time
τ . Observe that, for every z ∈ correct_digs, numi[z] = Cz+Bz. Moreover, Cz1 +Cz2 + ...+Czx−1 +
Czx ≥ n− t ≥ 3t+ 1 as there are at least n− t ≥ 3t+ 1 correct processes.

Let Z denote the sorted list of digests constructed by the eliminated() function (line 14). We
say that a digest z is eliminated if and only if (1) z = Z[i], and (2) i ∈ [1, eliminated()]. (If
eliminated() = 0, no digest is eliminated.) To prove the claim, it suffices to show that at most
x − 3 digests from the correct_digs set are eliminated at time τ as this (along with the fact that
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|I| ≥ n − t ≥ 3t + 1) guarantees that the rule at line 32 activates at process pi. By contradiction,
suppose that x−2 (or more) digests from the correct_digs set are eliminated. We distinguish three
cases:

• Suppose exactly x − 2 digests from the correct_digs set are eliminated. Without loss of
generality, let z1, z2, ..., zx−3, zx−2 be eliminated at time τ . This implies that numi[z1] +
numi[z2] + ... + numi[zx−2] = (Cz1 + Bz1) + (Cz2 + Bz2) + ... + (Czx−2 + Bzx−2) ≤ t, which
further implies that Cz1 +Cz2 + ...+Czx−2 ≤ t. As Cz1 +Cz2 + ...+Czx−1 +Czx ≥ 3t+1 and
Cz1 + Cz2 + ... + Czx−2 ≤ t, Czx−1 + Czx ≥ 2t + 1. Therefore, Czx−1 ≥ t + 1 or Czx ≥ t + 1,
which contradicts the fact that no digest is broadcast by t+ 1 correct processes.

• Suppose exactly x − 1 digests from the correct_digs set are eliminated. Without loss of
generality, let z1, z2, ..., zx−3, zx−2, zx−1 be eliminated at time τ . This implies that numi[z1] +
numi[z2]+ ...+numi[zx−2]+numi[zx−1] = (Cz1 +Bz1)+ (Cz2 +Bz2)+ ...+(Czx−2 +Bzx−2)+
(Czx−1 + Bzx−1) ≤ t, which further implies that Cz1 + Cz2 + ... + Czx−2 + Czx−1 ≤ t. As
Cz1 + Cz2 + ...+ Czx−1 + Czx ≥ 3t+ 1 and Cz1 + Cz2 + ...+ Czx−2 + Czx−1 ≤ t, Czx ≥ 2t+ 1.
This contradicts the fact that no digest is broadcast by t+ 1 correct processes.

• Suppose exactly x digests from the correct_digs set are eliminated. This is impossible as
num[z1]+num[z2]+...+num[zx] ≥ 3t+1 due to the fact that Cz1+Cz2+...+Czx−1+Czx ≥ 3t+1.

As neither of the aforementioned cases can occur, the claim holds.

We are finally ready to prove the termination property of Alg. 4.

Proposition 7 (CRBλ satisfies termination). Given t < 1
4n, CRBλ (see Alg. 4) satisfies termination

in the presence of a computationally unbounded adversary. Precisely, every correct process delivers
within O(1) asynchronous rounds.

Proof. To prove the proposition, we study two possible scenarios:
• Let |BC | ≤ 3. In this case, there exists a digest z broadcast by at least t+1 correct processes.

Therefore, every correct process delivers z within O(1) message delays (by Claim 3). Hence,
the termination property is satisfied in this case.

• Let |BC | > 3. We further distinguish two cases:
– Let there exist a digest z broadcast by t+1 correct processes. In this case, the termination

property is ensured due to Claim 3.
– Let there be no digest broadcast by t + 1 correct processes. The termination property

holds in this case due to Claim 4.
As termination is satisfied in every possible case, the proposition holds.

Note that Proposition 7 proves that the worst-case time complexity of CRBλ is O(1): correct
processes deliver the first digest in O(1) time. Next, we prove CRBλ’s integrity.

Proposition 8 (CRBλ satisfies integrity). Given t < 1
4n, CRBλ (see Alg. 4) satisfies integrity in

the presence of a computationally unbounded adversary.

Proof. The integrity property is satisfied due to the rule at line 6.

The following proposition proves CRBλ’s justification.

Proposition 9 (CRBλ satisfies justification). Given t < 1
4n, CRBλ (see Alg. 4) satisfies justification

in the presence of a computationally unbounded adversary.
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Proof. Suppose a correct process pi delivers a digest z ∈ Digest. Therefore, there exists a ready
message for z broadcast by a correct process. Note that the first correct process to broadcast a
ready message for z does so at line 21. Hence, there exists a correct process that broadcasts an
echo message for z, which implies z ∈ BC (as at least t+ 1 init messages for z are received).

Finally, we prove that CRBλ satisfies totality.

Proposition 10 (CRBλ satisfies totality). Given t < 1
4n, CRBλ (see Alg. 4) satisfies totality in

the presence of a computationally unbounded adversary. Precisely, if any correct process delivers
z ∈ Digest ∪ {⊥CRB}, then every correct process delivers z within O(1) asynchronous rounds from
the aforementioned delivery.

Proof. Suppose a correct process pi delivers z ∈ Digest ∪ {⊥CRB}. We distinguish two possibilities:
• Let z ∈ Digest. (This implies that z ̸= ⊥CRB.) Hence, pi received a ⟨ready, z⟩ message from

(at least) 2t+1 processes, which implies that all correct processes eventually receive (at least)
t+1 ready message for z and broadcast a ready message for z. Thus, every correct process
receives 2t+ 1 ready messages for z within O(1) message delays and delivers z.

• Let z = ⊥CRB. Following the same argument as above (just applied to broken messages), we
conclude that every correct process delivers ⊥CRB within O(1) message delays.

As the statement of the proposition holds in both cases, the proof is concluded.

Observe that Proposition 10 proves that the totality property is satisfied within O(1) asyn-
chronous rounds from the first delivery.

Proof of complexity. We now prove CRBλ’s complexity.

Lemma 4 (CRBλ’s worst-case complexity). Given t < 1
4n, the following holds for CRBλ (see Alg. 4)

in the presence of a computationally unbounded adversary:
• The worst-case message complexity is O(n2).
• The worst-case bit complexity is O(n2λ).

Proof. Consider any correct process pi. If pi broadcasts an echo or a ready message for a digest z,
then z ∈ BC . Moreover, process pi broadcasts at most one init and at most one broken message.
Therefore, process pi sends

O(n)︸ ︷︷ ︸
init

+ O(n)︸ ︷︷ ︸
broken

+ |BC | ·O(n)︸ ︷︷ ︸
echo & ready

messages.

Moreover, process pi sends

O(nλ)︸ ︷︷ ︸
init

+ O(n)︸ ︷︷ ︸
broken

+ |BC | ·O(nλ)︸ ︷︷ ︸
echo & ready

bits.

Given that |BC | ∈ O(1), process pi sends O(n) messages and O(nλ) bits, which implies that all
correct processes send O(n2) messages and O(n2λ) bits.

B.2 Pseudocode

The pseudocode of SMBAλ is given in Alg. 5. Internally, SMBAλ relies on (1) instances MBA1

and MBA2 of the MBA primitive run on digests (lines 3 and 5), and (2) an instance CRB of the
CRB algorithm CRBλ (line 7). Concretely, forMBA1 andMBA2, we rely on the MBA algorithm
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Algorithm 5 SMBAλ: Pseudocode (for process pi)
1 Uses:
2 ▷ [46] exchanges O(n2) messages and O(n2λ) bits and terminates in O(1) time
3 MBA algorithm [46] with ValueMBA = Digest ∪ {⊥CRB}, instanceMBA1

4 ▷ [46] exchanges O(n2) messages and O(n2λ) bits and terminates in O(1) time
5 MBA algorithm [46] with ValueMBA = Digest, instanceMBA2

6 ▷ CRBλ exchanges O(n2) messages and O(n2λ) bits
7 CRB algorithm CRBλ, instance CRB

8 Constants:
9 Digest default ▷ default digest

10 Local variables:
11 Digest zi ← pi’s proposal
12 Set(Digest) delivered i ← ∅

13 upon propose(Digest zi): ▷ start of the algorithm
14 invoke CRB.broadcast(zi)

15 upon CRB.deliver(Digest ∪ {⊥CRB} z):
16 delivered i ← delivered i ∪ {z}
17 if |delivered i| = 1:
18 invokeMBA1.propose(z)

19 uponMBA1.decide(Digest ∪ {⊥CRB,⊥MBA} z′): ▷ we assume ⊥CRB ̸= ⊥MBA

20 if z′ ̸= ⊥MBA:
21 Digest ∪ {⊥CRB} z⋆ ← z′

22 if z⋆ = ⊥CRB:
23 z⋆ ← default
24 invokeMBA2.propose(z

⋆)
25 else:
26 wait for |delivered i| = 2
27 Let z⋆ be the lexicographically smallest digest ( ̸= ⊥CRB) in delivered i

28 invokeMBA2.propose(z
⋆)

29 uponMBA2.decide(Digest ∪ {⊥MBA} z′′):
30 if z′′ = ⊥MBA:
31 z′′ ← default
32 trigger decide(z′′)

introduced in [46] that (1) exchanges O(n2) messages and O(n2λ) bits in expectation, and (2)
terminates in O(1) time in expectation.

Pseudocode description. We explain the pseudocode of our SMBA protocol SMBAλ from the
perspective of a correct process pi. Once pi proposes its digest zi (line 13), process pi broadcasts zi
via CRB (line 14). When pi delivers the first digest (or the special value ⊥CRB) from CRB (line 15),
pi proposes it toMBA1 (line 18). Let pi decide z′ ∈ Digest∪{⊥CRB,⊥MBA} fromMBA1 (line 19);
we assume ⊥CRB ̸= ⊥MBA. Now, we distinguish two cases:

• Let z′ ̸= ⊥MBA. Note that the justification property of MBA1 ensures that z′ was proposed
by a correct process. We further investigate two scenarios:

– Let z′ = ⊥CRB. In this case, process pi proposes the default digest default to MBA2

(lines 23 and 24). Note that, as ⊥CRB is delivered from CRB, there must exist more than
two different digests proposed by correct processes (due to CRB’s validity property).
Therefore, this case does not require the decision to be proposed by a correct process.

– Let z′ ̸= ⊥CRB. Then, process pi proposes z′ to MBA2 (lines 21 and 24). Observe that
the justification property of CRB guarantees that z′ is proposed by correct process.
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• Let z′ = ⊥MBA. The strong unanimity property of MBA1 guarantees that not all correct
processes proposed the same value z ∈ Digest ∪ {⊥CRB} to MBA1. (Otherwise, ⊥MBA could
not have been decided.) Thus, there are at least two different values z1, z2 ∈ Digest∪ {⊥CRB}
delivered from CRB by correct processes. In this case, process pi waits to deliver the second
digest (or ⊥CRB) from CRB (line 26). Once that happens (and it will due to CRB’s totality
property), process pi proposes toMBA2 the lexicographically smallest digest (thus, not⊥CRB!)
it has delivered from CRB (lines 27 and 28).

Finally, once process pi decides z′′ ∈ Digest ∪ {⊥MBA} from MBA2 (line 29), pi decides (1) the
default digest default if z′′ = ⊥MBA (lines 31 and 32), or (2) z′′ otherwise (line 32).

B.3 Proof of Correctness & Complexity

This subsection formally proves the correctness and complexity of SMBAλ.

Proof of correctness. We first prove the following lemma.

Lemma 5 (SMBAλ is correct). Given t < 1
4n, SMBAλ (see Alg. 5) is a correct implementation of

the SMBA primitive in the presence of a computationally unbounded adversary.

We start by proving the agreement property of SMBAλ.

Proposition 11 (SMBAλ satisfies agreement). Given t < 1
4n, SMBAλ (see Alg. 5) satisfies agree-

ment in the presence of a computationally unbounded adversary.

Proof. The agreement property follows directly from the agreement property ofMBA2.

Next, we prove that SMBAλ satisfies strong validity. In the rest of the proof, let ZC denote the
set of digests proposed by correct processes. We start by proving that only constantly many different
digests are broadcast by correct processes via CRB. (Recall that this assumption is required by
CRB; see Module 6.)

Claim 5. Only O(1) different digests are broadcast by correct processes via CRB.

Proof. The claim follows directly from the assumption that only O(1) different digests are proposed
by correct processes (see Module 3).

Claim 5 proves that CRB behaves according to its specification. (To not pollute the presentation
of the proof, we might not explicitly rely on Claim 5 in the rest of the proof.) Next, we prove that
if |ZC | ≤ 2, then all correct processes propose the same digest z toMBA2 with z ∈ ZC .

Claim 6. Let |ZC | ≤ 2. Then, there exists a digest z such that (1) z ∈ ZC , and (2) every correct
process proposes z to MBA2.

Proof. As |ZC | ≤ 2, at most two different values are broadcast via CRB by correct processes.
Therefore, the validity property of CRB guarantees that no correct process delivers the special
value ⊥CRB from CRB. Moreover, the termination property of CRB ensures that all correct processes
eventually deliver from CRB and, thus, propose toMBA1. Hence, the termination and agreement
properties ofMBA1 ensure that all correct processes eventually decide z′ ∈ Digest∪{⊥CRB,⊥MBA}
fromMBA1. We distinguish two cases:

• Let z′ ̸= ⊥MBA. The justification property of MBA1 guarantees that z′ was proposed to
MBA1 by a correct process. Therefore, z′ was delivered by a correct process from CRB, which
further implies that (1) z′ ̸= ⊥CRB, and (2) z′ ∈ ZC due to CRB’s justification property. This
means that every correct process proposes z′ to MBA2. Hence, the statement of the claim
holds in this case.
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• Let z′ = ⊥MBA. The strong unanimity property of MBA1 proves that at least two different
values from the Digest ∪ {⊥CRB} set are proposed to MBA1 by correct processes. Let z1
denote one such value and let z2 ̸= z1 denote another. Both z1 and z2 are delivered from
CRB by correct processes, which implies that z1 ̸= ⊥CRB and z2 ̸= ⊥CRB. Moreover, the
justification property of CRB guarantees that z1 ∈ ZC and z2 ∈ ZC . As z1 ̸= z2 and
|ZC | ≤ 2, ZC = {z1, z2}.
Now, consider any correct process pi. As both z1 and z2 are delivered by correct processes
from CRB, process pi eventually delivers these two digests (due to CRB’s totality property).
Moreover, process pi never delivers (1) any other digest z3 ̸= ⊥CRB from CRB as CRB’s
justification would imply z3 ∈ ZC (recall that ZC = {z1, z2}), and (2) ⊥CRB as no correct
process ever delivers ⊥CRB due to CRB’s validity property (recall that |ZC | ≤ 2). Hence,
delivered i = {z1, z2} when |delivered i| = 2 at process pi. Thus, pi (and every other correct
process) proposes the lexicographically smaller digest between z1 and z2, which implies that
the statement of the claim holds even in this case.

The claim holds as its statement is satisfied in both possible scenarios.

We are ready to prove that SMBAλ satisfies strong validity.

Proposition 12 (SMBAλ satisfies strong validity). Given t < 1
4n, SMBAλ (see Alg. 5) satisfies

strong validity in the presence of a computationally unbounded adversary.

Proof. Let |ZC | ≤ 2. Let pi be any correct process that decides some digest z′. Claim 6 shows
that there exists a digest z such that (1) z ∈ ZC , and (2) all correct processes propose z to
MBA2. Therefore, the strong unanimity property of MBA2 ensures that all correct processes
decide z ̸= ⊥MBA fromMBA2. Thus, z′ = z, which implies z′ ∈ ZC .

Next, we prove the integrity property of SMBAλ.

Proposition 13 (SMBAλ satisfies integrity). Given t < 1
4n, SMBAλ (see Alg. 5) satisfies integrity

in the presence of a computationally unbounded adversary.

Proof. The proposition holds due to the integrity property ofMBA2.

Finally, we prove the termination property of SMBAλ.

Proposition 14 (SMBAλ satisfies termination). Given t < 1
4n, SMBAλ (see Alg. 5) satisfies termi-

nation in the presence of a computationally unbounded adversary. Precisely, every correct process
decides within O(1) asynchronous rounds in expectation.

Proof. The CRB primitive guarantees that all correct processes propose to MBA1 within O(1)
time (by Proposition 7). Therefore, the termination and agreement properties ofMBA1 guarantee
that all correct processes eventually decide some z′ ∈ Digest ∪ {⊥CRB,⊥MBA}. Given that MBA1

terminates in O(1) expected time, all correct processes decide fromMBA1 in O(1) expected time.
We now differentiate two cases:

• Let z′ ̸= ⊥MBA. In this case, all correct processes propose to MBA2 within O(1) time in
expectation.

• Let z′ = ⊥MBA. The strong unanimity property of MBA1 proves that at least two different
values from the Digest ∪ {⊥CRB} set have been proposed to MBA1 by correct processes.
Therefore, there are at least two different values delivered from CRB by correct processes.
The totality property guarantees that all correct processes eventually deliver (at least) two
values from CRB, and they do so in additional O(1) time (by Proposition 10). Thus, all
correct processes eventually propose to MBA2 even in this case. Concretely, all correct
processes propose toMBA2 within O(1) time in expectation.
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As all correct processes propose to MBA2 within O(1) time in expectation (in any of the two
cases), the termination property of MBA2 and its O(1) expected time complexity ensure that all
correct processes decide fromMBA2 in additional O(1) time in expectation. Thus, SMBAλ indeed
terminates in O(1) expected time, which concludes the proof.

Proof of complexity. To prove SMBAλ’s complexity, we prove the following lemma.

Lemma 6 (SMBAλ’s expected complexity). Given t < 1
4n, the following holds for SMBAλ (see

Alg. 5) in the presence of a computationally unbounded adversary:
• The expected message complexity is O(n2).
• The expected bit complexity is O(n2λ).

Proof. As CRB,MBA1, andMBA2 exchange O(n2) messages and O(n2λ) bits in expectation, the
expected message complexity of SMBAλ is O(n2) and its expected bit complexity is O(n2λ).

SMBAλ for strong consensus. As noted earlier in §4, SMBAλ can be easily adapted to solve
the strong consensus [32] problem with up to x = |X | predetermined proposals X , for any x ∈
O(1). First, our CRBλ algorithm, when operating among n = (x + 1)t + 1 processes with up to x
predetermined values, should be modified to never send broken messages (see Alg. 4). The SMBAλ

algorithm modified for strong consensus operates as follows.
1. Each correct process broadcasts its proposal using the CRBλ algorithm.
2. Each correct process delivers a value v ∈ X from CRBλ. Due to the justification property of

the CRBλ algorithm, v was proposed by a correct process to SMBAλ.
3. For each index = 1, 2, ..., x− 1, execute the following logic:

(a) Propose v to the index -th instance of the MBA primitive.
(b) Decide some value v′ ∈ X ∪ {⊥MBA}. Now, we differentiate two cases:

• If v′ ̸= ⊥MBA, then decide v′ and terminate. Importantly, the justification property
of the MBA primitive ensures that v′ was proposed by a correct process (to SMBAλ).

• If v′ = ⊥MBA, then not all correct processes proposed the same value to the index -th
instance of the MBA primitive. Hence, wait to deliver index + 1 different values
from CRBλ. Once this happens (and it will due to the totality property of the CRBλ

algorithm), update v to the lexicographically smallest value delivered from CRBλ.
The justification property of the CRBλ algorithm ensures that v was proposed by a
correct process to SMBAλ.

4. Decide the lexicographically smallest value from the X set. If this step is reached, it means
that all values from the X set have been proposed by correct processes to SMBAλ; otherwise,
correct processes would have decided in one of the x− 1 iterations.

As |X | = x ∈ O(1), the modified SMBAλ algorithm exchanges O(xn2) messages and O(xn2ℓ) bits
(where ℓ denotes the bit-size of the values from the X set), and terminates in O(x) time.

C Reducer: Proof

This section formally proves the correctness and complexity of our MVBA algorithm Reducer. Recall
that Reducer’s pseudocode is given in Alg. 1.

C.1 Proof of Correctness

This subsection formally proves Thm. 1. Recall that n = 4t+ 1.

External validity. We start by proving that Reducer satisfies external validity.
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Lemma 7 (Reducer satisfies external validity). Given n = 4t + 1 and the existence of a collision-
resistant hash function, Reducer (see Alg. 1) satisfies external validity in the presence of a compu-
tationally bounded adversary.

Proof. The external validity property is satisfied as every value quasi-decided by a correct process
is valid due to the check at line 73.

Agreement. Next, we prove Reducer’s agreement. We say that a correct process pi quasi-decides
a vector vec in an iteration k ∈ N if and only if quasi_decisions i = vec when process pi reaches
line 75 in iteration k. We now prove that, for every iteration k ∈ N, different vectors cannot be
quasi-decided by correct processes.

Proposition 15. Let k ∈ N be any iteration. Suppose a correct process pi quasi-decides a vector
veci in iteration k and another correct process pj quasi-decides a vector vecj in iteration k. Then,
veci = vecj.

Proof. The proposition follows from the agreement property of the MBA[k][x] instance (of the
MBA primitive), for every x ∈ {1, 2, 3}.

We are now ready to prove that Reducer ensures agreement.

Lemma 8 (Reducer satisfies agreement). Given n = 4t+1 and the existence of a collision-resistant
hash function, Reducer (see Alg. 1) satisfies agreement in the presence of a computationally bounded
adversary.

Proof. By contradiction, suppose (1) there exists a correct process pi that decides a value vi, and
(2) there exists a correct process pj that decides a value vj ̸= vi. Let pi (resp., pj) decide vi (resp.,
vj) in some iteration ki ∈ N (resp., kj ∈ N). Therefore, process pi (resp., pj) quasi-decides vi (resp.,
vj) in iteration ki (resp., kj). Without loss of generality, let ki ≤ kj .

As process pi quasi-decides vi in iteration ki, process pi quasi-decides a vector veci in iteration
ki; note that vi belongs to veci. By Proposition 15, process pj also quasi-decides the non-empty
vector veci in iteration ki. We separate two cases:

• Let ki = kj . Due to the fact that the Index() request invoked in iteration ki = kj returns the
same integer to all correct processes, we have that vj = vi. Thus, we reach a contradiction
with vj ̸= vi in this case.

• Let ki < kj . As pj quasi-decides the non-empty vector veci in iteration ki, we reach a
contradiction with the fact that pj decides in iteration kj > ki.

As neither of the above cases can occur, the agreement property is satisfied.

Weak validity. To prove that Reducer satisfies weak validity, we first show that if any correct
process proposes a value v to theMBA[k][x] instance, for any sub-iteration (k, x), and all processes
are correct, then v is the proposal of a correct process.

Proposition 16. Let (k ∈ N, x ∈ {1, 2, 3}) be any sub-iteration and let all processes be correct. If
any correct process pi proposes a value v to MBA[k][x], then v is the proposal of a correct process.

Proof. Recall that leader(k) denotes the leader of iteration k. We distinguish two cases:
• Let pi execute line 69. In this case, process pi has received (at least) t + 1 RS symbols.

Given that all processes are correct, all these RS symbols are sent by leader(k) during the
dissemination phase and they all correspond to leader(k)’s proposal. Therefore, v is the
proposal of leader(k), which proves the statement of the proposition in this case.
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• Let pi execute line 71. The statement of the proposition trivially holds in this case as v is pi’s
proposal.

As the statement of the proposition holds in both cases, the proof is concluded.

The following lemma proves that Reducer satisfies weak validity.

Lemma 9 (Reducer satisfies weak validity). Given n = 4t+1 and the existence of a collision-resistant
hash function, Reducer (see Alg. 1) satisfies weak validity in the presence of a computationally
bounded adversary.

Proof. Suppose all processes are correct. Moreover, let a correct process pi decide some value v; note
that value v must be valid by Lem. 7. Hence, process pi quasi-decides v in some iteration k ∈ N,
which further implies that v is decided from MBA[k][x] in some sub-iteration (k, x ∈ {1, 2, 3}).
Given that v is valid and ⊥MBA is invalid, v ̸= ⊥MBA. Thus, the justification property ofMBA[k][x]
guarantees that v is proposed to MBA[k][x] by a correct process. Proposition 16 then proves that
v is the proposal of a correct process, which concludes the proof.

Integrity. Next, we prove Reducer’s integrity.

Lemma 10 (Reducer satisfies integrity). Given n = 4t+1 and the existence of a collision-resistant
hash function, Reducer (see Alg. 1) satisfies integrity in the presence of a computationally bounded
adversary.

Proof. The lemma trivially holds due to the check at line 75.

Termination. Next, we prove that Reducer satisfies termination. We say that a correct process
completes the dissemination phase if and only if the process executes line 37. The following propo-
sition proves that at least one correct process completes the dissemination phase (and thus starts
the first iteration of Reducer).

Proposition 17. At least one correct process completes the dissemination phase.

Proof. By contradiction, suppose no correct process completes the dissemination phase. Hence, no
correct process stops responding with ack messages (line 29) upon receiving init messages (line 26).
As there are (at least) n− t correct processes, every correct process eventually broadcasts a done
message (line 31). Similarly, every correct process eventually receives n− t done messages (line 32)
and broadcasts a finish message (line 33). Thus, every correct process eventually receives a finish
message from (at least) n − t processes (line 36) and completes the dissemination phase (line 37),
thus contradicting the fact that no correct process completes the dissemination phase.

The following proposition proves that if a correct process completes the dissemination phase,
then all correct processes eventually complete the dissemination phase.

Proposition 18. If any correct process completes the dissemination phase, then every correct process
eventually completes the dissemination phase.

Proof. Let pi be any correct process that completes the dissemination phase. This implies that pi
receives n− t = 3t+1 finish messages (line 36), out of which (at least) 2t+1 messages are sent by
correct processes. Therefore, every correct process eventually receives 2t+1 ≥ t+1 finish messages
(line 34) and broadcasts its finish message (line 35). Given that there are (at least) n− t correct
processes, every correct process eventually receives n − t finish messages (line 36) and completes
the dissemination phase (line 37).
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We are ready to prove that every correct process eventually completes the dissemination phase.

Proposition 19. Every correct process eventually completes the dissemination phase.

Proof. The proposition follows directly from propositions 17 and 18.

Recall that the specification of the SMBA primitive (see Module 3) assumes that only O(1)
different proposals are input by correct processes. Hence, to prove that the SMBA instances
utilized in Reducer operate according to their specification, we now prove that only O(1) different
proposals are input by correct processes to any SMBA instance. Recall that we say that a correct
process pi suggests a digest z in an iteration k ∈ N if and only if pi broadcasts a suggest message
with digest z in iteration k (line 45). Let suggestedi(k) denote the set of digests suggested by any
correct process pi in any iteration k ∈ N. The following proposition proves that each correct process
suggests at most two digests in every iteration.

Proposition 20. For every correct process pi and every iteration k ∈ N, |suggestedi(k)| ≤ 2.

Proof. For every digest z ∈ suggestedi(k), process pi receives (at least) n − 3t = t + 1 stored
messages in iteration k (due to the check at line 43). As pi receives n− t = 3t+1 stored messages
(line 42) before broadcasting its suggest message, there can be at most 3t+1

t+1 < 3 suggested digests,
which concludes the proof.

Recall that we say a correct process pi 1-commits (resp., 2-commits) a digest z in an iteration
k ∈ N if and only if candidates i[1] = z (resp., candidates i[2] = z) when process pi reaches line 55
in iteration k. Similarly, a correct process pi commits a digest z in an iteration k ∈ N if and only
if pi 1-commits or 2-commits z in iteration k. We denote by committedi(k) the set of digests a
correct process pi commits in an iteration k ∈ N. The following proposition proves that any correct
process pi commits only digests previously suggested by pi (in the same iteration) or the default
digest default (line 10).

Proposition 21. For every correct process pi and every iteration k ∈ N, the following holds:

committedi(k) ⊆ (suggestedi(k) ∪ {default}).

Proof. Consider any digest z ∈ committedi(k). To prove the proposition, it suffices to show that
if z ∈ committedi(k) and z ̸= default , then z ∈ suggestedi(k). By contradiction, suppose (1)
z ∈ committedi(k), (2) z ̸= default , and (3) z /∈ suggestedi(k). Let us consider three possibilities:

• Let candidates i.size = 0 when pi reaches line 50. This case is impossible as pi commits only
default in this case, i.e., z ̸= default is not committed.

• Let candidates i.size = 1 when pi reaches line 50. As z /∈ suggestedi(k), this case is also
impossible as z is not committed by pi.

• Let candidates i.size = 2 when pi reaches line 50. Again, this case cannot occur as z cannot
be committed given that z /∈ suggestedi(k).

As neither of the three cases can occur, the proposition holds.

Next, we prove that if any correct process commits a digest z ̸= default in any iteration k, then
(at least) t+ 1 correct processes suggest z in iteration k.

Proposition 22. Consider any correct process pi and any iteration k ∈ N. If process pi commits a
digest z ̸= default , then (at least) t+ 1 correct processes suggest z in iteration k.
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Proof. If process pi commits z ̸= default , Proposition 21 proves that z ∈ suggestedi(k). Hence, for
process pi to not remove z from its candidates i list after receiving n− t = 3t+1 suggest messages
(line 46), pi must have received at least 2t+1 suggest messages for z (line 48). Therefore, at least
2t+ 1− t = t+ 1 correct processes suggest z in iteration k.

Recall that, for any iteration k ∈ N, we define the set committed(k):

committed(k) = {z | z is committed by a correct process in iteration k}.

The following proposition proves that |committed(k)| ∈ O(1), for any iteration k.

Proposition 23. For every iteration k ∈ N, |committed(k)| ∈ O(1).

Proof. Proposition 22 proves that every committed digest z ̸= default is suggested by at least t+1
correct processes. Moreover, Proposition 20 proves that each correct process suggests at most two
digests in each iteration. Therefore, there can be at most 2(4t+1)

t+1 = 8t+2
t+1 < 8 non-default digests

that are committed by correct processes in iteration k. Finally, as the special default digest default
can also be committed, |committed(k)| < 9, which concludes the proof.

Finally, we are ready to prove that only O(1) different digests are proposed by correct processes
to any SMBA instance.

Proposition 24. Let (k ∈ N, x ∈ {1, 2, 3}) be any sub-iteration. Then, only O(1) different digests
are proposed to SMBA[k][x] by correct processes.

Proof. If a correct process pi proposes a digest z to SMBA[k][x] (line 62), then pi commits z
in iteration k (lines 57, 59 and 61). Hence, z ∈ committed(k). As |committed(k)| ∈ O(1) (by
Proposition 23), the proof is concluded.

We now prove that if all correct processes start any iteration k, all correct processes eventually
start sub-iteration (k, 1).

Proposition 25. Let k ∈ N be any iteration such that all correct processes start iteration k. Then,
all correct processes eventually start sub-iteration (k, 1).

Proof. As all correct processes start iteration k and there are at least n−t = 3t+1 correct processes,
all correct processes eventually receive n − t = 3t + 1 stored messages (line 42) and broadcast
a suggest message (line 45). Therefore, all correct processes eventually receive n − t = 3t + 1
suggest messages (line 46) and start sub-iteration (k, 1) at line 55.

Next, we prove that if all correct processes start any sub-iteration (k, x), then all correct processes
eventually complete sub-iteration (k, x).

Proposition 26. Let (k ∈ N, x ∈ {1, 2, 3}) be any sub-iteration such that all correct processes start
sub-iteration (k, x). Then, all correct processes eventually complete sub-iteration (k, x).

Proof. Given that all correct processes start sub-iteration (k, x), all correct processes propose to
SMBA[k][x] (line 62). By Proposition 24, SMBA[k][x] behaves according to its specification
(see Module 3). Thus, the termination property of SMBA[k][x] ensures that all correct processes
eventually decide from SMBA[k][x]. Then, all correct processes broadcast a reconstruct message
(line 65), thus ensuring that every correct process eventually receives n− t = 3t+1 reconstruct
messages (as there are at least n − t = 3t + 1 correct processes). Hence, all correct processes
eventually propose to MBA[k][x] (line 72). The termination property of MBA[k][x] ensures that
all correct processes complete sub-iteration (k, x), thus concluding the proof.
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The following proposition proves that every iteration and sub-iteration are eventually started
and completed by all correct processes.

Proposition 27. Every iteration and sub-iteration are eventually started and completed by all
correct processes.

Proof. By Proposition 19, all correct processes start iteration 1. Therefore, Proposition 25 proves
that all correct processes start sub-iteration (1, 1). By inductively applying propositions 25 and 26,
we prove that every sub-iteration (and, thus, every iteration) is eventually started and completed
by all correct processes.

To not pollute the presentation, we might not explicitly rely on Proposition 27 in the rest of
the proof. Recall that, by Def. 1, an iteration k ∈ N is good if and only if leader(k) ∈ Dfirst.
Recall that Dfirst denotes the set of so-far-uncorrupted processes from which pfirst—the first correct
process that broadcasts a finish message at line 33—receives done messages before broadcasting
the aforementioned finish message. Note that |Dfirst| ≥ n− 2t = 2t+ 1. Moreover, recall that, for
every good iteration k, (1) v⋆(k) denotes the valid proposal of leader(k), and (2) z⋆(k) denotes the
digest of v⋆(k). The proposition below proves that every correct process suggests z⋆(k) in any good
iteration k.

Proposition 28. Let k ∈ N be any good iteration. Then, every correct process suggests z⋆(k) in
iteration k.

Proof. As leader(k) ∈ Dfirst, leader(k) stores z⋆(k) at n− t = 3t+ 1 processes in the dissemination
phase, out of which at most t can be faulty. Thus, leader(k) stores z⋆(k) at ≥ 2t+1 correct processes.
This further implies that each correct process receives z⋆(k) in stored messages from at least t+1
processes, which means that each correct process broadcasts a suggest message with z⋆(k) (due
to the check at line 43) and, thus, suggests z⋆(k) in iteration k.

Next, we prove that every correct process commits z⋆(k) in any good iteration k.

Proposition 29. Let k ∈ N be any good iteration. Then, every correct process commits z⋆(k) in
iteration k.

Proof. By Proposition 28, all correct processes suggest z⋆(k) in iteration k. Hence, for each correct
process pi, candidates i[1] = z⋆(k) or candidates i[2] = z⋆(k) when process pi broadcasts a suggest
message (line 45). Furthermore, each correct process pi receives a suggest message with z⋆(k) from
at least n− t− t = 2t+ 1 processes, which means that pi does not remove z⋆(k) from candidates i
at line 49. Hence, the proposition holds.

The following proposition proves that if any correct process commits any digest (including
default) in any good iteration k, then (at least) 2t + 1 − f correct processes suggest z in iteration
k, where f ≤ t denotes the actual number of faulty processes.

Proposition 30. Consider any correct process pi and any good iteration k ∈ N. If process pi
commits a digest z (z might be equal to default), then (at least) 2t+ 1− f correct processes suggest
z in iteration k, where f ≤ t denotes the actual number of faulty processes.

Proof. By Proposition 28, all correct processes suggest z⋆(k) in iteration k. Thus, when process pi
reaches line 50, candidates i.size > 0 as candidates i[1] = z⋆(k) or candidates i[2] = z⋆(k). Hence,
process pi does not execute line 51. Therefore, for each digest z that process pi commits, z is
suggested by at least 2t+ 1− f correct processes in iteration k (due to the check at line 48).
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The following proposition proves that |committed(k)| ≤ 3 in any good iteration.

Proposition 31. Let k ∈ N be any good iteration k. Then, |committed(k)| ≤ 3.

Proof. Proposition 29 proves that all correct processes commit z⋆(k) in iteration k. Thus, z⋆(k) ∈
committed(k). To prove the proposition, we analyze the cardinality of the committed(k) \ {z⋆(k)}
set; let X = |committed(k) \ {z⋆(k)}|.

For every digest z ∈ committed(k) \ {z⋆(k)}, Proposition 30 proves that z is suggested by (at
least) 2t+1−f correct processes in iteration k. By Proposition 28, all correct processes suggest z⋆(k)
in iteration k. Given that each correct process suggests at most two digests (by Proposition 20),
there are at most n−f “correct suggestions” for non-z⋆(k) digests. By contradiction, suppose X ≥ 3.
Therefore, there are at least X(2t+ 1− f) ≥ 3(2t+ 1− f) = 6t+ 3− 3f “correct suggestions” for
non-z⋆(k) digests. Thus, we have n− f = 4t+ 1− f ≥ 6t+ 3− 3f , which implies 2f ≥ 2t+ 2 and
f ≥ t+ 1. This is impossible as f ≤ t, which means X < 3, thus concluding the proof.

For every iteration k ∈ N and every x ∈ {1, 2}, let us define the committed(k, x) set in the
following way:

committed(k, x) = {z | z is x-committed by a correct process in iteration k}.

Observe that the following holds: (1) committed(k, 1) ⊆ committed(k), and (2) committed(k, 2) ⊆
committed(k). The following proposition proves that Eq. (⊚) holds in any good iteration.

Proposition 32. Let k ∈ N be any good iteration. Then, the following holds:(
z⋆(k) ∈ committed(k, 1) ∧ |committed(k, 1)| ≤ 2

)
∨
(
{z⋆(k)} = committed(k, 2)

)
.

Proof. Recall that Proposition 29 proves that every correct process commits z⋆(k) in iteration k.
(Thus, z⋆(k) ∈ committed(k).) To prove the proposition, we consider three possible cases:

• Let z⋆(k) be the lexicographically smallest digest in committed(k). In this case, every correct
process 1-commits z⋆(k) in iteration k. (Otherwise, z⋆(k) could not be the smallest digest
among committed(k).) Thus, committed(k, 1) = {z⋆(k)}.

• Let z⋆(k) be the lexicographically greatest digest in committed(k). In this case, every correct
process 2-commits z⋆(k) in iteration k. Hence, committed(k, 2) = {z⋆(k)}.

• Let z⋆(k) not be the lexicographically smallest nor the lexicographically greatest digest in
committed(k). Hence, there exist digests z1 and z2 in committed(k) such that (1) z1 < z⋆(k),
and (2) z⋆(k) < z2. (Proposition 31 then shows that committed(k) = {z1, z⋆(k), z2}.) As
(1) z2 ∈ committed(k), (2) every correct process commits z⋆(k) < z2 in iteration k (by
Proposition 29), and (3) each correct process commits at most two different digests, there
exists a correct process that 1-commits z⋆(k), i.e., z⋆(k) ∈ committed(k, 1). Moreover, since
(1) every correct process commits z⋆(k) in iteration k (by Proposition 29), and (2) z⋆(k) <
z2, no correct process 1-commits z2 in iteration k. Therefore, z⋆(k) ∈ committed(k, 1) and
|committed(k, 1)| ≤ 2, which concludes the proof in this case.

As the statement of the proposition holds in each scenario, the proof is concluded.

We now prove that all correct processes quasi-decide v⋆(k) in a good iteration.

Proposition 33. Let k ∈ N be any good iteration. Then, all correct processes quasi-decide v⋆(k) in
iteration k.
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Proof. By Proposition 32, the following holds:(
z⋆(k) ∈ committed(k, 1) ∧ |committed(k, 1)| ≤ 2

)
∨
(
{z⋆(k)} = committed(k, 2)

)
.

Moreover, recall that Proposition 29 proves that all correct processes commit z⋆(k) in iteration k.
We distinguish two cases:
• Let committed(k, 2) = {z⋆(k)}. Hence, all correct processes propose z⋆(k) to SMBA[k][2].

The strong validity and termination properties of SMBA[k][2] ensure that all correct pro-
cesses decide z⋆(k) from SMBA[k][2]. As k is a good iteration, correctly encoded RS symbols
(that correspond to value v⋆(k)) are stored at ≥ n− 2t = 2t+1 correct processes. Therefore,
each correct process receives RS symbols with correct witnesses for z⋆(k) via reconstruct
messages from at least t+1 processes and decodes value v⋆(k) (line 69). Next, all correct pro-
cesses propose v⋆(k) toMBA[k][2], which ensures that all correct processes decide v⋆(k) (due
to its strong unanimity and termination properties). As v⋆(k) is valid, all correct processes
indeed quasi-decide v⋆(k) in iteration k.

• Let |committed(k, 1)| ≤ 2 and z⋆(k) ∈ committed(k, 1). In this case, correct processes propose
to SMBA[k][1] at most two different digests (as |committed(k, 1)| ≤ 2) out of which one
is z⋆(k) (as z⋆(k) ∈ committed(k, 1)). The termination and strong validity properties of
SMBA[k][1] prove that all correct processes decide from SMBA[k][1] a digest that belongs
to committed(k, 1). We now distinguish two possibilities:

– Let the digest decided from SMBA[k][1] be z⋆(k). As k is a good iteration, correctly
encoded RS symbols (that correspond to value v⋆(k)) are stored at ≥ n − 2t = 2t + 1
correct processes. This means that each correct process receives RS symbols with correct
witnesses for z⋆(k) via reconstruct messages from at least t+1 processes and decodes
value v⋆(k) (line 69). Furthermore, all correct processes propose v⋆(k) to MBA[k][1],
which ensures that all correct processes decide v⋆(k) (due to its strong unanimity and
termination properties). As v⋆(k) is valid, all correct processes quasi-decide v⋆(k) in
iteration k.

– Let the digest decided from SMBA[k][1] be z ̸= z⋆(k). Due to the strong validity prop-
erty of SMBA[k][1] (recall that only two different digests are proposed to SMBA[k][1]
by correct processes), z ∈ committed(k, 1). Therefore, the following holds:

∗ All correct processes that proposed z to SMBA[k][1] switch their proposal for
SMBA[k][3]: all those correct processes propose z⋆(k) to SMBA[k][3] (line 59).
(Recall that all correct processes commit z⋆(k) in iteration k.)

∗ All correct processes that proposed z⋆(k) to SMBA[k][1] propose z⋆(k) to SMBA[k][3]
(as the check at line 58 does not pass).

Therefore, all correct processes propose z⋆(k) to SMBA[k][3]. The strong validity and
termination properties of SMBA[k][3] ensure that all correct processes decide z⋆(k) from
SMBA[k][3]. As in the previous cases, correctly encoded RS symbols (that correspond
to value v⋆(k)) are stored at ≥ n− 2t = 2t+1 correct processes. Therefore, each correct
process receives RS symbols with correct witnesses for z⋆(k) via reconstruct messages
from at least t+1 processes and decodes value v⋆(k) (line 69). This means that all correct
processes propose v⋆(k) to MBA[k][3], which ensures that all correct processes decide
v⋆(k) (due to its strong unanimity and termination properties). Given that v⋆(k) is a
valid value, all correct processes quasi-decide v⋆(k).

As the statement of the proposition holds in both cases, the proof is concluded.

Finally, we are ready to prove Reducer’s termination.
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Lemma 11 (Reducer satisfies termination). Given n = 4t + 1 and the existence of a collision-
resistant hash function, Reducer (see Alg. 1) satisfies termination in the presence of a computation-
ally bounded adversary. Precisely, every correct process decides within O(1) iterations in expectation.

Proof. Proposition 33 proves that all correct processes quasi-decide in a good iteration k ∈ N. Each
iteration is good with (at least) P = 2t+1

4t+1 ≈
1
2 probability (due to the fact that |Dfirst| ≥ 2t + 1

and n = 4t + 1). Let Ek denote the event that Reducer does not terminate after k-th iteration.
Therefore, Pr[Ek] ≤ (1−P )k ← 0 as k ←∞. Moreover, let K be the random variable that denotes
the number of iterations required for Reducer to terminate. Then, E[K] = 1/P ≈ 2, which proves
that Reducer terminates within O(1) iterations in expectation.

Quality. To conclude Reducer’s proof of correctness, we now show that Reducer satisfies the quality
property. Recall that the quality property requires that the probability of deciding an adversarial
value is strictly less than 1.

Lemma 12 (Reducer satisfies quality). Given n = 4t + 1 and the existence of a collision-resistant
hash function, Reducer (see Alg. 1) satisfies quality in the presence of a computationally bounded
adversary.

Proof. Proposition 33 proves that all correct processes quasi-decide value v⋆(k) in a good iteration
k; recall that v⋆(k) is a non-adversarial value. Hence, if the first iteration of Reducer is good, all
correct processes quasi-decide v⋆(1) in iteration 1. In that case, for Reducer to decide v⋆(1), it
is required that the Index() request selects v⋆(1). The probability of that happening is at least 1

3
as there can be at most three quasi-decided values. Thus, the probability that Reducer decides a
non-adversarial value is (at least) 2t+1

4t+1 ·
1
3 ≈

1
6 . Therefore, quality is ensured as the probability that

an adversarial value is decided is at most 5
6 < 1.

C.2 Proof of Complexity

We now formally prove the complexity of Reducer (see Thm. 2).

Message complexity. We start by proving that Reducer sends O(n2) messages in expectation.

Lemma 13 (Reducer’s expected message complexity). Given n = 4t + 1 and the existence of a
collision-resistant hash function, the expected message complexity of Reducer (see Alg. 1) is O(n2)
in the presence of a computationally bounded adversary.

Proof. The lemma holds as (1) the dissemination phase exchanges O(n2) messages in expectation,
(2) each iteration exchanges O(n2) messages in expectation, and (3) there are O(1) iterations in
expectation (by Lem. 11).

Bit complexity. Next, we prove Reducer’s expected bit complexity. We start by proving that
correct processes send O(nℓ+ n2λ log n) bits in the dissemination phase.

Proposition 34. Correct processes send O(nℓ+ n2λ log n) bits in the dissemination phase.

Proof. Each RS symbol is of size O( ℓn + log n) bits. Let pi be any correct process. Process pi sends
n ·O( ℓn + log n+ λ+ λ log n) ⊆ O(ℓ+ nλ log n) bits via init messages. Moreover, process pi sends
O(n) bits via ack, done and finish messages. Therefore, process pi sends

O(ℓ+ nλ log n)︸ ︷︷ ︸
init

+ O(n)︸ ︷︷ ︸
ack, done & finish

⊆ O(ℓ+ nλ log n) bits in the dissemination phase.
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This implies that correct processes collectively send O(nℓ+ n2λ log n) bits.

Next, we prove that correct processes send O(nℓ+ n2λ log n+ n2 log k) bits in any iteration k.

Proposition 35. Correct processes send O(nℓ + n2λ log n + n2 log k) bits in expectation in any
iteration k ∈ N.

Proof. Correct processes send O(n2λ + n2 log k) bits via stored and suggest messages. Recall
that stored messages include a single digest and suggest messages include at most two digests.
stored and suggest messages also include the number of the iteration to which they refer.

Now, consider any sub-iteration (k, x ∈ {1, 2, 3}). Correct processes send O(n2λ + n2 log k)
bits in expectation while executing SMBA[k][x]. Note that the O(n2 log k) term exists as (1) each
message of SMBA[k][x] needs to be tagged with “k, x ∈ {1, 2, 3}”, and (2) SMBA[k][x] exchanges
O(n2) messages in expectation. Next, correct processes send O(nℓ + n2λ log n + n2 log k) bits
via reconstruct messages. Finally, correct processes send O(nℓ + n2λ log n + n2 log k) bits in
expectation while executing MBA[k][x]. Again, the O(n2 log k) term exists as (1) each message of
MBA[k][x] needs to be tagged with “k, x ∈ {1, 2, 3}”, and (2)MBA[k][x] exchanges O(n2) messages
in expectation. Therefore, correct processes collectively send

O(n2λ+ n2 log k)︸ ︷︷ ︸
SMBA[k][x]

+ O(nℓ+ n2λ log n+ n2 log k)︸ ︷︷ ︸
reconstruct

+ O(nℓ+ n2λ log n+ n2 log k)︸ ︷︷ ︸
MBA[k][x]

⊆ O(nℓ+ n2λ log n+ n2 log k) bits in sub-iteration (k, x).

Given that iteration k has three sub-iterations, correct processes collectively send

O(n2λ+ n2 log k)︸ ︷︷ ︸
stored & suggest

+ O(nℓ+ n2λ log n+ n2 log k)︸ ︷︷ ︸
sub-iterations

⊆ O(nℓ+ n2λ log n+ n2 log k) bits in iteration k.

Thus, the proposition holds.

We are ready to prove Reducer’s expected bit complexity.

Lemma 14 (Reducer’s expected bit complexity). Given n = 4t+1 and the existence of a collision-
resistant hash function, the expected bit complexity of Reducer (see Alg. 1) is

O(nℓ+ n2λ log n)

in the presence of a computationally bounded adversary.

Proof. Let B be the random variable that denotes the number of bits sent by correct processes in
Reducer. Moreover, let K be the random variable that denotes the number of iterations it takes
Reducer to terminate. By Lem. 11, E[K] ∈ O(1). Proposition 34 proves that all correct processes
send O(nℓ + n2λ log n) during the dissemination phase. Similarly, Proposition 35 proves that, in
each iteration k ∈ N, correct processes send O(nℓ+ n2λ log n+ n2 log k) ⊆ O(nℓ+ n2λ log n+ n2k)
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bits. Therefore, the following holds:

B ∈ O
(
nℓ+ n2λ log n+

K∑
k=1

(nℓ+ n2λ log n+ n2k)
)

⊆ O
(
nℓ+ n2λ log n+K · (nℓ+ n2λ log n) +

K∑
k=1

(n2k)
)

⊆ O
(
K · (nℓ+ n2λ log n) + n2 · 1

2
·K(K + 1)

)
⊆ O

(
K · (nℓ+ n2λ log n) + n2 · (K2 +K)

)
.

Hence, we compute E[B] in the following way, using E[K] ∈ O(1):

E[B] ∈ O(nℓ+ n2λ log n) · E[K] +O(n2) · E[K2] +O(n2) · E[K]

⊆ O(nℓ+ n2λ log n) +O(n2) +O(n2) · E[K2]

⊆ O(nℓ+ n2λ log n) +O(n2) · E[K2].

As K is a geometric random variable, E[K2] = 2−P
P 2 ∈ O(1), where P ≈ 1

2 is the probability that an
iteration is good. Thus, E[B] ∈ O(nℓ+ n2λ log n).

Time complexity. We conclude the subsection by proving Reducer’s expected time complexity.

Lemma 15 (Reducer’s expected time complexity). Given n = 4t+1 and the existence of a collision-
resistant hash function, the expected time complexity of Reducer (see Alg. 1) is O(1) in the presence
of a computationally bounded adversary.

Proof. Given that (1) correct processes decide within O(1) iterations (by Lem. 11), (2) each iteration
takes O(1) time in expectation, and (3) the dissemination phase takes O(1) time, Reducer indeed
has O(1) expected time complexity.

D Reducer++: Proof

This section formally proves the correctness and complexity of our MVBA algorithm Reducer++.
Recall that Reducer++’s pseudocode is given in Alg. 2.

D.1 Proof of Correctness

This subsection proves the correctness of Reducer++, i.e., we formally prove Thm. 3. Recall that
n = (3 + ϵ)t+ 1, for any fixed constant ϵ > 0, and C = ⌈12

ϵ2
⌉+ ⌈7ϵ ⌉.

External validity. We start by proving Reducer++’s external validity.

Lemma 16 (Reducer++ satisfies external validity). Given n = (3 + ϵ)t+ 1, for any fixed constant
ϵ > 0, and the existence of a hash function modeled as a random oracle, Reducer++ (see Alg. 2)
satisfies external validity in the presence of a computationally bounded adversary.

Proof. The property is satisfied as every value quasi-decided by a correct process is valid as ensured
by the check at line 52.
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Agreement. We proceed by proving Reducer++’s agreement. We say that a correct process pi
quasi-decides a vector vec in an iteration k ∈ N if and only if quasi_decisions i = vec when process
pi reaches line 53. The following proposition proves that no two correct processes quasi-decide
different vectors in any iteration k.

Proposition 36. Let k ∈ N be any iteration. Suppose a correct process pi quasi-decides a vector
veci in iteration k and another correct process pj quasi-decides a vector vecj in iteration k. Then,
veci = vecj.

Proof. The proposition follows from the agreement property of the MBA[k][x] instance (of the
MBA primitive), for every x ∈ [1, C].

We are ready to prove Reducer++’s agreement.

Lemma 17 (Reducer++ satisfies agreement). Given n = (3+ ϵ)t+ 1, for any fixed constant ϵ > 0,
and the existence of a hash function modeled as a random oracle, Reducer++ (see Alg. 2) satisfies
agreement in the presence of a computationally bounded adversary.

Proof. By contradiction, suppose (1) there exists a correct process pi that decides a value vi, and
(2) there exists a correct process pj that decides a value vj ̸= vi. Let pi (resp., pj) decide vi (resp.,
vj) in some iteration ki ∈ N (resp., kj ∈ N). Therefore, process pi (resp., pj) quasi-decides vi (resp.,
vj) in iteration ki (resp., kj). Without loss of generality, let ki ≤ kj .

As process pi quasi-decides vi in iteration ki, process pi quasi-decides a vector veci in iteration
ki; note that vi belongs to veci. By Proposition 36, process pj also quasi-decides the non-empty
vector veci in iteration ki. We separate two cases:

• Let ki = kj . Due to the fact that the Index() request invoked in iteration ki = kj returns the
same integer to all correct processes, we have that vj = vi. Thus, we reach a contradiction
with vj ̸= vi in this case.

• Let ki < kj . As pj quasi-decides the non-empty vector veci in iteration ki, pj decides in
iteration ki (if it has not done so in an earlier iteration). Therefore, we reach a contradiction
with the fact that pj decides in iteration kj > ki.

As neither of the above cases can occur, the proof is concluded.

Weak validity. First, we show that if any correct process proposes a value v to the MBA[k][x]
instance, for any sub-iteration (k, x), and all processes are correct, then v is the proposal of a correct
process.

Proposition 37. Let (k ∈ N, x ∈ [1, C]) be any sub-iteration and let all processes be correct. If any
correct process pi proposes a value v to MBA[k][x], then v is the proposal of a correct process.

Proof. Recall that leader(k) denotes the leader of iteration k. We now separate two cases:
• Let pi execute line 49. In this case, process pi has received (at least) ϵt + 1 RS symbols.

Given that all processes are correct, all these RS symbols are sent by leader(k) during the
dissemination phase and they all correspond to leader(k)’s proposal. Therefore, v is the
proposal of leader(k), which proves the statement of the proposition in this case.

• Let pi execute line 50. The statement of the proposition trivially holds in this case as v is pi’s
proposal to Reducer++.

As the statement of the proposition holds in both cases, the proof is concluded.

We are now ready to prove Reducer++’s weak validity.
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Lemma 18 (Reducer++ satisfies weak validity). Given n = (3 + ϵ)t + 1, for any fixed constant
ϵ > 0, and the existence of a hash function modeled as a random oracle, Reducer++ (see Alg. 2)
satisfies weak validity in the presence of a computationally bounded adversary.

Proof. Suppose all processes are correct. Moreover, let a correct process pi decide some value v;
note that value v must be valid by Lem. 16. Hence, process pi quasi-decides v in some iteration
k ∈ N, which further implies that v is decided fromMBA[k][x] in some sub-iteration (k, x ∈ [1, C]).
Given that v is valid and ⊥MBA is invalid, v ̸= ⊥MBA. Thus, the justification property ofMBA[k][x]
guarantees that v was proposed toMBA[k][x] by a correct process. Proposition 37 then shows that
v is the proposal of a correct process, which concludes the proof.

Integrity. Next, we prove Reducer++’s integrity.

Lemma 19 (Reducer++ satisfies integrity). Given n = (3 + ϵ)t + 1, for any fixed constant ϵ > 0,
and the existence of a hash function modeled as a random oracle, Reducer++ (see Alg. 2) satisfies
integrity in the presence of a computationally bounded adversary.

Proof. The lemma trivially holds due to the check at line 53.

Termination. We proceed to prove that Reducer++ satisfies termination. As in the proof of
Reducer’s correctness, we say that a correct process pi completes the dissemination phase if and only
if pi executes line 21. Recall that the dissemination phase of Reducer++ follows the same structure
as the dissemination phase of Reducer, with the only difference being that, during encoding, values
are considered as polynomials of degree ϵt. For completeness, the following proposition proves that
at least one correct process completes the dissemination phase.

Proposition 38. At least one correct process completes the dissemination phase.

Proof. By contradiction, suppose no correct process completes the dissemination phase. Hence, no
correct process stops responding with ack messages upon receiving init messages. As there are (at
least) n−t correct processes, every correct process eventually broadcasts a done message. Similarly,
every correct process eventually receives n − t done messages and broadcasts a finish message.
Thus, every correct process eventually receives a finish message from (at least) n− t processes and
completes the dissemination phase, thus contradicting the fact that no correct process completes
the dissemination phase.

Next, we prove that if any correct process completes the dissemination phase, every correct
process completes the dissemination phase.

Proposition 39. If any correct process completes the dissemination phase, then every correct process
eventually completes the dissemination phase.

Proof. Let pi be any correct process that completes the dissemination phase. This implies that pi
receives n− t = (2 + ϵ)t+ 1 finish messages, out of which (at least) (1 + ϵ)t+ 1 messages are sent
by correct processes. Therefore, every correct process eventually receives (1+ ϵ)t+1 ≥ t+1 finish
messages and broadcasts its finish message. Given that there are (at least) n− t correct processes,
every correct process eventually receives n − t finish messages and completes the dissemination
phase.

We now prove that all correct processes eventually complete the dissemination phase of Re-
ducer++.
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Proposition 40. Every correct process eventually completes the dissemination phase.

Proof. The proposition holds due to propositions 38 and 39.

Next, we prove that if all correct processes start any iteration k, all correct processes eventually
start sub-iteration (k, 1).

Proposition 41. Let k ∈ N be any iteration such that all correct processes start iteration k. Then,
all correct processes eventually start sub-iteration (k, 1).

Proof. As all correct processes start iteration k and there are at least n − t = (2 + ϵ)t + 1 correct
processes, all correct processes eventually receive n − t = (2 + ϵ)t + 1 stored messages (line 26)
and broadcast a suggest message (line 29). Hence, all correct processes eventually receive n− t =
(2 + ϵ)t+ 1 suggest messages (line 30) and start sub-iteration (k, 1) at line 34.

We now prove that if all correct processes start any sub-iteration (k, x), then all correct processes
eventually complete sub-iteration (k, x).

Proposition 42. Let (k ∈ N, x ∈ [1, C]) be any sub-iteration such that all correct processes start
sub-iteration (k, x). Then, all correct processes eventually complete sub-iteration (k, x).

Proof. Given that all correct processes start sub-iteration (k, x), each correct process broadcasts
a reconstruct message (line 46), thus ensuring that every correct process eventually receives
n − t = (2 + ϵ)t + 1 reconstruct messages (line 47). Hence, all correct processes eventually
propose to MBA[k][x] (line 51). The termination property of MBA[k][x] then ensures that all
correct processes complete sub-iteration (k, x).

The following proposition proves that every sub-iteration is eventually started and completed
by all correct processes.

Proposition 43. Every sub-iteration is eventually started and completed by all correct processes.

Proof. By Proposition 40, all correct processes start iteration 1. Therefore, Proposition 41 proves
that all correct processes start sub-iteration (1, 1). By inductively applying propositions 41 and 42,
we prove that every sub-iteration is eventually started and completed by all correct processes.

To not pollute the presentation, we might not explicitly rely on Proposition 43 in the rest of the
proof. As in the proof of Reducer’s correctness, we say that a correct process pi suggests a digest
z in an iteration k ∈ N if and only if pi broadcasts a suggest message with digest z in iteration
k (line 29). Let suggestedi(k) denote the set of digests suggested by any correct process pi in any
iteration k ∈ N. The following proposition proves that each correct process suggests at most ⌈3ϵ ⌉
digests in any iteration.

Proposition 44. For every correct process pi and every iteration k, |suggestedi(k)| ≤ ⌈3ϵ ⌉.

Proof. For every digest z ∈ suggestedi(k), process pi receives (at least) n − 3t = ϵt + 1 stored
messages in iteration k (line 27). As pi receives n−t = (2+ϵ)t+1 stored messages (line 26) before
broadcasting its suggest message, there can be at most (2+ϵ)t+1

ϵt+1 suggested digests. Knowing that
t ≥ 1, we can bound (2+ϵ)t+1

ϵt+1 in the following way:

(2 + ϵ)t+ 1

ϵt+ 1
<

(2 + ϵ)t+ 1

ϵt
=

2t+ ϵt+ 1

ϵt
≤ 2t+ ϵt+ t

ϵt
=

3 + ϵ

ϵ
=

3

ϵ
+ 1 ≤

⌈
3

ϵ

⌉
+ 1.

Therefore, |suggestedi(k)| ≤
(2+ϵ)t+1

ϵt+1 < ⌈3ϵ ⌉+ 1, which concludes the proof.
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We say that a correct process commits a digest z in an iteration k ∈ N if and only if z ∈
candidates i when process pi reaches line 34 in iteration k. Let committedi(k) denote the set of
digests committed by correct process pi in iteration k ∈ N. We now prove that, for every correct
process pi and every iteration k ∈ N, committedi(k) ⊆ suggestedi(k).

Proposition 45. For every correct process pi and every iteration k ∈ N, the following holds: (1)
committedi(k) ⊆ suggestedi(k), and (2) |committedi(k)| ≤ ⌈3ϵ ⌉.

Proof. We have that committedi(k) ⊆ suggestedi(k) directly from the fact that correct process pi
only removes digests from its candidates i list after broadcasting its suggest message in iteration
k (line 33). Moreover, as |suggestedi(k)| ≤ ⌈3ϵ ⌉ (by Proposition 44), |committedi(k)| ≤ ⌈3ϵ ⌉.

To prove Reducer++’s termination, we rely on the notion of good iterations. Recall that, by
Def. 1, an iteration k ∈ N is said to be good if and only if leader(k) ∈ Dfirst. Moreover, recall that,
for every good iteration k, (1) v⋆(k) denotes the valid proposal of leader(k), and (2) z⋆(k) denotes
the digest of v⋆(k). The following proposition proves that every correct process suggests z⋆(k) in
any good iteration k ∈ N.

Proposition 46. Let k ∈ N be any good iteration. Then, every correct process suggests z⋆(k) in
iteration k.

Proof. As leader(k) ∈ Dfirst, leader(k) stores z⋆(k) at (2 + ϵ)t + 1 processes in the dissemination
phase, out of which at most t can be faulty. Thus, leader(k) stores z⋆(k) at ≥ (1 + ϵ)t + 1 correct
processes. This implies that each correct process receives z⋆(k) in stored messages from at least
ϵt+1 processes, which further means that each correct process broadcasts a suggest message with
z⋆(k) and thus suggests z⋆(k) in iteration k.

Next, we show that every correct process commits z⋆(k) in any good iteration k.

Proposition 47. Let k ∈ N be any good iteration. Then, every correct process commits z⋆(k) in
iteration k.

Proof. By Proposition 46, all correct processes suggest z⋆(k) in iteration k. Therefore, each correct
process receives a suggest message with z⋆(k) from at least n− 2t = (1+ ϵ)t+1 processes, which
means that each correct process commits z⋆(k).

For every iteration k ∈ N, we define the commited(k) set:

committed(k) = {z | z is committed by a correct process in iteration k}.

The following proposition proves that |committed(k)| ≤ C in any good iteration k. Recall that
C = ⌈12

ϵ2
⌉+ ⌈7ϵ ⌉.

Proposition 48. For every good iteration k ∈ N, |committed(k)| ≤ C.

Proof. For every digest z ∈ committed(k), at least (1+ ϵ)t+1− t = ϵt+1 correct processes suggest
z in iteration k. Moreover, by Proposition 44, each correct process suggests at most ⌈3ϵ ⌉ digests.
Given that there are at most n = (3 + ϵ)t + 1 correct processes, we bound the cardinality of the
|committed(k)| set:

|committed(k)| ≤
((3 + ϵ)t+ 1) · ⌈3ϵ ⌉

ϵt+ 1
.
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As t ≥ 1, we can further simplify:

((3 + ϵ)t+ 1) · ⌈3ϵ ⌉
ϵt+ 1

≤
((3 + ϵ)t+ t) · ⌈3ϵ ⌉

ϵt+ 1
<

((3 + ϵ)t+ t) · ⌈3ϵ ⌉
ϵt

=
(4 + ϵ) · ⌈3ϵ ⌉

ϵ
.

Thus, |committed(k)| < (4+ϵ)·⌈ 3
ϵ
⌉

ϵ . Given that ⌈3ϵ ⌉ ≤
3
ϵ + 1, we have:

(4 + ϵ) · ⌈3ϵ ⌉
ϵ

≤
(4 + ϵ) · (3ϵ + 1)

ϵ
=

12
ϵ + 4 + 3 + ϵ

ϵ
=

12
ϵ + ϵ+ 7

ϵ
=

12

ϵ2
+

7

ϵ
+ 1.

Therefore, we have:

|committed(k)| < 12

ϵ2
+

7

ϵ
+ 1 ≤

⌈
12

ϵ2

⌉
+

⌈
7

ϵ

⌉
+ 1.

Thus, |committed(k)| ≤ ⌈12
ϵ2
⌉+ ⌈7ϵ ⌉ = C.

Next, we prove a crucial proposition about theMBA[k][x] instance employed in any sub-iteration
(k, x).

Proposition 49. Consider any sub-iteration (k ∈ N, x ∈ [1, C]). Suppose a correct process pi
decides some value v′ from MBA[k][x]. Moreover, suppose all correct processes that proposed to
MBA[k][x] before pi decides v′ do so with the same value v. Then, v′ = v (except with negligible
probability).

Proof. By contradiction, suppose v ̸= v′ with non-negligible probability. Let us denote by E this
execution ofMBA[k][x] that ends with process pi deciding v′. We can construct a continuation E ′
of E in which all correct processes propose the same value v. Therefore, MBA[k][x] violates the
strong unanimity property in E ′ and the probability measure of execution E ′ is non-negligible (given
that the probability measure of E is non-negligible). Thus, we reach a contradiction with the fact
that MBA[k][x] satisfies strong unanimity with all but negligible probability, which concludes the
proof of the proposition.

We say that a sub-iteration (k ∈ N, x ∈ [1, C]) starts at the moment when the first correct process
invokes the Noise() request in sub-iteration (k, x) (line 35). Similarly, we say that a sub-iteration
(k ∈ N, x ∈ [1, C]) ends at the moment when the first correct process decides from MBA[k][x] in
sub-iteration (k, x) (line 51). For any sub-iteration (k ∈ N, x ∈ [1, C]), we define the start(k, x) set:

start(k, x) = {z | z is committed by a correct process before sub-iteration (k, x) starts}.

Next, for every sub-iteration (k ∈ N, x ∈ [1, C]), we define the end(k, x) set:

end(k, x) = {z | z is committed by a correct process before sub-iteration (k, x) ends}.

Note that the following holds:
• For every iteration k ∈ N and every x ∈ [1, C], start(k, x) ⊆ committed(k).
• For every iteration k ∈ N and every x ∈ [1, C], end(k, x) ⊆ committed(k).
• For every iteration k ∈ N, start(k, 1) ⊆ end(k, 1) ⊆ start(k, 2) ⊆ end(k, 2) ⊆ ... ⊆ start(k,C) ⊆
end(k,C) ⊆ committed(k). This is true as (1) each sub-iteration (k, ·) starts before it ends,
and (2) each sub-iteration (k, x) ends before sub-iteration (k, x+ 1) starts.

The following proposition proves that z⋆(k) ∈ start(k, x), for any sub-iteration (k, x) of a good
iteration k.
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Proposition 50. Let k ∈ N be any good iteration. Then, for every sub-iteration (k, x ∈ [1, C]),
z⋆(k) ∈ start(k, x).

Proof. By Proposition 47, all correct processes commit z⋆(k) in iteration k. Hence, the correct
process that “starts” sub-iteration (k, 1) (i.e., invokes the first Noise() request) commits z⋆(k) in
sub-iteration k. Thus, z⋆(k) ∈ start(k, 1). As start(k, 1) ⊆ start(k, x), for every x ∈ [2, C], the
proposition holds.

We say that a correct process pi adopts a digest z in a sub-iteration (k ∈ N, x ∈ [1, C]) if and only
if adopted_digest i = z when process pi reaches line 46 in sub-iteration (k, x). Next, we prove that
there exists a constant probability that all correct processes that propose toMBA[k][x] before sub-
iteration (k, x) ends propose v⋆(k) given that (1) k is a good iteration, and (2) start(k, x) = end(k, x).

Proposition 51. Let k ∈ N be any good iteration. Let (k, x ∈ [1, C]) be any sub-iteration such that
start(k, x) = end(k, x). Then, there is at least 1

C probability that all correct processes that propose
to MBA[k][x] before sub-iteration (k, x) ends propose v⋆(k).

Proof. We prove the proposition through the following steps.
Step 1: If a correct process pi adopts z⋆(k) in sub-iteration (k, x) and proposes v to MBA[k][x],
then v = v⋆(k).
As k is a good iteration, correctly encoded RS symbols (that correspond to value v⋆(k)) are stored
at (at least) n− t− t = (1+ϵ)t+1 correct processes. Therefore, process pi receives RS symbols with
correct witnesses for z⋆(k) via reconstruct messages from at least ϵt+ 1 processes and decodes
v⋆(k) (line 49). This means that process pi indeed proposes v⋆(k) toMBA[k][x].
Step 2: There is at least 1

C probability that all correct processes that propose to MBA[k][x] before
sub-iteration (k, x) ends do adopt z⋆(k) in sub-iteration (k, x).
Recall that Proposition 47 proves that every correct process commits z⋆(k) in iteration k. Hence, no
correct process pi updates its adopted_digest i variable at line 36. Therefore, every correct process
pi updates its adopted_digest i variable at line 44.

Let ϕ denote the output of the Noise() request in sub-iteration (k, x). Moreover, for every
z ∈ start(k, x), let h(z) = hash(z, ϕ). By Proposition 50, z⋆(k) ∈ start(k, x). Let H = {h(z) | z ∈
start(k, x)}. To prove the statement, we show that the probability h

(
z⋆(k)

)
is the lexicographically

smallest hash value among H is at least 1
C . Indeed, if h

(
z⋆(k)

)
is the lexicographically smallest hash

value among H, then all correct processes that propose to MBA[k][x] before sub-iteration (k, x)
ends do adopt z⋆(k) at line 44.

Since processes (including the faulty ones) make only polynomially many random oracle queries,
the probability that the random oracle model is queried on some (z ∈ start(k, x), ϕ) is negligible.
Therefore, each hash value among H is drawn independently uniformly at random (except with
negligible probability). This implies that each hash value h(z) ∈ H has an equal chance of being
the smallest hash value among H; that chance is 1

|start(k,x)| ≥
1
C as |start(k, x)| ≤ |committed(k)| ≤ C

(by Proposition 48). Hence, there is (at least) 1
C probability that h

(
z⋆(k)

)
is the smallest hash value

among H, which proves the statement.
Epilogue: By the statement of the second step, there is at least 1

C probability that all correct
processes that propose to MBA[k][x] before sub-iteration (k, x) ends adopt digest z⋆(k) in sub-
iteration (k, x). Therefore, by the statement of the first step, there is at least 1

C probability that
all correct processes that propose to MBA[k][x] before sub-iteration (k, x) ends do propose value
v⋆(k).
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Next, we prove that there exists a sub-iteration (k, x) within any good iteration k such that
start(k, x) = end(k, x).

Proposition 52. Let k ∈ N be any good iteration. Then, there exists a sub-iteration (k, x ∈ [1, C])
such that start(k, x) = end(k, x).

Proof. Recall that |committed(k)| ≤ C (by Proposition 48). Moreover, Proposition 50 proves that
z⋆(k) ∈ start(k, x), for every sub-iteration (k, x ∈ [1, C]). Lastly, note that the sub-iteration (k, x)
ends before sub-iteration (k, x+ 1) starts.

By contradiction, suppose start(k, x) ̸= end(k, x), for every sub-iteration (k, x ∈ [1, C]). As we
have that start(k, x) ⊆ end(k, x), for every sub-iteration (k, x ∈ [1, C]), we have that start(k, x) ⊂
end(k, x). Moreover, start(k, x) ⊂ start(k, x + 1), for every x ∈ [1, C − 1]. Thus, |start(k,C)| ≥ C,
which then implies that |end(k,C)| > C. This contradicts |end(k,C)| ≤ C, which completes the
proof.

The following proposition proves that if all correct processes that propose toMBA[k][x] before
sub-iteration (k, x) (of a good iteration k) ends do propose v⋆(k), then all correct processes quasi-
decide v⋆(k) in sub-iteration (k, x).

Proposition 53. Let k ∈ N be any good iteration. Moreover, let (k ∈ N, x ∈ [1, C]) be any sub-
iteration of iteration k. Suppose all correct processes that propose toMBA[k][x] before sub-iteration
(k, x) ends do propose v⋆(k). Then, all correct processes quasi-decide v⋆(k) in sub-iteration (k, x).

Proof. By Proposition 49, the first correct process that decides fromMBA[k][x] does decide v⋆(k).
As MBA[k][x] ensures agreement and termination, all correct processes eventually decide v⋆(k)
fromMBA[k][x], which proves the proposition.

Finally, we are ready to prove the termination property of Reducer++.

Lemma 20 (Reducer++ satisfies termination). Given n = (3+ ϵ)t+1, for any fixed constant ϵ > 0,
and the existence of a hash function modeled as a random oracle, Reducer++ (see Alg. 2) satisfies
termination in the presence of a computationally bounded adversary. Precisely, every correct process
decides within O(C) iterations in expectation.

Proof. Proposition 53 proves that all correct processes quasi-decide the valid value v⋆(k) in a sub-
iteration (k, x) if (1) k is a good iteration, and (2) all correct processes that propose toMBA[k][x]
before sub-iteration (k, x) ends do propose v⋆(k). Given a good iteration k and its sub-iteration
(k, x ∈ [1, C]) with start(k, x) = end(k, x), Proposition 51 proves that all correct processes that
propose toMBA[k][x] before sub-iteration (k, x) ends do propose v⋆(k) with probability (at least)
1
C . Moreover, Proposition 52 proves that there exists a sub-iteration (k, x) within any good iteration
k such that start(k, x) = end(k, x). Hence, the probability that correct processes terminate in any
iteration k is (at least) P = |Dfirst|

n · 1
C ≥

(1+ϵ)t+1
(3+ϵ)t+1 ·

1
C ≈

1
3C . Moreover, let Ek denote the event that

Reducer++ has not terminated by the end of the k-th iteration. Due to independent randomness
for each iteration, Pr[Ek] ≤ (1 − P )k → 0 as k → ∞. Let K be the random variable that denotes
the number of iterations required for Reducer++ to terminate. Then, E[K] = 1/P ≈ 3C, which
proves that Reducer++ terminates in O(C) iterations in expectation.

Quality. To conclude the proof of Reducer++’s correctness, we prove that Reducer++ satisfies the
quality property.
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Lemma 21 (Reducer++ satisfies quality). Given n = (3 + ϵ)t + 1, for any fixed constant ϵ > 0,
and the existence of a hash function modeled as a random oracle, Reducer++ (see Alg. 2) satisfies
quality in the presence of a computationally bounded adversary.

Proof. Propositions 51 to 53 prove that all correct processes quasi-decide value v⋆(k) in a good
iteration k with (at least) 1

C probability; recall that v⋆(k) is a non-adversarial value. Hence, if
the first iteration of Reducer++ is good, all correct processes quasi-decide v⋆(1) in iteration 1 with
probability 1

C . In that case, for Reducer++ to decide v⋆(1), it is required that the Index() request
selects v⋆(1). The probability of that happening is at least 1

C as there can be at most C quasi-
decided values. Thus, the probability that Reducer++ decides a non-adversarial value is (at least)
(1+ϵ)t+1
(3+ϵ)t+1 ·

1
C ·

1
C ≈

1
3C2 . Therefore, quality is ensured as the probability that an adversarial value is

decided is at most 1− 1
3C2 < 1.

D.2 Proof of Complexity

This subsection proves the complexity of Reducer++, i.e., it formally proves Thm. 4.

Message complexity. We start by proving Reducer++’s message complexity.

Lemma 22 (Reducer++’s expected message complexity). Given n = (3 + ϵ)t + 1, for any fixed
constant ϵ > 0, and the existence of a hash function modeled as a random oracle, the expected
message complexity of Reducer++ (see Alg. 2) is O(n2C2) in the presence of a computationally
bounded adversary.

Proof. The lemma holds as (1) the dissemination phase exchanges O(n2) messages in expectation,
(2) each iteration exchanges O(n2C) messages in expectation, and (3) there are O(C) iterations in
expectation (by Lem. 20).

Bit complexity. We start by proving that correct processes send O(nℓ + n2λ log n) bits in the
dissemination phase.

Proposition 54. Correct processes send O(nℓ+ n2λ log n) bits in the dissemination phase.

Proof. Recall that each RS symbol is of size O( ℓn+log n) bits. Let pi be any correct process. Process
pi sends n ·O( ℓn + log n+ λ+ λ log n) ⊆ O(ℓ+ nλ log n) bits via init messages. Moreover, process
pi sends O(n) bits via ack, done and finish messages. Therefore, process pi sends

O(ℓ+ nλ log n)︸ ︷︷ ︸
init

+ O(n)︸ ︷︷ ︸
ack, done & finish

⊆ O(ℓ+ nλ log n) bits in the dissemination phase.

This implies that correct processes send O(nℓ+ n2λ log n) bits in the dissemination phase.

Next, we prove that correct processes send O
(
C(nℓ+n2λ log n+n2 log k+n2 logC)

)
bits in any

iteration k.

Proposition 55. Correct processes send O
(
C(nℓ + n2λ log n + n2 log k + n2 logC)

)
bits in any

iteration k ∈ N.
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Proof. Correct processes send O(n2λ·⌈3ϵ ⌉+n2 log k) bits via stored and suggest messages. Recall
that stored messages include a single digest and suggest messages include at most ⌈3ϵ ⌉ digests
due to Proposition 44. stored and suggest messages also include the number of the iteration to
which they refer.

Now, consider any sub-iteration (k, x ∈ [1, C]). Correct processes send O(nℓ + n2λ log n +
n2 log k + n2 logC) bits via reconstruct messages. Moreover, correct processes send O(nℓ +
n2λ log n + n2 log k + n2 logC) bits in expectation while executing MBA[k][x]. The O(n2 log k +
n2 logC) term exists as (1) each message ofMBA[k][x] needs to be tagged with “k, x ∈ [1, C]”, and
(2)MBA[k][x] exchanges O(n2) messages in expectation. Thus, correct processes send

O(nℓ+ n2λ log n+ n2 log k + n2 logC)︸ ︷︷ ︸
reconstruct

+ O(nℓ+ n2λ log n+ n2 log k + n2 logC)︸ ︷︷ ︸
MBA[k][x]

⊆ O(nℓ+ n2λ log n+ n2 log k + n2 logC) bits in sub-iteration (k, x).

Given that iteration k has C sub-iterations, correct processes collectively send

O(n2λ · ⌈3
ϵ
⌉+ n2 log k)︸ ︷︷ ︸

stored & suggest

+ C ·O(nℓ+ n2λ log n+ n2 log k + n2 logC)︸ ︷︷ ︸
sub-iterations

⊆ O
(
C(nℓ+ n2λ log n+ n2 log k + n2 logC)

)
bits in iteration k.

Thus, the proposition holds.

Finally, we are ready to prove Reducer++’s bit complexity.

Lemma 23 (Reducer++’s expected bit complexity). Given n = (3+ ϵ)t+1, for any fixed constant
ϵ > 0, and the existence of a hash function modeled as a random oracle, the expected bit complexity
of Reducer++ (see Alg. 2) is

O
(
C2(nℓ+ n2λ log n+ n2C)

)
in the presence of a computationally bounded adversary.

Proof. Let K be the random variable that denotes the number of iterations Reducer++ takes to
terminate. By Lem. 20, E[K] ∈ O(C). Let B be the random variable that denotes the number of
bits sent in Reducer++. By Proposition 54, correct processes send O(nℓ + n2λ log n) bits in the
dissemination phase. Similarly, in each iteration k ∈ N, correct processes send O

(
C(nℓ+n2λ log n+

n2 log k + n2 logC)
)
⊆ O

(
C(nℓ + n2λ log n + n2k + n2 logC)

)
bits (by Proposition 55). Thus, we

have the following:

B ∈ O
(
nℓ+ n2λ log n+

K∑
k=1

C(nℓ+ n2λ log n+ n2k + n2 logC)
)

⊆ O
(
nℓ+ n2λ log n+K · C(nℓ+ n2λ log n+ n2 logC) +

K∑
k=1

Cn2k
)

⊆ O
(
nℓ+ n2λ log n+K · C(nℓ+ n2λ log n+ n2 logC) +

1

2
· Cn2 ·K(K + 1)

)
⊆ O

(
nℓ+ n2λ log n+K · C(nℓ+ n2λ log n+ n2 logC) + Cn2(K2 +K)

)
.
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Hence, we compute E[B] in the following way, using that E[K] ∈ O(C):

E[B] ∈ O(nℓ+ n2λ log n) +O
(
C(nℓ+ n2λ log n+ n2 logC)

)
· E[K] +O(Cn2) · (E[K2] + E[K])

⊆ O(nℓ+ n2λ log n) +O
(
C2(nℓ+ n2λ log n+ n2 logC)

)
+O(Cn2) · (E[K2] + E[K])

⊆ O
(
C2(nℓ+ n2λ log n+ n2 logC)

)
+O(Cn2) · (E[K2] + E[K]).

Given that K is a geometric random variable, E[K2] = 2−P
P 2 ∈ O(C2), where P ≈ 1

3C is the
probability that Reducer++ terminates in any specific iteration. Thus, we have:

E[B] ∈ O
(
C2(nℓ+ n2λ log n+ n2 logC)

)
+O(Cn2) · (O(C2) +O(C))

⊆ O
(
C2(nℓ+ n2λ log n+ n2 logC)

)
+O(Cn2) ·O(C2)

⊆ O
(
C2(nℓ+ n2λ log n+ n2 logC)

)
+O(C3n2)

⊆ O
(
C2(nℓ+ n2λ log n+ n2 logC + n2C)

)
⊆ O

(
C2(nℓ+ n2λ log n+ n2C)

)
.

Thus, the lemma holds.

Time complexity. Lastly, we prove Reducer++’s time complexity.

Lemma 24 (Reducer++’s expected time complexity). Given n = (3+ϵ)t+1, for any fixed constant
ϵ > 0, and the existence of a hash function modeled as a random oracle, the expected time complexity
of Reducer++ (see Alg. 2) is O(C2) in the presence of a computationally bounded adversary.

Proof. Let K be the random variable that denotes the number of iterations Reducer++ takes to
terminate. By Lem. 20, E[K] ∈ O(C). Moreover, let T be the random variable that denotes the
time required for Reducer++ to terminate. Moreover, let T (k) be the random variable that denotes
the time required for k-th iteration to complete. We have that E[T (k)] ∈ O(C), for every iteration
k, as every iteration has C sub-iterations, each of which takes O(1) time in expectation. We can
express T in the following way:

T =
K∑
k=1

T (k).

Using the law of total expectation, we have:

E[T ] = E
[ K∑
k=1

T (k)
]
= E

[
E
[ K∑
k=1

T (k)|K
]]
.

Furthermore, we have:

E
[ K∑
k=1

T (k)|K
]
= E[T (1)] + ...+ E[T (K)] = K ·O(C).

Finally, we can compute E[T ]:

E[T ] = E[K ·O(C)] = O(C) · E[K] ∈ O(C2).

Thus, Reducer++ terminates in expected O(C2) time.
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