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Abstract

Random classical codes have good error correcting properties, and yet they are noto-
riously hard to decode in practice. Despite many decades of extensive study, the fastest
known algorithms still run in exponential time. The Learning Parity with Noise (LPN)
problem, which can be seen as the task of decoding a random linear code in the pres-
ence of noise, has thus emerged as a prominent hardness assumption with numerous
applications in both cryptography and learning theory.

Is there a natural quantum analog of the LPN problem? In this work, we introduce
the Learning Stabilizers with Noise (LSN) problem, the task of decoding a random stabi-
lizer code in the presence of local depolarizing noise. We give both polynomial-time
and exponential-time quantum algorithms for solving LSN in various depolarizing noise
regimes, ranging from extremely low noise, to low constant noise rates, and even higher
noise rates up to a threshold. Next, we provide concrete evidence that LSN is hard. First,
we show that LSN includes LPN as a special case, which suggests that it is at least as hard
as its classical counterpart. Second, we prove a worst-case to average-case reduction for
variants of LSN. We then ask: what is the computational complexity of solving LSN?
Because the task features quantum inputs, its complexity cannot be characterized by tra-
ditional complexity classes. Instead, we show that the LSN problem lies in a recently
introduced (distributional and oracle) unitary synthesis class. Finally, we identify several
applications of our LSN assumption, ranging from the construction of quantum bit com-
mitment schemes to the computational limitations of learning from quantum data.
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1 Introduction
Coding theory has offered many valuable insights into the theory of computation, rang-
ing from structural insights in complexity theory [Din06, ABN23], to the design of
cryptographic primitives [Sha79, Ste93, FS96, McE78, Ale03] and even to lower bounds
in computational learning theory [BKW03, FGKP06]. The existence of asymptotically
good error correcting codes, in particular, is a major cornerstone in the field. Thanks
to the probabilistic method, we know that a random linear code already attains the so-
called Gilbert-Varshamov bound [Gil52, Var64] with high probability. This suggests that
asymptotically good error correcting codes not only exist in theory, but are in fact also
abundant. Despite their remarkable error correcting properties, random linear codes
have been found to be notoriously hard to decode in practice, and the fastest known
algorithms still run in exponential time [BKW03].

Learning Parity with Noise. The observation that better codes seem harder to de-
code is captured by the Learning Parity with Noise (LPN) problem [BFKL94]. In a nutshell,
this assumption says that it is computationally difficult to decode a random linear code
under Bernoulli noise. In other words, given as input

(A ∼ Zn×k
2 , A · x + e (mod 2))

it is hard to find the string x which is chosen uniformly at random in Zk
2, and where

e ∼ Ber⊗n
p is a random Bernoulli error for some appropriate noise rate p ∈ (0, 1/2).

Here, A ∈ Zn×k
2 serves as a random generator matrix of a linear code, for n = poly(k).

In practice, LPN is believed to be hard for both classical and quantum algorithms run-
ning in time poly(k) in various noise regimes. For constant noise rates p ∈ (0, 1/2), the
celebrated BKW algorithm [BKW03] solves LPN in both time and sample1 complexity
given by O(2k/ log k). The conjectured hardness of LPN has found applications in both
cryptography [HB01, Ale03, JW05, ACPS09, JKPT12, DDN14, AHI+17, BLVW18] and
learning theory [BFKL94, FGKP06]. The Learning with Errors (LWE) problem [Reg09]—a
more structured variant of LPN—has since become the basis of modern cryptography
and has even led to highly advanced cryptographic primitives, such as fully homo-
morphic encryption [Gen09, BV11] and the classical verification of quantum computa-
tions [Mah22]. In the context of learning theory, it was shown that an efficient algorithm
for LPN would allow us to learn important function classes, such as 2-DNF formulas,
juntas, and even more general functions with sparse Fourier spectrum [FGKP06].

Because the LPN problem is so prevalent in many areas of computer science, a signif-
icant effort has been devoted to finding evidence of its hardness. One of these pieces
of evidence is a worst-to-average-case reduction [BLVW18, YZ21]. Recall that the LPN
problem is an average-case problem: the task is to decode a random code, secret and
error. Ref. [BLVW18] studied a related worst-case problem—the nearest codeword problem
(NCP)—and showed that it reduces to LPN. This reduction, later improved by [YZ21],
showed that LPN is at least as hard as (a mildly hard variant of) NCP in the worst
case. [BLVW18] also found the first non-trivial complexity upper bound on the hard-
ness of the LPN problem; specifically, they showed that the LPN problem is contained in
SearchBPPSZK, and is thus unlikely to be NP-hard.

1Here, the number of samples refers to the parameter n—the number of noisy linear equations on x.
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The hardness of decoding random stabilizer codes. Just like random linear codes,
random quantum stabilizer codes2 also possess remarkable error correcting properties
[Smi06, Got24]. They are ubiquitous in quantum information science; for example, ran-
dom stabilizer codes appear in the context of quantum authentication schemes and the
verification of quantum computations [ABEM17], quantum cryptography [DS18], the
theory of quantum communication [Smi06, Wil13], and even in black-hole physics and
quantum gravity [HP07, YK17, HH13]. Characterizing the hardness and complexity of
decoding random stabilizer codes is therefore not only important from the perspective
of quantum error correction, but could also shed a new light on the computational limi-
tations of quantum information processing as a whole.

And yet, this subject has seen little theoretical treatment. While prior work has shown
that decoding quantum stabilizer codes is worst-case hard [HL11, IP15]—via reduction
from a purely classical decoding problem—the average-case complexity of decoding sta-
bilizer codes as an inherently quantum problem was left as an open problem [IP15]. We
re-formulate this as a question that bears on all of the areas mentioned above:

Can we find a natural quantum analog of the Learning Parity with Noise problem; in particular,
what would its hardness imply for quantum information science as a whole?

Given the success of constructing cryptographic primitives from the hardness of LPN
in a classical world, could such a quantum analog of LPN allow us to directly construct
cryptographic protocols in a quantum world? This follows a recent line of work arguing
that one should build quantum cryptography from inherently quantum, rather than clas-
sical cryptographic hardness assumptions [Kre21, MY22, BEM+23, MPSY24, BHHP24].
Finally—and perhaps, even more interestingly—such a quantum assumption may turn
out to be even harder to break than its classical counterpart.

2 Overview
We now give an overview of our contributions in this work, summarized in Table 1.

2.1 Learning Stabilizers with Noise
In this work, we introduce a natural quantum analog of LPN—the Learning Stabilizers
with Noise (LSN) problem. In studying the LSN problem, we thoroughly characterize the
hardness and complexity of decoding random stabilizer codes in different noise regimes.
Similar to the LPN problem, which has found numerous applications in both cryptogra-
phy and learning theory, we believe that our LSN assumption has the potential to occupy
a similar role in quantum information more broadly. Before we introduce our LSN task
formally, we first revisit LPN and draw a connection to quantum error correction.

A quantum analog of LPN? Let n, k ∈ N be integers with n = poly(n), and let
p ∈ (0, 1/2) be a parameter. Recall that an instance of the LPN problem3 consists of a
generator matrix for a random linear code, together with a noisy codeword for a uni-
formly random string; specifically, we consider samples of the form

(A ∼ Zn×k
2 , A · x + e (mod 2))

2The stabilizer formalism was first developed by Gottesman [Got97] and incorporates the majority of quan-
tum error correcting codes we know today [AF24].

3For a more formal definition, see Definition 5.1.
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Learning Parity with Noise Learning Stabilizers with Noise
(this problem)

Worst-case
hardness

✓NP-complete [BMT78] as
a decisional syndrome de-
coding task. Variant of the
(Promise) Nearest Codeword
Problem (NCP) [BLVW18]

As a classical syndrome decoding
task: NP-complete [HL11, KL12] or
#P-complete [IP15] depending on
the decoding problem

Average-case
hardness ✓ SearchBPPSZK [BLVW18] This paper (Section 8)

Worst-to-
average-case
reductions

✓[BLVW18, YZ21] This paper (Section 7)

Algorithms
for average-
case problem

✓ 2O(k/ log k) time/sample
complexity [BKW00] in
constant-noise regime.

This paper (Section 6)

Table 1: Comparison of LPN and LSN in terms of hardness and complexity

where A ∈ Zn×k
2 is a random generator matrix, where A · x + e (mod 2) is a noisy code-

word which encodes uniformly random string x ∼ Zk
2, and where e ∼ Ber⊗n

p is a ran-
dom Bernoulli error. Without loss of generality4, we assume that the matrix A has full
column-rank, i.e., the columns of A generate all of Zk

2. We now make a simple observa-
tion; namely, we can interpret the LPN instance A · x + e (mod 2) as a particular noisy
quantum codeword on n qubits5, since

|A · x + e (mod 2)⟩ = Xe |A · x (mod 2)⟩

= XeUA

(
|0n−k⟩ ⊗ |x⟩

)
, (1)

where Xe = Xe1 ⊗ · · · ⊗ Xen is a product of low-weight Pauli-X operators and where the
unitary operator UA is defined to be the matrix multiplication operation

UA : |0n−k⟩ ⊗ |x⟩ → |A · x (mod 2)⟩ . (2)

Because A has full column-rank, UA corresponds to a linear reversible circuit which can
be described solely in terms of CNOT gates [PMH08]. Therefore, UA is a Clifford opera-
tor and thus maps Pauli operators to Pauli operators via conjugation.

We may also observe that UA is the encoding circuit for a stabilizer code. The stabi-
lizer group associated with this code is precisely the group of k commuting Pauli oper-
ators under which UA(|0n−k⟩ ⊗ |x⟩) remains invariant. These are easily seen to be the
Pauli operators

UAZiU†
A, for i ∈ [n− k] ,

where Zi denotes a Pauli operator which acts as a Pauli-Z operator on the i-th qubit, and
is equal to the identity everywhere else. In other words, the Clifford encoding unitary UA
(derived from an instance of an LPN problem) gives rise to the quantum stabilizer code6

given by SA = ⟨UAZ1U†
A, . . . , UAZn−kU†

A⟩. This shows that every instance of LPN can be

4This happens with overwhelming probability for A ∼ Zn×k
2 provided that n≫ k (see Section 5.2).

5Strictly speaking, we should think of |A · x + e (mod 2)⟩ as encoding the row vector x⊺A + e⊺ (mod 2).
6See Section 3.4 for additional background on stabilizer codes.
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mapped to an instance of decoding stabilizer codes. We now generalize this significantly,
ultimately leading us to the Learning Stabilizers with Noise (LSN) problem—the natural
quantum analog of LPN:

• (Random stabilizer code:) Note that the encoding Clifford unitary in Equation (2)
generates a specific stabilizer code of the form SA = ⟨UAZ1U†

A, . . . , UAZn−kU†
A⟩.

We consider stabilizer subgroups of the Pauli group which are chosen uniformly at
random from the set of all stabilizer subgroups with n− k generators, denoted by
Stab(n, k). In fact, as we later prove in Theorem 3.9, this is equivalent to choosing
random stabilizer codes which are described by ⟨CZ1C†, . . . , CZn−kC†⟩, where C ∼
Cliffn is a random n-qubit Clifford operator.

• (Local depolarizing noise:) Recall that the noisy codeword XeUA(|0n−k⟩ ⊗ |x⟩) in
Equation (1) is only affected by low-weight bit-flip errors Xe, where e ∼ Ber⊗n

p
comes from a Bernoulli distribution. In quantum systems, however, noise may also
come in the form of phase errors. This leads us to consider a quantum noise model
in the form of local depolarizing noiseD⊗n

p . Similar to the Bernoulli distribution, lo-
cal depolarizing noise also produces low-weight errors with high probability, which
therefore naturally generalizes the classical noise model.

In other words, we consider the task of decoding a random quantum stabilizer code in
the presence of local depolarizing noise. Because the codeword is a stabilizer state, we
call this the Learning Stabilizers with Noise (LSN) problem—in analogy to the classical
LPN problem. We now give a formal definition of the problem.

Learning Stabilizers with Noise. The Learning Stabilizers with Noise (LSN) problem
(formally defined in Definition 4.1) is to find x ∈ {0, 1}k given as input a sample(

S ∈ Stab(n, k), E |ψx⟩
S ) with |ψx⟩

S := US
Enc(|0n−k⟩ ⊗ |x⟩) ,

where S ∼ Stab(n, k) is a uniformly random stabilizer subgroup, where E ∼ D⊗n
p is a

Pauli error from a local depolarizing channel, where x ∼ {0, 1}k is a random string, and
where US

Enc is some canonical encoding circuit for the stabilizer code associated with S.
As mentioned before, the encoding circuit is typically given in the form of a random
n-qubit Clifford operator.

At first sight, it may not be clear why the LSN problem is even well-defined, since
a unique solution to the decoding problem may not exist in certain parameter regimes.
The intuition behind our argument for the existence of a unique solution is as follows.
Suppose that p ∈ (0, 1/2) is a sufficiently small constant. Then, the quantum Gilbert-
Varshamov bound (see Section 3.4) tells us that a random stabilizer code is non-degenerate
and has distance at least d = 3np + 1 with overwhelming probability, in which case for
any pair of codewords with x, y ∈ {0, 1}k, we have

⟨ψx| E†
a Eb |ψy⟩ = 0

by the Knill-Laflamme conditions—provided that the errors Ea, Eb have weight at most
|Ea|, |Eb| ≤ 3

2 np. Fortunately, a simple Chernoff bound analysis reveals that this is the
case with overwhelming probability for the local depolarizing channel D⊗n

p . Therefore,
Pauli errors which originate from a local depolarizing noise channel take orthogonal
codewords to orthogonal codewords, and hence there must exist a measurement that
perfectly distinguishes between them. This observation is also at the core of our algo-
rithms for the LSN problem, which we describe next.

6



Algorithms for Learning Stabilizers with Noise. In the previous section, we dis-
cussed why random stabilizer codes give rise to a single-shot decoding problem which
exhibits unique solutions with high probability. This suggests that LSN can be solved
at least information-theoretically. Can we find efficient algorithms for solving the LSN
problem? Not surprisingly, the answer depends on the specific noise regime of the er-
ror distribution. In Section 6, we give both polynomial-time and exponential-time algo-
rithms for solving LSN in various noise-regimes.

• extremely low-noise regime with parameter p ≤ 1
n −

1
n1+c , for some c > 0. In this

regime, we show that a simple projection onto the stabilizer codespace (see Algo-
rithm 1) suffices to solve the LSN problem in time O(n3) with inverse-polynomial
success probability at least 1/nc.

• low constant-noise regime for a some small constant p ∈ (0, 1/2). In this regime,
we show that with only a single sample, the Pretty Good Measurement (PGM) [BK00,
Mon07] succeeds with high probability to perfectly recover the secret in the LSN
problem. This is inextricably linked to the structure of our problem; although the
distance between two arbitrary orthogonal states contracts tremendously—in fact,
exponentially in system size (see, e.g. Proposition IV.7 in [HRF23])—under a layer
of local depolarizing noise, a good error correcting code encodes orthogonal states
into orthogonal subspaces that are “protected" from such destructive contraction
even under noise. This means the information in them is still recoverable after
noise, and this is the intuition behind our PGM algorithm.

• higher constant-noise regime, decoding is still possible at the cost of more samples.
We derive the scaling of the sample complexity with noise, up to a certain noise
threshold.

Worst-case to average-case reductions. Recall that the LSN decoding problem is
stated as an average-case problem, where the success probability of an algorithm is mea-
sured on average over the random choice of stabilizer S ∈ Stab(n, k), secret x ∈ Zk

2 and
error E ∼ D⊗n

p . While the quantum Gilbert-Varshamov bound does in fact guarantee
that an average-case instance of LSN can be solved information-theoretically, our results
in Section 6 indicate that the problem becomes computationally intractable for large k—
even in a low constant-noise regime. This raises the question of whether we can find
concrete evidence for the average-case hardness of the LSN problem, beyond the fact
that it subsumes the classical LPN problem.

Recently, a number of works showed that there is in fact evidence of worst-case hard-
ness for LPN; specifically, by studying a related worst-case problem—the nearest codeword
problem (NCP) [BLVW18, YZ21]. Using the sample amplification technique [Lyu05], Braker-
ski, Lyubashevsky, Vaikuntanathan and Wichs [BLVW18] gave a worst-case to average-
case reduction from NCP to LPN. Here, an instance to the former problem consists of
(C ∈ Zm×k

2 , t = C · s + w (mod 2)) for some s ∈ Zk
2, with the promise that the generator

matrix C is balanced7 and that the Hamming weight of the error w ∈ Zm
2 is known. On

a high level, the reduction in [BLVW18] proceeds in two steps:

• (Re-randomization of the secret) A random string u ∼ Zk
2 is chosen, and the worst-

case instance (C, t) gets mapped via an additive shift to

(C, t + C · u (mod 2)) = (C, C · (s + u) + w (mod 2)).

7Roughly speaking, this means that the minimum and maximum distance of the linear code generated by
C ∈ Zn×m

2 is neither too small nor too large.
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Note that, whereas the initial secret s ∈ Zk
2 was fixed, the new secret s + u is now

distributed according to the uniform distribution over Zk
2.

• (Re-randomization of the code and error) A random R ∈ Zn×m
2 is sampled from a

smoothing distributionRn×m
w , and the previous sample gets mapped to

(R · C, R · (C · (s + u) + w (mod 2))) = (R · C, R · C · (s + u) + R ·w (mod 2)))

[BLVW18] show that the resulting sample is statistically close to an (average-case) LPN
sample—provided that the smoothing distributionRn×m

w is chosen appropriately.
By taking a similar approach, we develop a worst-case to average-case reduction for

the LSN problem. Here, the starting point is a worst-case stabilizer decoding instance
(S, E |ψx⟩

S
) for some stabilizer S ∈ Stab(n, k), Pauli error E of bounded weight, and

secret x ∈ {0, 1}k. First, we observe that, in order to re-randomize the secret x, we need
to act on the encoded data |ψx⟩

S itself. Hence, it suffices to choose a random string
u ∼ {0, 1}k and to apply the logical Pauli operator Xu associated with S to the noisy
codeword itself, resulting in the desired transformation E |ψx⊕u⟩

S up to a sign.
To re-randomize the code and the error, we first observe that the shifted codeword

|ψx⊕u⟩
S can be written as

|ψx⊕u⟩
S
= US

Enc(|0n−k⟩ ⊗ |x⊕ u⟩)

for some (not necessarily random) encoding Clifford US
Enc ∈ Cliffn. Because Cliffn forms a

finite group, this suggests that one could simply sample a uniformly random C ∼ Cliffn

and consider the state CE |ψx⊕u⟩
S
= (CEC†)C |ψx⊕u⟩

S, where C |ψx⊕u⟩
S now comes from

a random stabilizer code for a uniformly random encoding Clifford C ·US
Enc. While this

does seem to result in a re-randomized stabilizer code, the aforementioned transforma-
tion could potentially blow up the weight of the Pauli error E. In fact, it is well-known that
random Cliffords are Pauli-mixing [CLLW16, ABEM17]: they take any non-identity Pauli
operator and map it to a uniformly random non-identity Pauli operator via conjugation.
This seems to suggest that any naive worst-case to average-case reduction for the LSN
problem is doomed to fail, since the weight of the re-randomized Pauli error now follows
a Binomial distribution with parameter 3/4, which would result in an average weight of
O(n)—thereby potentially making decoding information-theoretically impossible.

To overcome this barrier we develop a re-randomization strategy which is much more
gentle on the error (i.e., it does not cause it to blow up), and yet still ensures that the code
gets somewhat re-randomized. Our strategy is to follow the random Pauli operator with
a twirl—another random unitary consisting of a random permutation operator, followed
by a layer of random single-qubit Cliffords. Similar ensembles of unitaries been used in
the randomized compiling and benchmarking literature in order to tailor noise with arbitrary
coherence and spatial correlations into a symmetric Pauli channel [WE16, ESM+07]. To
our knowledge, however, our work is the first to identify the twirl as a useful tool in the
context of a worst-case to average-case reduction. Under this twirl, a worst-case error of
weight w is transformed into a uniformly random error of weight w; in particular, the
weight of the error remains invariant. We remark, however, that the distributions of the
error and code are now correlated, which requires a much more refined analysis.

Complexity of Learning Stabilizers with Noise. What is the computational com-
plexity of solving the LSN problem? Notice that the description of the learning task
features quantum inputs, which means that its complexity cannot be characterized by
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traditional complexity classes such as BQP or QMA which deal with classical-input de-
cision problems. Instead, we show that the LSN problem lies in a (distributional and
oracle) unitary synthesis class called avgUnitaryBQPavgUnitarySZKHV which was recently in-
troduced by Bostanci et al. [BEM+23]. Our result can be seen as a quantum analog of the
classical result which states that LPN is contained in SearchBPPSZK [BLVW18].

We now sketch the main idea behind our complexity upper bound. Suppose we are
given as input an LSN instance of the form(

S ∈ Stab(n, k), E |ψx⟩
S ) ,

where E ∼ D⊗n
p is a random Pauli error from a local depolarizing channel and where

x ∼ {0, 1}k is a random string. Suppose also that the the underlying stabilizer code is
non-degenerate and has distance at least 3np + 1 which, as we argued earlier, happens
with overwhelming probability. Suppose that C ∈ Cliffn is an encoding Clifford with
corresponds to the stabilizer code described by S. Note that such a Clifford can always
be found efficiently given S, as we show in Theorem 3.7.

We can represent the density matrix corresponding to the quantum part of the in-
stance8 as the result of discarding register A of the purification,

|Q0⟩AB =
√

2−k ∑
x

∑
Ea

√
Pr

Ea∼D⊗n
p

[Ea]
(
|x⟩ ⊗ |a⟩

)
A
⊗
(

Ea C(|0n−k⟩ ⊗ |x⟩)⊗ |0⟩
)
B

. (3)

In addition, we also consider the following bipartite state given by

|Q1⟩AB =
√

2−k ∑
x

∑
Ea

√
Pr

Ea∼D⊗n
p

[Ea]
(
|x⟩ ⊗ |a⟩

)
A
⊗
(
|0n−k⟩ ⊗ |x⟩ ⊗ |a⟩

)
B

. (4)

We now observe that a local transformation which acts solely on the B register and maps
|Q0⟩ to |Q1⟩ would suffice to solve the LSN decoding task. Indeed, we show that such
a transformation always exists by appealing to Uhlmann’s theorem. First, we invoke
the non-degeneracy of the stabilizer code described by S to argue that the fidelity be-
tween the reduced states Q0

A and Q1
A on register A is near maximal—provided that n is

slightly larger than k, and that p ∈ (0, 1/2) is a sufficiently small constant. Therefore,
by Uhlmann’s theorem (see Theorem 3.2), there exists a unitary U which acts on the B
register and maps |Q0⟩AB to another state which has near maximal overlap with |Q1⟩AB.
In other words, to solve LSN, it suffices to synthesize the Uhlmann unitary on register
B. Using recent results from Bostanci et al. [BEM+23], we can show that the task of syn-
thesizing such a unitary falls within the distributional and oracle unitary synthesis class
given by avgUnitaryBQPavgUnitarySZKHV . This yields the desired complexity upper bound
for solving the LSN problem.

2.2 Applications.
Learning from quantum data. Just as LPN has been fundamental to lower bounds
in classical learning theory, we expect that LSN will be a useful tool for proving lower
bounds in quantum learning theory. In Section 9.1 we identify one such learning setting:
learning from quantum data [Car21, CL21, FQR24, CGR+24], a generalization of Proba-
bly Approximately Correct (PAC) learning to the quantum setting. Here, the goal is to
learn a map ρ : X → L(Hd) from classical to quantum data – for example, a Hamiltonian
can be construed as a map from temperatures to Gibbs states, or time-evolved states.

8We also append an ancilla register in the state |0⟩ for convenience.
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In one special case of this task known as learning state preparation processes, the learner
is allowed to observe input-output pairs for an unknown map, but the inputs are sam-
pled from a distribution and are not identical. Refs. [CL21, FQR24] gave sample-efficient
algorithms for learning in this setting, thus showing that it is information theoretically
possible. But we show that these algorithms can never be computationally efficient—
assuming the hardness of our LSN assumption. While the lack of computational effi-
ciency was implicit for the fully general learning setting due to a result of [AGS21], that
result does not apply when there are physically natural restrictions on the concept class,
such as learning processes that involve quantum noise. Our LSN hardness assumption
fills this gap.

As a bonus, we are also able to upper bound the complexity of learning state prepa-
ration processes, by relating it to a unitary synthesis problem. We are to our knowledge
the first to identify a complexity class that contains such learning tasks.

Constructing quantum bit commitment schemes. In Section 9.2, we give a cryp-
tographic application of LSN and show how to construct a statistically hiding and com-
putationally binding quantum commitment scheme [Yan22]. This is a fundamental cryp-
tographic primitive that allows two parties (called a sender and receiver) to engage in a
two-phase quantum communication protocol: in the first phase (the “commit phase”),
the sender sends a commitment (i.e., a quantum register) to a bit b to the receiver; the
hiding property of a bit commitment scheme ensures that the receiver cannot decide the
value of b from the commitment alone. In the second phase (the “reveal phase”), the
sender sends another quantum register to the receiver that allows the receiver to com-
pute the value of b; the binding property of commitments ensures that the sender can
only reveal the correct value of b, i.e. if the sender sent a reveal register that was meant
to convince the receiver it had committed to a different value of b, the receiver would
detect this.

2.3 Related Work
Random linear codes have been extensively studied in the field of coding theory [Gil52,
Var64]. The Learning Parity with Noise problem was first proposed in [BFKL94]. Blum,
Kalai and Wasserman [BKW03] gave an algorithm that solves LPN in time O(2k/ log k).
Berlekamp, McEliece and van Tilborg [BMT78] showed that the worst-case (decisional)
syndrome decoding task is NP-complete. Brakerski, Lyubashevsky, Vaikuntanathan and
Wichs [BLVW18] gave a worst-case to average-case reduction and showed that LPN is
at least as hard as (a mildly hard variant of) of the nearest codeword problem (NCP).
In subsequent work, Ref. [YZ21] later gave an improved worst-case to average-case re-
duction in the subexponentially-hard constant-noise regime. [BLVW18] also showed that
LPN is contained in SearchBPPSZK, and thus unlikely to be NP-hard.

Smith [Smi06] showed a quantum analog of the Gilbert-Varshamov bound using the
notion of random stabilizer codes. The worst-case hardness of decoding quantum stabi-
lizer codes as a classical decoding task has been extensively studied, and was found to
be NP-complete [HL11, KL12] or #P-complete [IP15]—depending on the problem. The
key insight in these results is that classical decoding essentially reduces to quantum de-
coding. Ref.s [HL11] and [KL12] use a one-to-one correspondence between stabilizer
codes and classical linear codes to prove that quantum maximum-likelihood decoding
is NP-complete. Ref.s [PC08, IP15] go one step further, pointing out that decoding sta-
bilizer codes should be even harder than decoding classical codes because of error de-

10



generacy in the quantum setting, whereby multiple different errors can lead to the same
syndrome. Based on this insight, [IP15] showed that quantum maximum-likelihood de-
coding (which accounts for error degeneracy is in fact #P-complete). The proof, once
again, reduces from a classical problem: evaluating the weight-enumerator polynomial
of a classical binary linear code. Ref [KK23] also show that finding the minimum dis-
tance of a quantum code is NP-hard due to a reduction from classical minimum distance
decoding.

The fact that all aforementioned results about quantum decoding rely on classical
complexity primitives underscores the need for a formalism that captures the inher-
ent quantum nature of the decoding task. A recent work of Bostanci, Efron, Metger,
Poremba, Qian and Yuen [BEM+23] characterized the complexity of decoding general
quantum channels (which includes quantum error correction) using the language of of
unitary synthesis problems. Crucially, this implies to uniquely quantum problems that
feature quantum inputs and outputs. While their results do not explicitly analyze ran-
dom stabilizer codes, we make use of their formalism in order to describe the complexity
of our average-case LSN problem.

Recent work of Grewal, Iyer, Kretschmer and Liang [GIKL24a, GIKL24b] studied the
sample complexity of learning general stabilizer states, and even more general states that
feature few T-gates. However, their setting is, in some sense, orthogonal to ours. For ex-
ample, in our (single-shot) LSN learning task, the description of the encoding Clifford
is entirely public, and the apparent hardness of learning arises in the presence of noise,
whereas in their setting the task is to determine the set of stabilizers (and encoding Clif-
ford) from several identical (pristine) copies of the unknown state.

Gollakota and Liang [GL22] gave lower bounds on the sample complexity of PAC-
learning noisy stabilizer states in the Statistical Query (SQ) model. While they do con-
nect the hardness of their learning task to LPN via a reduction, it does not consider the
problem of learning random stabilizers as in our setting, and therefore does not resemble
our average-case learning task in any meaningful way.

2.4 Open Problems
Our work raises a number of interesting open questions; in particular:

• Can we place LSN (or a variant of LSN) in MicroCrypt? [MY22]. Does it already
imply the existence of classical one-way functions, or is it strictly weaker? If it does,
can we then design similar but alternative MicroCrypt variants of the problem?

• Can we reduce the LPN problem to the standard LSN problem, where the underly-
ing stabilizer code is uniformly random?

• What is the largest n-qubit Clifford subgroup that takes low-weight Paulis to low-
weight Paulis? Is there such a Clifford subgroup that strictly contains the PLCn
subgroup we study in our work? Note that this could potentially allow one to
obtain a stronger worst-case to average-case reduction for LSN.

• Can we prove a much better worst-case to average-case reduction altogether which
applies to the standard LSN problem; for example, where the stabilizer subgroup
is chosen uniformly at random?

• Can we prove a search-to-decision reduction for LSN, similar to what is known for
both the LPN problem [KSS10] and the LWE problem [Reg09]? This could enable a
number of other cryptographic primitives, such as (succinct) quantum encryption,
directly under the LSN assumption.
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3 Preliminaries
Let us first introduce some basic notation and relevant background.

Notation. For N ∈ N, we use [N] = {1, 2, . . . , N} to denote the set of integers up
to N. The symmetric group on [N] is denoted by SN . In slight abuse of notation, we
sometimes identify elements x ∈ [N] with bit strings x ∈ {0, 1}n via their binary repre-
sentation whenever N = 2n and n ∈ N. Similarly, we identify permutations π ∈ SN
with permutations π : {0, 1}n → {0, 1}n over bit strings of length n.

We write negl(·) to denote any negligible function, which is a function f such that, for
every constant c ∈N, there exists an integer N such that for all n > N, f (n) < n−c.

Probability theory. The notation x ∼ X describes that an element x is drawn uni-
formly at random from the set X, and we use Unif(X) to denote the uniform distri-
bution over X. Similarly, if D is a general distribution, we let x ∼ D denote sam-
pling x according to D. We denote the expectation value of a random variable X by
E[X] = ∑x x Pr[X = x]. If D is a distribution over a set X, then we denote by D⊗n the
n-wise product distribution over the set X × · · · × X. For a parameter p ∈ [0, 1], we let
Berp denote the Bernoulli distribution with

Pr[X = 1] = p and Pr[X = 0] = 1− p, for X ∼ Berp.

We let Binn,p denote the Binomial distribution with Pr[X = k] = (n
k)pk(1− p)n−k, for a

random variable X ∼ Binn,p.

Quantum information. For a comprehensive background on quantum computation,
we refer to [NC00]. We denote a finite-dimensional complex Hilbert space byH, and we
use subscripts to distinguish between different systems (or registers). For example, we
let HA be the Hilbert space corresponding to a system A. The tensor product of two
Hilbert spaces HA and HB is another Hilbert space denoted by HAB = HA ⊗HB. The
Euclidean norm of a vector |ψ⟩ ∈ H over the finite-dimensional complex Hilbert space
H is denoted as ∥ψ∥ =

√
⟨ψ|ψ⟩. Let L(H) denote the set of linear operators over H.

A quantum system over the 2-dimensional Hilbert space H = C2 is called a qubit. For
n ∈ N, we refer to quantum registers over the Hilbert space H =

(
C2)⊗n as n-qubit

states. We use the word quantum state to refer to both pure states (unit vectors |ψ⟩ ∈ H)
and density matrices ρ ∈ D(H), where we use the notation D(H) to refer to the space of
positive semidefinite matrices of unit trace acting onH.

A quantum channel Φ : L(HA) → L(HB) is a linear map between linear operators
over the Hilbert spaces HA and HB. Oftentimes, we use the compact notation ΦA→B to
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denote a quantum channel between L(HA) and L(HB). We say that a channel Φ is com-
pletely positive if, for a reference system R of arbitrary size, the induced map IR ⊗ Φ is
positive, and we call it trace-preserving if Tr {Φ(X)} = Tr {X}, for all X ∈ L(H). A quan-
tum channel that is both completely positive and trace-preserving is called a quantum
CPTP channel. A unitary U : L(HA) → L(HA) is a special case of a quantum channel
that satisfies U†U = UU† = IA. We denote the n-qubit unitary group by Un. A projector
Π is a Hermitian operator such that Π2 = Π, and a projective measurement is a collection
of projectors {Πi}i such that ∑i Πi = I. A positive-operator valued measure (POVM) is a
set of Hermitian positive semidefinite operators {Mi} acting on a Hilbert space H such
that ∑i Mi = I. A linear map U ∈ L(HA,HB) is called a partial isometry if there exists
a projector Π ∈ L(HA) and an isometry Ũ ∈ L(HA,HB) such that U = ŨΠ. We call the
image of the projector Π the support of the partial isometry U. Because a partial isometry
cannot be implemented in practice (it is not a trace-preserving operation), we also de-
fine a channel completion of a partial isometry as any quantum channel that behaves like
the partial isometry on its support, and can behave arbitrarily on the orthogonal com-
plement of the support; specifically, for any partial isometry U ∈ L(HA,HB), a channel
completion of U is a CPTP channel Φ ∈ L(HA,HB) such that

Φ(ΠρΠ) = UΠρΠU† , for ρ ∈ D(HA),

where Π ∈ L(HA) is the projector onto the support of U. If Φ is a unitary or isometric
channel, we also call this a unitary or isometric completion of the partial isometry.

Quantum distance measures. Let ρ, σ ∈ D(H) be two density matrices acting on
the same Hilbert spaceH. The (squared) fidelity between ρ and σ is defined as

F(ρ, σ) = ∥√ρ
√

σ∥2
1 ,

where ∥ · ∥1 is the trace norm. The trace distance of ρ, σ ∈ D(H) is given by

δTD(ρ, σ) =
1
2
∥ρ− σ∥1.

The two distance measures are related via the Fuchs-van de Graaf inequalities:

1−
√

F(ρ, σ) ≤ δTD(ρ, σ) ≤
√

1− F(ρ, σ) .

We also use the following inequality.

Lemma 3.1 (Strong convexity of trace distance ([NC00], Theorem 9.3)). Let p = {pi} and
q = {qi} be probability distributions over the same index set, and let {ρi} and {σi} be density
operators, also with indices from the same index set. Then,

δTD

(
∑

i
piρi, ∑

i
qiσi

)
≤∑

i
pi · δTD (ρi, σi) + δTV(p, q).

Uhlmann’s theorem. We frequently make use of the following theorem.

Theorem 3.2 (Uhlmann’s theorem [Uhl76]). Let |ψ⟩AB and |ϕ⟩AB be pure states that live in
a Hilbert spaceHAB, and let ρA and σA denote their respective reduced states in register A. Then,
there exists a unitary U ∈ L(HB) acting only on register B such that

F(ρA, σA) = | ⟨ϕ|AB (IA ⊗UB) |ψ⟩AB |
2 .
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Gentle Measurement. We also make use of the following well-known lemma, which
is often called the Gentle Measurement Lemma.

Lemma 3.3 ([Wil13], Lemma 9.4.1). Let ρ ∈ D(H) be an arbitrary density matrix, and let Λ
be any positive semidefinite hermitian matrix. Then,

δTD

(
ρ,

√
Λρ
√

Λ
Tr[Λρ]

)
≤
√

1− Tr[Λρ].

Permutation operators. Let n ∈ N be an integer. Then, for a permutation π ∈ Sn,
we define the corresponding n-qubit permutation operator Q(π) over (C2)⊗n as

Q(π) := ∑
i1,...,in∈{0,1}

∣∣∣iπ−1(1), . . . , iπ−1(n)

〉
⟨i1, · · · , in| .

In other words, Q(π) is the unitary operator that permutes all of the single-qubit qubit
registers according to the permutation π. By linearity, the operator Q(π) also permutes
any product of single-qubit linear operators O1, . . . , On ∈ L(C2) as follows:

Q(π)(O1 ⊗ · · · ⊗On)Q(π)† = (Oπ−1(1) ⊗ · · · ⊗Oπ−1(n)).

3.1 Pauli group.
The n-qubit Pauli group Pn consists of n-fold tensor products of Pauli operators. In other
words, this is a group of order |Pn| = 22n+1 with

Pn = {±I,±X,±Y,±Z}⊗n.

Once we switch to the symplectic representation, we are going to ignore signs and in-
stead consider the quotient group given by

P̄n = Pn/{±I⊗n}.

An important property of Pauli group is the fact that any two Pauli operators either
commute or anti-commute, i.e., it holds that PQ = ±QP for any Pauli operators P, Q.

Symplectic representation. Instead of working with Pn, we sometimes use the quo-
tient group P̄n = Pn/{±I⊗n} to reason about Paulis. In this case, every unsigned Pauli
P ∈ P̄n can be specified in terms of a pair px, pz ∈ {0, 1}n such that

P =
n⊗

i=1

Xpx,i ·
n⊗

i=1

Zpz,i .

Therefore, we can directly identify the unsigned Paulis P̄n with a binary vector space of
dimension 2n such that P̄n ∼= Z2n

2 . Note that multplication of Paulis P, Q in P̄n, each
represented by p = (px|pz) and q = (qx|qz), amounts to addition in Z2n

2 :

(px|pz) · (qx|qz) = (−1)px ·qz+pz·qx(px ⊕ qx|pz ⊕ px).

We call (px|pz)⊙ (qx|qz) := px · qz + pz · qx the symplectic inner product. Two Paulis
P, Q commute if and only if their symplectic inner product of its Z2n

2 representations
(px|pz) and (qx|qz) vanishes9. In other words, if and only if p⊙ q = 0 (mod 2).

9The symplectic inner product of P, Q ∈ P̄n is identical to the function c(P, Q) we defined earlier.
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3.2 Clifford group.
The Clifford group is the set of unitaries that normalizes the Pauli group; that is

Cliffn =
{

U ∈ Un | UPU† ∈ Pn, ∀P ∈ Pn

}
(5)

The Clifford group also contains operators of the form eiθ I. for some θ ∈ [0, 2π]. These
global phase operators are often irrelevant to us because Clifford operators act by conju-
gation, and thus we consider two Clifford operators to be equivalent if they differ only
by a global phase. Thus we will define

Čliffn = Cliffn/{eiθPn}. (6)

We also quote a result about the generators of the Clifford group:

Theorem 3.4 (Clifford generators [Got24]). Any gate in the Clifford group Cliffn can be writ-
ten as a product of eiθ I, Hi, Rπ/4,i, and CNOTi,j, with i, j = 1, . . . , n and θ ∈ [0, 2π).

In the rest of this paper, we assume all Clifford circuits are written in terms of the
above gates. In fact, we can compile the basic set of Clifford generators above into a
more convenient gateset:

{eiθ I, H, Rπ/4, CNOT, SWAP, C-Z.} (7)

This is seen to be equivalent to the original gateset by using the identities C-Z = (I ⊗
H)CNOT(I ⊗ H) and SWAPi,j = CNOTi→j ⊗ CNOTj→i ⊗ CNOTi→j, pictorially illus-
trated in Figure 1. Here we have, for the only time in this paper, used the notation
CNOTi→j to denote a CNOT with i as the control qubit and j as the target qubit.

Permutations and Local Cliffords. Note that, for any π ∈ Sn, the permutation op-
erator Q(π) can be implemented as a Clifford operation by composing transpositions.
These are themselves Clifford operations consisting of three consecutive CNOTs, as il-
lustrated in Figure 1. This motivates us to consider the n-qubit subgroup PLCn ≤ Čliffn

(i)

...

(j)

Figure 1: Circuit to transpose qubit i and j

generated by permutation operators and local Clifford gates:

PLCn :=

{
C ∈ Čliffn | C =

n⊗
i=1

Ci ◦ Q(π) : C1, . . . , Cn ∈ Čliff1 and π ∈ Sn

}
.

It is easy to see that PLCn forms a group, as captured by the following lemma.

Lemma 3.5 (PLC is a group). The set of all Clifford unitaries in PLCn form a subgroup of the
n-qubit unitary group under unitary composition (i.e., matrix multiplication).

This group is a key tool in our worst-to average-case reduction in Section 7.
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3.3 Quantum Noise Channels
Single-qubit depolarizing noise. For M ∈ L(Cd), we define the single-qubit depo-
larizing noise channel Dp : L(Cd)→ L(Cd) as one that acts as

Dp(M) := (1− 4/3p)M + 4/3pTr {M} I

2
, p ∈ [0, 3/4]. (8)

This channel, when acting on a quantum state ρ, has the Kraus representation

Dp(ρ) =
p
3

XρX +
p
3

YρY +
p
3

ZρZ + (1− p)ρ, (9)

Thus, a single-qubit depolarizing channel can be thought of as a random Pauli channel
E(·)E†, E ∈ P1, where E can be sampled as follows: pick wt(E) ∼ Bernoulli(p) (i.e. apply
id(·) with probability 1− p) then uniformly sample from the E ∈ P1 with weight w.

Tensor product of single-qubit depolarizing noise channels. We will model
noise acting on an n-qubit quantum state as a tensor product of n single-qubit depo-
larizing noise channels with parameter p ∈ (0, 3/4), where for ρ ∈ L(C2n

)

D⊗n
p (ρ) := ∑

E∈Pn

( p
3

)|E|
(1− p)n−|E| EρE† =: ∑

E∈Pn

Pr
E∼D⊗n

p

[E]EρE†. (10)

It is not hard to check that Equation (10) yields Equation (9) for n = 1. This channel is
equivalent to acting with a random Pauli channel E(·)E†, E ∈ Pn, where E can be sam-
pled as follows: pick wt(E) = w ∼ Binom(n, p), then uniformly sample from the E ∈ Pn
with weight w. We will often use this interpretation of noise channels as probabilistically
applying Pauli errors.

Bit-flip noise channels. For ρ ∈ L(C2), the single-qubit bit-flip noise channel Fp :
L(C2)→ L(C2) acts as

Fp(M) := (1− p)ρ + pXρX. (11)

This may, as usual, be extended to a tensor product of n single-qubit bit-flip noise chan-
nels via:

F⊗n
p (ρ) := ∑

b∈{0,1}n

p|b|(1− p)n−|b|XbρXb, (12)

where for i ∈ [n], the i-th qubit of Xb is (Xb)i := XI(bi=1).

3.4 Stabilizer Codes.
We can use Pn to characterize a quantum error correcting code as follows. Let S ≤ Pn be
an abelian subgroup which has n− k generators. In other words,

S = ⟨g1, . . . , gn−k⟩.

Then, we define the codespace C(S) ⊆ (C2)⊗n as the simultaneous (+1) eigenspace of
all elements of S. 10. In other words,

C(S) =
{
|ψ⟩ ∈

(
C2)⊗n

: M |ψ⟩ = (+1) |ψ⟩ , ∀M ∈ S
}

.

10Because S ⊆ Pn is an abelian subgroup its elements can all be simultaneously diagonalized.
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If S has n− k generators, then we know that C(S) has precisely 2k many codewords. We
also use Stab(n, k) to denote the set of all stabilizer subgroups ofPn with n− k generators.

The normalizer, denoted by N(S), is the set of Paulis that commute with S11:

N(S) =
{

P ∈ Pn : PQ = QP, ∀Q ∈ S
}

.

How do we detect errors? Suppose we have a class of errors E = {Ea} where each
Ea ∈ Pn is a low-weight Pauli error. Let |ψ⟩ ∈ C(S) be a codeword. Then, for every
generator gi in S, one of two possible events takes place:

• gi commutes with Ea, in which case

giEa |ψ⟩ = Eagi |ψ⟩ = Ea |ψ⟩ .

• gi anti-commutes with Ea, in which case

giEa |ψ⟩ = (−1)Eagi |ψ⟩ = (−1)Ea |ψ⟩ .

We can detect this phase by performing a measurement. In general, we want to do this
for every generator and collect a syndrome vector sa ∈ {0, 1}n−k such that

giEa = (−1)sa,i Eagi , ∀i ∈ [n− k].

The distance of a quantum code C is the minimum Hamming weight d of an error that
the code cannot correct. We use the following well-known fact (see e.g. [Got24]).

Theorem 3.6 (Knill-Laflamme conditions). Let E be a set of errors with maximum Hamming
weight d. Then, C ⊆ (C2)⊗n is a [[n, k, d]] quantum error correcting code with distance d if and
only if for every |ψ⟩ , |ϕ⟩ ∈ C and for all Ea, Eb ∈ E , it holds that

⟨ψ| E†
a Eb |ϕ⟩ = cab ⟨ψ|ϕ⟩

for some hermitian matrix cab. Note that cab does not depend on |ψ⟩ or |ϕ⟩.

We say that a code is non-degenerate if cab = δab. The interpretation of the non-degeneracy
condition is that two different errors take any two states in the same subspace to orthog-
onal subspaces.

Encoding circuits for stabilizers. Given a description of some stabilizer code in
terms of the generating elements of the stabilizer group S = ⟨g1, . . . , gn−k⟩, there exists
a Clifford circuit US ∈ Cliffn to encode any initial k-qubit state |ψ⟩ ∈ (C2)⊗k as a state
inside the subspace stabilized by S. Let

|ψ̄⟩S := US
Enc

(
|0n−k⟩ ⊗ |ψ⟩

)
∈ C(S).

denote the encoding of |ψ⟩ in the subspace stabilized by S.
How can we find US

Enc? Note that the initial state |0n−k⟩ ⊗ |ψ⟩ itself is also a codeword
which is stabilized by the trivial stabilizer code ⟨Z1, . . . , Zn−k⟩, i.e.,

Z I I · · · I I · · · I
I Z I · · · I I · · · I
...

...
...

...
. . .

...
. . .

...
I I I · · · Z I · · · I

11Technically, this is the centralizer but in our case they are the same.
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Any encoding unitary US
Enc also acts by conjugation to map the initial set of stabilizers

Zi to the new set of stabilizers specified by S, i.e. gi = US
EncZiUS

Enc
†. This is because for

every i ∈ [n− k], we have

US
Enc

(
|0n−k⟩ ⊗ |ψ⟩

)
= US

Enc Zi

(
|0n−k⟩ ⊗ |ψ⟩

)
=
(

US
EncZiUS

Enc
†
)

︸ ︷︷ ︸
=gi

US
Enc

(
|0n−k⟩ ⊗ |ψ⟩

)
︸ ︷︷ ︸

=|ψ̄⟩S

.

Theorem 3.7 (Efficient and efficiently-findable encoding circuits for stabilizer codes).
Given a description of S ∈ Stab(n, k) there is an O(n3) time classical algorithm to write down
an encoding circuit for S with O(n2) Clifford gates.

Proof. The proof is presented in Gottesman (Section 6.4.1 of [Got24]) but we write it
concisely. Because of the remark before this theorem, it suffices to specify a circuit C
that maps the final generators g1, . . . , gn−k to the initial generators Z1, . . . Zn−k, in the
sense that CgiC† = Zi. Then we may output US

Enc = C†. To find C, we start by writing
the generators g1, . . . , gn−k in symplectic notation, representing them as two matrices
A, C ∈ Zn×n−k

2 where the i-th column of A is (gi)x and the i-th column of C is (gi)z. To
find C, we make use of the fact that conjugating a Pauli P ∈ P̄n with a Clifford C with
symplectic representation MC transforms the symplectic representation of P (represented
as a column vector) by left multiplication, as

(px, pz)
T → MC(px, pz)

T. (13)

Working exclusively within the symplectic picture, the goal is then to find a matrix MC
representing a valid Clifford such that

MC

(
A
C

)
=

(
0

In,n−k

)
(14)

where In,n−k denotes a n by n − k matrix with In−k in its first n − k rows and 0s in all
other locations. One can verify that the right-hand-side of the above equation represents
the stabilizer ⟨Z1, . . . Zn−k⟩ and hence the target.

By checking Equations 6.79-6.82 of [Got24], which give the symplectic representations
of each Clifford generator, one can verify that row and column reductions on (A

C ) can be
implemented in symplectic space by acting with Clifford gates on the actual generators.
Specifically, column reduction on A composes the operation of adding the topmost row
with a leading 1 to a different row which has an undesired leading 1. This corresponds
to acting with a single CNOT. Similarly, column reduction on C can be implemented
by acting with a single Rπ/4 or C − Z. Row reduction on A (via adding the column
with a leading 1 to other columns) corresponds to multiplication of generators, which
effectively does not change the stabilizer group. Since only O(n2) additions of rows are
needed to reduce (A

C ) to the desired form, and each addition corresponds to adding O(1)
gates to the circuit, the row-reduction portion of the algorithm can be carried out in O(n2)
time.

There’s one problem: in symplectic space phases do not exist, so the circuit C ′ re-
sulting from the above procedure may not produce S = ⟨g1, . . . , gn−k⟩ with the proper
signs. So we need to perform some final corrections. We then need to compute which
gis have the wrong signs, which by the following Lemma 3.8 takes time O(n2) for each
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gi. For every gi that has the wrong sign, we modify the circuit C ′ by acting with Xi at
the start of the circuit. This correction operation does not change the circuit complexity
asymptotically and increases the classical runtime to O(n3), though we did not optimize
this.

We also quote a well-known result on simulating Cliffords.

Lemma 3.8 (Simulating Clifford circuits). Given a description of a Clifford circuit C ∈ Cliffn
where C = ∏m

i=1 Ui and each Ui is a 2-qubit gate from some generating set of Čliffn, for any Pauli
P ∈ Pn we may compute CPC† in time linear in O(m + n).

Proof. This is a special case of the Gottesman-Knill theorem [Got24], which says that
Clifford circuits acting on an initial n-qubit stabilizer state, followed by a sequence of m
Clifford group operations and Pauli measurements, can be efficiently classically simu-
lated. The simulation algorithm is to keep track of how each operation transforms the
stabilizer group of the initial state.

More concretely, in this case we have only one Pauli to keep track of, so we may
compute CPC† by computing the effect of each gate Ui in sequence. Since each gate acts
on a constant number of qubits, the time needed for the simulation and to write down
the final Pauli scales as O(m + n). Lookup tables for the action of gates from popular
generating gatesets can be found in, e.g. Table 6.1 of [Got24].

Random stabilizer codes. A random [[n, k]] stabilizer code is a uniformly random
choice of abelian subgroup S ≤ Pn with n− k generators. Note, here the Pauli signs are
important and will determine what subspace is stabilized by S. Because the members
of S must commute, choosing n − k elements uniformly from Pn will not always give
a valid stabilizer code. We claim that a random element of the Clifford group Cliffn,
acting on any initial choice of S, generates a uniformly random S and hence a uniformly
random [[n, k]] stabilizer code.

Theorem 3.9. Let n ∈ N be an integer and let S = ⟨g1, . . . , gn−k⟩ be any stabilizer with
generators g1, . . . , gn−k ∈ Pn. Then, the conjugated stabilizer code

USU† = ⟨Ug1U†, . . . , Ugn−kU†⟩, for U ∼ Cliffn,

yields a uniformly stabilizer in the set Stab(n, k).

Proof. First, we show that the Clifford group Cliffn acts transitively on the set of stabi-
lizers Stab(n, k). Let S = ⟨g1, . . . , gn−k⟩ be an arbitrary stabilizer with n− k generators.
From [Got24], we know that there exists a Clifford operator C ∈ Cliffn and a Pauli P ∈ P̄n
such that the composition of the two operations maps S to the canonical stabilizer Z. In
particular, we can let V = PC such that

VSV† = ⟨Vg1V†, . . . , Vgn−kV†⟩ = ⟨Z1, . . . , Zn−k⟩.

Likewise, from [Got24], we also know that once we have the canonical all-Z stabilizer
Z = ⟨Z1, . . . , Zn−k⟩, we can obtain any other stabilizer S′ = ⟨g′1, . . . , g′n−k⟩ via some other
composition of operators W = DQ, where D ∈ Cliffn and Q ∈ P̄n, i.e.,

S′ = ⟨g′1, . . . , g′n−k⟩ = ⟨WZ1W†, . . . , WZn−kW†⟩.

Therefore, for any pair of distinct stabilizers S, S′ ∈ Stab(n, k) there exists an operator
WV that maps S to S′. By using the fact that Cliffords are the normalizer of the Pauli
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group, WV can be realized as a single Pauli operation followed by a single Clifford op-
eration.

Finally, we show that the probability that a random Clifford applied to an arbitrary
stabilizer S = ⟨g1, . . . , gn−k⟩ yields any pair of distinct stabilizers S1, S2 with exactly the
same probability. From before, there exists a Clifford C ∈ Cliffn such that

Pr
U∼Cliffn

[USU† = S1] = Pr
U∼Cliffn

[(CU)S(CU)† = CS1C†]

= Pr
U∼Cliffn

[(CU)S(CU)† = S2]

= Pr
U∼Cliffn

[USU† = S2].

The last line follows from the fact that Cliffn is a group, and hence the uniform distribu-
tion over Cliffn is Clifford invariant.

Quantum Gilbert-Varshamov bound. In a nutshell, the quantum Gilbert-Varshamov
bound [Smi06, Got24] tells us that a random stabilizer code is both non-degenerate and
has a good distance with high probability. This is captured by the following result.

Theorem 3.10 (Quantum Gilbert-Varshamov bound, [Smi06]). Random stabilizer codes
which are specified by a random stabilizer subgroup S ∼ Stab(n, k) are non-degenerate and
have distance d with probability at least 1− d · 2nH(d/n) · 3d · 2−n+k.

The above statement is perhaps best viewed through the lens of the Knill-Laflamme
error correction conditions (Theorem 3.6). Suppose that S = ⟨g1, . . . , gn−k⟩ is a non-
degenerate stabilizer code with distance d = 2t + 1. Define the set

E (t) = {E†
1 E2 ∈ Pn : |E1|, |E2| ≤ t}

which consists of weight-t products of Pauli errors. Then, for all pairs of codewords
|ψx⟩ , |ψy⟩ ∈ C(S) with x ̸= y, and for all E†

a Eb ∈ E (t), it holds that

⟨ψx| E†
a Eb |ψy⟩ = 0.

One way to see this is as follows. Suppose that E†
a Eb /∈ N(S), then there must exist a

generator gi in S = ⟨g1, . . . , gn−k⟩ which anti-commutes with E†
a Eb, and thus

giE†
a Eb |ψx⟩

S
= −E†

a Ebgi |ψx⟩
S
= −E†

a Eb |ψx⟩
S . (15)

Using that g2
i = I⊗n together with Equation (15), this implies that, for x ̸= y,

⟨ψx| E†
a Eb |ψy⟩ = ⟨ψx| giE†

a Ebgi |ψy⟩ = − ⟨ψx| E†
a Eb |ψy⟩ = 0. (16)

4 The Learning Stabilizers with Noise problem
In this section, we formally define the Learning Stabilizers with Noise (LSN) problem as the
natural quantum analog of the LPN problem. We begin with a set of definitions for the
problem (and its variants), and then show that the problem is well-defined (i.e., it admits
a unique solution) for appropriate choices of parameters.
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4.1 Definition
We now provide a formal definition of our learning task.

Definition 4.1 (Learning Stabilizers with Noise problem). Let k ∈N be the security param-
eter and let n = poly(k) be an integer. Let p ∈ (0, 1/2) be a parameter. The Learning Stabilizers
with Noise (LSNn,k,D⊗n

p
) problem is to find x ∈ {0, 1}k given as input a sample(

S ∈ Stab(n, k), E |ψx⟩
S ) ,

where S ∼ Stab(n, k) is a uniformly random stabilizer (specified in terms of a classical description
of S), E ∼ D⊗n

p is a Pauli error with E ∈ P̄n, x ∼ {0, 1}k is a random string , and |ψx⟩
S ∈ C(S)

is the codeword
|ψx⟩

S := US
Enc(|0n−k⟩ ⊗ |x⟩)

for some canonical encoding circuit US
Enc for the stabilizer code associated with S. We say that a

quantum algorithm solves the LSNn,k,D⊗n
p

problem if it runs in time poly(k) and succeeds with
probability at least 1/poly(k) over the choice of S, E and x, and its internal randomness.

Let us first state a few remarks.

Remark 4.2 (Density matrix formulation). In Definition 4.1, the input to the learning algo-
rithm is stated in the form (S ∈ Stab(n, k), E |ψx⟩

S
), where S ∼ Stab(n, k), E ∼ D⊗n

p and

x ∼ {0, 1}k is a random string. The pure state E |ψx⟩
S, however, should rather be understood as

a density matrix of the form

ρS
x = D⊗n

p (|ψx⟩⟨ψx|
S
) = ∑

E∈P̄n

Pr
E∼D⊗n

p

[E] · E |ψx⟩⟨ψx|
S E† ,

where we think of D⊗n
p as a product of local depolarizing channels with parameter p.

Remark 4.3 (Learning vs. decoding). The name ‘Learning Stabilizers with Noise’ was chosen
to parallel the name of the classical hardness assumption ‘Learning Parities with Noise’. The word
‘learning’ here should be understood in the sense of Quantum Probably Approximately Correct
(PAC) learning, where the example(s) seen by the learner/solver for LSN is a/are random quantum
state(s). Notably, unlike in the setting of tomography, the quantum learner does not have multiple
identical copies of the same quantum state.

Remark 4.4 (Clifford representation). Recall that the input of the learner in Definition 4.1
consists of a random stabilizer S ∈ Stab(n, k). In Theorem 3.9, we showed that random stabilizer
codes can be equivalently described by uniformly random Clifford encoding circuits. Therefore,
we can alternatively think of an LSNn,k,D⊗n

p
instance as(

C ∈ Cliffn, E C(|0n−k⟩ ⊗ |x⟩)
)

where C ∼ Cliffn is a random n-qubit Clifford operator and the first argument refers to a classical
description of C, E ∼ D⊗n

p is an n-qubit Pauli error, and x ∼ {0, 1}k is a random string.

Remark 4.5 (Worst-case vs. average-case). The computational task of solving LSNn,k,D⊗n
p

in
Definition 4.1 is an average-case problem in the sense that the success probability of any algorithm
is measured on average over the choice of stabilizer code S, error E and secret x. We also consider
the worst-case variant, denoted by LSNn,k, where E, S and x are not assumed to be random and
instead chosen adversarially subject to appropriate constraints. We say that an algorithm solves
LSNn,k in the worst-case with probability δ > 0, if the algorithm succeeds at finding x with
probability δ when challenged on any instance of the problem—even for adversarial choices of
stabilizer code S, error E and secret x.
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Remark 4.6 (Polynomial vs. quasi-polynomial hardness). In Definition 4.1, we considered
the "polynomial hardness" of the LSN problem, i.e., we assume that a successful solver must run
in time poly(k) and succeed with probability at least 1/poly(k). In Section 7, we also establish
a connection to "quasi-polynomial hardness" of the problem, where we assume that a success-
ful solver must run in quasi-polynomial-time and must succeed with inverse-quasi-polynomial
probability in k.

General variants. Recall that the input in Definition 4.1 consists of a sample(
S, E |ψx⟩

S ) ∼ LSNn,k,D⊗n
p

where S ∼ Stab(n, k) is a (classical description of) uniformly random stabilizer, where
E ∼ D⊗n

p is a Pauli error E ∈ P̄n, where x ∼ {0, 1}k is a random string. Occasionally, we
also consider more general variants of the problem, denoted by LSNn,k,N ,S ,I , that feature
samples (

S, E |ψx⟩
S ) ∼ LSNn,k,N ,S ,I

which are captured by the following set of distributions (which depend on n and k):

• N is a general noise distribution with support over n-qubit Pauli errors E ∈ P̄n.

• S is a general distribution over Stabilizer codes, either with support over the set of
stabilizers S ∈ Stab(n, k), or over Clifford encoding circuits in C ∈ Cliffn.

• I is a general distribution over input strings of the form x ∈ {0, 1}k.

Depending on the choice of distributions N , S and I , the learning task may either be-
come easier or harder than the canonical learning problem in Definition 4.1.

4.2 Existence of Unique Solutions
We now investigate for which parameter regime the learning problem LSNn,k,D⊗n

p
in Def-

inition 4.1 is well-defined and admits unique solutions. In anticipation of Section 8 and
Section 9.2, we show the existence of a unique solution by phrasing the LSNn,k,D⊗n

p
prob-

lem as an Uhlmann transformation problem. An Uhlmann transformation problem, which
will be formally defined in Section 8, can be understood as the problem of implementing
the unitary in Uhlmann’s theorem Theorem 3.2.

Uhlmann transformations and the LSN problem. To argue that the LSNn,k,D⊗n
p

problem has a unique solution, we appeal to Uhlmann’s theorem. Suppose we are given
as input an instance with repsect to the Clifford representation,(

C ∈ Cliffn, E C(|0n−k⟩ ⊗ |x⟩)
)

where C ∼ Cliffn is a random n-qubit Clifford, E ∼ D⊗n
p is an n-qubit Pauli error from

a local depolarizing channel, and x ∼ {0, 1}k is a random k-bit secret. We can represent
the density matrix corresponding to the quantum part of the instance12 as the result of
discarding register A of the purification,

|Q0⟩AB =
√

2−k ∑
x

∑
Ea

√
Pr

Ea∼D⊗n
p

[Ea]
(
|x⟩ ⊗ |a⟩

)
A
⊗
(

Ea C(|0n−k⟩ ⊗ |x⟩)⊗ |0⟩
)
B

. (17)

12We also append an ancilla register in the state |0⟩ for convenience.
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For the sake of the proof, we also consider the following bipartite state given by

|Q1⟩AB =
√

2−k ∑
x

∑
Ea

√
Pr

Ea∼D⊗n
p

[Ea]
(
|x⟩ ⊗ |a⟩

)
A
⊗
(
|0n−k⟩ ⊗ |x⟩ ⊗ |a⟩

)
B

. (18)

Using the quantum Gilbert-Varshamov bound, we can argue that the fidelity between
the reduced states Q0

A and Q1
A on register A is near maximal—provided that n is slightly

larger than k, and that p ∈ (0, 1/2) is a sufficiently small constant. Therefore, by Uhlmann’s
theorem, there exists a unitary U ∈ L(HB) which acts on the B register and maps |Q0⟩AB
to another state which has near maximal overlap with |Q1⟩AB. In other words, the
Uhlmann unitary U allows us to solve LSNn,k,D⊗n

p
and to recover the x with overwhelm-

ing probability—thereby proving uniqueness.
To make this explicit, we first show the following technical lemma.

Lemma 4.7. Let n, k ∈ N and let |Q0⟩AB and |Q1⟩AB be the bipartite states in Eq. (17) and
Eq. (18), respectively, for some p ∈ (0, 1/2) and Clifford C ∈ Cliffn. Then, with probability at
least 1− 3np · 2nH(3p) · 33np · 2−n+k over the choice of the random Clifford C, it holds that

F(Q0
A, Q1

A) ≥ 1− 4 · e−
np
24 .

Proof. Before we bound the fidelity, we first make a couple of observations. Define the
projector onto system A given by

Πn,p = Ik ⊗ ∑
a : |Ea|≤ 3

2 np

|a⟩⟨a| . (19)

Note that Πn,p projects onto the support of all n-qubit Pauli operators of weight at most
3
2 np. For convenience, we also define the reduced density matrices

Q̂b
A :=

TrB
[
(Πn,p ⊗ IB)Qb

AB(Πn,p ⊗ IB)
]

Tr[(Πn,p ⊗ IB)Qb
AB(Πn,p ⊗ IB)]

, for b ∈ {0, 1}.

First, we observe the following about the reduced state Q0
A = TrB

[
Q0

AB

]
:

δTD
(
TrB

[
Q0

AB

]
, Q̂0

A

)
≤ δTD

(
Q0

AB,
(Πn,p ⊗ IB)Q0

AB(Πn,p ⊗ IB)

Tr[(Πn,p ⊗ IB)Q0
AB(Πn,p ⊗ IB)]

)
(Monotinicity of δTD)

≤
√

1− Tr[(Πn,p ⊗ IB)Q0
AB] (Gentle measurement)

=

√
Pr

E∼D⊗n
p

[
|E| > 3

2
np
]

≤ exp
(
−np

24

)
. (Chernoff bound)

Next, we make the following observation. By the quantum Gilbert-Varshamov, it follows
that a random stabilizer code is non-degenerate and has distance at least d = 3np + 1
with probability at least 1− 3np · 2nH(3p) · 33np · 2−n+k over the choice of encoding Clifford
C, in which case for any pair of codewords with x, y ∈ {0, 1}k:

⟨ψx| E†
a Eb |ψy⟩ = 0 (20)
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by the Knill-Laflamme conditions—provided the errors Ea, Eb have weight at most |Ea|, |Eb| ≤
3
2 np. Thus, the aforementioned reduced states must be identical:

Q̂0
A = Q̂1

A. (21)

To complete the proof, we now make another observation about the reduced state Q1
A =

TrB
[
Q1

AB

]
. Using a similar approach as before, we obtain the bound

δTD

(
Q̂0

A, Q1
A

)
≤ δTD

(
Q̂0

A, Q̂1
A

)
+ δTD

(
Q̂1

A, Q1
A

)
(Triangle ineq.)

≤ 0 + δTD

(
Q̂1

A, Q1
A

)
(By Equation (21))

≤
√

1− Tr[(Πn,p ⊗ IB)Q0
AB] (Gentle measurement)

=

√
Pr

E∼D⊗n
p

[
|E| > 3

2
np
]

≤ exp
(
−np

24

)
. (Chernoff bound)

Putting everything together, we can now apply the Fuchs-van de Graaf inequality, fol-
lowed by the triangle inequality, followed by Bernoulli’s inequality, to lower bound the
fidelity between the reduced states as follows:

F(Q0
A, Q1

A) ≥
(

1− δTD

(
Q0

A, Q1
A

))2

≥
(

1− δTD
(
TrB

[
Q0

AB

]
, Q̂0

A

)
− δTD

(
Q̂0

A, TrB
[

Q1
AB

]))2

≥
(

1− 2 exp
(
−np

24

))2
≥ 1− 4 exp

(
−np

24

)
.

Using Lemma 4.7, we can now argue that LSNn,k,D⊗n
p

admits unique solutions with
overwhelming probability—provided that n is slightly larger than k, say n ≥ 8k, and
that p ∈ (0, 1/2) is a sufficiently small constant, for example p = 0.05.

Lemma 4.8 (Existence of unique solutions). Let n, k ∈N be integers and let p ∈ (0, 1/2) be a
parameter. Then, the LSNn,k,D⊗n

p
problem admits a unique solution and can be solved information-

theoretically with probability at least 1− δ, where

δ ≤ 3np · 2nH(3p) · 33np · 2−n+k + 2 · e−
np
48 .

Proof. Suppose we are given as input an instance in the Clifford representation,(
C ∈ Cliffn, Ea C(|0n−k⟩ ⊗ |x⟩)

)
(22)

where C ∼ Cliffn is a random n-qubit Clifford, Ea ∼ D⊗n
p is an n-qubit Pauli error from a

local depolarizing channel, and x ∼ {0, 1}k is a random k-bit secret.
Let |Q0⟩AB and |Q1⟩AB be the bipartite states in Eq. (17) and Eq. (18), respectively, for

some p ∈ (0, 1/2). Note that |Q0⟩AB depends on the Clifford C ∈ Cliffn. Then, Lemma 4.7
shows that, with probability at least 1− 3np · 2nH(3p) · 33np · 2−n+k over the choice of the
random Clifford C, it holds that F(Q0

A, Q1
A) ≥ 1 − 4 · e−

np
24 . Therefore, by Uhlmann’s
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theorem, there exists a unitary U ∈ L(HB) which acts on the B register and maps |Q0⟩AB
to another state which achieves an overlap of at least 4 · e−

np
24 with |Q1⟩AB. Applying the

Uhlmann unitary U on the quantum part of the input from Equation (22) together with
an additional ancilla register |0⟩, i.e.,

EaC(|0n−k⟩ ⊗ |x⟩)⊗ |0⟩ 7→ U
(

Ea C(|0n−k⟩ ⊗ |x⟩)⊗ |0⟩
)

we obtain a state which—via Fuchs-van De Graaf—is within trace distance at most 2e−
np
48

of the state |0n−k⟩ ⊗ |x⟩ ⊗ |a⟩. In other words, the Uhlmann unitary U allows us to solve
LSNn,k,D⊗n

p
and to recover the x with the desired success probability.

4.3 Multi-Shot Variant
Recall that the quantum learning problem LSNn,k,D⊗n

p
in Definition 4.1 only involves a

single quantum sample of the form(
S, E |ψx⟩

S ) ∼ LSNn,k,D⊗n
p

.

One may reasonably ask: does the learning problem become easier if the learner instead
receives many independently chosen samples {Si, Ei |ψx⟩

Si}i∈[m], where the secret x re-
mains the same throughout each sample? This motivates us to consider a multi-shot
variant of the LSN problem, which we study in this section. Note that the multi-sample
learning task also shows up naturally in the related LPN problem (see Section 5). We
define the multi-shot variant of the LSNn,k,D⊗n

p
as follows.

Definition 4.9 (Multi-Shot Learning Stabilizers with Noise). Let k ∈ N be the security
parameter and let n = poly(k) be an integer. Let p ∈ (0, 1/2) be a parameter. The multi-shot
Learning Stabilizers with Noise (MSLSNm,n,k,D⊗n

p
) problem is to find x ∈ {0, 1}k given

{
Si ∈ Stab(n, k), Ei |ψx⟩

Si
}m

i=1 ,

where, for each index i ∈ [m], Si ∼ Stab(n, k) is a uniformly random stabilizer and Ei ∼ D⊗n
p

is a Pauli error E ∈ P̄n, and where x ∼ {0, 1}k is a random string.

Depending on the application, it may be more natural to think of m, the sample com-
plexity, as a parameter that one wishes to minimize, rather than as a fixed parameter. As
previously mentioned in Remark 4.4, we can equivalently use the Clifford representation
and think of an MSLSNm,n,k,D⊗n

p
instance a a tuple{

Ci ∈ Cliffn, Ei Ci(|0n−k⟩ ⊗ |x⟩)
}m

i=1
,

where Ci ∼ Cliffn and Ei ∼ D⊗n
p , for each index i ∈ [m], and where x ∼ {0, 1}k.

It is not hard to see that MSLSNm,n,k,D⊗n
p

reduces to (a special variant of) the single-shot
problem in Definition 4.1. Indeed, we can show the following.

Lemma 4.10 (MSLSNm,n,k,D⊗n
p

reduces to a special variant of LSN). Let k ∈ N, let n =

poly(k) be an integer and p ∈ (0, 1/2) be a parameter. Then, there exist distributions S and
I which depend on m, n, k and p and have support over Cliffmn and {0, 1}mk, respectively, such
that MSLSNm,n,k,D⊗n

p
reduces to LSNmn,mk,D⊗mn

p ,S ,I .
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Proof. Suppose we are given as input an MSLSNm,n,k,D⊗n
p

instance of the form{
Ci ∈ Cliffn, Ei Ci(|0n−k⟩ ⊗ |x⟩)

}m

i=1
,

where Ci ∼ Cliffn and Ei ∼ D⊗n
p , for each index i ∈ [m], and where x ∼ {0, 1}k.

Consider the reduction which proceeds as follows:

1. Let π ∈ Smn be the permutation on mn elements with permutation operator

Q(π)
(
(|0n−k⟩ ⊗ |x⟩)⊗ · · · ⊗ (|0n−k⟩ ⊗ |x⟩)

)
= |0m(n−k)⟩ ⊗ |xm⟩

where xm = x · · · x such that x is repeated m times.

2. Run the solver for the LSNmn,mk,N ,S ,I problem on inputQ(π)
( ⊗

i∈[m]

Ci
)
Q(π)†, Q(π)

⊗
i∈[m]

Ei Ci(|0n−k⟩ ⊗ |x⟩)

 .

Here, we define the corresponding distributions N , S and I as follows:

• N is the product distribution D⊗mn
p over local depolarizing channels.

• S is the distribution over Stabilizer codes which outputs Cliffords of the form

Q(π)
( ⊗

i∈[m]

Ci
)
Q(π)†, for Ci ∼ Cliffn, ∀i ∈ [m].

• I is the distribution over {0, 1}mk which first samples x ∼ {0, 1}k, and then outputs
xm = x · · · x where x is repeated m times.

We now argue that our reduction allows us to solve MSLSNm,n,k,D⊗n
p

—provided that we
have a solver for LSNmn,mk,N ,S ,I . To this end, we observe that

Q(π)
⊗

i∈[m]

Ei Ci(|0n−k⟩ ⊗ |x⟩)

= Q(π)

⊗
i∈[m]

Ei Ci

Q(π)†Q(π)
(
(|0n−k⟩ ⊗ |x⟩)⊗ · · · ⊗ (|0n−k⟩ ⊗ |x⟩)

)

= Q(π)

⊗
i∈[m]

Ei Ci

Q(π)†
(
|0m(n−k)⟩ ⊗ |xm⟩

)

= Q(π)

⊗
i∈[m]

Ei

Q(π)†Q(π)

⊗
i∈[m]

Ci

Q(π)†
(
|0m(n−k)⟩ ⊗ |xm⟩

)
.

Since the distribution D⊗mn
p is invariant under permutations via Q(π), our reduction

produces an instance of LSNmn,mk,N ,S ,I , as desired.
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5 Reduction from Learning Parity with Noise
In this section, we show that LSN is a rich assumption which captures the classical LPN
problem as a special case. Despite of more than a quarter of a century of study, the fastest
known (classical or quantum) algorithms for LPN still run in exponential time [BKW03].
Because the LSN problem (in some sense) subsumes LPN, this can be seen as additional
evidence for the average-case hardness of our learning problem.

In fact, our also results suggest that the LSN problem—precisely because it is an in-
herently quantum assumption—may in fact be even harder to break than its classical
counterpart, which makes it particularly appealing as a basis of hardness in quantum
cryptography.

5.1 Learning Parity with Noise
Recall that the LPN assumption [BFKL94] says that it is computationally difficult to de-
code a random linear code under Bernoulli noise.

Definition 5.1 (Learning Parity with Noise). Let n, k ∈ N and let p ∈ (0, 1/2) be a param-
eter. The Learning Parity with Noise (LPNn,k,Ber⊗n

p
) problem is to find x given as input

(A ∼ Zn×k
2 , A · x + e (mod 2))

where x ∼ Zk
2 and e ∼ Ber⊗n

p is a random Bernoulli error term.

The LPN decoding problem is believed to be hard against both classical and quantum
algorithms running in time poly(k) in the constant-noise regime, where p ∈ (0, 1/2) is a
constant and n = poly(k). In this regime, the celebrated BKW algorithm [BKW03] solves
LPN with time/sample complexity given by O(2k/ log k).

Next, we study the relationship between LPN and LSN.

5.2 Quantum Reduction to LSN
The goal of this section is make the connection between LSN and LPN more explicit; in
particular, we show that LPN reduces to a special case of LSN. Specifically, we show that
LPNn,k,Ber⊗n

p
reduces to LSNn,k,N ,S ,I with respect to the following set of distributions:

• N is the product F⊗n
p of bit-flip noise channels Fp with parameter p > 0.

• S is the distribution over Cliffn which samples C ∼ S as follows: first, sample
a random matrix A ∈ Zn×k

2 of full column-rank, and let C be the corresponding
matrix-multiplication Clifford operator C : |0n−k⟩ ⊗ |x⟩ → |A · x (mod 2)⟩.

• I is the uniform distribution over x ∈ {0, 1}k.

Finally, we ask: can we also provide hardness results in the multi-shot setting? We
give a quantum reduction from LPN which applies in both settings.

Single-shot variant. First, we focus on the single-shot setting and show the following
theorem relating LSN and LPN.

Theorem 5.2 (LPN reduces to LSN). Let n, k ∈ N be integers and let p ∈ (0, 1/2) be a
parameter. Suppose there exists an algorithm A that runs in time T and solves LSNn,k,N ,S ,I
with probability ϵ. Then, there exists an algorithm B which runs in time poly(k, T) and solves
LPNn,k,Ber⊗n

p
with probability at least ϵ ·

(
1− k · 2k−n−1) .

27



Proof. Suppose we are given as input an instance

(A ∈ Zn×k
2 , A · s + e (mod 2)) ∼ LPNn,k,Ber⊗n

p

where A ∼ Zn×k
2 , s ∼ Zk

2 is a secret vector and e ∼ Ber⊗n
p is a random Bernoulli error

term. Consider the reduction B which proceeds as follows:

• If col-rank(A) < k, B aborts.

• Else, if col-rank(A) = k, B runs A on input

(UA, |A · s + e (mod 2)⟩)

where UA is the Clifford encoding circuit13 encoding operation

UA : |0n−k⟩ ⊗ |x⟩ → |A · x (mod 2)⟩

which is an injective matrix multiplication for any vector x ∈ Zk
2. In other words,

UA gives rise to the stabilizer subgroup SA = ⟨UAZ1U†
A, . . . , UAZn−kU†

A⟩.
Let is now analyze the probability that B succeeds. First, we observe that

Pr
A∼Zn×k

2

[col-rank(A) = k] =
k

∏
i=1

(
1− 2i−n−1

)
≥
(

1− 2k−n−1
)k
≥ 1− k · 2k−n−1.

Here, the last inequality follows from Bernoulli’s inequality. In other words, a uni-
formly random matrix A ∼ Zn×k

2 has full column-rank with overwhelming probabil-
ity, provided that n is only slightly larger than k. We can interpret the noisy sample
A · s + e (mod 2) as an ensemble of n-qubit pure states

|A · s + e (mod 2)⟩ = Xe |A · s (mod 2)⟩

= XeUA

(
|0n−k⟩ ⊗ |s⟩

)
,

where Xe = Xe1 ⊗ · · · ⊗ Xen is a product of Pauli-X operators. Note that, since the error
e ∼ Ber⊗n

p comes from a Bernoulli distribution, it follows that Xe ∼ F⊗n
p corresponds to

an n-qubit bit-flip error with parameter p.
Therefore, we conclude that B runs in time poly(k, T) and solves LPNn,k,Ber⊗n

p
with

probability at least ϵ ·∏k
i=1
(
1− 2i−n−1).

Multi-shot variant. Finally, we consider the multi-shot setting and show the follow-
ing theorem which relates LPN and MSLSN.

Theorem 5.3 (LPN reduces to MSLSN). Let m, n, k ∈ N be integers and p ∈ (0, 1/2). Sup-
pose there exists an algorithm A that runs in time T and solves MSLSNm,n,k,N ,S ,I with probabil-
ity ϵ. Then, there exists an algorithm B which runs in time poly(k, T) and solves LPNnm,k,Ber⊗nm

p

with probability at least ϵ ·
(
1−m · k · 2k−n−1).

Proof. Suppose we are given as input an instance

(A ∼ Znm×k
2 , A · s + e (mod 2)) ∼ LPNnm,k,Ber⊗nm

p

where A = [A1| · · · |Am]⊺ ∈ Znm×k
2 consists of Ai ∼ Zn×k

2 , s ∼ Zk
2 is a secret vector

and e = [e1| · · · |em]⊺ ∼ Ber⊗nm
p consists of random Bernoulli error terms ei ∼ Ber⊗n

p .
Consider the reduction B which proceeds as follows:

13Note that UA can be described in terms of CNOT gates [PMH08], which are themselves Clifford gates.
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• If there exists an index i ∈ [m] such that col-rank(Ai) < k, B aborts.

• Else, if col-rank(Ai) = k for all i ∈ [m], B runs A on input{
(UAi , |Ai · s + ei (mod 2)⟩)

}
i∈[m]

where UAi is the Clifford encoding circuit

UAi : |0n−k⟩ ⊗ |x⟩ → |Ai · x (mod 2)⟩

which is an injective matrix multiplication for any vector x ∈ Zk
2.

Let is now analyze the probability that B succeeds. Again, we observe that

Pr
A=[A1|···|Am]⊺∼Znm×k

2

[
∀i ∈ [m] : col-rank(Ai) = k

]
=

(
k

∏
i=1

(
1− 2i−n−1

))m

≥
(

1− 2k−n−1
)mk
≥ 1−m · k · 2k−n−1.

Therefore, we conclude that B runs in time poly(k, m, T) and solves LPNnm,k,Ber⊗nm
p

with

probability at least ϵ ·
(
1−m · k · 2k−n−1).

6 Quantum Algorithms for Learning Stabilizers with
Noise
In this section, we give both polynomial-time and exponential-time quantum algorithms
for solving LSN in various depolarizing noise regimes. Concretely, we study the follow-
ing quantum algorithms:

• An extremely low-noise algorithm for the regime with parameter p ≤ 1
n −

1
n1+c , for

c > 0. In this case, we show that a simple projection onto the stabilizer codespace
running in time O(n3) suffices to solve the problem with an inverse-polynomial
success probability 1/nc.

• A low-noise algorithm. Surprisingly, for low enough noise rates, only a single
sample is needed to solve the canonical LSN problem. In fact, we show that the
so-called pretty good measurement (PGM) suffices. The proof leverages the quan-
tum Gilbert-Varshamov bound, which says that a random stabilizer code has good
distance with high probability.

• A higher noise algorithm, up to a threshold. We can extend our algorithm to work
with higher constant noise rates, by taking more samples. We also show that there
is a sharp threshold noise rate at which no more samples will help.

6.1 Single-Shot Decoding for Extremely Low Noise Rates
In this section, we first consider an extremely low noise regime in which the LSN prob-
lem becomes computationally tractable. Specifically, we consider the LSNn,k,D⊗n

p
problem

with parameter p = 1
n −

1
n1+c , for any c > 0 and n = poly(k). We show that a simple

projection onto the stabilizer code space suffices to solve LSNn,k,D⊗n
p

in time O(n3) with
inverse-polynomial success probability.

29



Theorem 6.1 (Single-Shot Decoding for Extremely Low Noise Rates). Let n, k ∈ N be in-
tegers with n ≥ k and n = poly(k). Let p ≤ 1

n −
1

n1+c be a noise parameter, for any c > 0. Then,
Algorithm 1 runs in time O(n3) and solves the LSNn,k,D⊗n

p
problem with inverse-polynomial

probability of at least δ ≥ 1/nc.

Proof. Suppose we are given as input an instance of the LSNn,k,D problem, i.e.,(
S ∈ Stab(n, k),D⊗n

p (|ψx⟩⟨ψx|
S
)
)
∼ LSNn,k,D⊗n

p

where S ∼ Stab(n, k) describes a random stabilizer code and x ∼ {0, 1}k is a random
element. The success probability of Algorithm 1 is then

Tr
(
1n−k ⊗ |x⟩⟨x|(U†D⊗n

p (U|0⟩⟨0| ⊗ |x⟩⟨x|U†)U
)

where |0⟩ := |0⟩⊗n−k. (23)

We may represent the trace quantity as the following tensor network diagram:

1⊗ |x⟩⟨x| U† Ei U

U† Ei U

|0⟩⟨0| ⊗ |x⟩⟨x|

We will be interested in the average success probability over code, error and secret.
In fact, we’ll tackle the average over U and Ei first, fixing x:

Ex∼{0,1}n EU∼CliffEE∼D⊗n
p

[
Tr
(
1n−k ⊗ |x⟩⟨x|(U†E(U|0⟩⟨0| ⊗ |x⟩⟨x|)E†U†)U

)]
(24)

= ∑
Ei∈Pn

Pr
Ei∼D⊗n

p

[Ei]⟨Γ|1n−k ⊗ |x⟩⟨x| ⊗ 1nEU∼Cliff(U†⊗2E⊗2
i U⊗2)|0⟩⟨0| ⊗ |x⟩⟨x| ⊗ 1n|Γ⟩

(25)

= Pr
Ei∼D⊗n

p

[1]Tr(1n−k ⊗ |x⟩⟨x| · |0⟩⟨0| ⊗ |x⟩⟨x|) (26)

+ ∑
Ei∈Pn

Pr
Ei∼D⊗n

p

[Ei]⟨Γ|1n−k ⊗ |x⟩⟨x| ⊗ 1n

(
1

4n − 1 ∑
P∈Pn\1

P⊗ P

)
|0⟩⟨0| ⊗ |x⟩⟨x| ⊗ 1n|Γ⟩

(27)

= (1− p)n +
1− (1− p)n

4n − 1 ∑
P∈Pn\1

Tr(1n−k ⊗ |x⟩⟨x|P|0⟩⟨0| ⊗ |x⟩⟨x|P) (28)

Here, we let |Γ⟩ = ∑i∈[2n] |i⟩ |i⟩ . In the second last equality, we have used the fact that
Cliffords form a 2-design and thus it suffices to integrate over the Haar measure. In the
last equality, we have used PrEi∼D⊗n

p
[1] = (1− p)n. As a sanity check, we find that 1− p

is the probability that noise applies no channel on every qubit, so p small implies the
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Algorithm 1: Projection onto the Stabilizer Codespace

Input: Instance (S ∈ Stab(n, k),D⊗n
p (|ψx⟩⟨ψx|S)) ∼ LSNn,k,D⊗n

p
.

Output: A string x′ ∈ {0, 1}k.
1 Let ρS

x ← D⊗n
p (|ψx⟩⟨ψx|S) denote the ensemble instance.

2 Use the algorithm in Theorem 3.7 to find an encoding Clifford US
Enc associated with

the stabilizer subgroup S ∈ Stab(n, k).
3 Compute (US

Enc)
†ρS

xUS
Enc and measure in the computational basis.

4 Output the string x′ corresponding to the last k bits of the measurement outcome.

noise rate is low. Continuing,

= (1− p)n +
1− (1− p)n

4n − 1
· Tr

[
1n−k ⊗ |x⟩⟨x|

(
4nEP∈Pn(P|0⟩⟨0| ⊗ |x⟩⟨x|P)

−|0⟩⟨0| ⊗ |x⟩⟨x|
)]

(29)

= (1− p)n +
1− (1− p)n

4n − 1
Tr
[
1n−k ⊗ |x⟩⟨x|

(
4n Tr(|0⟩⟨0| ⊗ |x⟩⟨x|)

2n 1− |0⟩⟨0| ⊗ |x⟩⟨x|
)]

(30)

= (1− p)n +
1− (1− p)n

4n − 1
Tr
(
1n−k ⊗ |x⟩⟨x| · 2n − |0⟩⟨0| ⊗ |x⟩⟨x|

)
(31)

= (1− p)n + (1− (1− p)n)/2k (32)

≥ 1− np + O((np)2) (33)

≥ 1
nc (34)

In the second equality, we used the fact that Paulis are a 1-design and integrated over
the Haar measure. The first inequality follows from Bernoulli’s inequality and the last
inequality follows from our assumption that p ≤ 1

n −
1

n1+c , for c > 0.

6.2 Single-Shot Decoding for Low Constant Noise Rates
Recall that LSN is the following decoding problem: given as input an instance(

S ∈ Stab(n, k), E |ψx⟩
S ) ,

where S ∼ Stab(n, k) is a random stabilizer code and E ∼ D⊗n
p is a random n-qubit Pauli

error E ∈ P̄n, and where x ∼ [2k] is a random element. In other words, we have a noisy
state discrimination task {ρx}x∈[2k ] where ρx is the mixed state

ρx = D⊗n
p (|ψx⟩⟨ψx|) = ∑

E∈P̄n

Pr
E∼D⊗n

p

[E] · E |ψx⟩⟨ψx| E†. (35)

Our algorithm for solving LSN is to implement a Pretty Good Measurement [BK00, Mon07],
but with a twist that enables us to bound its success probability: we will implement an
approximation of the PGM that works for truncated depolarizing noise, noise from which
we have culled the highest weight (and thus most destructive) errors. The reason this
works is that the PGM is actually the optimal measurement for orthogonal states and

31



discriminates them perfectly. Using the Gilbert-Varshamov bound, we are able to har-
ness the fact that under truncated depolarizing noise, encoded orthogonal states remain
approximately orthogonal, and thus the PGM still works well for the task. This can be
understood in another way: the purpose of a good error-correcting code is to encode
quantum information in subspaces that do not contract much under quantum channels
(i.e. two initial orthogonal states remain approximately orthogonal under the action of
quantum channels)—a random stabilizer code is an example of such a code.

Pretty Good Measurement. We recall the following result by Montanaro:

Lemma 6.2 ([Mon07]). Let {ρx} be an ensemble of quantum states and let Λx = Σ−
1
2 ρxΣ−

1
2

with Σ = ∑x ρx, where inverses of Σ are taken with respect to its support. Then, the worst-case
error of the pretty good measurement ensemble {Λx} is at most

perr = max
x

(1− Tr {Λxρx}) ≤ ∑
x ̸=y

√
F(ρx, ρy)

where F(ρx, ρy) denotes the fidelity between ρx and ρy. Moreover, the PGM is optimal if the
states in {ρx} are pair-wise orthogonal, as then F(ρx, ρy) = 0.

We’re going to use the following block-encoding based algorithm in [GLM+22] for
implementing the PGM. Let κρ denote the reciprocal of the smallest eigenvalue of a den-
sity matrix ρ. We use the following theorem.

Theorem 6.3 ([GLM+22]). The PGM measurement channel for {ρx}x∈[2k ] can be implemented
with error ϵ (in terms of diamond distance) in time

Õ
(√

2kκρ̄Nρ(κρ̄ + min(κρ, 2k · κρ̄/ϵ2)

)
,

where ρ̄ = 2−k ∑x∈[2k ] ρx and where Nρ denotes the size of the quantum circuit needed to imple-
ment a purification of ρx.

In our case, since a purification of ρx is

∑
E∈P̄n

√
Pr

Ea∼D⊗n
p

[Ea] |a⟩ ⊗ EaUS
Enc(|0n−k⟩ ⊗ |x⟩), (36)

we may prepare this purification simply by applying US
Enc on a coherent superposition.

The number of gates required to implement an n-qubit Clifford is Nρ = O(n2). We show
the following theorem.

Theorem 6.4 (Single-Shot Decoding for Low Constant Noise Rates). Let n, k ∈ N and
ϵ ∈ (0, 1). Let D⊗n

p be the n-qubit depolarizing channel, for some p ∈ (0, 1/2) such that

H(3p) + 3 log2(3)p + k/n < .99− log(1/ϵ)

n
. (37)

Then, there exists a quantum algorithm which runs in time

Õ
(

n2
√

2kκρ̄(κρ̄ + min(κρ, 2k · κρ̄/ϵ2)

)
.

and solves the LSNn,k,D⊗n
p

problem with probability at least 1−O(ϵ).
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Proof. Suppose we are given as input an instance of the LSNn,k,D⊗n
p

problem, i.e.,

(
S ∈ Stab(n, k),D⊗n

p (|ψx⟩⟨ψx|
S
)
)
∼ LSNn,k,D⊗n

p

where S ∼ Stab(n, k) describes a random stabilizer code and x ∼ {0, 1}k is a random
element. We now show that running Algorithm 2 on input (S,D⊗n

p (|ψx⟩⟨ψx|
S
)) and pa-

rameter ϵ ∈ (0, 1) yields x with the desired success probability.
Algorithm 2, in fact, implements the PGM with respect to a slightly different ensem-

ble as compared to the true ensemble of problem instances. That is to say, it will suffice to
implement the pretty good measurement with respect to the ensemble {ρ̃S

x}x∈{0,1}k where

ρ̃S
x := D̃( 3np

2 )(|ψx⟩⟨ψx|
S
) = ∑

E∈P̄n

p̃( 3n
2 )(E) · E |ψx⟩⟨ψx|

S E†, (38)

where D̃( 3np
2 ) is the truncated depolarizing noise channel to be defined shortly; while we

remind readers that the true ensemble of problem instances is

ρS
x := D̃( 3np

2 )(|ψx⟩⟨ψx|
S
) = ∑

E∈P̄n

p̃(n)(E) · E |ψx⟩⟨ψx|
S E†. (39)

We now define the truncated depolarizing noise channel as the channel which acts on an
input state ρ as

D̃(w)(ρ) := ∑
E∈Pn :|E|≤w

p̃(w)(E)EρE† (40)

where p ∈ (0, 3/4) denotes the depolarizing noise parameter (c.f. Equation (10)), and
the truncation lies in the fact that we restrict the support to Paulis with bounded weight.
We define the truncated probability distribution via

p̃(w)(E) :=
1
N

( p
3

)|E|
(1− p)n−|E| (41)

and N is a normalization factor, i.e. N = ∑E∈P̄n :|E|≤w p̃(w)(E), that ensures that p̃(w) is
a probability distribution over P̄n. The distribution corresponding to the n-qubit local
depolarizing noise channel corresponds to w = n, i.e. p̃(n)(E) = PrE∼D⊗n

p
[E] and the

truncated channel corresponds to acting only with the Paulis with weight at most w,
with the same relative probabilities as in n-qubit local depolarizing noise. Because the
weights of the Pauli channels in the decomposition of D⊗n

p are distributed as a binomial
w ∼ Binom(n, p), one can show that for w = 3/2np, the total variation distance between
the probability distribution over the n-qubit Pauli channels induced by D⊗n

p and D̃(w) is

δTV

(
p̃(3/2np), p̃(n)

)
≤ Pr

E∼D⊗n
p

[
|E| ≥ 3

2
np
]
≤ exp

(
−np

12

)
, (42)

using a Chernoff bound.
Algorithm 2 implements the PGM measurement channel with (diamond distance)

error ϵ ∈ (0, 1) with the stated time complexity. Let us first analyze the error probability
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Algorithm 2: Pretty Good Measurement for LSN

Input: Instance (S ∈ Stab(n, k),D⊗n
p (|ψx⟩⟨ψx|S)) ∼ LSNn,k,D⊗n

p
and ϵ ∈ (0, 1).

Output: A string x′ ∈ {0, 1}k.
1 Let ρS

x ← D⊗n
p (|ψx⟩⟨ψx|S) denote the ensemble instance.

2 Use the algorithm in Theorem 6.3 with precision ϵ to measure ρS
x via the POVM

{Λ̃S
x}x∈{0,1}k with Λ̃

S
x = Σ−

1
2 ρ̃S

x Σ−
1
2

where Σ = ∑x ρ̃S
x and where inverses of Σ are taken with respect to its support, and

where the state ρ̃S
x is defined in Equation (38).

3 Output the measurement outcome x′ ∈ {0, 1}k.

of the (ideal) pretty good measurement {Λ̃S
x}x:

max
x

(
1− tr(Λ̃

S
xρS

x)
)
= max

x

(
1− tr

(
Λ̃x

(
ρS

x − ρ̃S
x

))
− tr

(
Λ̃xρ̃S

x

))
(43)

≤ max
x

(
1 + δTD

(
ρS

x , ρ̃S
x

)
− tr

(
Λ̃xρ̃S

x

))
(44)

≤ δTV

(
p̃(n), p̃(w)

)
+ max

x

(
1− tr

(
Λ̃xρ̃S

x

))
(45)

= e−
np
12 + max

x

(
1− tr

(
Λ̃xρ̃S

x

))
(46)

≤ e−
np
12 + ∑

x ̸=y

√
F(D̃( 3np

2 )(|ψx⟩⟨ψx|
S
), D̃( 3np

2 )(|ψy⟩⟨ψy|
S
)). (47)

The second inequality comes from the strong convexity of trace distance and Equa-
tions (38) and (39). The second last equality comes from Eq. 42. The last inequality
comes from Lemma 6.2.

To finish the proof, it suffices to bound the pair-wise fidelities in Equation (47). Here,
we exploit the special structure of the encoded states. We appeal to the Gilbert-Varshamov
bound (Theorem 3.10), which states that random stabilizer codes are non-degenerate (i.e.
have good distance) with high probability. This means that errors of weight at most 3

2 np
acting on orthogonal states keep them orthogonal. Concretely, this implies that

Pr
S∼Stab(n,k)

[
E†

a Eb /∈ N(S), ∀ |Ea|, |Eb| ≤
3
2

np
]

(48)

= Pr
S∼Stab(n,k)

[
⟨ψx|

S E†
a Eb |ψy⟩

S
= 0 ∀x ̸= y, ∀|Ea|, |Eb| ≤

3
2

np
]

(49)

≥ 1− 3/2np · 2nH(3/2p) · 33/2np · 2−n+k. (50)

The first equality follows from the observations mentioned above (Theorem 3.10). More-
over, it follows from Uhlmann’s theorem that

F(D̃( 3np
2 )(|ψx⟩⟨ψx|

S
), D̃( 3np

2 )(|ψy⟩⟨ψy|
S
)) (51)

= max
U
|⟨ϕρx | (U ⊗ I) |ϕρy⟩|2 (52)

= max
U

∣∣∣∣∣ ∑
Ea,Eb∈P̄n

√
p̃( 3np

2 )(Ea)p̃( 3np
2 )(Eb) ⟨a|U |b⟩ · ⟨ψx| E†

a Eb |ψy⟩
∣∣∣∣∣
2

(53)
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where, for x ∈ {0, 1}k, we defined the purification

|ϕρx⟩ = ∑
Ea∈P̄n

√
p̃( 3np

2 )(Ea) |a⟩ ⊗ Ea |ψx⟩
S .

Note that the superposition ranges over Pauli errors of weight at most 3
2 np as we are

using the truncated distribution over Paulis. Therefore, conditioned on the event that
the stabilizer code S is non-degenerate and has distance at least d = 3np + 1, the Knill-
Laflamme error correction conditions imply that ⟨ψx| E†

a Eb |ψy⟩ = 0, for any pair of code-
words with x, y ∈ {0, 1}k, and thus

F(D̃( 3np
2 )(|ψx⟩⟨ψx|

S
), D̃( 3np

2 )(|ψy⟩⟨ψy|
S
)) = 0. (54)

Further conditioning on the event that the implementation of the PGM succeeded, the
probability of error due to the PGM mis-identifying the state (Equation (66)) is e−np/12.

We can now put everything together to compute the final success probability of Al-
gorithm 2, union bounding over all the three error sources:

1. S is degenerate.

2. Diamond-distance approximation error of implementing the PGM channel.

3. PGM measurement mis-identifies x.

We get that Algorithm 2 successfully outputs the correct x with probability at least 1− δ,
where

δ ≤ 3np · 2nH(3p) · 33np · 2−n+k + ϵ + e−np/12. (55)

This algorithm thus succeeds with constant probability for any noise rate p such that
the term

3np · 2nH(3p) · 33np · 2−n+k = exp[log(3np) + n(H(3p) + 3 log(3)p + k/n− 1)] (56)

does not blow up. Noting that k/n = O(1) in the definition of LSN, we can then check
that as long as p is a constant that satisfies

H(3p) + 3 log2(3)p + k/n < .99− log(1/ϵ)

n
, (57)

this term vanishes exponentially in n and the total probability of error is O(ϵ).

6.3 Multi-Shot Decoding Up to a Threshold
By taking more samples, we can slightly increase the noise rate at which decoding is still
possible, but this only works up to a certain noise threshold that we also compute.

The algorithm is to run a modified PGM on a larger state space defined by the tensor
product of the state spaces of all the samples. Note that we cannot appeal to Lemma 4.10
to argue that the algorithm and proof in the previous section carries over with the trivial
replacement n ← mn, because the LSN problem on the larger state space corresponding
to the MSLSN problem does not have the same distribution over stabilizers as in the
canonical LSN.

Let the support of every sample define a block. For P ∈ Pmn, let the block support of
P (denoted BSupp(P)) be the number of blocks on which P has at least one non-identity
Pauli. We will call an error E ∈ Pmn typical if it has full block support (i.e. BSupp(E) = m)
and on each block its weight is between [1, 3/2np]. Let us call the set of all typical errors
Ptypical .
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Theorem 6.5 (Multi-shot decoding at higher noise). Let n, k ∈ N and ϵ ∈ (0, 1). Let D⊗n
p

be the n-qubit depolarizing channel, for some p ∈ (0, 1/2) such that

H(3p) + 3 log2(3)p + k/n < .99− log(1/ϵ)

mn
. (58)

Then, there exists a quantum algorithm which runs in time

Õ
(

n2m2
√

2mkκρ̄(κρ̄ + min(κρ, 2mk · κρ̄/ϵ2)

)
and solves the MSLSNn,k,m,D⊗n

p
problem (equivalently the LSNn,k,D⊗n

p
problem with m samples)

with probability at least 1−O(ϵ).

Proof. Suppose we are given as input an instance of the MSLSNn,k,D⊗n
p ,m problem, i.e.,(

⊗m
i=1 Si ∈ Stab(n, k)⊗m,D⊗mn

p (⊗m
i=1 |ψx⟩⟨ψx|

Si)
)

where each Si ∼ Stab(n, k) describes a random stabilizer code and x ∼ [2k] is a random
element.

For a given MSLSN instance, define T = ⊗m
i=1Si ∈ Stab(mn, mk). Let us denote the

true ensemble instance by

ρT
x ← D⊗mn

p (⊗m
i=1 |ψx⟩⟨ψx|

Si). (59)

We will run the PGM {(Λ̃T
x )}x∈{0,1}k which is the PGM relative to the modified ensemble

{(ρ̃T
x )}x∈{0,1}k where

ρ̃T
x := Dtypical(⊗m

i=1 |ψx⟩⟨ψx|
Si) (60)

That is, we approximate the true noise channel D⊗mn
p by a channel Dtypical that still

has tensor product structure across the blocks:

Dtypical(ρ) := ∑
P∈Ptypical

ptypical(P)PρP† = D̃(3/2np)⊗m(ρ). (61)

This is precisely the channel on the Hilbert space of nm qubits where the truncated noise
channel for the single-shot problem, D̃(3/2np), is applied on each n-qubit block. As before,
this is a good approximation of the distribution over the corresponding Pauli channels:∥∥∥ptypical − p̃(mn)

∥∥∥
1
≤ m

∥∥∥ p̃(3/2np) − p̃(n)
∥∥∥

1
≤ m exp

(
−np

12

)
, (62)

where the first inequality follows from the fact that both p̃(mn) and ptypical are product
distributions, so we may use subadditivity of total variation distance over product dis-
tributions.

Next, we explicitly analyze the error probability of the (ideal) pretty good measure-
ment given by {(Λ̃T

x )}x∈{0,1}k . Specifically, we find that

max
x∈{0,1}k

1− tr(Λ̃T
x ρT

x ) (63)

≤ me−
np
12 + max

x

(
1− tr

(
Λ̃

T
x ρ̃T

x

))
(64)

≤ me−
np
12 + ∑

x ̸=y

√
F(Dtypical(⊗m

i=1 |ψx⟩⟨ψx|
Si),Dtypical(⊗m

i=1 |ψy⟩⟨ψy|
Si) (65)

≤ me−
np
12 + ∑

x ̸=y

√
m

∏
i=1

F(D̃( 3np
2 )(|ψx⟩⟨ψx|

Si), D̃( 3np
2 )(|ψy⟩⟨ψy|

Si) (66)
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where we have used the fact that fidelity is multiplicative across tensor product:

F (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F (ρ1, σ1) F (ρ2, σ2) .

Call Si “good" if has the property that

F(D̃( 3np
2 )(|ψx⟩⟨ψx|

Si), D̃( 3np
2 )(|ψy⟩⟨ψy|

Si) = 0, ∀x, y. (67)

Note that as long as at least one Si is “good", the entire term

∑
x ̸=y

√
m

∏
i=1

F(D̃( 3np
2 )(|ψx⟩⟨ψx|

Si), D̃( 3np
2 )(|ψy⟩⟨ψy|

Si) (68)

vanishes, and
max

x∈{0,1}k
1− tr(Λ̃T

x ρT
x ) ≤ me−

np
12 . (69)

This fortuitous event happens with probability

1− P(all Si are bad) = 1− (3/2np · 2nH(3/2p) · 33/2np · 2−n+k)m. (70)

Finally, accounting for the same three error sources as in the proof of Theorem 6.3, the
total probability of failure of the whole algorithm is

δ ≤
(

3np · 2nH(3p) · 33np

2n−k

)m

+ ϵ + me−np/12. (71)

So as long as

H(3p) + 3 log2(3)p + k/n < .99− log(1/ϵ)

mn
, (72)

and m is polynomial in n, the total probability of error is O(ϵ).

While the above analysis shows that asking for more samples in MSLSN will increase
the noise rate p at which the PGM still recovers the secret, there is a threshold level of
noise at which taking more samples can never help:

Remark 6.6 (Noise threshold for PGM). Decoding, or error recovery, becomes even information-
theoretically intractable at some threshold noise rate. Our PGM-based algorithms fail at noise rate
p whenever

H(3p) + 3 log2(3)p + k/n > 1. (73)

7 Worst-Case to Average-Case Reductions
In this section, we provide further evidence for the hardness of LSN by showing a worst-
to-average-case reduction for a variant of the problem. Let us intuitively explain the im-
portance of this. By definition, the worst-case instance within a problem class is harder to
solve than all other instances. However, a worst-to-average-case reduction states that an
algorithm that succeeds with high probability over a uniformly chosen instance within
that class (i.e., succeeds in the average case) would also suffice to solve the worst-case
instance within that class. The upshot is that “most" instances within that class are hard.

In complexity theory, such reductions are regarded as critical pieces of evidence that
a problem is indeed as hard as conjectured. While a worst-to-average-case reduction for
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LWE was already identified in [Reg05], LPN resisted similar attempts until the work of
Brakerski, Lyubashevsky, Vaikuntanathan and Wichs [BLVW18] in 2018.

Our quantum reduction for LSN proceeds by entirely different means and uses a uni-
tary “twirl" to randomize the secret, the code and the error all at once. Unfortunately,
our reduction only applies to a variant of LSN where the average-case instance has some
mild dependence on the worst-case instance. We leave it as an open question whether it
is possible to reduce to a class of average-case problems that is completely independent
of the worst-case instance.

7.1 Overview of the Reduction
Suppose we are presented with a worst-case LSN instance of the form

(S, E |ψx⟩
S
) (74)

where S ∈ Stab(n, k) is a stabilizer subgroup, E ∈ P̄n is a Pauli error and x ∈ {0, 1}k is a
hidden secret—each potentially chosen adversarially. The goal of this section is to turn
such a worst-case instance into an average-case instance of the LSN problem. Specifically,
we will show how to draw a re-randomizing Clifford unitary R ∈ Cliffn, that simultane-
ously re-randomizes

• the underlying secret x ∈ {0, 1}k of the instance, as well as

• the error E and the underlying stabilizer subgroup S of the instance.

In other words, our reduction applies R to the quantum part of the input, thereby ob-
taining a new (and ideally re-randomized) state of the form

RE |ψx⟩
S
= E′ |ψx′⟩

S′ . (75)

In the next sections, we show how to perform these steps separately. First, we show in
Lemma 7.1 how to re-randomize the LSN secret. Next, in Lemma 7.2, we show how to
re-randomize both the error and the underlying code. Finally, in Theorem 7.3 we put
everything together and obtain the desired worst-case to average-case reduction.

7.2 Re-Randomization of the Secret
We now show how to sample a Pauli operator P ∈ Pn that allows us to re-randomize the
secret which underlies the LSN sample.

For any stabilizer S ∈ Stab(n, k), we let LX(S) = {Xu}u∈{0,1}k denote the set of the
logical Pauli X operators associated with S. While the choice of logical Paulis associated
with a given stabilizer code S is not unique, we will use the prescription

P = US
EncP(US

Enc)
†, for P ∈ Pn. (76)

We show that it suffices to apply a random Pauli in LX(S) to re-randomize the secret.

Lemma 7.1 (Re-randomization of secret). Suppose that (S, E |ψx⟩
S
) is a fixed instance, for

some stabilizer S ∈ Stab(n, k), error E ∈ P̄n and secret x ∈ {0, 1}k. Let u ∼ {0, 1}k be a
random string and let Xu ∈ LX(S) denote the logical Pauli Xu with respect to S. Then,

XuE |ψx⟩
S
= E |ψx⊕u⟩

S . (77)

Moreover, the distribution of x⊕ u is now uniform over {0, 1}k.
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Proof. First, we observe that XuE |ψx⟩
S
= ±EXu |ψx⟩

S because Paulis either commute or
anticommute. We adopt the convention of ignoring global phases, so we will evaluate
EXu |ψx⟩

S from now on. Calculating the action of Xu on the state, we find

EP |ψx⟩
S
= EXuUS

Enc(|0n−k⟩ ⊗ |x⟩) (78)

= EUS
Enc

(
(In−k ⊗ Xu) |0n−k⟩ ⊗ |x⟩

)
(79)

= EUS
Enc(|0n−k⟩ ⊗ |x⊕ u⟩). (80)

Because u ∼ {0, 1}k is random, it follows that x⊕ u is also uniformly distributed for any
fixed x ∈ {0, 1}k. This proves the claim.

7.3 Re-Randomization of the Code and the Error
We now show how to re-randomize both the stabilizer S and the error E of a particular
LSN instance. Note, however, there is an important subtlety; namely, the two cannot be
randomized independently of each other. Acting with some unitary U on a given noisy
codeword E |ψx⟩

S re-randomizes the code S and the error E simultaneously. Moreover,
as we will show in this section, the two are inherently correlated:

UE |ψx⟩
S
= (UEU†) |ψx⟩

USU†
.

Nevertheless, we are able to perform the desired re-randomization approximately. In the
following, we use the notation Uw to denote the uniform distribution over the set of n-
qubit weight-w Pauli operators. We now prove the following lemma.

Lemma 7.2 (Re-randomization of the code and error). Suppose that (S, E |ψx⟩
S
) is a fixed

instance, for some stabilizer subgroup S ∈ Stab(n, k), error E ∈ P̄n and secret x ∈ {0, 1}k.
Then, for any n-qubit unitary U ∈ Un, it holds that

UE |ψx⟩
S
= (UEU†) |ψx⟩

USU†
.

Moreover, suppose that E has bounded weight w = O(log n). Then, the joint distribution of
(UEU†, USU†), for U ∼ PLCn, is within total variation distance 1−O(1/nlog n) of the product
distribution Uw ×Unif({USU†}U∈PLCn) with support Pn × Stab(n, k).

Proof. To show the first claim, we observe that, for any U ∈ Un, we have

UE |ψx⟩
S
= (UEU†)U |ψx⟩

S
= (UEU†) |ψx⟩

USU†
.

Next, we analyze the joint distribution of (UEU†, USU†), for U ∼ PLCn. We may regard
U : Pn × Stab(n, k) → Pn × Stab(n, k) as a map that acts on the pair of initial error and
stabilizer subgroup (E, S) ∈ Pn × Stab(n, k) via the group action

U ∗ (E, S) := (UEU†, USU†). (81)

We claim that for U ∼ PLCn, the joint distribution of (UEU†, USU†) is uniform over the
PLCn orbit of (E, S), namely the set

PLCn ∗ (E, S) := {(P, T) ∈ Pn × Stab(n, k) : ∃U ∈ PLCn s.t. P = UEU†, T = USU†}.
(82)
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To see this, note that for any (P1, T1), (P2, T2) ∈ PLCn ∗ (E, S), there must exist V ∈ PLCn
such that VP1V† = P2 and VT1V† = T2. This is because PLCn is a group (Lemma 3.5),
and by the definition of PLCn ∗ (E, S), there exist V1, V2 ∈ PLCn such that

(P1, T1) = (V1EV†
1 , V1SV†

1 ), (P2, T2) = (V2EV†
2 , V2SV†

2 ).

Thus, V is exactly V2V†
1 . As a result, we conclude that

Pr
U∼PLCn

[UEU† = P1 ∩USU† = T1] (83)

= Pr
U∼PLCn

[VUEU†V† = VP1V† ∩VUSU†V† = VT1V†] (84)

= Pr
U∼PLCn

[VUEU†V† = P2 ∩VUSU†V† = T2] (85)

= Pr
U∼PLCn

[UEU† = P2 ∩USU† = T2]. (86)

We will now argue that the uniform distribution Unif(PLCn ∗ (E, S)) is a good approx-
imation to the distribution Uw × Unif({USU†}U∈PLCn) by bounding the total variation
distance between the two. First, note that the total variation distance between the uni-
form distribution on finite sets X and Y ⊆ X takes the following simple form:

δTV (Unif(X ), Unif(Y)) = 1
|X | (|X | − |Y|) = 1− |Y||X | . (87)

Let Pw be the set of Paulis with Hamming weight w. Letting set X be the set of all tuples
{(P, USU†)}P∈Pw,U∈PLCn and set Y = PLCn ∗ (E, S), we have that

δTV

(
Uw ×Unif({USU†}U∈PLCn),Unif(PLCn ∗ (E, S))

)
(88)

= 1− |PLCn ∗ (E, S)|
|Pw| · |{USU†}U∈PLCn |

(89)

≤ 1− 1
|Pw|

= 1− 1
2(n

w)3
w . (90)

where we have used the fact that |PLCn ∗ (E, S)| ≥ |{USU†}U∈PLCn |, because for every
distinct T ∈ {USU†}U∈PLCn , ∃V ∈ PLCn such that T = VSV†, and so there is at least one
element with (VEV†, T) ∈ PLCn ∗ (E, S). Plugging in the assumption that w = O(log n),
we conclude that 2(n

w)3
w ≤ 2

( 3ne
w

)w
= O(nlog n), which proves the claim.

7.4 Worst-Case to Average-Case Reduction
In this section, we formally state our worst-case to average-case reduction for a variant of
the LSN problem. Specifically, we show how an appropriate average-case solver allows
us to solve worst-case LSN instances (S, E |ψx⟩

S
), for a stabilizer subgroup S ∈ Stab(n, k),

error E ∈ P̄n with w := |E| = O(log n) and secret x ∈ {0, 1}k. To this end, we assume
that S is a fixed (and worst-case choice of stabilizer) and we consider the average-case
problem LSNn,k,N ,S ,I with respect to the following set of distributions:

• N is the uniform distribution Uw over n-qubit Pauli errors of weight precisely w.

• S is the uniform distribution Unif({USU†}U∈PLCn over stabilizers {USU†}U∈PLCn .

• I is the uniform distribution over bit strings x ∈ {0, 1}k.
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While our worst-case to average-case reduction only applies to a highly specialized vari-
ant (in particular, not to the standard variant) of LSN in the quasi-polynomial hardness
regime14, it nevertheless results in a meaningful reduction. Concretely, it allows us to
solve a worst-case problem with inverse-quasi-polynomial success probability whenever
we have a sufficiently good solver for an average-case version of the problem.

Theorem 7.3 (Worst-case to average-case reduction). Let n, k ∈ N with n = poly(k) and
let (S, E |ψx⟩

S
) be any worst-case instance, for some stabilizer subgroup S ∈ Stab(n, k), error

E ∈ P̄n of weight w = O(log n), and secret x ∈ {0, 1}k. Suppose there exists an algorithm A
that runs in time T and solves the average-case problem LSNn,k,N ,S ,I (implicitly depending on
S) with probability 1− ϵ. Then, there exists an algorithm B which runs in time poly(k, T) and
solves the worst-case instance (S, E |ψx⟩

S
) with probability at least O(1/nlog n)− ϵ.

Proof. By assumption, the instance to the worst-case problem is of the form (S, E |ψx⟩
S
),

for some stabilizer subgroup S ∈ Stab(n, k), error E ∈ P̄n of weight w = O(log n), and
secret x ∈ {0, 1}k. We will now give a reduction B which transforms the given sample
(S, E |ψx⟩

S
) into a new sample which approximates the average-case instance for the

LSNn,k,N ,S ,I problem. Our reduction B uses the solver A and proceeds as follows:

1. B samples a random logical operator Xu ∼ LX(S), for u ∈ {0, 1}k.

2. B samples a random unitary U ∼ PLCn from the PLCn ensemble.

3. B runs the solver A for the LSNn,k,N ,S ,I problem on input

(USU†, UXuE |ψx⟩
S
)

to obtain a string x′ ∈ {0, 1}k. Then, the reduction B outputs x′ ⊕ u.

In other words, the reduction B applies the n-qubit re-randomizing unitary consisting of
R = UXu to the initial noisy codeword E |ψx⟩

S.
We now analyze the probability that B succeeds at successfully recovering the secret

x ∈ {0, 1}k. First, we use our insights from Lemma 7.1 and Lemma 7.2 to argue that

(USU†, UXuE |ψx⟩
S
) = (USU†, (UEU†) |ψx⊕u⟩

USU†
).

In addition, we know from Lemma 7.1 that the distribution of the secret is precisely
I , and we know from Lemma 7.2 that the distribution of the stabilizer subgroup and
error of the resulting state is within total variation distance at most 1−O(1/nlog n) of
the product distribution S ×N . Therefore, by the strong convexity of the trace distance
(Lemma 3.1), we know that B succeeds with probability at least O(1/nlog n)− ϵ.

We now argue that it takes poly(k, T) time to perform the reduction. First, we can
invoke Lemma 3.8 to argue that a random logical Pauli can be computed in time O(n2).
Then, from Lemma 3.8, it follows that the reduction B can compute a classical description
of the stabilizer subgroup USU† in time polynomial in k and n, since U ∼ PLCn is an
efficient Clifford operator. Because A runs in time T, this completes the proof.

While we do not explicitly carry out the proof, we remark that a similar worst-case to
average-case reduction also applies to the multi-shot variant of LSN: the reduction can
simply apply a fresh re-randomizing unitary for every block of n qubits.

14See Remark 4.6 for a definition of quasi-polynomial hardness for the LSN problem.
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8 Complexity of Learning Stabilizers with Noise
In previous sections, we have postulated a lower bound for the time-complexity of LSN
(Definition 4.1); that is, there do not exist efficient quantum algorithms that solve the
problem. In this section, we upper-bound the complexity of LSN, placing it within the
constellation of unitary synthesis problems proposed in [RY21, BEM+23]. Specifically,
we show that the LSN problem, for a worst-case choice of non-degenerate code, is con-
tained in avgUnitaryBQPavgUnitarySZKHV , a (distributional and oracle) unitary complexity
class which was recently defined by Bostanci et al. [BEM+23]. Classically, a worst-case
variant of LPN was shown to be contained in SearchBPPSZK [BLVW18]; this can be seen
as a quantum analog of that result for reasons we explain later.

Our complexity upper bound is based heavily on the recent work of Bostanci et
al. [BEM+23] who studied the complexity of general decodable channels and its connec-
tion to the Uhlmann transformation problem. In this section, we give a self-contained
proof which is tailored to towards our learning task.

8.1 A Review of Unitary Complexity
This subsection reprises some problems and complexity classes introduced in [RY21,
BEM+23] as a way of giving background for our complexity upper bound.

Unitary synthesis problems. Many quantum problems whose output is a quantum
state or unitary fall outside the purview of traditional complexity theory. Some exam-
ples include implementing Hamiltonian time evolution and state preparation tasks. All
of these tasks have the flavor of preparing a target unitary upon input of some classical
description of the target. This led to the formalization of unitary synthesis problems:

Definition 8.1 (Unitary synthesis problems). A unitary synthesis problem is given by a se-
quence U = (Ux)x∈{0,1}∗ of partial isometries.15

We may understand x ∈ {0, 1}∗ as the way that the particular target partial isometry
is specified to the algorithm that solves the problem.

In the definition above, we call x the instance of the problem and Ux the transforma-
tion of U corresponding to x. The goal of an algorithm handed an instance x of a unitary
synthesis problem is then to implement a quantum channel Cx which approximates a
channel completion of the target unitary Ux in diamond norm. In fact the algorithm
must accomplish this for all problem instances, x ∈ {0, 1}∗. One could consider various
metrics for how well the algorithm’s output Cx approximates the target; a “worst-case"
measure is to require the existence of a channel completion Φx of Ux such that

∥Cx −Φx∥⋄ ≤ δ(|x|) ∀x ∈ {0, 1}∗. (91)

The strict requirement of diamond-norm approximation makes this a “worst-case" mea-
sure of closeness: it says there must exist a channel completion of the target unitary such
that for any choice of registers to trace out, tracing out those registers of the channel com-
pletion still gives a channel that is well-approximated by the channel Cx after tracing out
the same registers.

15See Section 3 for a formal definition of partial isometries.
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Average-case/distributional unitary synthesis problems: It is not necessary
for us to use this strict notion of approximation; we will instead be using an average-
case notion of approximation captured by a distributional (or average-case) unitary synthesis
problem. Here, in addition to a specifying a target partial isometry, we also specify an
input state |ψx⟩ and a register of this state on which the partial isometry is going to act,
and we only care about closeness with respect to this register. We call the register that Ux
(or its channel completion) acts on the quantum input to the unitary synthesis problem.

Definition 8.2 (Distributional unitary synthesis problem). A unitary synthesis problem
is given by a sequence U = (Ux)x∈{0,1}∗ of partial isometries. We say that a pair (U , Ψ) is a
distributional unitary synthesis problem if U = (Ux)x∈{0,1}∗ is a unitary synthesis problem
with Ux ∈ L(HAx ,HBx) for some registers AxBx, and Ψ = (|ψx⟩)x∈{0,1}∗ is a family of bipartite
pure states on registers AxRx. We call |ψx⟩ the distribution state with target register Ax and
ancilla register Rx.

Definition 8.3 (Average-case implementation of distributional unitary synthesis). Let
(U , Ψ) denote a distributional unitary synthesis problem, where U = (Ux)x∈{0,1}∗ and Ψ =
(|ψx⟩)x∈{0,1}∗ , and let ϵ : N→ R be a function. Let C = (Cx)x∈{0,1}∗ denote a family of quan-
tum circuits, where Cx implements a channel whose input and output registers are the same as
those of Ux. We say that C implements (U , Ψ) with average-case error ϵ if, for all sufficiently
long x ∈ {0, 1}∗, there exists a channel completion Φx of Ux such that

δTD

(
(Cx ⊗ I)(ψx), (Φx ⊗ I)(ψx)

)
≤ ϵ(|x|) ,

where the identity channel acts on the ancilla register of |ψx⟩.

Uhlmann Transformation as a canonical unitary synthesis problem. In this sec-
tion, we introduce the Uhlmann transformation problem [BEM+23] as a canonical uni-
tary synthesis problem which we then connect to the LSN problem. Let us first explain
in words what this problem is. Given two circuits C, D acting on 2n qubits, the Uhlmann
transformation problem is the problem “Synthesize a n-qubit unitary that approximately
transforms the last n qubits of |C⟩ into |D⟩." In order to formally state this problem, how-
ever, we have to define what “approximately" means, and establish when there exists a
unitary that achieves the desired approximation accuracy.

Definition 8.4 (Valid Uhlmann instances). We say that a string x ∈ {0, 1}∗ is a valid
Uhlmann instance if it encodes a tuple (1n, C, D) where C, D are explicit descriptions of uni-
tary circuits that each act on 2n qubits. We further say that a valid Uhlmann instance x is a
fidelity-κ instance if the reduced states ρ, σ of the states |C⟩ = C |02n⟩, |D⟩ = D |02n⟩ on the
first n qubits satisfy F(ρ, σ) ≥ κ.

The reason this defines a valid Uhlmann instance is given by Uhlmann’s theorem
(Theorem 3.2). Whenever x is a fidelity-κ instance, then the problem of synthesizing a
unitary mapping |C⟩ into a κ-approximation of |D⟩ has a solution: there must exist a
unitary UB acting on the last n qubits of |C⟩AB such that

κ = | ⟨D|AB (IA ⊗UB) |C⟩AB |2. (92)

In fact,
U = sgnη (TrA(|D⟩⟨C|)) (93)

is such a unitary. Here for η ∈ R, sgnη : C → C is the threshold function that doesn’t
change inputs |x| > η but maps inputs |x| ≤ η to 0; we extend it to a function on matrices
in the usual way. We call U the “Canonical Uhlmann isometry".
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Definition 8.5 (Uhlmann Transformation Problem). Let κ, η : N→ [0, 1] be functions. The
(κ, η)-Uhlmann Transformation Problem is the unitary synthesis problem given by Uhlmannκ,η =
(Ux)x∈{0,1}∗ where whenever x is a fidelity-κ(n) Uhlmann instance specifying a pair (C, D) of
unitary circuits that each act on 2n qubits for some n, then Ux is the Canonical Uhlmann isometry
for the states |C⟩ = C |02n⟩ and |D⟩ = D |02n⟩, with Ux acting on the last n qubits.

Otherwise if x is not a valid Uhlmann instance, then we define Ux = 0 (i.e., a partial isometry
with zero-dimensional support).

Average-case/distributional Uhlmann transformation problem: Recall that
to define average-case, or distributional, versions of worst-case unitary transformation
problems we introduce a new element called the distribution state, a bipartite state which
specifies a input state to the target unitary as well as the register of this state on which the
synthesized unitary will be evaluated for accuracy. In this vein, to define the average case
version of the Uhlmann Transformation Problem we specify a distribution state |ψx⟩AR
for every valid Uhlmann instance x. Recall that x encodes a tuple (1n, C, D) where C, D
are explicit descriptions of unitary circuits that each act on 2n qubits; in that case, the
distribution state |ψx⟩ is also on 2n qubits.

Definition 8.6 (Distributional Uhlmann Transformation Problems). We define a state se-
quence ΨUhlmann = (|ψx⟩)x∈{0,1}∗ as follows: for all x ∈ {0, 1}∗,

|ψx⟩ =
{
|C⟩ if x = (1n, C, D) is a valid Uhlmann instance,
0 otherwise.

Then, the distributional (κ, η)-Uhlmann Transformation Problem is the distributional uni-
tary synthesis problem DistUhlmannκ,η = (Uhlmannκ,η , ΨUhlmann).

See Definition 8.5 for the definition of Uhlmannκ,η .

Unitary/state complexity classes. Unitary complexity problems can be grouped into
complexity classes. These complexity classes are organized based on the amount of com-
putational resources needed to perform state transformations.

As important background, let us informally introduce the unitary complexity class
unitaryBQP. Analogous to BQP which is the set of all decision problems that can be
solved by a polynomial-time quantum computer with at most 1/3 probability of error,
unitaryBQP is the set of all partial isometries that can be approximately applied in poly-
nomial time in their description length. That is, it is the set of all sequences of unitary
operators (Ux)x∈{0,1}∗ where there is a polynomial-time quantum algorithm A that, given
an instance x ∈ {0, 1}∗ and a quantum system B as input, (approximately) applies Ux to
system B. Here the input system B could contain any state, even part of a state on a larger
system.

Average-case/distributional unitary complexity classes: We will eventually
be interested in the average-case version of UnitaryBQP, which is avgUnitaryBQP. Recall
that to go from worst-case to distributional, or average-case unitary synthesis problems,
we introduce distribution states – input states whose specific registers we will be imple-
menting the desired unitary transformation on. In order to properly define avgUnitaryBQP,
therefore, we must introduce the state complexity class stateBQP which was introduced
in [RY21]. Intuitively, this class contains sequences of quantum states that require poly-
nomial time to be synthesized.
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Definition 8.7 (stateBQP). Let δ : N → [0, 1] be a function. Then, stateBQPδ is the class
of all sequences of density matrices (ρx)x∈{0,1}∗ such that each ρx is a state on poly(|x|) qubits,
and there exists a time-uniform family of general quantum circuits (Cx)x∈{0,1}∗ such that, for all
sufficiently long x ∈ {0, 1}∗, the circuit Cx takes no inputs and Cx outputs a density matrix σx
such that

δTD(σx, ρx) ≤ δ(|x|) .

We define
stateBQP =

⋂
c∈N

stateBQPn−c .

With this definition in hand, we can define avgUnitaryBQP as the set of polynomial-
time solvable distributional unitary synthesis problems, with the restriction that their
input state is in stateBQP (i.e. is polynomial-time preparable).

Definition 8.8 (avgUnitaryBQP). Let ϵ : N → R be a function. Define the unitary com-
plexity class avgUnitaryBQPϵ to be the set of distributional unitary synthesis problems

(
U =

(Ux)x∈{0,1}∗ , Ψ = (|ψ⟩x)x∈{0,1}∗
)

where Ψ ∈ stateBQP and there exists a uniform polynomial-

time quantum algorithm C that implements (U , Ψ) with average-case error ϵ.
We define

avgUnitaryBQP =
⋂

c∈N

avgUnitaryBQPn−c .

Average-case oracle unitary complexity classes. We also consider reductions
between (average-case) variants of unitary complexity classes. Hence, we also make use
of oracular variants of (average-case) unitary complexity classes, which behave analo-
gously as their classical counterparts. We refer to Section 3.3 of [BEM+23] for more de-
tails. We will primarily be interested in the oracular complexity class avgUnitarySZKHV,
which is a unitary synthesis analog of the complexity class QSZKHV [Wat06].

Definition 8.9 (avgUnitarySZKHV). Let c, s, δ : N → [0, 1] be functions. The interactive uni-
tary synthesis class avgUnitarySZKHV,c,s,δ is the set of distributional unitary synthesis problems
(U , Ψ) with U = (Ux)x∈{0,1}∗ and Ψ = (|ψx⟩)x∈{0,1}∗ ∈ stateBQP for which there exists a
polynomial-time quantum verifier V∗ = (V∗x )x∈{0,1}∗ (called the honest verifier), an unbounded
prover P∗ (called the honest prover), and a polynomial-time quantum algorithm Sim (called the
simulator) such that for all sufficiently long x ∈ {0, 1}∗:

1. (Completeness) P∗ is accepted on instance x with probability at least c(|x|), i.e.,

Pr[V∗x (|ψx⟩)⇆P∗ accepts] ≥ c(|x|)

where V∗x acts the identity on the ancilla register of |ψx⟩.
2. (Soundness) For all (possibly malicious) quantum provers P, there exists a channel com-

pletion Φx of Ux such that the following holds:

if Pr[V∗x (|ψx⟩)⇆P accepts] ≥ s(|x|) then δTD(σ, (Φx ⊗ I)(ψx)) ≤ δ(|x|) .

where σ denotes the output of V∗x (|ψx⟩)⇆P conditioned on accepting and V∗x acts the
identity on the ancilla register of |ψx⟩.
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3. (Zero Knowledge) There exists a negligible function ϵ : N → R such that the simulator
Sim, on input (x, j) (for j ∈N), outputs a state ρ satisfying

δTD(ρ, σx,j) ≤ ϵ(|x|)

where σx,j is the joint density matrix of both the verifier V∗x ’s private register and the ancilla
register of the input |ψx⟩, immediately after the j’th round of interaction with the honest
prover P∗.

Finally, define
avgUnitarySZKHV,δ =

⋃
ϵ(n) negl

avgUnitarySZKHV,1−ϵ, 1
2 ,δ ,

where the union ranges over all negligible functions ϵ(n), and

avgUnitarySZKHV =
⋂

c∈N

avgUnitarySZKHV,n−c .

We use the following theorem on the complexity of the Uhlmann transformation
problem, which was formally shown in [BEM+23].

Theorem 8.10 ([BEM+23], Proposition 6.1). DistUhlmann1−µ is contained in the average-case
interactive unitary synthesis class avgUnitarySZKHV for all negligible functions µ(n).

8.2 Complexity Upper Bound
We conclude this section by showing that the average-case problem LSNn,k,D⊗n

p
from Def-

inition 4.1—for a worst-case choice of non-degenerate Stabilizer code—is contained in
the complexity class avgUnitaryBQPavgUnitarySZKHV . Note that this requirement that the
stabilizer code is non-degenerate is essentially without loss of generality: the quantum
Gilbert-Varshamov bound guarantees that a random stabilizer code is non-degenerate
and has large distance with overwhelming probability.

Our result can be seen as a quantum analog of the classical result which states that (a
worst-case variant of) LPN is contained in SearchBPPSZK [BLVW18]. We remark that the
non-degeneracy requirement in our theorem is similar to [BLVW18], where the authors
assumed that the underlying code of the LPN instance is balanced.

In the following theorem and proof, the stabilizer code associated with Clifford C ∈
Cliffn is assumed to be fixed and non-degenerate. When we refer to the “average-case"
problem, we mean average-case over choice of error and secret. This is sound in the
sense that the stabilizer code (and its accompanying encoding circuit C) is known to the
LSN algorithm, whereas the error and secret are not.

Theorem 8.11 (Complexity of LSN). Let k ∈ N and n ≥ 8k. Let D⊗n
p be the n-qubit de-

polarizing channel, for some p ∈ (0, 0.05). Then, the average-case problem LSNn,k,D⊗n
p

with a
worst-case choice of non-degenerate Stabilizer code with distance d > 3np is contained in the
complexity class avgUnitaryBQPavgUnitarySZKHV .

Proof. Let us fix C ∈ Cliffn as the encoding Clifford for a worst-case non-degenerate
Stabilizer code with distance d > 3np. As we have previously observed in Section 4.2,
we can interpret the random (over E and s) instance(

C, E C(|0n−k⟩ ⊗ |s⟩)
)
∼ LSNn,k,D⊗n

p
(94)
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as an instance of the Distributional Uhlmann transformation problem.
Specifically, the instance to the problem consists of x = (1k, Q0, Q1) and an input

|Ψx⟩AB which denotes the ‘starting state’ of the Uhlmann transformation. (Q0, Q1) are a
pair of quantum circuits that, upon input |02n⟩ prepare the states

|Q0⟩AB =
√

2−k ∑
x

∑
Ea

√
Pr

Ea∼D⊗n
p

[Ea]
(
|x⟩ ⊗ |a⟩

)
A
⊗
(

Ea C(|0n−k⟩ ⊗ |x⟩)⊗ |0⟩
)
B

|Q1⟩AB =
√

2−k ∑
x

∑
Ea

√
Pr

Ea∼D⊗n
p

[Ea]
(
|x⟩ ⊗ |a⟩

)
A
⊗
(
|0n−k⟩ ⊗ |x⟩ ⊗ |a⟩

)
B

.

while |Ψx⟩AB = |Q0⟩AB. We note that |Q0⟩AB is simply a purification of the register
containing the quantum part of the input to LSN, i.e. Equation (94). Another way of
saying this is that the ensemble of states in Equation (94) is the effective state if we trace
out the A register of |Q0⟩.

Next, we argue that our choice of parameters ensures that the fidelity between the
reduced states Q0

A and Q1
A on register A is near maximal. Indeed, Lemma 4.7 shows that

for our specific choice of Clifford encoding circuit C, we have the fidelity guarantee that
F(Q0

A, Q1
A) ≥ 1− 4 · e−

np
24 . In other words, x = (1k, Q0, Q1) yields a valid fidelity-κ(n)

Uhlmann instance for κ(n) = 1− 4 · e−
np
24 . Therefore, by Uhlmann’s theorem, there exists

a unitary U ∈ L(HB) which acts on the B register and maps |Q0⟩AB to another state
which achieves an overlap of at least 4 · e−

np
24 with |Q1⟩AB. In other words, the task of

solving our given LSNn,k,D⊗n
p

instance amounts to synthesizing the Uhlmann unitary U
on the density matrix representing the random input E C(|0n−k⟩ ⊗ |s⟩) in Equation (94).
Because x = (1k, Q0, Q1) is a valid fidelity-κ(n)DistUhlmann instance for κ(n) = 1−µ(n),
for µ(n) = 4 · e−

np
24 , this immediately implies that any particular instance of the problem

can be solved in avgUnitaryBQPDistUhlmann1−µ .
Finally, we invoke Theorem 8.10 which states that DistUhlmann1−µ is contained in

the average-case interactive unitary synthesis class avgUnitarySZKHV for all negligible
functions µ(n). This yields the desired result.

9 Applications
We now discuss two applications which rest on the hardness of the LSN problem.

9.1 Learning From Quantum Data
The hardness of LPN implies conditional computational lower bounds on many classical
learning tasks. Here we show that the hardness of LSN would also imply (quantum) com-
putational lower bounds on the task of learning from quantum data [CGR+24], by studying
a special case known as learning state preparation processes. As a bonus, we also provide an
upper bound on the complexity of this task; specifically, we analyze it using the newly de-
veloped framework of unitary synthesis problems. We hope that this contribution paves
the way for future work on the complexity of quantum learning tasks.

What is the quantum generalization of the hugely fruitful classical framework of
Probably Approximately Correct (PAC) learning [Val84]? This question has received
much attention recently [Car21, FQR24, CL21], culminating in the formulation of a pow-
erful general framework known as ‘learning from quantum data’ by Ref. [CGR+24],
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which encompasses the settings of PAC learning quantum states [Aar07], PAC learning
from quantum examples [BJ95, AW17], variational quantum machine learning [BPP21]
and so on.

Lower bounding the complexity of learning from quantum data. We lower
bound the complexity of PAC-learning state-preparation processes, a special case of
learning from quantum data. This implies a bound on the more general task. This setting
is intended to model the scenario in which an experimentalist lacks significant control
over the inputs to a process occurring in nature that she nevertheless wishes to under-
stand. Here the process takes classical inputs (e.g. time, temperature, magnetic fields) to
quantum states (e.g. electromagnetic radiation collected from astronomical events). The
learner observes random input, output pairs (x, ρ(x)), and in particular cannot query the
process at identical input points.

The learner’s task is to output an estimate of ρ. To measure how far the learner’s
output is from the true ρ, we introduce the notion of risk (relative to ρ) for any process
h : X → L(Hd):

Rρ(h) := Ex∼D [L(ρ(x), h(x))], (95)

where L : L(Hd)× L(Hd)→ R is the trace distance.

Definition 9.1 (Learning State Preparation processes). Let unknown process ρ : X →
L(Hd) be a map that assigns to points in a classical input space X a corresponding quantum
state, C = {h : X → L(H)} be a set of hypotheses for what ρ could be, and D : X → [0, 1] be a
known distribution over the inputs.

The Learning State Preparation processes problem is to output some hypothesis h ∈ C satis-
fying Rρ(h) ≤ ϵ, given as input copies of a classical-quantum state σ,

σ = E
x∼D

[|x⟩⟨x| ⊗ ρ(x)]. (96)

We say that the learner solves the problem of Learning State Preparation processes with sam-
ple complexity m if, given input σ⊗m, it succeeds with probability at least 1− δ to output a h
satisfying Equation (95) where δ is constant.

Due to concentration, to output h minimizing the risk it suffices to minimize the em-
pirical risk i.e., the average loss computed on the examples (xi, ρ (xi))

n
i=1 :

R̂ρ(h) :=
1
m

m

∑
i=1

L(ρ(xi), h(xi)).

The sample complexity of empirical risk minimization for Learning State Preparation
processes was resolved by Ref. [FQR24]. They defined a quantum version of empirical
risk minimization and showed that it constitutes a learning algorithm:

Theorem 9.2 (Quantum Empirical Risk Minimization (Theorem 3 of [FQR24])). There
exists a learner for state preparation processes, which, for any ρ not necessarily within C, with
probability 1− δ outputs σ∗ ∈ C that approximately minimizes the empirical risk:

R̂ρ(σ
∗) ≤ 3 min R̂ρ(σi) + 4ϵ (97)

with sample complexity

m = Õ

 log d log 1
δ max

(
log |C|δ , log2(e|C|)

)
ϵ5

 . (98)
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Quantum empirical risk minimization Theorem 9.2 is sample-efficient whenever d =
O(exp(n)) and |C| = O(exp(n)). However, the time complexity of learning was not
addressed in Ref. [FQR24]. We now do so. In a nutshell, the following theorem says that
an algorithm that could learn state-preparation processes can also decode exactly in the
presence of noise.

Theorem 9.3 (Learning state preparation processes can be sample- but not time-efficient).
Let p ∈ (0, 1/2) such that

H(3p) + 3 log2(3)p + k/n < .99− log(3/2)
n

. (99)

Conditioned on the hardness of MSLSNm,n,k,D⊗n
p

, there is no time-efficient algorithm for learning
state preparation processes, even when only 1/poly(n) success probability is required and the
unknown process ρ is guaranteed to be in the concept class C (the “proper" learning setting).

Proof. We observe that any algorithm for proper learning state preparation processes
could also solve MSLSNm,n,k,D⊗n

p
, by choosing

X := {S}S∈Stab(n,k) (Classical input domain) (100)

D := Unif({S}S∈Stab(n,k)) (Distribution over inputs) (101)

ρz(S) := D⊗n
p (US

Enc(|z⟩ ⟨z|)) (Unknown map to be learned) (102)

C := {ρz}z∈{0,1}k (Concept class); (103)

Moreover ϵ in Definition 9.1 must be chosen so that the algorithm outputs the exact con-
cept instead of a mere approximation; this is the meaning of decoding (solving MSLSN).
ϵ must be such that no other concept lies in the ϵ-ball of the correct solution:

ϵ ≤ min
z1,z2∈{0,1}k

1
m

m

∑
i=1

δtr(ρz1(Si), ρz2(Si)), (104)

and we proceed to show that a constant-ϵ learner for state preparation processes suffices.
Using the convexity of trace distance (with an argument similar to that in the proof of
Theorem 6.5), it suffices to tackle the case when the noise on each copy is given by the
truncated depolarizing channel D̃(3/2np) at the cost of an exponentially small increase in
failure probability me−

np
12 . Therefore it suffices to take

ϵ ≤ min
x,y∈{0,1}k

1
m

m

∑
i=1

δtr(D̃( 3np
2 )(|ψx⟩⟨ψx|

Si), D̃( 3np
2 )(|ψy⟩⟨ψy|

Si)) (105)

≤ min
x,y∈{0,1}k

1
m

m

∑
i=1

√
1− F(D̃( 3np

2 )(|ψx⟩⟨ψx|
Si), D̃( 3np

2 )(|ψy⟩⟨ψy|
Si))2 (106)

where the second inequality follows from Fuchs-van de Graf. We further recall from
Theorem 3.10 that with probability at least 1− δ1, δ1 = 3np · 2nH(3p) · 33np · 2−n+k over
choice of Si ∈ Stab(n, k),

1− F(D̃( 3np
2 )(|ψx⟩⟨ψx|

Si), D̃( 3np
2 )(|ψy⟩⟨ψy|

Si))2 = 1; (107)

call Si “good" if this is true. (The condition Equation (99) in the Theorem statement is
necessary to make δ1 ≤ 1.)
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By Höffding’s inequality, with probability 1− exp(−δ2
1n/2), the number of samples

featuring Si that are “good" is at least (1− 3δ1/2)m. Therefore any learner of state prepa-
ration processes up to any constant ϵ,

ϵ ≤ 1
m
((1− 3δ1/2)m) = 1− 3δ1/2, (108)

will solve the MSLSN problem with a total failure probability of at most

δ + exp(−δ2
1n/2) + exp(−np

12
) = δ + O(exp(−n)). (109)

Remark 9.4. Theorem 9.3 should be compared to the hardness result of Ref [AGS21]. There, the
concept class to be learned is the set of quantum circuits that compute classical Boolean functions
c output by AC0 and TC0 circuits, and in one of their learning models, the learner is given access
to quantum examples of the form

∑
x

√
D(x) |x, c(x)⟩ . (110)

The goal is to output a hypothesis h such that Prx∼D[h(x) ̸= c(x)] ≤ ε. Ref [AGS21] showed
that conditioned on the quantum hardness of RingLWE and LWE, no such polynomial-time
learner can exist. This also implies the non-existence of polynomial-time quantum learners for
general state-preparation processes, corresponding to the case when the unknown process is clas-
sical – maps to binary labels |0⟩⟨0|, |1⟩⟨1| and is computable by a classical TC0 or AC0 circuit. To
complete the reduction, note that measuring the first n− 1 qubits of a quantum example (Equa-
tion (110)) yields the learner’s input (Equation (96)).

Given that the setting of [AGS21] constrains quantum learners of classical functions, it does
not say much about learning from ‘natively quantum’ data. For example, when the concept class
consists of noise channels, it is unclear how to write their purifications as Boolean functions
output by TC0 or AC0 circuits. We expect LSN to be more useful to constrain learning in such
situations.

Learning state preparation processes: upper bound We also show an upper bound
for the average-case complexity of proper learning state preparation processes, where
here the average is over an unknown process (“concept") uniformly chosen from C.

Specifically, we consider the task where the input to the learner is given by

ρ = Eρc∼CEx∼Dm [|x⟩⟨x| ⊗ ρc(x)] for ρc(x) = ⊗m
i=1ρc(xi). (111)

where ρc is the unknown concept.
Our complexity upper bound holds as long as as particular condition on the class C

is met. To make this more formal, we consider the following bipartite states

|Q0⟩ = 1√
|C| ∑c∈C ∑

x∈Xm
∑
ix

√
p(x, ix)(|c⟩ ⊗ |ix⟩)A ⊗ (|x⟩ ⊗ |ψx

c,i⟩)B (112)

|Q1⟩ = 1√
|C| ∑c∈C ∑

x∈Xm
∑
ix

√
p(x, ix)(|c⟩ ⊗ |ix⟩)A ⊗ (|x⟩ ⊗ |c⟩ ⊗ |ix⟩ ⊗ |0⟩)B. (113)

Here, the state |Q0⟩ can be thought of as a purification of the random learning instance in
register B which is handed to the learner, and |Q1⟩ can be thought of as the purification
of the exact target state (in a strong sense) which is to be output by the learner.
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Definition 9.5 (Condition for learning state preparation processes). We require the fol-
lowing condition on our learning task; namely, the natural purifications which we defined in
Equation (112) and Equation (113) must satisfy the condition that

F(TrB(|Q0⟩⟨Q0|), TrB(|Q1⟩⟨Q1|) ≥ 1− κ(n), (114)

where κ(n) = negl(n) is a negligible function.

We believe it should be possible to similarly upper bound the complexity of other
tasks of learning from quantum data in [CGR+24], but we leave this to future work.

Theorem 9.6 (Upper bound on the average-case complexity of proper learning classi-
cal-quantum processes). The problem of proper learning state preparation processes for a uni-
formly random concept from C is contained in the complexity class avgUnitaryBQPavgUnitarySZKHV .

Proof. Recall that the input to the learner is

ρ = Eρc∼CEx∼Dm [|x⟩⟨x| ⊗ ρc(x)] (115)

and
ρc(x) = ⊗m

i=1ρc(xi), (116)

where ρc is the unknown concept. We see now that |Q0⟩AB is a purification of the input to
the learner Equation (115) which is held in register B. By Uhlmann’s theorem, there exists
a unitary U ∈ L(HB) which acts on the B register and maps |Q0⟩AB to a κ-approximation
of |Q1⟩AB as long as the condition holds.

If the learner could synthesize a unitary that maps |Q0⟩AB to |Q1⟩AB exactly, the
learner could apply that unitary on his input and measure the second subregister of
register B, returning the exact concept c with probability 1. Given that the guarantee
Equation (114) only implies approximate synthesis of |Q1⟩AB, by the data-processing in-
equality for fidelity, applying the unitary whose existence is guaranteed by Uhlmann’s
theorem, and then measuring, outputs the exact concept c with probability at least 1− κ.
Concluding similarly to the proof of Theorem 8.11, the problem of learning state prepa-
ration processes is contained in the complexity class avgUnitaryBQPavgUnitarySZKHV .

Remark 9.7. This complexity upper bound could potentially be tightened by using the fact that
for PAC learning, it is not necessary to output the exact unknown concept; it often suffices to
output any concept that attains a risk (Equation (95)) of ϵ. Our upper bound pertains to the case
when ϵ = 0; it remains an open question if it is possible to get even tighter upper bounds if we do
not require this.

9.2 Quantum Bit Commitments
LPN is fundamental to classical cryptography. In this section, we show that our LSN
assumption also has applications in quantum cryptography; we use it to construct a
(statistically hiding and computationally binding) quantum bit commitment scheme.

Bit commitment is a fundamental primitive in cryptography with a multitude of ap-
plications, ranging from secure coin flipping, to zero-knowledge proofs, and secure com-
putation. In classical cryptography, commitment schemes can be constructed from any
one-way function [Nao03]. In quantum cryptography, potentially even weaker and in-
herently quantum assumptions suffice; for example, the existence of so-called pseudo-
random states [Kre21, AQY22, MY22].
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A (canonical) quantum bit commitment scheme [Yan22] is a pair of efficient quantum
circuits (Q0, Q1) which output two registers: a “commitment register” C and a “reveal
register” R. To commit to a bit b ∈ {0, 1}, the sender prepares the state |Qb⟩CR = Qb |0⟩CR
and sends the register C to the receiver. In the “reveal phase”, the sender simply reveals
the bit b together with register R. The receiver accepts if the inverse unitary Qb,† ap-
plied to registers CR yields |0⟩ when measured in the computational basis. In terms of
security, there are to important properties that we associate with a commitment scheme.
First, the statistical hiding property ensures that the commitment register (information-
theoretically) hides the committed bit b, i.e. after the commit phase, the receiver cannot
guess what bit the sender committed to. Second, the computational binding property en-
sures that, after the commitment phase, it is computationally intractable for the sender
to change the bit b they committed to.

We now give a formal definition.

Definition 9.8 (Quantum bit commitment). Let λ ∈ N denote the security parameter. A
quantum bit commitment scheme is a uniform family of unitary quantum circuits {Qb

λ}λ∈N,b∈{0,1}
where for each λ, the circuits Q0

λ, Q1
λ act on n = poly(λ) qubits and output two registers C,R.

The scheme consists of two separate phases:

1. (Commit phase:) to commit to a bit b ∈ {0, 1}, the sender prepares the state

|Qb
λ⟩RC = Qb

λ |0n⟩

and then sends the “commitment register” C to the receiver.

2. (Reveal phase:) the sender announces the bit b and sends the “reveal register” R to the
receiver. The receiver then accepts if performing the inverse unitary Qb,†

λ on registers C,R
and measuring in the computational basis yields the state |0n⟩.

For security, we require that the following two properties hold:

• (Stat. Hiding:) For every quantum algorithm Aλ with single-bit output, it holds that∣∣∣Pr
[
Aλ(ρ

0
λ) = 1

]
− Pr

[
Aλ(ρ

1
λ) = 1

]∣∣∣ ≤ negl(λ) ,

where ρλ,b denotes the reduced density matrix of |Qb
λ⟩ on register C.

• (Comp. Binding:) For every efficient quantum algorithm Aλ acting on R, it holds that

F
((
Aλ ⊗ IC

)
(|Q0

λ⟩⟨Q0
λ|), |Q1

λ⟩⟨Q1
λ|
)
≤ negl(λ).

We now show the following theorem.

Theorem 9.9. Let λ ∈ N denote the security parameter. Let k ∈ N and n ≥ 8k be integers
which are polynomial in λ. Let D⊗n

p denote the n-qubit depolarizing channel, for p = O(1). Let
U ∼ Cliffn be a random Clifford. Consider the pair of quantum circuits (Q0, Q1) given by

|Q0⟩CR =
√

2−k ∑
x

∑
Ea

√
Pr

Ea∼D⊗n
p

[Ea]
(
|x⟩ ⊗ |a⟩

)
C
⊗
(

Ea U(|0n−k⟩ ⊗ |x⟩)⊗ |0⟩
)
R

|Q1⟩CR =
√

2−k ∑
x

∑
Ea

√
Pr

Ea∼D⊗n
p

[Ea]
(
|x⟩ ⊗ |a⟩

)
C
⊗
(
|0n−k⟩ ⊗ |x⟩ ⊗ |a⟩

)
R

.

Then, assuming the hardness of the LSNn,k,D⊗n
p

problem, the pair (Q0, Q1) is a statistically hiding
and computationally binding quantum bit commitment scheme.
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Proof. From Lemma 4.7, we know that for n ≥ 8k and p = O(1), e.g., p = 0.04, with
overwhelming probability over the choice of the random Clifford U, it holds that

δTD(Q0
C, Q1

C) ≤
√

1− F(Q0
C, Q1

C) ≤ 2 · e−
np
48 ≤ negl(λ).

This implies that (Q0, Q1) is a statistically hiding. The computational binding property
follows immediately from the hardness of the LSNn,k,D⊗n

p
problem. This is because a suc-

cessful adversary against the computational binding property would allow us to solve
LSNn,k,D⊗n

p
in polynomial-time with success probability at least 1/poly(n).
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