
PEARL-SCALLOP: Parameter Extension
Applicable in Real Life for SCALLOP

Bill Allombert1, Jean-François Biasse6, Jonathan Komada Eriksen7, Péter
Kutas3,4, Chris Leonardi2, Aurel Page1, Renate Scheidler5, Márton Tot Bagi3

Inria, Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR5251, F-33400 Talence,
France.

ISARA Corporation, Waterloo, Canada
Eötvös Loránd University, Hungary

University of Birmingham, UK
University of Calgary, Canada

University of South Florida, USA
KU Leuven, Belgium

Abstract. A crucial ingredient for many cryptographic primitives such
as key exchange protocols and advanced signature schemes is a commu-
tative group action where the structure of the underlying group can be
computed efficiently. SCALLOP provides such a group action, based on
oriented supersingular elliptic curves. We present PEARL-SCALLOP, a
variant of SCALLOP that changes several parameter and design choices,
thereby improving on both efficiency and security and enabling feasible
parameter generation for larger security levels. Within the SCALLOP
framework, our parameters are essentially optimal; the orientation is pro-
vided by a 2e-isogeny, where 2e is roughly equal to the discriminant of
the acting class group.
As an important subroutine we present a practical algorithm for generat-
ing oriented supersingular elliptic curves. To demonstrate our improve-
ments, we provide a proof-of-concept implementation which instantiates
PEARL-SCALLOP at all relevant security levels. Our timings are more
than an order of magnitude faster than any previous implementation.

1 Introduction

Isogeny-based cryptography dates back to Couveignes’ seminal work [27] where
he introduced the concept of hard homogeneous spaces, which are today of-
ten referred to as cryptographic group actions [1], as a quantum-resistant al-
ternative to the usual Diffie-Hellman key exchange [34]. Cryptographic group
actions are a useful tool for designing cryptographic primitives reminiscent of
discrete logarithm-based primitives that are post-quantum secure. Rostovtsev
and Stolbunov [51] rediscovered Couveignes’ ideas and the resulting scheme is
now dubbed the CRS key exchange. The CRS key exchange utilizes the group
action of certain class groups of imaginary quadratic orders on the set of ordinary
elliptic curves. The security of the scheme relies on the hardness of inverting the

2 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

group action. Unfortunately, constructions based on ordinary curves are rather
slow.

A breakthrough in this direction was CSIDH [20], where the key idea is to
replace ordinary elliptic curves by supersingular ones defined over Fp. On this
set of curves, there is a natural group action of the class group of Z[

√
−p] that

can be utilized to build a key exchange.

De Feo and Galbraith constructed a signature scheme combining CSIDH
with the Fiat-Shamir scheme with aborts in a technique called SeaSign [30].
The difficulty (and hence inefficiency) of CSIDH-based signatures is that for
cryptographically sized parameters it is hard to compute the structure of the
class group. For CSIDH-512, Beullens, Kleinjung and Vercauteren computed the
structure of the class group using a record-breaking computation which they
then applied to build the signature scheme CSi-FiSh [11]. The framework of
CSi-FiSh can also be applied to build threshold signatures [32], ring signatures
[10], group signatures [9] and many more cryptographic primitives.

Unfortunately, due to [48] and [15], it is unclear whether CSIDH-512 (and
thus CSi-FiSh) achieves NIST level I security, so it is important to have instan-
tiations with larger parameters. Even though CSIDH easily generalizes to higher
security levels, CSi-FiSh would require class group computations that are out
of reach for current algorithms and computational resources. SeaSign does scale
for larger parameter sets but is highly impractical.

The notion of an orientation of an elliptic curve by an arbitrary imaginary
quadratic order was introduced to cryptography by Colò and Kohel in their
OSIDH protocol [26]. Recently De Feo, Fouotsa, Kutas, Leroux, Merz, Panny
and Wesolowski proposed SCALLOP [39] which is a cryptographic group action
different from CSIDH/CSi-FiSh that builds on the notion of an orientation.

The key idea of SCALLOP is to use a supersingular elliptic curve oriented
by a non-maximal order of large prime conductor in a quadratic number field of
small class number, such as prime conductor suborders of Z[i]. The class number
of this order can be calculated easily using a standard formula relating the two
class numbers. Then computing the structure of the class group reduces to com-
puting certain discrete logarithms in said class groups. By carefully generating
parameters, this allows for an implementation of signature schemes for secu-
rity levels comparable to CSIDH-512 and CSIDH-1024 without the need to use
particularly large resources (i.e., pre-computations can be carried out on a lap-
top). However, from the original construction, it is somewhat unclear whether
SCALLOP can be instantiated for security levels comparable to CSIDH-2048
and CSIDH-4096, and SCALLOP is significantly slower than CSIDH.

SCALLOP-HD is a variant of SCALLOP that uses higher dimensional tools
developed in [29] to provide polynomial-time parameter generation. The reason
is as follows. In SCALLOP, the natural generator of the order has non-smooth
degree. In order to evaluate this endomorphism, it needs to be represented in a
compact way. In SCALLOP this is done by writing it as a linear combination of
1 and a smooth degree endomorphism which is a non-trivial task in the parame-

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 3

ter generation phase. SCALLOP-HD bypasses this obstacle by representing the
isogeny using higher dimensional techniques.

1.1 Our contributions

We make different design choices compared to SCALLOP for security and effi-
ciency purposes. We use a maximal order with a class number that is large but
still efficiently computable (i.e., has a discriminant of roughly 256 bits). We also
use a conductor defining a non-maximal order O that is not smooth but also
not prime; specifically, it is the product of a few, large primes. Choosing such
a conductor defeats all the attacks already considered in SCALLOP and hence
does not seem to pose a security threat. Furthermore, using a maximal order
with a conductor of this form ensures that its class number will not be smooth,
so the method is potentially more resistant against hidden shift attacks.

In the original SCALLOP, the conductor f is chosen to be prime and in such
a way that f ± 1 is smooth, in order to utilize the Pohlig-Hellmann algorithm
for discrete logarithm computations. This makes the class group computation
easy, but becomes hard to achieve for larger security levels. By switching to a
product of large primes, we can reduce the class group computations to mid-
size discrete logarithm computations in finite fields where this computation is
efficient in practice.

The main benefit of this construction is that the group action evaluation is
significantly faster than in SCALLOP and SCALLOP-HD. The extra flexibility
in our parameter generation facilitates a representation of the orientation by an
endomorphism whose degree is a power of 2. In this way, compared to SCALLOP-
HD, we do not require higher dimensional isogeny representations and do not
need to evaluate higher dimensional isogenies for translating the orientation;
explicitly, we replace the (2e, 2e)-isogenies with 2e-isogenies. Furthermore, we
can use odd degree isogenies in the group action evaluation. As a result, we do
not encounter the expensive issue of SCALLOP where the norm of the ideal to
be evaluated is not coprime to the norm of the endomorphism that represents
the orientation.

As a subroutine, we design a more efficient algorithm for generating oriented
elliptic curves together with the orientation. In theory, this can be accomplished
in polynomial time using the maximal order to elliptic curve algorithm from [36]
or its more practical variant [38]. However, for larger parameter sets, generating
a supersingular elliptic curve with prescribed endomorphism ring is computa-
tionally very expensive.

Putting all of these ingredients together we propose a new SCALLOP vari-
ant, PEARL-SCALLOP, that we instantiate for the security levels comparable
to CSIDH-512, CSIDH-1024 and CSIDH-1536, and demonstrate a significant
practical speed-up, compared to SCALLOP and SCALLOP-HD. When defin-
ing security levels, we will always compare to versions of CSIDH (as the quan-
tum bit security of Kuperberg’s algorithm instantiated for class groups is de-
bated). An implementation of PEARL-SCALLOP can be found in the repository
https://www.github.com/biasse/SCALLOP-params.

https://www.github.com/biasse/SCALLOP-params

4 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

1.2 Technical overview

Here, we give a more detailed analysis of our technical ideas and make a com-
parison between SCALLOP, SCALLOP-HD and PEARL-SCALLOP.

It is known [47] that one can instantiate class group actions with any orienta-
tion. However, there are three important requirements when designing efficient
signature schemes and more advanced primitives:

– Security: Disclosing the orientation should not reveal too much information
about the endomorphism ring of the curve;

– Efficient representation: The orientation should have an efficient representa-
tion that enables the the evaluation of the class group action;

– Efficiently computable class group structure.

CSIDH satisfies the first two criteria, but its class group structure (or even its
class number) cannot be efficiently computed for larger security levels, as CSIDH-
512 already entailed a record class group computation. The idea of SCALLOP is
to use non-maximal orders of large conductor. In SCALLOP and SCALLOP-HD,
the maximal quadratic order has small class number (in the proposed parame-
ters it has class number 1). It would be natural to use a non-maximal order of
smooth conductor, as in this case, the orientation would have an efficient repre-
sentation and an oriented curve could be computed with a single smooth-degree
isogeny evaluation. Unfortunately such a construction is insecure because of the
following. Let ι be the endomorphism of the curve oriented by the maximal order.
Then the orientation of the non-maximal order corresponds to an endomorphism
of the form τ = ϕ ◦ ιϕ̂. Now we can evaluate τ on any point of powersmooth
degree and then recover ϕ using techniques developed in [33].

In order to avoid such an attack, one can use orders of non-smooth conduc-
tor. However, problems arise in satisfying the requirement outlined above. In
terms of efficiently representing the orientation, in SCALLOP, this is achieved
by using a smooth generator for the underlying order. Such a generator always
exists, but making this construction practical is challenging. Finding a smooth
generator usually takes subexponential time and the smoothness bounds are
highly impractical, which significantly affects the runtime of the group action
evaluation. Thus, in SCALLOP, one finds the smooth generator first and then
tries to find a suitable conductor f . Since we need f−1 to be smooth, this places
restrictions on the particular structure of f , which effects the biggest efficiency
loss of SCALLOP.

SCALLOP-HD resorts to higher dimensional isogeny representation to ad-
dress this issue. It uses a prime conductor f where f ± 1 is smooth. This is easy
as one can just simply choose a prime of the form 2k3lh− 1 where h is a small
cofactor. This construction allows for polynomial-time class group computation
and hence scales well for any security level. The minor drawback here is that one
needs to use higher dimensional isogenies for evaluating the orientation and the
class group has smooth order (which may or may not be a problem for certain
applications or improved hidden shift attacks).

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 5

The idea of PEARL-SCALLOP is to use a non-maximal order of larger dis-
criminant whose class group is still efficiently computable. We use conductors
that are not prime but are not smooth, they are a product of a few primes,
depending on the security level. We revisit the idea of representing orientations
by smooth generators. The advantage now comes from the fact that we search
simultaneously for a suitable conductor and the maximal order. Specifically, we
find positive integers a and d such that d+ a2 (the norm of a+

√
−d) is a fixed

power of 2 and the coefficient of
√
−d in a small power of a+

√
−d is the product

of a few primes. This has two major benefits. First, our orientation is represented
via an isogeny whose degree is a power of 2. Second, the class group computa-
tion reduces to computing the class group of the maximal order and discrete
logarithm computations in moderate sized finite fields. This approach is faster
than SCALLOP-HD but does not scale in polynomial time, as eventually the
discrete logarithm computations will become too expensive. One extra benefit
is that the class group will not have smooth degree as the maximal order has
non-smooth discriminant and the prime factors of the conductor are not special
primes.

One difficulty in using non-maximal orders of large class number is that is
must be feasible to generate an oriented curve. This can be done in polynomial
time but is extremely costly in practice, even for 1000-bit primes. Our new idea
to make this construction more practical is as follows. Assume that we want
to generate a curve oriented by O = Z[ω]. First, we find a smooth positive
integer g such that Z[gω] embeds into End(E0) for the curve E0 : y2 = x3 + x.
This involves solving a relatively simple Diophantine equation and it is known
that every quadratic order embeds into End(E0) if it embeds into Bp,∞ and its
discriminant is of size Ω(p2). Using the efficient representation of End(E0), one
only needs to compute an ascending g-isogeny to arrive at a curve oriented by O.
The efficiency gain comes from the fact that previous algorithms computed the
orientation on the quaternion side first and executed a full maximal order to
elliptic curve algorithm. Note that our technique could be interesting on its own
or for further variants of SCALLOP.

This paper is structured as follows. In Section 2 we recall some necessary
mathematical preliminaries and the high-level idea and design choices of SCAL-
LOP [39]. In Section 3 we present our new framework and propose algorithms
for generating parameters. In Section 4 we discuss the concrete instantiation, im-
plementation challenges and our novel algorithm for generating suitable oriented
curve (Algorithm 1).

1.3 Acknowledgements

This project started at the 2023 Banff workshop on isogeny-based cryptography,
and we want to thank the organisers for a successful workshop. We also want to
thank Gioella Lorenzon and Frederik Vercauteren for comments useful comments
and feedback on an earlier version of this paper.

6 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

2 Preliminaries

In this section, we recall the main theoretical concepts needed for understanding
SCALLOP, and the class group computation.

2.1 Supersingular elliptic curves and orientations

We begin with a brief review of the required background material on elliptic
curves and their orientations. For details, we refer the reader to [39] and the
sources cited therein.

Let p ≥ 5 be a prime and Fp an algebraically closed field of characteristic p.
For any elliptic curve E/Fp and any non-negative integer n, we denote by E[n]
the group of n-torsion points on E, i.e. the kernel of the multiplication-by-n
map on E. Throughout, we will only consider supersingular elliptic curves, i.e.
curves E/Fp for which E[p] is trivial. Since every supersingular elliptic curve is
isomorphic to a curve defined over Fp2 , we may assume that E is given by a
short Weierstrass equation

E : y2 = x3 +Ax+B

with A,B ∈ Fp2 .

For any isogeny ϕ : E → E′ from E to another elliptic curve E′, let ϕ̂ denote
its dual and deg(ϕ) its degree. All isogenies herein are assumed to be separable;
in particular, p ∤ deg(ϕ) and deg(ϕ) = #ker(ϕ) is the cardinality of the kernel
of ϕ. The only exception is the p-power Frobenius isogeny π : E → Ep defined
via π((x, y)) = (xp, yp), where Ep is given by y2 = x3 +Apx+Bp.

Let End(E) denote the endomorphism ring of E and End0(E) = End(E)⊗Z Q
the associated endomorphism algebra. Then End0(E) ∼= Bp,∞, the rational
quaternion algebra ramified only at p and ∞, and End(E) is isomomorphic
to a maximal order of Bp,∞.

Let K be an imaginary quadratic field such that p does not split in K. Then
K embeds into Bp,∞. A K-orientation of E is a (necessarily injective) ring
homomorphism ι : K → End0(E). If ϕ : E → E′ is an isogeny, then ϕ induces a
K-orientation ι′ of E′ defined via

ι′(β) =
1

deg(ϕ)
ϕ ◦ ι(β) ◦ ϕ̂ for all β ∈ K.

If there exists an order O ⊂ K (which is unique in this case) such that ι(O) =
End(E) ∩ ι(K), then ι is said to be an O-orientation.1 Then E is said to be
O-orientable and the pair (E, ι) is referred to as an O-oriented elliptic curve.

Note that every O-orientation ι of E gives rise to an orientation on Ep =
π(E), since End(E) ∼= End(Ep). The set SO(p) of O-oriented elliptic curves up

1 In some sources, O-orientations are referred to as primitive O-orientations (with
O-orientations without this attribute only requiring ι(O) ⊆ End(E) ∩ ι(K)), or as
optimal embeddings.

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 7

to isomorphism and Frobenius conjugacy is non-empty if and only if p does not
divide the conductor of O. If in addition p splits in K, then #SO(p) = h(O), the
class number of O. In this case, the class group Cl(O) acts freely and transitively
on SO(p) as follows. For an O-oriented curve (E, ιE) and an O-ideal a coprime
to the conductor of O, put E[a] =

⋂
α∈a ker(ιE(α)) and let φE

a : E → E/E[a] be
the isogeny with kernel E[a], of degree N(a) where N(a) = [O : a] is the norm
of a. Then a ⋆ (E, ιE) = (Ea, ιa) ∈ SO(p), where

Ea = E/E[a], ιa(β) =
1

N(a)
φE
a ◦ ιE(β) ◦ φ̂E

a for all β ∈ K.

Since principal ideals act trivially on SO(p), this extends to an action ⋆ : Cl(O)×
SO(p) → SO(p). In practice, φE

a will always be given as a product of low degree
isogenies of coprime degrees, corresponding to a factorization of a into powers
of prime ideals in O = Z[ω]. Specifically, if a = bc, where b, c are O-ideals
whose norms are relatively prime to each other and to the conductor of O, then
Eb[c] = φE

b (E[c]) and φE
a = φEb

c ◦ φE
b . If c is primitive, i.e. not divisible by any

rational integers other than ±1, and given by a Z-basis {c, u+ω} with c = N(c),
then E[c] is a cyclic group, computable as E[c] = E[c] ∩ ker(ιE(ω) + [u]), where
[u] is the multiplication-by-u map on E.

2.2 SCALLOP

In this section we describe the main mechanism and design choices of SCAL-
LOP [39]. As explained in the previous section, every O-orientation yields an
action of Cl(O) on the set of O-oriented supersingular elliptic curves. The aim
of SCALLOP was to find an orientation with the following properties:

1. The class number of O is easy to compute;
2. The relation lattice of Cl(O) is easier to compute than in the one used in

CSIDH (for the same security level);
3. Computing the endomorphism ring of an O-oriented curve (even when the

orientation is provided) is hard (i.e., there does not exists a quantum poly-
nomial-time algorithm for computing the endomorphism ring).

In order to satisfy the first condition, SCALLOP uses non-maximal orders
of quadratic fields with small class number. Assuming the factorization of the
conductor is known, class numbers of such orders are easy to compute using the
formula

h(O) =
h(OK)f

[O∗
K : O∗]

∏
q|f

(
1−

(
dK
q

)
1

q

)
;

see [28, Theorem 7.24]. Here, OK is the maximal order of the field of fractions K
of O, dK is its discriminant, O∗

K and O∗ are the respective unit groups of OK

and O, f is the conductor of O, and the product runs over all primes dividing f .
The third condition is somewhat trickier to satisfy in this case. As a particular

example, let O be an order in Z[i] of smooth conductor f . Given an O-orientable

8 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

elliptic curve E, one can recover the degree f isogeny from E to E0, where E0

is the unique curve oriented by Z[i], in the following fashion. For each prime
factor ℓ | f , one can try all of the ℓ-isogenies from E0, and choose the right one
by evaluating the action of an ideal that is trivial in Cl(Z[(f/ℓ)i]), but not in
Cl(Z[fi]), thus stepwise climbing the oriented isogeny vulcamo.

The natural idea to counter this attack is to take f to be non-smooth; in
SCALLOP [39], it is taken to be a large prime. Then the attack fails, as the
f -torsion of E is defined over a large extension of Fp2 and one cannot evaluate
degree f isogenies without knowing the endomorphism ring of E. On the other
hand, when taking an order of prime conductor, it is not obvious how to repre-
sent the orientation. In SCALLOP, efficiency is ensured by writing the natural
generator σ as a linear combination of 1 and θ, where θ is an endomorphism
of smooth degree. Choosing the orientation first and θ afterwards is generally
a challenging task in practice. The key idea in SCALLOP is to choose θ first
and the corresponding f afterwards. One possible choice is to take the first few
primes of the form 4m+1 and represent them as norms of primes ak±bki in Z[i].
Then one can take a particular choice for each prime (either plus or minus) and
take their product. If the coefficient of i of this product is prime, then it is an
appropriate choice for f .

This motivates a hard problem underlying SCALLOP:

Problem 2.1. Let ϕ : E0 → E a degree f isogeny. Suppose we can evaluate
σ = ϕ ◦ [i] ◦ ϕ̂ ∈ End(E) at any point on E (the cost of the evaluation is the size
of the representation of the point). Compute End(E).

In fact, the recent break of pSIDH [23] implies that it is sufficient to be able
to evaluate ϕ at any point on E0, instead of only σ, as then End(E) can be
computed in quantum polynomial time.

These design choices already satisfy the first and third requirement, but
in general computing the relation lattice of the class group can be still time
consuming. The way this is handled in SCALLOP is to ensure that f − 1 or
f + 1 is smooth, in which case the relation lattice can be computed by solving
low-order discrete logarithms using the Pohlig-Hellman algorithm.

A different route is taken in SCALLOP-HD [24]. There, the authors represent
orientations using higher dimensional isogenies. In that setting, f can be selected
before choosing θ and then a natural choice is to take f − 1 to be a product of
large powers of 2 and 3.

Finally, we emphasize that in all cases the group action evaluation also entails
transporting the orientations (this is not needed in CSIDH as Frobenius provides
a canonical orientation by Z[

√
−p]). In SCALLOP, this requires translating the

smooth degree endomorphism θ. When the isogeny degree (corresponding to a
small norm ideal) and deg(θ) are coprime, this just entails pushing the kernel
of θ through the isogeny. The parameter choices in SCALLOP require the trans-
lation through non-coprime degree isogenies. This is more complicated and time
consuming; we refer the reader to [39, Section 5.2.] for details.

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 9

2.3 Class group computation

Once an O-orientation of a curve E is known, the cost of calculating the action
of an ideal a of large norm on the isomorphism class of E can be greatly reduced
by finding prime ideals pi of small norm and exponents xi such that px1

1 . . . pxk

k =
(α)a for some α ∈ K. This means that the a and px1

1 . . . pxk

k represent the same
class in Cl(O). Thus, the action of a is simply the composition of the actions of
the pi, which are significantly easier to compute.

Under the Generalized Riemann Hypothesis (GRH), the class group of an
order O in a number field is generated by the classes of prime ideals of norm less
than 48 log2(|∆O|) where∆O is the discriminant ofO (a direct consequence of [6,
Th. 4]; see also [13]). In practice [14], it was observed that significantly fewer
primes are necessary to generate Cl(O). Once generators p1, . . . , pk of Cl(O) are
chosen, our goal to minimize the cost of evaluating the action of a is to find the
smallest exponents x1, . . . , xk such that the class [a] of a in Cl(O) is equal to∏

i[pi]
xi . To this effect, we note that the exponent vectors (e1, . . . , ek) such that∏

i[pi]
ei = [1] form a Euclidean lattice L dubbed the lattice of relations. Given

an initial decomposition of [a] with exponent vector x = (x1, . . . , xk), we can
obtain a shorter one by finding a vector u ∈ L close to x. Then x− u is a new
exponent vector of such a decomposition of [a]. If u is the closest vector to x,
then it yields the shortest decomposition possible.

The typical strategy for decomposing [a] with respect to a small set of prime
generators (pi)i≤k of Cl(O) is to multiply a by random short products of the pi
and use an ideal reduction technique to obtain a′ of norm in O(

√
|∆O|) such that

[a′] = [a] ·
∏

i[pi]
xi until a′ is a product of the (pi)i≤k (see for example [13, Alg.

2,3]). A similar strategy can be used to compute a generating set of the lattice
of relations L: we look for sufficiently many different random decompositions
of a = (1). When O is the maximal order of K (or is non-maximal with a
small conductor), the above strategy is the best known technique. For example,
this is the case with the signature scheme CSI-FiSh [20] which requires the fast
decomposition of random elements in Cl(O) to avoid having to use an expensive
rejection sampling method to ensure security. The best known technique for
computing the lattice of relations between a generating set of primes of such an
orderO relies on the class group computation algorithm of Hafner-McCurley [40].
Under the GRH, its complexity is in L|∆|(1/2) where

Lx(α) = exp(O((log x)α(log log x)1−α)).

For objects of size log x, a complexity in Lx(0) means polynomial time, and a
complexity in Lx(1) means exponential time. The subexponential nature of the
complexity of the Hafner–McCurley algorithm means that for large values of
|∆|, the search for the relation lattice (and decompositions in Cl(O)) quickly
becomes impractical. Practically speaking, the record computation performed
to instantiate CSI-FiSh reached ∆ with 512 bits [20].

When the conductor f of the non-maximal order O is large, one can signifi-
cantly reduce the cost of computing the lattice of relations and of ideal decom-
position in Cl(O) by using an algorithm due to Klüners and Pauli [44]. From a

10 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

high level standpoint, this approach takes advantage of the exact sequence

1 → O∗ → O∗
K →

⊕
p|f

O∗
K,p/O

∗
p → Cl(O) → Cl(OK) → 1,

where Op denotes the localization of O at p. In a nutshell, this means that ideal
decomposition (and the search for relations) in Cl(O) reduces to ideal decom-
position in Cl(OK) and to the resolution of the Discrete Logarithm Problem
(DLP) in the multiplicative groups of the residue fields OK/p for p | f (assum-
ing the factorization of the conductor f is known). See [14, Algorithms 2 and 3]
for more details. Note that for a split prime p, the corresponding instance of the
DLP is in a prime field of size p = N (p), while in an inert prime, the size of the
field is p2. In the setting of SCALLOP [39], we have OK = Z[i], which makes
all computations in Cl(OK) easy. On the other hand, no practical implemen-
tation beyond 1024-bit discriminants has been achieved due to the hardness of
the discrete logarithms. The best known algorithms for solving instances of the
DLP are variants of the number field sieve (NFS), which has complexity Lq(1/3),
where q is the cardinality of the residue field [43]. Practically speaking, we will
only use prime fields, where record computations reach q with approximately
800 bits [18].

In summary, computing the class group of an order of discriminant ∆ = −df2

where −d is a fundamental discriminant and the factorisation of f is known can
be achieved in time

Ld(1/2) +
∑
p|f

Lp(1/3).

3 New parameter and design choices

In this section, we propose new instantiations of SCALLOP focusing on both
security and efficiency.

The key idea is twofold. Firstly, we use a maximal order with larger class
number. Secondly, we choose a conductor f that is not smooth but is also not
prime. This approach targets concrete efficiency of protocols with security lev-
els equivalent to CSIDH-1024, CSIDH-2048 and CSIDH-4096. Computing class
groups of this size in the CSIDH setting is far out of reach with current classical
algorithms and infrastructures. SCALLOP was instantiated for the CSIDH-1024
equivalent case [39], but for the higher security levels, finding a conductor f such
that f ± 1 is sufficiently smooth might be more challenging. Furthermore, our
goal is to provide more efficient group action evaluations.

Instead of the setting of the Gaussian integers, we start with a quadratic
order Z[

√
−d] where d > 0 is a 256-bit integer that will be determined by suit-

able parameter choices. Computing class groups of this size is feasible in prac-
tice [12]. We wish to choose f in such a way that the discriminant of Z[f

√
−d]

has 1024/2048/4096 bits. This implies that f should have 384/896/1920 bits.
The high-level idea is as follows. We do not fix d right away, but rather restrict

our search to maximal orders that contain an endomorphism with particularly

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 11

smooth degree of the form 2N2. This is ensured by introducing a variable pa-
rameter a and looking for pairs a, d such that a2 + d = 2N2. This quantity is
then the norm of the element a+

√
−d ∈ Z[

√
−d]. Next, we look for small powers

of this element such that the coefficient f of
√
−d in this power has a particular

factorization. We focus on the parameters sets corresponding to CSIDH-1024
and CSIDH-2048.

3.1 Effective orientation from a generator of a suborder

Our generation procedure produces parameters f, d such that we know an ele-
ment ω ∈ Z[f

√
−d] of smooth norm, which will correspond to the effective ori-

entation. However, the element ω will in fact never be a generator of Z[f
√
−d].

Instead it will generate a suborder Z[ω] ⊂ Z[f
√
−d], with relative index g =

[Z[f
√
−d] : Z[ω]]. Therefore, being able to evaluate ω will not satisfy the origi-

nal definition of an effective representation [39]. However, Proposition 3.1, shows
that this causes no extra problems, as long as we can avoid ideals above primes
dividing g.

Proposition 3.1. Let O be an imaginary quadratic order, and let O′ ⊂ O be a
suborder of relative index g = [O : O′]. Then given an oriented curve (E, ιE) ∈
SO(p), together with an endomorphism ω of E generating ιE(O

′) ⊂ End(E),
one can efficiently evaluate the action of any O-ideal l above ℓ ∈ O(log(p)) on
(E, ιE), provided gcd(ℓ, g) = 1.

Proof. Let O = Z[δ], and let l be an O ideal of norm ℓ. Recall that finding the
isogeny corresponding to l = (a+δ, ℓ) is done by computing E[[a]+ιE(δ)]∩E[ℓ] =

([a]+ ι̂E(δ))(E[ℓ]). To compute this quantity only with knowledge of the isogeny
corresponding to ω, we use that gδ ∈ O′, hence gδ = c + ω for some c ∈ Z.
Then, since gcd(ℓ, g) = 1, we have l = (a+ δ, ℓ) = (g(a+ δ), ℓ) = (ga+ gδ, ℓ) =
(ga+ c+ω, ℓ), and the isogeny corresponding to l can be found in the same way
as before, given only the evaluation of ω on E[ℓ].

For our application in SCALLOP, it will be sufficient to avoid using ideals
above primes dividing g = [Z[f

√
−d] : Z[ω]] in the basis of the lattice of relations,

or ignoring the issue entirely, by additionally searching until all small primes
dividing g are non-split in Z[

√
−d].

3.2 The CSIDH-1024 case

In this setting we aim to obtain f as the product of three primes of 128 bits each
and a very small cofactor. Since we wish to achieve 128-bit security, the natural
attacks will fail just as they do when f is prime; thus, there is no compelling
reason to take f to be prime. The benefit of this approach is that computing the
relation lattice reduces to relatively small finite field discrete logarithm problems.

Fix N = 2129; we wish to find a and d such that d + a2 = 2N2 = 2259. A
natural idea would be to take a uniformly at random, compute d accordingly,

12 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

and raise a +
√
−d to a small power, hoping that the coefficient of

√
−d is the

product of three prime numbers of size roughly 128 bits (and a possibly very
small cofactor). Numbers that are the product of three prime numbers of equal
size are relatively dense, but detecting them in practice is potentially hard and
time consuming. Instead, we take the more formal approach of computing powers
of a+

√
−d symbolically and expressing the coefficient of

√
−d in terms of a and

d.
For this specific setting the fourth power, (a+

√
−d)4, represents a particu-

larly suitable choice, as the coefficient of
√
−d in this quantity is

4(a2 − d)a = 4(2a2 − 2N2)a = 8(a−N)(a+N)a,

which already splits into three factors and the small cofactor 8. So our goal is
find d and a subject to the following two restrictions:

– a,N − a, a+N are all small multiples of 128-bit primes;
– The 128-bit prime factors are all split in Q(

√
−d).

Remark 3.2. The reason for considering N − a instead of a −N is that N > a
as a is chosen to be a 128-bit integer and N = 2129.

The second condition comes from the fact that we need discrete logarithm
computations modulo the prime ideals above those primes (see Section 2.3) which
should involve 128-bit (as opposed to 256-bit) discrete logarithm computations.

The goal is to sample a from a certain residue class to ensure that whenever
a, a+N, a−N are (almost) prime (a precise statement is given in Lemma 3.3),
then they are also split in Q(

√
−d). In our specific setting, have m = 64.

Lemma 3.3. Let N = 22m+1 with m ≥ 0 and d = 2N2 − a2 with 0 < a < N .
If a ≡ 19 (mod 24), then whenever a, (a+N)/3 and N − a are prime numbers,
they split in Q(

√
−d)

Proof. Recall that a prime q is split in Q(
√
−d) if and only if (−d

q) = 1, where

(−d
q) denotes the Legendre symbol. Also note that a ≡ 19 (mod 24) is equivalent

to a ≡ 1 (mod 3) and a ≡ 3 (mod 8).
Since a ≡ 3 (mod 8), we have(

−d

a

)
=

(
a2 − 2N2

a

)
=

(
−2

a

)
=

(
−1

a

)(
2

a

)
= (−1)(−1) = 1.

Similarly, N − a ≡ −a ≡ 1 (mod 4) implies(
−d

N − a

)
=

(
(a+N)(a−N)−N2

N − a

)
=

(
−1

N − a

)
= 1.

Finally, since N ≡ 2 (mod 3) and a ≡ 1 (mod 3), we see that a+N is divisible
by 3. Since a+N ≡ a ≡ 3 (mod 4), we see that (N + a)/3 ≡ 1 (mod 4), so(

−d

(a+N)/3

)
=

(
(a+N)(a−N)−N2

(a+N)/3

)
=

(
−1

(a+N)/3

)
= 1.

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 13

Remark 3.4. Analogous reasoning to the proof of Lemma 3.3 shows that if N is
an even power of 2 and a ≡ 11 (mod 24), then a, (a + N)/3 and N − a split
again in Q(

√
−d) when they are prime.

Appropriate parameters can now be generated as follows:

– Set N = 2129.
– Sample a random 128-bit number a ≡ 19 (mod 24).
– Check if a, (a+N)/3 and N − a are prime numbers.
– If yes, then set f = 8(a+N)(N − a)a and d = 2N2 − a2.

3.3 The CSIDH-2048 and CSIDH-4096 cases

For the larger security levels, using the same method would require the following
discrete logarithm computations:

– In the 2048-bit case the maximal order has discriminant 256 bits, so the
large prime factors of the conductor will have 2048−256

6 ≈ 299 bits.
– In the 4096-bit case, the same calculation gives 640 bits.

In order to save on discrete logarithm computations we will instead use a
slight variation of the previous approach. Rather than taking the fourth power
of a +

√
−d, we take the the 12th power and again consider the coefficient of√

−d, which is given by the expression

4a(a2 − d)(a2 − 3d)(3a2 − d)(a4 − 14a2d+ d2).

Again we let N = 22m+1 be an odd power of 2 of appropriate size and search
for d of the form d = 2N2 − a2. Then the factorization of the expression above
becomes

128a(a+N)(a−N)(2a2 − 3N2)(2a2 −N2)(2a2 − 2aN −N2)(2a2 +2aN −N2).

Lemma 3.5. Let N = 22m+1 with m ≥ 0 and d = 2N2−a2 with 0 < a < N/
√
2.

Let

P =
N2

2
− a2, Q =

3N2 − 2a2

10
.

If a2 ≡ 1 (mod 30), then whenever P and Q are prime numbers, they split in
Q(

√
−d).

Proof. Note that a2 ≡ 1 (mod 30) if and only if a is odd and a2 is congruent
to 1 modulo both 3 and 5. The first of these properties is equivalent to a2 ≡ 1
(mod 8) (so we actually obtain a2 ≡ 1 (mod 120)).

Clearly P is an integer. Since 3N2 ≡ 2 (mod 10) and a2 ≡ 1 (mod 10), Q is
also an integer. Since a2 < N2/2, we see that both P and Q are positive.

We have −d = −3N2/2− P = −6 · (22m)2 − P , so(
−d

P

)
=

(
−1

P

)(
2

P

)(
3

P

)
.

14 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

Now a is odd, so P ≡ −a2 ≡ −1 (mod 8) (and hence also P ≡ −1 (mod 4)).
Furthermore, N2/2 ≡ 2 (mod 3) and a2 ≡ 1 (mod 3) imply P ≡ 1 (mod 3). It
follows that(

−1

P

)
= −1,

(
2

P

)
= 1,

(
3

P

)
= −

(
P

3

)
=

(
1

3

)
= −1,

so
(−d

P

)
= 1. Similarly, −d = −N2/2 − 5Q = −2 · (22m)2 − 5Q. We have

5Q ≡ −a2 ≡ −1 (mod 8), and hence Q ≡ 3 (mod 8). It follows that(
−d

Q

)
=

(
−2

Q

)
=

(
−1

Q

)(
2

Q

)
= (−1)(−1) = 1.

Lemma 3.6. Let N = 22m+1 with m ≥ 0 and d = 2N2−a2 with (
√
3−1)N/2 <

a < N . Let

R = a2 + aN − N2

2
, S =

N2/2 + aN − a2

3
.

If a ≡ 7 (mod 12), then whenever R and S are prime numbers, they split in
Q(

√
−d).

Proof. The congruence condition on a yields a ≡ 3 (mod 4) and a ≡ 1 (mod 3).
Clearly R is an integer, and since a ≡ 1 (mod 3) and N ≡ 2 (mod 3), we see

that S is also an integer.
We have R = (a + N/2)2 − 3N2/4 which is positive because of the lower

bound on a. Moreover, S > N2/6 > 0 as a < N .
Now −d = R−N(a+ 3N/2) = R− 2 · (2m)2(a+ 3N/2), so(

−d

R

)
=

(
−1

R

)(
2

R

)(
a+ 3N/2

R

)
.

Since R ≡ a2 ≡ 1 (mod 8), we have(
−1

R

)
=

(
2

R

)
= 1,

(
a+ 3N/2

R

)
=

(
R

a+ 3N/2

)
.

It is easy to verify that R = (a + 3N/2)(a − N/2) + N2/4, so
(

R
a+3N/2

)
= 1.

Hence
(−d

R

)
= 1.

Similarly, −d = −N(3N/2− a)− 3S = −2 · (2m)2(3N/2− a)− 3S, where we
note that 3N/2− a > 0 as a < N . So(

−d

S

)
=

(
−1

S

)(
2

S

)(
3N/2− a

S

)
.

Since 3S ≡ −a2 ≡ −1 (mod 8), we have S ≡ −3 (mod 8), so S ≡ 1 (mod 4)
and we obtain(

−1

S

)
= 1,

(
2

S

)
= −1,

(
3N/2− a

S

)
=

(
S

3N/2− a

)
,

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 15

and hence
(−d

S

)
= −

(
S

3N/2−a

)
.

Again one readily checks that 3S = (3N/2 − a)(a + N/2) − N2/4. Since
3N/2− a ≡ −a ≡ 1 (mod 4), we have(

3S

3N/2− a

)
=

(
−1

3N/2− a

)
= 1

and (
3

3N/2− a

)
=

(
3N/2− a

3

)
=

(
−a

3

)
=

(
−1

3

)
= −1.

Overall, we get(
−d

S

)
= −

(
S

3N/2− a

)
= −

(
3S

3N/2− a

)(
3

3N/2− a

)
= −1(−1) = 1.

The numerical values of the constants in the bounds on a relative to N
appearing in Lemmas 3.5 and 3.6 are 1/

√
2 ≈ 0.707 and (

√
3− 1)/2 ≈ 0.336.

Combining the congruence conditions on a in Lemmas 3.5 and 3.6 yields
a ≡ 19 or 31 (mod 60). In conjunction with the restriction a ≡ 19 (mod 24)
from Lemma 3.5, we would require a ≡ 19 or 91 (mod 120). However, even if
any of the smaller factors a, N−a and (N+1)/3 are not prime and contain non-
split prime factors, the corresponding discrete log computations are negligible
compared to the cost of the discrete log extraction modulo P , Q, R and S.

As in the CSIDH-1024 case, we can now generate suitable parameters for
CSIDH-2048 and CSIDH-4096 as follows (note that 30720 = 211 · 3 · 5).

– Set N = 2129 for CSIDH-2048 or N = 2175 for CSIDH-4096.
– Sample a random number a ≡ 19 or 31 (mod 60) with (

√
3 − 1)N/2 < a <

N/
√
2.

– Check if P,Q,R, S as given in Lemmas 3.5 and 3.6 are prime numbers.
– If yes, then set f = 30720a(N + a)(N − a)PQRS and d = 2N2 − a2.

Remark 3.7. It might not be immediately obvious why we set N = 2129 for
CSIDH-2048 or N = 2175 for CSIDH-4096. For CSIDH-2048 we make use of
Section 3.1, i.e., the case when the smooth-norm endomorphism only generates a
suborder. In this case we ignore the factor (a4−14a2d+d2) for efficiency purposes.
Then the size of N is determined by the fact that we need the factor f to
have 896 bits. For the CSIDH-4096 case we aim to optimize the precomputation
time; hence, we would desire less costly discrete logarithm computations and we
utilize an endomorphism that generates the entire order. The size of N is then
determined by the fact that we need the factor f to have 1920 bits.

Alternatively, one could also use the same approach for the 4096-bit case as
for the 2048-bit case, which would result in larger discrete logarithm computa-
tions. However, this approach has the advantage of having significantly fewer
trial iterations to ensure that all factors are prime (only 4 factors compared to
7).

16 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

Remark 3.8. We have R = (a+N/2)2 − 3N3/4, 3S = (a−N/2)2 − 3N2/4. So
for any prime q such that 3 is a quadratic residue modulo q, say 3 ≡ u2 (mod q),
we have

R ≡
(
a+ (1 + u)

N

2

)(
a+ (1− u)

N

2

)
(mod q),

with an analogous factorization for S. Thus, if a ≡ ±(1 ± u)N/2 (mod q), for
all four possible sign combinations, then R or S is a multiple of q. For example,
if a ≡ ±1 or ±7 (mod 11), then one of R, S is divisible by 11. This rules out
four residue classes modulo q for a for every prime q ≡ ±1 (mod 12). A test
for eliminating these congruence class requires the computation of a square root
of 3 (mod q). For small primes q such as 11 and 13, this idea might aid in
speeding up the search for suitable parameters, but for large q, such a square
root computation is too costly to be useful.

3.4 An intermediate case

One drawback (from a purely implementation standpoint) of the 2048-bit method
is that it requires computing discrete logarithms in non-prime finite fields. This
is not a theoretical obstacle, however at the apparent sizes existing open source
software is only available for prime fields. Instead we provide again a slight vari-
ation of the above method tuned for an intermediate parameter set where the
discriminant of the order is roughly 1500 bits. This is simply based on taking
the 6th power of a+

√
−d and looking at the coefficient of

√
−d. This coefficient

is the following:

2(3a2 − d)(a2 − 3d)a

Now we set d = 4N2 − a2 where N = 2126. In this setting the factorization will
be

32 ∗ 3 ∗ a(a−N)((a+N)/3)(a2 − 3N2)

Here our goal is to ensure that the last four terms are all prime numbers which
split in Q(

√
−d). A similar calculation as in Section 3.2 shows that if a is chosen

to be a prime congruent to 29 modulo 36, then all four factors will indeed be
split primes. Here the largest discrete logarithm computation will correspond to
the last factor (as it is quadratic). In the 1500-bit case this amounts to a 500-bit
discrete logarithm computation

3.5 Security

The security offered by these new SCALLOP parameters can be analyzed simi-
larly to the earlier parameter sets, with a few differences taken into consideration
for the changes in f and d.

Note that with every parameter set we target 128-bit classical security (and
comparable quantum security), as the debate on CSIDH security is about which
parameter set achieves 128-bits of security [48],[8].

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 17

Generic attacks. Recall that a free and transitive group action ⋆ on a group
G and set X creates a hard homogeneous space if it can be evaluated efficiently
and the following two problems are intractable.

Problem 3.9 (Vectorization). Given x, y ∈ X, find g ∈ G such that g ⋆ x = y.

Problem 3.10 (Parallelization). Given x, g ⋆ x, h ⋆ y ∈ X (for undisclosed g, h ∈
G), find (g · h) ⋆ x.

It is a very hard homogeneous space if the following problem is also in-
tractable.

Problem 3.11 (Decisional Parallelisation). Given x, y, u, v ∈ X, decide whether
there exists some g ∈ G satisfying g ⋆ x = y and g ⋆ u = v.

When G = Cl(O) and X = SO(p) we refer to Problem 3.9 as the O-
Vectorization problem; similarly for the other two problems. It is known that
O-Vectorization reduces in quantum polynomial time to O-Parallelization [55,
Theorem 3].

The fastest known generic classical algorithm for solving the O-Vectorization
problem [55, Proposition 3] runs in time

log (p+ d)
O(1)

min
(
p1/2, f1/2

)
,

where d = |disc(O)|. An asymptotically faster quantum attack [55, Proposition
4] on O-Vectorization utilizing Kuperberg’s algorithm for the Abelian hidden
shift problem [45] has complexity

log(p)O(1)L|disc(O)|(1/2).

There are faster quantum algorithms for this problem [21,25,41] that rely on spe-
cific group structures; however, the class groups from Section 3 have drastically
different structures. The general principle in these results is that if the exponent
of the group is small, then special purpose algorithms are faster than Kuper-
berg’s algorithm. All SCALLOP variants use class groups with large exponent
but our new parameter choice has the extra advantage that the group order is
not smooth and has extra flexibility (e.g., one can ensure that the group order
has a large prime factor which is useful for threshold schemes [32]).

Remark 3.12. If one does not care about the smoothness of the class group,
then we can restrict the parameter search to only search for a divisible by a
large power of 2, thereby making most of the discrete logarithm computations
significantly easier trivial. However, this is in general not necessary, as the sizes of
the discrete logarithms are computationally heavy, but still doable on a laptop.

For the security of the O-Decisional Parallelization problem, in addition
to the above attacks on Vectorization, there are also distinguishers built from
quadratic characters [19,22]. These attacks apply to our case as the order of the

18 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

class group is even by design. However, one can counter this attack in the usual
sense by restricting the group action to acting only by elements of Cl(Z[ω])2 (this
is only necessary for applications where the decisional problem must be hard).
Such characters exist for each divisor m | disc (O); however, their evaluation
(at least classically) takes time polynomial in m. Hence this class of attacks are
inefficient when applied to our parameters.

pSIDH type attacks. The original SCALLOP construction crucially relies
on the hardness of Problem 2.1. The hardness of this problem stems from the
following observation. Given the evaluation of ϕ◦ ι◦ ϕ̂ on a point P , the required
task is to find the subgroup generated by ϕ(P). If this can be done for arbitrary
P , then Problem 2.1 can be efficiently solved [55, Proposition 7].

Let nP denote the order of P . Then purely working modulo nP will not be
sufficient to recover ⟨ϕ(P)⟩. Indeed, when precomposing ϕ with an endomor-
phism that commutes with ι and whose degree is congruent to 1 (mod nP),
the evaluation of the composition does not change, whereas the isogeny ϕ may
change. Specifically, for integers a, b satisfying a2+b2 ≡ 1 (mod nP), one obtains(
ϕ ◦ (a+ bι) ◦ ι ◦ (a− bι) ◦ ϕ̂

)
(P) =

(
(a2 + b2)ϕ ◦ ι ◦ ϕ̂

)
(P) =

(
ϕ ◦ ι ◦ ϕ̂

)
(P).

There are however certain exceptions.
The following counter-example to the above assertion is based on [17, §10].

As in Problem 2.1, consider the isogeny ϕ : E0 → E of degree f and an endomor-
phism θ ∈ End(E0) of degree nθ. Suppose we can evaluate some σ = ϕ ◦ θ ◦ ϕ̂ at
any point on E. Note that this is a more general setting than Problem 2.1, since
it allows an arbitrary θ ∈ End(E0). Assume that nP is prime and coprime to f
and nθ. We show that if the subgroup generated by P is fixed by θ, then this
subgroup can be efficiently computed. That is, given P ∈ E0[nP], we compute
[λ]ϕ(P) for some λ ∈ (Z/nPZ)∗.

Suppose θ(P) = [a]P ; that is, θ fixes the subgroup generated by P . Using the
oracle for σ on E[nP], we can solve discrete logarithms and use linear algebra
to compute a point U ∈ E[nP] satisfying σ(U) = [fa]U . We show that ϕ(P) is
in the subgroup generated by U ; by comparing orders, we see that U = [λ]ϕ(P)
for some invertible λ which is our goal. Let Q ∈ E0[nP] be a point independent
of P satisfying θ(Q) = [b]Q for some invertible b ̸≡ a (mod nP). By coprimality
and the independence of P and Q, we can write U = ϕ([x]P + [y]Q) for some
integers x, y. We show that y = 0:

[fa]U = σ(U) = σ ◦ ϕ ([x]P + [y]Q)

= [f]ϕ ◦ θ ([x]P + [y]Q) = [fxa]ϕ(P) + [fyb]ϕ(Q).

Multiplying both sides by f−1a−1 (mod nP) yields U = [x]ϕ(P) + [yba−1]ϕ(Q).
Since U = ϕ([x]P + [y]Q) and ba−1 ̸≡ 1 (mod nP), we conclude that y = 0.

So in this setting, it is possible to glean local information on the evaluation
of P . This could potentially be combined with an l-adic approach where local

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 19

information is combined to obtain the global evaluation of certain points. Note
that the above argument is a local one, as precomposing ϕ with an endomorphism
changes the degree (which should be the fixed f) globally but not locally. Another
potential approach is to utilize the attack [23] on the NIKE scheme pSIDH [46]

directly on isogenies of the form ϕ◦ι◦ ϕ̂, as theese can be evaluated at any point.
There is a similar group action on the set of these types of endomorphisms that is
rather closely related to the corresponding isogenies ϕ. However, it is not obvious
how to evaluate this action as the approach from [23] does not translate.

In our case using a maximal order with large class number ensures that a
similar approach will definitely fail. The reason is that having an oriented curve
oriented by a non-maximal order it is hard to find the corresponding curve
oriented by the maximal order. One potential avenue here is to go through
every curve that is oriented by the maximal order. However, choosing a 256-bit
discriminant ensures that such an attack would need 2128 iterations.

Torsion-point attacks. As mentioned before, choosing f to be smooth would
be insecure essentially due the torsion-point attack framework pioneered by [50].
The cost of this attack depends on f -isogeny evaluations and representing points
of order f . In our case both have a very large cost as the f -torsion is defined over
an extension of the base field Fp2 of degree larger than 2128 and the evaluation
of f -isogenies requires at least 264 field operations (utilizing [7]) in this large
extension. At present there seems to be no practical advantage to using a prime
degree isogeny instead of an isogeny which is the product of a few primes.

4 Explicit instantiation of PEARL-SCALLOP

In this section we discuss the implementation details, followed by the timing
results comparing our new parameter set with SCALLOP [39]. Our implemen-
tation using SageMath [54], PARI/GP [53] and CADO-NFS [52] can be found
in the repository https://www.github.com/biasse/SCALLOP-params.

4.1 Discriminant generation

We describe our instantiation of CSIDH-1024. Following the method explained
in Section 3, we generate a quadratic order O, providing the class group action,
together with an element ω ∈ O, which we will use to evaluate the action.
Numerically, reusing the notation from Section 3, we set N = 2129 and find that
the prime

a = 340282366920938463463374607431770911081

https://www.github.com/biasse/SCALLOP-params

20 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

generates the following values of d and f :

d = 18466951× 19397359× 114814706502110352989273153

×19707957158568828802463753229623541551,

f = 23 × 3× 340282366920938463463374607431760112581

×340282366920938463463374607431770911081

×340282366920938463463374607431776310331.

Finding this value of a took seconds on a laptop; similarly, a suitable value
of a for CSIDH-2048 was found within minutes.

We then select a value of n and let ℓ1, . . . , ℓn be the first n split primes that
do not divide the relative conductor [Z[ω] : O]. Subsequently, we choose a prime
of the form

p = c2e
n∏

i=1

ℓi − 1

where e satisfies N(ω) = 22e, the ℓi correspond to the primes in the basis of the
lattice of relations, and c is a small cofactor such that p is a prime satisfying(

−disc(O)
p

)
= 1. Continuing our example parameters for CSIDH-1024, we found

that n = 75, e = 518 and c = 817 generate suitable parameters for our chosen
values of a and N .

4.2 Computing the relation lattice

Our implementation of relation lattice computation is a variant of the algorithms
mentioned in Section 2.3. Let K be an imaginary quadratic field with maximal
order OK , f ≥ 1 an integer, and O = Z+ fOK the order of conductor f . Let S
be a finite set of prime ideals of OK not dividing f and SO = {p ∩O : p ∈ S},
so that every ideal in SO is invertible. Recall that the group O×

S of S-units of O
is the set of u ∈ K× such that the ideal uO is a product of the elements of SO.
Define the morphism VS : K

× → ZS by

VS(x) = (vp(x))p∈S ,

where vp(x) denotes the p-adic valuation of x. We write V O
S for the restriction

of VS to O×
S . Then the kernel of V O

S is the group of units O× (which is finite,
cyclic, and equal to {±1} unless O = Z[

√
−1] or O = Z[

√
−3]), and the cokernel

of V O
S is canonically isomorphic to the subgroup of the class group ofO generated

by the classes of elements in SO. The image of V O
S is the relation lattice of O

(relative to S).

Remark 4.1. From a relation v ∈ VS(O
×
S), we can easily recover a preimage:

construct the corresponding ideal and apply lattice reduction with respect to the
norm. Then the shortest vector will be a generator of the ideal and a preimage
of v. Thus, computing the S-unit group is equivalent to computing the relation
lattice.

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 21

The paper [44] focuses on computing the class group of an order, while we
are more interested in the relation lattice, so we use a variant of their algorithm.
This has the additional advantage of not requiring any computation of discrete
logarithms in the class group, once a relation lattice is known for the maximal or-
der. We use the natural reduction modulo f map RedS,f : O

×
K,S → (OK/fOK)×,

which is well-defined since f is not divisible by any ideals in S. We will compute
O×

S using the well-known identity

O×
S = Red−1

S,f ((Z/fZ)
×). (1)

The Klüners–Pauli algorithm is implemented in Magma [16], but appears to be
unable to handle instances with a maximal order of non-trivial discriminant.

With this setup in place, we can describe our implementation of computing
the relation lattice relative to a set S.

1. Pick a set S0 containing S that provably generates the class group of K
and compute the relation lattice of OK relative to S0 using PARI/GP [53].
There are two algorithms implemented for this task: bnfinit, which is de-
signed for number fields of arbitrary degree, and quadclassunit, which is a
faster implementation for quadratic fields. However, none of these implemen-
tations uses sieving2, and even for 256-bit discriminants they struggle. We
therefore adapted Pari’s implementation (originally created by Papanikolaou
and Roblot) of the quadratic sieve factoring algorithm (MPQS) so that it
computes the relation lattice of OK relative to S0.

2. Compute the relation lattice of OK relative to S from the relation lattice
relative to S0 by computing an integer kernel.

3. Compute discrete logarithms of a basis of S-units of OK modulo all prime
power divisors of f , yielding a description of the map RedS,f as a matrix.
We use
(a) the Pari implementation of discrete logarithm computations for field sizes

up to 150 bits, and
(b) CADO-NFS for larger sizes.

4. Compute the relation lattice of O relative to S using (1) by computing a
kernel modulo the exponent of (OK/fOK)×.

5. Check that the cardinality of the cokernel of V O
S is equal to the class number

of O, thus proving that S generates the class group of O.

Let K = Q(
√
−d) and let S be the set of prime ideals above ℓ1, . . . , ℓn. The

running times of the various steps were as follows, using a single core of an Intel
Xeon CPU E5-2623 v3 @ 3.00GHz:

Step 1 Step 2 Step 3a Step 4 Step 5
3 hrs 38 sec 31 min 12 ms 64 ms

The structure of the class group of the maximal order is

Cl(OK) ∼= C85291128024656765643024956902338426256 × C2
2 .

2 Our implementation with sieving will be included in the next release of PARI/GP.

22 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

The bottleneck for CSIDH-2048 and CSIDH-4096 will be the computation of
the discrete logarithms. The running times of the steps for CSIDH-1536 were as
follows (single core as above).

Step 1 Step 2 Step 3a Step 3b Step 4 Step 5
3 hrs 1 hr 30 min 1 hr 27 ms 140 ms

4.3 Lattice reduction

We performed lattice reduction of the relation lattice of O relative to S on a
64-core AMD Threadripper 3990X 2.9GHz CPU with 256GB of DDR4 RAM.
We used the implementation of the BKZ algorithm [49] from the G6K python
library [3] originally presented in [2]. For the lattice reduction corresponding
to the CSIDH-1024 parameters, the lattice dimension was |S| = 75. Then the
reduction of an input product

∏
i p

xi was obtained by using Babai’s nearest plane
algorithm [5] to find a lattice point u close to x, followed by a random walk
approach used in CSI-fish [11] due to Doulgerakis, Laarhoven and de Weger [35].
The timings, given in CPU seconds, were as follows:

Security level HKZ reduction Babai & random walk
1024 739 sec 3.9 sec
1536 750 sec 4.6 sec

Additionally, we performed weighted reductions of the input lattice to ac-
count for the cost of evaluating the action of a prime ideal p ∈ S. Indeed, since
that cost is proportional to N (p), the cost of the evaluation of the product

∏
i p

xi
i

is proportional to
∑

i xiN (pi). Therefore, we reduced a weighted lattice where
the i-th coordinate is multiplied by 1 + cN (pi), for some constant 0 < c < 1.
This strategy successfully produced short decompositions where the coefficients
corresponding to larger primes were significantly smaller than those correspond-
ing to the smaller primes of S. The optimal value of c with respect to the group
action evaluation is hard to compute, as it depends on many factors, but it can
be estimated for specific implementations.

We do not anticipate that lattice reduction will be the bottleneck to instan-
tiate our system with CSIDH-2048 and CSIDH-4096 parameters.

4.4 Generating the Starting Curve

Recall that we need a starting curve that is O-oriented and an efficient way to
evaluate the orientation. This is achieved through a triple (E,P,Q) where P,Q
are points on E generating smooth isogenies ϕP , ϕQ, such that their composition

ϕ̂Q ◦ϕP is an element of O ⊆ End(E) (see Section 3.1 for a remark on not using
a generator).

We now present a new algorithm for efficiently generating a curve with an
effective orientation by an order O, provided an element in O of smooth norm
is known. Our algorithm is more general, and comparable in efficiency to the

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 23

curve generation algorithm SetUpCurve from the original SCALLOP paper [39,
Algorithm 1], which only works for suborders of a quadratic order that embed
into a special p-extremal maximal quaternion order (such as Z+ fZ[i]).

We fix a special p-extremal maximal quaternion order O0. The idea of the
algorithm is to utilize the fact that the quaternion embedding problem is easily
solvable in O0, provided we hit an easy Cornacchia instance [4, Remark 5.14]
(see also [37, Proposition 2]). Hence, we can try different smooth values of g
until we can compute an embedding of Z+ gO into O0. We use the heuristic al-
gorithm GenericOrderEmbeddingFactorisation for this purpose, see [37, Algorithm
3]. Given such an embedding, it is then easy to compute an ideal corresponding
to the ascending isogeny of degree g. The codomain of this isogeny will then be
oriented by O.

Next, to compute the effective orientation given by a smooth element ω,
finding the corresponding kernel generators can easily be done by the standard
technique of factoring the ideal into two equal parts, and then translating back
and forth to E0. This technique is the same as what is used in SQIsign [31]. The
complete method is summarized in Algorithm 1.

Remark 4.2. Note that GenerateStartingCurve is dual to the original method from
SCALLOP in the following sense. In the original method, one computes a de-
scending isogeny from a curve with special, p-extremal endomorphism ring ori-
ented by a superorder, while in GenerateStartingCurve, we compute the ascending
isogeny from a curve with special, p-extremal endomorphism ring oriented by a
suborder.

Proposition 4.3. GenerateStartingCurve is correct and runs in probabilistic poly-
nomial time, under standard heuristics.

Proof. First, we prove that the first part of the algorithm terminates and is
correct. Each call to GenericOrderEmbeddingFactorisation runs in polynomial time
under [37, Heuristic 1, Heuristic 2], and again under [37, Heuristic 2], the number
of maximal orders oriented by Z + gO is O(p), hence a solution is expected to
exist.

Assume now that the orientation given by δ has been found. The quaternion
ideal I := O0⟨δ, g⟩ corresponds to an ascending isogeny of degree f (it is gen-
erated by the unique invertible (Z + gO)-ideal of norm g). Further, since f is
powersmooth of magnitude O(p/

√
disc(O)), translating I to its corresponding

isogeny ϕI using IdealToIsogeny is efficient.
Once we have a curve E with End(E) ∼= O oriented by O, we use the smooth

norm ideal O⟨ω⟩ to find the effective orientation. This is done by writing O⟨ω⟩ =
H̄2 · H1, where Hi can be efficiently translated, by pulling back to an ideal of
O0, using I, since gcd(nrd(I),nrd(Hi)) = 1.

4.5 Computing the class group action

When given an element of Cl(O), whose action we wish to evaluate, we first find
a smooth representative, as explained in Section 4.3. Once such a representing

24 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

Algorithm 1 GenerateStartingCurve(γ, p, ω, T)

Input: A generator γ of O, a prime p such that
(

−disc(O)
p

)
= 1, an element ω ∈ O

with N(ω) = L1L2, Li smooth and E[Li] defined over Fp2 , and a powersmooth

value T ≫ p/
√

disc(O), with gcd(L, T) = 1.
Output: An effectively oriented curve (E,P,Q)
1: Let i, j, k be a basis of Bp,∞, such that i2 = −q and j2 = −p.
2: Let O0 be a special, p-extremal maximal order in Bp,∞, and E0 a supersingular

elliptic curve with End(E0) ∼= O0.
3: for n | T such that T/n > p/

√
disc(O) do

4: Set g := T/n.
5: Set δ := GenericOrderEmbeddingFactorisation(O0, trd(gγ), nrd(gγ)).
6: if δ ̸= ⊥ then
7: Break loop.
8: end if
9: end for
10: Set I := O0⟨g, δ⟩.
11: Compute ϕI from I using IdealToIsogeny.
12: Set E := ϕI(E0), and compute O := OR(I).
13: Let H1 := O⟨L1, ω⟩, and H2 := O⟨L2, ω̄⟩.
14: Translate [I]∗Hi to their kernel generators Ki using IdealToKernel.
15: Set P := ϕI(K1) and Q = ϕI(K2).
16: return (E,P,Q)

ideal

a =

N∏
i=1

leii

has been obtained, we need to compute its action. As usual, this is done by
repeatedly applying Algorithm 2 on ideals a0 | a of the form

a =

N∏
i=1

li,

until all of a has been evaluated. Since the norm of ω is a power of 2 and
hence coprime to the primes used in the factor base, this allows Algorithm 2 to
be particularily simple, compared to the equivalent algorithms in the original
version of SCALLOP [39, Algorithm 2], or SCALLOP-HD [24, Algorithm 3].

As an optimization, we also present an even simpler, but probabilistic group
action evaluation algorithm below. This is based on a standard CSIDH-opti-
mization that avoids sampling points of full order. Since Algorithm 2 requires
computing full torsion bases, this optimized sampling is particularily suitable for
in SCALLOP.

4.6 Implementation

We implemented a proof-of-concept version of PEARL-SCALLOP with our pa-
rameters in C++. The parameters used can be found in the repository https://

https://www.github.com/biasse/SCALLOP-params

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 25

Algorithm 2 GroupAction(a, E, P,Q)

Input: A smooth O-ideal a =
∏N

i=1 li, an elliptic curve E oriented by O, and points

P,Q ∈ E generating ϕP , ϕQ such that ϕ̂Q ◦ ϕP is an endomorphism corresponding
to an element of O of norm 2e

Output: An effectively oriented curve (Ea, Pa, Qa)
1: Let B1, B2 be a basis of E[L], where L =

∏
ℓi with ℓi = N(li)

2: Let ω̂ := ϕ̂P ◦ ϕQ

3: Compute B′
1 = ω̂(B1), B

′
2 = ω̂(B2).

4: for i ∈ {1, . . . , N} do
5: Compute Ki := [L/ℓi]([λi]B1 +B′

1), where li = (λi + ω, ℓi).
6: if Ki = ∞ then
7: Compute Ki := [L/ℓi]([λi]B2 +B′

2).
8: end if
9: end for
10: Compute ϕa : E → Ea from its kernel K = ⟨K1,K2, . . . ,KN ⟩.
11: return Ea, ϕa(P), ϕa(Q)

Algorithm 3 GroupActionOptimized(a, E, P,Q)

Input: A smooth O-ideal a =
∏

li, an elliptic curve E oriented by O, and points

P,Q ∈ E generating ϕP , ϕQ such that ϕ̂Q ◦ ϕP is an endomorphism corresponding
to an element of O of norm 2e

Output: An effectively oriented curve (E′
a, Pa′ , Qa′), and N(a′), where a′ | a

1: Compute K := [p+1
L

]K0, where K0 is a random point on E and L =
∏

N(li)

2: Let ω̂ := ϕ̂P ◦ ϕQ

3: Compute K′ := ω̂(K)
4: Compute Ka′ := [λ]K +K′, where a′ = (λ+ ω,L).
5: Compute ϕa′ : E → Ea′ from its kernel ⟨Ka′⟩
6: return Ea′ , ϕa′(P), ϕa′(Q), L′, where L′ = N(a′).

https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params

26 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

www.github.com/biasse/SCALLOP-params. Our implementation applies some
well-known, standard optimizations. We work with Montgomery curves

E : y2 = x3 +Ax2 + x,

and for computing the 2e-isogeny corresponding to the orientation, we use the
formula for 4-isogenies together with optimal strategies following the SIKE doc-
umentation [42]. For evaluating the group action, we use Algorithm 3.

We give timings for evaluating a group element, and compare with the timings
reported in SCALLOP and SCALLOP-HD in Table 1. The timings are given as
the average time of evaluating 10 random group elements.

Table 1. Timings from SCALLOP [39, Section 6.2], SCALLOP-HD[24, Section 5.6]
and PEARL-SCALLOP.

Security level SCALLOP SCALLOP-HD PEARL-SCALLOP

CSIDH-512 35 sec 1min, 28 sec 30 sec
CSIDH-1024 12 min, 30 sec 19min 58 sec
CSIDH-1536 - - 11 min, 50 sec

Note that all three implementations are proof-of-concept with non-optimized
code, so the timings provide only an approximate comparison. In particular,
the timings for SCALLOP-HD are based on a SageMath [54] implementation,
rather than C++. Although SCALLOP-HD’s GitHub repository contains data
for all security levels, timings were only reported for the two lowest levels in [24].
However, a theoretical efficiency comparison of PEARL-SCALLOP and SCAL-
LOP-HD is in fact easy. The order p of the base field can be chosen almost
identical, and the group action evaluation is very similar, except in SCALLOP-
HD it requires the evaluation of a (2e, 2e)-isogeny between abelian surfaces,
while PEARL-SCALLOP relies on the evaluation of a 2e-isogeny between elliptic
curves.

5 Conclusion

In this work, we presented PEARL-SCALLOP, a new way of instantiating an
efficient cryptographic group action based on SCALLOP [39]. In contrast to
SCALLOP, our technique is feasible to instantiate for higher security levels,
employs a significantly more efficient group action evaluation, and is based on a
different hardness assumption.

SCALLOP-HD [24], another efficient cryptographic group action based on
SCALLOP, does allow instantiations for higher security levels. However, in com-
parison, PEARL-SCALLOP is again more efficient in terms of group action eval-
uation and is based on a different hardness assumption. It also permits practical

https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params
https://www.github.com/biasse/SCALLOP-params

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 27

instantiations for security levels equivalent to CSIDH-4096. We hence argue that
PEARL-SCALLOP is currently the ideal choice for efficiency, while also allowing
realistic instantiations for secure parameter levels.

References

1. Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryp-
tographic group actions and applications. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume 12492
of Lecture Notes in Computer Science, pages 411–439. Springer, 2020.

2. Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W.
Postlethwaite, and Marc Stevens. The general sieve kernel and new records in
lattice reduction. In Advances in cryptology—EUROCRYPT 2019. Part II, volume
11477 of Lecture Notes in Comput. Sci., pages 717–746. Springer, Cham, 2019.

3. Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W.
Postlethwaite, and Marc Stevens. The General Sieve Kernel (G6K), 2019.

4. Sarah Arpin, James Clements, Pierrick Dartois, Jonathan Komada Eriksen, Péter
Kutas, and Benjamin Wesolowski. Finding orientations of supersingular elliptic
curves and quaternion orders. Cryptology ePrint Archive, Paper 2023/1268, 2023.
https://eprint.iacr.org/2023/1268.

5. László Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986.

6. Eric Bach. Explicit bounds for primality testing and related problems. Math.
Comp., 55(191):355–380, 1990.

7. Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster
computation of isogenies of large prime degree. In ANTS XIV—Proceedings of the
Fourteenth Algorithmic Number Theory Symposium, volume 4 of Open Book Ser.,
pages 39–55. Math. Sci. Publ., Berkeley, CA, 2020.

8. Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum
circuits for the csidh: optimizing quantum evaluation of isogenies. In Advances
in Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May
19–23, 2019, Proceedings, Part II 38, pages 409–441. Springer, 2019.

9. Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico Pin-
tore. Group signatures and more from isogenies and lattices: generic, simple, and
efficient. In Advances in cryptology—EUROCRYPT 2022. Part II, volume 13276
of Lecture Notes in Comput. Sci., pages 95–126. Springer, Cham, [2022] ©2022.

10. Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl:
logarithmic (linkable) ring signatures from isogenies and lattices. In Advances in
cryptology—ASIACRYPT 2020. Part II, volume 12492 of Lecture Notes in Comput.
Sci., pages 464–492. Springer, Cham, [2020] ©2020.

11. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: effi-
cient isogeny based signatures through class group computations. In Advances in
cryptology—ASIACRYPT 2019. Part I, volume 11921 of Lecture Notes in Comput.
Sci., pages 227–247. Springer, Cham, [2019] ©2019.

12. Jean-François Biasse. Improvements in the computation of ideal class groups of
imaginary quadratic number fields. Adv. in Math. of Comm., 4(2):141–154, 2010.

https://eprint.iacr.org/2023/1268

28 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

13. Jean-François Biasse and Claus Fieker. Subexponential class group and unit group
computation in large degree number fields. LMS J. Comput. Math., 17:385–403,
2014.

14. Jean-François Biasse, Claus Fieker, and Michael J. Jacobson, Jr. Fast heuristic
algorithms for computing relations in the class group of a quadratic order, with
applications to isogeny evaluation. LMS J. Comput. Math., 19:371–390, 2016.

15. Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH.
In Advances in cryptology—EUROCRYPT 2020. Part II, volume 12106 of Lecture
Notes in Comput. Sci., pages 493–522. Springer, Cham, [2020] ©2020.

16. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993). https://www.math.ru.nl/~bosma/
pubs/JSC1997Magma.pdf.

17. Paul Bottinelli, Victoria de Quehen, Chris Leonardi, Anton Mosunov, Filip
Pawlega, and Milap Sheth. The dark SIDH of isogenies. Cryptology ePrint Archive,
Paper 2019/1333, 2019. https://eprint.iacr.org/2019/1333.

18. Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel
Thomé, and Paul Zimmermann. Comparing the difficulty of factorization and dis-
crete logarithm: a 240-digit experiment. In Advances in cryptology—CRYPTO
2020. Part II, volume 12171 of Lecture Notes in Comput. Sci., pages 62–91.
Springer, Cham, [2020] ©2020.

19. Wouter Castryck, Marc Houben, Frederik Vercauteren, and Benjamin Wesolowski.
On the decisional Diffie-Hellman problem for class group actions on oriented elliptic
curves. Res. Number Theory, 8(4):Paper No. 99, 18, 2022.

20. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action. In Advances in
cryptology—ASIACRYPT 2018. Part III, volume 11274 of Lecture Notes in Com-
put. Sci., pages 395–427. Springer, Cham, 2018.

21. Wouter Castryck and Natan Vander Meeren. Two remarks on the vectorization
problem. Cryptology ePrint Archive, Paper 2022/1366, 2022. https://eprint.

iacr.org/2022/1366.
22. Wouter Castryck, Jana Sotáková, and Frederik Vercauteren. Breaking the de-

cisional Diffie-Hellman problem for class group actions using genus theory. In
Advances in cryptology—CRYPTO 2020. Part II, volume 12171 of Lecture Notes
in Comput. Sci., pages 92–120. Springer, Cham, [2020] ©2020.

23. Mingjie Chen, Muhammad Imran, Gábor Ivanyos, Péter Kutas, Antonin Leroux,
and Christophe Petit. Hidden stabilizers, the isogeny to endomorphism ring prob-
lem and the cryptanalysis of psidh. Cryptology ePrint Archive, Paper 2023/779,
2023. https://eprint.iacr.org/2023/779.

24. Mingjie Chen, Antonin Leroux, and Lorenz Panny. SCALLOP-HD: group action
from 2-dimensional isogenies. Cryptology ePrint Archive, Paper 2023/1488, 2023.
https://eprint.iacr.org/2023/1488.

25. Andrew M. Childs andWim van Dam. Quantum algorithms for algebraic problems.
Rev. Modern Physics, 82(1):1, 2010.

26. Leonardo Colò and David Kohel. Orienting supersingular isogeny graphs. J. Math.
Cryptol., 14(1):414–437, 2020.

27. Jean Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,
Paper 2006/291, 2006. https://eprint.iacr.org/2006/291.

28. David A. Cox. Primes of the form x2 + ny2 — Fermat, class field theory, and
complex multiplication. AMS Chelsea Publishing, Providence, RI, third edition,
[2022] ©2022. With contributions by Roger Lipsett.

https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://eprint.iacr.org/2019/1333
https://eprint.iacr.org/2022/1366
https://eprint.iacr.org/2022/1366
https://eprint.iacr.org/2023/779
https://eprint.iacr.org/2023/1488
https://eprint.iacr.org/2006/291

PEARL-SCALLOP: Parameter Extension Applicable in Real-Life SCALLOP 29

29. Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin Wesolowski.
SQISignHD: New dimensions in cryptography. Cryptology ePrint Archive, Paper
2023/436, 2023. https://eprint.iacr.org/2023/436.

30. Luca De Feo and Steven D. Galbraith. SeaSign: compact isogeny signatures from
class group actions. In Advances in cryptology—EUROCRYPT 2019. Part III,
volume 11478 of Lecture Notes in Comput. Sci., pages 759–789. Springer, Cham,
2019.

31. Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski. New
algorithms for the Deuring correspondence: towards practical and secure SQISign
signatures. In Advances in cryptology—EUROCRYPT 2023. Part V, volume 14008
of Lecture Notes in Comput. Sci., pages 659–690. Springer, Cham, [2023] ©2023.

32. Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions.
In Public-key cryptography—PKC 2020. Part II, volume 12111 of Lecture Notes in
Comput. Sci., pages 187–212. Springer, Cham, [2020] ©2020.

33. Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindal, Lorenz Panny,
Christophe Petit, and Katherine E. Stange. Improved torsion-point attacks on
SIDH variants. In Advances in cryptology—CRYPTO 2021. Part III, volume 12827
of Lecture Notes in Comput. Sci., pages 432–470. Springer, Cham, [2021] ©2021.

34. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22(6):644–654, 1976.

35. Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Finding closest
lattice vectors using approximate Voronoi cells. In Post-quantum cryptography,
volume 11505 of Lecture Notes in Comput. Sci., pages 3–22. Springer, Cham, 2019.

36. Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison, and
Christophe Petit. Supersingular isogeny graphs and endomorphism rings: reduc-
tions and solutions. In Advances in cryptology—EUROCRYPT 2018. Part III,
volume 10822 of Lecture Notes in Comput. Sci., pages 329–368. Springer, Cham,
2018.

37. Jonathan Komada Eriksen and Antonin Leroux. Computing orientations from the
endomorphism ring of supersingular curves and applications. Cryptology ePrint
Archive, Paper 2024/146, 2024. https://eprint.iacr.org/2024/146.

38. Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia Veroni.
Deuring for the people: Supersingular elliptic curves with prescribed endomor-
phism ring in general characteristic. Cryptology ePrint Archive, Paper 2023/106,
2023. https://eprint.iacr.org/2023/106.

39. Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp
Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: scaling the CSI-FiSh.
In Public-key cryptography—PKC 2023. Part I, volume 13940 of Lecture Notes in
Comput. Sci., pages 345–375. Springer, Cham, [2023] ©2023.

40. James L. Hafner and Kevin S. McCurley. A rigorous subexponential algorithm for
computation of class groups. J. Am. Math. Soc., 2(4):837–850, 1989.

41. Gabor Ivanyos. On solving systems of random linear disequations. https://arxiv.
org/abs/2401.16644, April 2007.

42. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik, Geovandro Pereira,
Koray Karabina, and Aaron Hutchinson. SIKE. Technical report, National In-
stitute of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-4-submissions.

https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2024/146
https://eprint.iacr.org/2023/106
https://arxiv.org/abs/2401.16644
https://arxiv.org/abs/2401.16644
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions

30 Allombert, Biasse, Eriksen, Kutas, Leonardi, Page, Scheidler, Tot Bagi.

43. Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. The past, evolving present,
and future of the discrete logarithm. In Open problems in mathematics and com-
putational science, pages 5–36. Springer, Cham, 2014.

44. Jürgen Klüners and Sebastian Pauli. Computing residue class rings and Picard
groups of orders. J. Algebra, 292(1):47 – 64, 2005.

45. Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hid-
den subgroup problem. SIAM J. Computing, 35(1):170–188, 2005.

46. Antonin Leroux. A new isogeny representation and applications to cryptography.
In Advances in cryptology—ASIACRYPT 2022. Part II, volume 13792 of Lecture
Notes in Comput. Sci., pages 3–35. Springer, Cham, [2023] ©2023.

47. Hiroshi Onuki. On oriented supersingular elliptic curves. Finite Fields Appl.,
69:Paper No. 101777, 18, 2021.

48. Chris Peikert. He gives C-sieves on the CSIDH. In Advances in cryptology—
EUROCRYPT 2020. Part II, volume 12106 of Lecture Notes in Comput. Sci.,
pages 463–492. Springer, Cham, [2020] ©2020.

49. Claus Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practi-
cal algorithms and solving subset sum problems. Math. Program., 66(2):181–199,
September 1994.

50. Christophe Petit. Faster algorithms for isogeny problems using torsion point im-
ages. In Advances in cryptology—ASIACRYPT 2017. Part II, volume 10625 of
Lecture Notes in Comput. Sci., pages 330–353. Springer, Cham, 2017.

51. Alexander Rostovtsev and Anton Stolbunov. Public-keycryptosystems based on
isogenies. Cryptology ePrint Archive, Paper 2006/145, 2006. https://eprint.

iacr.org/2006/145.
52. The CADO-NFS Development Team. CADO-NFS, an implementation of the num-

ber field sieve algorithm, 2017. Release 2.3.0.
53. The PARI Group, Univ. Bordeaux. PARI/GP version 2.16.1, 2022. available

from http://pari.math.u-bordeaux.fr/.
54. The Sage Developers. SageMath, the Sage Mathematics Software System (version

9.7), 2022. https://sagemath.org.
55. Benjamin Wesolowski. Orientations and the supersingular endomorphism ring

problem. In Advances in cryptology—EUROCRYPT 2022. Part III, volume 13277
of Lecture Notes in Comput. Sci., pages 345–371. Springer, Cham, [2022] ©2022.

https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
http://pari.math.u-bordeaux.fr/
https://sagemath.org

	PEARL-SCALLOP: Parameter Extension Applicable in Real Life for SCALLOP

