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Abstract—Post-quantum cryptography (PQC) has rapidly evolved in
response to the emergence of quantum computers, with the US National
Institute of Standards and Technology (NIST) selecting four finalist
algorithms for PQC standardization in 2022, including the Falcon dig-
ital signature scheme. The latest round of digital signature schemes
introduced Hawk, both based on the NTRU lattice, offering compact
signatures, fast generation, and verification suitable for deployment
on resource-constrained Internet-of-Things (IoT) devices. Despite the
popularity of Crystal-Dilithium and Crystal-Kyber, research on NTRU-
based schemes has been limited due to their complex algorithms and
operations. Falcon and Hawk’s performance remains constrained by
the lack of parallel execution in crucial operations like the Number
Theoretic Transform (NTT) and Fast Fourier Transform (FFT), with
data dependency being a significant bottleneck. This paper enhances
NTRU-based schemes Falcon and Hawk through hardware/software co-
design on a customized Single-Instruction-Multiple-Data (SIMD) proces-
sor, proposing new SIMD hardware units and instructions to expedite
these schemes along with software optimizations to boost performance.
Our NTT optimization includes a novel layer merging technique for
SIMD architecture to reduce memory accesses, and the use of modular
algorithms (Signed Montgomery and Improved Plantard) targets various
modulus data widths to enhance performance. We explore applying
layer merging to accelerate fixed-point FFT at the SIMD instruction
level and devise a dual-issue parser to streamline assembly code or-
ganization to maximize dual-issue utilization. A System-on-chip (SoC)
architecture is devised to improve the practical application of the pro-
cessor in real-world scenarios. Evaluation on 28 nm technology and
FPGA platform shows that our design and optimizations can increase
the performance of Hawk signature generation and verification by over
7×.

Index Terms—Post-quantum Cryptograph, NTRU, Falcon, Hawk, RISC-
V, System on Chip
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1 INTRODUCTION

QUANTUM computing has been rapidly developing. One
of the most significant implications of quantum com-

puting is its potential to disrupt current cryptographic sys-
tems, particularly public key cryptography (PKC). In 1994,
Peter W. Shor [1] proposed the powerful polynomial-time
algorithms for prime factorization and discrete logarithm
problems on quantum computers, which are considered
hard on classic computers and widely used in the exist-
ing PKC schemes like RSA, ElGamal, and Elliptic Curve
Cryptography (ECC). In 2016, the National Institute of Stan-
dards and Technology (NIST) of the United States initiated
a worldwide PQC standardization competition to call for
quantum-safe key encapsulation and digital signature algo-
rithms. As of the latest round of evaluations in 2022, NIST
has selected four finalist algorithms to be standardized.
For the key encapsulation mechanism (KEM), the Crystal-
Kyber [2] is the only KEM finalist that will be standardized.
And Crystal-Dilithium [3], Falcon [4], and SPHINCS+ [5]
are the three digital signature finalists. Apart from the four
announced finalists, NIST also initiated an additional call
for digital signature schemes to diversify the post-quantum
signature standards [6]. Therefore, the efficient implementa-
tion of NIST PQC finalists and additional digital signature
candidates in various scenarios will be of great interest in
the next few years, which will effectively help NIST select
efficient and secure digital signature candidates.

As Internet-of-Thing (IoT) [7] devices have revolution-
ized various industries like smart homes, smart cities, smart
healthcare, etc., the transition from the traditional PKC
schemes to PQC schemes poses serious challenges to these
IoT devices. This is because the existing PQC schemes
normally have a larger public key, secret key or signature
than the traditional PKC schemes such as ECC Curve25519
[8] and Ed25519 [9]. For example, the signature size of
Ed25519 is merely 64 bytes [9] while Dilithium2’s signature
size is up to 2,420 bytes [3], which is 37× larger. For IoT
devices that have low memory, limited power consumption
and small computing capability, the PQC deployment on
IoT devices requires significant effort to achieve low power
consumption, high efficiency, small chip area and flexibility.
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To meet these requirements, in this paper, we focus
on two NTRU-based digital signature schemes: the NIST
PQC finalist Falcon [4] and the additional digital signature
candidate Hawk [10]. The reason we choose to focus on
these two signature schemes is that they both have relatively
compact signatures (e.g., 617 and 555 bytes for Falcon-512
and Hawk-512, respectively), fast signature generation and
verification. These advantages make it more suitable to be
deployed on IoT devices compared to other lattice-based
cryptography like Kyber and Dilithium. Moreover, unlike
Falcon, Hawk managed to eliminate all the floating-point
operations, which makes Hawk well-suited for IoT devices
and a competitive candidate in NIST’s additional digital
signature competition.

There are already many software optimizations for Fal-
con [11]–[14], which target IoT platforms ARM Cortex M4,
M7 and etc. However, due to the limitation of floating-point
arithmetic, many hardware implementations work only tar-
get Falcon signature verification. Some works only target
the Number Theoretic Transform (NTT) acceleration [15]–
[19]. The works focused on hardware/software co-design
are also very limited [20], [21]. [20] proposed to use high-
level synthesis only for the acceleration of NTT, which is
very limited to support the whole signature verification.
[21] presented a customized RISC-V processor to acceler-
ate the Falcon signature verification. Though it has good
performance, the area and power consumption are large.
On the other hand, to the best of our knowledge, Hawk
has no hardware and hardware/software co-design imple-
mentations. Existing works [10], [12] only focused on the
software acceleration on Intel AVX2 and ARM Cortex-M4.

In this paper, we proposed PQNTRU, an efficient System
on Chip (SoC) design with a customized RISC-V Single-
Instruction-Multiple-Data (SIMD) processor for two NTRU-
based schemes Falcon and Hawk. The proposed SoC is built
upon a customized SIMD architecture processor, AXI system
bus, and peripheral and data memory, which is practical
for real-world applications. To enhance the performance
of NTRU-based schemes Falcon and Hawk, we propose
several optimizations at both the algorithmic level and
hardware architecture level. To the best of our knowledge,
our work is the first in the hardware/software co-design
in accelerating the Hawk scheme. The contributions of this
paper can be summarized as follows:

• First, we propose a novel layer merging technique
in our SIMD architecture for the NTT to reduce
the memory accesses. Based on the limited SIMD
register files, three layers of NTT can be merged for
performance enhancement. With this layer merging
technique, NTT is implemented as a loop-based as-
sembly code to reduce the instruction memory space
of NTT.

• Second, two different modular algorithms are uti-
lized and optimized in our optimization for different
modular data widths. We design novel SIMD instruc-
tions to support the acceleration of the Improved
Plantard algorithm. With this, the modular reduction
of the key pair generation of Hawk is performed with
the Signed Montgomery algorithm since it uses large
data width moduli, and the other small modular op-

erations are accelerated with the Improved Plantard
algorithm.

• Finally, the fixed-point 32-bit and 64-bit Fast Fourier
Transform (FFT) are accelerated via instruction-level
optimization. In addition, the idea of layer merging
is also applied to the acceleration of fixed-point FFT.

To further enhance performance, a dual-issue parser is
proposed to automatically organize assembly code with full
utilization of dual-issue. Our proposed SoC is evaluated
under 28 nm technology and Zynq-7000 FPGA platform.
Experimental results show that by using the proposed de-
sign, the performance of Hawk signature generation and
verification increases by more than 7×.

1.1 Paper Organization
The following paper is organized as follows. Firstly, we
provide a brief introduction of the related PQC schemes
and core operations in Section 2. Then, Section 3 details
the hardware architecture designed in this paper. The soft-
ware implementations of Falcon and Hawk are presented
in Section 4. We present the evaluation results and compare
our work in Section 5. Finally, we conclude this paper in
Section 6.

2 PRELIMINARIES

In this section, we briefly review NTRU, Falcon, Hawk, and
the core operations involved in this paper.

2.1 NTRU
Since NTRU was first proposed in 1998 by Jeffrey Hoffstein,
Jill Pipher and Joseph H. Silverman [22], many NTRU vari-
ants have been proposed based on the original NTRU de-
sign, e.g. NTRUEncrypt [23], NTRUSign [24], NTRU prime
[25], Falcon [4], Hawk [10], and etc.

The original NTRU lattices was introduced in the NTRU-
Encrypt [22] and NTRUSign [24]. Specifically, the NTRUEn-
crypt [22] consists of the triple integer parameters (n, p, q),
where p, q are co-prime number gcd(p, q) = 1 with q being
considerably larger than p, and n is the degree parameter.
Given a monic polynomial ϕ ∈ Z[x] of degree n, the poly-
nomial operations are conducted over the polynomial ring
R = Z[x]/(ϕ), Rq = (Z/qZ)[x]/(ϕ) or Rp = (Z/pZ)[x]/(ϕ).
The key generation of NTRUEncrypt consists of finding
two polynomials f and g, in which the polynomial f has
inverses modulo both p and q in Rq and Rp, respectively,
and the polynomial g also needs to be invertible in Rq .
The private key of this scheme is (f, f−1 mod p), where
f−1 mod p is also kept for later computation. The public
key of NTRUEncrypt is computed as follows:

h = gf−1 mod q. (1)

For more details about the encryption and decryption pro-
cedures of NTRUEncrypt, we refer to [22].

The NTRUSign [24], on the other hand, uses a slightly
different lattice, which is defined by two integer param-
eters (n, q). The polynomial ring used in NTRUSign is
R = Z[x]/(ϕ). The main difference is that the key gener-
ation procedure of NTRUSign requires finding two “small”
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polynomials f and g that are invertible modulo q. Then,
one needs to solve the following NTRU equation to find
matching “small” F and G and generate the appropriate
public key and private key (f, g):

fG− gF = q. (2)

For more details about the signature generation and verifi-
cation procedures of NTRUSign, we refer to [24].

2.2 NTRU Solver and Babai’ reduction

Efficiently solving the NTRU solution has a crucial impact
on the key generation performance of NTRU-based dig-
ital signature algorithms. Previous solutions in [24], [26]
require cubic and quadratic time and space complexities,
which makes it impractical in IoT devices. Later in 2019,
Thomas Pornin and Thomas Prest [27] proposed a more
efficient NTRU solver for the NTRU equation, which has
been adopted in Falcon and Hawk. Since their proposed
NTRU solver is a recursive algorithm, and the polynomial
operations involved are performed over R = Z[x]/(ϕ), the
coefficients of the polynomial would become increasingly
larger as the recursive depth gets deeper. Therefore, the
Residue Number System (RNS) and Chinese Remainder
Theorem (CRT) are leveraged to split the polynomials with
large coefficients into a series of polynomials with smaller
coefficients modulo small prime moduli ri. They also ensure
that the monic polynomial ϕ has n distinct roots modulo
each ri, thus enabling the use of the NTT to speed up the
polynomial multiplication. In this case, the polynomial op-
erations are all computed with cheaper pointwise addition
or multiplication modulo each modulus ri. Finally, we need
to recover the polynomial from the RNS representation back
to the normal representation. One can directly leverage the
CRT (see [27, Equation 32]) to recover the original polyno-
mial. Thereafter, Babai’s reduction [27] is used to reduce the
coefficient size of F and G down to a specific target size.
This computation is computed with the FFT in the floating-
point representation.

2.3 Falcon

The Falcon signature scheme [4] is a lattice-based signature
scheme that has been selected for standardization as part
of NIST’s PQC standardization project. It is based on the
NTRU lattice: for a given degree n = 2ℓ, the private key is a
pair of polynomials f and g, with small integer coefficients
and taken modulo Xn + 1, completed with another pair
of such polynomials F and G, again with small integer
coefficients, such that the NTRU equation (Equation 2) is
fulfilled. The q of the NTRU equation in Falcon is a small
and fixed integer (in the case of Falcon, q = 12289). The
key generation of Falcon directly adopts the efficient NTRU
solver from [27], and it also requires the floating-point
number to perform the FFT computation, which makes it
kind of limited on devices without floating-point unit (FPU).
The supported degrees of Falcon are n = 512 and n = 1024
(for ℓ = 9 and ℓ = 10, respectively). We refer to [4] for more
details about Falcon.

2.4 Hawk
The Hawk signature scheme [10] is based on a different hard
problem, called the Lattice Isomorphism Problem (LIP), but
uses lattices similar to those used by Falcon. In Hawk, f
and g use a different sampling distribution and generally
have a smaller norm, and the target integer for the NTRU
equation is q = 1. Hawk is also equipped with a similar
NTRU solver in [27]. However, Babai’s reduction in Hawk
uses FFT with fixed-point 64-bit numbers instead of floating-
point, which makes it more suitable on devices without an
FPU. The degree is n = 256, 512 or 1024 (the degree 256
variant does not provide enough security).

2.5 Polynomial Multiplication, FFT and NTT
Polynomial multiplication is a time-consuming operation
in lattice-based cryptography. The naive polynomial mul-
tiplication with the schoolbook method has time complex-
ity O(n2). When it is operated over the polynomial ring
ϕ = xn + 1 over C, where each coefficient is a complex
number represented with real and imaginary parts, FFT can
be used to speed up polynomial multiplication by first trans-
forming the polynomial into Fourier form. This is achieved
using a divide-and-conquer methodology to reduce the time
complexity to O(n · log n) [27]. Then, the multiplication can
be performed coefficient-wise. In Falcon, these coefficients
are represented with 64-bit floating-point numbers, while
fixed-point numbers are used in Hawk.

NTT is an FFT variant over the polynomial ring Rq =
Zq[x]/(x

n + 1) where all coefficients are integers and oper-
ated modulo q. NTT takes a polynomial a(x) =

∑n−1
i=0 aix

i

as input and returns the output â(x) =
∑n−1

i=0 âix
i, where

âi =
n−1∑
j=0

ajω
ij (mod q) (3)

where ω is the primitive n-th root-of-unity modulo q. For
INTT, the twiddle factor ω is replaced with the multi-
plicative inverse ω−1, and additional final scaling n−1 is
required:

ai = N−1
n−1∑
j=0

âjω
−ij (mod q) (4)

Similar to FFT, a divide-and-conquer method can be used to
reduce the complexity of NTT to O(n · log n). Polynomial
multiplication in Rq can be performed by negacyclic convo-
lution, as shown in Algorithm 1. Note that γ is the primitive
2n-th root of unity. In this case, the modulus q should satisfy
q ≡ 1 (mod 2n).

Algorithm 1 Polynomial multiplication [28]
Require: A(x), B(x) ∈ Zq[x]/(x

n + 1)
Require: Primitive 2n-th root of unity γ ∈ Zq

Ensure: C(x) = A(x)B(x), C(x) ∈ Zq[x]/(x
n + 1)

1: // Pre-processing and NTT
2: A(x)← NTT(A(x)⊙ (γ0, γ1, ..., γn−1))
3: B(x)← NTT(B(x)⊙ (γ0, γ1, ..., γn−1))
4: // Point-wise Multiplication
5: C(x)← A(x)⊙B(x)
6: // INTT and Post-processing
7: C(x)← INTT(C(x))⊙ (γ0, γ−1, ..., γ−(n−1))
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Fig. 1. Proposed SoC Architecture.

3 HARDWARE ARCHITECTURE

In this section, we present our proposed System-on-chip
(SoC) architecture. The entire system consists of a RISC-
V processor core with tailored SIMD instruction sets, an
AXI bus, instruction and data Random Access Memory
(RAM), and various peripheral interfaces, as depicted in
Figure 1. The suggested processor core builds upon previous
SIMD processor research [29], which was improved from
CV32E40P, a 32-bit, in-order RISC-V core with a 4-stage
pipeline and RV32IMC instruction sets. To enhance the
efficiency of post-quantum algorithms, specialized SIMD
instructions and corresponding hardware designs have been
developed. The SIMD supports data widths of eight 32-bit
and ten 32-bit (for Keccak) for improved performance.

3.1 SIMD Instruction-Set Architecture

The processor core is composed of four pipeline stages:
Instruction Fetch (IF), Instruction Decode (ID), Execution
(EX), and Write-Back (WB). The proposed SIMD instruction
set architecture enables parallel computation of 256/320 bits
and facilitates load/store operations with 64/128 bits.

3.1.1 Instruction Dual-Issue
To improve performance considering the narrower SIMD
load/store data width compared to SIMD computing data
width, a dual-issue path is implemented. This path allows
the simultaneous issuance of two 32-bit instructions (one
load/store and one non-load/store) for fetching and execu-
tion. The two issued instructions can execute in parallel only
when there are no data dependencies. It is important to note
that this dual-issue design applies to both SIMD instructions
and RV32 instructions.

3.1.2 Register File (RF)
In the ID stage, 5 SIMD Register Files (RFs) are introduced,
each containing 16 rows of 64 bits. These RFs can collectively
store and load a total of 10×32-bit data during computation.

Additionally, a small Register File (FIX RF) with 2 rows of
32 bits is included to store frequently used constant values
and parameters such as q and q−1 in Falcon and Hawk.

Fig. 2. The Structure of SIMD ALU.

3.1.3 SIMD ALU

An SIMD ALU is integrated into the EX stage to handle
8/10 concurrent operations on 32-bit data, as depicted in
Figure 2. The ALUs are responsible for computation, with
pre-processing and post-processing facilitating internal data
shuffling. This includes input shuffling and output shuffling
to rearrange data before and after computation and a reverse
shuffling feature for reversing the order of eight 32-bit
SIMD data to expedite polynomial auto-adjoint operations.
The various supported shuffling methods are detailed in
Table 1 and are essential for addressing data dependencies
in scenarios like NTT and FFT. The SIMD ALU comprises a
10-core design that can accept up to three 320-bit data inputs
from PRs and produce one 320-bit output. These cores are
categorized into three types based on their hardware re-
sources: Carry Propagate Adders (CPA), Carry Save Adders
(CSA), multipliers (MUL), and rotators (ROT). While all 10
cores are active during the execution of customized SIMD
Keccak instructions, typically, only 8 cores are utilized for
SIMD computations.
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TABLE 1
Supported shuffling methods.

op input data order output data order
input rs1 0, 1, 2, 3, 4, 5, 6, 7 0, 8, 1, 9, 2, 10, 3, 11

shuffling rs2 8, 9, 10, 11, 12, 13, 14, 15 4, 12, 5, 13, 6, 14, 7, 15
output rd 0, 1, 2, 3, 4, 5, 6, 7 0, 2, 4, 6, 1, 3, 5, 7shuffling
reverse rd 0, 1, 2, 3, 4, 5, 6, 7 7, 6, 5, 4, 3, 2, 1, 0shuffling

3.2 System on Chip (SoC)
In addition to the processor core, the proposed System on
Chip (SoC) incorporates the AXI interface as the primary
system bus for data communication. The peripheral com-
ponent encompasses various protocols such as I2C, SPI,
UART, and SoC control, serving as fundamental hardware
modules for software library functions like printf, interrupt
handling, and more. Both a data RAM and an instruction
RAM, along with their respective control logic, are linked
to both the processor core and the AXI bus. SPI Slave and
JTAG functionalities are utilized for memory programming
and debugging purposes during runtime. With this config-
uration, the entire SoC is capable of executing programs
compiled for RISC-V architecture and our customized SIMD
instructions.

4 SOFTWARE OPTIMIZATION

In this section, we will outline our proposed software opti-
mization at both the algorithmic and hardware architecture
levels. We incorporate two modular reduction algorithms
to enhance the efficiency of various moduli used in Falcon
and Hawk schemes. Our optimizations of NTT/INTT aim to
minimize memory access. The computation of twiddle fac-
tors is determined by our NTT/INTT design. Furthermore,
we will introduce optimizations for 32-bit and 64-bit fixed-
point FFT/IFFT.

4.1 Modular Reduction Optimization

Algorithm 2 Signed Montgomery Reduction [30]

Require: 0 < q < β
2

,−β
2
q ≤ a = a1β+a0 < β

2
q where β ·β−1 ≡

1 (mod q), 0 ≤ a0 < β
Ensure: r = β−1a (mod q),−q < r < q

1: m← a0q
−1 mod ±β

2: t1 ← ⌊mq/β⌋
3: r ← a1 − t1

We apply two modular reduction algorithms in our
optimized Falcon and Hawk schemes. The first algorithm
is the Signed Montgomery reduction algorithm [30] used
in our design. This algorithm processes a signed number
as an input and produces a modular result within the
range of (−q, q), as outlined in Algorithm 2. By setting
β = 232, this algorithm can be utilized for any modulus
smaller than 232. Additionally, Algorithm 3 illustrates an-
other modular reduction algorithm initially introduced in
[31] and subsequently enhanced in [32], [33]. This algorithm
accommodates l = 16 and is suitable for q < 215−α. A
notable advantage of this algorithm is that, when multi-
plied by a constant, it can save a multiplication with q′ by

pre-multiplying the constant with q′, potentially enhancing
efficiency.

Algorithm 3 Improved Plantard Modular Reduction [33]

Require: Input signed integer a such that a ∈ [q2l−q2l+α, 22l−
q2l+α), q < 2l−α−1, q′ = q−1 mod± 22l

Ensure: r = a(−2−2l)mod± q where r ∈ [− q+1
2

, q
2
)

1: t1 ← aq′ mod 22l

2: t2 ← ⌊t1/2l⌋+ 2α

3: r ← ⌊t2 · q · 2l/22l⌋

Table 2 illustrates the specific algorithms integrated into
our enhanced designs. The Signed Montgomery algorithm
is employed in the Hawk.sign function when dealing with
moduli exceeding 216. In the Falcon.verify process, we
utilize the modular value of q = 12289 along with the
Improved Plantard algorithm. While there are multiple
modular options for both Hawk.sign and Hawk.verify, the
selection of q = 12289 in the Hawk scheme is aimed at
optimizing performance.

TABLE 2
Modular algorithms implemented in our design.

Modular Applied algorithm
Falcon.verify 12289 Improved Plantard algorithm

Hawk.keypair > 216 Signed Montgomery algorithm
Hawk.sign 12289 Improved Plantard algorithm

Hawk.verify 12289 Improved Plantard algorithm

4.1.1 Implementation of Signed Montgomery Algorithm
The SIMD implementation of the Signed Montgomery al-
gorithm is demonstrated in Algorithm 4. For more de-
tails about the SIMD instructions, readers can refer to our
previous work [29]. This algorithm computes the modular
multiplication result of x and ω. Line 1 calculates the lower
32-bit multiplication product a0, while line 2 computes the
higher 32-bit multiplication product a1. In line 3, mulv is
used to determine a0 · q mod β, where β = 232. The higher
32-bit multiplication outcome of m and q is obtained from
line 4. Finally, a subtraction operation is performed to derive
the modular result.

Algorithm 4 SIMD implementation of Signed Montgomery
multiplication
Require: One signed integer x, the 32-bit twiddle factor ω, q >

216, β = 232

Ensure: r = x · ω mod q
1: mulv a0, x, ω
2: mulvh a1, x, ω
3: mulv m,a0, q

−1

4: mulvh t,m, q
5: subv r, a1, t
6: return r

4.1.2 Implementation of Improved Plantard Algorithm
Algorithm 5 illustrates the instructions utilized in the im-
plementation of the Improved Plantard modular multipli-
cation, requiring only 3 instructions. To enhance efficiency,
pre-computation of ω′ is done to eliminate one additional
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instruction needed for the multiplication of ω and q′. Addi-
tionally, a new instruction asravi is introduced in line 2 of
Algorithm 5 to expedite the Improved Plantard algorithm
by enabling arithmetic right-shift and addition simultane-
ously. This instruction allows for a right-shift of 16 bits and
the addition operation with 2α to be performed in a single
step. Notably, the Improved Plantard algorithm necessitates
two instructions less than the Signed Montgomery algo-
rithm, making it the preferred choice for q < 216.

Algorithm 5 SIMD implementation of Improved Plantard
modular multiplication
Require: One signed integer x, the twiddle factor ω, ω′ = ω ·q′,

q = 12289, α = 1, l = 16
Ensure: r = x · ω mod q

1: mulv t1, x, ω
′

2: asravi t2, t1, α, l
3: mulvh r, t2, q · 2l
4: return r

4.2 Optimization for NTT/INTT
As depicted in Table 2, two kinds of moduli are utilized in
Falcon and Hawk schemes. For modulus 12289, the poly-
nomial lengths include 512 and 1024 in Falcon and Hawk
schemes, while for moduli greater than 216, the polynomial
lengths range from 2 to 1024.

Fig. 3. 8-point polynomial Cooley-Tukey and Gentleman-Sande NTT
computing flow.

4.2.1 Butterfly Operation
The butterfly operation is a fundamental component of
NTT/INTT, involving one multiplication, one addition, and
one subtraction with two inputs and two outputs. In the
context of NTT and butterfly operation, there are two main
approaches: Cooley-Tukey (CT) and Gentleman-Sande (GS)
methods [34], as depicted in Figure 3. The key distinction
lies in the sequence of addition/subtraction and multipli-
cation operations. In our configuration, we employ the GS
method for NTT and the CT method for INTT. For efficient
execution of the butterfly operation, our hardware supports
modular addition/subtraction in a single instruction. Mod-
ular multiplications are performed using 3 to 5 instructions,
as detailed in Algorithm 4 and Algorithm 5.

4.2.2 Layer Merging
The prior research [29] focused exclusively on NTT with a
256 polynomial length, necessitating the loading and storing
of coefficients from memory in each layer. This approach led
to increased power consumption and code size, where the
same data are loaded and stored multiple times. Scaling this
method to larger polynomial lengths resulted in significant
rises in code size and power usage. To address various
polynomial lengths and enhance execution efficiency, we in-
troduce a layer merging technique that minimizes memory
accesses and code sizes using our proposed SIMD processor.
Our SIMD processor allows parallel processing of eight 32-
bit data, facilitating NTT/INTT acceleration for polynomial
lengths exceeding 8. Notably, each butterfly operation en-
tails approximately 6 SIMD registers, and our processor
boasts 16 SIMD registers. To optimize memory access, we
employ 8 SIMD registers to store polynomial coefficients,
effectively utilizing most of the SIMD register resources. The
remaining registers are allocated for caching computational
data and loading processed data for subsequent computa-
tions. We meticulously examine the data access patterns of
NTT/INTT. For clarity, we delve into layer merging in both
CT NTT and GS NTT.

4.2.2.1 GS NTT: In the GS NTT Layer 1, as depicted
in Figure 3, A0 undergoes a butterfly operation with A4 with
a gap of 4. This gap decreases with each subsequent layer. To
prevent memory access issues within each layer, the loaded
coefficients must be capable of spanning multiple layers.

With eight coefficients, the highest number of layers
that can be combined is log2 8 = 3. For a polynomial
of length N , the data chosen for the initial round are
0, N/8, 2N/8, 3N/8, 4N/8, 5N/8, 6N/8, 7N/8, which repre-
sent the starting addresses of eight 32-bit data points. These
data points allow for the merging and execution of three
layers, as demonstrated in Table 3. Once these layers are
processed, the current round of data is stored in memory,
and the subsequent round of data, with addresses 8 units
apart, is loaded and computed. As the three merged lay-
ers are completed, the following layers are also merged
and handled using a similar data organization scheme.
In general, the addresses of the subsequent merged lay-
ers can be treated akin to the first merged layer with a
polynomial length of N/(23), meaning the data points are
0/(23), N/8/(23), 2N/8/(23), ....

TABLE 3
Layer merging in GS NTT.

Layer 1
coefficient a 0 N/8 2N/8 3N/8
coefficient b 4N/8 5N/8 6N/8 7N/8

Layer 2
coefficient a 0 N/8 4N/8 5N/8
coefficient b 2N/8 3N/8 6N/8 7N/8

Layer 3
coefficient a 0 2N/8 4N/8 6N/8
coefficient b N/8 3N/8 5N/8 7N/8

When the difference between the operands of the but-
terfly is less than 64, only 6 NTT layers are left. Due to the
operands’ difference being less than 16 in the final three
layers, rearranging data within the SIMD data becomes
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necessary. With our hardware facilitating internal data shuf-
fling, these 6 layers can be combined to enhance memory
access efficiency, as illustrated in Table 4.

TABLE 4
Layer merging of the last 6 layers in GS NTT.

Last Layer 6
coefficient a 0 8 16 24
coefficient b 32 40 48 56

Last Layer 5
coefficient a 0 8 32 40
coefficient b 16 24 48 56

Last Layer 4
coefficient a 0 16 32 48
coefficient b 8 24 40 56
Last Layer 3 w/ input shuffling

coefficient a 0 16 32 48
coefficient b 8 24 40 56
Last Layer 2 w/ input shuffling

coefficient a 0 16 32 48
coefficient b 8 24 40 56
Last Layer 1 w/ input shuffling

coefficient a 0 16 32 48
coefficient b 8 24 40 56

Table 5 shows the merged layers, and memory accesses
polynomial lengths ranging from 64 to 1024 in detail. It
can be seen that our proposed layer merging significantly
reduces the number of memory accesses when compared
with the unmerged design.

TABLE 5
Merged layers of polynomial length from 64 to 1024 in GS NTT.

polynomial merged layer # of layers w/ #of reduced
length memory accesses memory accesses
1024 Layer 1-3, 4-6, 7-10 3 7 (70.0%)
512 Layer 1-3, 4-5, 6-9 3 6 (66.7%)
256 Layer 1-3, 4-8 2 6 (75.0%)
128 Layer 1-3, 4-7 2 5 (71.4%)
64 Layer 1, Layer 2-6 2 4 (66.7%)

4.2.2.2 CT NTT: The layer merging process in CT
NTT can be seen as the opposite of GS NTT, as the dataflow
in CT NTT is essentially the reverse of GS NTT (Figure 3).
To restructure the data, output shuffling is implemented in
the initial combined layers. Subsequent layers are merged
with a maximum of three layers. The specific layer merging
approach for various polynomial lengths in CT NTT is
outlined in Table 6. Through our layer merging method,
memory accesses in CT NTT can be decreased by approxi-
mately 70%.

TABLE 6
Merged layers of polynomial length from 64 to 1024 in CT NTT.

polynomial merged layer # of layers w/ # of reduced
length memory accesses memory accesses
1024 Layer 1-6, 7-9, 10 3 7 (70.0%)
512 Layer 1-6, 7-9 2 7 (77.8%)
256 Layer 1-6, 7-8 2 6 (75.0%)
128 Layer 1-6, 7 2 5 (71.4%)
64 Layer 1-6 1 5 (83.3%)

4.2.3 Twiddle Factor Generation
In Hawk’s key pair generation, the use of the Residue
Number System (RNS) helps in breaking down polynomials

Fig. 4. Computing flow of twiddle factors generation.

into various lengths with different moduli to tackle the
NTRU equation efficiently. Due to the significant volume
of data involved, it is impractical to pre-compute and store
the NTT/INTT twiddle factors in memory. Therefore, in the
original Hawk implementation, these twiddle factors are
dynamically generated during runtime based on the specific
moduli and polynomial length being utilized.

To enhance efficiency, SIMD acceleration is employed to
decrease the latency associated with twiddle factor compu-
tation. The twiddle factors of the final CT NTT layer can
be shared with preceding layers, while twiddle factors with
higher exponent powers can be derived from those with
lower exponent powers using modular multiplications. As
a result, the primary twiddle factor ω1 is pre-computed and
stored in memory, and twiddle factors with larger exponent
powers are calculated from this primary twiddle factor
ω1
N . As illustrated in the figure depicting twiddle factor

generation, ω2 to ω4 are derived from ω1, and ω5 to ω8

are computed through SIMD Signed Montgomery multipli-
cation. Subsequent twiddle factors are then obtained from
these fundamental twiddle factors by executing additional
Signed Montgomery multiplications. By leveraging Signed
Montgomery modular reduction in conjunction with our
SIMD implementation, an acceleration rate exceeding 10×
can be achieved.

4.3 Optimization for Fixed-point FFT/IFFT

FFT and IFFT play crucial roles in the Falcon and Hawk
schemes. In the Falcon scheme, computations involve float-
point numbers, necessitating hardware support for float-
point arithmetic. Conversely, our focus lies on utilizing
fixed-point FFT and IFFT in the Hawk scheme. The Hawk
scheme employs 32-bit FFT/IFFT for signature verification
and 64-bit FFT/IFFT for key pair generation. Additionally,
complex numbers are integral to the FFT/IFFT compu-
tations. To enhance performance, we introduce the layer
merging scheme and hardware-level optimizations tailored
for the FFT/IFFT implementations.

For 64-bit number operations, an additional 32-bit carry
is needed for higher-order operations. Details of 64-bit num-
ber addition and subtraction can be found in Algorithm 6
and Algorithm 7. The SIMD instruction cmpuv is used
to compare unsigned numbers in the first operand (rs1)
with those in the second operand (rs2), where each 32-bit
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Algorithm 6 SIMD implementation of 64-bit addition
Require: 64-bit integers a = a1, a0, b = b1, b0
Ensure: t = t1, t0 = a+ b

1: addv t0, a0, b0 // t0 = a0 + b0
2: addv t1, a1, b1 // t1 = a1 + b1
3: cmpuv tc, t0, a0 // calculate the lower 32-bit carry, tc = 1

if a0 + b0 > 232 − 1 (i.e., t0 < a0)
4: addv t1, t1, tc // plus the carry
5: return t1, t0

Algorithm 7 SIMD implementation of 64-bit subtraction
Require: 64-bit integers a = a1, a0, b = b1, b0
Ensure: t = t1, t0 = a− b

1: subv t0, a0, b0 // t0 = a0 − b0
2: subv t1, a1, b1 // t1 = a1 − b1
3: cmpuv tc, a0, t0 // calculate the lower 32-bit carry, tc = 1

if a0 − b0 < 0 (i.e., a0 < t0)
4: subv t1, t1, tc // minus the carry
5: return t1, t0

unsigned number in rs1 is compared with its corresponding
32-bit number in rs2.

Algorithm 8 SIMD implementation of 32-bit complex mul-
tiplication
Require: 32-bit complex number a = ar + aij, b = br + bij
Ensure: c = cr + cij

1: mulv trl, ar, br
2: mulvh trh, ar, br
3: mulv srl, ai, bi
4: mulvh srh, ai, bi
5: 64-bit subtraction for trh, trl, srh, srl and right-shifted by

32, output cr
6: ci is calculated similarly, where the subtraction is replace

with addition
7: return cr, ci

Given the use of complex numbers, each coefficient in
a polynomial is represented by two numbers. Complex
number addition and subtraction are performed indepen-
dently. In the context of 32-bit complex multiplication, the
SIMD instructions mulv and mulvh can yield the lower and
higher 32-bit multiplication results, respectively. When ex-
ecuting 32-bit complex multiplication, 64-bit additions and
subtractions become essential. The Karatsuba method [35]
reduces the number of multiplications from four to three.
Nonetheless, our analysis indicates that it necessitates three
additional additions, which exhibit a comparable computa-
tional latency to multiplications in our proposed processor.
The implementation of 32-bit complex multiplication em-
ploys conventional complex multiplication, as outlined in
Algorithm 8. It is noted that over ten SIMD instructions are
utilized per single 32-bit complex multiplication operation.

The 64-bit ordinary multiplication process involves both
signed and unsigned multiplications in its computation.
When dealing with a = ah + al · 232 and b = bh + bl · 232,
the 64-bit multiplication process is depicted in Figure 5.
This procedure resembles the 32-bit complex multiplication,
albeit with minor differences in the addition operations.
By employing this 64-bit ordinary multiplication technique,
the 64-bit complex multiplication can be efficiently executed
using SIMD instructions. This approach involves breaking

Fig. 5. The SIMD implementation of 64-bit ordinary multiplication.

down the complex multiplication into 64-bit standard mul-
tiplication, along with additions, subtractions, and shifts.

4.3.1 32-bit FFT/IFFT
The computational process of FFT/IFFT closely resembles
that of NTT/INTT, with the key distinction being the ab-
sence of modular operations. Building upon the founda-
tional methods for fixed-point calculations, the butterfly
operation within a 32-bit FFT/IFFT can be significantly
expedited through the utilization of SIMD instructions for
32-bit complex arithmetic, including multiplication, addi-
tion, and subtraction. Furthermore, to enhance efficiency,
our SIMD implementation also incorporates a technique
known as layer merging. Given that two SIMD registers
can hold eight 32-bit complex numbers, up to four sets of
complex numbers can be accommodated within eight SIMD
registers. As a result, the maximum number of layers that
can be merged is determined by log2 4 = 2, leading to an
approximate 50% reduction in the total memory accesses.

4.3.2 64-bit FFT/IFFT
The 64-bit FFT/IFFT needs additional SIMD registers to
hold the butterfly operands. Since each operand consists of
two 64-bit complex numbers, where eight SIMD registers are
necessary for one SIMD butterfly operation. Furthermore,
four extra SIMD registers are employed to store the relevant
twiddle factors. As a result, due to the restricted number
of SIMD registers, the layer merging technique cannot be
implemented in this scenario.

4.4 Polynomial Auto-adjoint
An auto-adjoint polynomial is defined as a polynomial f
where f is equal to its adjoint, denoted as f = adj(f). This
condition leads to the property:

f [i] = −f [N − i], for i > 0 (5)

This property essentially reverses the order of the polyno-
mial coefficients and changes their signs. To expedite this
reversal process, we introduce a novel SIMD instruction
called subrv that involves subtracting two SIMD data ele-
ments and reversing their order using hardware-supported
reverse shuffling.
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4.5 Rejection Sampling Optimization
Rejection sampling is necessary for q = 12289 in Falcon
and Hawk schemes. The initial rejection rate stands at 1 −
12289/214 ≈ 25%. To enhance efficiency, the value k · q =
174747 × 12289 is sampled, resulting in a rejection rate of
1−174747×12289/231 ≈ 99.999%. Subsequently, a modular
reduction is employed to bring the data back within the q
range. This enhancement notably decreases the latency of
parallel data rejection sampling.

4.6 RNS Decomposition and CRT Reconstruction
RNS decomposition and CRT reconstruction play crucial
roles in Hawk’s key pair generation process. These tech-
niques are necessary to handle the large-number calcula-
tions involved in solving the NTRU equation effectively. By
employing RNS decomposition, the complex computations
of large numbers are transformed into numerous parallel
calculations involving small numbers. Subsequently, the
outcomes of these small-number calculations are reassem-
bled into large numbers through CRT reconstruction.

The large numbers are managed as a 32-bit array in
the original approach, which leads to multiple loads and
stores during computations. Nevertheless, the existing im-
plementation of RNS decomposition and CRT reconstruc-
tion proves to be inefficient and challenging to parallelize.
To enhance their performance, we exploit the presence of
multiple groups of large numbers that can be restructured
to leverage hardware-level parallelism effectively, which
has an acceleration rate of over 8×. On the other hand,
when only a single large number is involved and stored
in a 32-bit array, we propose to isolate common operations
such as modular reduction and multiplication from RNS
decomposition or CRT reconstruction. These operations can
then be applied to adjacent data using SIMD instructions,
while the remaining operations are executed through non-
SIMD instructions, which only demonstrates an acceleration
rate of approximately 4 to 8×.

4.7 Dual-issue Parser
Our proposed processor enables the simultaneous execution
of load/store and arithmetic instructions in the absence of
data dependencies. Consider a program P comprising ils
load/store instructions and io non-load/store instructions,
assuming a CPI of 1 for all instructions and a cycle count of
C for program P . Let ∆i represent the number of load/store
instructions that are unable to take advantage of dual-issue
processing. The aim is to maximize the utilization of the
dual-issue capability to minimize the cycle count C of pro-
gram P , while considering the ∆i load/store instructions
that cannot benefit from dual-issue processing:

minimize C = io +∆i

subject to io ≥ 0,

ils ≥ 0,

ils ≥ ∆i ≥ 0.

(6)

To reduce C , it is essential for load/store instructions to
exhibit a high level of data independence within their ex-
ecution context, allowing them to effectively utilize dual-
issue processing. However, prior research [29] achieved this

through manual programming, which is not an efficient
approach. To tackle this challenge, we develop a dual-issue
parser that rearranges the instruction sequence without
altering functionality. This parser optimizes the instruction
order, exploiting dual-issue processing whenever feasible
(in the absence of data dependencies), thereby enhancing
overall performance. It is important to note that this opti-
mization problem may encounter local minima. To deter-
mine a solution with the lowest cycle count, it is necessary
to calculate the adjusted cycle count and iterate the tool
multiple times.

5 IMPLEMENTATION AND EVALUATION

In this section, we report and compare the computing cycles
of the Falcon and Hawk schemes with those of previous
studies. Additionally, we present the evaluation and com-
parison of the performance, power, and area of the proposed
SoC architecture on 28 nm technology, and resource and
performance on Zynq-7000 FPGA.

5.1 Performance of Falcon and Hawk

We optimized the code of Falcon and Hawk from the NIST
submissions at both the algorithm level and hardware archi-
tecture level.

TABLE 7
Cycle counts of Falcon.

Falcon512.verify Falcon1024.verify
CV32E40P Baseline 1,029,677 (9.35×) 1,961,000 (10.95×)

[21] (RISC-V) 314,639 (2.86×) 613,911 (3.43×)
[13] (Cortex M7) 559,000 (5.08×) 1,136,000 (6.34×)
[14] (Cortex M4) 504,051 (4.58×) 977,058 (5.46×)

Ours 110,117 (1.0×) 179,080 (1.0×)

5.1.1 Falcon
Since float-point support is lacking, we focused solely on
enhancing Falcon’s signature verification process, which
involves float-point operations for key pair and signature
generation. The computational cycles of Falcon are detailed
in Table 7. Optimization techniques such as layer merging
and the Improved Plantard modular algorithm have been
applied to the NTT and INTT operations, while enhanced
rejection sampling methods have been implemented to
increase the sampling rate for a wider data range. Our
optimizations have resulted in a 9-fold enhancement in cycle
count for both Falcon512 and Falcon1024 when compared to
the baseline performance.

TABLE 8
Cycle counts of Hawk.

CV32E40P Baseline [10] (Cortex M4) Ours
Hawk512

keypair 74,529,506 (2.89×) 52,316,870 (2.03×) 25,801,254 (1.0×)
sign 3,185,113 (7.87×) 2,801,495 (6.93×) 404,481 (1.0×)

verify 2,531,985 (8.13×) 1,418,539 (4.56×) 311,522 (1.0×)
Hawk1024

keypair 279,095,730 (2.88×) 225,658,496 (2.34×) 96,606,377 (1.0×)
sign 6,625,515 (7.88×) 6,179,673 (7.35×) 840,335 (1.0×)

verify 5,159,475 (8.26×) 3,006,983 (4.81×) 624,621 (1.0×)
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TABLE 9
Hardware Synthesis Results and Comparisons.

Tech. (nm) Volt. (V) Freq. (MHz) Area (mm2) or Falcon512.verif Hawk512.sign
or FPGA (DSP/BRAM/FF/LUT) Power (mW ) Perf. (ms) PPAP Power (mW ) Perf (ms) PPAP

[36] 28 (Cortex-M4) 0.9 84 0.053 0.94 6.00 0.30 0.94 33.35 1.66
[21] 22 0.8 800 0.167 4.17 0.39 0.27 - - -

Ours 28 0.9 200 0.102 3.05 0.55 0.17 3.27 2.02 0.67
[37] Artix-7 - - 18/26/17.7k/57.6k - 0.996 - - - -
[38] UltraScale+ - 214 15/13/8.0k/11.5k - 0.618 - - - -
[39] Artix-7 - 142 1/2/3.5k/6.6k - 0.049 - - - -

Ours Zynq-7000 - 125 37/24/10k/30k - 0.88 - - 3.24 -

5.1.2 Hawk
The cycles of Hawk512 and Hawk1024 are displayed in
Table 8. A comparison with the baseline and Cortex M4
implementation is also provided. Due to Hawk’s utiliza-
tion of fixed-point arithmetic, the entire algorithm can be
expedited on our proposed platform. We have enhanced the
NTT/INTT, fixed-point FFT/IFFT, RNS conversions, and
other aspects to boost Hawk’s speed. Our optimizations
have led to approximately a 7× acceleration in cycle count
for both signature generation and verification, surpassing
the baseline and M4 implementation. Notably, a speedup of
2.8× for key pair generation has been attained, with the
performance bottleneck being the binary GCD algorithm
(e.g., around 7 million cycles for binary GCD in Hawk512).
Moreover, numerous polynomial operations with lengths
less than 8 cannot be effectively optimized in SIMD ar-
chitecture. Despite key pair generation being a one-time
computation in certain scenarios, we have made significant
strides in enhancing signature generation and verification.

5.2 Evaluation and Comparison of the Proposed SoC

Table 9 presents the results of ASIC and FPGA synthesis
along with comparisons of prior works. Within the table,
the Performance, Power, and Area Products (PPAP) are
calculated. Our evaluation of performance, power, and area
was conducted using Synopsys tools on a 28 nm processing
node. The total area occupied by the proposed SoC is 0.102
mm2, achieving a maximum frequency of 200 MHz. The
average power consumption ranges from 3.05 to 3.27 mW
at 200 MHz. A comparison was made between our work
and recent hardware/software co-design efforts [21] as well
as the widely used embedded Cortex-M4. We standardized
the power consumption of [21] to the 28 nm technology
node as per [40]. Our design demonstrates notable perfor-
mance improvements over the Cortex-M4, in both Falcon
and Hawk. While [21] achieves high performance due to its
significantly higher operating frequency, it also incurs larger
area and power consumption. Consequently, our design
exhibits superior PPAP metrics compared to [21].

The FPGA synthesis results are performed by Vivado
2017.4 on the Zynq-7000 platform, with a maximum fre-
quency of 125 MHz. There is no hardware works for the
Hawk scheme. [37]–[39] proposed pure hardware imple-
mentations for the signature verification of Falcon. Our per-
formance is not as good as that of pure hardware, as they are
more specific for Falcon512 signature verification. However,
the main drawback is that these hardware implementations
cannot be repurposed for other PQC schemes, and they
cannot even be used for the same scheme with different

parameter sets. As can be seen, our SoC design is flexible
for different PQC schemes and parameter sets with the
advantage of hardware/software co-design. Nevertheless,
our design still achieve a relatively good performance and
achieves a balance of performance, area and power, with the
flexibility to support different PQC schemes.

6 CONCLUSION

In this study, we have proposed PQNTRU, a highly ef-
ficient post-quantum processor and SoC tailored for the
PQC schemes Falcon and Hawk. We propose a series of
optimizations at both the hardware architecture and al-
gorithm levels, focusing on enhancements for NTT, fixed-
point FFT, rejection sampling, and other related aspects.
Additionally, we have developed an automatic dual-issue
parser to maximize the utilization of the hardware’s dual-
issue capability. Our efforts have led to a significant im-
provement in cycle counts compared to previous software
implementations. When evaluated on a 28 nm ASIC, our
design surpasses state-of-the-art solutions in terms of per-
formance, power efficiency, and area utilization. It is worth
noting that our work represents a pioneering effort in the
realm of hardware/software co-design for the Hawk PQC
signature scheme.
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