
Graphiti: Secure Graph Computation Made More Scalable
Nishat Koti

koti@encrypto.cs.tu-darmstadt.de

Technical University of Darmstadt

Darmstadt, Germany

Varsha Bhat Kukkala

varshabhat15@gmail.com

Independent Researcher

Bangalore, India

Arpita Patra

arpita@iisc.ac.in

Indian Institute of Science

Bangalore, India

Bhavish Raj Gopal

bhavishraj@iisc.ac.in

Indian Institute of Science

Bangalore, India

Abstract
Privacy-preserving graph analysis allows performing computations

on graphs that store sensitive information, while ensuring all the

information about the topology of the graph as well as data as-

sociated with the nodes and edges remains hidden. The current

work addresses this problem by designing a highly scalable frame-

work, Graphiti, that allows securely realising any graph algorithm.

Graphiti relies on the technique of secure multiparty computation

(MPC) to design a generic framework that improves over the state-

of-the-art framework of GraphSC by Araki et al. (CCS’21). The

key technical contribution is that Graphiti has round complexity

independent of the graph size, which in turn allows attaining the

desired scalability. Specifically, this is achieved by (i) decoupling the

Scatter primitive of GraphSC into separate operations of Propagate
and ApplyE, (ii) designing a novel constant-round approach to re-

alise Propagate, as well as (iii) designing a novel constant-round

approach to realise the Gather primitive of GraphSC by leverag-

ing the linearity of the aggregation operation. We benchmark the

performance of Graphiti for the application of contact tracing via

BFS for 10 hops and observe that it takes less than 2 minutes when

computing over a graph of size 10
7
. Concretely it improves over the

state-of-the-art up to a factor of 1034× in online run time. Similar

to GraphSC by Araki et al., since Graphiti relies on a secure pro-

tocol for shuffle, we additionally design a shuffle protocol secure

against a semi-honest adversary in the 2-party with a helper setting.

Given the versatility of shuffle protocol, the designed solution is of

independent interest. Hence, we also benchmark the performance

of the designed shuffle where we observe improvements of up to

1.83× in online run time when considering an input vector of size

10
7
, in comparison to the state-of-the-art shuffle protocol in the

considered setting.

CCS Concepts
• Security and privacy→ Cryptography.

Keywords
Secure graph analysis, secure computation, secure shuffle

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3670393

ACM Reference Format:
Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal. 2024.

Graphiti: Secure Graph Computation Made More Scalable . In Proceedings of
the 2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,

USA, 21 pages. https://doi.org/10.1145/3658644.3670393

1 Introduction
The expressive capabilities and ease of processing graphs has re-

sulted in designing several graph algorithms that derive meaningful

information about the underlying system being modelled as a graph

𝐺 (V, E). Traditionally, these graph algorithms take as input the un-

derlying graph data in the clear. However, since the graph may

model sensitive user information, processing them in the clear may

raise privacy concerns. We showcase these privacy concerns via

a representative use case of contact tracing as required to analyse

the spread of contagious diseases. For example, to trace the spread

of COVID-19, one would require analysing the contact network of

the individuals in the considered population. The contact network

is a graph where each individual is represented as a node, while

an edge represents the physical contact between the individuals.

Contact tracing translates to performing a breadth-first search (BFS)

on the contact network, starting at a node representing an infected

person. This allows identifying all individuals who are within a

predetermined threshold distance from the start node. Clearly, the

information of who has come in contact with whom is regarded

as sensitive data. Since individuals may not wish to disclose this

information (i.e., the presence or absence of an edge) in the open, it

must remain private. These privacy concerns make it challenging

to analyse the global contact network. In this way, graphs that store

sensitive data may be distributed across multiple data owners such

that each is only aware of a subset of the edges that comprise the

overall graph, while the labelling of the nodes is known to all the

data owners. Thus, there is a need to design privacy-preserving

solutions that facilitate graph analysis without leaking the global

graph data in the clear. The current work focuses on addressing

this via the technique of secure multiparty computation (MPC).

MPC is a cryptographic technique that allows 𝑛 mutually dis-

trusting parties to carry out computations on private inputs such

that an adversary controlling up to 𝑡 < 𝑛 parties does not learn

anything other than the output of the computation. In the consid-

ered scenario, the private input is the graph that is distributedly

held by multiple data owners, while the function comprises the

desired graph algorithm. Note that any graph algorithm can be

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3670393
https://doi.org/10.1145/3658644.3670393

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

securely computed using off-the-shelf generic MPC frameworks

[4, 31]. However, performing this naively would require operating

on the adjacency matrix representation of the graph. This would in-

cur a complexity of O(|V|2), where |V| denotes the number of nodes

(or vertices) present in the graph. However, real-world graphs are

known to be sparse, and hence, operating over the adjacency matrix

representation is an overkill. With the intent of improving the effi-

ciency of secure graph computation, the work of [22] designed the

GraphSC framework. The efficiency improvements in [22] are in-

troduced by leveraging the sparsity of real-world networks, where

the framework operates on a list representation rather than the ad-

jacency matrix representation of the underlying graph. This allows

attaining O(|V| + |E|) complexity, as opposed to O(|V|2) complexity.

This leap in efficiency paved way for adapting GraphSC for securely

realising applications, including BFS [2, 24], histograms and matrix

factorisation [19, 20], computing Pagerank and its variants [16, 19],

graph convolutional network evaluation [15], etc.

GraphSC framework [22]. The GraphSC framework operates on

a list-based representation of a data-augmented directed graph

𝐺 (V, E, data). Here, data is a set of user-defined values associated

with each node and edge of the graph. The graph is expressed as a

list, referred to as the DAG-list G, which comprises an entry corre-

sponding to every node and edge in the graph. Thus, the DAG-list

is of size |V| + |E|. Each entry in the DAG-list is encoded such that

it facilitates processing the graph without having to disambiguate

between entries corresponding to those of a node from those of an

edge. Given the DAG-list, the GraphSC framework enables securely

evaluating a graph algorithm expressed as a message-passing algo-

rithm. The latter involves updating the data component of the nodes

and edges across several iterations in a message passing phase. The

GraphSC framework achieves this via the primitives of Scatter,
Gather and Apply. Informally, Scatter involves propagating data

present at the source node onto its outgoing edges. This is done by

performing a linear scan of the DAG-list, with the entries appearing

in a specific order known as the source order. The source order is an
ordering of the DAG-list where every node (in the sequence from 1

to |V|) appears immediately before all of its outgoing edges. Since

Scatter, by definition, propagates information on outgoing edges,

a linear scan of the DAG-list, where information is picked up at

every node followed by dropping off the same at every (outgoing)

edge entry that follows, allows realising Scatter. On the other hand,

Gather involves aggregating data present on the incoming edges of

a given node. Similar to Scatter, a linear scan of the DAG-list with

the entries in destination order allows realising Gather. Here, desti-
nation order is an ordering of the DAG-list such that all incoming

edges of a particular node are placed immediately before that node.

During a linear scan of the destination ordered DAG-list, data is

picked up at every incoming edge and aggregated, while the aggre-

gated data is dropped off at the following node. Finally, primitive

Apply allows the data at every node to be updated based on data

aggregated during Gather. Since this operation can be performed

in parallel on all node entries, Apply does not require a linear scan

of DAG-list. In summary, the GraphSC framework showcases how

these Scatter-Gather-Apply primitives allow realising one iteration

of the message-passing algorithm. Thus, securely realising a graph

algorithm boils down to securely realising Scatter-Gather-Apply
via MPC. A detailed discussion of GraphSC is deferred to §2.2.

Improved GraphSC framework [2].When designing a secure so-

lution for the Scatter-Gather-Apply primitives via MPC, several

parameters determine the efficiency of the resulting solution—

(i) round complexity, which accounts for the sequential interac-

tions among the computing parties, (ii) communication complexity,

which accounts for the information (messages) exchanged, and (iii)

computation complexity, which accounts for the local computations

performed at each party. In this regard, the GraphSC framework of

[22] relies on garbled circuits (GC) to securely realise the primitives.

Although GC-based solutions have constant round complexity, they

are known to be both communication and computation-intensive.

Hence, [2] instead relies on secret-sharing-based techniques to im-

prove the GraphSC framework of [22] to reduce the overhead due

to communication and computation. However, this introduces the

challenge of reducing the round complexity
1
.

Specifically, the challenge lies in designing a round efficient

solution for—(a) Scatter-Gather primitives, and (b) transitioning

between the source order and destination order of the DAG-list

when invoking the Scatter,Gather. In this regard, [2] primarily

focuses on (b) and makes the following observation. [22] relies

on a secure sort protocol to transition between source order and

destination order of DAG-list. However, a secret-sharing-based

secure sort protocol would incur a high round complexity. Hence,

[2] showcases efficiency improvements that can be achieved by

replacing secure sort with a secure shuffle
2
followed by (partially)

insecure sort
3
. This approach is shown to be much more efficient

and requires constant rounds for transitioning between the different

orderings of the DAG-list given an initialisation phase
4
. However,

secure realisations of Scatter-Gather (step (a)), continue to have a

linear round complexity in the size of the DAG-list, N = |V| + |E|.
To this end, [2] attempts to provide a round optimised (RO) variant

of Scatter-Gather, albeit requiring a higher communication cost.

Specifically, assuming a bound B on the maximum degree of nodes,

this solution has a round complexity of O(log(B)). However, since
several real-world graphs have B in the O(N) [26], the resultant
solution continues to have a round complexity dependent on N.

Graphiti framework. The current work takes a stride ahead and

puts forth an improved framework, Graphiti. Specifically, while
Graphiti continues to use the shuffle-then-sort paradigm of [2] to

address (b), Graphiti addresses (a) by proposing a novel approach

for Scatter-Gather, which when realised via MPC, has a round

complexity that is independent of N. In this way, Graphiti is able
to reduce the overhead due to Scatter-Gather, which constitutes

a major fraction of the task in the message-passing phase. It is

worthwhile to note that Graphiti also has a better communication

and computation complexity than [2]. To put the improvements of

Graphiti in perspective, Table 1 showcases that Graphiti has the

1
Secret-sharing-based protocols for general MPC are known to have round complexity

that is proportional to multiplicative depth of the circuit being evaluated.

2
Given secret-shares of a list of elements as input, the protocol outputs shares of the

list where each entry is reordered based on an unknown random permutation.

3
Unlike a secure comparison-based sort protocol, where the input and the results of

the intermediate comparison are hidden, in a partially insecure sort the results of the

comparison are made known in the clear. Hence, parties learn the permutation that

results in the sorted list in the clear.

4
Computations repeated across iterations are pushed to a one-time initialisation phase.

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

best features from all the existing frameworks for secure graph com-

putation. Thus, existing applications such as BFS [2, 24], histograms

and matrix factorisation [19, 20], computing Pagerank and its vari-

ants [16, 19], graph convolutional network evaluation [15], etc. can

be directly improved by using Graphiti as a drop-in substitute for

the underlying secure graph computation frameworks. Finally, it

is worthwhile to note that Graphiti is designed as a generic frame-

work and can be instantiated with an appropriate MPC of choice

based on the application scenario. This not only allows Graphiti
to inherit the latter’s security guarantees and efficiency, but also

opens up the possibility of utilising the future advancements of

MPC in a seamless way.

Parameter Matrix GraphSC [22] GraphSC [2] GraphSC [2] (RO) Graphiti

Rounds
h h x ht h

Communication
x hu hr ht hr

Computation
x hu hr ht hh

- low,
hr
- moderate,

ht
- medium,

hu
- high,

x
- very high.

Table 1: Comparison of secure graph computation frameworks.

1.1 Our contributions
We next outline our contributions and highlight the novel tech-

niques that allow us to attain improved round, communication,

and computation complexity. Further, we benchmark Graphiti to
showcase the concrete improvements and report the results.

Decoupling Scatter. GraphSC framework in [22] defines Scatter
primitive to account for both, propagating data from source node

onto outgoing edges, as well as updating data on edges based on

the propagated data. Since the improved framework in [2] builds

on [22], they continue relying on the same definition. However, we

observe that splitting the computation of propagating node data

and updating edge data as two distinct phases improves the overall

efficiency of Scatter. Hence, in the current work, the task of only

propagating node data is accounted within Propagate primitive,

while updating edge data is separated out as ApplyE primitive.

Collectively, Propagate andApplyE constitute Scatter primitive. Let

𝑓AE denote the function to be applied when updating data on edges.

The Scatter in [2] requires O(N · rAE) round complexity, where N
denotes the size of the DAG-list (N = |V| + |E|) and rAE5 denotes the
round complexity of realising 𝑓AE via MPC. This complexity is due

to the linear scan of the DAG-list, during which, at each edge entry,

data is propagated, followed by updating it using 𝑓AE. Decoupling

immediately improves the overall round complexity of Propagate
and ApplyE to O(N+rAE), where Propagate has a complexity O(N)
and ApplyE has O(rAE). We, in fact, go a step further and devise a

novel approach for achieving Propagate that allows us to realise

it with a round complexity independent of N, thereby allowing

Scatter to attain a N-independent round complexity.

A new approach to Propagate. To achieve a round complexity

independent of N, we do the following—(i) Although the DAG-list

is encoded such that node entries cannot be disambiguated from

those of edges, the approach for Scatter in [2] requires perform-

ing different operations for entries corresponding to nodes from

those of edges. To perform these operations obliviously, [2] re-

lies on multiplication operation, which is interactive and hence

adds to the round complexity. Unlike this, we design an approach

5
We use r(·) to denote the round complexity of function 𝑓(·) when realised via MPC.

for Propagate that does not distinguish between operations per-

formed at an edge or node entry. (ii) Our approach is designed to

rely only on addition/subtraction operations that can be performed

non-interactively within MPC. This is unlike in [2], which requires

expensive interactive multiplications. (iii) In the process, we intro-

duce a new ordering of the DAG-list called vertex-ordering that aids

in achieving (i) and (ii). Here, vertex ordering is one where all nodes

appear in sequence from 1 to |V|, followed by all edges. Thus, secure
implementation of Propagate involves performing non-interactive

operations in both vertex order and source order of DAG-list and a

transition from vertex order to source order. The cost of the latter

can be reduced to the cost of one invocation to shuffle protocol.

Thus, round complexity of Propagate is O(rshfl). Since there exist
constant round shuffle protocols [9, 14, 18, 24], round complexity

of our Propagate followed by ApplyE (which make up Scatter) is
indeed independent of N. This directly impacts the scalability of

Graphiti since the size of the input graph is no longer a bottleneck

for achieving Scatter.

New approach to Gather. Unlike Propagate, we observe that ag-
gregating data from incoming edges into a node as part of Gather
is already decoupled from the Apply primitive that accounts for

updating the node data based on aggregated information. Hence, to

keep it consistent, we refer to the latter as the ApplyV primitive in

our framework ofGraphiti. Since ApplyV can already be performed

in parallel across all node entries, we focus on efficiently realising

Gather. For this, we make the observation that several graph algo-

rithms can be realised using a linear aggregation operation during

Gather. Thus, we leverage this observation in conjunction with the

approach as done in Propagate described above (see points (i-iii))

to realise Gatherwith a round complexity independent of N, unlike
that of [2] which required O(N) round complexity. The definition

of ApplyV remains the same as Apply originally in [22], where node
data is updated via some function 𝑓AV.

Graphiti framework. Securely realising each iteration of the

message-passing phase in Graphiti involves invoking the following
primitives in the given sequence—Propagate, ApplyE, Gather and
ApplyV. The detailed cost of realising each of these primitives in

Graphiti for one iteration of message-passing phase is listed in Ta-

ble 2, where we compare against the improved GraphSC framework

of [2]. Note that since the focus of the current work primarily lies

in the Scatter-Gather primitives, the cost of the one-time initiali-

sation, which is similar to the cost of [2], is not accounted for in

the table. As stated earlier, apart from the linear variant, [2] also

designs a round optimised (RO) variant, which is also reported in

the table. Note that the RO variant comes at the cost of increasing

the communication complexity from O(N) to O(N log |V|). Further,
[2] discusses the RO variant for the specific application of BFS.

While the authors claim the techniques can be extended to other

applications, it does not follow trivially since one has to account for

computations specific to the graph algorithm under consideration.

Despite this, as seen in Table 2, our solution not only improves with

respect to round complexity but also in terms of communication

and computation. The latter are a result of realising Scatter-Gather
primitives via non-interactive linear operations as opposed to re-

quiring interactive (non-linear) multiplication operations in [2].

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

Thus, Graphiti provides overall improvement over [2]. Finally, Ta-

ble 3 captures scalability of Graphiti and [2] with varying graph

size (N) when accounting for the simplistic case of BFS.

On the expressiveness of Graphiti. Note that during Gather, a
node aggregates information from its incident edges via an aggre-

gation operation. We observe that many graph applications such

as histogram [22], matrix factorisation [22], BFS [2], Pagerank [16],

clustering [16], graph neural networks (GNN) [15] etc. can be repre-

sented using a linear aggregation operation. In general, any graph

algorithm that can be represented via computations of the form

A · ®x can be represented as a message passing algorithm with linear

aggregation operation (see [29]). Here A represents the adjacency

matrix of the graph, and ®x represents the vector of data component

associated with vertices. Thus, a linear aggregator operator, as used

in Graphiti, suffices for most graph algorithms. On the other hand,

note that Scatter in Graphiti is agnostic to the requirements of the

aggregation operation. Thus, even for graph algorithms that require

a non-linear aggregation, our improved approach for Scatter can
be used in conjunction with the Gather of [2] to yield an efficient

solution. The resulting solution will continue to improve the overall

complexity of evaluating graph algorithms compared to [2].

Benchmarks. Graphiti is generic, i.e., our approach to realis-

ing Propagate-ApplyE-Gather-ApplyV primitives is independent

of any particular MPC setting or protocol. However, to benchmark

the performance of Graphiti, we follow on similar lines to [22]

and instantiate it in the simplest setting of two parties (2PC) in

the presence of a semi-honest adversary. To attain a fast response

time, which is the time taken from submission of input to obtaining

the output, we operate in the preprocessing paradigm. Here, heavy,

input-independent computations are carried out in a preprocessing

phase, followed by a fast input-dependent online phase. To improve

the efficiency of the preprocessing phase, as done in several works

[5, 6, 25, 27, 28], we rely on an additional trusted (incorruptible)

helper party only during the preprocessing phase to generate the

required preprocessing data. Since Graphiti also relies on a secure

shuffle protocol, as an independent contribution, we design the

same in the considered 2-party with a helper setting. Since secure

shuffle is a versatile primitive in itself and may be of independent

interest, we also benchmark its performance and compare it against

the state-of-the-art shuffle protocol of [9] by adapting it to the

considered setting. Before we highlight the key results with re-

spect to the performance of Graphiti as well as shuffle, we remark

the following. While Graphiti is generic and can be instantiated

with an appropriate MPC of choice, the considered setting of semi-

honest 2PC in the preprocessing paradigm is chosen for benchmark

purposes. Thus, depending on the deployment scenario, one can

choose to operate in the semi-honest/malicious adversarial model,

preprocessing/all-online paradigm, with/without a trusted helper,

etc. While these design choices affect the run time, Graphiti will
always witness improvements over prior work since it is agnostic

to the underlying MPC (see Table 2 for asymptotic improvements).

Finally, note that to ensure a fair comparison with prior works, we

instantiate all frameworks with the same MPC setting. The key

benchmark results are as follows.

• Graphiti: We benchmark the application of contact tracing using

BFS described earlier. We observe that when increasing N from

10
4
to 10

7
, in comparison to [2], our improvements in run time

increase from 585× to 1034× for the linear variant, and 18× to

106× for RO variant. This is because Graphiti’s round complexity

remains independent of N unlike [2]’s. Moreover, we observe that

it takes under 2 minutes to perform the computation on a graph of

size 10
7
. This shows that our solution is highly scalable.

• Secure shuffle: We design a shuffle protocol secure against a semi-

honest adversary in the 2-party with a helper setting. Note that the

state-of-the-art 2-party shuffle protocol of [9] can be adapted to

the 2-party with a helper setting by offloading the preprocessing

computations to a helper party. In comparison to this adaptation of

[9], we note that our shuffle protocol has a 2× factor improvement

in the online rounds while being on par in terms of communica-

tion cost. This is also corroborated by our benchmarks, where we

observe improvements of up to 1.83× in online run time. In fact, it

takes less than 2 seconds to shuffle a vector of ten million 64-bit ele-

ments. A comparison of our shuffle protocol with the adaptation of

[9] appears in Table 4. It is worthwhile to note that in frameworks

such as GraphSC and Graphiti, multiple invocations of shuffle are

required. In such cases, the additional communication of Nℓ bits
in the preprocessing phase of our shuffle gets amortised across all

the shuffle invocations, where the vector being shuffled is of size

N and each entry is of size ℓ bits.

Organisation. Preliminaries such as system model, GraphSC

[2, 22], etc., appear in §2. §3 provides our Graphiti framework,

and §4 discusses our new shuffle protocol. These are followed by

benchmarks in §5. Additional details of Graphiti, shuffle and bench-

marks appear in §A, §B, and §C, respectively. §D provides a proof

sketch for the security of the designed protocols.

2 Preliminaries
2.1 MPC and threat model
Graphiti can be instantiated with any MPC protocol of choice and

the security offered by the MPC protocol will be carried forward for

Graphiti. For benchmarking reasons, we instantiate it in the 2-party

computation (2PC) setting, with atmost one semi-honest corruption.

Further, since we operate in the preprocessing paradigm, as done

in several works [5, 6, 25, 27, 28], we assume the presence of an

additional trusted (incorruptible) helper party in the preprocessing

phase to generate the required data. Thus, the set of computing

parties is denoted as P = {𝑃0, 𝑃1}, while 𝑃2 denotes the trusted
helper party which does not collude with parties in P. Without

loss of generality, we also use the notation 𝑃𝑖 , 𝑃𝑖−1 for 𝑖 ∈ {0, 1}
to denote parties 𝑃0 and 𝑃1. During the run of the protocol, the

helper party 𝑃2 generates and distributes shared randomness to

the online parties 𝑃0 and 𝑃1 in an input-independent preprocessing

phase. Following this, 𝑃0 and 𝑃1 perform computation in the online

phase. The helper party is inactive during the online phase and

unaware of the computation the two parties intend to execute.

Like in any MPC setting, the parties {𝑃0, 𝑃1, 𝑃2} are connected via

pairwise private and authenticated channels over a synchronous

network. We let A denote a static, probabilistic, polynomial time,

semi-honest adversary that can corrupt one party amongst {𝑃0, 𝑃1}.
Our protocols in this setting are proven secure in the standard

real-world/ideal-world simulation paradigm.

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Parameter Reference Scatter∗ Gather ApplyV Total
†

Rounds

GraphSC [2] O(N · rmul · rAE) O(N · rmul)
O(rAV)

O(N · rmul · rAE + rAV + rshfl)
GraphSC [2] (RO) ‡ O(log(|V|) · rmul · rAE) O(log(|V|) · rmul) O(log(|V|) · rmul · rAE + rAV + rshfl)
Graphiti O(rshfl) + O(rAE) O(rshfl) O(rAE + rAV + rshfl)

Communcation

GraphSC [2] O(N · cmul · cAE) O(N · cmul)
O(N · cAV)

O(N · cmul · cAE + N · cAV + cshfl)
GraphSC [2] (RO) ‡ O(N · log(|V|) · cmul · cAE) O(N · log(|V|) · cmul) O(N · log(|V|) · cmul · cAE + N · cAV + cshfl)
Graphiti O(cshfl) + O(N · cAE) O(cshfl) O(N · cAE + N · cAV + cshfl)

Computation

GraphSC [2] O(N · pmul · pAE) O(N · pmul)
O(N · pAV)

O(N · pmul · pAE + N · pAV + pshfl)
GraphSC [2] (RO) ‡ O(N · log(|V|) · pmul · pAE) O(N · log(|V|) · pmul) O(N · log(|V|) · pmul · pAE + N · pAV + pshfl)
Graphiti O(pshfl) + O(N · pAE) O(pshfl) O(N · pAE + N · pAV + pshfl)

* Note that our cost for Scatter accounts for the cost for Propagate + ApplyE, and is hence reported with the split.

† The total cost additionally accounts for the transition from source order to destination order, which is realised using shuffle and is common to both [2] and Graphiti.
‡ The round optimised variant of [2] additionally assumes a bound on the maximum degree of the vertex. For a fair comparison, we set the maximum degree to be V.
r(·) , c(·) and p(·) denote the round, communication and computation complexity respectively of function 𝑓(·) when securely realised via MPC.

When reporting the cost of [2] we ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡 the additional overhead in [2] in comparison to Graphiti.

Table 2: Comparison of the cost of primitives in one iteration of the message-passing phase where N = |V | + |E |.

Framework Rounds Communication Computation

GraphSC [2] O(N) O(N) O(N)
GraphSC [2] (RO) O(log(|V|)) O(N log(|V|)) O(N log(|V|))
Graphiti O(1) O(N) O(1)

Table 3: Comparison of how the complexity of one iteration of the
message-passing phase of BFS scales with the graph size N.

Protocol Rounds

Communication (bits)

Online Preprocessing

[9] 𝑘 𝑘 (2Nℓ) 𝑘 (2Nℓ)
Ours 2𝑘 𝑘 (2Nℓ) 𝑘 (2Nℓ) + Nℓ

Table 4: Comparison of cost for 𝑘 shuffle invocations on a vector of
N elements where each element is of size ℓ .

The protocols operate over the ring algebraic structure, with

Z
2
ℓ denoting the ring of ℓ-bit elements. Our protocols work over

additive secret sharing denoted by ⟨·⟩. We say a value x ∈ Z
2
ℓ is

⟨·⟩-shared or additively shared over Z
2
ℓ if 𝑃𝑖 for 𝑖 ∈ {0, 1} holds ⟨x⟩𝑖

such that x = ⟨x⟩
0
+ ⟨x⟩

1
. Note that this secret sharing scheme is lin-

ear, i.e., given shares of x, y ∈ Z
2
ℓ and public constants c1, c2 ∈ Z

2
ℓ ,

parties can non-interactively generate shares of c1x + c2y. Parties
use a one-time key setup [7, 10, 17, 21, 23] to establish common

random keys for a pseudo-random function (PRF) between them.

This enables each subset of parties to non-interactively sample a

common random ℓ-bit string v ∈ Z
2
ℓ .

Primitives. We rely on the following primitives to securely re-

alise Graphiti. Other primitives as required for the specific graph

applications considered are described in place.

– Multiplication: This primitive takes as input two ⟨·⟩-shared val-

ues x, y ∈ Z
2
ℓ and outputs the ⟨·⟩-shares of z = x · y. We let Fmult

denote the ideal functionality for the same.

– Shuffle: This primitive takes as input a ⟨·⟩-shared vector T ∈ ZN
2
ℓ

of size N, where each element in T, i.e., T[𝑖],∀𝑖 ∈ {1, . . . ,N}, is ⟨·⟩-
shared. It outputs ⟨·⟩-shares of a vector TO ∈ ZN

2
ℓ where TO denotes

the vector T shuffled under some random secret permutation 𝜋 . We

let FShuffle denote the ideal functionality for this primitive. Note

that a permutation of size N, denoted as 𝜋 , is a bijective function

that maps elements from the set {1, 2, . . . ,N} to itself. We use the

notation 𝜋 (T) to refer to the operation of applying the permutation

𝜋 on T, which results in reordering the elements in T. Specifically,
the 𝑖𝑡ℎ element in the vector T[𝑖] is moved to position 𝜋 (𝑖). Since
permutation is a bijective mapping, it can be inverted and we use

𝜋−1
to denote the inverse of the permutation. We use 𝜋0 ◦ 𝜋1 to

denote the composition of permutations i.e. 𝜋0◦𝜋1 (T) = 𝜋0 (𝜋1 (T)).
Further, we note that a party can sample a random permutation

locally using the Fisher-Yates algorithm [12].

– Sort: This primitive takes as input a ⟨·⟩-shared vector T ∈ ZN
2
ℓ ,

where each element in T is ⟨·⟩-shared. It outputs ⟨·⟩-shares of a
vector TO ∈ ZN

2
ℓ where TO denotes the vector T that is sorted. We

let FSort denote the ideal functionality for this primitive.

– Insecure sort: This primitive is similar to the secure sort primitive

except that during the run of the secure sort protocol, the output

of the intermediate secure comparisons is not kept hidden. In this

way, the permutation that maps the input vector T to the output TO
is learned on clear. Note, however, that it is only this mapping from

the input to output that is not hidden, the elements of the input

and output continue to be ⟨·⟩-shared throughout the protocol. We

let FinsecSort denote the ideal functionality for this primitive.

– The underlying MPC: Note that Graphiti may require various

other MPC primitives such as comparison, equality etc. depending

on the considered graph algorithm. We abstract these out via the

FMPC functionality that takes inputs from the parties and returns

as output the function computed on the inputs. In the 2PC with

the helper setting, we instantiate FMPC using the 2PC protocols of

[11] where the preprocessing data is generated by a helper party.

2.2 GraphSC framework
GraphSC framework of [22]. It takes as input a directed data aug-

mented graph𝐺 (V, E, data) represented in the form of a DAG-listG.
Each entry in DAG-list G is represented by a tuple which contains

the following components—source (src), destination (dst), is_Vertex
(isV) to denote if the entry corresponds to a node or an edge, and

data to store the various data items that can be associated with

each tuple. A node u is encoded as (u, u, 1, data) and a directed edge
e(u, v) is encoded as (u, v, 0, data). The DAG-list provides an effec-

tive representation of the graph. An undirected graph can also be

represented in the DAG-list by converting it into a directed graph

where each edge is accounted for twice in both directions.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

To enable secure computation of the graph algorithm the frame-

work relies on expressing graph algorithms as message-passing

algorithms that operate in multiple iterations. In each iteration, the

nodes in the graph—(i) use their state information to send messages

over their incident edges; (ii) receive messages along their incident

edges and aggregate these messages; (iii) use these messages to

update their state. The sending, receiving and updating of state

information is realised via the primitives of Scatter,Gather and
Apply. Formally, the primitives are defined as follows:

• Scatter: It takes as input a function 𝑓AE : {0, 1}∗ → {0, 1}∗ and up-
dates each directed edge e(u, v) as e.data = 𝑓AE (e.data | | u.data).
• Gather: It takes as input a binary aggregation operation ⊕ :

{0, 1}∗ × {0, 1}∗ → {0, 1}∗ and updates the node data as v.data =

v.data | | ⊕∀e(u,v) ∈E e.data. Here, ⊕ is the iterated binary opera-

tion. GraphSC requires ⊕ to be commutative and associative. We

additionally require that the aggregation operation is linear.

• Apply: It takes as input a user defined function 𝑓AV : {0, 1}∗ →
{0, 1}∗ and updates each node as v.data = 𝑓AV (v.data).
Note that for simplicity, the above definition considers Scatter

occurring via outgoing edges, and Gather occurring via incoming

edges. However, these definitions can be made generic by account-

ing for a bit b that specifies whether the update occurs over the

incoming or outgoing edges during Scatter-Gather. We refer to [22]

for the detailed definitions. Secure realisations of these primitives

enables secure realisation of a message-passing algorithm that is

expressed as a composition of these primitives.

Observe that, naively realising Scatter-Gather while ensuring
the topology of the graph remains hidden would require linearly

scanning over the DAG-list |V| many times where the data of edges

corresponding to a single node is updated or aggregated in each

scan. GraphSC framework realises this efficiently by relying on

specific orderings of the DAG-list. A pictorial representation of

how Scatter and Gather can be achieved in a single linear scan

by leveraging specific orderings of the DAG-list appears in Fig. 1
6
.

Observe that by relying on the source order, Scatter can be realised

for all edges in a single linear scan of the DAG-list as described in

Algorithm 1. Similarly, by relying on the destination order, Gather
can be realised for all nodes in a single linear scan of the DAG-list

as described in Algorithm 2. Note that the approach of [22] for

Scatter-Gather requires performing different operations for entries

corresponding to nodes from those corresponding to edges. How-

ever, since the information of whether the scanned entry is a node

or an edge should be hidden, it necessitates additional interactive

multiplication operations when realised via MPC (see algorithm

1 and 2). The GraphSC framework of [22] relies on sort to switch

between the source order and destination order each time a Scatter

or Gather is applied. Unlike Scatter-Gather, Apply primitive can

be computed by processing each entry of the DAG-list in parallel

and applying the user-defined function if the element is a vertex.

Thus, Apply neither requires a linear scan nor requires any spe-

cial ordering of the DAG-list. Realising Scatter-Gather-Apply, as
described above, securely using MPC enables secure computation

6
Recall that Scatter updates edge data as a function of both node data and edge data.

However, for simplicity, we consider the function to be an identity function where the

edge updates its data to be equal to the data of the source node itself. Similarly, for

Gather we consider the aggregation operation to be an addition operation (see §1.1).

of the message-passing algorithms. To summarise, message-passing

graph algorithms can be computed iteratively by—(i) sorting based

on source order, (ii) Scatter, (iii) sorting based on destination order,

(iv) Gather, and (v) Apply. Towards this [22] relies on garbled cir-

cuits (GC) to securely realise the primitives. However, note that

the GC-based solution, despite an efficient round complexity, has a

high overhead due to local computations and communication that

dominates the runtime. Thus, to facilitate an improved runtime,

[22] describes an optimised solution that aims at reducing the com-

putational overhead. Specifically, [22] assumes a multiprocessor

setting and designs a depth optimised circuit for Scatter − Gather
primitives that has depth logarithmic in the number of processors.

Thus, the efficiency improvements are witnessed by leveraging the

presence of multiprocessors that facilitate computations that can

be done in parallel.

Algorithm 1: Scatter of [22]
Input: DAG-list G in source order

1 tmp = 0;

2 for 𝑖 = 1 to N do
3 G[𝑖] .data = tmp + (G[𝑖] .data − tmp) · G[𝑖] .isV ;

4 tmp = tmp + (G[𝑖] .x − tmp) · G[𝑖] .isV
5 end

Algorithm 2: Gather of [22]
Input: DAG-list G in destination order

1 agg = 0;

2 for 𝑖 = 1 to N do
3 G[𝑖] .data = agg · G[𝑖] .isV ;

4 agg = (agg + G[𝑖] .data) · (1 − G[𝑖] .isV)
5 end

Improved GraphSC of [2]. To ensure secure computation over the

graph the work of [2], relies on secret-sharing based MPC. In this

setting, the input graph represented as the DAG-list is secret-shared

among the computing parties of MPC. This ensures that parties

cannot distinguish between shares of a tuple corresponding to a

vertex and those of an edge. Scatter can be realised in a sequential

scan of the DAG-list sorted in source order as described earlier. Sim-

ilarly, Gather can be realised in a sequential scan of the DAG-list

sorted in destination order as described earlier. To transition be-

tween different orderings of the DAG-list, a secure sort protocol is

required. However, [2] observes that the mapping that takes one

ordering to another remains the same across multiple iterations

of message-passing phase. Thus, the mappings can be generated

in a one-time initialisation phase. Further, instead of relying on

a secure sort protocol for generating the mappings, [2] observes

that it can be efficiently achieved by replacing the secure sort pro-

tocol with a secure shuffle followed by (partially) insecure sort.

This approach of [2] is more efficient for transitioning between the

different orderings of the DAG-list given the initialisation phase.

Since [2] continues to rely on the approach of [22] for Scatter
and Gather, it also requires additional interactive multiplication

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0 0 0 0 0

Scatter - Source order

00 0

Gather- Destination order

0 0 0

0 00 00

* and refer to the input and output state of the data component

G

- Vertices

- Edges

Figure 1: Example of Scatter and Gather in GraphSC.

operations (see Algorithm 1 and 2). This incurs a round complexity

of O(N) when realised using secret-sharing based MPC. Towards

addressing this [2] attempts to provide a round optimized (RO)

variant of Scatter-Gather by assuming a bound (B) on themaximum

degree of the node. The resulting solution continues to have a round

complexity O(log(B)) and a communication cost of O(N · log(B)).
Wewould like to note that [2] considers a possibly unrealistic bound

of 1023 for a graph of size 10
7
. However, we observe that several

real world graphs [26] have maximum degree of O(|V|).
Note that, unlike in [22], [2] has rounds as the bottleneck rather

than the computations. Thus, rather than relying on a multipro-

cessor setting, [2] proposes moving to the secret-sharing based

approach, replacing invocations of the secure sort protocol to se-

cure shuffle followed by partially insecure sort and also proposes

a round optimised variant for Scatter − Gather towards attaining
an improved solution over [22]. We take this one step ahead and

improve [2] by designing an improved solution that has round com-

plexity independent of the graph size, where neither rounds nor

computations are the bottleneck.

3 Graphiti
Our framework allows secure evaluation of graph algorithms ex-

pressed as message-passing algorithms. Here, the message passing

algorithm is evaluated iteratively where each iteration consists of

the following primitives—(i) Propagate: Propagating information

from a source node onto its outgoing edges. (ii) ApplyE: Updat-
ing edge data using the information propagated in Propagate. (iii)
Gather: Aggregating information from its incoming edges into the

destination node. (iv) ApplyV: Updating node data using the infor-

mation aggregated in Gather. We next formally define these primi-

tives. Following this, we provide the cleartext algorithms for our

novel approach of performing Scatter (that consists of Propagate
and ApplyE) andGather. Finally, we showcase how these primitives

can be realised securely via MPC. Moreover, we also describe the

end-to-end secure Graphiti framework and discuss how the round

complexity of the message-passing phase is independent of |V| + |E|.

3.1 Graphiti primitives
Like GraphSC, Graphiti also relies on the DAG-list representation

of a data-augmented directed graph 𝐺 (V, E, data). The four primi-

tive operations of Graphiti are as defined below. We note that our

primitives are generic as defined in [22] and can also cater to the

bit b = ‘in/out′ that specifies whether the update occurs over the
incoming or outgoing edges of each node. However, as done in [22]

for simplicity, we assume that Scatter always occurs via outgoing
edges, and Gather always occurs via incoming edges.

1. Propagate: A node propagates data to its outgoing edges. Through

this operation, each directed edge is updated as

e.data = e.data | | u.data ∀ e(u, v) ∈ E

2. ApplyE: Through this operation, all edges locally update their

data. It takes as input a user-defined function 𝑓AE : {0, 1}∗ →
{0, 1}∗ and updates each edge as

e.data = 𝑓AE (e.data) ∀ e(u, v) ∈ E

Observe that the Propagate operation now solely involves the

propagation of data in the nodes to its edges. Further, it is the

operation ApplyE that allows the edges to locally update the

data by applying a user-defined function. Thus, Propagate and
ApplyE together encapsulate the original operation of Scatter
as described in GraphSC [22]. Further, below definitions of

Gather and ApplyV remain same as [22].

3. Gather: A node aggregates the data from incoming edges and

updates its data. It takes as input a linear aggregation (see §1.1)
operation ⊕ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and updates the data

on node as

v.data = v.data | | ⊕∀e(u,v) ∈E e.data ∀ e(u, v) ∈ E

4. ApplyV: Through this operation, all nodes locally update their

data. It takes as input a user-defined function 𝑓AV : {0, 1}∗ →
{0, 1}∗ and updates each node as

v.data = 𝑓AV (v.data) ∀ v ∈ V

3.2 Scatter
Recall from §2.2 that each entry in DAG-list G is represented by a

tuple (src, dst, isV, data). We note that data, the state information

stored at each node/edge, can itself can have multiple components,

some specific to nodes and some specific to edges. However, to en-

sure that the topology of the graph is hidden, every entry in the G
is associated with all the components. However, only the data com-

ponent relevant to an entry has valid information, while the other

components have 0 or dummy values. LetG[𝑖] be the 𝑖th entry/tuple
in the DAG-list. We use G[𝑖] .datas to denote the data component

that has to be sent/propagated. Similarly, we use G[𝑖] .datar to de-

note the data component that receives the information propagated.

Note that at the beginning of Propagate, G[𝑖] .datar is initialised to
0 for all entries and G[𝑖] .datas = 0 if G[𝑖] corresponds to an edge

entry. After Propagate, the datas component of every node should

be propagated and stored on datar component of its outgoing edges,

while the datar component remains 0 for all nodes.

At a high level, Propagate works as follows. Similar to the ap-

proach of [22], consider the DAG-list sorted in source order, where

outgoing edges of a node are located immediately after the node.

Recall that to realise Scatter, the approach in [22] was to ensure

that during a linear scan of the DAG-list, each edge is updated as a

function of the data component present on the node preceding it in

the source order of the DAG-list. A similar approach can be taken to

realise Propagate where the edge is updated as the data component

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

present on the node preceding it without applying a function. How-

ever, to realise this, the Scatter algorithm required differentiating

between operations carried out at a node (fromwhere data had to be

picked up) and operations carried out at an edge (where the picked-

up data had to be dropped off). Instead, we take a different approach

where the data dropped off at an edge comprises data present at all

the nodes preceding this edge in the source order sorted DAG-list.

Observe that this approach can be realised by simply performing a

cumulative sum of the data values present at every entry preced-

ing the current entry, i.e. G[𝑖] .datar =
∑𝑖−1

𝑗=1 G[𝑗] .datas for 𝑖 = 1

to N. Since G[𝑖] .datas for an edge is 0, the cumulative sum of all

entries preceding an edge correctly realises the above operation.

Moreover, cumulative sum being a linear operation, can be realised

non-interactively via MPC.

Observe, however, that each edge now possesses sum of the data

to be propagated from its source node and the data present on the

nodes that appear before it in the source order of the DAG-list.

The latter part contributing to the sum needs to be removed. For

this, we adjust the datas at each node so that the cumulative sum

computes the intended data to be propagated. To achieve this, we

introduce a new ordering of the DAG-list, called the vertex order-

ing, which is used to update the data to be propagated by each.

A vertex ordering of the DAG-list is an ordering such that all the

nodes are sorted as per their indices and appear first, followed by

all the edges. We define the vertex order in this way to ensure

that the ordering among the nodes remains consistent with their

ordering in the source order. This allows us to correctly adjust

the values to be propagated by the nodes. Elaborately, given the

vertex order of the DAG-list, the value to be propagated by a node

is computed as G[𝑖] .data′s = G[𝑖] .datas − G[𝑖 − 1] .datas for 𝑖 = 1

to |V|7. Since this step comprises entirely linear operations, it can

also be performed non-interactively within MPC. Having computed

the updated data to be propagated in the vertex order, the compu-

tations in the source order to propagate the correct data involve

computing G[𝑖] .datar =
∑𝑖−1

𝑗=1 G[𝑗] .data′s for 𝑖 = 1 to N. Finally,
note that transitioning between a vertex order and source order

of DAG-list requires one invocation of FShuffle, akin to transition

between source and destination order in [2] as elaborated in §3.4.

An example of the computations performed on the vertex order

and source order of the DAG-list appears in Fig. 2.

0 00 0 0

0 0 0 0 0

0 00 0 0

0 0 0 0 0

0 0 000 0 00

00 0

(1) Vertex order

(3) Source order

(2) Transition

Figure 2: Example for Propagate in Graphiti for the graph G
considered in Fig. 1.

7
Although it appears that knowledge of |V | is required, it can be avoided (see §A.1).

The formal steps for Propagate appear in Algorithm 3. The steps

in the algorithm account for optimisations such as—(1) Not requir-

ing to maintain an explicit G[𝑖] .data′s component, which can in-

stead be computed as part ofG[𝑖] .datar. (2) SinceG[𝑖] .datar is used
for propagating data as well as accumulating the propagated data, it

necessitates performing a reverse linear scan of the DAG-list in the

source order. (3) To ensure that theG[𝑖] .datar component of a node

becomes 0 after Propagate, the computation to be performed on the

source ordered list is G[𝑖] .datar =
∑𝑖

𝑗=1 G[𝑗] .datar − G[𝑖] .datas
instead of just G[𝑖] .datar =

∑𝑖
𝑗=1 G[𝑗] .datar.

Algorithm 3: Propagate
Input: DAG-list G in vertex order

1 for 𝑖 = |V| to 2 do
2 G[𝑖] .datar = G[𝑖] .datas − G[𝑖 − 1] .datas ;
3 end
4 Transition to the source order of the DAG-list ;

5 for 𝑖 = N to 1 do
6 G[𝑖] .datar =

∑𝑖
𝑗=1 G[𝑗] .datar − G[𝑖] .datas ;

7 end

Looking ahead, note that in the secure realisation of Algorithm

3 using MPC, step 2 and step 6, which consist of only linear opera-

tions, can be realised non-interactively. Thus, the only cost incurred

is for the transition from vertex order of the DAG-list to source

order, which can be achieved using a single invocation FShuffle as
described in §3.4. Finally, note that to achieve the effect of Scatter
as per the original definition of [22], the operations described above

are followed by the ApplyE primitive. Having scattered the data

from nodes onto the outgoing edges, the next step is to gather this

scattered information into the respective nodes. Details of how this

can be achieved are described next.

3.3 Gather
After Propagate and ApplyE, every edge has the scattered data

stored in the datar component, while the same is empty for a node.

DuringGather, each node aggregates datar from its incoming edges

using an aggregation operation denoted as ⊕. For ease of expla-
nation, we consider this operation to be an addition operation.

However, note that this can be any linear aggregation function.

We use G[𝑖] .datag to denote the data component of an entry that

stores information aggregated as a part of Gather. Note that at

the beginning of Gather, G[𝑖] .datag is initialised to 0 for all the

entries. After Gather, the datag component of a node stores the

aggregation of the datar component of its incoming edges while

the datag component of an edge contains dummy values.

Our algorithm for Gather begins similar to the algorithm of

[22], wherein the DAG-list is present in the destination order. In

this order, entries corresponding to all the incoming edges of each

node precede the node entry in the DAG-list. To aggregate informa-

tion into a node, a linear scan of this destination ordered DAG-list

is performed. During the scan, each entry computes a cumula-

tive sum of the datar component of all entries that precede it and

stores it in the datag′ component. That is, the linear scan computes

G[𝑖] .datag′ =
∑𝑖−1

𝑗=1 G[𝑗] .datar across all entries 𝑖 in the DAG-list.

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

+
+

00 0 0 0 00 0

+

+

0 00 0 0

+
+
+

+
+
+

+

+
+

+
++

+
+
+

+
+

+
+

+

+
+
+

+

+
+
+

+

(1) Destination order

(3) Vertex order

(2) Transition

0 0 0

*For ease of representation we use as a intermediate variable that stores the cumulative sum
**In the component, the values marked in green denote the correct value to be aggregated
 while the values in red are the additional components that should be removed

Figure 3: Example for Gather in Graphiti for the same graph
G given in Fig. 1.

Like in Propagate, the cumulative sum only requires linear opera-

tions, which facilitates realising it non-interactively within MPC.

Next, due to the cumulative sum, observe that each node aggre-

gates not only the datar component from its incoming edges but

also the datar component accumulated by the preceding entries in

DAG-list. To ensure that the correct information is aggregated, it

is required to remove this additional information that is gathered

by each node. For this, observe that this additional information

aggregated by a node is indeed the data aggregated by the preced-

ing node in the DAG-list. Thus, transitioning to the vertex order

of the DAG-list allows each node to remove this additional infor-

mation and compute the correct datag component by computing

G[𝑖] .datag = G[𝑖] .datag′ −G[𝑖 − 1] .datag′ for 𝑖 = 1 to N. Observe
that this also comprises entirely of linear operations, and the transi-

tion from destination ordering to vertex ordering can be done using

FShuffle. A pictorial representation of gather is given in Fig. 3.

The formal steps for Gather appear in Algorithm 4. The steps

in the algorithm account for the optimisations of not maintaining

an explicit G[𝑖] .datag′ component. Instead it can be computed as

part of G[𝑖] .datag. However, this necessitates performing a reverse

linear scan of the DAG-list in the vertex order. Looking ahead, note

that in the secure realisation of Algorithm 4 using MPC, step 2 and

step 6, which consist of only linear operations, can be realised non-

interactively. Thus, the only cost incurred is the transition from the

destination order of the DAG-list to the vertex order, which can be

achieved using a single invocation FShuffle as described in §3.4.

Finally,Gather is followed by theApplyV primitive, whichmarks

the completion of one round of the message-passing phase. Un-

like [2], where ApplyV is realised by applying the function 𝑓AV on

all entries of DAG-list and obliviously updating only the vertices,

Graphiti can leverage the knowledge of |V| to realise ApplyV more

efficiently. Observe that at the end ofGather, the DAG-list is sorted
in the vertex order where all the vertices appear together. Thus,

the function 𝑓AV can be applied only to the first |V| entries of the
DAG-list that corresponds to the vertices.

Algorithm 4: Gather
Input: DAG-list G in destination order

1 for 𝑖 = 1 to N do
2 G[𝑖] .datag =

∑𝑖
𝑗=1 G[𝑗] .datar ;

3 end
4 Transition to the vertex order of the DAG-list;

5 for 𝑖 = N to 2 do
6 G[𝑖] .datag = G[𝑖] .datag − G[𝑖 − 1] .datag ;
7 end

3.4 The complete Graphiti framework
Graphiti securely evaluates a graph algorithm by invoking multi-

ple iterations of the message-passing phase. Each iteration starts

with performing a Propagate as described in Algorithm 3, which

entails performing computations on the DAG-list in the vertex or-

der, followed by a transition to the source order. Once information

is propagated, an invocation of ApplyE ensures that data on each

edge in the DAG-list is updated under the function 𝑓AE (·). This is
followed by a transition from source order to the destination order

to perform Gather. Following this, we perform a Gather as defined
in Algorithm 4, which entails transitioning from the source order to

the destination order, performing computations on the destination

order, and transitioning to the vertex order. Once information is

gathered, an invocation ofApplyV ensures that data on each node in

the DAG-list is updated under the function 𝑓AV (·). This constitutes
one iteration of the message-passing phase.

Observe that unlike [22], our solution additionally requires a ver-

tex order of the DAG-list. However, each iteration of the message-

passing phase in our solution starts and ends on the vertex order.

Hence, when evaluating multiple message-passing rounds, we do

not require additional transitions to switch between any of the

orderings, as required in [22] to move from the destination order

to the source order. Further, since the mapping used in the transi-

tions remain the same across multiple message-passing rounds, as

done in the work of [2], we generate these mappings in a one-time

initialisation phase. We next provide details of this initialisation

phase, followed by the message-passing phase.

3.4.1 Initialisation phase. The initialisation of GraphSC [22] com-

prises generating secret shares of mappings that allow transitioning

between different orderings of the DAG-list. While these mappings

can be generated naively by relying on a secure sort, the work of [2]

showcased efficiency improvements that can be achieved by instead

relying on a secure shuffle followed by an insecure sort (§2.2). Our

solution continues to use this shuffle-then-sort paradigm.

The initialisation phase of [2] begins with a secret-sharing of

the DAG-list that is randomly ordered. However, it is unclear how

such a randomly ordered DAG-list can be generated, even as a part

of input sharing. Instead, we observe that the vertex ordering of

DAG-list is a more naturally occurring input state, and hence, we

begin our initialisation phase with vertex ordering of the DAG-list.

To this end, we also design an input sharing phase in Graphiti
(see §A.2), which enables users who only have a partial view of a

global graph to secret share their view of the graph such that all the

computing parties hold secret shares of the DAG-list in the vertex

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

order. Given this, steps in our initialisation follow on similar lines

as that of [2] except that we additionally require the generation of

mappings that allow transitioning to/from vertex order.

Steps involved in initialisation. Given the DAG-list in the ver-

tex order, the parties invoke FShuffle to apply a random permu-

tation 𝜋𝐴 on the DAG-list to generate a random ordering of the

DAG-list, denoted as Shuffle-A. The parties then invoke FShuffle
to apply another random permutation 𝜋𝐵 on Shuffle-A to gener-

ate Shuffle-B. The parties invoke FinsecSort to compute a mapping

from the Shuffle-A to the source order. We denote this mapping

as 𝜋𝑆 . Observe that, since this mapping merely maps a random

permutation of the DAG-list to a sorted list, it leaks no information

about the relation between the vertex order and the source order.

Hence, the mapping 𝜋𝑆 can be made public. Similarly, the parties

invoke FinsecSort on Shuffle-B to compute a public mapping from

the Shuffle-B to the destination order. This mapping is denoted

as 𝜋𝐷 . Note that the steps for initialisation are similar to those

described in [2] except that we begin with a vertex ordering of

the DAG-list instead of a random ordering. We refer to [2] for ad-

ditional details such as the need for Shuffle-A, Shuffle-B, etc. A
pictorial illustration of initialisation phase appears in Fig. 7 in §A.3.

Transition between different orderings.Given secret shared permu-

tations 𝜋𝐴, 𝜋𝐵 and public permutations 𝜋𝑆 and 𝜋𝐷 that are gener-

ated during the initialisation phase, the transition between different

orderings during the message-passing phase can be achieved as

illustrated in Fig. 4. Formal details appear in §A.3.1.

Secure ShuffleVertex order Shuffle-A

Shuffle-B

Source order

Destination order

Secure Shuffle

- Secret shared permutations

- Public permutations

Secure Shuffle

Figure 4: Transition between orderings ofDAG-list inGraphiti.
Complexity. Starting with vertex ordered DAG-list, two sequen-

tial invocations of FShuffle are required to generate Shuffle-A and

Shuffle-B, along with sharing of permutations 𝜋𝐴 and 𝜋𝐵 . Then,

two parallel invocations of FinsecSort are required to generate map-

pings corresponding to source and destination order. Finally, a

single invocation of FShuffle in parallel is required to generate shar-

ing of 𝜋𝐶 . Thus, initialisation requires two invocations of shuffle

followed by parallel invocations of two FinsecSort and FShuffle.
3.4.2 Message-passing phase. Each iteration of themessage-passing

phase consists of a secure evaluation of Propagate (Algorithm

3), ApplyE, Gather (Algorithm 4) and ApplyV. Securely realising

Propagate and Gather involves transitioning between orderings of

the DAG-list, which can be done using an invocation to FShuffle,
followed by local operations. The secure realisation of ApplyE and

ApplyV can be performed using MPC. A pictorial illustration of

steps in one iteration of message-passing phase appears in Fig. 5. Ob-

serve that securely realising a graph algorithm boils down to design-

ing the above mentioned primitives with respect to the graph algo-

rithm under consideration. These further rely on FShuffle, FinsecSort
and the underlying MPC protocol as required for realising the func-

tions in ApplyE and ApplyV. Hence, given the cleartext algorithm

for the aforementioned primitives, one can rely on an appropriate

MPC protocol to attain the desired level of security. In this way,

Graphiti is a generic framework and can be instantiated with an

MPC protocol of choice. The formal details, along with their secu-

rity proof, appear in §D. Additionally, details of securely evaluating

contact tracing via Graphiti as an example is described in §A.4.

Complexity. The protocol begins with DAG-list sorted in vertex

order. Propagate, involves secure evaluation of Algorithm 3 using

MPC. Observe that in the secure evaluation, steps 1-3 consist of

only linear operations and hence can be evaluated non-interactively.

Following this, the parties invoke FShuffle to apply 𝜋𝐴 , then apply

the public permutation 𝜋𝑆 on their local shares of DAG-list to gen-

erate the source order. Finally, steps 5-7 also consist of only linear

operations and hence can be evaluated non-interactively. Parties

evaluate ApplyE in parallel by securely computing the function 𝑓AE
on the appropriate data components of each entry in DAG-list. To

transition from the source order to the destination order, the par-

ties locally apply the public permutation 𝜋−1
𝑆

to generate Shuffle-B.
The parties invoke one instance of FShuffle, which applies 𝜋𝐵 on

Shuffle-A and generate Shuffle-B. The parties locally apply the

public permutation 𝜋𝐷 to get the destination order. During Gather,
parties run the MPC protocol to evaluate Gather described in al-

gorithm 4. In the secure evaluation of Algorithm 4, observe that

steps 1-3 consist of only linear operations and hence can be eval-

uated non-interactively. Following this, parties apply the public

permutation 𝜋−1
𝐷

on their local shares, followed by one invocation

of FShuffle to apply 𝜋𝐶 to generate the vertex order. Finally, steps 5-7

also consist of only linear operations and hence can be evaluated

non-interactively. Parties evaluate ApplyV in parallel by securely

computing the function 𝑓AV on the appropriate data components

of the first |V| entries in the DAG-list. In this way, the round com-

plexity of the message-passing phase is independent of the length

of the DAG-list and is constant in the FShuffle-hybrid model.

4 (2+1)-Shuffle
We design a secure shuffle protocol in the 2PC setting with a helper

that is secure against a semi-honest adversary. The 2PC shuffle

protocol of [9] when instantiated with a helper forms the state-of-

the-art and has an online complexity of 2 rounds and 2N elements

of communication. Our shuffle protocol brings down the round

complexity to just 1. An elaborate discussion on shuffle protocols

in other settings is deferred to §B. We begin by describing the

ideal functionality for our shuffle protocol, followed by the secure

protocol for the same.

Let T ∈ ZN
2
ℓ be a vector of N elements, where each element is

drawn from Z
2
ℓ . Let T be additively shared among the parties 𝑃0, 𝑃1,

i.e., every element of T is additively shared among 𝑃0, 𝑃1 such that

𝑃𝑖 ∈ {𝑃0, 𝑃1} holds ⟨T⟩𝑖 ∈ ZN
2
ℓ and T = ⟨T⟩

0
+ ⟨T⟩

1
. Secure shuffle

takes as input ⟨·⟩-shares of T and generates ⟨·⟩-shares of TO ∈ ZN
2
ℓ

where TO represents the shuffled vector T under a random secret

permutation 𝜋 , i.e., TO [𝑖] = T[𝜋 (𝑖)]. We use TO = 𝜋 (T) to denote

the operation of shuffling T under a random permutation 𝜋 to obtain

TO. Ideal functionality for secure shuffle appears in Fig. 9
8
in §B.

Observe that to perform a secure shuffle operation, the permuta-

tion, 𝜋 , used for shuffling should be hidden from the parties. Hence,

8Graphiti requires shuffling the DAG-list which can be viewed as a vector, where each

element is now a tuple of elements instead of being a single element from Z
2
ℓ .

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Vertex order

Source Order

Destination Order

Shuffle A

Shuffle B

(1) MPC operations

(4) MPC operations

(10) Secure Shuffle (6) Secure Shuffle

(8) MPC operations

(3) Apply permutation

(7) Apply permutation

(9) Apply permutation

(5) Apply permutation

(11) MPC operations

(2) Secure Shuffle

- Secret Shared DAG-List

- Local operations

- Interactive operations

- Secret shared
permutations

- Public permutations

G

Figure 5: Example for message-passing round in Graphiti.

we define 𝜋 to be a composition of two random permutations 𝜋0
and 𝜋1, i.e., 𝜋 = 𝜋0 ◦ 𝜋1, such that 𝑃𝑖 ∈ {𝑃0, 𝑃1} only holds 𝜋𝑖 . Note

that 𝑃𝑖 can generate this random permutation 𝜋𝑖 non-interactively

(see §2.1). Given this, to compute ⟨·⟩-shares of TO = 𝜋 (T), we make

the following observation.

TO = 𝜋 (T) = 𝜋
(
⟨T⟩

0
+ ⟨T⟩

1

)
= 𝜋

(
⟨T⟩

0

)
+ 𝜋 (⟨T⟩

1
)

Thus, one can define the ⟨·⟩-shares of TO as ⟨TO⟩0 = 𝜋 (⟨T⟩
1
) (to

be held by 𝑃0) and ⟨TO⟩1 = 𝜋
(
⟨T⟩

0

)
(to be held by 𝑃1). However,

observe that defining the shares in this way allows 𝑃1 to learn

𝜋
(
⟨T⟩

0

)
which is the permuted share of the input held by 𝑃0 and

similarly for 𝑃0. Hence, to ensure that no information about the

other party’s input share is leaked, we define the ⟨·⟩-shares of TO
by masking both 𝜋

(
⟨T⟩

0

)
and 𝜋 (⟨T⟩

1
) with a vector of random

values R ∈ ZN
2
ℓ . That is,

TO = 𝜋
(
⟨T⟩

0

)
+ 𝜋 (⟨T⟩

1
) =

(
𝜋
(
⟨T⟩

0

)
− R

)︸ ︷︷ ︸
⟨TO ⟩1

+ (𝜋 (⟨T⟩
1
) + R)︸ ︷︷ ︸

⟨TO ⟩0
Thus, our goal boils down to generating ⟨TO⟩0 = 𝜋 (⟨T⟩

1
) + R

towards 𝑃0 and generating ⟨TO⟩1 = 𝜋
(
⟨T⟩

0

)
− R towards 𝑃1. At a

high-level, to generate ⟨TO⟩0 towards 𝑃0, the approach is to first

generate ⟨TO⟩′0 = 𝜋 (⟨T⟩
1
+ R1) towards 𝑃0, where R1 ∈ ZN

2
ℓ is not

known to 𝑃0. Similarly, ⟨TO⟩′1 = 𝜋
(
⟨T⟩

0
+ R0

)
can be generated

towards 𝑃1. To ensure that the same randomness is used as a mask

in each ⟨TO⟩𝑖 for 𝑖 ∈ {0, 1}, 𝑃𝑖 then non-interactively computes

⟨TO⟩𝑖 = ⟨TO⟩′𝑖 − B𝑖 , where B0 = 𝜋 (R1) − R and B1 = 𝜋 (R0) + R.
Observe that since B𝑖 comprises of values that are independent of

the input, it can be computed and made available to 𝑃𝑖 for 𝑖 ∈ {0, 1}
in the preprocessing phase. We next elaborate on these steps, where

we begin by discussing how ⟨TO⟩0 can be generated towards 𝑃0,

followed by discussing generation of ⟨TO⟩1 towards 𝑃1.
Generating ⟨TO⟩0 towards 𝑃0. Recall that ⟨TO⟩0 = 𝜋 (⟨T⟩

1
) +

R. Consider the term 𝜋 (⟨T⟩
1
) = 𝜋0 (𝜋1 (⟨T⟩1)). Observe that to

compute 𝜋 (⟨T⟩
1
), 𝑃0 misses 𝜋1 and ⟨T⟩

1
. Both these are held by

𝑃1, who can compute and send A0 = 𝜋1 (⟨T⟩1 + R1) to 𝑃0. Here,

R1 ∈ ZN
2
ℓ is a random vector sampled by 𝑃1 to mask 𝜋1, ⟨T⟩1 from

𝑃0. On receiving A0, 𝑃0 can compute 𝜋0 (A0) to obtain ⟨TO⟩′0 =

𝜋 (⟨T⟩
1
+ R1). Next, to generate ⟨TO⟩0 = 𝜋 (⟨T⟩

1
) +R, the approach

is to make available towards 𝑃0 the vector B0 = 𝜋 (R1) − R. While

the process for generation of B0 is described later, observe here that
computing ⟨TO⟩′0 − B0 = 𝜋 (⟨T⟩

1
) + R allows 𝑃0 to obtain ⟨TO⟩0.

Generating ⟨TO⟩1 towards 𝑃1. An analogous approach, as de-

scribed above, does not help in generating ⟨TO⟩1 = 𝜋
(
⟨T⟩

0

)
− R to-

wards 𝑃1. This is because unlike the value 𝜋 (⟨T⟩
1
) = 𝜋0 (𝜋1 (⟨T⟩1))

in ⟨TO⟩0, where 𝑃0 was missing both the inner terms 𝜋1 and ⟨T⟩
1
,

the term 𝜋
(
⟨T⟩

0

)
= 𝜋0

(
𝜋1

(
⟨T⟩

0

))
in ⟨TO⟩0 does not have this

structure. Elaborately, although 𝑃0 holds 𝜋0 and ⟨T⟩
0
, note that

the application of 𝜋0 on ⟨T⟩
0
is preceded by the application of

𝜋1. Since the composition of permutations is not commutative,

generating ⟨TO⟩′1 towards 𝑃1 in a single round is challenging. To

enable the generation of 𝜋
(
⟨T⟩

0

)
(masked with randomness) to-

wards 𝑃1 in a single round, we let the parties generate another pair

of permutations 𝜋 ′
0
, 𝜋 ′

1
such that 𝜋 = 𝜋0 ◦ 𝜋1 = 𝜋 ′

1
◦ 𝜋 ′

0
. Ensuring

𝜋 = 𝜋 ′
1
◦ 𝜋 ′

0
allows to perform analogous steps towards 𝑃1 to gener-

ate A1 = 𝜋 ′
0

(
⟨T⟩

0
+ R1

)
and thereby ⟨TO⟩1 using 𝜋 ′1, 𝜋

′
0
, as done to

generate ⟨TO⟩0 towards 𝑃0 using 𝜋0, 𝜋1. Elaborately, 𝑃0 computes

and sends A1 = 𝜋 ′
0
(⟨T⟩

0
+ R0) to 𝑃1, where R1 ∈ ZN

2
ℓ serves as a

vector of random masks to hide 𝜋 ′
0
, ⟨T⟩

0
from 𝑃1. Party 𝑃1 can then

compute ⟨TO⟩′1 = 𝜋 ′
1
(A0) = 𝜋

(
⟨T⟩

0

)
+ 𝜋 (R0). To generate ⟨TO⟩1

we make available towards 𝑃1 the vector B1 = 𝜋 ′
0
(R0) + R. This

allows 𝑃1 to compute ⟨TO⟩′1 − B1 = 𝜋
(
⟨T⟩

0

)
− R and obtain ⟨TO⟩1.

Generating input-independent data. We now discuss how the

various terms such as 𝜋𝑖 , 𝜋
′
𝑖
,R𝑖 for 𝑖 ∈ {0, 1} and B0 = 𝜋 (R1) −

R,B1 = 𝜋 ′ (R0) +R can be generated with the help of a trusted party

𝑃2 in the preprocessing phase. First, parties 𝑃𝑖 , 𝑃2 for 𝑖 ∈ {0, 1}
sample a random permutation 𝜋𝑖 over {1, . . . ,N}, non-interactively.
This defines 𝜋 = 𝜋0 ◦ 𝜋1. However, the second pair of permutations

𝜋 ′
0
, 𝜋 ′

1
should be defined such that 𝜋 = 𝜋 ′

1
◦ 𝜋 ′

0
= 𝜋0 ◦ 𝜋1. To realize

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

this, parties 𝑃0 and 𝑃2 randomly sample 𝜋 ′
0
non-interactively. Given

𝜋 ′
0
, observe that 𝜋 ′

1
= 𝜋 ◦ 𝜋 ′−1

0
where 𝜋 and 𝜋 ′

0
are both known

to 𝑃2. Thus 𝑃2 computes 𝜋 ′
1
and sends it to 𝑃1. Observe that 𝑃2

learns the entire 𝜋 on clear. Hence, to hide the permutation from 𝑃2,

after generating ⟨TO⟩, 𝑃0, 𝑃1 sample a random permutation 𝜋2 that

is not known to 𝑃2 and locally permute the shares of TO. Finally,
note that R𝑖 can be sampled non-interactively by parties 𝑃𝑖 , 𝑃2 for

𝑖 ∈ {0, 1}. Following this, 𝑃2 computes and sends B0 = 𝜋 (R1) − R
to 𝑃0 and B1 = 𝜋 ′

0
(R0) + R to 𝑃1. The formal protocol for secure

shuffle appears in Fig. 10 in §B.

Complexity.We next discuss the round and communication com-

plexity of our protocol and also compare it with the semi-honest

shuffle protocol of [9]. Observe that the online phase involves a

single round of interaction where each party communicates one

message of Nℓ bits. The preprocessing phase also involves a single

round of interaction where 𝑃2 communicates three messages of size

Nℓ . Thus, the overall cost of the Π (2+1)-Shuffle is two rounds and

5Nℓ bits of communication. A detailed comparison of our shuffle

protocol with that of [9] appears in §B.

5 Benchmarks
We empirically evaluate the performance of Graphiti framework

and compare it with the state-of-the-art GraphSC framework of [2].

We instantiate the underlying MPC using the MPC framework of

[11]. Here, we offload input-independent computations to a prepro-

cessing phase where the helper party carries out the computations.

We implement all the protocols from scratch in C++ using the code

base of [30]. We note that our code
9
is developed for benchmarking,

is not optimised for industry-grade use. We perform the bench-

marks over LAN on Ubuntu servers equipped with AMD Ryzen

Threadripper PRO 5965WX and 256GB RAM. Each party is run as

a process on the same machine. We simulate the network connec-

tion using the Linux tc command. We consider a bandwidth of 1

Gbps and 0.5 ms of latency. We note that our code is not multi-

threaded, and all experiments are run on a single thread. For all our

experiments we consider the online run time and online commu-

nication as the parameters for benchmark. For completeness, we

report the preprocessing cost in §C. We first provide a performance

comparison of Graphiti with the framework of [2], followed by

benchmarking the performance of our shuffle protocol against that

of [9]. With respect to GraphSC, note that although [2] relied on a

3-party honest majority setting for showcasing performance, the

techniques therein are generic and can be instantiated with any

MPC. Hence, to draw a fair comparison with Graphiti and show-

case the performance improvement brought in by our techniques

to realise Scatter-Gather, we instantiate Graphiti as well as the
techniques of [2] in the above mentioned 2-party setting with a

helper. Similarly, with respect to shuffle, to draw a fair comparison,

we adapt the protocol of [9] in the 2-party with a helper setting.

5.1 Graphiti
We consider the two variants of GraphSC provided by [2] for

comparison– (i) linear variant that has round and communica-

tion complexity of O(N) for performing Scatter/Gather and (ii)

round optimised (RO) variant that has better round complexity

9
https://github.com/Bhavishrg/Graphiti

of O (log(|V|)) albeit requiring a higher communication complex-

ity of O (N log(|V|)) for Scatter/Gather10. Recall that protocols in
Graphiti and GraphSC requires FShuffle and FinsecSort. For this, we
instantiate the FShuffle with Π (2+1)-Shuffle and FinsecSort with the

secure protocol for quicksort as described in [2]. We note that the

run time of our protocol is independent of the graph topology and

depends only on N and |V|. We set 10% of N as nodes in our experi-

ments. We use similar graph sizes (N) as considered in [2] for all

the comparisons. In what follows, we first discuss the performance

of Scatter-Gather, followed by benchmarking two applications of

contact tracing via BFS, using both Graphiti as well as [2].

5.1.1 Improvements in Scatter/Gather. We begin by comparing

the cost of the primitives in Graphiti. Fig. 6 and Table 8 report the

comparison of Scatter where N = |V| + |E| is varied from 10
4
to 10

7
.

Recall that Scatter updates the edge data as a function of node data.

For simplicity, we consider this function to be an identity function

where the edge data is updated to be equal to the data component

of the source node. We make the following observation:

• Our protocol for Scatter clearly outperforms both the linear and

the RO variant of [2], with respect to run time. Concretely, we

see improvements of up to 1418× and 116× in run time for lin-

ear and RO variants, respectively. The improvements in run time

can be attributed to the improved round, communication, as well

as computation cost of our Scatter. With only one invocation of

Π (2+1)-Shuffle, our protocol requires just a single round, as opposed
to the N and log(|V|) number of rounds for the linear and RO

variant, respectively. Further, our protocol has 4× and up to 160×
less communication with respect to the linear variant and RO vari-

ant, respectively. This is because our protocol for Scatter has a
communication of 2Nℓ . In comparison, the linear variant has 2N in-

vocations of secure multiplication where each multiplication has a

cost of 4ℓ bits, making the online communication 8Nℓ . The RO vari-

ant has the highest communication wherein it requires 4N log(|V|)
invocations of secure multiplication and hence has a communica-

tion of 16N log(|V|). Additionally, our local computations involve

just additions/subtractions as opposed to 4N and 8N log(|V|) local
multiplications in the linear and RO variant of [2]. All these factors

contribute to the improved run time of our solution.

• With respect to scalability with N, we observe that the run time

of Scatter for both Graphiti, as well as the the two variants of [2]

increases with N. However, the rate of increase for our protocol
is much smaller in comparison to that of [2]. Specifically, as N
increases from 10

4
to 10

7
, we observe that our run time increases

by a factor of 435× while for both the linear variant and the RO

variant of [2] if increases by a factor of approximately 1002× and

2575×. The increase in the run time of our Scatter can be attributed

to the increase in the communication cost, which scales linearly

with N. However, as N increases, along with communication, the

round complexity also increases for both the linear and the RO

variant of [2]. Hence, they both have a higher factor of increase in

run time. In fact, the RO variant has the highest factor of increase

10
Recall that the RO variant of [2] has round and communication complexity of

O(logB) and O(N logB) , respectively. Here, B denotes the bound on the maximum

degree. For experiments, [2] considers as low a bound as B = 1023 even for graphs of

size 10
7
. However, we observe that several real-world graphs have a maximum degree

as O(|V |) [26]. Hence, we set the bound B = |V | .

https://github.com/Bhavishrg/Graphiti.git

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

as its communication scales at an increased factor of O(N log(|V|)).
Consequently, our improvements in run time with respect to both

the linear and the RO variant of [2] increase with increasing N.
Concretely, we see the improvements increase from 263× to 1418×
for the linear variant and from 17× to 116× for the RO variant. In

this way, our solution is much more scalable and takes less than a

second to process the DAG-list of 1 million entries.

• Fig. 11 in §C.1 captures how all the protocols compare with

each other. The improvements in the run time of the RO variant

with respect to the linear variant decrease from 30× to 10× when

increasing N from 10
4
to 10

7
. This can be attributed to the higher

communication complexity of the RO variant that starts becoming

a bottleneck as N increases. This clearly shows that the RO variant

trades off communication to achieve better run time. In contrast,

note that our protocol reduces both the round and communication

complexity, making it a clear-cut winner, as evident from Fig. 11.

The comparison for Gather is appears in Table 9 in §C.1. Since the

trend for Gather follows similarly, we omit explicit analysis for the

same.

5.1.2 BFS for Contact tracing. To showcase the practicality of

Graphiti for real life applications, we benchmark the two variants

of contact tracing described in §A.4 via Graphiti and compare it

with the GraphSC framework of [2].

The application of simple contact tracing requires 𝜏 iterations of

message-passing phase, where each iteration comprises the follow-

ing components— (i) Scatter, (ii) transition from source ordering

to destination ordering, (iii) Gather. Additionally, only the last it-

eration of message-passing phase comprises an ApplyV, which in

turn relies on a secure comparison protocol
11
. Table 5 and Table 10

report the run time and communication split, respectively. The

reported costs account for the various components in one iteration

of the message-passing phase. The total time for simple contact

tracing is computed as 𝜏 × (time for Scatter + time for Transition +
time for Gather) + time for ApplyV.

Observe that our framework clearly outperforms [2]. Specifically,

we see improvements of up to 1034× and 85× in run time, and up

to 3× and 106× in the communication cost, with respect to the

linear and RO variant of [2], respectively. This can be attributed to

the improvements witnessed in Scatter − Gather and the ApplyV.
We do not explicitly report the improvements with respect to the

Scatter and Gather components since they follow similar trends, as

reported earlier. Further, we note that the cost for transition remains

the same across all protocols. Finally, we see an improvement of up

to 11× in run time and up to 10× in the communication of ApplyV.
This is because, as discussed in §3.3, Graphiti leverages the vertex
order and the knowledge of |V| to improve the communication of

ApplyV wherein the function 𝑓AV is applied only to first |V| entries
of the DAG-list. Unlike this, for both the linear and RO variants

of [2], the function 𝑓AV is applied to all the entries of the DAG-list.

We observe that it takes under 2 minutes to perform simple contact

tracing on a graph of size 10
7
. This shows that our solution is

sufficiently practical. For completeness, we also report the cost of

the initialisation phase for Graphiti in Table 11. Note that the cost

of initialisation for Graphiti is the same as that of [2].

11
We rely on circuit-based comparison protocol[21] which can be realised using MPC.

Ref N Scatter Transition Gather ApplyV Total

[2] (linear)

10
4

5.27

0.01

5.27 0.01 105.45

[2] (RO) 0.16 0.17 0.01 3.35

Graphiti 0.01 0.01 0.01 0.18

[2] (linear)

10
5

52.65

0.02

52.66 0.07 1053.43

[2] (RO) 2.73 2.77 0.07 55.34

Graphiti 0.04 0.04 0.01 1.13

[2] (linear)

10
6

526.02

0.18

526.68 0.71 10529.79

[2] (RO) 36.25 36.46 0.71 730.54

Graphiti 0.40 0.42 0.07 11.00

[2] (linear)

10
7

5271.83

1.71

5271.84 8.17 105464.60

[2] (RO) 434.78 433.27 8.17 8716.64

Graphiti 3.66 3.67 0.69 101.90

Table 5: Comparison of run time(s) of simple contact tracing
for threshold 𝜏 = 10 and varying N = |V| + |E|.

Effect of decoupling Scatter. Recall that the simple contact trac-

ing considered above does not have the ApplyE component. How-

ever, several other graph algorithms require a specific function

to be applied during Scatter. In such scenarios, recall that our ap-

proach of decoupling Scatter into Propagate and ApplyE aids in

improving the round complexity. We benchmark the application of

probabilistic contact tracing to showcase these improvements. Each

iteration of the message passing phase here additionally requires

a function 𝑓AE to be applied during Scatter (see Equation (1)). The

same can be realised in Graphiti via Propagate and ApplyE where

propagate remains the same as in the case of simple contact tracing,

while ApplyE is now defined as e.datar = 𝑓AE (e.datar)∀e(u, v) ∈ E.
The rest of the message-passing phase proceeds in the same way

as in simple contact tracing. Note that in the secure evaluation,

𝑓AE can be realised by sampling a random value r and computing

𝑓AE (data) = data · 1{r < 𝑝} where 1{·} denotes the indicator func-
tion. Observe that securely computing 𝑓AE requires one invocation

of secure comparison followed by one invocation of multiplica-

tion. Thus, securely computing 𝑓AE incurs a round complexity of

log(ℓ) + 1 when relying on circuit-based comparison protocol and

MPC of [11]. Here ℓ denotes the input length of r.
As stated in §1.1, recall that one can attain an intermediate solu-

tion that immediately improves over [2] by decoupling Scatter as
Propagate andApplyE. Specifically, for the application of probabilis-
tic contact tracing, the intermediate solution improves the round

complexity of Scatter in the linear variant of [2] fromO(N·(log(ℓ)))
to O(N + log(ℓ)) and from O(log(|V|) · (log(ℓ))) to O(log(|V|) +
log(ℓ)) for the RO variant. Graphiti not only decouples Scatter but
also designs a novel approach that further improves the round com-

plexity to O(log(ℓ)). Table 6 reports the cost of probabilistic contact
tracing for the linear and RO variants of [2], Graphiti, as well as
the intermediate solutions with decoupled Scatter. Concretely, the
intermediate solutions witness an improvement up to 6× in com-

parison to the linear variant of [2] and up to 8.5× improvement in

comparison to the RO variant of [2]. Observe that decoupling of

Scatter has a higher impact on the RO variant than the linear vari-

ant since decoupling aids in improving not only the rounds but also

the communication complexity in the case of RO variant. Specifi-

cally, the communication complexity drops from O(N · log(|V|) · ℓ)
to O(N · log(|V|) + N · ℓ) for the RO variant. Finally, to capture

the improvements brought in by the novel approach to Scatter, we
compare Graphiti with the intermediate solution. Here, Graphiti

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

10
4

10
5

10
6

10
7

0

2,000

4,000

10
4

10
5

0

20

40

Graph size (|V| + |E|)

T
i
m
e
(
s
)

Graphiti
[2](linear)

10
4

10
5

10
6

10
7

0

100

200

300

400

10
4

10
5

0

1

2

Graph size (|V| + |E|)

Graphiti
[2] (RO)

(a) Run time

10
4

10
5

10
6

10
7

0

200

400

600

10
4

10
5

0

2

4

6

Graph size (|V| + |E|)

C
o
m
m
u
n
i
c
a
t
i
o
n
(
M
B
)

Graphiti
GraphSC (RO)

10
4

10
5

10
6

10
7

0

10,000

20,000

10
4

10
5

0

50

100

150

Graph size (|V| + |E|)

Graphiti
GraphSC (RO)

(b) Communication

Figure 6: Comparison of run time and communication of Scatter for varying graph size.

witnesses an improvement of 1000× and 27× over the decoupled

Scatter solution for linear and RO.

Ref

Scatter
Total

Propagate ApplyE

[2] (linear) 62.92 682.01

[2] (RO) 2.48 26.55

[2] (linear with decoupled Scatter) 10.47

0.02

157.42

[2] (RO with decoupled Scatter) 0.27 4.57

Graphiti 0.01 0.02 0.325

Table 6: Comparison of the run time (s) for the application of
contact tracing for probabilistic infection spread for N = 10

4.

5.1.3 Other applications: As done in [22], we note that Graphiti
can be used to securely realise other applications such as matrix

factorization, Pagerank, histogram, etc. Regarding the concrete run

time of Graphiti for these applications, we note that the computa-

tions involved in these are very similar to that of BFS, described in

§5.1.2. Specifically, steps within Propagate andGather follow along

similar lines as in the case of BFS. Further, ApplyE and ApplyV func-

tions are linear and can be performed locally within MPC. Thus,

the run times for these applications are dominated by the run times

for Propagate and Gather, where the run times for the latter will

follow similar trends as in Table 8 and Table 9. Hence, we do not

benchmark these additional applications explicitly.

5.2 Shuffle
We compare the performance of our newly designed shuffle protocol

with the state-of-the-art protocol of [9]. Since [9] works in the 2PC

setting, for a fair comparison, we adapt and implement the protocol

in the 2PC with a helper setting.

We begin by comparing our shuffle protocol for the case of

multiple invocations of shuffle where the same random permuta-

tion is applied, as required when considering multiple iterations of

message-passing phase in Graphiti. Table 7 reports the comparison

of the online phase of shuffle where we vary the number of shuffle

invocations from 1 to 100. Observe that our shuffle protocol outper-

forms [9] in terms of run time. Specifically, we see improvements

of up to 1.83× in the run time while having the same communica-

tion cost. The improvements in run time can be attributed to the

improvements in the round complexity of our protocol wherein

the protocol of [9] requires one additional round compared to our

protocol. For completeness, we also compare the total run time and

communication of our protocol and report the cost in appendix §C

(see Table 16). Despite having slightly higher communication in

the preprocessing our protocol outperforms the protocol of [9] in

terms of run time. This shows that the effect of the lower number of

rounds dominates the increase in communication. Further, we ob-

serve that as the number of sequential shuffle invocations increases,

our improvements in the total time increase as our communication

cost gets amortised. This shows that our shuffle protocol is apt for

scenarios where the same random permutation has to be applied

multiple times. Next, to showcase scalability, we benchmark the

performance of our shuffle protocol for varying input vector sizes.

Table 17 in §C.2 reports the costs when varying the input vector

size from 10
4
to 10

7
. We observe that the run time of our shuffle

increases linearly with the increase in vector size. Further, it takes

less than 2 seconds to shuffle a vector of ten million elements of

length 64 bits each. This shows that our shuffle protocol is highly

scalable, and this greatly impacts the performance of Graphiti.

Ref #Shuffle Run time (ms) Comm. (MB)

[9]

1

21.37 1.6

Ours 17.93

[9]

10

124.68 16.00

Ours 77.20

[9]

50

644.95 80.00

Ours 346.01

[9]

100

1253.75 160.00

Ours 681.63

Table 7: Comparison of shuffle for multiple shuffle invoca-
tions with |T| = 10

5 when same permutation is applied.

6 Acknowledgements
Arpita Patra would like to acknowledge financial support from Sony

Faculty Innovation Award, Google India Faculty Award and JPM

Faculty Research Award. The project also received funding from

the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation program (grant agreement

No. 850990 PSOTI). It was co-funded by the Deutsche Forschungs-

gemeinschaft (DFG) within SFB 1119 CROSSING/236615297.

References
[1] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-Throughput Semi-Honest Secure Three-Party Computation with an

Honest Majority. Cryptology ePrint Archive, Paper 2016/768. https://eprint.iacr.

org/2016/768

[2] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin,

and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. In ACM CCS.

https://eprint.iacr.org/2016/768
https://eprint.iacr.org/2016/768

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[3] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny Pinkas,

Katsumi Takahashi, and Junichi Tomida. 2022. Efficient secure three-party sorting

with applications to data analysis and heavy hitters. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness The-

orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended

Abstract). In STOC.
[5] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant

Kumar, and Mayank Rathee. 2021. Function secret sharing for mixed-mode and

fixed-point secure computation. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer.

[6] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure computation with prepro-

cessing via function secret sharing. In Theory of Cryptography: 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1–5, 2019, Proceedings, Part
I 17. Springer.

[7] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. 2019. Practical Fully Secure

Three-Party Computation via Sublinear Distributed Zero-Knowledge Proofs. In

ACM CCS.
[8] Andreas Brüggemann, Thomas Schneider, Ajith Suresh, andHossein Yalame. 2022.

Poster: Efficient Three-Party Shuffling Using Precomputation. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
3331–3333.

[9] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. 2020. Secret-shared shuffle.

In ASIACRYPT.
[10] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. AS-

TRA: High Throughput 3PC over Rings with Application to Secure Prediction.

In ACM CCSW@CCS.
[11] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for efficient mixed-protocol secure two-party computation.. In NDSS.
[12] Ronald Aylmer Fisher and Frank Yates. 1953. Statistical tables for biological,

agricultural, and medical research. Hafner Publishing Company.

[13] Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal,

and Somya Sangal. 2023. Vogue: Faster computation of private heavy hitters.

IEEE Transactions on Dependable and Secure Computing (2023).

[14] Banashri Karmakar, Nishat Koti, Arpita Patra, Sikhar Patranabis, Protik Paul, and

Divya Ravi. 2023. Asterisk: Super-fast MPC with a Friend. Cryptology ePrint
Archive (2023).

[15] Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal. 2023.

Entrada to Secure Graph Convolutional Networks. Cryptology ePrint Archive
(2023).

[16] Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal, et al. 2023.

Find thy neighbourhood: Privacy-preserving local clustering. PoPETs (2023).
[17] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-

fast and Robust Privacy-Preserving Machine Learning. In USENIX Security.
[18] Donghang Lu and Aniket Kate. 2022. RPM: Robust Anonymity at Scale. PETS

(2022).

[19] Sahar Mazloom and S Dov Gordon. 2018. Secure computation with differentially

private access patterns. In CCS.
[20] Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, and S Dov Gordon. 2020. Secure

parallel computation on national scale volumes of data. In USENIX Security.
[21] Payman Mohassel and Peter Rindal. 2018. ABY

3
: A Mixed Protocol Framework

for Machine Learning. In ACM CCS.
[22] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and

Elaine Shi. 2015. GraphSC: Parallel secure computation made easy. In IEEE S&P.
[23] Arpita Patra and Ajith Suresh. 2020. BLAZE: Blazing Fast Privacy-Preserving

Machine Learning. In NDSS.
[24] A Pranav Shriram, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj

Gopal, and Somya Sangal. 2023. Ruffle: Rapid 3-party shuffle protocols. PoPETS
(2023).

[25] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,

Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure

computation framework for machine learning applications. In Proceedings of the
2018 on Asia conference on computer and communications security.

[26] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-

tory with Interactive Graph Analytics and Visualization. In AAAI. https:

//networkrepository.com

[27] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2020. Ariann:

Low-interaction privacy-preserving deep learning via function secret sharing.

arXiv preprint arXiv:2006.04593 (2020).
[28] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party

Secure Computation for Neural Network Training. Proc. Priv. Enhancing Technol.
2019 (2019).

[29] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, and

Ji-Rong Wen. 2021. Approximate graph propagation. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining.

[30] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty computation toolkit. https://github.com/emp-toolkit.

[31] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended

Abstract). In FOCS.

A Graphiti
A.1 Scatter

Knowedge of |V|. Recall that our Scatter algorithm relies on

knowing |V| when processing the DAG-list in vertex order. Note

that this is required to ensure that the datar component of edges are

0, which is required to ensure correctness. This is in contrast to the

GraphSC framework of [22], which only assumes the knowledge of

|V| + |E|. However, we highlight that our algorithm can be adapted

to function without knowing |V|, while still maintaining a round

complexity independent of |V| + |E|. Consider the current algorithm
for Scatter (Algorithm 3), where knowledge of |V| is required in

steps 1-3. The algorithm can be adjusted to run the for loop in steps

1-3 for 𝑖 from |V| + |E| to 2. Subsequently, edges can locally update

their datar component to 0. This can be achieved by multiplying the

datar component with the isV component. The secure realisation

of this using MPC requires one invocation of secure multiplication

at each entry of the DAG-list. Note that this operation is akin to

ApplyV, where operations are local to the entries of the DAG-list

and hence can be executed in parallel. Further, since secure mul-

tiplication via MPC can be realised in constant rounds, the round

complexity of the algorithm remains independent of |V| + |E|. The
rest of the protocol can then proceed as previously described. The

modified algorithm that does not require the knowledge of |V|
appears in Algorithm 5.

Algorithm 5: Scatter
Input: DAG-listG in vertex order

1 for 𝑖 = |V| + |E| to 1 do
2 G[𝑖] .datar = G[𝑖] .datas − G[𝑖 − 1] .datas ;
3 end
4 for 𝑖 = |V| + |E| to 1 in parallel do
5 G[𝑖] .datar = G[𝑖] .datar · G[𝑖] .isV ;

6 end
7 Transition to the source order of the DAG-list ;

8 for 𝑖 = |V| + |E| to 1 do
9 G[𝑖] .datar =

∑𝑖
𝑗=1 G[𝑗] .datar − G[𝑖] .datas ;

10 end

The secure implementation of Algorithm 5 now additionally

requires |V| + |E| parallel invocations of Fmult. Thus the round

complexity of Scatter is reduces to the round complexity of one

invocation of Fmult followed by FShuffle.

A.2 Input sharing
Recall that the input to the initialisation phase of the Graphiti
framework consists of the graph represented as a DAG-list G in the

vertex order. In this section, we discuss the input-sharing phase,

which details the inputs shared by the clients (who distributively

hold the graph) and the subsequent generation of the ⟨·⟩-shares of
the DAG-list G by the computing parties.

Recall that in applications such as contact tracing, the input

graph can be distributed between multiple clients who only have a

https://networkrepository.com
https://networkrepository.com
https://github.com/emp-toolkit

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

partial view of the graph. The partial view of a client consists of

a subset of vertices, the data associated with them and the edges

corresponding to those vertices. Thus each client secret shares the

following to the computing parties- (i) an edge list of size |V| with
respect to each vertex 𝑢 in its veiw, where the 𝑖th entry in the list

corresponds to a 1 if the the client has the view of the edge 𝑒 (𝑢, 𝑖)
and (ii) a list of data values corresponding to each vertex in the

view of the clients. Having received the shares of input, assuming

the mapping between clients and ordering of the vertices is known,

the computing parties do the following. The parties first generate

the adjacency matrix, A, of the graph by stacking up the edge list

corresponding to each vertex. Further, they also generate a data

list, X, corresponding to the vertices by concatenating the list of

data values received from the clients.

Following this, the parties perform a series of consistency checks

to ensure that they have received valid shares that indeed corre-

spond to an adjacency matrix. This involves checking the consis-

tency of the input shares generated by the client towards the parties,

checking if each entry in A is a 0/1, checking if A is symmetric (in

case the input is an undirected graph) etc. Further details of these

consistency checks can be found in [15].

Given ⟨·⟩-shares of A, X, the parties proceed to generate DAG-list
in vertex order. This entails generating ⟨·⟩-shares of—(i) G[𝑖] .src,
G[𝑖] .dst (ii) G[𝑖] .isV to denote if the 𝑖𝑡ℎ tuple is a vertex or an

edge, (iii) G[𝑖] .data to store the data elements, where the data

components of vertices are present in X and data components of

edges are initialised to 0. The parties first initialize G and set the

first |V| entries of the G as vertices ordered from 1 to |V|. Thus
the parties set the ⟨G[𝑖] .isV⟩ to ⟨1⟩, ⟨G[𝑖] .src⟩ = ⟨G[𝑖] .dst⟩ = ⟨𝑖⟩
and ⟨G[𝑖] .𝑑𝑎𝑡𝑎⟩ = ⟨𝑋 [𝑖]⟩ for 𝑖 = 1 to |V|. Next to generate the

entries of G corresponding to valid edges, the parties first generate

⟨·⟩-sharing of a list G′
comprising of all possible edges (i.e. every

element in A) where ⟨G′ [𝑖] .isV⟩ is set
〈
A𝑖 𝑗

〉
, and data component is

set to ⟨0⟩. Next, to extract the valid |E| edges from |V|2 entries inG′
,

[15] relies on sorting G′
based on the values in isV, and extracts the

first |E| entries, and appends these to G. However, we observe that
instead of sorting, one can rely on a compaction protocol [3, 13] to

efficiently extract the E valid edges. Finally, isV should be 1 only

for vertices thus, values of isV are set to 1 − isV for the valid edges

in G′
before appending them to G.

A.3 The complete framework
A.3.1 Initialisation. The transitions during initialisation can be

achieved as follows given the mappings that are generated during

the initialisation phase as discussed in §3.4.1.

• Vertex order→ source order: The parties invoke FShuffle to apply

the secret shared permutation 𝜋𝐴 to move from vertex order to

Shuffle-A. Then, the parties locally apply the public permutation

𝜋𝑆 on their share of Shuffle-A to get the source ordered DAG-list.

Thus, a single invocation of FShuffle is required to transition from

vertex order to source order.

• Source order→ destination order: The parties locally apply the

public permutation 𝜋−1
𝑆

move from source order to Shuffle-A. Note
that since 𝜋𝑆 is a public permutation, 𝜋−1

𝑆
can be computed locally

by the computing parties. Following this, the parties invoke FShuffle
to apply the permutation 𝜋𝐵 to move to Shuffle-B. Finally, the

Vertex order

Shuffle-A

Shuffle-B
Insecure sort

Insecure sort
Source order

Destination order

Secure Shuffle

Secure Shuffle

 Secure
Shuffle

- Secret shared permutations

- Public permutations

Figure 7: Initialisation in Graphiti.

parties locally apply the public permutation 𝜋𝐷 on their local shares

of Shuffle-B to get the DAG-list in destination order. Thus, a single

invocation of FShuffle is required to transition from source order to

destination order.

• Destination order→ vertex order: The parties locally apply the

public permutation 𝜋−1
𝐷

on their shares to get to Shuffle-B from des-

tination order. From here, observe that two invocations of FShuffle
are required to get to vertex ordering, i.e., apply𝜋−1

𝐵
to get Shuffle-A

followed by 𝜋−1
𝐴

to get vertex order from Shuffle-A. However, the
sharing of 𝜋𝐶 = 𝜋−1

𝐵
◦ 𝜋−1

𝐴
among the parties can be computed

once using one call to FShuffle during the initialisation and can

be used later in the message-passing phases. Thus, applying the

public permutation 𝜋−1
𝐷

followed by a single invocation to FShuffle
to apply 𝜋𝐶 generates the vertex order of the DAG-list from the

destination order.

A pictorial representation of the initialisation phase of Graphiti
appears in Fig. 7.

A.4 Contact tracing using Graphiti
In this section we discuss the two variants of contact tracing that

and how it an be realised using the framework of Graphiti.

Simple contact tracing. Recall the application of contact trac-

ing described earlier, where the goal was to identify all persons

at a distance smaller than some threshold 𝜏 from an infected per-

son in the contact graph. A simple way of achieving this is to

run a BFS algorithm. We demonstrate how our framework can be

used to realise the BFS algorithm, which is also a basic building

block for many other applications. Specifically, given a graph, we

are interested in identifying all nodes that are reachable within

a given distance 𝜏 from a source node via BFS. We assume the

input graph is represented as the DAG-list, sorted in vertex or-

der. This DAG-list consists of nodes and edges, encoded as a tuple

(src, dst, isV, datas, datar, datag) (see §2.2).
At a high level, the message-passing phase can be realised as

follows. Following the initialisation phase described in §3.4.1, the

parties evaluate the BFS algorithm in 𝜏 message-passing rounds.

Initially, the source node, representing an infected person, has the

datas component set to 1, and all other entries in the DAG-list have

have datas set to 0. datar, datag components for all entries in the

DAG-list are initialized to 0 as well. In the 𝑖th message-passing

round, our goal is to identify nodes that are reachable within a

distance of 𝑖 hops from the source node. To realize this, in each of

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

the 𝜏 message-passing rounds, for each edge e(u, v), if the datas
component of u is a 1, then we set the datas component of v also
to 1. To achieve this, Propagate is defined to propagate the datas
component of a node onto its outgoing edges. The propagated

data is stored in the datar component of the edges. An explicit call

to ApplyE is not required. Then, Gather is defined to compute a

cumulative sum of the datar values of all incoming edges, and is

stored in the datag component of the node. Observe that if datag >

0 for a v, then its datas component should be set to 1. This can

done in the ApplyV phase where each vertex updates its datas to
1 if datag > 0. In this way, observe that after 𝜏 message-passing

rounds, datas = 1 for all nodes that are within a distance of at most

𝜏 from the source node. Further, note that as an optimisation, we

can avoid checking if datag > 0 in each message-passing round

and perform this check only once in the last round. That is, instead

of checking if datag > 0 in each message-passing round, datag can
be simply be added to the datas component. In this case, at the

end of 𝜏 rounds, datas ≥ 1 for all nodes that are within a distance

at most 𝜏 from the source node. Thus, in the ApplyV phase of the

last message-passing round, datas can be updated to 1 if datas > 0.

The formal details of performing simple contact tracing appears in

Fig. 8.

Inputs: The parties hold sharing of DAG-listG in vertex order. Each tuple

in theDAG-list consists of the following components— (src, dst, isV, datas,
datar, datag) . The datas, datar, datag component is initialised to 0 except

for the source node which has datas set to 1. A public threshold 𝜏

Output: The parties hold sharing of DAG-list G in vertex order such

that the datas component of all the infected nodes is set to 1.

Protocol:
– The parties run the initialisation steps described in §3.4 to generate

sharing of permutations 𝜋𝐴, 𝜋𝐵, 𝜋𝐶 and public permutations 𝜋𝑆 , 𝜋𝐷 .

– for 𝑖 = 0 to 𝜏 the parties do the following:

• Propagate: The parties invoke FMPC to evaluate steps 1-3 of

Propagate described in algorithm 3. Following this, the parties

invoke FShuffle to apply 𝜋𝐴 followed by applying the public per-

mutation 𝜋𝑆 on their local shares of DAG-list to generate the

source order. Finally, the parties invoke FMPC to evaluate steps

5-7 of algorithm 3.

• An explicit call to ApplyE is not required.

• source order to destination order: The parties locally apply

the public permutation 𝜋−1
𝐴

to generate sharing of shuffle-𝐵. The

parties invoke one instance of FShuffle which applies 𝜋𝐵 on shares

of shuffle-𝐴 and generate sharing of shuffle-𝐵. The parties locally

apply the public permutation 𝜋𝐷 to get the destination order.

• Gather: The parties run the MPC protocol to evaluate Gather
described in algorithm 4. In the secure evaluation of Algorithm 4,

observe that steps 1-3 consist of only linear operations and hence

can be evaluated non-interactively. Following this, the parties

apply the public permutation 𝜋−1
𝐷

on their local shares followed

by one invocation of FShuffle to apply 𝜋𝐶 to generate the vertex

order. Finally, steps 5-7, also consist of only linear operations and

hence can be evaluated non-interactively.

• Set G[𝑗] .datas = G[𝑗] .datag for 𝑗 = 0 to V.

• An explicit call to ApplyV is not required.

– ApplyV: The parties invoke FMPC on the circuit computing the

function 𝑓AV on the sharing of datas component of the first |V | entries
in G. Here, 𝑓AV is defined as 𝑓AV (data) = 1{data > 0}.

Figure 8: Secure evaluation of simple contact tracing using Graphiti.

Probabilistic contact tracing. A more fine grained analysis of

contact tracing is also possible, when we associate a probability

with which the infection can spread. In this scenario, an infected

node spreads the infection to its neighbor with a probability 𝑝 . The

goal is to trace the spread of infection at a distance 𝜏 from a source

node. The message-passing round for the same can be realised in

a similar manner to that of simple contact tracing with Scatter
modified to update the edge data as a function of the source node

data, i.e., e.datar = 𝑓AE (u.datas)∀e(u, v) ∈ E where:

𝑓AE (data) =
{
𝑓AE (data) with probability 𝑝

0 otherwise

(1)

The same can be realised in Graphiti via Propagate and ApplyE
where propagate is defined as propagating the datas component

of a node onto its outgoing edges, while ApplyE is now defined as

e.datar = 𝑓AE (e.datar)∀e(u, v) ∈ E. The rest of the message-passing

round proceeds in the same way as BFS.

B (2+1)-Shuffle
Shuffle related works. We would like to note that the work of [8]

also designs a shuffle protocol in the setting of 2PC with a helper,

and requires 1 round and 2N elements of communication in the

online phase. However, it requires a function-dependent prepro-

cessing phase, unlike our shuffle protocol whose preprocessing

phase is function-independent. Moreover, it relies on permutation

matrices, which makes the computation cost quadratic in the num-

ber of nodes in the graph. This defeats the goal of Graphiti, which
is to reduce the quadratic complexity. [1] also designs a shuffle

protocol in the 3PC (all-online) setting, which requires 3 rounds of

interaction and 6N elements of communication. When adapted to a

2PC setting, it requires 2 rounds of interaction and 4N elements of

communication. Finally, the 2PC shuffle protocol of [9] is designed

in the function-independent preprocessing setting. However, its

online complexity is 2 rounds and 2N elements of communication.

We design a new shuffle protocol that can bring down the round

complexity to just 1.

The ideal functionality of shuffle appears in Fig. 9 and the proto-

col box appears in Fig. 10.

Comparison with shuffle protocol of [9]. The protocol of [9], orig-
inally designed for 2PC setting, can be adapted to our setting by

offloading the preprocessing computations to the helper. The ap-

proach taken in [9] is to compute ⟨·⟩-shares of TO = 𝜋 (T) =

𝜋0 (𝜋1 (T)) in two rounds, where the first round involves generating

⟨·⟩-shares of T′ = 𝜋1 (T), followed by the generation of ⟨·⟩-shares of
TO = 𝜋0 (T′). Each round in this protocol involves communicating

one message of size Nℓ . In comparison, our protocol follows a com-

pletely different approach by relying on two pairs of permutation

𝜋𝑖 , 𝜋
′
𝑖
for 𝑖 ∈ {0, 1} to compute 𝜋 (T) in only one round.

Comparing the preprocessing phases, the protocol from [9] re-

quires two messages of size Nℓ communicated by the helper in one

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

round, while our protocol requires the communication of three mes-

sages of sizeNℓ . However, we would like to note that in applications
such as Graphiti, where there are multiple invocations of shuffle

and the same permutation is reused across these shuffle instances,

the cost of generating the permutations 𝜋 ′
0
, 𝜋 ′

1
gets amortized. This

makes the overall cost of Π (2+1)-Shuffle almost the same as that of

[9].

Without loss of generality, let 𝑃𝑐 ∈ P denote the party corrupted by

adversary S. FShuffle interacts with parties in P and S. It receives as
input ⟨·⟩-shares of the input table T from 𝑃0, 𝑃1.

FShuffle proceeds as follows.
• Reconstruct input T using ⟨·⟩-shares of 𝑃0, 𝑃1.
• Sample a random permutation 𝜋 from the space of all permutations,

𝑆𝑁 and generate TO = 𝜋 (T) .
• Generate random ⟨·⟩-sharing of TO.
• Send (Output, ⟨TO ⟩𝑖) to 𝑃𝑖 for 𝑖 ∈ {0, 1}.

Functionality FShuffle

Figure 9: Ideal functionality for shuffle.

Inputs: Additive shares, ⟨T⟩
0
, ⟨T⟩

1
of the table T with N rows to be

shuffled shared between parties 𝑃0, 𝑃1.

Outputs: Additive shares, ⟨TO ⟩0 , ⟨TO ⟩1 of the table TO = 𝜋 (T) shared
between parties 𝑃0, 𝑃1, where T is shuffled under a random secret per-

mutation 𝜋 .

Preprocessing:

– Parties 𝑃𝑖 , 𝑃2 for 𝑖 ∈ {0, 1} non-interactively samples R𝑖 ∈ ZN
2
ℓ .

– Parties 𝑃𝑖 , 𝑃2 for 𝑖 ∈ {0, 1} non-interactively sample a random per-

mutation 𝜋𝑖 over {1, . . . ,N}. Define 𝜋 = 𝜋0 ◦ 𝜋1.
– Parties 𝑃0, 𝑃2 non-interactively sample a random permutation 𝜋 ′

0

over {1, . . . ,N}.
– 𝑃2 computes and sends 𝜋 ′

1
= 𝜋 ◦ 𝜋 ′−1

0
to 𝑃1.

– 𝑃2 randomly samples R ∈ ZN
2
ℓ and sends B0 = 𝜋 (R1) − R to 𝑃0 and

B1 = 𝜋 ′
0
(R0) + R to 𝑃1.

Online:

Round 1
– 𝑃1 computes and sends A0 = 𝜋1 (⟨T⟩1 + R1) to 𝑃0.
– 𝑃0 computes and sends A1 = 𝜋 ′

0
(⟨T⟩

0
+ R0) to 𝑃1.

Local computation
– 𝑃0 computes ⟨TO ⟩′0 = 𝜋0 (A0) and ⟨TO ⟩0 = ⟨TO ⟩′0 − B0.

– 𝑃1 computes ⟨TO ⟩′1 = 𝜋 ′
1
(A1) and and ⟨TO ⟩1 = ⟨TO ⟩′1 − B1.

– 𝑃𝑖 for 𝑖 ∈ {0, 1} locally sample a random permutation 𝜋2 and set

⟨TO ⟩𝑖 = 𝜋2 (⟨TO ⟩𝑖) .

Protocol Π (2+1)-Shuffle

Figure 10: Secure shuffle protocol for two-party setting.

C Benchmarks
C.1 Graphiti

Optimisation: Recall that each entry in the DAG-list has multi-

ple components namely, (src, dst, isV, data). Further recall that the
message passing phase of Graphiti involves transitions between
different orderings of the DAG-list. Therefore, all the components

of the DAG-list must be reordered during these transitions. How-

ever, observe that the src, dst and isV components of an entry in

the DAG-list remains unchanged throughout the message pass-

ing phase. Thus we generate copies of these components of the

DAG-list in different orderings as a part of initialisation and main-

tain them separately. During the message passing phase, only the

necessary data components are reordered to transition between dif-

ferent ordering of the DAG-list as required for Scatter and Gather.
This helps in reducing the communication cost as the number of

components in the DAG-list that has to be reordered is reduced.

Table 8 and Table 9 reports the comparison of Scatter andGather
respectively for varyingN. Fig. 11 reports the comparison of Scatter
in Graphiti with both the variants of [2] in log-log scale.

Ref N Runtime (s) Comm. (MB)

[2] (linear)

10
4

5.26 0.64

[2] (RO) 0.17 12.8

Graphiti 0.01 0.16

[2] (linear)

10
5

52.66 6.4

[2] (RO) 2.67 179.2

Graphiti 0.04 1.6

[2] (linear)

10
6

526.25 64

[2] (RO) 36.16 2176

Graphiti 0.39 16

[2] (linear)

10
7

5278.41 640

[2] (RO) 434.78 25600

Graphiti 3.72 160

Table 8: Comparison of Scatter for varying N= |V| + |E|.

Ref N Runtime (s) Comm. (MB)

[2] (linear)

10
4

5.27 0.64

[2] (RO) 0.17 12.8

Graphiti 0.01 0.16

[2] (linear)

10
5

52.61 6.4

[2] (RO) 2.77 179.2

Graphiti 0.04 1.6

[2] (linear)

10
6

526.68 64

[2] (RO) 36.46 2176

Graphiti 0.42 16

[2] (linear)

10
7

5271.84 640

[2] (RO) 433.27 25600

Graphiti 3.67 160

Table 9: Comparison of Gather for varying N= |V| + |E|.

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

4 5 6 7

2

4

6

Graph size (|V| + |E|)

T
i
m
e
(
s
)

Graphiti
[2] (linear)

[2] (RO)

4 5 6 7

6

8

10

Graph size (|V| + |E|)
C
o
m
m
u
n
i
c
a
t
i
o
n
(
B
)

Graphiti
[2] (linear)

[2] (RO)

Figure 11: Run time(left) and communication (right) of Scatter for
varying graph size. Plots are log-log plots with both x-axis and y-axis
logarithmic in base 10.

Ref N Scatter Transition Gather ApplyV Total

[2] (linear)

10
4

0.64

0.16

0.64 0.32 14.72

[2] (RO) 12.8 12.8 0.32 257.92

Graphiti 0.16 0.16 0.03 4.83

[2] (linear)

10
5

6.4

1.6

6.4 3.15 147.15

[2] (RO) 179.2 179.2 3.15 3603.15

Graphiti 1.6 1.6 0.32 48.32

[2] (linear)

10
6

64

16

64 31.50 1471.50

[2] (RO) 2176 2176 31.50 43711.50

Graphiti 16 16 3.15 483.15

[2] (linear)

10
7

640

160

640 315.00 14715.00

[2] (RO) 25600 25600 315.00 513915.00

Graphiti 160 160 31.50 4831.50

Table 10: Comparison of communication (MB) of simple con-
tact tracing for threshold 𝜏 = 10 for varying N= |V| + |E|.

Initialisation: Table 11 reports the cost of the initialisation phase

for Graphiti. Recall that the cost of the initialisation phase consists

of two invocations of FShuffle and two invocations of FinsecSort to
generate the sharing of permutations 𝜋𝐴, 𝜋𝐵 and public permuta-

tions 𝜋𝑆 , 𝜋𝐷 (see §3.4). Additionally, the initialisation involves one

invocation of shuffle to generate the sharing of the permutation,

𝜋𝐶 = (𝜋𝐴 ◦ 𝜋𝐵)−1. However, we note that in the consider setting

of 2PC with a helper, the helper can generate the sharing of per-

mutation 𝜋𝐶 in the preprocessing phase. Thus, the online cost of

initialisation for Graphiti remains the same as that of [2].

|V+E|

Runtime (s) Communication (GB)

Online Preprocessing Online Preprocessing

10
4

0.54 0.19 0.04 0.01

10
5

9.53 4.24 0.43 0.17

10
6

115.03 48.56 5.11 2.00

10
7

1727.07 624.09 61.20 23.91

Table 11: Cost of initialisation for GraphSC andGraphiti vary-
ing N= |V| + |E|.

Preprocessing cost: For completeness we report the preprocessing

cost of Graphiti and GraphSC in the 2PC with helper setting. We

note that the cost of the preprocessing phase consists of the trusted

helper generating the necessary correlated randomness and send-

ing it to the computing parties in one round of interaction. Table 12

reports the preprocessing cost of Scatter and Gather. We note that

unlike the online phase, where the local computations involved

in Scatter and Gather are different, the rounds, communication

and computation are exactly the same in the preprocessing phase.

Table 13 and Table 14 reports the preprocessing cost of simple con-

tact tracing for threshold 𝜏 = 10 and varying N = |V| + |E|. Table 15
reports the preprocessing cost of probabilistic contact tracing for

threshold 𝜏 = 10 and varying N = |V| + |E|.

Ref N Runtime (s) Comm. (MB)

[2] (linear)

10
4

0.02 0.32

[2] (RO) 0.25 6.40

Graphiti 0.01 0.16

[2] (linear)

10
5

0.13 3.20

[2] (RO) 3.42 89.60

Graphiti 0.07 1.60

[2] (linear)

10
6

1.25 32.00

[2] (RO) 42.33 1088.00

Graphiti 0.33 16.00

[2] (linear)

10
7

12.46 320.00

[2] (RO) 522.73 12800.00

Graphiti 3.23 160.00

Table 12: Comparison of the preprocessing phase for Scatter
and Gather for varying N= |V| + |E|.

Ref N Scatter Transition Gather ApplyV Total

[2] (linear)

10
4

0.02

0.01

0.02

0.01

0.43

[2] (RO) 0.25 0.25 5.06

Graphiti 0.01 0.01 0.01 0.27

[2] (linear)

10
5

0.13

0.03

0.13

0.04

2.85

[2] (RO) 3.42 3.42 68.79

Graphiti 0.07 0.07 0.01 1.72

[2] (linear)

10
6

1.25

0.28

1.25

0.41

28.17

[2] (RO) 42.33 42.33 849.74

Graphiti 0.33 0.33 0.04 9.40

[2] (linear)

10
7

12.46

2.80

12.46

4.11

281.26

[2] (RO) 522.73 522.73 10486.68

Graphiti 3.23 3.23 0.41 93.01

Table 13: Comparison of the preprocessing run time(s) for
the application of simple contact tracing for threshold 𝜏 = 10

and varying N = |V| + |E|.

C.2 Shuffle
Table 16 reports the comparison of total run time and communi-

cation of shuffle while varying the number of shuffle sequential

shuffle invocations. Table 17 reports the cost of our shuffle for

varying vector size.

D Security Proofs
In this section, we discuss the security of our designed protocols.We

rely on the standard real-world/ideal-world simulation paradigm

to prove the security of our protocol. Let A denote the real-world

adversary and S denote the ideal-world adversary. Without loss of

generality, we provide the simulator proof for the case whereA cor-

rupts 𝑃1. The simulation for the case of corrupt 𝑃0 follows similarly.

We prove the security of the protocol in the Fsetup-hybrid model

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal

Ref N Scatter Transition Gather ApplyV Total

[2] (linear)

10
4

0.32

0.16

0.32

0.16

8.16

[2] (RO) 6.40 6.40 129.76

Graphiti 0.16 0.16 0.02 4.81

[2] (linear)

10
5

3.20

1.6

3.20

1.58

81.58

[2] (RO) 89.60 89.60 1809.58

Graphiti 1.60 1.60 0.16 48.16

[2] (linear)

10
6

32.00

16

32.00

15.75

815.75

[2] (RO) 1088.00 1088.00 21935.75

Graphiti 16.00 16.00 1.58 481.58

[2] (linear)

10
7

320.00

160

320.00

157.50

8157.50

[2] (RO) 12800.00 12800.00 257757.50

Graphiti 160.00 160.00 15.75 4815.75

Table 14: Comparison of the preprocessing communication
(MB) of simple contact tracing for threshold 𝜏 = 10 for vary-
ing N= |V| + |E|.

Ref

Scatter
Total

Propagate ApplyE

[2] (linear) 0.04 0.74

[2] (RO) 0.29 5.83

[2] (linear with decoupled Scatter) 0.02

0.02

0.41

[2] (RO with decoupled Scatter) 0.25 5.14

Graphiti 0.01 0.01 0.34

Table 15: Comparison of the preprocessing run time (s) for
the application of contact tracing for probabilistic infection
spread for N = 10

4.

Ref #Shuffle Time (ms) Comm (MB)

[9]

1

44.00 3.20

Ours 43.68 4.00

[9]

10

263.41 32.00

Ours 219.51 32.80

[9]

50

1290.71 160.00

Ours 995.35 160.80

[9]

100

2306.88 320.00

Ours 1978.60 320.80

Table 16: Comparison of total run time and communication
of shuffle while varying the number of sequential shuffle
invocations where the same permutation is applied with
|T| = 10

5.

|T|
Runtime (ms) Communication (MB)

Online Preprocessing Online Preprocessing

10
4

1.84 2.43 1.60 1.76

10
5

19.25 24.34 16.00 17.6

10
6

175.33 243.82 160.00 176.00

10
7

1710.27 2418.10 1600.00 1760.00

Table 17: Cost of our shuffle for varying vector size (|T|).
where there exists an ideal functionality Fsetup to establish common

PRF keys among parties in P. This allows the parties to sample

common random values among themselves non-interactively. Note

that the simulation begins with the simulator S emulating Fsetup to
establish the common keys with the adversary. Since S has access

to the inputs and randomness of A, it can simulate the steps in the

real protocol.

In what follows, we first prove the security of our shuffle pro-

tocol followed by the security of Graphiti. Note that although we

prove the security of Graphiti in the 2PC with a helper setting,

our framework is generic and can instantiated with an appropriate

MPC protocol to attain the desired level of security. This is because

the security of Graphiti essentially boils down to the security of

the underlying MPC, FShuffle, and FinsecSort.

D.1 Shuffle
Lemma D.1: The protocol, Π (2+1)-Shuffle (Fig. 10) securely realizes

the functionality FShuffle (Fig. 9) against a semi-honest adversary

that corrupts at most one party in P.

S𝑃1
Π (2+1)-Shuffle

proceeds as follows.

Preprocessing:

– Using the keys commonly held with A (generated as part of Fsetup),
sample the common randomness.

– Sample and send a random permutation 𝜋 ′
1
∈ 𝑆𝑁 on behalf of the

honest party.

– Sample and send a random vector B0 ∈ ZN
2
ℓ on behalf of the honest

party.

Online:

– Sample and send a random vector A1 ∈ ZN
2
ℓ on behalf of the honest

party.

Simulator S𝑃1
Π (2+1)-Shuffle

Figure 12: Simulator S𝑃1
Π (2+1)-Shuffle for corrupt 𝑃1.

Proof. Let A denote the real-world adversary and SΠ (2+1)-Shuffle
denote the corresponding ideal-world adversary. The simulator

begins by first emulating Fsetup during which common keys are

established with A that are used to sample the common random-

ness required throughout the protocol. Following this, it simulates

the steps of the shuffle protocol. The simulation steps for a cor-

rupt 𝑃1 appear in Fig. 12, where the corresponding simulator is

denoted as S𝑃1
Π (2+1)-Shuffle

. Analogously the corruption of 𝑃0 can also

be simulated.

Observe that in the real world, during the preprocessing phase,

A receivesmessages 𝜋 ′
1
andB0 from 𝑃2, which are randomly chosen

from a uniform distribution. In the simulation, too, observe that

A receives messages that are sampled randomly from the uniform

distribution from the simulator. During the online phase in the

real world, A receives A1 from 𝑃0, which is randomized using the

random mask R0. In the simulation too, S𝑃1
Π (2+1)-Shuffle

samples a

random A1 ∈ ZN
2
ℓ and sends it to A on behalf of the honest parties.

Observe that here A1 is random and hence is indistinguishable from

the real world. In this way, real-world and ideal-world executions

are indistinguishable. □

D.2 Graphiti
Initialisation: The ideal functionality for the initialisation phase

of Graphiti appears in Fig. 13 and the secure protocol that realizes

it, ΠInit, appears in Fig. 14.

Graphiti: Secure Graph Computation Made More Scalable CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Lemma D.2: The protocol, ΠMPR (Fig. 14) securely realizes the func-

tionalityFInit (Fig. 13) against a semi-honest adversary that corrupts

at most one party in P.

Proof. Observe that the protocol relies on invoking FShuffle
and FinsecSort. Hence, the security follows from the security of the

underlying protocols for FShuffle and FinsecSort. Apart from this, the

only communication is 𝜋𝐶1
, which is sent by 𝑃2 towards 𝑃1. Observe

that 𝜋𝐶1
is a random permutation, and hence the simulator for 𝑃1

can simulate it by sampling a random permutation and sending it

to 𝑃1 on behalf of 𝑃2. □

Without loss of generality, let 𝑃𝑐 ∈ P denote the party corrupted by

adversary S. FInit interacts with parties in P and S. It receives as input
⟨·⟩-shares of the DAG-list G sorted in vertex order from 𝑃0, 𝑃1. FInit
proceeds as follows.

• Reconstruct input G using ⟨·⟩-shares of 𝑃0, 𝑃1.
• Sample a random permutation 𝜋𝐴 and apply it on G to generate

Shuffle-A.

• Sample a random permutation 𝜋𝐵 and apply it on Shuffle-A to

generate Shuffle-B.

• Set 𝜋𝐶 = 𝜋𝐴 ◦ 𝜋𝐵
• Determine the permutation 𝜋𝑆 that sorts Shuffle-A in the source

order. Determine the permutation 𝜋𝐷 that sorts Shuffle-B in the

destination order.

• Sample a random permutation 𝜋𝐴0
and set 𝜋𝐴1

= Π−1
𝐴0

◦ 𝜋𝐴 . Sample

a random permutation 𝜋𝐵1
and set 𝜋𝐵1

= Π−1
𝐵0

◦ 𝜋𝐵 . Sample a random

permutation 𝜋𝐶1
and set 𝜋𝐶1

= Π−1
𝐶0

◦ 𝜋𝐶 .

• Send (Output, 𝜋𝐴𝑖
, 𝜋𝐵𝑖

, 𝜋𝐶𝑖
, 𝜋𝑆 , 𝜋𝐷) to 𝑃𝑖 for 𝑖 ∈ {0, 1}.

Functionality FInit

Figure 13: Ideal functionality for initialisation phase of Graphiti.

Inputs: ⟨·⟩-sharing of DAG-listG, sorted in vertex order, shared between
parties 𝑃0, 𝑃1.

Outputs: Sharing of a random permutations 𝜋𝐴 = 𝜋𝐴1
◦ 𝜋𝐴0

, 𝜋𝐵 =

𝜋𝐵1
◦ 𝜋𝐵0

, 𝜋𝐶 = 𝜋𝐶1
◦ 𝜋𝐶0

such that 𝜋𝐴𝑖
, 𝜋𝐵𝑖

, 𝜋𝐶𝑖
lies with 𝑃𝑖 for

𝑖 ∈ {0, 1} and public permutations 𝜋𝑆 and 𝜋𝐷 known to 𝑃0 and 𝑃1.

– Invoke FShuffle to apply a random permutation 𝜋𝐴 on the ⟨G⟩ to
generate a ⟨·⟩-shares of a random ordering of the DAG-list, denoted

as Shuffle-A.
– Invoke FShuffle to apply a random permutation 𝜋𝐵 on the ⟨·⟩-shares

of Shuffle-A to generate ⟨·⟩-shares a random ordering of the DAG-

list, denoted as Shuffle-B.
– Party 𝑃2 computes 𝜋𝐶 = 𝜋𝐴 ◦ 𝜋𝐵 . Parties 𝑃0, 𝑃2 sample a random

permutation 𝜋𝐶0
using the common random key.

– Party 𝑃2 computes and sends 𝜋𝐶1
= 𝜋−1

𝐶0

◦ 𝜋𝐶 to 𝑃1.

– Invoke FinsecSort on ⟨·⟩-shares of Shuffle-A to generate a public

permutation 𝜋𝑆 that sorts Shuffle-A in source order.

– Invoke FinsecSort on ⟨·⟩-shares of Shuffle-B to generate a public

permutation 𝜋𝐷 that sorts Shuffle-B in destination order.

Protocol ΠInit

Figure 14: Secure protocol for initialisation of Graphiti in the two-
party setting.

Message Passing Round: The ideal functionality for the message-

passing phase of Graphiti appears in Fig. 13.

Lemma D.3: The protocol, ΠMPR (Fig. 16) securely realizes the func-

tionality FShuffle (Fig. 15) against an semi-honest adversary that

corrupts at most one party in P.

Proof. Observe that the protocol relies on invoking FShuffle and
FMPC. Hence, the security follows from security of the underlying

protocol for FShuffle and FMPC. □

Without loss of generality, let 𝑃𝑐 ∈ P denote the party corrupted by

adversary S. FMPR interacts with parties in P and S. It receives as
input ⟨·⟩-shares of the the DAG-list G sorted in vertex order from

𝑃0, 𝑃1. FMPR proceeds as follows.

• Reconstruct input G using ⟨·⟩-shares of 𝑃1, 𝑃2.
• Perform Propagate on G as defined in §3.1

• Perform ApplyE on G as defined in §3.1

• Perform Gather on G as defined in §3.1

• Perform ApplyV on G as defined in §3.1

• Generate random ⟨·⟩-sharing of G.
• Send (Output, ⟨G⟩𝑖) to 𝑃𝑖 for 𝑖 ∈ {0, 1}.

Functionality FMPR

Figure 15: Ideal functionality formessage passing round ofGraphiti.

Inputs: ⟨·⟩-sharing of DAG-listG, sorted in vertex order, shared between
parties 𝑃0, 𝑃1.

Outputs: ⟨·⟩-sharing of DAG-list G, sorted in vertex order shared be-

tween parties 𝑃0, 𝑃1, where the data components are updated according

to the underlying algorithm.

– Propagate: The parties invoke FMPC to evaluate steps 1-3 ofPropagate
described in algorithm 3. Following this, the parties invoke FShuffle
to apply 𝜋𝐴 followed by applying the public permutation 𝜋𝑆 on their

local shares of DAG-list to generate the source order. Finally, the

parties invoke FMPC to evaluate steps 5-7 of algorithm 3.

– Apply-Edges: The parties invoke FMPC on the circuit computing

the function 𝑓𝐸 to compute apply the function on the sharing of data

component at each entry in the DAG-list.

– source order to destination order: The parties locally apply the

public permutation 𝜋−1
𝐴

to generate sharing of shuffle-𝐵. The parties

invoke one instance of FShuffle which applies 𝜋𝐵 on shares of shuffle-

𝐴 and generate sharing of shuffle-𝐵. The parties locally apply the

public permutation 𝜋𝐷 to get the destination order.

• Gather: The parties run the MPC protocol to evaluate Gather de-
scribed in algorithm 4. In the secure evaluation of Algorithm 4, ob-

serve that steps 1-3 consist of only linear operations and hence can

be evaluated non-interactively. Following this, the parties apply the

public permutation 𝜋−1
𝐷

on their local shares followed by one invo-

cation of FShuffle to apply 𝜋𝐶 to generate the vertex order. Finally,

steps 5-7, also consist of only linear operations and hence can be

evaluated non-interactively.

• Apply-Vertices: The parties invoke FMPC on the circuit computing

the function 𝑓𝑉 to apply the function on the sharing of data compo-

nent at each entry in the DAG-list.

Protocol ΠMPR

Figure 16: Secure protocol for message passing round of Graphiti.

	Abstract
	1 Introduction
	1.1 Our contributions

	2 Preliminaries
	2.1 MPC and threat model
	2.2 GraphSC framework

	3 Graphiti
	3.1 Graphiti primitives
	3.2 Scatter
	3.3 Gather
	3.4 The complete Graphiti framework

	4 (2+1)-Shuffle
	5 Benchmarks
	5.1 Graphiti
	5.2 Shuffle

	6 Acknowledgements
	References
	A Graphiti
	A.1 Scatter
	A.2 Input sharing
	A.3 The complete framework
	A.4 Contact tracing using Graphiti

	B (2+1)-Shuffle
	C Benchmarks
	C.1 Graphiti
	C.2 Shuffle

	D Security Proofs
	D.1 Shuffle
	D.2 Graphiti

