
A Forgery Attack on a Code-based Signature
Scheme

Ali Babaei
Department of Electrical Engineering

Sharif University of Technology
Tehran, Iran

ali.babaei199@sharif.edu

Taraneh Eghlidos
Electronics Research Institute
Sharif University of Technology

Tehran, Iran
teghlidos@sharif.edu

Abstract—With the advent of quantum computers, the security
of cryptographic primitives, including digital signature schemes,
has been compromised. To deal with this issue, some signature
schemes have been introduced to resist against these computers.
These schemes are known as post-quantum signature schemes.
One group of these schemes is based on the hard problems of
coding theory, called code-based cryptographic schemes. Several
code-based signature schemes are inspired by the McEliece
encryption scheme using three non-singular, parity-check, and
permutation matrices as the only components of the private keys,
and their product as the public key. In this paper, we focus on the
analysis of a class of such signature schemes. For this purpose,
we first prove that the linear relationships between the columns
of the parity-check/generator matrix appear in the public key
matrix, and by exploiting this feature we perform a forgery attack
on one of the signature schemes of this class as an evidence. The
complexity of this attack is of O(n4).

Index Terms—code-based signature, code-based cryptography,
post-quantum cryptography, scrambler matrix, parity-check ma-
trix, permutation matrix, generator matrix

I. INTRODUCTION

Over the past three decades, public key encryption has
played an important role in our global communication infras-
tructure. These networks support a large number of applica-
tions such as mobile technology, e-commerce, social network-
ing, and cloud computing that are important to our economy
and security. In such a world, the ability of individuals,
businesses, and governments to communicate securely is of
utmost importance. Many critical communication protocols
are based on three main cryptographic functions: public key
encryption, digital signature, and key exchange mechanism
[1]. Currently, these functions are implemented using the
Diffie-Hellman key exchange scheme, the RSA encryption
scheme, and elliptic curve-based encryption schemes. The
security of these schemes depends on the difficulty of certain
number theory problems, such as the decomposition of integers
or the problem of discrete logarithms in different groups.

In 1994, Peter Shor proved that quantum computers can
solve integer factorization and discrete logarithm problems.
As a result, the security of all public key encryption schemes
based on such problems is compromised [2]. A powerful quan-
tum computer would therefore compromise many forms of
modern communication, from key exchange to encryption and
digital authentication. Therefore, it is necessary to introduce

schemes that are resistant to quantum computers and maintain
their security in the era of quantum computers.

With the advent of quantum computers, the security of
cryptographic primitives such as encryption schemes, digital
signature schemes, and key exchange has been compromised.
Therefore, the American National Institute of Standards and
Technology (NIST) issued a call for proposals for post-
quantum cryptographic schemes in 2016. Following this call,
various schemes for encryption and signature have been intro-
duced.

One of the schemes that is of interest in this paper is the
McEliece encryption scheme [3]. The McEliece scheme is a
code-based encryption scheme that was first introduced by
McEliece in 1978 and has withstood various attacks so far. For
a long time after McEliece’s public key encryption scheme,
it was believed that it was not possible to provide a code-
based signature scheme, until 2001, when Sendrier et al. [4]
introduced the first code-based signature scheme which was
later called CFS.

Later on, other code-based signature schemes such as code-
based group signatures [5], code-based ring signatures [6],
code-based one-time signatures [7], [8], code-based undeni-
able signatures [9] and code-based full-time signatures [10]–
[14] have been introduced.

Some of the above mentioned schemes, for example [13]
and [14] use a common McEliece-like pattern in their key
generation algorithm. In the McEliece encryption scheme, the
public key is the product of three non-singular matrices S,
generator matrix G, and permutation matrix P. Each of the
matrices S, G, and P is also considered as a private key. In
this paper, we show that signatures using this approach are not
secure and can be forged.

This paper is organized as follows: in Section 2 we introduce
the required preliminaries for the code-based forgery attack.
We propose our technique to forge a signature in Section 3.
By utilizing the forgery technique we apply it to a code-based
signature in Section 4. Section 5 concludes the paper.

II. PRELIMINARIES

In this section, we introduce the notations and definitions
used in this paper. In this paper, vectors are shown in bold
small letters and matrices in bold capital letters. We denote



the binary field by F2. The generator matrix of a linear code
C(n, k) and its corresponding parity-check matrix are denoted
by G ∈ F k×n

2 and H ∈ F
(n−k)×n
2 respectively, where n is

the length and k is the dimension of the code. If the received
vector r differs from the transmitted codeword c, then r⊕c =
e and H×eT = s, where s is called a syndrome of the error
vector c.
Definition 1 (Computational Syndrome Decoding (CSD)
Problem) [15]: Given a matrix H ∈ F(n−k)×n

2 a vector u ∈
Fn−k
2 and an integer w > 0 find x ∈ Fn

2 of Hamming weight
≤ w such that H · xT = u.

Definition 2 (Decisional Syndrome Decoding (DSD)
Problem) [15]: Given a matrix H ∈ F(n−k)×n

2 , an integer
w > 0, a random word x ∈ Fn

2 of weight w and a
random syndrome s2 of size n − k. The DSD problem is
defined as distinguishing between random syndrome s2 and
the syndrome s1 = H · xT associated with a small weight
vector x.

III. THE PROPOSED FORGERY ATTACK

In this section, we propose an attack against a class of sig-
nature schemes inspired by the McEliece encryption scheme
[3]. The private keys are composed of an (n − k) × (n − k)
non-singular matrix S, an (n − k) × n parity-check matrix
H , and an n×n permutation matrix P . The product of these
three matrices forms the public key matrix H ′ = SHP .
The attack method is based on the fact that H and H ′ are
equivalent. The existing linear relations between the columns
of the parity-check matrix H appear in the H ′ matrix. By
linear relation, we mean the linear independence or linear
dependence of the columns of the underlying matrix. Based on
this idea, one can generate matrices that appear to be different
from the private keys, yet their product is equal to the public
key.
We note that if more than one set of private keys corresponds
to a public key, the signature scheme is prone to a forgery
attack. Therefore, an attacker can exploit this weakness to
generate a valid signature. In what follows we analyze a
signature scheme that has the same flaw.

A. Constructing fake private keys

As we stated earlier, the main idea of the attack is based
on the fact that the linear relations between the columns of
an arbitrary matrix H appear in the product SH , where S
is a non-singular matrix. This means that any two or more
columns of H that are linearly independent (or dependent)
impose that the corresponding columns of SH have the same
relation. We prove this statement by the following theorem.

Theorem 1: Assume that S is a non-singular matrix and H
is an arbitrary matrix. Then the linear relations between the
columns of the matrix H also appear in the corresponding
columns of the matrix SH .

Proof. We assume that hi and hj are two linearly indepen-
dent columns of H . Then,

αhi + βhj = 0 =⇒ α, β = 0. (1)

and we define,
⟨a, b⟩ ∆

=
∑n

i=1 aibi, a, b ∈ Fn
2

The columns corresponding to hi and hj in SH are:

SH =

· · · ⟨S1,hi⟩ · · · ⟨S1,hj⟩ · · ·
...

. . .
...

· · · ⟨Sn,hi⟩ · · · ⟨Sn,hj⟩ · · ·


where Si is the i-th row of the matrix S.

Now we assume that the two columns i and j are not linear
independent in SH . For this purpose, we consider a linear
combination of these two columns. The sum of the i-th and
j-th column can be written in the following form:s11 · · · s1n

...
. . .

...
sn1 · · · snn


h1i + h1j

...
hni + hnj


where hki and hkj are the k-th entries corresponding to vectors
hi and hj . Given that the vectors hi and hj in H are linearly
independent, their linear combination cannot be zero unless
the sum of the columns in S corresponding to the non-zero
elements of hi+hj is zero. This means that those columns of
S are linearly dependent which contradics the non-singularity
of S. Therefore, the corresponding columns of SH associated
with hi and hj must also be linearly independent.

Next we assume that hi and hj are linearly dependent
columns of H . That is, without loss of generality, we assume
that hj is a multiple of hi which means hj = α.hi, α ∈ F2.
Now, we demonstrate that if two columns of H are linearly
dependent, the corresponding columns in SH is also linearly
dependent. By substituting hj with αhi, we have:· · · ⟨S1,hi⟩ · · · ⟨S1, αhi⟩ · · ·

...
. . .

...
· · · ⟨Sn,hi⟩ · · · ⟨Sn, αhi⟩ · · ·

 =

· · · ⟨S1,hi⟩ · · · α⟨S1,hi⟩ · · ·
...

. . .
...

· · · ⟨Sn,hi⟩ · · · α⟨Sn,hi⟩ · · ·


Therefore, we conclude that each entry in the j-th column

of SH is α times the corresponding entry of its i-th column.
As a result, if two columns of H are linearly independent

(dependent), the corresponding columns in SH are also lin-
early independent (dependent). ■

Using Theorem 1, the forger can find fake matrices Hf

and Sf such that H ′ = SfHf . We describe the method of
finding these two matrices below.

First, the forger selects a uniformly random (n−k)×(n−k)
submatrix H1

f and considers the public key as

H ′ = [H ′
1 |H

′
2],

where H ′
1 is the (n − k) × (n − k) submatrix which is the

(n − k) linearly independent columns of H ′, and H ′
2 is the

(n− k)× k submatrix, which is obtained by the remaining k



columns of H ′. The forger can obtain a fake matrix Sf by
solving the system of equations Sf×H1

f = H ′
1, consisting of

(n−k)2 equations and (n−k)2 variables. Then the remaining k
columns of Hf are obtained by solving the system of equations

Sf ×Hf
2 = H ′

2

including (n− k)× k equations and (n− k)× k variables.
From the following relations, we conclude that Sf has a

non-zero determinant.

SH1
f = H ′

1

det(H1
f ) ̸= 0

det(H ′
1) ̸= 0

Finally, we can use Sf to obtain the remaining k columns of
Hf .

Theorem 2: The linear relations between the columns of
SH = H ′ appear between the columns of Hf .

Proof. Suppose that the columns i and j of H ′ are linearly
dependent. In this case, the i-th and j-th column of the matrix
Hf are

hf
i = S−1

f × h′
i

hf
j = S−1

f × h′
j

where hf
i and h′

i denote the i-th columns of the matrices Hf

and H ′, respectively. The same statement is true for the j-th
columns of Hf and H ′.

It follows from the above that the linear dependency (inde-
pendency) of each two columns of Hf is inherited from that
of the corresponding columns of H ′. ■

An easier way to obtain Hf is to consider it as the reduced
row echelon form of H ′, because of the fact that the linear
relations between the columns of H ′ appear in the reduced
row echelon form of H ′.

IV. FORGERY ATTACK ON A CODE-BASED SIGNATURE

In this section, we first introduce a code-based signature
scheme by Haidary et.al [14]. Then we use our technique
mentioned earlier to forge the signature scheme.

A. The signature scheme

The signature scheme consists of three algorithms: key
generation algorithm, signature generation, and verification.

Key Generation Algorithm. This algorithm consists of the
following matrices:

• A k × n generator matrix G.
• An (n− k)× n parity check matrix H .
• An n× (n− k) dual matrix A.
• A k × k scrambler matrix S.
• An n× n permutation matrix P .
• An (n− k)× (n− k) non-singular matrix L.
The key generation is performed as follows:
• Compute P ′ = (HHT )−1.
• Compute A = HTP ′.

• Like the McEliece cryptosystem we have,

pk1 = G′ = SGP

• Compute pk2 = L−1HP .
• For verification, we need pk3 = P−1AHP .
• Compute the parity-check matrix H ′: Q = H ′T =

((AL)T (P−1)T )T

The resulting public and private keys are:

pk = (pk1,pk2,pk3) and pr = (S−1,P−1,G,Q)

Furthermore, the following relations hold:

pk1.pk3 = 0, (2)

pk2.pk3 = pk2, (3)

pk3.pk3 = pk3 (4)

Signature generation algorithm.
• Hash a document doc, and get the result as n bits

h(doc), and apply the hash function again on it
h(h(doc))← hash(h(doc)).

• s is the n− k bit vector s← h(doc) ·Q.
• Obtain:

(sig)SGP ← h(doc) + s · pk2

• 4) Apply the decoding function on c to obtain sig and
get the result named sig,

(sig)SG← ((sig)SGP )(P−1)

(sig)S ← decode((sig)SG)

sig ← ((sig)S)(S−1)

• Compute the vector d:

d← h(h(doc))(Q) + s

• The resulting signature is (sig,d).
Verification algorithm.
• Hash the received document to compute h(doc) and

h(h(doc)) and compute

a← (sig)SGP (5)

• Compute
v1 = s(pk2)

d = h(h(doc))(Q) + s

d(pk2) = (h(h(doc))(Q) + s)(pk2)

d(pk2) = h(h(doc))(Q)(pk2) + s(pk2)

Therefore:

v1 = s(pk2) = h(h(doc))(pk3) + d(pk2)

• Compute
v2 = s(pk2)

(sig)SGP = h(doc) + s(pk2)



Using the public key and the relations (3) we have

s(pk2) = (sig)(pk1) + h(doc)

s(pk2)(pk3) = (sig)(pk1)(pk3) + h(doc)(pk3)

therefore,

v2 = s(pk2) = h(doc)(pk3)

• Check if the following relation holds:

v1 = v2

• Compute:
c← h(doc) + s(pk2) (6)

• Using the relations (5) and (6), check if the verification
is successful,

a = c

B. Forgery attack

The proposed forgery attack consists of two steps. First we
obtain the secret key Q and in the second step we compute
the fake private keys whose product equals the public key. In
this way we can generate a signature which can be validated
by the verifier. Let us assume that Q, pk1 and pk2 are shown
as follows:

Q =

q11 · · · q1(n−k)

...
. . .

...
qn1 · · · qn(n−k)



pk1 =

p111 · · · p11n
...

. . .
...

p1k1 · · · p1kn



pk2 =

 p211 · · · p21n
...

. . .
...

p2(n−k)1 · · · p2(n−k)n


As it is shown in [14], the following equations hold between

the public keys and the private key Q:

pk1Q = 0 (7)

pk2Q = I (8)

pk3Q = Q (9)

Qpk2 = pk3 (10)

Therefore, Q can be obtained by solving (n − k) systems
of linear equations from (7) and (8). From (7) we have:

pk1Q =

p111 · · · p11n
...

. . .
...

p1k1 · · · p1kn


q11 · · · q1(n−k)

...
. . .

...
qn1 · · · qn(n−k)

 = 0

Therefore, for each column i of the matrix Q we have the
following system of k linear equations in n variables,

p111q1i + p112q2i + · · ·+ p11nqni = 0
...
p1k1q1i + p1k2q2i + · · ·+ p1knqni = 0

Here we need additional (n−k) linear equations in n variables
to obtain the i-th column of the matrix Q. For this purpose,
we use the relation (8) as follows:
pk2Q = I p211 · · · p21n

...
. . .

...
p2(n−k)1 · · · p2(n−k)n


q11 · · · q1(n−k)

...
. . .

...
qn1 · · · qn(n−k)

 =

1 · · · 0
...

. . .
...

0 · · · 1


For the i-th column of Q we have the following system of

n− k linear equations in n variables:

p211q1i + p212q2i + · · ·+ p21nqni = 0
...
p2i1q1i + p2i2q2i + · · ·+ p2inqni = 1
...
p2(n−k)1q1i + p2(n−k)2q2i + · · ·+ p2(n−k)nqni = 0

Since pk1 = SGP and pk2 = L−1HP are equivalent
to GP and HP respectively, the rows of pk1 are linearly
independent from the rows of pk2 (G and H are dual
matrices).

Thus, by repeating these operations for each column of Q,
we have to solve a system of n linear equations in n variables
which have a unique solution for Q because the matrix Q
satisfies both equations (7) and (8).

Using the fourth component of the private key, Q, the
adversary can successfully recover the second component, d,
of the signature. Next, we can easily proceed to forge the first
component of the signature, sig, according to section 3.1. For
this purpose, we have to compute the fake private keys,

pk1 = SfGfP1

It is clear that by permutating the columns of the generator
matrix of a code, we get an equivalent code [16]. Without loss
of generality, we can consider Pf as an identity matrix.

Pf = I

The fake private key Gf can easily be obtained by the reduced
row echelon form of pk1:

Gf = rref(pk1)

And finally by solving k × n systems of linear equations,
pk1 = SfGf , the unknown matrix Sf can be obtained.

At this point, we have fake private keys, Sf , Gf , Pf , and
the recovered matrix Q. Therefore, any forger can forge the
first component of the signature, sig, using the fake private
keys and can obtain the second component of the signature,
d, using the private key Q.



V. CONCLUSION

In this paper, we have analyzed a code-based signature
scheme inspired by the McEliece cryptosystem in terms of
forgery attacks. To the best of our knowledge, this is the first
forgery attack on McEliece-like signature schemes that we
are aware of. We have shown that these kinds of signature
schemes are vulnerable to forgery attacks. In this way, an
adversary can forge the private keys to generate a signature,
which can be validated by the verifier. This attack can be
applied to any signature scheme of the same structure. For this
purpose, the forger must obtain fake private keys to generate a
valid signature. In this manner, the signature is verified by the
verifier, because the verification is not only a function of the
signature but also a function of the signer’s public key. At the
same time, it cannot be checked if the signature is generated
by the genuine keys or the fake ones. It is worth mentioning
that the complexity of this attack is O(n4), where n is the
code length.
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